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1. Introduction. The splay tree is a self-adjusting binary search tree devised
by Sleator and Tarjan [ST85]. It supports the operations search, insert, and delete,
collectively called accesses. The splay tree is simply a binary search tree; each access
will cause some rotations to be performed on the tree. Sleator and Tarjan show that
a sequence of m accesses performed on a splay tree takes time O(m log n), where
n is the maximum size attained by the tree (n ≤ m). They also show that in an
amortized sense, up to a constant factor, on sufficiently long sequences of searches,
the splay tree has as good a running time as the optimal weighted binary search tree.
In addition, they conjecture that its performance is, in fact, essentially as good as that
of any search tree. Before discussing these conjectures it will be helpful to review the
operation of the splay tree and the analysis of its performance. The basic operation
performed by the splay tree is the operation splay(x) applied to an item x in the splay
tree. splay(x) repeats the following step until x becomes the root of the tree.

Splay step.
Let p and g be, respectively, the parent and grandparent (if any) of
x.
Case 1. p is the root: make x the new root by rotating edge (x, p).
Case 2—the zig-zag case. p is the left child of g and x is the
right child of p, or vice-versa: rotate edge (x, p), making g the new
parent of x; rotate edge (x, g).
Case 3—the zig-zig case. Both x and p are left children, or both
are right children: Rotate edge (p, g); rotate edge (x, p).

Henceforth, we refer to the rotation, single or double, performed by the splay step
as a rotation of the access or splay operation. A rotation is the basic step for our
analysis; the cost of one rotation is termed a unit; clearly, this is a constant.
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Sleator and Tarjan use the following centroid potential to analyze the amortized
performance of a splay operation. Node x is given weight, wt(x), equal to the number
of nodes in its subtree; they define the centroid rank of x, or simply the rank of x to
be rank(x) = logwt(x) (our terminology). Each node is given a centroid potential
equal, in units, to its centroid rank. Let δ denote the increase in centroid rank from
x to g, if g is present; otherwise it denotes the increase in centroid rank from x to p.
Sleator and Tarjan show that the amortized cost of the splay step if g is present is at
most 3δ units, while if g is not present the cost is at most δ+ 1 units. Since the total
increase in rank for the complete access is bounded by logn, the amortized cost of
an access is at most 3 log n + 1 units. More generally, this analysis can be applied to
weighted trees, in exactly the same way. We call this the centroid potential analysis.

The operation insert(x) is performed as follows: first, item x is inserted as in a
binary search tree and then the operation splay(x) is carried out. Clearly, the cost of
an insertion is dominated by the cost of the corresponding access. So, subsequently,
when analyzing the cost of insertions, we count only the cost of the splays themselves.

Now, we list the conjectures formulated by Sleator and Tarjan.
Dynamic Optimality Conjecture. Consider any sequence of successful accesses

on an n-node binary search tree. Let A be any algorithm that carries out
each access by traversing the path from the root to the node containing the
accessed item, at a cost of one plus the depth of the node containing the
item, and that between accesses performs an arbitrary number of rotations
anywhere in the tree, at a cost of one per rotation. Then the total time to
perform all the accesses by splaying is no more than O(n) plus a constant
times the time required by algorithm A.

Dynamic Finger Conjecture. The total time to perform m accesses on an arbi-
trary n-node splay tree is O(m+n+

∑m
j=1 log(dj +1)), where, for 1 ≤ i ≤ m,

the jth and (j − 1)th accesses are performed on items whose ranks differ by
dj (ranks among the items stored in the splay tree). For j = 0, the jth item
is interpreted to be the item originally at the root of the splay tree.

Traversal Conjecture. Let T1 and T2 be any two n-node binary search trees
containing exactly the same items. Suppose the items in T1 are accessed one
after another using splaying, accessing them in the order they appear in T2

in preorder (the item in the root of T2 first, followed by the items in the
left subtree of T2 in preorder, followed by items in the right subtree of T2 in
preorder). Then the total access time is O(n).

Sleator and Tarjan state that the dynamic optimality conjecture implies the other
two conjectures. (The proof is nontrivial.)

There have been several works on, or related to, the optimality of splay trees
[STT86, W86, T85, Su89, Luc88a, Luc88b]. [STT86] shows that the rotation distance
between any two binary search trees is at most 2n−6 and that this bound is tight; they
also relate this to distinct triangulations of polygons; although connected to the splay
tree conjectures, this result has no immediate application to them. [W86] provides two
methods for obtaining lower bounds on the time for sequences of accesses to a binary
search tree; while some specific tight bounds are obtained (such as accessing the bit
reversal permutation takes time Θ(n log n)), no general results related to the above
conjectures follow. [T85] proved the scanning theorem, a special case of the traversal
conjecture (also a special case of the dynamic finger conjecture): accessing the items
of an arbitrary splay tree, one by one, in symmetric order, takes time O(n). Sundar
[Su89] considered various classes of rotations on binary trees. Among other things,
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this led to results concerning the deque conjecture; formulated by Tarjan [T85], it
states that if a splay tree is used to implement a deque, in the natural way, then a
sequence of m operations on a deque, initially of n items, take time O(m+n); Sundar
proved a bound of O((m+ n)α(m+ n)).

In this paper we investigate a special instance of the splay sorting problem, which
is related to the dynamic finger conjecture. Splay sorting is defined as follows. Con-
sider sorting a sequence of n items by inserting them, one by one, into an initially
empty splay tree; following the insertions, an inorder traversal of the splay tree yields
the sorted order. We call this splay sort. A corollary of the dynamic finger conjecture
is the following.
Splay Sort Conjecture. Let U be sequence of n items. Suppose the ith item in

U is distance Ii in sorted order from the (i− 1)th item in U , for i > 1. Then
splay sort takes time O(n+

∑n
i=2 log(Ii + 1)).

Incidentally, an interesting corollary of the splay sort conjecture is the following.
Splay Sort Inversion Conjecture. Let U be sequence of n items. Suppose the

ith item in U has Ii inversions in U (counting inversions to both the left and
right). Then splay sort takes time O(n+

∑n
i=1 log(Ii + 1)).

In the remainder of this paper we prove the splay sort conjecture for the following
type of sequence. Suppose the sorted set of n items is partitioned into subsets of logn
contiguous items, called blocks. Consider an arbitrary sequence in which the items in
each block are contiguous and in sorted order. We call such a sequence a logn-block
sequence. We show an O(n) bound for splay sorting a logn-block sequence. It is
convenient to assume that the set being sorted comprises the integers 1 . . . n.

In brief, our analysis has the following form. The first insertion in each block is
provided Θ(logn) potential; it is called a global insertion. Every other insertion in
the block is provided O(1) potential; these insertions are called local insertions. In
section 2, we analyze the global insertions; then, in section 3, we modify the analysis
to take account of local insertions.

Our work has a number of interesting features and introduces several new tech-
niques for proving amortized results.

1. We introduce the notion of lazy potential; this notion can be viewed as a
tool for designing potential functions. The lazy potential is a refinement of an initial
potential function that avoids waste when potentials decrease. (For an example of
waste, consider the following splay tree analyzed using the centroid potential. The
tree is a path of n nodes, each of unit weight. The last node on the path is accessed.
The resulting splay will have a real cost of Θ(n) but will reduce the potential by
Θ(n log n). The desired amortized cost of this operation is O(logn), so essentially all
the reduction in potential is wasted.) The idea of the lazy potential is to keep an old
potential, φold, in situations in which the creation of a new (larger) potential, φnew,
may be followed by a return to the φold potential, with essentially φnew−φold potential
being wasted. Not surprisingly, some care is needed in choosing which operations to
treat as “lazy.”

2. The potential depends on the access sequence; that is, identical trees, if
created by distinct access sequences, may have different potentials. (Actually, this is
a difference “in principle”; we have not constructed any examples to demonstrate it.)
Nonetheless, the bounds we obtain do not depend on the input sequence.

These techniques are used later in the proof of the dynamic finger conjecture
[C00]. Some of the techniques are slightly generalized so that they can be used as
modules in this later paper.
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2. Global insertions. We start with some definitions.
The left path of a tree comprises the nodes traversed in following left child pointers

from the root, but excluding the root itself; the right path is defined analogously.
Collectively, they are called extreme paths. Extreme paths of a subtree rooted at v
are defined analogously; they are also called v’s extreme paths. Node u is a right
ancestor of node v if u is an ancestor of v that is to the right of v in symmetric order;
note that v must be in u’s left subtree. A left ancestor is defined analogously. A right
edge is an edge to a right child; a left edge is defined analogously.

A block B is an interval [i, j] ⊆ [1, n] of items; here a block always comprises log n
items with i = c log n + 1 and j = (c + 1) logn for some integer c. Any block [i, j]
induces a binary tree TB , called the block tree of B, which comprises exactly those
nodes of the splay tree, S, containing items i to j; they are called the nodes of B.
Loosely speaking, the block tree is constructed by shrinking paths in S between nodes
of B to single edges. More formally, the root, r, of TB is the lowest common ancestor
of nodes i and j in S. The left (resp., right) subtree of r is the tree induced by the
set of items in S to the left (resp., right) of r, if nonempty; otherwise the subtree is
empty.

The root of block B is the root of the corresponding block tree. The global nodes
are exactly the block roots. The remaining nodes are called local nodes.

Every node on an extreme path of a block tree carries a potential of c units, c a
constant to be specified later. Also, each node on an extreme path may carry a debit,
either small or large, comprising sd and ld units, respectively; sd and ld are constants
that are specified later. A node may not have both a small and a large debit. We
note that for any block B the only nodes that may be visited henceforth are those
presently on the extreme paths of its block tree, plus its root.

Each global node is given a centroid potential, called its global potential; it is
defined on the splay tree using the following weights: each global node has weight 1
and each local node has weight 0. It is convenient to define a global rank for all nodes:
this is the centroid rank in the splay tree under this weighting; g rank(v) denotes
the global rank of v. Global nodes have a global potential equal to gp times their
global rank, gp a constant to be specified later; the local nodes do not have a global
potential.

To avoid difficulties created by the insertion of weighted nodes, for the purposes
of the analysis we preinsert all the nodes into an ordinary binary search tree (without
splays) in the order of their insertion into the splay tree. Then, in this same order, we
access each node, in the binary search tree, by a splay operation. It is easy to see that
the rotations performed on the binary search tree are identical to those performed on
the splay tree. However, now each insertion can be treated as an access.

In the analysis of global insertions, whenever a rotation is performed (and paid
for), another s spare rotations are also paid for, s a constant to be specified later.
The spare rotations are needed subsequently to handle the effects of local insertions.
We provide (3 logn + 1)gp units to pay for a global insertion. If a rotation increases
the global rank of the item being inserted by ∆, then the rotation is paid for with
3∆gp of these units. Note that the rank of an inserted item increases by at most logn
(from ≥ 0 to log n). If the last rotation (the one involving the root of the splay tree)
involves just two nodes, we call it an incomplete rotation; the remaining gp units are
used as additional payment for the incomplete rotation, if any.

To avoid special cases it is convenient to redefine the access path for an insertion
to exclude the splay tree root r in the event that r is involved in an incomplete



SPLAY SORTING log n-BLOCK SEQUENCES 5

u

v

w

w

v

u

Key: Local node

Node being inserted

(a global node)

Fig. 1. A couple comprising two local nodes.

Global node

u

v

w

v

u

OR

u

v

ww

w

u
w

v

Key: Node being inserted (another global node)

Fig. 2. A couple comprising two global nodes.

rotation. Now consider a rotation performed during the splay along the access path.
Of the three nodes involved in the rotation, the top two are called the coupled nodes
of the rotation, or a couple for short. The analysis focuses on the coupled nodes in a
rotation. In order to provide the reader with some intuition we describe two simple
cases.

Case 1. The coupled nodes are both local nodes in the same block (see Figure 1).
Nodes u and v are on an extreme path of their block, without loss of generality the
left path; v is the left child of u, and w, the node being inserted, is the left child of
v. Since node u leaves the extreme path of its block it loses potential c. This pays
for the removal of debits (small or large) from nodes u and v and in addition pays for
s+ 1 rotations. Later, we see that we want c ≥ s+ 1 + max{2sd, ld}.

Case 2. The coupled nodes are both global nodes (see Figure 2). Again, let w be
the inserted node, let v be w’s parent and u be v’s parent. This case is analyzed using
the centroid potential analysis of Sleator and Tarjan. The cost is at most 3 times the
jump in global potential from w to u; to pay for s + 1 rotations, it suffices to have
gp ≥ s+ 1; later, we see that in fact we want gp ≥ 6(s+ 1) + 11sd.

The full analysis is more involved. We begin by stating several invariants about
the debits.

Invariant 1. Only local nodes on an extreme path of their block can have debits.
Invariant 2. See Figure 3. Let v be a local node on an extreme path of block B.

Suppose that in the splay tree v is the left (resp., right) child of its parent u. v can
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Fig. 3. Large debits.
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Fig. 4. A small debit.

have a large debit only if
(i) u is a local node of block B,
(ii) v has a left (resp., right) child w which is a local node of block B, and
(iii) neither u nor w carry any debit,
(iv) either w is a local node of block B, or it is the item being accessed.
Invariant 3. Let u be the root of block B. Let v be a child of u. If v is in B,

then v can have a small debit only if g rank(v) < g rank(u).
Invariant 4. See Figure 4. Let x be the root of block B. Let P be an extreme

path of the subtree (of the splay tree) rooted at x. Let u be the bottommost node on
the path P that is in B. u can have a small debit only if g rank(u) < g rank(x).

For the purposes of the analysis the access path is partitioned into segments.
Recall that each successive two nodes on the path form the coupled nodes of a rotation
of the present splay operation. Each segment comprises an even number of nodes, or
equivalently a collection of couples. The segments are created by a traversal of the
access path from bottom to top; each segment is chosen to have the maximum length
such that following the removal of its front (top) two nodes, the (truncated) segment
satisfies the following conditions:

(i) The node being inserted has the same global rank throughout the rotations
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involving the truncated segment.
(ii) Each global node on the truncated segment has the same rank following its

rotation.
(iii) (This is implied by (i) and (ii).) Each couple in the truncated segment

includes at least one local node (i.e., it does not comprise two global nodes).
(iv) See Figure 5. Define a node to be visible if it is involved in a zig-zag rotation

or it is the lower node in a couple. (Intuitively, the visible nodes are those
that remain on one of the traversed paths following the splay. Note that the
splay, in general, creates two traversed paths.) For each block there are at
most two visible nodes in the truncated segment that are local following the
rotation.

The topmost segment is said to be incomplete if it satisfies conditions (i)–(iv) prior
to truncation. We consider an incomplete segment to comprise a (trivially) truncated
segment.

Next, we mark the following types of coupled nodes in each truncated segment.
The rotations involving marked couples are self-paying, as is demonstrated later. For
each type below, suppose the segment includes a couple, u, v, with u the parent of v.

Type 1. See Figure 6. Suppose u is the root of v’s block; then both u and v are
marked.

Type 2. See Figure 7. Suppose u is a local node, and let x be the root of u’s
block. Further suppose u is on the left (resp., right) path descending from x. Let v
be the left (resp., right) child of u; if x is in the truncated segment and if v is global,
then both u and v are marked.

Note that in a type 2 couple, the node being inserted must be a left (resp., right)
child of v if v is a left (resp., right) child of u. Otherwise, the ranks of at least one of
v and x would decrease following the rotations of their couples.

Type 3. Suppose u and v are both local nodes of the same block; then both u
and v are marked.
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Fig. 7. Type 2 couple.

We can now prove a bound on the length of a truncated segment.
Lemma 1. A truncated segment comprises at most 10 unmarked nodes, of which

at most 7 are local.
Proof. Define the left (resp., right) side of the segment to comprise those nodes

that are to the left (resp., right) of the item being inserted. From (ii) we deduce that
one side, at least, contains no global nodes; without loss of generality suppose that
this is the right side.

Observation 1. The right side contains at most two unmarked nodes. For as the
right side contains no global nodes, its nodes must all come from the same block; so,
by (iv), the right side comprises at most two sets of contiguous nodes, each one of at
most two nodes. Then, because of type 3 markings, there are at most two unmarked
nodes remaining on the right side.

The left side of the segment is partitioned in the obvious way into subsegments
by the nodes on the right side. By Observation 1, the left side comprises at most
three subsegments.

Observation 2. There are at most two couples that include both a node on the
left side and a node on the right side. This follows from (iv) applied to the right side
of the segment.

Observation 3. There is at most one unmarked couple within each subsegment; if
present, this couple comprises the topmost global node and its parent, a local node.
For the marking strategy marks all other couples within the subsegment. This is a
total of at most three unmarked couples.

Thus there are a total of at most 5 unmarked couples, and at most 2 of these do
not include a global node; so there are at most 7 unmarked local nodes.

It is not hard to see that the marked nodes are all involved in zig-zig rotations.
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Next, we show how to pay for the rotations (and associated spares) along a seg-
ment. Each marked couple pays for its rotation (and spares), as follows.

Type 1. See Figure 6. By Invariants 2 and 3, node v does not have a debit.
The rotation is paid for by giving node u a small debit following the rotation. It is
straightforward that Invariants 1–4 are unaffected. So it suffices that

sd ≥ s+ 1.(1)

Type 2. See Figure 7. By Invariants 2 and 4, node u does not have a debit (for
g rank(x) = g rank(u) as x and u are both in the truncated segment). The rotation
is paid for by giving u a small debit following the rotation. Again, it is straightforward
that Invariants 1–4 are unaffected. Here too, (1) suffices.

Type 3. This is the Case 1 analyzed earlier. We need to pay for the rotation
plus the removal of two small debits or one large debit. Again, it is straightforward
to check that Invariants 1–4 are unaffected. So it suffices that

c ≥ s+ 1 + max{2sd, ld}.(2)

There remain up to 6 rotations to account for: the up to 5 unmarked couples
and the first couple of the segment. These rotations are paid for by the first couple
in the segment, which was removed in truncating the segment and which causes a
violation of at least one of the conditions (i)–(iv), except in the case of an incomplete
topmost segment, which is handled subsequently. The cost of these rotations is called
the segment charge. Either the rotation involving the first couple causes a change in
global potential (Case A) or it creates a sequence of three contiguous local nodes from
the same block (Case B), or possibly both. Both cases involve three costs.

1. Cost1. The rotation and spares for each couple: ≤ 6(s+ 1).
2. Cost2. Removal of small debits from nodes on the segment; Cost2 is analyzed

below. (A node with a large debit will always be a marked node of type 3.)
3. Cost3. Removal of small debits for local nodes that now violate Invariant 3

or 4; Cost3 is analyzed below.
Lemma 2. For each segment Cost2 + Cost3 ≤ 11sd.
Proof. A definition is helpful here. Let B be a block and let v be the root of

B. Consider an extreme path of block B and consider the topmost portion that is
contiguous in the splay tree. If this topmost portion is incident on v in the splay
tree, then it is called an abutting extreme path portion for v, or an abutting portion
for short. (Comment. Node v of Invariant 3 is the top node of an abutting portion
for u, while node u of Invariant 4 is the bottom node of an abutting portion for x.)

Next, we make some observations about Cost3. Note that none of the nodes
from marked couples on the traversed path retain small debits; so these nodes do not
contribute to Cost3. Contributions to Cost3 can arise in one of two ways:
(1) One way contributions to Cost3 can arise is through a traversed global node v

having a reduction in rank. Then, on an already abutting portion (for v)
which continues to be abutting (for v), if the portion was not traversed, we
may need to remove up to two single debits in order to maintain Invariants
3 and 4. v can have at most one such abutting portion. This contributes up
to 2sd to Cost3. This contribution can be a consequence of either a zig-zag
rotation or a zig-zig rotation. We examine each in turn.
(a) In a zig-zag rotation, there may be one such abutting portion for each

global node in the couple. In this case the contribution to Cost3 can be
as large as 4sd.
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(b) In a zig-zig rotation only the top node in the couple can retain such an
abutting portion; so here the contribution to Cost3 is at most 2sd.

(2) Contributions to Cost3 can also arise through the creation of an abutting portion,
provided that this abutting portion is not traversed. This can only occur for
the top node v of a couple and then only if both nodes in the couple are
global and the rotation is a zig-zig rotation. Here, the contribution to Cost3
is at most 2sd.

Next, we determine, in turn, the contribution to Cost2 +Cost3 of the truncated
segment and of the first couple.

First, we consider the truncated segment. By Lemma 1, the contribution to Cost2
is at most 7sd. For a contribution to Cost3, the discussion of the previous paragraph
shows we need only consider possibility (2) since global nodes in the truncated segment
do not have a change in global rank. Likewise, possibility (2) cannot arise for the
couples of the truncated segment each have at most one global node. We conclude
that the truncated segment contributes at most 7sd to Cost2 + Cost3.

We turn to the leading couple. The contribution to Cost2 is at most sd for each
local node it contains. By the above discussion regarding contributions to Cost3,
the leading couple may contribute up to 4sd to Cost3, but only if both nodes of the
couple are global; if there is only one global node in the couple, then the contribution
to Cost3 is at most 2sd. In any event, the total contribution of the first couple to
Cost2 + Cost3 is at most 4sd.

Lemma 3. A global insertion has amortized cost at most (3 log n + 1)gp units,
where gp, ld = 17(s+ 1), c = 18(s+ 1), and sd = s+ 1.

Proof. In Case A, the segment charge is paid for either by the drop in global
potential, which provides at least gp units, or, if there is an increase in global rank,
by gp units of the at least 3gp units provided for this rotation. In Case B, the middle
node in the sequence of three contiguous nodes is given a large debit, which pays for
the segment charge. So it suffices to have

gp, ld ≥ 6(s+ 1) + 11sd.(3)

Now, we show how to pay for the incomplete segment, if present. Recall that
we provided (3 logn + 1)gp units to pay for the present insertion. The +gp term is
used to pay for the incomplete segment; in addition, this term is used to pay for the
incomplete rotation, if any; however, the +gp term does not need to account for any
increase in rank on the part of the inserted item during the incomplete rotation, for
this has already been accounted for. Clearly, the result of Lemma 2 applies here too
(in fact, a tighter bound can be shown). Here too, (3) suffices.

The result follows by taking equalities in (1)–(3).
Actually, we have shown the following.
Lemma 4. The path traversed in an access of an item can be partitioned into

segments, such that for any segment σ, the amortized cost of the rotations for the
couples of σ is at most gp + 2gp · Iσ, where Iσ is the increase in rank undergone by
the accessed item in the last rotation of segment σ. Furthermore,

(i) gp · Iσ units of the cost are used to raise the potential of the accessed item;
(ii) gp ·Iσ units of the cost are used to raise the potential of the lower global item,

if any, in the final couple of segment σ;
(iii) gp units are used to pay for all the rotations of σ, and all the associated spare

rotations and debit removals.
Remark 1. Later, the form of the blocks will be generalized to allow more complex
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situations involving local nodes. Specifically, we will allow local nodes to carry other
debits. For the above analysis to continue to apply, it will suffice that

(i) if a local node on its block’s right (resp., left) path carries a new debit, then
its parent and right child (resp., left child) are both local nodes of the block;

(ii) a zig-zig rotation in which the couple comprises two local nodes pays for the
removal of all debits on the couple’s nodes, plus s + 1 rotations, if the rank of the
accessed item does not increase.

Indeed, in a subsequent paper, we will introduce a hierarchy of blocks. A block
will comprise a contiguous set of items (with respect to the items’ sorted order). A
superblock will comprise a contiguous set of blocks. (In this section, the superblock is
simply the whole splay tree.) As here, the root of each block is a global item and the
other items are local items. Suppose each global item has a positive integer weight
and each local item has nonnegative integer weight. Suppose further that there are
small and large debits which obey Invariants 1–4; there may be additional types of
debits also, but they must obey the following invariant.

Invariant 5. Let v be a local node on an extreme path of block B. Suppose
that in the splay tree v is the left (resp., right) child of its parent u. v can have an
additional debit only if

(i) u is a local node of block B,
(ii) v has a left (resp., right) child w which is a local node of block B.
Then the following lemma has been shown.
Lemma 5. Let v be a global node in a superblock B. Suppose that v is the accessed

item. Let I be the increase in global rank undergone by v during some (arbitrary)
portion P of the access. The amortized cost of the rotations in portion P of the
access is bounded by (3I + 1)gp units, where gp, ld = 17(s + 1), c = 18(s + 1), and
sd = s + 1, provided the conditions of Remark 1 hold. The amortized cost of the
traversal comprises a payment of s+1 rotations for each couple, the removal of debits
on the path traversed and the removal of other debits needed to restore Invariants 3
and 4, minus the debits that are created.

Proof. The only change compared to Lemma 3 is the introduction of additional
debits as constrained by Remark 1. Let x be a node carrying such a debit and let
w be its parent. Suppose x is the right child of its parent. Let y be the right child
of x. By assumption, w, x, and y are all local nodes of their superblock B. Since
the inserted node is global in superblock B, the rotation involving v and x must be a
zig-zig rotation; the second node of the couple will be either w or y. The additional
cost introduced by the removal of the additional debit from x is paid for by the zig-zig
rotation involving node x, as assumed in Remark 1.

3. Local insertions. We show how to analyze a sequence of local insertions.
This leads to the introduction of lazy trees which forces a reanalysis of global and
local insertions. Following this reanalysis, the overall analysis is readily concluded.

Recall that the insertion of each block comprises one global insertion followed by
a sequence of log n−1 local insertions. Each local insertion traverses a left path up to
the right child of the splay tree root (see Figure 8); we call this path the local access
path. By providing e(3 log n + 1)gp units to the global insertion, we can treat the
first e − 1 local insertions as if they were global insertions. Throughout these e − 1
local insertions, spare rotations will be accumulating (though, for reasons that will
become clear later, it may be that no spares accumulate during the global insertion
itself); more precisely, each couple receives s spares in each of these local insertions
(see Lemma 7). These spares, plus the spares already accumulated by the nodes of
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w - node being inserted

local access path

r - root of splay tree

Fig. 8. The local access path.

the couple, are given to the node remaining on the local access path. So after e − 1
local insertions, each node on the local access path, except the topmost, will have at
least (2e−1 − 1)s spare rotations. The rotations in subsequent local insertions will be
self-paying, apart from the rotation involving the splay tree root. These subsequent
local insertions are called true local insertions.

In fact, we provide another gp log n units to the global insertion. Following the
first e− 1 local insertions, we provide a reserve potential to each global node on the
local access path. The reserve for global node u is defined as follows: let v be the
first proper global descendant of u on the local access path, if any; let g rank(v)
be v’s global rank if v is present; otherwise, let g rank(v) = 0. Then reserve(u) =
gp(g rank(u)− g rank(v)). The role of the reserve potential will become clear later.

We need one further constant, q, to be specified later. We choose e so that

(2e−1 − 1)s ≥ q + (s+ 1).(4)

We note e ≥ 2. In a true local insertion, each node v removed from the local access
path is given potential q; s+ 1 will bound the cost of the rotation involving v. This is
paid for by the (2e−1− 1)s potential associated with the node removed from the local
access path. At the end of the sequence of local insertions, the nodes remaining on
the local access path, apart from the topmost node, are also given potential q (these
nodes all have (2e−1 − 1)s potential at hand, which more than suffices).

Consider a true local insertion. The inserted item, e, is not provided a global
potential; rather, following the final rotation of the insertion, e becomes the root of
the splay tree and acquires the global potential associated with the old root of the
splay tree. There are three types of rotation on the local access path. They all involve
a couple u, v, with u the parent of v. Either both u and v are local, or one of u or v is
local and the other is global, or both are global. Only in the last case is a global node
removed from the local access path. The rotations, apart from those involving two
global nodes, cost at most s + 1 units, for there is no increase in global rank in such
rotations and there are no debits to remove (for following the global insertion there
are only large debits on the nodes of the local access path, which are removed by the
first local insertion; as e ≥ 2, the current insertion is not the first local insertion). In
the case of a rotation involving two global nodes we swap their global potentials. The
node remaining on the local access path still has the correct global potential, but the
node u removed from the path may have too small a potential, which is called its lazy
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potential. Again, the cost of this rotation is s + 1 units; however, Invariant 4 may
no longer be true for the block B whose root now has a lazy potential. (Invariant 3,
which might be in question, remains true, for the local nodes of block B that are now
children of B’s root had been on the local access path and hence had their debits
removed.) All these rotations, as noted in the previous paragraph, are paid for by the
potential at hand.

Lemma 6. A true local insertion has amortized cost c+ s+ 1 units.
Proof. As discussed in the paragraph before the lemma, all couples comprising

two nodes on the local access path are paid for by the potential associated with the
nodes of the couple. So the only rotation to be paid for is the final rotation of the
insertion; it costs s + 1 units. In addition, the item displaced from the root of the
splay tree is given c units of potential, for it has become an additional node on an
extreme path of its block.

Remark 2. We will need to generalize this analysis to take account of the presence
of lazy trees on the local access path. The previous analysis will continue to apply if
the following conditions hold:

(i) Each node on the local access path has potential (2e−1 − 1)s.
(ii) Each node on the local access path does not carry any debit.
(iii) The rotation of each couple on the local access path costs at most s + 1

units.
(i) and (ii) will be achieved as here. (iii) will be discussed later.

Every node removed from the access path in a true local insertion and remaining
on an extreme path of its block is called a lazy node, whether or not it has a lazy
potential. Those lazy nodes with a lazy potential are called heavy nodes; the other
lazy nodes are called light nodes. When the insertion of the current block is completed
we form lazy trees. Each global node v remaining on the local access path becomes the
root of a new lazy tree. Its left subtree is empty; its right subtree comprises those lazy
nodes created during the insertion of the current block that are in v’s right subtree
in the splay tree. It is straightforward to see that each new lazy node is contained in
a new lazy tree. We call the lazy trees as defined above initial lazy trees. (We will be
adding and removing a few nodes from the initial lazy tree in order to obtain other
lazy trees, which are the lazy trees that are actually analyzed.)

The intuition behind the lazy tree is that if all the lazy nodes were restored to a
left path, then the lazy potentials would be the actual global potentials (perhaps with
some swapping). Actually, difficulties are caused by the fact that the left subtree of the
path may increase in size through rotations between the lazy tree and the remainder
of the splay tree. So, strictly speaking, the intuition may be incorrect. More precisely,
the constant potentials q provided to the lazy nodes will pay for rotations among lazy
tree nodes until these nodes have their global potentials restored (in general, this will
not happen by recreating the left path from which these nodes originated).

Let us return to the cost of the insertions. A global insertion, as noted above,
costs e(3 log n + 1)gp + gp log n units. We see below that the presence of lazy trees
adds a further 4gp log n units to the cost of the global insertions, for a total of

e(3 log n+ 1)gp+ 5gp log n units.(5)

In section 4 we show how to modify the analysis of global and local insertions to
account for the presence of lazy trees.

4. The analysis of lazy trees. Most of the analysis focuses on a subtree of
the initial lazy tree, called the truncated lazy tree or the lazy tree, for short. It is
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Fig. 9. Left and right guards.

defined as follows. Consider a new initial lazy tree, L, created by a sequence of local
insertions. Consider the set of heavy nodes in L plus the root of L; the tree they
induce is called the initial lazy block tree. We remove the rightmost node from the
initial block tree; this defines the (truncated) lazy block tree for the (truncated) lazy
tree. This rightmost node is called the right guard for the lazy tree (see Figure 9).
The left guard is a global node, defined later, to the left of the nodes of the lazy block
tree. The root of the (truncated) lazy block tree is called the root of the (truncated)
lazy tree. We define the tree induced by the nodes of the (truncated) lazy block tree
plus the left and right guards to form the large lazy block tree. Now we define the
(truncated) lazy tree as follows.

We define the left guard, w, of the lazy tree as follows. Let L be a new lazy tree
with root u. Let v be the first proper global descendant of u on the local access path,
if any. Suppose v exists; if v is the root of another new lazy tree, let w be the right
guard in this lazy tree, while if v is not the root of a new lazy tree, then let v = w.
Otherwise, let w be the root of the splay tree. In general, a node may be a right guard
in one lazy tree and a left guard in a second lazy tree.

The truncated lazy tree comprises the nodes of the (truncated) block tree together
with the following light nodes. For each node v in the (truncated) block tree, we add
the following nodes from v’s block. Let w be any descendant of v in the large lazy
block tree. Those nodes in v’s block on the path from v to w in the splay tree are
added to the (truncated) lazy tree. The light nodes added to the lazy tree form its
skeleton.

Intuitively, a truncated lazy tree is a megablock comprising several of the blocks
at hand. In its interactions with the remainder of the splay tree it will behave in the
same way as a block. The root of the lazy tree corresponds to the block root, and
the other nodes of the lazy tree, called local nodes of the lazy tree, correspond to the
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local nodes of the block. The lazy tree local nodes may carry small and large debits
according to the invariants specified for blocks; a further lazy debit may be carried as
specified later.

The right guard of each new lazy tree has its global potential restored (this is paid
for by adding its reserve potential to its lazy potential, which suffices, as is stated in
Invariant 12, in section 4.3). In addition, Invariant 4 may need to be restored for the
right guard; this requires the removal of at most two small debits. These are paid for
by the potential a + b (see the following paragraph) associated with the right guard
prior to the restoration of its global potential. So it suffices to have

2sd ≤ a+ b.(6)

Thus both the left and right guards of each lazy tree have their global potentials.
Next, we provide additional potentials to the nodes in the lazy tree (in addition

to the potentials these nodes already carry). All light nodes on the lazy tree carry
a potential of 2c′ units, except for the light nodes from the leftmost block in the
lazy tree, which carry a potential of only c′ units; c′ is a constant to be specified
later. In addition, we give the following potential to the heavy nodes. Let v be a
heavy node; suppose it has height h in the lazy block tree. Then v receives potential
a
∑h
i=1 i + b, where a and b are constants to be specified later. This potential is

provided by redistributing the potential q given to each lazy node in the initial lazy
trees. Note that each initial lazy tree has the following form: consider the right
path descending from its root; the left subtree of each node on this path, excluding
the root, is a complete binary tree; in top to bottom order, these trees have strictly
decreasing height. The q potentials are redistributed as follows. First, a potential of
a
∑k
i=1 i+ b is given to each height k node in the initial lazy tree, other than the lazy

tree root. The following argument shows that it suffices to provide each node with
a potential of 12a + b. Each node of height k in a complete binary tree begins by
receiving a temporary potential of 3

2ak(k+ 1) + b; it provides this by passing a charge
of 3

2a[(k−1)k+4(k−1)] to each of its children; if it has a parent, in turn, it receives a
charge of 3

2a[k(k+ 1) + 4k] from the parent; adding its own initial potential of 12a+ b
provides exactly the required temporary potential (note that a leaf will pass a charge
of 0 to its nonexistent children). The nodes on a right path acquire their potential
from their left child. A node of height k+ 1 receives potential k(k+ 1)a from its right
child, which together with its own initial potential of 12a + b suffices to provide the
required [12 (k + 1)(k + 2)]a + b potential; note that the right child still has potential
[ 12k(k + 1)]a+ b, as required. So it suffices to have

12a+ b ≤ q.(7)

But the potentials in the initial lazy tree upper bound the potentials desired in the
(truncated) lazy block tree. Finally, to provide the light nodes with their potential,
it suffices to have

2c′ ≤ a+ b.(8)

The left (resp., right) extreme path of (truncated) lazy tree, L, is the path from
the root of L to the leftmost (resp., rightmost) node in L; it is convenient to exclude
the lazy tree root from the extreme paths. We will call these the left and right paths
of L, for short.

Nodes on the extreme paths of the lazy tree may have a small or large debit; these
debits satisfy Invariants 1–4, where lazy tree L replaces block B in the statement of
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the invariants. Also, each light node in the lazy tree may have a lazy debit, which is
huge and has value hd units, hd ≥ ld, a constant to be defined later. We now state
two invariants concerning the lazy debits.

Invariant 6. Let L be a lazy tree. Suppose node v in L has a lazy debit. Then
v is a light node of L. Also, v is not on the left path of L. Finally, v does not carry
a small or large debit.

Invariant 7. Let L be a lazy tree. Let u be a local node of L. Suppose u has a
lazy debit. Let v be the root of u’s block.

(i) Suppose that v is not on the left path of L. Then if u is on the right path
descending from v in the splay tree, both the parent and child of u on this
path are local nodes in u’s block.

(ii) If u is on the right path of L, then its parent and child in the splay tree are
local nodes in u’s block; this holds regardless of whether u is on the right path
descending from v in the splay tree.

Next, we show how to incorporate lazy trees into the analysis of global insertions.
A global insertion can traverse a lazy tree in one of three ways:

(a) traverse the right extreme path of the lazy tree (or rather a topmost portion
of it),

(b) traverse the left extreme path of the lazy tree (or rather a topmost portion
of it), or

(c) traverse the interior of the lazy tree and thereby split the lazy tree.
Actually, it is convenient to classify a traversal of type (a) which is to the left of the
right guard to be a split (a type (c) traversal); likewise a traversal of type (b) to the
right of the left guard is defined to be a split. As we will see later, local insertions
only involve traversals of type (a) or (b).

A traversal of type (c) will be paid for in two phases. First, in a preprocess-
ing phase, the current lazy tree is partitioned into several lazy trees and/or ordinary
blocks, so as to ensure that the actual splay (the second phase) comprises only traver-
sals of types (a) and (b). (In fact, as we will see, we need a third phase in order to
pay for some of the partitioning performed in the first phase.)

We start by considering the interactions between the lazy tree and the remainder
of the splay tree (which may include other lazy trees). We treat the lazy tree, as
delimited by its extreme paths, as a block. We note that Invariants 6 and 7 ensure that
a node on an extreme path, carrying a lazy debit, satisfies condition (i) of Remark 1.
In addition, we note that on creation, the nodes of the lazy tree have no debits, so
Invariants 1–4 all hold at this point.

Next, we need to show that condition (ii) of Remark 1 is satisfied. That is, we
have to show that couples involving two nodes on an extreme path of the lazy tree,
which will be marked, can pay for the removal of their debits and s + 1 rotations.
There are two classes of rotations: those involving at least one light node of the lazy
tree and those involving two heavy nodes; they are treated in sections 4.1 and 4.2,
respectively.

Segments are defined and paid for essentially as before. The one difference occurs
if either node of the leading couple of the segment carries a lazy debit; then the couple
pays for its own rotation and the removal of its debits as part of the lazy tree, as we
see later; but this can only reduce the total remaining cost of the segment and so the
bounds of the previous analysis are still valid.

We need to mention one detail about couples containing the root, u, of a lazy
tree and another node, v in the same lazy tree. Following the rotation, v becomes the
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root of the lazy tree; v and u interchange roles and potentials (so if v had been light,
resp., heavy, u becomes light, resp., heavy).

In section 4.3 we will explain how a lazy tree is split.

4.1. Analysis of couples including one light node. Consider a couple com-
prising nodes u and v, where u is the parent of v, both u and v are on an extreme
path of their lazy tree and one, at least, of u and v is a light node.

Case 1. u and v are both light. u ceases to be on the skeleton. u’s c′ potential
pays for the rotation, s spares, and the removal of all debits on u and v. So it suffices
to have

c′ ≥ s+ 1 + 2hd.(9)

Case 2. u is a light node and v is a heavy node. By Invariants 6 and 7, u and v
do not have lazy debits. If u leaves the skeleton, the operation is paid for by u’s c′

potential, as in Case 1; (9) suffices. Otherwise, u is given a lazy debit; this then pays
for the operation. The cost of the operation comprises the rotation, s spares, and the
removal of small or large debits, if any, from u and v. So it suffices to have

hd ≥ s+ 1 + max{ld, 2sd} = s+ 1 + ld.(10)

Case 3. v is a light node, u is the root of v’s block (but is not the lazy block
tree root). By Invariants 6 and 7, u and v do not have lazy debits. v becomes the
block root. As in Case 2, if u leaves the skeleton, the operation is paid for by u’s c′

potential. Otherwise, u is given a lazy debit, which pays for the operation. The cost
of the operation comprises the rotation, s spares, and the removal of small or large
debits, if any, from u and v. Here too (9) and (10) suffice.

4.2. Analysis of couples comprising two heavy nodes. The potential as-
sociated with the lazy block tree is called the lazy complete tree potential.

Consider a couple comprising nodes u and v, where u is the parent of v and both
u and v are heavy nodes on an extreme path of the lazy tree. We need to pay for the
rotation, for s spares, and for the removal of small or large debits from u and v, if
any. In addition, we may need to reestablish Invariant 7 for node u; this may require
the removal of up to two lazy debits, which will also be paid for by the rotation. So
the cost of this rotation is at most

s+ 1 + ld + 2hd.(11)

For the remainder of section 4.2 we focus on the lazy block tree. Hence when we
refer to a node we mean a node in the lazy block tree; likewise a reference to a tree
refers to the lazy block tree. The depth of a node in the tree is its distance from the
root. The height of a node at the time of the creation of the lazy tree is called its
creation height; the creation height does not change subsequently.

Consider how an extreme path traversal appears to the lazy block tree. A top
contiguous portion of the nodes on this path are all touched (these are the nodes
contained in couples of the splay tree). Some (arbitrary) subset of disjoint pairs of

touched nodes form couples. Each touched node is provided with s′
2 spare units of

potential, s′ ≤ s (this is part of the node’s portion of the s spares provided to its
couple in the splay tree).1 The spare potential of the touched nodes, together with

1In this paper we can take s′ = s; the more general form will prove useful in a later paper.
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any changes to the potentials of the touched couples will pay for the rotations of the
touched couples.

At any time, certain nodes, called active nodes, are the nodes that pay for a
traversal of the extreme path. Some nodes may pay more than other nodes. This is
captured by the notion of active layers. A node of creation height h has an associated
span of layers [1, h]; each active node v of creation height h has an active span of
active layers, (i, h], 0 ≤ i ≤ h; for each l, i < l ≤ h, we say v is l-active. If the active
span is nonempty, we say the node is active.

Initially, only the nodes on the right path are active. An inactive node becomes
active when it first reaches the right path. Once a node becomes active it remains
active, whether or not it remains on the right path; also, the active span of a node
can only grow.

Recall that a rotation of the splay operation involving a heavy node, v, and the
root, r, of the lazy tree causes the two nodes to swap all their potentials. Also, r
acquires v’s creation height and active span.

The following invariant states several properties of the active nodes. We prove the
invariant later. In order to avoid special cases for the left path we state the invariant
with respect to the normal form of the tree, defined as follows. It is obtained by
performing the following series of single rotations: one by one, the left path nodes are
moved to the right path; each such rotation, between node v and node r, the root of
the lazy tree, makes v the root and places r on the right path. r acquires v’s active
span. The resulting tree is called the normal tree.

Invariant 8. Let H be the maximum creation height for the nodes, other than
the root, present in the tree initially. Then, in the corresponding normal tree, the
following hold:

(i) There is exactly one l-active node, 1 ≤ l ≤ H.
(ii) Every node on the right path is active (this does not include the root).
(iii) Apart from the root, the ancestors of an active node are all active.
(iv) Let v be an l-active node. Let w be a j-active node. If j < l, then w is to

the right of v in symmetric order, while if j > l, then w is to the left of v in
symmetric order.

(v) Let inactive node v have creation height l. Then its parent has creation height
greater than l.

When a lazy tree is created the active spans for the nodes in the corresponding
lazy block tree are initialized as follows. Let u be a node on the right path, of
creation height h; suppose it has a right child v of creation height i (if there is no
such node v, let i = 0). Then u is given active span [i + 1, h]. Clearly, the new tree
obeys Invariant 8.

The layers of a node are further categorized as black or white; an active node,
with active span [j, h], can be black with respect to each of the layers [1, j − 1]. In
general, an active node v, with active span [j, h], is black with respect to all the layers
in some range [i, j−1], i ≥ 1, called its black span; we say v is l-black for i ≤ l ≤ j−1.
If the black span is nonempty we say the node is black. Nodes are initially white at
all layers. A node becomes black as a consequence of a rotation with the root. The
following invariant applies to black nodes.

Invariant 9.
(i) All the nodes on the left path of a tree are fully black, i.e., a node with active

span [j, h] has black span [1, j − 1].
(ii) If a node u is l-black, all u’s left ancestors, apart from the root, in the corre-
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sponding normal tree are l-black.
We define the following distances for each node v, active at layer l. Its right

path l-distance, dl(v), is the number of proper left ancestors of v on the right path,
excluding all l-black nodes. (Recall that a left ancestor of v is an ancestor of v to
the left of v in symmetric order.) Its layer l interior right path distance, idl(v), is the
number of proper left ancestors of v below the first l-black node and below the right
path.

For each l-active node we maintain an l-potential, which satisfies the following
invariant.

Invariant 10. The l-potential at node v is at least

a ·min

{
dl(v)

d
, l

}
+
a

d
· idl(v).(12)

We note that initially a node has a · l units of potential for each layer l at which
it could become active, so when a node first becomes l-active, Invariant 10 holds.

In addition, for each l-black node we maintain an l-black potential of a
2d units.

In turn, we analyze traversals of the right and left extreme paths.
Immediately prior to a traversal of the right path, each node on that path is

given s′/2 spare rotations (whether or not the node is part of a couple comprising two
heavy nodes of the same lazy tree). Each node’s spares are subsequently provided
by the rotation which involves that node. Suppose node v remains on the right path
following the rotation. Let layer l be the largest layer at which v is presently active.
Suppose node u, the other node in v’s couple, is not l-black. If dl(v) > d · l, then the
spares, called the l-spares, for the nodes at depths (d(l−1), d · l] on the right path, are
used to pay for v’s rotation. Otherwise, a/d units of v’s l-potential are used to pay
for this rotation. Note that Invariants 8–10 continue to hold following this rotation.

If node w is l-active but is not on the right path, then idl(w) can increase; thus
its l-potential can increase, but only if dl(w) > d · l. In this case, the unit increase in
potential is paid for by the l-spares as in the previous paragraph.

A rotation between an l-black node u and its child v, where v is l-active, is paid
for by the a

2d units of l-black potential at u; u reduces its black span accordingly, as
do all the nodes in u’s new right subtree (the subtree following the rotation). Again,
it is clear that Invariants 8 and 9 hold following the rotation. To verify Invariant 10
we argue as follows. (See Figure 10.) First, for j-active node w, j < l, in v’s old
right subtree, dj(w) is unchanged or reduced, since u ceases to be an ancestor of w;
in addition, idj(w) is unchanged. Second, for j-active node w, j > l, in v’s old left
subtree, as in the previous paragraph, if v’s j-potential increases, it is paid for by the
j-spares. Third, for j-active node w, j > l, in u’s left subtree, dj(w) and idj(w) are
unchanged since the locations of w’s left ancestors are unchanged, as is their j-black
status. Reference to Invariant 8(iv) shows that these are the only possible cases.

A black node is created in a rotation with the root. Node v becomes the new
root. Node u, the old root, acquires all of v’s potentials; v acquires the root’s global
potential. If u now has minimum active layer l, it acquires black span [1, l − 1]. The
new portion of its black span, [1, k − 1], for some k ≤ l, is paid for as follows. Let
w be the j-active node for some j < k. If dj(w) ≤ j before u’s rotation, as dj(w)
is reduced by at least one by u’s rotation, a/2d units of w’s j-potential provide u’s
j-black potential. If dj(w) > j, then let w′ be the node at depth j. w′ transfers a
second portion of a

2d units of potential. Note that by Invariant 8(iv) each active layer
j′ of w′ satisfies j′ > j, and so dj′(w

′) < j′; thus the j′-potential of w′ is reduced by
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a
d , owing to the creation of the black node, and w′ can afford to transfer two sets of a

2d
units of j′-potential to the new black node (one set for itself and one set for node w).
(See Figure 11 for an example.)

We summarize the above discussion. The rotation of a couple costs coup =
s+ 1 + ld+ 2hd units. Suppose the bottom node of the couple is l-active; then these
coup units are paid for by one of a

d units of l-potential, a
2d units of l-black potential,

or the d·s′
2 l-spares. While if the l-active node was not involved in a rotation with

another global node of the lazy tree, the d·s′
2 l-spares may have to provide it with a

d
units of potential. So it suffices to have

d · s′
2
≥ max

{
(s+ 1 + ld + 2hd),

a

d

}
,(13)

a

2d
≥ s+ 1 + ld + 2hd.(14)

We turn to the analysis of left path traversals.
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Fig. 12. Left path traversals.

Consider a couple, w, v, on the left path, with v the parent of w; let u be the
parent of v (see Figure 12). If nodes u and v were on the right path, then subtree U
(resp., V ) would be the left subtree of u (resp., v). We treat the rotation of couple
w, v on the left path as if it were the rotation of couple u, v on the right path. We pay
for the rotation between v and w using w’s present a

2d units of l-black potential, where
w is l-active (note that the present potentials of v and w correspond respectively to
those v and u would have if on the right path). Then w and v swap potentials; v and
all the nodes in its right subtree reduce their black spans accordingly. Invariants 8–10
continue to hold, as can be seen by arguments similar to those used for the right path
traversal.

Remark 3. A left path traversal itself does not cause the spending of any spares,
for all the rotations on the left path involving two heavy nodes of the lazy tree (which
are the only rotations to spend spares) are paid for by black potentials.

We can conclude (as asserted in the second paragraph of section 3) the following.
Lemma 7. For each of the first e − 1 local insertions in a block’s insertion, for

each couple, s spares can be provided to the couple.
In a later paper we will again use lazy trees generalized in various ways. However,

the nodes of the lazy trees in the later paper will still have small, large, and lazy debits
which obey the present invariants, namely Invariants 1–7. Other additional debits may
be present. They will satisfy the following invariant.

Invariant 11. Let light node v carry an additional debit. Then
(i) v is not on the left path of the lazy tree;
(ii) if v is on the right path of the lazy tree, then so are its parent and right child

in the splay tree.
This invariant meets condition (i) of Remark 1; so long as condition (ii) is also

met, the analysis of the traversal of extreme paths of the lazy trees is unaffected. But
the presence of new debits, of value ed, say, merely raises the cost of a couple by at
most 2ed. It is convenient to let

md = max{ed, hd}.(15)
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The new debits can be handled in the present analysis by modifying (9), (10), (13),
and (14) so as to pay for the removal of up to two debits of value ed from each couple
being analyzed, yielding

c′ ≥ s+ 1 + 2md,(16)

hd ≥ s+ 1 + max{ld, 2sd, 2ed},(17)

d · s′
2
≥ max

{
(s+ 1 + max{ld, 2ed}+ 2hd),

a

d

}
,(18)

a

2d
≥ s+ 1 + max{ld, 2ed}+ 2hd.(19)

4.3. Splitting the lazy tree. A split of the lazy tree occurs when the inserted
item lies in value between the left guard and the right guard in the lazy tree. A split
can occur only during a global insertion, as we show next, for a split causes a zig-zag
rotation within the lazy tree. However, in a local insertion the only zig-zag rotation
involves the splay tree root; but the root is in the same block as the inserted item and
hence is not yet part of any lazy tree.

For this section, we assume that each node belongs to at most one lazy tree, apart,
possibly, from the sharing of guards. In section 4.5, we analyze the general case.

The split is analyzed in three parts. First, we show that if the lazy tree satisfies
Invariant 12, below, then, by promoting appropriate nodes (i.e., restoring their global
potentials), the lazy tree is split into several new lazy trees which all also satisfy Invari-
ant 12. In addition, the promotions cost at most 4gp · logn units of potential. Second,
we show that the cost of removing debits so as to restore all the invariants concerning
debits can be charged to the promoted nodes at no further cost. Third, we show
how to create the lazy tree potential for each new lazy tree from the corresponding
potential for the lazy tree prior to the split.

In order to permit more general accesses in Part II of this paper, we show how to
analyze a split when a local item in a block is accessed as well as when a global item
is accessed. The goal, when a local item e is accessed, is to remove e’s block from the
lazy tree so that it becomes a normal block.

4.3.1. The promotions. At this point it is helpful to mention a few properties
of the lazy and reserve potentials. Consider the heavy nodes in a new lazy tree. Let
SL be the set of global nodes contained strictly between the guards of a lazy tree.
For each heavy node, u, in the lazy tree, define its right neighbor r n(u) to be the
heavy node immediately to its right in the large lazy block tree, and define SL(u) to
comprise the subset of SL strictly to the left of u. Finally, define the lazy rank of
heavy node v to be 1

gp times its lazy potential.
Invariant 12. Let v be a heavy node in the normal form of the lazy block tree

for lazy tree L. Then
(i) lazy rank(v) ≥ log(wt(SL(v)) ;
(ii) if, in the normal form of the large lazy block tree, v has no heavy node or guard

in its right subtree, lazy rank(v) + 1/gp · reserve(v) ≥ g rank(v), while if
v does have a heavy node or guard in its right subtree, then lazy rank(v) +
1/gp · reserve(v) ≥ lazy rank(r n(v)).

Invariant 12 can be seen to hold when the lazy tree is created by considering node
v at the point at which it becomes lazy. Also, it is readily seen that this invariant
continues to hold following traversals of the extreme paths (for they leave the lazy
rank of nodes in the normal form of the lazy tree unchanged).
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Fig. 14. The large lazy block tree.

Corollary 8. See Figure 13. Let v be a heavy node other than the root in lazy
tree L. Let w be v’s right child and u be v’s left child.

(i) Suppose that v is on the left path of L; then lazy rank(v) ≥ g rank(w).
(ii) Suppose that v is not on the left path of L. Let v′ be a right descendant of

v, not necessarily proper. If v′ is a heavy node, lazy rank(v′) ≥ g rank(u).
It is convenient to define v’s lazy weight to be wt(SL(v)).
The analysis is simplified by, on occasion, modifying the guards of a lazy tree

following a traversal of one of its extreme paths. Specifically, we maintain the following
invariant.

Invariant 13. See Figure 14.
Consider a lazy tree L. Let r denote the root of the truncated lazy block tree, and

let lg and rg denote, respectively, the left and right guards of L. The large lazy block
tree has one of the following three forms.

(i) r is the root, and the left subtree of rg is empty, as is the right subtree of lg.
(ii) lg is the root of the large lazy block tree. Then r is the right child of lg, and

r has an empty left subtree, as does rg.
(iii) rg is the root of the large lazy block tree. Then r is the left child of rg, and



24 R. COLE, B. MISHRA, J. SCHMIDT, AND A. SIEGEL

u

rg

rg = rg0

u = rg1

rg2

rg3

Fig. 15. The right guard restoration process.

r has an empty right subtree, as does lg.
Now, we show how to restore Invariant 13 following a traversal of an extreme

path. Invariant 13 can cease to hold only if there is a couple containing a guard or
the root of the lazy tree and a heavy node. So first consider a couple comprising a
heavy node u on the right path and rg (see Figure 15). Following the rotation, let
rg0 = rg, and let rgi+1 be the rightmost node in the left subtree of rgi in the large
lazy block tree, if this subtree is not empty. This defines a nonempty sequence of
nodes rg1, . . . , rgk; all these nodes are promoted (i.e., they have their global potential
restored) by adding their reserve potential to their lazy potential (this suffices by
Invariant 12(ii)). rgk becomes the new right guard for the remaining lazy tree rooted
at r. This is called the right guard restoration process applied to rg.

Second, consider a rotation between lg and heavy node u on the left path. Let v
be the parent of u in the large lazy block tree. Following the rotation, lazy rank(u) ≥
g rank(u) (for by Invariant 12(i), lazy rank(u) ≥ �log(wt(SL(v)))	—remember the
lemma applies to the normal form of the lazy tree). In addition, following the rotation,
u has an empty left subtree in the large lazy block tree (since lg had an empty right
subtree before the rotation). So u is made the root of a new lazy tree, with left guard
lg; temporarily, its right guard, rgnew, is the rightmost node in its right subtree in
the large lazy block tree; rgnew acquires its global potential by adding its reserve
potential to its lazy potential (by Invariant 12(ii), this suffices). See Figure 16. rgnew
also becomes the left guard for the remainder of the lazy tree rooted at r. Then the
right guard restoration process is applied to rgnew to obtain the actual new right
guard for the new lazy tree rooted at u. There is one special case: u has an empty
right subtree; then u simply becomes the root of a normal block and r acquires u as
its new left guard. This is called the left guard restoration process applied to u.

Third, consider case (ii) of Invariant 13; suppose there is a rotation between r
and its right child, u, a heavy node (see Figure 17). Then, following the rotation, the
left guard restoration process is applied to r, which is now the left child of u, the new
root of the lazy tree. Fourth, consider case (iii) of Invariant 13; suppose there is a
rotation between r and its left child, u, a heavy node (see Figure 18). Then, following
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Fig. 17. Guard restoration for a root and right child couple.

the rotation, the right guard restoration process is applied to rg.
It remains to discuss how to maintain Invariants 1–10. We explain how to do

this later in the section, when we show how to maintain these invariants following a
split operation.

We view a split as occurring in three phases. In phase 1 no rotations are per-
formed, but certain heavy nodes are marked as promoted (a node is promoted by
increasing its lazy potential to its global potential). In fact the nodes are not pro-
moted yet, but the splay will proceed as if they had been promoted. The effect of the
promotions is to partition the original lazy tree into several new lazy trees. Phase 3
pays for these promotions. This ensures that in phase 2, the actual splay, only extreme
paths of lazy trees are traversed. However, there will be one difference in paying for
phase 2 as compared to the previous traversals. Any (apparently) promoted node
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whose global rank drops during the splay does not use gp units of its global poten-
tial to pay for the associated segment, for it does not yet have its global potential;
instead paying for the segment becomes a charge to be paid for by the promotion (a
charge of at most gp units). It is called the segment charge; the segment charge is
paid for directly by the promoted vertex. Phase 3 pays for the remaining costs of the
promotions, at most 4gp log n units.

Phase 3 uses the following imaginary tree. Consider performing all the zig-zag
operations of the insertion but replacing each of the zig-zig operations by two single
rotations performed in bottom to top order. This creates two paths, called split paths,
descending from the inserted item, the root of the imaginary tree; one path, the left
split path, to the left of the root, descends to the right, and the other path, the
right split path, to the right of the root, descends to the left (see Figure 19). The
items on the split paths are exactly the items that will be traversed in the splay
operation. We provide each global node on the split paths with an imaginary global
rank, namely the global rank it has in the imaginary tree. The global ranks of the
other global nodes are the same in the imaginary tree and the actual tree. Each of the
split paths is traversed from bottom to top; for each global node at which there is a
jump in imaginary global rank, denoted jump(v), the following potential is provided:
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Fig. 20. Right offset promotions for v.

2gp · jump(v). The following corollary is helpful.
Corollary 9. Let v be a heavy node in lazy tree L. Suppose that L is split.

(i) Also, suppose that v is on the left path of L and is also on the left split path.
Then lazy rank(v) + jump(v) ≥ g rank(v).

(ii) Alternatively, suppose that v is not on the left path of L and is on the right
split path. Let v′ be a heavy node which is a right descendant of v, not necessarily
proper. Then lazy rank(v′) + jump(v) ≥ g rank(v).

Proof. We prove (i); the proof of (ii) is very similar. Let w be v’s right child
in L (if w is not present, define g rank(w) = 0). Also, let w′ be v’s right child
in the imaginary tree (again, if w′ is not present, define g rank(w′) = 0). Then,
by Corollary 8(i), lazy rank(v) ≥ g rank(w). Now w′ must be a descendant of
w, so g rank(w) ≥ g rank(w′). Finally, jump(v) = g rank(v) − g rank(w′). So
lazy rank(v) + jump(v) ≥ g rank(w′) + jump(v) = g rank(v).

We now discuss which nodes are promoted in a split and how this is paid for.
There are a number of cases.

Case 1. v is a heavy node in the lazy block tree, which is not on the left extreme
path. In addition, v is accessed from its left child, u.

Then v is promoted. v’s promotion costs at most gp · jump(v) (apply Corollary
9(ii)).

Let w1 be v’s right child, if any, in the lazy block tree, and let w2, w3, . . . , wk
be the maximal left path descending from w1 in the lazy block tree (see Figure 20).
w1, w2, . . . , wk are also promoted. Between them, these promotions cost at most
gp · jump(v). For, by Corollary 8(ii), lazy rank(wi) ≥ g rank(wi+1), for 1 ≤ i <
k. In addition, lazy rank(wk) + jump(v) ≥ g rank(v) (by Corollary 9(ii)), and
g rank(v) ≥ g rank(w1). The nodes wi become the roots of new lazy trees. Let
rgi be the rightmost node in the subtree of the old lazy block tree rooted at wi for
1 ≤ i < k. Temporarily, rgi is made the right guard for wi. rgi is promoted; this is
paid for by its reserve potential (for note that rgi has an empty right subtree in the
large lazy block tree and apply Invariant 12(ii)). Then the right guard restoration
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process is applied to rgi for 1 ≤ i ≤ k. Also, rgi+1 becomes the left guard for the new
lazy tree rooted at wi for 1 ≤ i < k; the tree rooted at wk uses v as its left guard. If
rgi = wi, for some i, the new lazy tree rooted at wi comprises only one block; so it
is treated as an ordinary block henceforth. We call the promotions described in this
paragraph the right offset promotions for v.

So Case 1 occasions charges of 2gp · jump(v). Recall that v is a node on the right
split path.

Case 1.1. v′ is a light node which is not on the left extreme path. In addition, v′

is accessed from its left child, which is not in the lazy tree.
The right offset promotions for v′ are performed (where w1 is now defined to be

the nearest heavy descendant of v′). Let v be the root of the block containing v′. As
we will see, v is promoted in Case 2 or Case 3. Thus the cost of Case 1.1 is at most
gp · jump(v).

Case 2. v is a heavy node on the left extreme path and it is accessed from its
right child, u.

Then v is promoted. v becomes the root of a new lazy tree. v’s promotion costs
at most gp · jump(v) (apply Corollary 9(i)).

We need to provide a new left guard for the remaining portion of the old lazy
tree (see Figure 21.) Let v′ be v’s parent in the lazy block tree. We perform the
right offset promotions for v′. In addition, if v′ is not the root of the lazy tree, v′ is
promoted. v′ becomes the root of an ordinary block. If v′ is not the root of the lazy
tree, rg1 becomes the left guard for the remainder of the old lazy tree, while if v′ was
the root, then rg1 did not need promoting as it was already the right guard of the
lazy tree. In the imaginary tree, v′’s lazy weight is at least its normal weight; so its
promotion comes for free. As in Case 1, gp · jump(v′) suffices to pay for the right
offset promotions.

The promotion of v′ and the associated right offset promotions are also performed
if just the left guard, lg, is separated from the remainder of the lazy tree (through
being accessed from its right child), and then v′ is defined to be the leftmost node in
the lazy block tree (note v′ will be traversed in the access). This applies even if lg is
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the root of the large lazy tree.
We need to provide the new lazy tree rooted at v with a right guard. So let x

be the rightmost heavy node in v’s lazy tree which is a right descendant of v in the
imaginary tree (possibly x = v). There are two possibilities to consider.

(i) x 
= v. Temporarily, x becomes the right guard for the new lazy tree rooted at
v. In the imaginary tree, x’s right subtree contains no nodes from its large lazy block
tree. So by Invariant 12(ii), the lazy potential for x plus its reserve potential is at
least its global potential; thus the promotion can be paid for at no extra charge. Now,
the right guard restoration process is applied to x. This has zero amortized cost.

(ii) x = v. Let w be v’s left child in its new lazy block tree (if v does not have such
a child, then the new lazy tree rooted at v comprises only one node and can be treated
as an ordinary block henceforth). w is promoted, becoming the root of a new lazy
tree while v becomes its right guard. Next, if w’s right subtree in the large lazy block
tree is nonempty, the right guard restoration process is applied to v. w’s promotion is
paid for as follows. w adds its reserve potential to its lazy potential; w’s modified lazy
potential is at least gp times the global rank of v’s right child in the imaginary tree (for
by Invariant 12(ii), this modified lazy potential is at least gp · lazy rank(r n(v)) and
r n(v) must be to the right of the accessed item (as x = v); so lazy weight(r n(v))
includes the weight of all of v’s right subtree in the imaginary tree; now recall that
lazy rank(r n(v)) ≥ log lazy weight(r n(v))). Hence gp · jump(v) suffices to pay for
this promotion.

Overall, Case 2 occasions a charge of 2gp · jump(v) + gp · jump(v′). Note that v
is on the left split path and v′ is on the right split path.

Case 2.1. ṽ is a light node on the left extreme path; it is accessed from its right
child, which is not in the lazy tree.

Let v′ be the nearest heavy ancestor of v in the lazy tree. v′ is treated as in
Case 2. Let v be the nearest heavy descendant of ṽ on the left extreme path. v is
promoted. v’s promotion costs at most gp · jump(ṽ) (strictly speaking jump(ṽ) was
not defined; it is the jump in g rank on accessing node ṽ), which is at least g rank(v).
As in Case 2, we need to provide the new lazy tree rooted at v with a right guard.
This is handled as in Case 2.

Hence, overall, Case 2.1 occasions a charge of 2gp · jump(ṽ) + gp · jump(v′). Note
that v is on the left split path and v′ is on the right split path.

Case 3. The inserted item is to the right of the lazy tree root, r.
Then we need to provide the new lazy tree rooted at r with a new right guard.

The method followed is identical to that used in Case 2 for providing the new lazy
tree rooted at v with a right guard. So Case 3 occasions a charge of gp · jump(r).
Note that r is on the left split path. These promotions are performed even if only the
right guard, rg, in the lazy tree is separated from the rest of the lazy tree (through
being accessed from its left child). This applies even if rg is the root of the large lazy
tree.

Lemma 10. The promotions in a global insertion cost at most 4gp log n units,
where for each split lazy tree there is a charge of 2gp times the increase in global rank
along the right split path and of 2gp times the increase in global rank along the left
split path.

Proof. Charges of up to 2gp · jump(v) arise for nodes on the split paths in Cases
1–3 above. Specifically, in Case 1, there is a charge of 2gp · jump(v) for node v on the
right split path. In Case 1.1, there is a charge of gp · jump(v) for node v on the left
split path. In Case 2 there is a charge of 2gp · jump(v) for a node v on the left split
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path and a charge of gp · jump(v′) for a node v′ on the right split path; further v′ is
not charged in Case 1. v may be the node from Case 1.1, but then Case 2(ii) applies
and v is only charged gp ·jump(v) for Case 2(ii), giving a total charge of 2gp ·jump(v)
for node v. In Case 2.1 there is a charge of 2gp ·jump(ṽ) for ṽ, a light node on the left
access path; ṽ is not charged in any other case. Finally, in Case 3, there is a charge
of gp · jump(r). These are the only charges that occur.

The following properties of the new lazy trees are helpful; they are readily con-
firmed by inspection of the split procedure.

Property 1. The left path of each lazy tree created by the split has one of the
following two forms:

(i) It is a subpath (possibly complete) of the left path of the lazy tree before the
split.

(ii) It comprises light nodes from just one block.
Property 2. The number of promoted nodes from each old lazy tree L is at least

the number of lazy trees into which L is split.

4.3.2. Debits and their invariants. We need to consider the effect of the split
and (from the beginning of section 4.3) of the updates to the guards on Invariants
1–4 and 6–7. We show how to reestablish these invariants by removing debits on the
extreme paths of the new lazy trees and on the left and right paths of blocks whose
roots cease to be part of the lazy tree.

Invariant 1. The small or large debit, if any, is removed from each promoted
node. This is charged to the promoted node. Also, each light node that ceases to be an
extreme path node, and hence also ceases to be on a lazy tree, pays for the removal of
its small or large debit, if any.

Invariant 2. For each promoted node, the large debits, if any, are removed from
its parent and child (if any) on the extreme path. This is charged to the promoted
node. (Note that the reestablishment of Invariant 1 has already removed the large
debit, if any, from itself.)

Invariant 3. The small debit, if any, is removed from each extreme path node.
This is charged to the promoted node.

Invariant 4. For each promoted node u, the small debits, if any, are removed
from the corresponding nodes w, if present. This is charged to the promoted node.

Note that reestablishing Invariants 1–4 requires each promoted node to pay for
the removal of at most two large debits and three small debits, or one large and four
small debits, or six small debits. The maximum charge is achieved with two large and
three small debits.

Invariant 6. The lazy debit, if any, is removed from each light node whose
block is no longer part of a lazy tree. This includes those light nodes whose block
roots become guards for a new lazy tree. We call such blocks ordinary blocks. This
is charged to the node itself. For each block that becomes the leftmost block in a new
lazy tree we reduce the potential of each light node from 2c′ to c′. This pays for the
removal of lazy debits from these nodes. Any other light node on a new left path must
have been on the old left path and so already satisfied the invariant.

Invariant 7. Any node violating Invariant 7 must be on a new right path. There
are three ways for a light node x on a new right path to still violate Invariant 7.

Case 1. See Figure 22. x is adjacent to node y in block, By, where By either has
become the leftmost block in a new lazy tree or has become an ordinary block. The
removal of x’s lazy debit is charged to node y.

Case 2. x’s right child is in the same lazy tree but is heavy. Let z be the root
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of x’s block (z is a heavy node also). Let y be the nearest right ancestor of x. If
y is between x and z, y must be in a block, By, where By either has become the
leftmost block in a new lazy tree or has become an ordinary block (this follows from
Property 1). In addition, for each such node y, there is at most one node x of Case
2, namely the first node, on the right path descending from y’s left child, to have a
heavy child. The removal of x’s lazy debit is charged to node y.

If z had not been on the left extreme path of the lazy tree prior to the split, then
there is such a node y, for if not, prior to the split, x would have been on the right
path descending from z, and by Invariant 7, would not be carrying a lazy debit.

So if there was no such node y, then z had been on the left path of the lazy tree
prior to the split and x was on the right path descending from z in the splay tree.
Also, z must be the promoted root of x’s new lazy tree. In this case, the removal of
x’s lazy debit is charged to z.

Note that a promoted node may be charged for the removal of three lazy debits
(as node y) or one lazy debit (as node z) but not both.

Case 3. x is the right child of its parent z, which was on the left path of the lazy
tree prior to the split. Then z pays for the removal of the lazy debit from x. So z
may have to pay for the removal of up to two lazy debits (the first such debit was
removed in Case 2).

Lemma 11. Following a split, Invariants 1–4 and 6–7 concerning the debits can
be restored provided the following two equations hold:

c′ ≥ max{4hd, ld + 3hd} = 4hd,(20)
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b ≥ 3hd + 2ld + 3sd+ gp.(21)

Proof. Each light node in a new leftmost or ordinary block is charged for the
removal of at most four lazy debits (from itself and the nodes for which it restored
Invariant 7) or one small or large debit and three lazy debits (removed from the same
nodes). This is charged to the reduction of at least c′ in the node’s potential. (Recall
that each light node in a leftmost block has potential c′ and all other light nodes have
potential 2c′.) So it suffices to have (20) hold.

Each promoted heavy node is charged for the removal of at most three lazy debits
(from the nodes for which it restored Invariant 7), three small debits and two large
debits; it may also have to pay a segment charge. (For the split is the result of a global
insertion. Also see (3) and the paragraph preceding (3).) These costs are charged to
the promoted node’s potential of b units (which it received as a heavy node when its
lazy tree was created). So it suffices to have (21) hold.

4.3.3. Recreating the lazy complete tree potential. We continue by show-
ing how to reestablish Invariants 8–10. To restore Invariant 8, we proceed essentially
as in the original creation of active layers. Let h be the maximum creation height of
any node in the normal form of the new lazy tree rooted at u, apart from its root
(the creation heights are those defined with respect to the original tree; they are not
redefined with respect to the new lazy tree). Suppose there is no l-active node for
some l ≤ h. Then, in the corresponding normal tree, the lowest node v on the right
path whose span includes l becomes l-active (these new active layers are then trans-
lated back into the lazy tree at hand). Below, we show that Invariants 8–10 hold once
more (incidentally, this implicitly shows that the rule for creating new l-active nodes
is well defined).

Clearly Invariant 10 still holds, for if dl(v) increases, idl(v) is reduced by an equal
amount. Next we consider Invariant 9. In each new lazy tree the black status of the
nodes is unchanged; also, by Property 1, the heavy nodes on the new left paths were
also previously on left paths. So Invariant 9 still holds.

Next, we show Invariant 8 is reestablished by the creation of new active layers.
First, we consider the situation prior to the creation of new active layers. Clearly,
Invariant 8 (iii) and (v) still hold; (iv) holds likewise, since the symmetric order of
the nodes in the normal form of each new lazy tree is unchanged. We note that each
new lazy tree has a span of active layers, possibly empty, of the form (i, h], 0 ≤ i ≤ h,
where h is the largest creation height (as provided initially) of any node in the normal
form of the new lazy tree, apart from the root. By Invariant 8 (v), (iii), and (iv), the
right path in each new normal lazy tree, from top to bottom, contains a sequence,
possibly empty, of active nodes with decreasing creation heights. It is now readily
seen that the rule for creating new active layers restores Invariant 8(i)–(ii).

4.3.4. The invariants defined for the split operation. We note that the
split operation has been defined so as to maintain Invariant 13. It remains to consider
the effect of the split on Invariant 12; but the only effect of a split is to reduce the
size and hence weight of a lazy tree; so this Invariant also continues to hold.

4.3.5. Summary and generalization. We have shown (see Lemma 10 and
(5)) the following lemma.

Lemma 12. The cost of a global access is at most e · (3 log n+ 1)gp+ 5 log n · gp
units.

In a later paper we will again use lazy trees which will have heavy and light nodes.
The heavy nodes will have the same lazy and reserve potentials as here. It is useful
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to summarize and slightly generalize the results of this section.
As already noted, the nodes of the lazy trees in the later paper will still have

small, large, and lazy debits which obey the present invariants, namely Invariants 1–4
and 6–7. Other additional debits satisfying Invariant 11 may be present. We need to
show how to maintain this invariant following a lazy tree split. It is readily seen that
the method for restoring the invariants concerning lazy debits suffice to restore this
invariant also, so it suffices to replace hd by md in (20) and (21), yielding

c′ ≥ max{4md, ld + 3md} = 4md,(22)

b ≥ 3md+ 2ld + 3sd+ gp.(23)

The debits may be restricted beyond the invariants of this paper, so long as these
new constraints satisfy the following property.

Property 3. The restoration of any further invariant concerning the debits
requires the removal of at most α additional debits from each lazy tree created by the
split, α a constant.

By Property 2 there are at least as many promoted nodes as there are lazy trees
created by the split. Thus the sets of α additional debits can be charged α to each
promoted node. Modifying (23) as follows,

b ≥ 3md+ 2ld + 3sd+ gp+ α ·md,(24)

suffices to ensure all the invariants can be restored.
We have shown the following lemma.
Lemma 13. If a lazy tree comprises light and heavy nodes where the heavy nodes

carry lazy potentials as specified in Invariant 12, then each lazy tree resulting from a
split satisfies the following:

(i) Invariant 12;
(ii) If the nodes on its left path are new to a left path, then they are all light nodes

in the same block; and
(iii) Assuming the debits obey Invariants 1–4 and 6–7, and 11, and assuming (22)

and (24) hold, then these invariants can be restored following a split.
Clearly, we also need the following.
Property 4. The potential must be partitionable following a split; i.e., each lazy

tree created by the split must be provided with an appropriate potential (e.g., a lazy
complete tree potential).

4.4. Lazy trees and local accesses. We need to reconsider the analysis of
local accesses to take the presence of lazy trees into account (see Remark 2). Note
that in such an access only the left paths of lazy trees can be traversed. In fact,
only two modifications are needed. First, we need to consider couples comprising two
heavy nodes. But these are analyzed as in a global insertion: They have 0 ≤ s + 1
amortized cost, for as noted in Remark 3, no spares are spent on paying for changes
to the j-potentials and/or j-black potentials. Second, we may need to modify the
guards of some lazy trees so as to maintain Invariant 13. This would result in the left
guard restoration process being applied, which, as in section 4.3, does not occasion a
change to the analysis of the insert operation. So the results of Lemma 6 continue to
apply.

4.5. Multiple level lazy trees. It is convenient to refer to the lazy trees en-
countered so far in the paper as right lazy trees. Analogous lazy trees, called left
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lazy trees, in which the roles of left and right are interchanged are considered in this
section. While they are not needed to prove the result of this paper, they lead to a
more general result in this section, without adding significantly to the complexity of
the current section.

Because a local access path may include nodes of a current lazy tree we may seek
to make the root of a lazy tree a heavy node carrying a lazy potential in a new lazy
tree. We therefore generalize the form of the lazy trees. Now, a “block,” or rather
metablock, in a lazy tree may itself be another lazy tree.

In order to distinguish the ages of the different lazy trees, we number the blocks,
in insertion order, by 1, 2, . . . . A lazy tree is labeled by the number of its corresponding
creating block. When a lazy tree is split its parts keep the same age label.

Let L be a lazy tree; its skeleton plus its lazy block tree comprise the nodes on
L. The nodes on L are also said to belong to L. A node may be on an extreme path
of several lazy trees. For each lazy tree to which a node belongs it carries a separate
potential. However, a node may carry only one debit, as before. Invariants 1–4 and
6–7 should be interpreted with respect to the newest lazy tree to which the node
carrying the debit belongs.

We define a new lazy tree, Lnew, to contain an old lazy tree, Lold, if the root,
r, of Lold is on Lnew. We write Lold ⊂ Lnew. If there is no tree Lmid with Lold ⊂
Lmid ⊂ Lnew, then Lold is treated as a metablock of Lnew. The root of Lold is treated
as the root of this metablock; the root of Lold is a heavy node on Lnew. All other
nodes on Lold are light nodes of this metablock, unless they are not even on Lnew.
This matters when defining the potentials for nodes on Lnew. Suppose that Lold is
contained in Lnew; then, apart perhaps for its root, any node on Lold that is also on
Lnew must be a light node on Lnew; in fact, only the root and nodes on an extreme
path of Lold can be on Lnew, but it need not be the case that even all these nodes are
on Lnew.

In addition, each guard of a lazy tree may be the root of another lazy tree, rather
than being the root of a block. More precisely, suppose that g is the right (resp., left)
guard for lazy tree L on creation of L, and Lold is the newest lazy tree rooted at g at
this time (Lold is older than L). Then the root of Lold remains the right (resp., left)
guard for L until one or both of L and Lold are split. Note that the root of Lold may
at some point become the root of a newer lazy tree, Lnew; however, the root of Lnew
does not take over the guard role for L.

In order to carry over the previous analysis of an extreme path traversal, we
require the following properties concerning lazy trees to apply.

Requirement 1. Suppose u is traversed in the current insertion. Let L be the
newest lazy tree to which u belongs.

(i) Let v be an ancestor of u on L. Then L is also the newest lazy tree to which
v belongs.

(ii) u is either the root of L, or a heavy or light node of L; if a heavy node it
carries a lazy potential defined with respect to L.

(iii) If u is a heavy node of an older lazy tree, then it is a light node of L.
Items (i) and (ii) enable the traversal of node u to be treated as part of the

traversal of an extreme path of L; the previous analysis continues to apply. However,
a new issue arises because u may also belong to older lazy trees. We maintain u’s
potentials with respect to each such lazy tree. Maintaining the l-potentials and l-
black potentials might appear problematic, for it may involve the spending of k-
spares, k ≥ 1. But we note that each node, u, is heavy in at most one lazy tree,
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and this is the only lazy tree with respect to which u carries l-potentials and l-black
potentials and to whose heavy nodes it transfers spares (for in all newer lazy trees
that contain u, u is light). So there is only one lazy tree with whose l-potentials and
l-black potentials u is concerned, and this is the only lazy tree to which u contributes
spares or from which u draws spares. Thus the l-potentials and l-black potentials
can be maintained as before. Otherwise, the analysis of an extreme path traversal
is unchanged, apart possibly for the removal of debits following the maintaining of
Invariant 13. We discuss this at the same time as we show how to remove debits
following the new split operation.

The following invariant characterizes the overlap of lazy trees.
Invariant 14.
(i) Let La and Lb be two lazy trees of the same age. Then the two open intervals

defined, respectively, by the guards of La and of Lb are disjoint.
(ii) Let Lold be a lazy tree and let r be its root. Let Lnew be another, newer, lazy

tree. Then the following hold:
(a) If r lies strictly between the guards of Lnew, then the guards of Lold lie

between the guards of Lnew. In addition, let u and v be the items in the
large lazy block tree for Lnew straddling r (r may or may not be an item
in this large lazy block tree). Then Lold plus its guards lies between u
and v. (Recall that the large lazy block tree for lazy tree L comprises the
lazy block tree for L plus the guards for L.)

(b) If r is strictly outside the closed interval defined by the guards of Lnew,
then the open intervals defined by the guards of Lold and Lnew, respec-
tively, are disjoint.

(c) Suppose that r is the right (resp., left) guard for Lnew. Let dnew be the
rightmost (resp., leftmost) item in the lazy block tree for Lnew. Then the
left (resp., right) guard of Lold is either equal to or to the right (resp.,
left) of dnew.

Thus, in some sense, an older lazy tree is either contained in a newer lazy tree
or is disjoint from it. In the next two lemmas we show several consequences of this
invariant.

Lemma 14. Requirement 1(i) holds.
Proof. Let u and v be as in Requirement 1(i). Suppose that v belongs to lazy

tree Lnew, newer than L. Then L and Lnew obey Invariant 14(ii)(a). By assumption,
only an extreme path of Lnew is traversed; so the inserted item lies outside the range
spanned by the guards of Lnew; without loss of generality, suppose that the inserted
item is to the right of the right guard of Lnew. By Invariant 14(ii)(a), all of L is to
the left of Lnew’s right guard; so the only items of L that are traversed must also be
on Lnew.

Lemma 15. Let w be on lazy tree Lold. Suppose w is also on a newer lazy tree
Lnew. Then w is on an extreme path of Lold.

Proof. Invariant 14(ii)(a) applies to Lnew and Lold. Let u and v be the items of
Lnew straddling the root of Lold, as in the statement of the invariant. Since w is on
Lnew, w is on the path from u to v in the range (u, v) (if u < v) or (v, u) (if v < u).
If w does not lie on an extreme path of Lold, then some item of Lold must lie outside
the range (u, v) (or (v, u)), which contradicts Invariant 14(ii)(a).

Invariant 15. Let L be a lazy tree.
(i) The nodes of L, apart from its root, are all heavy or light on L.
(ii) Apart possibly from its root, all of L’s heavy nodes carry their lazy potential.
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right guard for Lold
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Key: nodes on neighbor path

Fig. 23. A (u, v)-neighbor path.

(iii) Each of L’s light global nodes is a heavy node in some older lazy tree.
(iv) Each node, v, heavy on some lazy tree L, is a light node of all the newer lazy

trees to which it belongs.
Invariant 15 implies Requirement 1(ii) and 1(iii), above.
Before giving the next invariant, a few definitions are helpful. Let L be a lazy

tree and let u be a node of its large lazy block tree. v is an L-neighbor of u if v is
also a node of the large lazy block tree and u and v enclose no other node of the large
lazy block tree. Suppose that u is an ancestor of its L-neighbor v; the (u, v)-neighbor
path comprises those items on the path from u to v in the splay tree which are in the
range (u, v), if u < v, or (v, u), if v < u.

Invariant 16. See Figure 23. Let L be a lazy tree. Let u and v be L-neighbors,
with u the ancestor of v. Let N denote the (u, v)-neighbor path. If N includes a global
node, there is a lazy tree Lold, older than L, rooted at u, such that every node in N is
on Lold. Further suppose that u is a left (resp., right) ancestor of v. Then the right
(resp., left) guard for Lold is either v or a left (resp., right) descendant of v.

By inspection plus induction, Invariants 14–16 are true on creation of a lazy tree
Lnew; also, they remain true as the extreme paths of the lazy trees are traversed.

We need to reconsider the analysis of splits. Again, in turn, we consider the
promotions, the consequential removal of debits and the recreation of the complete
lazy tree potential for the lazy trees created by the split. Actually, the arguments
concerning Invariants 8–10 and 12–13 are unchanged from section 4.3 and so we will
not discuss further the recreation of the complete lazy tree potential.

4.5.1. The promotions. For each split lazy tree, our goal in a split is to pro-
mote the same nodes as in section 4.3 (remember, this needs to be interpreted sym-
metrically for left lazy trees); however, this may prove too expensive because of the
recursive containment of lazy trees. So, sometimes, instead of promoting a node v,
heavy on lazy tree L, we will promote a node w which is light on L but heavy on an
older lazy tree, and such that w is an ancestor of v.

We consider the promotions to be performed on one lazy tree at a time, oldest
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Fig. 24. Pseudoheavy nodes.
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Fig. 25. Case 1′.

first. Invariants 14 and 15 are maintained but modified as follows.
Suppose the promotions have been applied to Lold but not to Lnew (see Figure 24).

All the promoted nodes which are on Lnew are made into pseudoheavy nodes of Lnew.
In addition, let lg be the left guard of Lnew and r its root. Suppose that lg is an
ancestor of r. Let v be a node on the path from lg to r in the range (lg, r). If v is
promoted, then v also becomes a pseudoheavy node of Lnew. A similar rule applies
with respect to the right guard of Lnew.

Invariant 17. Invariant 14(ii)(a) holds with respect to the heavy and pseudo-
heavy nodes of Lnew, as do Invariants 15(i) and 16.

Next, we explain how the previous promotion procedure is modified. Consider
the promotions on right lazy tree L.

Case 1′. See Figure 25. v is a heavy node in the lazy block tree, which is not on
the left extreme path. In addition, v is accessed from its left child, u.

v is promoted as in Case 1 of section 4.3. w1 is defined as in this Case 1. The right
offset promotions for v are performed exactly when no global node on the path from
v to w1, in the range (v, w1) has been promoted. If such a node has been promoted,
there will be one such node; let it be denoted w. Then w becomes a root of a lazy
tree formed from L; its left subtree is empty and its right subtree contains exactly
the heavy nodes of L in v’s right subtree. v provides the left guard for this new lazy
tree. The right guard for the lazy tree rooted at w is obtained in the same way as
w1’s right guard in Case 1.
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Fig. 26. Case 1.1′.
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Fig. 27. Separating the left guard.

Case 1.1′. See Figure 26. v′ is a light node of L, which is not on the left path of
L, and v′ is accessed from its left child, which is a node not on L.

Suppose v′ is a heavy node on some older lazy tree, Lold; then v′ is on the right
path of Lold (by Lemma 15) and so v′ was already promoted. Suppose that v′ is
straddled by L’s heavy nodes x and y, where y is a descendant of v′. Let v be the
promoted node nearest to y on the path from v′ to y, in the range [v′, y), if any. If
v 
= v′, v is made the root of a lazy tree formed from L; its left guard is the nearest
node on the path from v′ to v, in the range [v′, v) which has been promoted (in fact,
this must be v′). Its right guard is handled as in Case 1. While if v = v′ or if v′

was not heavy on any older lazy tree, then the right offset promotions for v = v′ are
performed.

Case 2′. v is a heavy node on the left extreme path and it is accessed from its
right child, u.

v′ is defined to be the nearest heavy or pseudoheavy ancestor of v; v′ must be on
the left external path of L. v and v′ are promoted as in Case 2 of section 4.3. As
in Case 1′, the right offset promotions for v′ are performed exactly when no global
node on the path from v′ to w1, in the range (v′, w1) has been promoted. Again, if
the right offset promotions are not performed, a new lazy tree is created exactly as in
Case 1′.

If the left guard, lg, is separated from the remainder of L (through being accessed
from its right child), and, v′, the leftmost heavy node in L, is traversed, then the
promotions described in the previous paragraph are performed; but if lg is separated
from the remainder of L without v′ being traversed (which can arise only if lg is the
root of the large lazy block tree) then the new left guard for L is provided by the
promoted node, if any, nearest to the root, r, of L, in the range (lg, r), on the path
from lg to r. (See Figure 27.) If there is no such promoted node, as in Case 1.1′, the
right offset promotions for r are performed.
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Fig. 28. Case 2.1′.

Again, we need to provide the new lazy tree rooted at v with a right guard. As in
Case 2 of section 4.3, let x be the rightmost heavy descendant of v in the imaginary
tree associated with its lazy block tree. If x 
= v, we proceed as in Case 2 of section
4.3. If x = v, we proceed as follows. Let w′ be v’s left child in the lazy block tree for
L (if v does not have such a child then the lazy block tree rooted at v will comprise
only one node and so can be ignored henceforth). Let w be the first node on the path
from v to w′, in the range (w′, v), which has already been promoted, if any (there will
be at most one promoted node on this path). If there is no such node, set w = w′ and
promote it. w becomes the root of a new lazy tree formed from L with right guard v.
Finally, if w has a nonempty right subtree in L, the right guard restoration process
is applied to v.

Case 2.1′. ṽ is a light node on the left path of L and ṽ is accessed from its right
child (a node which is not on L). See Figure 28.

v′ is defined to be the nearest heavy or pseudoheavy ancestor of ṽ; v′ must be
on the left external path of L. v′ is handled as in Case 2′, above. Suppose ṽ is a
heavy node on some older lazy tree, Lold. then ṽ must be on the left path of Lold (by
Lemma 15), so ṽ was already promoted. ṽ will become the right guard of a new lazy
tree formed from L. If a left descendant, w, of ṽ, on the left path of L has already
been promoted (there can be at most one such node) then w becomes the root of this
new lazy tree. If not, w is defined to be the first heavy node on the left path of L
which is a proper descendant of ṽ; it is promoted. In addition, if w has a nonempty
right subtree in L, the right guard restoration process is applied to ṽ. Finally, suppose
that ṽ was not heavy on any older lazy tree. Let v be the nearest descendant node on
the left path of L which is heavy or pseudoheavy. v is promoted if it is not already
promoted. It is then handled in the same way as node ṽ earlier in this case.

The charging for the promotions is analyzed shortly. The following lemmas are
helpful.

Lemma 16. Let v be a node on lazy tree L accessed from its left child and
promoted in Case 1′ or 1.1′ (as node v′ in the latter case). Suppose that w′ is a
promoted node in v’s right subtree, in addition, suppose that v and w′ are on an older
lazy tree Lold, where Lold is also split by the access. Let w1, . . . , wk be the nodes on L,
if any, promoted by the right offset promotions. Then w′ is a proper left descendant
of wk.

Proof. Note that as w′ is on Lold, an older lazy tree including v, w′ must be in
the range (v, wk), by Invariant 14(ii)(a). Suppose, for a contradiction, that w′ has an
ancestor x on the path from v to w1 in the range (v, w1). See Figure 29. (If this is
not the case, then w′ is a proper left descendant of wk.) x is global as both w′ and
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Fig. 29. Proof of Lemma 14.

w1 are global. If x is on Lold, x is heavy on Lold, for x and its parent are separated,
in left to right order, by global w′. Let x′ be the first node on the path from v to
x, in the range (v, x], on Lold, which is heavy on Lold, or which is already promoted.
Then unless already promoted, x′ is promoted when Lold is split. (If Case 2(i) were
to apply to Lold, then x′ would not be promoted, as claimed; but, by assumption,
w′ is promoted; to achieve this promotion, Case 2(ii) needs to be applied, and then
x′ is indeed promoted.) But if x′ is promoted, then w1 would not be promoted, a
contradiction. If x is not on Lold, then x is heavy on some tree L′ sandwiched in
age between Lold and L. Again, on replacing Lold by L′ in the above argument, a
contradiction is obtained.

The next lemma is shown by the same argument as used in Case 1 in section 4.3.
Lemma 17. Let w1, . . . , wk be the chain of nodes promoted on lazy tree L by the

right offset promotions for node v. In addition, let w′ be a promoted node, if any,
in v’s right subtree on an older lazy tree Lold. lazy rank(wi) ≥ g rank(wi+1) for
i = 1, . . . , k − 1; similarly, lazy rank(wk) ≥ g rank(w′). Finally, lazy rank(wk) +
jump(v) ≥ g rank(v).

In addition, we note the following.
Lemma 18. Let w be a node on lazy tree L promoted in Case 2′ or 2.1′. Let w′

be a promoted node in v’s left subtree on an older lazy tree Lold that is also split by
the access. Then

(i) w′ is a right descendant of w;
(ii) lazy rank(w) ≥ g rank(w′);
(iii) lazy rank(w) + 1

gpreserve(w) + jump(v) ≥ g rank(v).

Proof. The proof of (i) is very similar to the proof of Lemma 16. (ii) follows from
Corollary 8(i). The proof of (iii) uses the argument of Case 2 in section 4.3.

Case 3′. The inserted item is to the right of the lazy tree root, r.
The new lazy tree rooted at r must be provided with a right guard. The method

followed is identical to that used in Case 2′ for providing the new lazy tree rooted at
v with a right guard. Lemma 18 applies here too.

It remains to analyze the cost of the split operations. Clearly, for the nodes on the
right (resp., left) access path, the cost of the promotions is at most gp · log n, a total
of 2gp · log n units for the two access paths. Lemmas 17 and 18 imply that for each
promoted node on the right (resp., left) access path the associated promoted nodes
form a chain descending to the left (resp., right); let x1, x2, . . . , xk be a maximal path
of such nodes, in descending order. Lemmas 17 and 18 show that lazy rank(xi) ≥
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g rank(xi+1), for i = 1, . . . , k − 1 and lazy rank(xk) + 1
gpreserve(xk) + jump(v) ≥

g rank(v) ≥ g rank(x1). (Note that the applications of Lemmas 17 and 18 will be
interleaved if there is an interleaved sequence of successively older left and right lazy
trees.) We conclude that a further 2gp · log n units of potential pay for the promotion
of the nodes xi.

So, as before, the cost of the split operation is at most 4gp log n and Lemma 10
continues to hold.

Lemma 10. The promotions in a global insertion cost at most 4gp log n units,
where for each split lazy tree there is a charge of 2gp times the increase in global rank
along the right split path and of 2gp times the increase in global rank along the left
split path.

It should be clear that Invariants 14–17 are maintained over the course of these
promotions. When the promotions are complete there are no pseudoglobal nodes
remaining, so at this point Invariants 14–16 will have been restored.

Finally, we need to consider the effect of the guard restoration process. We claim
that if the guard restoration process is applied to lazy tree L, for each of the promoted
nodes the newest lazy tree to which it belonged was L. Then it is easy to see that
Invariants 14–16 continue to hold. To show the claim we demonstrate one case; the
others are similar. Suppose that rg, the right guard of L, is in a couple with heavy
node u of L (see Figure 30). Suppose that u is also on a newer lazy tree Lnew. Then
u is light on Lnew. If rg is light on Lnew, then following the rotation, u is no longer
on Lnew. If rg is heavy on Lnew, then by Invariant 14(ii)(a) applied to L and Lnew,
there are no heavy nodes of Lnew in rg’s left subtree nor in u’s left subtree; so, again,
following the rotation, u is no longer on Lnew. A similar argument applies if rg is the
right guard of Lnew.

4.5.2. Removing debits. We show how to restore Invariants 1–4 and 6–7. For
each node that was on a newest lazy tree L but is not on a lazy tree derived from L,
we charge the removal of its debit, if any, to the node’s potential associated with lazy
tree L. So we are only concerned with nodes for which the age of their newest lazy
tree is unchanged. For such nodes, the invariants are all restored exactly as in section
4.3.

Restoring Invariants 1–4 result in the same maximum charge of three small debits
and two large debits to a promoted node; this holds regardless of how many lazy trees
the promoted node belonged to. Debit removal charged to the node relinquishing the
debit is treated as before; this takes care of Invariant 6 as well. It remains to consider
Invariant 7.

For a promoted node to be charged as node z of the argument in section 4.3, it
must be a heavy node on the left (resp., right) extreme path of its right (resp., left)
lazy tree prior to the split. Likewise, for a node to be charged as node y, it must be
a heavy node on its right (resp., left) lazy tree prior to the split and not on the left
(resp., right) extreme path. So as a promoted node, a node is charged no more than
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before. The same node may receive additional charges, but as light nodes on other
newer lazy trees; these charges are paid for by the potentials associated with the node
as a light node in these newer lazy trees. So as before, (20) and (21) suffice to enable
Invariants 1–4 and 6–7 to be restored.

Again, for the more general case, to restore Invariant 11 (22)–(24) suffice.
To satisfy any further restrictions obeying Property 3, we need to cover a charge

of up to α ·md for each lazy tree created by the split. For each such lazy tree, the
charge is given to its root. However, this cannot be applied solely to the charge made
to promoted nodes, as several new lazy trees may share a common root. Instead, the
charge is made to each node, either as a light node or for the oldest lazy tree, as a
heavy node. This requires modifying (23) to (24) as before, and modifying (22) as
follows:

c′ ≥ 4md+ α ·md.(25)

4.5.3. Summary. The presence of multiple levels of lazy trees does not alter
the previous analysis of a global insertion, stated in Lemma 12 (except that the
constraint of (25) is introduced). The analysis of local insertions is also unaffected,
for the discussion of section 4.4 carries over unchanged; so Lemma 6 also continues to
hold. In summary, we have shown the following.

Lemma 19. The cost of a local access is c+ s+ 1, and the cost of a global access
is e(3 log n+ 1)gp+ 5gp log n units.

In addition, we note that Lemma 13 continues to hold with (22) replaced by (25)
(but now in Lemma 13(ii), “block” is interpreted to mean the newest lazy tree older
than the lazy tree in question, to which nodes on the left path belong).

5. Concluding the analysis. We choose s = 1. Recall that s′ = s (see section
4.2). By Lemma 3 we have sd = 2, gp = ld = 34, c = 36. On taking equality in
(7), (10), (13), (14), (20), and (21), we obtain hd = 36, d = 432, b = 216, c′ = 144,
a = 2·2162 = 93, 212 (incidentally, these values satisfy (6), (8) and (9)) and q+4 ≤ 221;
by (4) it suffices to set e = 22. For each block we need to pay for one global insertion
and logn − e local insertions (note that the cost of the first e − 1 local insertions is
covered by the charge for the global insertion). Equations (15)–(19) and (22)–(25)
are not used here. From Lemma 19, we conclude the following.

Theorem 20. The number of rotations for sorting a log n-block sequence is
bounded by 2500n + O(n/ log n). (Recall that the number of rotations dominates the
overall cost of the sort.)
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1. Introduction. The reader is advised that this paper quotes results from the
companion Part I paper [CMSS00]; in addition, the Part I paper introduces a number
of the techniques used here but in a somewhat less involved way.

The splay tree is a self-adjusting binary search tree devised by Sleator and Tarjan
[ST85]. They showed that it is competitive with many of the balanced search tree
schemes for maintaining a dictionary. Specifically, Sleator and Tarjan showed that
a sequence of m accesses performed on a splay tree takes time O(m log n), where n
is the maximum size attained by the tree (n ≤ m). They also showed that in an
amortized sense, up to a constant factor, on sufficiently long sequences of searches,
the splay tree has as good a running time as the optimal weighted binary search
tree. In addition, they conjectured that its performance is, in fact, essentially as good
as that of any search tree. Before discussing these conjectures, it will be helpful to
review the operation of the splay tree and the analysis of its performance. The basic
operation performed by the splay tree is the operation splay(x) applied to an item x
in the splay tree. splay(x) repeats the following step until x becomes the root of the
tree.

Splay step.
Let p and g be, respectively, the parent and grandparent (if any) of x.
Case 1. p is the root: Make x the new root by rotating edge (x, p).
Case 2—the zig-zag case. p is the left child of g and x is the
right child of p, or p is the right child of g and x is the left child of p:
Rotate edge (x, p), making g the new parent of x; rotate edge (x, g).
Case 3—the zig-zig case. Both x and p are left children, or both
are right children: Rotate edge (p, g); rotate edge (x, p).

Henceforth, we refer to the rotation, single or double, performed by the splay step
as a rotation of the access or splay operation. A rotation is the basic step for our
analysis; the cost of one rotation is termed a unit; clearly, this is a constant.
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Sleator and Tarjan use the following centroid potential to analyze the amortized
performance of a splay operation (our terminology). Node x is given weight, wt(x),
equal to the number of nodes in its subtree; they define the centroid rank of x, or simply
the rank of x to be rank(x) = �logwt(x)� (our terminology). Each node is given a
centroid potential equal, in units, to its centroid rank. Let δ denote rank(g)−rank(x),
if g is present; otherwise it denotes rank(p) − rank(x). Sleator and Tarjan showed
that the amortized cost of the splay step if g is present is at most 3δ units, while if g
is not present the cost is at most δ + 1 units (see [ST85, Lemma 1]). Since the total
increase in rank for the complete access is bounded by logn, the amortized cost of
an access is at most 3 log n+ 1 units. More generally, this analysis can be applied to
weighted trees in exactly the same way. We call this the centroid potential analysis.

We now list the conjectures formulated by Sleator and Tarjan.

Dynamic Optimality Conjecture. Consider any sequence of successful accesses
on an n-node binary search tree. Let A be any algorithm that carries out
each access by traversing the path from the root to the node containing the
accessed item, at a cost of one plus the depth of the node containing the
item, and that between accesses performs an arbitrary number of rotations
anywhere in the tree, at a cost of one per rotation. Then the total time to
perform all the accesses by splaying is no more than O(n) plus a constant
times the time required by algorithm A.

Dynamic Finger Conjecture. The total time to perform m accesses on an arbi-
trary n-node splay tree is O(m+n+

∑m
j=1 log(dj+1)), where, for 1 ≤ i ≤ m,

the jth and (j − 1)th accesses are performed on items whose ranks differ by
dj (ranks among the items stored in the splay tree). For j = 0, the jth item
is interpreted to be the item originally at the root of the splay tree.

Traversal Conjecture. Let T1 and T2 be any two n-node binary search trees
containing exactly the same items. Suppose we access the items in T1 one
after another using splaying, accessing them in the order they appear in T2

in preorder (the item in the root of T2 first, followed by the items in the
left subtree of T2 in preorder, followed by items in the right subtree of T2 in
preorder). Then the total access time is O(n).

Sleator and Tarjan state that the dynamic optimality conjecture implies the other
two conjectures. (The proof is nontrivial.)

There have been several works on, or related to, the optimality of splay trees
[STT86, W86, T85, Su89, Luc88a, Luc88b]. [STT86] showed that the rotation distance
between any two binary search trees is at most 2n−6 and that this bound is tight; they
also related this to distinct triangulations of polygons; although connected to the splay
tree conjectures, this result has no immediate application to them. [W86] provided two
methods for obtaining lower bounds on the time for sequences of accesses to a binary
search tree; while some specific tight bounds were obtained (such as accessing the bit
reversal permutation takes time Θ(n log n)), no general results related to the above
conjectures follow. [T85] proved the scanning theorem, a special case of the traversal
conjecture (also a special case of the dynamic finger conjecture): accessing the items
of an arbitrary splay tree, one by one, in symmetric order, takes time O(n). Sundar
[Su89] considered various classes of rotations on binary trees. Before discussing these
we need some terminology. A right rotation is a rotation between a node u and its left
child v. A k-right cascade comprises a sequence of k right rotations on the following
path: the path is a descending sequence of 2k nodes, v1, v2, . . . , v2k, where vi+1 is
the left child of vi for 1 ≤ i < 2k; the rotations are between nodes v2i−1 and v2i for
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1 ≤ i ≤ k. Sundar [Su89] shows the following bound on the maximum number of
k-cascades in a sequence of right rotations on an n-node binary tree: Θ(nα�k/2�(n)),
where αk is the inverse of the kth level of the Ackerman hierarchy; in particular, for
k = 2α(n), where α is the inverse Ackerman function, this is a Θ(n) bound. Our result
will make use of this bound. Sundar uses this bound to obtain results concerning the
deque conjecture; formulated by Tarjan [T85], it states that if a splay tree is used to
implement a deque, in the natural way, then a sequence of m operations on a deque,
initially of n items, takes timeO(m+n); Sundar proved a bound ofO((m+n)α(m+n)).

In this paper, we prove a generalized form of the dynamic finger conjecture, which
includes insertions and deletions as well as searches among possible accesses (which is
implicit in the above formulation of the conjecture). We note that our implementation
of the delete operation is not the one described by Sleator and Tarjan [ST85]. The
generalized form of the dynamic finger conjecture is as follows.

Generalized Dynamic Finger Conjecture. The total time to perform m
searches, insertions, and deletions on an arbitrary splay tree, initially of size
n, is O(m+n+

∑m
j=1 log(dj+1)), where, for 1 ≤ i ≤ m, the jth and (j−1)th

accesses are performed on items whose ranks differ by dj (ranks among the
items stored in the splay tree). For j = 0, the jth item is interpreted to be
the item originally at the root of the splay tree.
Comment: The +1 in the log term is present to avoid problems with log 1
and log 0.

To measure the rank difference for an item deleted or inserted on the previous or
the current operation, respectively, simply consider the immediate predecessor or
successor of the item at the time of the deletion or insertion.

In the Part I paper a special case of splay sorting was examined. Splay sorting
is closely related to the dynamic finger conjecture. It is defined as follows. Consider
sorting a sequence of n items by inserting them, one by one, into an initially empty
splay tree; following the insertions, an in-order traversal of the splay tree yields the
sorted order. This is called splay sorting. A corollary of the dynamic finger conjecture
is as follows.

Splay Sort Conjecture. Let S be sequence of n items. Suppose the ith item in
S is distance Ii in sorted order from the i − 1th item in S for i > 1. Then
splay sort takes time O(n+

∑n
i=2 log(Ii + 1)).

Incidentally, an interesting corollary of the splay sort conjecture is as follows.

Splay Sort Inversion Conjecture. Let S be sequence of n items. Suppose
the ith item in S has Ii inversions in S (counting inversions both to left and
right). Then splay sort takes time O(n+

∑n
i=1 log(Ii + 1)).

In the Part I paper we proved the splay sort conjecture for the following type
of sequence. Suppose the sorted set of n items is partitioned into subsets of logn
contiguous items, called blocks. Consider an arbitrary sequence in which the items in
each block are contiguous and in sorted order. We call such a sequence a logn-block
sequence. We showed an O(n) bound for splay sorting a logn-block sequence.

The key contribution of the Part I paper was the notion of lazy potentials and
their analysis. This notion can be viewed as a tool for designing potential functions.
The lazy potential is a refinement of an initial potential function that avoids waste
when potentials decrease. (For an example of waste, consider the following splay tree
analyzed using the centroid potential. The tree is a path of n nodes, each of unit
weight. The last node on the path is accessed. The resulting splay will have a real
cost of Θ(n) but will reduce the potential by Θ(n log n). The desired amortized cost
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of this operation is O(logn), so essentially all the reduction in potential is wasted.)
The idea of the lazy potential is to keep an old potential, φold, in situations in which
the creation of a new (larger) potential, φnew, may be followed by a return to the
φold potential, with essentially φnew − φold potential being wasted. Not surprisingly,
some care is needed in choosing which operations to treat as “lazy.” In the Part I
paper, collections of nodes all having lazy potentials formed lazy trees. The nodes
in a lazy tree had originally been contiguous nodes on a left (or right) path. The
lazy potentials were the “correct” potentials with respect to that original path. The
key to the analysis was to provide additional potentials to the nodes of the lazy tree
to pay for rotations that restored them towards their original left (or right) path
configuration. As it happened, these potentials were linear in the size of the lazy tree
and could be provided when the lazy tree was being created.

The lazy potential used here is similar to that used in the Part I paper. But, in
contrast to the Part I paper, the additional potentials provided to the lazy trees may
be superlinear in the size of the lazy tree. However, whenever we need to provide
a superlinear potential, it is superlinear by only an inverse Ackerman function, and
again we are able to provide this superlinear potential as the lazy trees are being
created (the proof of the superlinear bound relies on the analysis of cascades provided
by Sundar [Su89]). At this point it is convenient to define the version of the inverse
Ackerman function, α, used in this paper. Define the following:

A0(j) = 2j for all j ≥ 1,

A1(j) = 2j for all j ≥ 1,

Ai(j) =

{
Ai−1(2) if i ≥ 2 and j = 1,
Ai−1(Ai(j − 1)) if i ≥ 2 and j ≥ 2,

α(n) = min{k ≥ 1|Ak(1) ≥ n} for all n ≥ 1.

The other main feature of our analysis is a hierarchical partitioning of the items
into blocks. A block comprises a contiguous set of items in the splay tree. The
blocks at level 0 in the partition are called 0-blocks; at successively higher levels of
the partition, the blocks are termed 1-blocks, 2-blocks, and so on. The highest level,
vis, contains a single block which holds all the items in the tree. A separate potential
function is associated with each block. The accesses are divided into sequences with
respect to each level of blocks. A sequence, Si, comprises a maximal series of successive
accesses all to the same i-block. We call the first access of each sequence Svis−1, a
global access. Subsequent accesses of Svis−1 are called local accesses. We will prove
an O(log n) bound on the amortized cost of global accesses and appropriately smaller
bounds on the cost of local accesses.

In section 2, we analyze the global accesses. In section 3, we introduce and analyze
the local accesses. We show a bound of O(log(d + 1) + (log logn)α(n)) on the cost
of a local access, where d is the distance, in items, between the current accessed item
and the previously accessed item. In section 4, this bound is tightened to obtain the
desired O(log(d+1)) bound. The additional O((log logn)α(n)) term arises because of
the interaction between the different levels of blocks, as we will see later. In section 5,
we extend the bound to allow insertions and deletions. Unfortunately, the constants
in the bound are rather large (1018). In part, this may be due to the fact that we
have not sought to optimize the constants, but, to a larger extent, it is a result of the
involved nature of the analysis. In section 6, we briefly discuss whether it might be
possible to improve the constants in our bounds.
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2. The block structure and global accesses. Before embarking on the anal-
ysis of global accesses, we provide some definitions which will be needed throughout
the paper. Let S be a nonempty contiguous subset of the items in the splay tree. We
define the tree, TS , induced by S, as follows. Let u and v be, respectively, the leftmost
and rightmost items in S. The root, r, of TS , is the least common ancestor of u and
v in the splay tree; note that r is a node of S. The left (resp., right) subtree of r is
the tree induced by the set of items in S to the left (resp., right) of r, if nonempty;
otherwise the subtree is empty. A node u is a left descendant of v if it is in v’s left
subtree or is v itself; we also say that v is a right ancestor of u. Right descendants and
left ancestors are defined analogously. The right (resp., left) extreme path of a tree is
the path from the root to the rightmost (resp., leftmost) item in the tree, excluding
the root itself. The access path for an access comprises the traversed nodes other than
the accessed node itself.

Next, we define blocks at level i, i-blocks, for i = 1, 2, . . .. A 0-block comprises 1
item; a 1-block comprises c1 items; an i-block comprises bi (i − 1)-blocks for i > 1;
ci is the number of items in an i-block for i ≥ 1. For much of the paper, we choose
bi = 22i

, ci = bi+1 for i ≥ 1. For each i ≥ 1, we allow the rightmost i-block to
be undersized. At the topmost level, level vis, a single block contains all the items
in the tree. Henceforth, to simplify the discussion, we refer to an i-block as the
block, an (i+ 1)-block as a superblock, an (i− 1)-block as a subblock, and a j-block,
j < i− 1, as a miniblock. Sometimes, if confusion may arise, we refer to these blocks
as i-superblocks, i-subblocks, and i-miniblocks, respectively.

We make a number of definitions with respect to the superblocks. The superblock
tree for superblock B is the tree induced by the items in B. The root of the superblock
tree for a superblock is called the superblock root. The block tree and block root for
block B are defined analogously. Henceforth, when a node is identified as a block root,
it is implicitly assumed not to be a superblock root. The block roots in the superblock
and the superblock root itself are called global nodes; a global node other than the
superblock root is called a true global node. All other nodes in the superblock are
called local nodes. The skeleton of a superblock comprises the nodes on the extreme
paths of its blocks. The inner skeleton of a superblock comprises the nodes on the
skeleton other than nodes on an extreme path of the superblock. A node has visibility
i if it belongs to the inner skeleton of an i-superblock. A node on an external path of
the vis-block has visibility vis. On occasion, for precision, the skeleton (resp., inner
skeleton) of an i-superblock is called the i-skeleton (resp., i-inner skeleton). Also, the
global nodes in an i-superblock are said to be i-global.

Let P be a maximal contiguous path in the splay tree which is a portion of an
extreme path for u’s block, where u is the root of the block. If P is on the inner
skeleton of u’s superblock and if the top node on P is a child of u in the splay tree,
then P is said to abut u. The right (resp., left) abutting path for u is the path to the
right (resp., left) of u that abuts u, if any. Also, u is called the parent of P .

The nodes in each i-superblock are given centroid ranks, called the global ranks,
or g ranks for short, using the following weighting. Let Ki = 2�log bi+1� for i > 0,
and Ki = 2�log c1� for i = 0. The root is given weight −Ki, each true global node is
given weight one, and each local node is given weight zero. The rank of v is given by
�logwt(subtree rooted at v)�, where we define log 0 = −1. The two extreme nodes
in the superblock are given additional weight Ki. We note that on an extreme path
of a superblock tree, each node has the same global rank; also, this global rank is
larger than that of any node on the inner skeleton. Each true global node is given a
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potential, called its global potential, equal in units to gp times its global rank, gp a
constant to be specified later.

Each local node on the skeleton is either labeled or unlabeled. Each labeled node
has potential c, c a constant to be defined later. The labels and potentials are defined
with respect to each level of block to which the node belongs. For each maximal path
P of unlabeled nodes, the following invariant is maintained.

Invariant 1. Let P be a maximal path of unlabeled local nodes on an extreme
path of one block. Suppose that the nodes of P are contiguous in the splay tree. Then
P has an associated path potential of 2c�log(|P |+ 1)� units.

Each of the terms just defined, if prefixed by i, will refer to a block at level i;
alternatively we may use the prefixes “super,” “sub,” and “mini” to refer to the terms
associated with superblocks, subblocks, and miniblocks. Implicitly, in the discussion
that follows, all references are with respect to a fixed i-superblock.

A labeled node on the inner skeleton may carry a small or large debit. Small
and large debits, are worth sd and ld units, respectively, sd and ld constants to be
specified later. The following invariants apply to the labels and debits.

Invariant 2. An unlabeled local node is always adjacent, in the splay tree, to
two other local nodes which are on the skeleton and in the same block.

Invariant 3. Only a labeled local node on the inner skeleton can have a debit.

Invariant 4. Let v be a local node and let v belong to block B. Suppose that in
the splay tree, v is the left (resp., right) child of its parent u. v can have a large debit
only if

(i) u is a local node in block B;

(ii) v has a left (resp., right) child w in the splay tree which is a local node and
in block B;

(iii) neither u nor w carry any debit.

(Note that both u and w are on an extreme path of block B and hence on the inner
skeleton.)

Invariant 5. Let u be a true global node. Let P be a path abutting u, if any.
Let v be the top node on P (v is a child of u). v can have a small debit only if
g rank(v) < g rank(u).

Invariant 6. Let u be the root of block B. Let P be a path abutting u, if any. Let
w be the bottom node on P . w can have a small debit only if g rank(w) < g rank(u).

To avoid special cases it is convenient to redefine the access path for an access to
exclude the splay tree root r in the event that r is involved in an incomplete rotation
(Case 1 of the splay step). Now consider a rotation performed during the splay along
the access path. Of the three nodes involved in the rotation, the top two are called
the coupled nodes of the rotation, or a couple for short. The analysis focuses on the
coupled nodes in a rotation.

For the purposes of the analysis the access path is partitioned into segments. Each
segment comprises an even number of nodes, every two nodes on the path forming the
coupled nodes of a rotation of the present splay operation. The segments are created
by a traversal of the access path from bottom to top; each segment is chosen to have
the maximum length such that, following the removal of its front (top) two nodes, the
(truncated) segment satisfies the following conditions:

(i) The nodes on the truncated segment all belong to the inner skeleton of one su-
perblock; in addition, the accessed item is part of the inner skeleton of this superblock
immediately prior to the traversal of the current segment.
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(ii) The node being accessed has the same global rank throughout the rotations
involving the truncated segment.

(iii) For each couple, the rotation does not change the total global potentials.
(iv) (This is implied by (ii) and (iii).) Each couple in the truncated segment

includes at least one local node (i.e., it does not comprise two global nodes).
(v) Define a node to be staying if it is involved in a zig-zag rotation or it is the

lower node in a couple. (Intuitively, the staying nodes are those that remain on one
of the traversed paths following the splay. Note that the splay, in general, creates two
traversed paths.) For each block there are at most two labeled staying local nodes in
the truncated segment, following its traversal.
The topmost segment is said to be incomplete if it satisfies conditions (i)–(v) prior to
truncation. We consider an incomplete segment to comprise a (trivially) truncated
segment.

Next, we mark the following types of coupled nodes in each truncated segment.
The rotations involving marked couples are self-paying, as is demonstrated later.
Each marked couple is involved in a zig-zig rotation. For each type below, suppose
the segment includes a couple, u, v, with u the parent of v.

Type 1. See Figure 1. Suppose that u is the root of v’s block; then both u and v
are marked.

Type 2. See Figure 2. Suppose that u is a local node, and let x be the root of u’s
block. Further, suppose that u is on the left (resp., right) abutting path for x. Let v
be the left (resp., right) child of u; if u does not have a debit and if v is global, then
both u and v are marked.

Type 3. Suppose u and v are both local nodes of the same block; then both u and
v are marked.

We can now prove a bound on the length of a truncated segment.
Lemma 1 (see [CMSS00, Lemma 1]). A truncated segment comprises at most 10

unmarked nodes, of which at most 7 are local.
Over the course of the access we maintain the following invariant.
Invariant 7. See Figure 3. Let w be the accessed item. Let x be w’s right

(resp., left) child. Suppose that x is on the inner skeleton of its superblock. Let P
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be the maximal portion of the extreme left (resp., right) path in x’s block descending
from x, contiguous in the splay tree. Let y be the bottom node on P (x is the top
node). Then neither x nor y carry any debits. w does not carry a debit either.

To initialize Invariant 7 at the start of the access may require the removal of up
to five small debits or up to one large debit and three small debits; this costs at most

max{ld+ 3sd, 5sd}.(1)

As we will see, the access will remove the debits from all the traversed nodes
(though it may also cause large debits to be placed on some of the traversed nodes).

To understand the cost of individual rotations it is helpful to consider when
abutting paths affect Invariants 5 and 6. We define an untouched abutting path to
be one whose top node is not traversed in the current access and whose top node was
not a child of the accessed item at the start of the access; any other abutting path is
said to be touched. We define an abutting path to be clean if it obeys Invariants 5
and 6 with respect to its parent, and to be dirty otherwise. Because of Invariant 7, a
node that receives a touched abutting path receives a clean abutting path.

Lemma 2. Let u be a true global node. Let P be an abutting path. If P is dirty,
u must be on the inner skeleton of its superblock.

Proof. By definition, P is on the inner skeleton. By construction, every node
on an extreme path of a superblock has larger global rank than any node on the
inner skeleton. So for P to be dirty, u must be on the inner skeleton of its super-
block.

Lemma 3. Let u be a node on the access path. Suppose that before the rotation
involving u, u was j-global, and that after the rotation it is k-global, k > j. Then,
after the rotation, u’s abutting paths are clean.

Proof. We note this must be a zig-zig rotation, and u must be the lower node
in the couple. So of the at most two abutting paths u acquires, one is touched; the
untouched one, if present, had been an abutting path for its parent, t (t and u are in
the same couple). The only node added to this abutting path is t, which by assumption
carries no debit. u acquires t’s k-global rank, and so the untouched abutting path
remains clean.

Lemma 4. Let u be a node on the access path. Suppose that before the rotation
involving u, u was j-global, and that after the rotation it is k-global, k < j. Then,
after the rotation, u’s abutting paths are clean.

Proof. u remains on the j-skeleton and hence is not on the inner k-skeleton. The
result follows from Lemma 2.
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Lemma 5. Let u be a node on the access path. Suppose that both before and after
the rotation u is a true j-global node. Further suppose that u is on the inner i-skeleton
before the rotation, where i > j. Then either

(i) u is on the inner j-skeleton after the rotation; then u’s j-rank decreases;

(ii) u is not on the inner j-skeleton after the rotation; then u has no dirty abutting
paths.

Proof. The conclusion of (i) follows from the definition of the j-ranks. The
conclusion of (ii) follows from Lemma 2.

Corollary 1. Let u be a node on the access path. Following the rotation, u can
have a dirty abutting path only if

(i) u was a true j-global node both before and after the rotation; also, u is on the
inner skeleton of its j-superblock after the rotation, and

(ii) (a) either u’s j-global rank decreases, or (b) u receives a new untouched abut-
ting path.

Proof. Condition (i) summarizes Lemmas 2–4. There are only two ways in which
u can acquire a dirty abutting path. First, an already abutting path becomes dirty;
for this to happen, u’s j-rank must decrease. Second, u receives a new abutting path;
in order for the new abutting path to be dirty, it must be untouched (as already
pointed out in the discussion following Invariant 7).

Next, we investigate possibility (ii(b)) of Corollary 1 further.

Lemma 6. Consider the rotation involving couple u and v, where v is a child
of u. Following the rotation, v does not have a new dirty untouched abutting path.
u can receive a new dirty untouched abutting path only if both

(i) the rotation is a zig-zig rotation, and

(ii) v is in the same j-superblock as u but in a distinct j-block, where u is a true
j-global node.

Proof. In a zig-zag rotation the new abutting paths are all touched.

If v acquires a new dirty abutting path, v is a true j-global node both before and
after the rotation. Also, for u to be in v’s new abutting path, u must be in the same
j-block as v; but then v was not a true j-global node before the rotation. So v does
not have a new dirty untouched abutting path.

If u acquires a new dirty abutting path, u is a true j-global node both before and
after the rotation. Again, if v is in the same j-block as u, u is not a true j-global
node after the rotation. So v is in a distinct j-block. Suppose that u is on the inner
i-skeleton before the rotation, where i ≥ j. If i > j, by Lemma 5, u is on the inner
j-skeleton after the rotation, and so v must be in the same j-superblock as u, while
if i = j, as u was on the inner i-skeleton before the rotation, v must be in the same
i-superblock as u.

Lemma 7. Let u be a node on the access path. If u acquires a dirty abutting
path, then u is in the leading couple of its segment. In addition, the visibility of w,
the accessed item, is unchanged following the rotation involving u.

Proof. If condition (ii(a)) of Corollary 1 applies, then clearly u is in the leading
couple. So suppose that condition (ii(b)) applies. Consider Lemma 6; let v be the
other node in u’s couple (v is u’s child). v is in the same j-superblock as u but in
a distinct j-block. Also, the rotation involving u and v is zig-zig. There are two
possibilities. First, v is j-global; then the rotation must reduce u’s j-global rank or
increase w’s j-global rank; in either event u is in the leading couple. Second, v is
not j-global; in order for v to be in a distinct j-block from u, w cannot be on the
inner skeleton of B, u’s j-superblock. So this rotation raises w’s visibility, violating
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condition (i) of the definition of a truncated segment; again, u must be in the leading
couple. Finally, suppose w’s visibility increases due to the rotation involving u. Then,
u becomes a true k-global node, k < j, after the rotation; by Lemma 5, u does not
acquire any dirty abutting paths.

Lemma 8. Following the access, the accessed item’s abutting paths are clean.
Proof. This is an immediate consequence of Lemma 2, for the accessed item is

not on the inner skeleton of any of its blocks.
In the analysis of global accesses, whenever a rotation is performed (and paid for)

another s spare rotations are also paid for, s a constant to be specified later. The
spare rotations are needed subsequently to handle the effects of local accesses.

In order to pay for the rotations we provide the following potential. In each
rotation, for each unit increase in rank on the part of the accessed item, w, we provide
3gp units of potential. It is used as follows. Consider a rotation involving couple u, v,
where u is the parent of v. Suppose that w is currently the root of its block. Suppose
that this rotation increases the global rank of w by I. Each of w and v (if global
and in the same superblock as w) may increase their global potentials by up to gp · I
units; this is a total of at most 2gp · I units of potential. If I > 0, the remaining at
least gp units of potential at hand will pay for the segment that ends at couple u, v
(as we will see, gp units always suffice). When w becomes the root of its superblock,
it interchanges potentials with the old root of the superblock (it may be that in one
double rotation w in turn swaps potentials with v and then with u).

Further potential will also be provided; a total of gp+ vis · vp+ (ld+ 3sd) units,
vp being a constant to be specified (the role of the latter potential will become clear
towards the end of this section).

Next, we show how to pay for the rotations (and associated spares) along a seg-
ment. First, each marked couple pays for its rotation (and spares), as follows. Recall
that the marked couples are all involved in zig-zig rotations.

Case 1. (Type 3.) The coupled nodes are both local nodes in the same i-
superblock (see Figure 4). Nodes u and v are on the inner skeleton in the same
superblock; without loss of generality, v is the left child of u, and w, the node being
accessed, is the left child of v. Node u is j-global, and node v is k-global, j, k < i.
There are several subcases depending on the relative values of j and k.

Case 1.1. j > k. After the rotation, v becomes j-global, and u becomes k-global.
u and v exchange potentials. Since v is adjacent to a j-global node, it must be h-
labeled, for k < h ≤ j; it transfers the h-labels and associated potentials to node u. u
is given a small j-debit; as it is now a j-local node on an inner j-skeleton, this obeys
Invariant 3. By Lemma 2 and Corollary 1, Invariants 5 and 6 continue to hold. The
small debit pays for the rotation and s spares. Thus it suffices that

sd ≥ s+ 1.(2)

Next, we remove the debits present at u and v, if any. If both nodes are i-labeled,
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then u spends its associated potential c; this pays for the removal of debits from both
nodes. If only one node is i-labeled, as we show later, the traversal of a portion, or all,
of the i-unlabeled path associated with the i-unlabeled node results in the i-labeling
of that i-unlabeled node. So we proceed in the same way in this case. If neither node
is i-labeled, then they do not carry debits. So it suffices that

c ≥ max{2sd, ld}.(3)

Case 1.2. j < k. Then u and v are in the same k-superblock but are in distinct
k-blocks. Here, v remains k-global and u j-global. u is given a small k-debit; again,
as u is now a k-local node on an inner k-skeleton, Invariant 3 is satisfied. Again, by
Lemma 2 and Corollary 1, Invariants 5 and 6 continue to hold. Here too, (2) suffices.
The removal of debits is handled as in the previous case.

Case 1.3. j = k. The j-rank of u decreases, and this pays for the removal of
small or large debits from u and v and of up to two small debits from nodes which
now violate Invariants 5 and 6. So it suffices that

gp ≥ max{2sd, ld}+ 2sd.(4)

Case 2. (Type 1.) u is i-global and v is j-global, j < i (see Figure 1). This is
similar to Case 1.1, above. However, here v cannot have a debit before the rotation,
by Invariant 5, since g rank(u) = g rank(v) (this follows from the fact that the
global rank of the accessed item does not change). Here u is given a small i-debit,
for it remains on the inner i-skeleton. Note that following the rotation, g rank(u) <
g rank(v). Invariants 3, 5, and 6 continue to hold.

Case 3. (Type 2.) v is i-global and u is j-global, j < i (see Figure 2). This is
similar to Case 1.2, above. But here, u does not have a small debit by assumption
(since the couple was marked). It is given a small debit following the rotation. As
before, Invariants 3, 5, and 6 continue to hold.

The remaining rotations are paid for by the first couple in the segment, which
was removed in truncating the segment and which causes a violation of at least one
of the conditions (i)–(v), except in the case of an incomplete topmost segment, which
is handled subsequently. The rotation involving the first couple falls into at least one
of the following cases.

Case A. The rotation reduces the total global potential of the nodes in the first
couple, or it increases the global rank of the accessed node.

Case B. The rotations along the segment create a sequence of three contiguous
local nodes from the same block.

Case C. The rotation increases the visibility of the accessed item.
Each case involves three costs.
Cost1. The rotation and spares for each unmarked couple, including the leading

couple: ≤ 6(s+ 1).
Cost2. Removal of small debits from the unmarked couples; Cost2 is analyzed

below.
Cost3. Removal of small debits for local nodes that now violate Invariant 5 or 6;

Cost3 is analyzed below.
We remind the reader that we remove all debits from the traversed nodes (though

we may add new debits).
Lemma 9. (i) For each segment in which the visibility of the accessed item is

unchanged, Cost2 + Cost3 ≤ 11sd.
(ii) For all other segments, cost2 + Cost3 ≤ 7sd+max{2sd, ld}.
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Proof. Lemma 9(i) is proven in [CMSS00], where it is Lemma 2. To prove (ii),
we note that by Lemma 1, the truncated segment contributes at most 7sd to Cost2.
By Lemma 7 it contributes nothing to Cost3. The removal of debits from the leading
couple costs at most max{2sd, ld}. Again, by Lemma 7 there is no contribution to
Cost3.

Lemma 10. Invariant 7 remains true throughout the access.
Proof. This follows immediately from the fact that the traversed nodes have no

debits following their traversal. Thus w’s children do not carry debits (the node
x of Invariant 7). Consider node y; this node changes only when the new node x
has a larger visibility than the old node x; but then the new node y is the new
node x.

Lemma 11. A global access costs at most (3
∑vis
i=1 ki + 1)gp+ vp · vis+ 2c · vis+

(ld+3sd) units, where sd = s+1, ld, c = 17(s+1), gp = 19(s+1), vp = 30(s+1), vis
is the number of levels of blocks, and ki is the i-rank of nodes on an (i + 1)-extreme

path. (Note
∑vis
i=1(ki + 1) ≤ log n+ 3vis+ 1.)

Proof. In case A, the cost of the rotation is paid for either by the drop in global
potential, which provides at least gp units, or, if there is an increase in global rank
for the accessed item, by gp units of the at least 3gp units provided for this rotation.
In case B, there are at least three labeled staying local nodes; the middle node among
these three labeled nodes is given a large debit, which pays for the rotation (note
that the three labeled nodes need not be contiguous but they all lie on a contiguous
path on the skeleton; the middle node obeys Invariant 4). In Case C, the cost of the
rotation is charged to the new visibility level. (vp units are provided per level for a
global access to pay for each instance of Case C.)

Thus it suffices to have

gp, ld ≥ 6(s+ 1) + 11sd,(5)

vp ≥ 6(s+ 1) + 7sd+max{2sd, ld}.(6)

Recall that an i-superblock comprises bi+1 i-blocks; let ki+1 denote the i-rank for

nodes on an (i+ 1)-extreme path. Clearly,
∑vis
i=1 ki ≤ log n+ 2vis+ 1; with bi = 22i

,

we get
∑vis
i=1 ki ≤ log n+vis+1 ≤ 2 log n. We use 3(ki+1+1)gp+vp units of potential

to pay for rotations in which the accessed item traverses the inner skeleton of its i-
superblock and for which, on completion, the accessed node has reached an extreme
path of its i-superblock. The 3(ki+1 + 1)gp units pay for rotations in which the i-
global rank of the accessed item increases, as explained earlier. The vp units pay for
the rotation in which the accessed item reaches an extreme path of its i-superblock.
Overall, we need

vis∑
i=1

(3(ki + 1)gp+ vp) + max{ld+ 3sd, 5sd}(7)

units to pay for global accesses so far (see (1)).
Now, we show how to pay for the incomplete segment, if present. We provide

an additional gp units to pay for this segment; in addition, this term is used to pay
for the incomplete rotation, if any; however, the additional gp term does not need to
account for any increase in global rank, on the part of the accessed item, during the
incomplete rotation, for this has already been accounted for. The result of Lemma 9
applies here too (in fact, a tighter bound can be shown). Here too, (5) suffices.
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We have yet to explain how to maintain the potential of an unlabeled path and
the invariants concerning labels, Invariants 1 and 2. If a maximal unlabeled path
is traversed in its entirety and, in addition, the child on the extreme path of this
unlabeled path is also traversed, then the two old endpoints of the path are labeled
(or rather, if an old endpoint is in a couple with another unlabeled node, then the
new endpoint is given the label) and the remainder of the path is essentially halved in
length; the sufficiency of the potential is readily verified (for a path of length at most
4, the potential suffices to label each node on the path; for a path of length 2k + 2,
k > 2, we have 2�log(2k + 3)� ≥ 2 + 2�log(k + 1)�, and for a path of length 2k + 3,
k ≥ 2, we have 2�log(2k + 4)� ≥ 2 + 2�log(k + 2)�).

If only a portion of an unlabeled path is traversed, then the path was accessed
through an increase in the visibility of the accessed item. Consider an unlabeled path
that is part of a left extreme path of its block (the case of a right extreme path is
analogous). At most two unlabeled nodes need to be labeled to maintain Invariants 1
and 2, namely the new top of the unlabeled path and the old root of the block. This
costs at most 2c units. This charge is levied once for each unit increase in visibility
on the part of the accessed item. Over the whole access this is a cost of 2c · vis units.

On taking equalities in (2)–(6), the lemma follows from (7).

Unfortunately, the potential, as described, may be of size Θ(n log log n) initially.
(For example, consider a zig-zag path descending from the root.) To reduce this to
linear size, we modify the rules for creating unlabeled paths and modify the analysis
accordingly.

For each block, each of its extreme paths is partitioned into chains. A chain for
block B, at level i, comprises a maximal sequence of nodes, v1, v2, . . . , vk, from B,
such that the path P in the splay tree from v1 to vk does not include any j-global
node, j ≥ i. Each chain, C, is given a path potential of size 2c�log(|C|+1)�+ c units
and a reserve path potential of 2 · 2c�log |C|�. The role of the reserve path potential
will become clear in section 4. In addition, each node adjacent on P to a node that is
not part of the chain is given an additional zig-zag potential of c units; this potential
is provided once, and not for each block to which the node belongs.

Lemma 12. The cost of the path and reserve path potentials is at most

3
vis∑
j=1

⌈
n

cj

⌉
4c[�log ci�+ 3

j∑
i=1

4c�log ci�] + 2c · (j + 1).

This is bounded by 144c·n if a j-block has size cj = 22j+1

for j ≥ 1 (with the possibility
of one smaller block at each level j).

Proof. The path potential for each chain, apart from the bottommost chain on
each extreme path, is charged to the j-global node terminating the chain at the
bottom. The remaining at most two chains in each block are charged to the block
itself. Each j-global node is charged for at most two chains on the extreme paths of
i-blocks, for each i ≤ j. A chain of an i-block has length at most ci − 1, so the path
potential for an i-chain is at most 2c�log ci�+ c. Hence the charge to a j-global node

is bounded by
∑j
i=1 12c�log ci�+2c. Likewise, the charge to a j-block is bounded by

12c�log cj� + 2c. Summing over all j-global nodes, j-blocks, and all j gives a total

charge of
∑vis
j=1
 ncj �12c[�log cj�+

∑j
i=1�log ci�] + 2c · (j + 1).

For ci = 22i+1

this is bounded by
∑vis
i=1
 ncj �72c · 2j +2c · (j+1) which is bounded

by 72c ·(n+2 logn)+c ·(vis+1)(vis+2) ≤ 144c ·n, assuming n ≥ 16 (vis = log logn).
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For n < 16, vis = 1, so it suffices to give potential c to each node on an extreme path
of the splay tree for a total of cn potential.

Lemma 13. A global access costs at most (3
∑vis
i=1(ki+1)+1)gp+vp·vis+2c·vis+

(ld+3sd) units, where sd = s+1, ld, c = 17(s+1), gp = 19(s+1), vp = 30(s+1), vis
is the number of levels of blocks, and ki is the i-rank of nodes on an (i + 1)-extreme

path. (Note
∑vis
i=1(ki + 1) ≤ log n + 3vis + 1.) In particular, maintaining the chain

potentials requires a charge of at most 2c for each unit increase in visibility on the
part of the accessed item.

Proof. It suffices to explain how to modify the analysis of Lemma 11 to account
for chains. There are two ways a chain can be traversed: in its entirety or in part.
We consider each in turn.

If a chain is traversed in its entirety, following the traversal it forms a path for
which the associated path potential is sufficient to allow the previous analysis to be
performed; indeed this path potential is too large by c units. These c units are used
to label the old root of the block if the root of the block is changed by the traversal.
All the couples which include just one node of the chain are paid for by the associated
zig-zag potential of c units, or to put it in terms of marking, these couples are marked.

Next, consider a chain which is only partially traversed. Suppose, without loss
of generality, that this chain is on the right extreme path of its block. Let vj be the
bottommost node on the chain to be traversed. If vj is accessed from its left child,
then the rotation involving vj results in an increase in the visibility of the accessed
item. This increase in visibility pays for the rotation involving node vj . Again, the
old root of the block may need to be labeled, which costs c units; this is also charged
to the increase in visibility. The path potential is associated with the remainder of
the chain on and below node vj . The rotations along the traversed portion of the
chain are paid for as in the traversal of the full chain. In addition, the nodes on the
traversed portion cease to be on an extreme path of their block and so do not need an
associated path potential on completion of the traversal. There may be several chains
including vj which are partially traversed, but the number of these chains is bounded
by the increase in visibility. More precisely, let vj be h-global, and suppose it is on
an inner i-skeleton. Then every chain including vj but not ending at vj must be on
an extreme path of an l-block, h < l ≤ i; thus there are at most i − h such chains.
The increase in visibility for the accessed item, in its rotation with vj is at least i−h.
Hence each unit increase in visibility is charged c for the labeling of the root of one
partially traversed chain of the type described in this paragraph.

Finally, suppose vj is accessed from its right child. Then there is a node w on
the path between vj and vj+1 which is accessed from its right child. The rotation
involving w results in an increase in the visibility of the accessed node. This increase
in visibility is charged for the additional potential of c units needed to label the old
root of vj ’s block. Again, the rotations along the traversed portion of the chain are
paid for as in the traversal of the full chain. The path potential continues to be
associated with the remainder of the chain starting at node vj+1. We note that there
may be many chains including nodes vj and vj+1, each on an extreme path for a
different level of block. But the level of node w must be smaller than that of these
blocks. To be specific, let w be h-global. Then every chain including vj and vj+1

must lie on an l-block extreme path, with h < l. Suppose further that vj and vj+1 are
on an inner i-skeleton. Then the increase in visibility of the accessed item in rotation
with node w is at least i− h, and there are at most i− h chains straddling w, each of
which may require a charge of c to label its old root.
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Thus an increase in visibility which places the accessed item on the inner skeleton
of an i-superblock results in a charge of up to 2c to visibility level i.

Remark 1. Later, the form of the blocks will be generalized to allow more complex
situations involving local nodes. Specifically, we will allow local nodes to carry other
debits. For the above analysis to continue to apply, it will suffice that

(i) if a local node on its block’s right (resp., left) path carries a new debit, then
its parent and right child (resp., left child) are both local nodes of the block,

(ii) a couple containing two local nodes must pay for the removal of all debits
on the couple’s nodes; the s+ 1 rotations will be paid for as before.

3. Local insertions. For each level i of blocks, the access sequence S is par-
titioned into maximal subsequences Sl; each subsequence comprises accesses in the
same i-block. Recall that an (i+ 1)-block contains bi+1 i-blocks and ci+1 items. We
allocate amortized time O(log bi+1 + |Sl|α(ci+1)) to pay for the cost of the sequence
Sl. Specifically, the first access to an i-block has amortized cost O(log bi+1) and sub-
sequent accesses have amortized cost O(1 + α(ci+1)). Note that an access occurs in
vis sequences; thus the cost of an access comprises the sum of vis terms. So suppose
that an access is to a new i-block, but to the same (i+ 1)-block, with respect to the
previous access. Then the cost of the access is

O

(
i∑

h=0

log bh+1 +

vis∑
h=i+1

[1 + α(ch+1)]

)
= O(log bi+1 + (log logn)α(n))(8)

(assuming bi = 22i

which implies vis = log log n ). In section 4, we show how to
reduce the O((log logn)α(n)) term to O(1).

It is possible to have an access close to the previous access be in a different high
level block (if both accesses are close to the boundary between the blocks). In section
3.7, we will see how to reduce this excess cost and obtain an amortized time for the
access proportional to the logarithm of the distance between successive accesses (plus
an additional O(log log nα(n)) term). For now, we focus on the cost of the access at
a single level, i. To be specific, we focus on the rotations during which the accessed
item is on the inner (i+ 1)-skeleton.

In the present analysis spare rotations will be spent in several ways. We spend
the spare rotations in portions of size s′, s′ a constant to be specified. Recall that s
spares are provided per couple. As we will see in section 4, it suffices to have s ≥ 3s′.

3.1. Forming lazy trees. As in the analysis of splay sorting logn-block se-
quences, we construct lazy trees. However, their form is more involved here.

For each level of blocks a separate analysis is performed, as in the analysis of
global accesses. Here we focus on the traversal of the inner skeleton of superblock B,
an (i + 1)-block. For each item, the analysis of its traversal of the inner skeleton of
superblock B is performed as part of the analysis of a maximal sequence S of accesses
to the same block B′ of superblock B.

We start with a few definitions. Let b be the number of blocks in superblock B
and let c′ be the number of items in B. Following the first access of S, we define the
right access path as follows: Let right B denote the set of elements in superblock B
to the right of block B′. Consider the tree induced by the nodes of right B; its left
extreme path is the right access path (see Figure 5). The left access path is defined
analogously. In the splay tree, an access path may comprise more than one contiguous
segment of nodes. Note that as the accesses of sequence S proceed, the access paths
become shorter. Lazy trees are formed from the nodes originally on the access paths.
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Fig. 5. The right access path.

Let l child(v) denote the left child of v. For each global node, v, on the right
access path, other than the bottom global node, define jump(v) = g rank(v) −
g rank(l child(v)); for the bottom global node, define jump(v) = g rank(v) + 1.
jump(v) is defined analogously for global nodes on the left access path.

Consider an access in sequence S; there are three possibilities. First, no node on
either access path is traversed, in which case no cost is incurred for the traversal of
the inner skeleton of superblock B. Second, the right access path (or rather a top
portion of it) is traversed. Third, a top portion of the left access path is traversed.

Our goal is to accumulate spares on the nodes of the access paths, so that following
e′ accesses we can assume that each node on the access paths, apart from the top node,
has accumulated at least 2e

′−1 − 1 spares, e′ a constant to be specified. We need to
be careful, however, for higher portions of the access paths may have been traversed
more frequently and thus have accumulated more spares. We proceed as follows.

It is convenient to ensure that on each traversal, for each couple, its two nodes
have been traversed the same number of times. This need not be true. So we introduce
pseudotraversals. Initially, each node on an access path has been pseudotraversed zero
times. Each time a node is traversed, its pseudotraversal count is incremented, up
to a maximum of e′ pseudotraversals. In addition, immediately prior to each access
of sequence S, apart from the first access, for each couple in the upcoming access,
for each lower node in the couple, its pseudotraversal count is increased to the count
of the higher node. We note that the pseudotraversal counts are nondecreasing from
bottom to top of the access paths (for each time a node is traversed so are all its
ancestors on its access path).

Immediately following the first access in S, we provide each global node, v, on an
access path with jump potential 2gp · e′jump(v). Summing over the two access paths,
we obtain a cost of 4 · e′gp(log 2b+ 1) units charged to the first access of sequence S;
the first access itself costs a further 3gp(log 2b+1) units. As further traversals of the
access paths occur, Invariants 8 and 9 below are maintained.

Invariant 8. Each global node, v, on an access path, apart from the first node,
carries a jump potential of 2gp · (e′ − t)jump(v) after having been pseudotraversed
t ≤ e′ times.

Invariant 9. Each node on an access path, global or not, apart from the first
node, carries a spare potential of s′ ·(2(t−1)−1) units after having been pseudotraversed
t ≤ e′ times.

Clearly the invariants are true following the first access of sequence S.

First, we explain how to maintain the invariants following the increase in pseudo-
traversal counts (immediately prior to an access). Clearly, Invariant 8 is unaffected
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for the jump potentials can only decrease. To maintain Invariant 9, an additional
spare potential of s′ · (2q−1−2p−1) is provided to a node whose pseudotraversal count
increases from p to q. This is a total of at most s′ · 2e′−1 spare potential per access
for the pseudotraversal counts are nondecreasing along the access path (from bottom
to top).

Next, we show how to pay for an access and how to restore Invariants 8 and 9
following the access. Consider one couple of this access, where the couple contains
nodes u and v, and u is the parent of v. Further suppose that at least one of u and v
is on the access path.

The rotation is paid for as in a global access, except that the jump potentials
provide the additional potential needed to pay for the segment associated with a
rotation which increases the global rank of the accessed item. There is one special
case: if the rotation increases the visibility of the accessed item, then the increase in
visibility is charged for the segment associated with the rotation, and the increase in
the global rank of the accessed item is not charged. In addition, we are no longer
seeking to provide a global potential to the accessed item, w. For w eventually acquires
the global potential of the old root, x, of w’s block, and x then acquires the sub or
mini potential of w. More precisely, it will suffice, at each global node, y, on the access
path, to provide 2gp · jump(y) units of potential, taken from y’s jump potential.

It remains to explain how Invariants 8 and 9 are restored following the rotation.
We start with Invariant 9. u gives v all its spare potential; in addition, v receives s′

of the spares allocated to the couple u, v. This gives v spare potential s′[2 · (2(t−1) −
1) + 1] = s′(2t − 1), as needed, since t will be incremented.

Invariant 8 needs restoring only if both u and v are global nodes; then u gives v its
remaining jump potential. To show this suffices we argue as follows. Without loss of
generality, suppose that both u and v are on the right access path. First, we note that
g rank(l child(v)) is unchanged following the rotation involving v (for w, the accessed
item, is in block B′ and so its left subtree contains no global items, while w’s right
subtree remains a subtree of v). Likewise, new g rank(v), g rank(v) following the
rotation involving v, is exactly g rank(u) before this rotation. So new jump(v), the
value of jump(v) following the rotation, is given by g rank(u) − g rank(l child(v)),
which is [g rank(u) − g rank(v)] + [g rank(v) − g rank(l child(v))], or jump(u) +
jump(v), as claimed. Hence, following the rotation, v has jump potential 2gp · (e′ −
(t+ 1))jump(v) (using the new value for jump(v)); as t is incremented following the
rotation, Invariant 8 continues to hold.

Once a node on an access path, other than the top node, has been pseudotraversed
e′ times, and hence carries spare potential s′(2e

′−1−1), when it is rotated off the access
path it becomes a lazy node and is given q1 units of potential, q1 a constant to be
specified. In addition, if both the nodes u and v in the couple are global, they swap
their global potentials; the potential now carried by u, the node leaving the access
path, is called its lazy potential. Each couple pays for its rotation, spare rotations,
and associated segment charge, if any, by a charge of gp units to the spare potential
of the node leaving the access path, instead of by the creation of debits. So it suffices
to have

s′(2e
′−1 − 1) ≥ gp+ q1.(9)

When a rotation removes the top node of an access path it too becomes a lazy node;
however, it is given a3α(c

′)+b3 potential, where a3 and b3 are constants to be specified.
So following the first access of sequence S, the charge per access for the traversal of
nodes on the inner skeleton of block B is bounded by s′ · 2e′−1 + a3α(c

′) + b3.
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We note that a lazy node, on creation, carries no debit. For the rotation creating
the lazy node is paid for by the gp charge to the node’s spare potential (see (9)).

In fact, we provide another 2gp · (log 2b+ 1) units to the first access of sequence
S. This is used as follows. For each global node u remaining on an access path,
as soon as u acquires a proper global descendant v on the access path, which has
been pseudotraversed e′ times, we provide u a reserve potential, defined as follows.
Define the marker rank for a global node, v, on the access path to be the global rank
of the node following exactly e′ pseudotraversals. Define the reserve rank for global
node u to be: reserve rank(u) = marker rank(u)−marker rank(v), and the reserve
potential for u to be gp times its reserve rank. The role of the reserve potential will
become clear later.

As in the analysis of a global access, the cost of the segment that involves an
increase in visibility on the part of the accessed item is at most vp+2c, per unit increase
in visibility. The presence of lazy trees, as we will see, adds a further 4gp(log 2b+ 1)
to the cost of the first access of sequence S. So, focusing on superblock B alone, the
cost of the first access in S is bounded by

(4e′ + 9)gp(log 2b+ 1) + vp+ 2c,(10)

and the cost of a subsequent access of S is bounded by

s′ · 2e′−1 + a3α(c
′) + b3 + vp+ 2c.(11)

Also, for each access, there are fixed costs of (see (1))

ld+ 3sd.(12)

Each node removed from the access paths is called a lazy node, whether or not it
has a lazy potential. Those lazy nodes with a lazy potential are called heavy nodes;
the other lazy nodes are called light nodes. When the accesses of sequence S are
completed, we form lazy trees. Each global node v remaining on the right access
path becomes the root of a new right lazy tree. Its left subtree is empty; its right
subtree comprises the lazy nodes, created during the accesses of sequence S, in v’s
right subtree in the splay tree. An analogous definition is made with respect to the
left access path. It is straightforward that each new lazy node is contained in a new
lazy tree. We call the lazy trees as defined above initial lazy trees. (We will be adding
and removing a few nodes from the initial lazy tree in order to obtain other lazy trees,
which are the lazy trees that are actually analyzed.) As we will see, the local nodes on
the access paths, which have been pseudotraversed e′ times, may be added to the new
lazy trees; these nodes too are called light nodes of their lazy trees. We will need to
ensure these nodes also carry no debits and have an associated potential of q1 units.
But this is ensured by requiring

s′(2e
′−1 − 1) ≥ q1 +max{sd, ld, hd, ed},(13)

where hd and ed are the values of other debits (huge and enormous debits) introduced
later.

Remark 2. We will need to generalize this analysis to take account of the presence
of lazy trees on the access paths. The present analysis, with (9) replaced by (14) below,
will continue to apply if the following conditions hold.

(i) Each node on the access path, which has been pseudotraversed e′ times, has
spare potential (2e

′−1 − 1)s.
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(ii) A lazy tree node, on creation, carries no debit.
(iii) Following the first e′ pseudotraversals of a node v on the access path, if

v’s couple includes just one node on the extreme path of a lazy tree, the cost of the
rotation of this couple is the same as in the present analysis.

(iv) Following the first e′ pseudotraversals of a node v on the access path, if v’s
couple includes two nodes on the extreme path of a lazy tree, the cost of the rotation
of this couple is at most max{hd, ed} units. The additional cost of the couple is
covered by the spare potential if

s′(2e
′−1 − 1) ≥ gp+ q1 +max{hd, ed}.(14)

(i) and (ii) will be achieved as here. (iii) will be seen to be true shortly. (iv) will be
handled later, in Lemma 14.

Next, we describe the potential provided to the lazy trees and show how to include
the lazy trees in the overall analysis.

3.2. The analysis of lazy trees. In the following subsections, unless we specify
otherwise, the definitions given apply to right lazy trees. Analogous definitions hold
for left lazy trees. We focus on the right lazy trees; we discuss the left lazy trees only
where their presence affects the analysis (the only place this arises is in section 3.6).

Much of the analysis focuses on a subtree of the initial lazy tree, called the
truncated lazy tree or the lazy tree, for short. It is defined as follows. Consider a
new initial lazy tree, L, created by the sequence S of accesses. Consider the set of
heavy nodes in L; the tree they induce is called the initial lazy block tree. We remove
the rightmost node from the initial lazy block tree; this defines the (truncated) lazy
block tree for the (truncated) lazy tree. This rightmost node is called the right guard
for the lazy tree. The left guard is a global node, defined later, to the left of the
nodes of the lazy block tree. The root of the (truncated) lazy block tree is called
the (truncated) root of the (truncated) lazy tree. We define the tree induced by the
nodes of the lazy block tree plus the left and right guards to form the large lazy block
tree. Now we define the (truncated) lazy tree as follows. It comprises the nodes of
the (truncated) lazy block tree together with the following light nodes. For each node
v in the (truncated) lazy block tree we add the following nodes from v’s block to
the (truncated) lazy tree. Let w be any descendant of v in the large lazy block tree.
Those nodes in v’s block on the path from v to w in the splay tree are added to the
(truncated) lazy tree. The light nodes added to the lazy tree form its skeleton.

We define the left guard, w, of the lazy tree as follows. Let L be a new lazy tree
with root u. Let v be the first proper global descendant of u on the portion of the
right access path which has been traversed at least e′ times, if any. Suppose v exists;
if v is the root of another new lazy tree, let w be the right guard in this lazy tree,
while if v is not the root of a new lazy tree, then let v = w. Otherwise, let w be the
root of the splay tree. In general, a node may be a right guard for one lazy tree and
a left guard for a second lazy tree.

Intuitively, a truncated lazy tree is a megablock comprising several of the blocks
at hand. The megablock is considered to be at level i − 1, the level of the blocks
it comprises. In its interactions with the remainder of the splay tree the megablock
will behave in the same way as a block. The root of the lazy tree corresponds to the
block root and behaves like a global node; the other nodes of the lazy tree, called local
nodes of the lazy tree, correspond to the local nodes from the block. The lazy tree
local nodes may carry small and large debits according to the invariants specified for
blocks; a further lazy debit may be carried as specified later.
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The right guard of each new lazy tree has its global potential restored; this is paid
for by adding its reserve potential to its lazy potential, which suffices by Invariant 24,
in section 3.5. In addition, Invariants 5 and 6 may need to be restored; this requires
the removal of at most two small debits. These are paid for by the potential a3 + b3
associated with each lazy node on paths P1, P2, P3 (see sections 3.3.3 and 3.3.4); these
paths always include the right guard. Thus both the left and right guards of each
lazy tree carry their global potentials.

We need one more definition: a rightist tree is a tree in which the depths of the
leaves, from left to right, are nondecreasing. Now, we describe the structure of a
typical lazy tree. Consider a newly constructed initial right lazy tree, IL, and the
associated lazy tree, L. The main difference between L and IL is that IL may have
(many) light nodes which are not in L. The tree induced by the nodes of L comprises
its left extreme path (a sequence of light nodes), its root, and a path, P , descending to
the right, together with the left subtrees of the nodes on P ; each of these left subtrees
is a rightist tree (strictly speaking, if v is the root of such a left subtree, then the tree
rooted at v in IL is a rightist tree). It is helpful to partition P , the left extreme path
and the root into four portions, BL, P1, P2, and P3. BL comprises the light nodes on
the skeleton from the leftmost block in L (initially, BL comprises the light nodes on
the left extreme path); P1 is the maximal top contiguous portion of P incident on the
root of the lazy tree, minus those nodes in BL, P2 is the second highest contiguous
portion of P below P1, and P3 is the remainder of P below P2. It is also helpful,
for each subtree of P , a rightist tree, R, to partition R into its top right path RP ,
and the left subtrees of RP , also rightist subtrees (again, strictly speaking, it is the
corresponding subtrees in IL which are rightist); let SR denote a typical such rightist
subtree (small rightist subtree). Now, to analyze a lazy tree, we analyze rotations in
each of its six types of components separately; the six types of components are

(i) BL, comprising nodes of type 1,
(ii) the path P1, comprising nodes of type 2,
(iii) the path P2, comprising nodes of type 3,
(iv) the path P3, comprising nodes of type 4,
(v) each path RP , comprising nodes of type 5,
(vi) each rightist subtree SR, comprising nodes of type 6.

The following invariant describes the distribution of the six types of nodes.

Invariant 10. Let L be a right lazy tree. Let v be a node in L. The following
nodes all have type equal to or less than type(v):

(a) the nodes on the left extreme path of L, other than v’s ancestors,

(b) the left ancestors of v in L, apart from the root of L.

In particular, traversing the extreme paths of the lazy tree from the bottom of
the right extreme path to the bottom of the left extreme path, including the root of
the lazy tree, yields, in order,

(i) a path from a tree SR,
(ii) a portion of a path RP ,
(iii) a portion of P3,
(iv) a portion of P2,
(v) a portion of P1,
(vi) a portion of BL.

The portions need not be contiguous portions of the original paths, and some or all
of the portions may be empty. There are only two ways in which the type of a node
can change: first, a node can leave the lazy tree; second, when the lazy tree is split,
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a node may move into a component BL.
The structure of a left lazy tree is entirely analogous.
Our analysis is presented in three parts. First, for each component of the lazy tree,

we describe the potentials associated with its nodes. Second, we analyze a traversal
of an extreme path of a lazy tree. Third, we analyze a split of a lazy tree. For the
moment, this discussion will exclude the possibility of multiple lazy trees contained
within one another; in section 3.6 we show how to accommodate this possibility.

Before entering into the details of the potentials it is helpful to introduce the
normal form of a (right) lazy tree L. It is obtained by performing the following series
of single rotations: one by one, the left path nodes are moved to the right path; each
such rotation, between node v and node r, the root of the lazy tree, makes v the
root and places r on the right path. r and v interchange potentials and all lazy tree
properties. The resulting tree is called the normal tree for L.

3.3. The potentials for the components of the lazy tree.

3.3.1. The rightist subtrees SR. We use the potential defined for the lazy
trees present in the result on splay sorting logn-block sequences, where it is called
the lazy complete tree potential. To define this potential we need to introduce the
component lazy block tree. It is the tree induced by the heavy nodes in the component
SR together with the root of the lazy tree. A node of height h in the component lazy
block tree, other than the root, is given potential 1

2a1

∑h
i=1 i(i + 1) + b1, a1 and b1

being constants to be specified, while a light node in the subtree SR is given potential
c1, c1 being another constant to be specified.

Now, we verify that there is enough potential at hand to initialize the trees SR
with their correct potential. Let ISR denote the subtree in the initial lazy tree
corresponding to SR (the subtree with the same root as SR). We start by giving a

node of height k in ISR potential 1
2a1

∑k
i=1 i(i + 1) + b1, regardless of whether the

node is heavy or light. Since, for each heavy node, its height in ISR is at least as large
as its height in the component lazy block tree, the heavy nodes will receive sufficient
potential. To ensure adequate potential for the light nodes (potential c1) it suffices
to ensure

c1 ≤ a1 + b1.(15)

We explain how to provide the initial potential of 1
2a1

∑k
i=1 i(i+1)+b1 to the nodes

of ISR. We exploit the fact that the path IRP (the right path in IL corresponding
to RP ) together with its left subtrees is also a rightist subtree. A nonleaf node, v
transfers all but b1 of the charge for its potential to the following node, w, to its right
(see Figure 6). Suppose v’s first right ancestor, u, is reached by following e edges to
the left and then an edge to the right. Then w is defined to be the descendant of u
reached from u’s right child by following e+1 left edges (edges to left children). The
charge, 1

2a1h(h+ 1), for a node v at height h, is transfered to a node w at minimum
height at least h − 1, where the minimum height of a node is the length, in vertices,
of the path to its leftmost descendant. Thus, a node v at minimum height k receives
a charge of at most 1

2a1(k + 1)(k + 2). This charge can be distributed evenly among
the nodes by passing a charge of a1 · ( 1

2k
2 + 5

2k − 7
2 ) to each of v’s children, if v has

minimum height greater than 1 (note that v will receive a similar charge of at most
a1 · ( 1

2 (k + 1)2 + 5
2 (k + 1)− 7

2 ) from its parent, for v’s parent has minimum height at
most k+ 1); also, v keeps a charge of 15

2 a1 + b1 locally. A node at minimum height 1
receives, at most, a transfered charge of 3a1, a charge of 7

2a1 from its parent, and a



PROOF OF THE DYNAMIC FINGER CONJECTURE 65

v

e edges

w

+ 1 edgese

u

Fig. 6. The node w receiving potential.

direct charge of a1+b1; this is a total charge of at most 15
2 a1+b1. So we see that each

node is charged at most 15
2 a1 + b1. Finally, we note that the charges are transfered

only among nodes in the trees ISR.
So, as the lazy tree is being constructed, it suffices to provide each node in a tree

ISR with potential 15
2 a1 + b1; this is guaranteed by having

q1 ≥ 15

2
a1 + b1.(16)

3.3.2. The paths RP . Consider a path, RP . Initially, it comprises a contiguous
sequence of nodes, descending to the right. As it is traversed, roughly speaking, it
will become a binary tree, at which point the potential for rightist lazy trees becomes
adequate. Thus our goal is to provide a potential that progressively converts to a
rightist lazy tree potential as the path is repeatedly traversed. As we will see, an
initial potential of a2 + b2 for each node suffices, where a2 and b2 are constants to be
specified. So it suffices to have

q1 ≥ a2 + b2.(17)

3.3.3. The paths P1 and P2. They are treated in exactly the same way as the
paths RP . To provide sufficient initial potential here it suffices to have

a3α(cl) + b3 ≥ a2 + b2.

In turn, to satisfy this equation, the following suffices:

a3 + b3 ≥ a2 + b2.(18)

In fact, we modify the statement of section 3.1 that a3α(cl) + b3 potential is
provided; instead only a2 + b2 potential is provided, which still suffices. The reason
for this modification will become clear in section 4.

3.3.4. The path P3. This path cannot be treated in the same way as the paths
RP for it does not necessarily comprise a contiguous sequence of nodes in the splay
tree.
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We maintain the following potential; each node on the current right extreme
path of the tree induced by the root of the lazy tree plus P3, with one class of
exceptions, carries a potential of c2, c2 a constant to be specified. The exceptional
nodes are formed by sequences of 4α(cl) contiguous nodes whose parent and right
child in the splay tree are both from P3; such nodes need not carry the c2 potential.
More precisely, each maximal contiguous sequence of nodes on the right extreme path
of the tree induced by P3, from bottom to top, has an initial segment of length one
and a final segment of length at least one and at most 4α(cl) in which each node
has a potential of c2; the remainder of the sequence is partitioned into segments of
length exactly 4α(cl), and in each such segment either all or none of the nodes carry
a potential of c2. Each node on the current extreme left path of the tree induced by
the root of the lazy tree plus P3 carries a potential of c2, with no exceptions.

In addition, P3 has an associated potential, Pot(P3); before specifying this po-
tential we need to introduce some other definitions and results. A k-right cascade is
a sequence of k single left rotations (a rotation between a node and its right child)
on a set of k contiguous couples on a right path. A right k-cascade sequence is an
intermixed sequence of k-right cascades and arbitrary left rotations. We recall that
Sundar [Su89] showed that there can be at most 8m 2α(m)-right cascades in a right
2α(m)-cascade sequence on the normal form of an m-node binary tree. We define
Pot(P3) = 4c2λα(cl), where λ denotes the maximum number of 2α(cl)-right cascades
in a right 2α(cl)-cascade sequence that can be performed on the normal form of the
tree induced by the nodes of P3 and the root of the lazy tree, with the root of the lazy
tree removed from the normal form (i.e., the cascades never include the root node);
this tree comprises at most cl nodes. The initial values of λ is at most 8|P3|, and so
Pot(P3) ≤ 32c2α(cl)|P3|.

Finally, each node in P3 carries an additional potential of 4c2α(cl) + c2. Thus it
suffices to provide each node in P3, on creation, with potential 36c2α(cl) + 2c2; so it
suffices to have

a3α(cl) + b3 ≥ 36c2α(cl) + 2c2.

That is, it suffices to have

a3 ≥ 36c2,(19)

b3 ≥ 2c2.(20)

3.3.5. BL, the skeleton nodes in the leftmost block. Each node in the
leftmost block of the lazy tree carries an additional potential of c3 units. Nodes in
the other blocks carry an additional potential of c3 + c4 units. In order to provide
this potential initially, we augment each of q1, a3 + b3, and b3 by c3 + c4 units. So it
suffices to have

q1 ≥ max

{
15

2
a1 + b1, a2 + b2

}
+ (c3 + c4),(21)

a3 + b3 ≥ a2 + b2 + (c3 + c4),(22)

b3 ≥ 2c2 + (c3 + c4).(23)
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3.3.6. Debits on the local nodes of the lazy tree. Nodes on the extreme
paths of the lazy tree may have a small or large debit; these debits satisfy Invariants
3–6, where lazy tree L replaces block B in the statement of the invariants. Also, each
node in the lazy tree can be considered to be labeled. A labeling potential is not
needed here, however, for the removal of nodes from an external path of the lazy tree
is always paid for in some other way, as we shall see. However, so that we can apply
Invariants 3–6, we will consider the nodes of a lazy tree to be labeled. In addition,
each light node in the lazy tree may have a lazy debit, which is huge and has value
hd units, hd ≥ ld, a constant to be defined later. Lazy debits satisfy the following
invariants.

Invariant 11. Let L be a right (resp., left) lazy tree. Suppose node v in L has a
lazy debit. Then v is a light node of L. Also, v is not on the left (resp., right) extreme
path of L. Finally, v does not carry a small or large debit.

Invariant 12. Let L be a right (resp., left) lazy tree. Let u be a light node of L.
Suppose u has a lazy debit. Let v be the root of u’s block.

(i) Suppose that v is not on the left (resp., right) extreme path of L. Then if u is
on the right (resp., left) path descending from v in the splay tree, both the parent and
child of u on this path are local nodes in u’s block and are in the same component as
u.

(ii) If u is on the right (resp., left) extreme path of L, then its parent and child
in the splay tree are local nodes in u’s block and are in the same component as u; this
holds regardless of whether u is on the right (resp., left) path descending from v in the
splay tree.

Invariant 13. BL and P3 do not carry lazy debits.

In addition, each node in the lazy tree may have a border debit, which is enormous
and has value ed; ed is a constant to be defined later. Border debits satisfy the
following invariants.

Invariant 14. Let L be a right (resp., left) lazy tree. Suppose node v in L has a
border debit. Then v is not the root of L and is not on the left (resp., right) extreme
path of L. Further, if v is on the right (resp., left) extreme path of L, then both v’s
parent and right (resp., left) child in the splay tree are in the same component of L.

Invariant 15. A node has at most one debit.

Next, we show how to incorporate lazy trees into the analysis of accesses. An
access can traverse a lazy tree in one of three ways:

(a) traverse the right extreme path of the lazy tree (or rather a topmost portion
of it),

(b) traverse the left extreme path of the lazy tree (or rather a topmost portion of
it),

(c) traverse the interior of the lazy tree and thereby split the lazy tree.

Actually, it is convenient to classify a traversal of type (a) which is to the left of the
block of the right guard to be a split (a type (c) traversal); likewise a traversal of type
(b) to the right of the block of the left guard is defined to be a split.

A traversal of type (c) will be paid for in two phases. First, in a preprocess-
ing phase, the current lazy tree is partitioned into several lazy trees and/or ordinary
blocks, so as to ensure that the actual splay (the second phase) comprises only traver-
sals of types (a) and (b). (In fact, as we will see, we need a third phase in order to
pay for some of the partitioning performed in the first phase.)

We start by considering the interactions between the lazy tree and the remainder
of the splay tree (which may include other lazy trees). We treat the lazy tree, as
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delimited by its extreme paths, as a block. We note that Invariant 12 ensures that a
node on an extreme path, carrying a lazy debit, satisfies condition (i) of Remark 1.
In addition, we note that on creation, the nodes of the lazy tree have no debits; so
Invariants 3–6 all hold at this point.

Next, we need to show that condition (ii) of Remark 1 is satisfied. That is we
have to show that couples involving two nodes on an extreme path of the lazy tree,
which will be marked, can pay for the removal of their debits and s + 1 rotations.
This is done in section 3.4.

Segments are defined and paid for essentially as before. The one difference occurs
if either node of the leading couple of the segment carries a lazy debit; then the couple
pays for its own rotation and the removal of its debits as part of the lazy tree, as we
see later; but this can only reduce the total remaining cost of the segment and so the
bounds of the previous analysis are still valid.

We need to mention one detail about couples containing the root u of a lazy tree
and another node v in the same lazy tree. Following the rotation, v becomes the root
of the lazy tree; v and u interchange roles and potentials (so if v had been light, resp.,
heavy, u becomes light, resp., heavy).

In section 3.5 we explain how a lazy tree is split.

3.4. Extreme path traversal. We consider all rotations involving two nodes
on an extreme path. So consider a couple comprising nodes u and v, where u is the
parent of v. We distinguish the following types of couples.

Case 1. u and v are both nodes of P3. If both u and v carry c2 potentials, then
the potential associated with u, which ceases to be on an extreme path of P3, is used
to pay for the rotation, s spares, and the removal of any debits, which do not include
lazy debits (see Invariant 13). So it suffices to have

c2 ≥ (s+ 1) + max{2ed, ld}.(24)

If one or both of u and v do not carry a c2 potential then they are part of a contiguous
sequence of 4α(cl) nodes lacking this potential. This sequence undergoes a 2α(cl)-
right cascade (or perhaps this sequence of nodes shifted by one). The cascade provides
c2 potential to each of these 4α(cl) nodes; we can then handle the rotation between
u and v as before. The 4c2α(cl) cost of the cascade is charged to P3 (recall that P3

had been given sufficient potential to pay for the maximum possible number of such
cascades).

Case 2. u and v are both nodes of BL. The c3 potential associated with u, which
ceases to be on BL, is used to pay for the rotation, s spares and the removal of any
debits, which do not include lazy debits (see Invariant 13). So it suffices to have

c3 ≥ (s+ 1) + max{2ed, ld}.(25)

Case 3. u and v are in distinct components. Then u is given a border debit. This
pays for the rotation, s spares, and the removal of debits from u and v (note that by
Invariants 14 and 12 u and v carry neither lazy nor border debits). So it suffices to
have

ed ≥ (s+ 1) + ld.(26)

Case 4. u and v are in the same tree SR, a rightist lazy tree. Again, without
loss of generality, we are only considering right lazy trees. The analysis is similar to
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that in splay sorting logn-block sequences but the possible presence of border debits
changes the cost of the various rotations.

Case 4.1. u and v are both light nodes. u ceases to be on the skeleton. u’s c1
potential pays for the rotation, s spares, and the removal of debits on u and v. So it
suffices to have

c1 ≥ s+ 1 +max{2hd, 2ed, ld} = s+ 1 +max{2hd, 2ed}.(27)

Case 4.2. u is a light node and v is a heavy node. By Invariant 12, u does not
have a lazy debit. If u leaves the skeleton, the operation is paid for by u’s c1 potential,
as in Case 4.1; (27) suffices. Otherwise, u is given a lazy debit; this then pays for
the operation. The cost of the operation comprises the rotation, s spares, and the
removal of the small, large or border debits, if any, from u and v. So it suffices to
have

hd ≥ s+ 1 +max{ld, 2ed} = s+ 1 + 2ed.(28)

Case 4.3. v is a light node, u is the root of v’s subblock but is not the lazy
tree root. By Invariants 11 and 12, u and v do not have lazy debits. v becomes the
block root. As in Case 4.2, if u leaves the skeleton, the operation is paid for by u’s
c1 potential. Otherwise, u is given a lazy debit, which pays for the operation. The
cost of the operation comprises the rotation, s spares, and the removal of the path or
border debits, if any, from u and v. Here too (27) and (28) suffice.

Case 4.4. u and v are both heavy nodes. We need to pay for the rotation, for s
spares, and for the removal of path or border debits from u and v, if any. In addition,
we may need to reestablish Invariant 12 for the nodes on the path newly abutting u;
this may require the removal of up to two lazy debits, which will also be paid for by
the rotation. So the cost of this rotation is bounded by

s+ 1 + 2hd+ 2ed.(29)

The analysis of this case is identical to that of the corresponding case in the splay
sorting of logn-block sequences [CMSS00]; it is omitted in part. However, in order to
understand the analysis of Case 5, it is helpful to repeat it in part.

For the remainder of this case, until we indicate otherwise, when we refer to a
tree we intend the component lazy block tree. So, for instance, when we refer to a
node we mean a node in the component lazy block tree.

We start with some definitions. The depth of a node is its distance from the
root. The height of a node at the time of the creation of the lazy tree is called
its creation-height (a leaf has creation-height 1); the creation-height does not change
subsequently.

Consider how an extreme path traversal appears to the tree. A top contiguous
portion of the nodes on this path are all touched (these are the nodes contained in
couples of the splay tree). Some (arbitrary) subset of disjoint pairs of touched nodes

form couples. Each touched node is provided with s′
2 spare units of potential (this is

the node’s share of the portion of s′ spares provided to its couple in the splay tree).
The spare potential of the touched nodes, together with any changes to the potentials
of the touched couples will pay for the rotations of the touched couples.

At any time, certain nodes, called active nodes, are the nodes that pay for a
traversal of an extreme path. Some nodes may pay more than other nodes. This is
captured by the notion of active layers. A node of creation-height h has an associated
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span of layers [1, h]; each active node v of creation-height h has an active span of
active layers, (g, h], 0 ≤ g ≤ h; for each k, g ≤ k ≤ h, we say v is k-active. If the
active span is nonempty, we say the node is active.

Initially, only the nodes on the right path are active. An inactive node becomes
active when it first reaches the right path. Once a node becomes active it remains
active, whether or not it remains on the right path; also, the active span of a node
can only grow.

A rotation of the splay operation involving a heavy node, v, and the root, r, of
the lazy tree causes the two nodes to swap all their potentials. Also r acquires v’s
creation-height and active span.

The following invariant states several properties of the active nodes. We prove the
invariant later. In order to avoid special cases for the left path we state our invariants
with respect to the normal form of the tree, where the tree comprises the root of the
lazy tree together with the component lazy block tree.

Invariant 16. Let H be the maximum creation-height for the nodes, other than
the root, present in the tree initially. Then, in the corresponding normal tree, the
following hold:

(i) There is exactly one k-active node, 1 ≤ k ≤ H.

(ii) Every node on the right path is active (this does not include the root).

(iii) Apart from the root, the ancestors of an active node are all active.

(iv) Let v be a k-active node. Let w be a j-active node. If j < k, then w is to the
right of v in symmetric order, while if j > k, then w is to the left of v in symmetric
order.

(v) Let inactive node v have creation-height k. Then its parent has creation-height
greater than k.

When a lazy tree is created the active spans for the nodes in the corresponding
component lazy block tree are initialized as follows. Let u be a node on the right
path, of creation-height h; suppose it has a right child v of creation-height g (if there
is no such node v let g = 0). Then u is given active span [g + 1, h]. Clearly, the new
tree obeys Invariant 16.

The layers of a node are further categorized as black or white; an active node, with
active span [g, h], can be black with respect to each of the layers [1, g− 1]. In general,
an active node v, with active span [g, h], is black with respect to all the layers in some
range [f, g − 1], f ≥ 1, called its black span; we say v is k-black, for f ≤ k ≤ g − 1.
If the black span is nonempty we say the node is black. Nodes are initially white at
all layers. A node becomes black as a consequence of a rotation with the root. The
following invariant applies to black nodes.

Invariant 17.

(i) All the nodes on the left path of a tree are fully black, i.e., a node with active
span [g, h] has black span [1, g − 1].

(ii) If a node u is k-black all of u’s left ancestors, apart from the root, in the
corresponding normal tree are k-black.

We define the following distances for each node v, active at layer k. Its right
path k-distance, dk(v), is the number of proper left ancestors of v on the right path,
excluding all k-black nodes. Its interior right path k-distance, idk(v), is the number
of proper left ancestors of v below the first k-black node and below the right path.

For each k-active node we maintain a k-potential, which satisfies the following
invariant (d1 is a constant to be specified).
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Invariant 18. The k-potential at k-active node v is at least

a1 ·min{dk(v)/d1, k}+ a1idk(v)/d1.

We note that initially a node has a1 ·k units of potential for each layer k at which
it could become active, so when a node first becomes k-active, Invariant 18 holds.

For each k-black node we maintain a k-black potential of a1

2d1
units.

We conclude by stating the sufficient conditions that are imposed by the anal-
ysis of [CMSS00] (in the previous analysis a and d replace the present a1 and d1,
respectively).

d1s
′/2 ≥ max{s+ 1 + 2hd+ 2ed, a1/d1}.(30)

1

2
a1/d1 ≥ s+ 1 + 2hd+ 2ed.(31)

There is one matter related to this analysis which needs detailing. Immediately prior
to a traversal of the right path, each node on that path is given s′/2 spare rotations
(whether or not the node is part of a couple comprising two heavy nodes of the
same lazy tree component SR). Each node’s spares are subsequently provided by
the rotation which involves that node. The s′/2 spares associated with each node are
redistributed in order to pay for those rotations which are not self paying. The details
can be found in [CMSS00].

Case 5. u and v are both in a component RP (or are both in P1 or P2).
We begin by describing the potential associated with the nodes of component RP .
The nodes originally forming the path RP are partitioned into three sets:
(i) those nodes on a shortened path, RP ′, called pure path nodes,
(ii) rare black nodes,
(iii) rightist nodes.

The following invariants apply to the path RP .
Invariant 19. The nodes in RP ′ form a contiguous path in the splay tree.
Invariant 20. After t traversals, a node on RP ′ has potential a2

∑t+1
j=1 j + b2,

a2 ≥ a1 and b2 ≥ b1 being constants to be specified.
Invariant 21. Let N be the normal form of the lazy tree L. Let v be a node in

RP , a part of L.
(i) Suppose that v is a rare black node. Each of v’s left ancestors in N which is

also in RP is also a rare black node.
(ii) Suppose that v is in RP ′. Then each of v’s left ancestors in N which is also

in RP is either in RP ′ or is a rare black node.
Invariant 22. |RP ′| �= 1.
Each rightist node has a creation-height and corresponding potentials satisfying

Invariants 16–18. Each rare black node also has a creation-height; these black nodes
have the rareness property, namely there are no other nodes in this component RP
with the same creation-height. The rare black nodes carry k-black potentials and
k-potentials; they too satisfy Invariants 16–18. Owing to the rareness property we
are able to reduce their initial values somewhat. However, it is easier to defer the
precise specification of these potentials till Cases 5.2 and 5.3, where we explain how
the potentials change as the rotations analyzed in these cases are performed. The
nodes in RP ′ acquire creation-heights and appropriate rightist lazy tree potentials as
and when they leave RP ′, either to become rare black nodes or rightist nodes.
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Initially, RP = RP ′. So an initial potential of a2+b2 for each node in RP suffices,
as claimed in (17).

Case 5.1. Neither u nor v is in RP ′. This is treated as a rotation in a rightist
lazy tree. It is handled exactly as in Case 4.

Case 5.2. u and v are pure path nodes (i.e., both are on RP ′). We require that
the cost of the rotation be at most s+ 1+ ld. This follows by ensuring that the pure
path nodes carry no border or lazy debits. So we add the following invariant.

Invariant 23. Let u be a pure path node in a lazy tree. Then u does not carry a
border or lazy debit. We note that Invariant 23 can be maintained by trimming the
ends from RP ′ whenever an end is part of a couple including a node outside RP ′. So
if, in couple (u, v), with u the parent of v, v is the top node on RP ′, v is converted to
a rare black node (by the method of Case 5.3, below); while if u is the bottom node
on RP ′, u is converted to a rightist node (by the method of Case 5.4, below).

Suppose that this is the (t + 1)th traversal of u and v. Then their potentials

are adjusted as follows. u, which leaves RP ′, receives potential a1

∑t+1
j=1 j + b1 and

becomes a rightist node with creation-height t + 1 (at this point we further reduce
u’s potential if it is light—see section 3.3.1). v remains on RP ′ and so its potential

increases to a2

∑t+2
j=1 j+b2 (see Invariant 20); the rotation itself costs at most s+1+ld

units. So it suffices to have

a1

t+1∑
j=1

j + b1 + a2

t+2∑
j=1

j + b2 + (s+ 1 + ld) ≤ 2a2

t+1∑
j=1

j + 2b2.(32)

This equation is satisfied by setting

a2 ≥ 2a1,(33)

b2 ≥ b1 + (s+ 1 + ld) +
3

2
a2.(34)

If v is now the only node on RP ′, it is converted to a rightist node, with creation-height
t+ 2, by reducing its potential to a1

∑t+2
j=1 j + b1 (note Invariant 22).

Note that the creation-heights for rightist nodes obey Invariant 16(v).
Case 5.3. v is on RP ′, but u is not on RP ′. We provide v with appropriate

j-potential and j-black potential; v becomes a node of the complete rightist lazy tree
to be formed from the initial path RP . In particular, v becomes a rare black node
(which behaves in the same way as a black node in a rightist lazy tree). The rotation
between u and v is paid for as in a rightist lazy tree rotation (see Case 4 above).

It remains to explain how to provide v with sufficient potential. Suppose the
path, RP ′, immediately before the traversal has length 2l ≤ |RP ′| < 2l+1; further
suppose that the nodes on RP ′ have been traversed t times so far. Then v receives
creation-height h(v) = 2l + t + 1. v requires a1

2d1
(h(v) − 1) = a1

2d1
(2l + t) units of

potential for its k-black potentials; it requires a constant potential of b1 units; finally,
it requires a1

∑2l+t
j=1 min{t, j} units of j-potential. (At first sight, one would expect a

quantity 1
2a1h(v)(h(v) + 1). But, in fact, we can reduce this total for two reasons.

(i) The h(v)-potential can be set to zero for node v, since ldh(v)(v) = 0.
(ii) Only min{t, j} units of j-potential are required for the other values of j, since

v can have at most t left ancestors in its component in the normal form of the lazy
tree when and if it becomes j-active.
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Note that t increases by 1 each traversal, while l decreases by at least 1 each traversal.
So the creation-heights of the rare black nodes ordered by time of creation are strictly
decreasing; also, they are larger than the creation-heights of all the nonrare rightist
nodes that are eventually created—the nonrare rightist node with largest creation-
height is the node which is eventually alone on the path RP ′; it has creation-height at
most l+ t+1.) As the rare black nodes are also ordered left to right by their creation
time, as well as being to the left of all nonrare nodes, Invariant 16(v) is satisfied by
the rare black nodes too.

Assuming that

d1 ≥ 1,(35)

the total potential needed for v is at most a1(l + t/2) + 1
2a1t(t + 1) + 2a1l · t + b1,

which is a1[l(2t + 1) + 1
2 (t

2 + 2t)] + b1. This potential is provided by the potential
already at hand for node v plus a charge of a1(2t + 1) to each node that leaves the
path RP ′. v already has a potential of 1

2a2(t + 1)(t + 2) + b2 at hand; this covers
1
2a1(t

2+2t)+b1+a1(2t+1) units of v’s future potential (since a2 ≥ 2a1 and b2 ≥ b1);
For l ≥ 1, 2l−1 ≥ l; as there are at least 2l−1 − 1 nodes leaving RP ′, the charge to
the leaving nodes covers the remaining a1(l − 1)(2t+ 1) units of v’s future potential.
To cover this charge to the leaving nodes it suffices to modify (32) as follows:

a1

t+1∑
j=1

j + b1 + a2

t+2∑
j=1

j + a1(2t+ 1) + b2 + (s+ 1 + ld) ≤ 2a2

t+1∑
j=1

j + 2b2.

This equation is satisfied by setting

a2 ≥ 2a1,(36)

b2 ≥ b1 + (s+ 1 + ld) + 7a1.(37)

If v is a light node, its k-potentials and k-black potentials are replaced by a
potential of c1; (15) guarantees that there is sufficient potential at hand.

Case 5.4. u is on the path RP ′, but v is not. Then u is made into a rightist node
with creation-height t+1; the potential presently associated with u is larger than the
potential it subsequently requires. If u is a light node its potential is reduced to c1;
(15) guarantees that there is sufficient potential at hand. The rotation is then treated
as a rotation in a rightist lazy tree; this is handled by Case 4.

It order to justify the claim made in Remark 2 we need to report the amortized
cost of the rotations occurring in the traversal of a lazy tree extreme path.

Lemma 14. The cost of each rotation of a couple comprising two nodes on the
extreme path of a lazy tree is at most max{hd, ed}.

Proof. In section 3.4 we have considered all couples comprising two nodes on an
extreme path. Cases 1, 2, 4.1, 4.4, and 5.2–5.4 are all self-paying (that is, they do not
require the creation of debits). Case 5.1 is subsumed by Case 4. Case 3 has cost at
most ed and Cases 4.2 and 4.3 have cost at most hd.

3.4.1. Rotations with the lazy tree root. In a rotation with the lazy tree
root, the root and the other node in the couple interchange lazy tree potentials. Debits
are removed and created as for normal rotations on the inner skeleton of a block.
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3.5. Splitting the lazy tree. A split of the lazy tree occurs when the accessed
item lies strictly between the subblocks of the left guard and the right guard of the
lazy tree. Thus a split must access a new i-block. So a split is the first access of
a new sequence Sl. For this section, we assume that the open intervals spanned by
the guards of each lazy tree are disjoint. In section 3.6, we analyze the general case.
Without loss of generality, we suppose the lazy tree being split is a right lazy tree.

At this point it is helpful to mention a few properties of the lazy and reserve
potentials. Consider the global nodes in a new lazy tree. Let SL be the set of nodes
contained strictly between the blocks of the guards of a lazy tree. For each heavy node,
u, in the lazy tree, define its right neighbor r n(u) to be the heavy node immediately
to its right in the large lazy block tree, and define SL(u) to comprise the subset of
SL strictly to the left of u’s block. Finally, define the lazy rank of heavy node v to
be 1

gp times its lazy potential.

Invariant 24. Let v be a heavy node in the normal form of the lazy block tree
for lazy tree L. Then the following hold:

(i) lazy rank(v) ≥ �log(wt(SL(v)))�.
(ii) If, in the normal form of the large lazy block tree, v has no heavy node or guard

in its right subtree, lazy rank(v)+1/gp·reserve(v) ≥ g rank(v). While if v does have
a heavy node or guard in its right subtree, then lazy rank(v) + 1/gp · reserve(v) ≥
lazy rank(r n(v)).

Invariant 24 can be seen to hold when the lazy tree is created by considering node
v at the point at which it becomes lazy. Also, it is readily seen that this invariant
continues to hold following traversals of the extreme paths (for they leave the lazy
rank of nodes in the normal form of the lazy tree unchanged).

Corollary 2. Let v be a heavy node other than the root in lazy tree L. Let w
be v’s right child and u be v’s left child.

(i) Suppose that v is on the left path of L; then lazy rank(v) ≥ g rank(w).
(ii) Suppose that v is not on the left path of L. Let v′ be a right descendant of

v, not necessarily proper. If v′ is a heavy node, lazy rank(v′) ≥ g rank(u).

It is convenient to define v’s lazy weight to be wt(SL(v)).

At this point, we appeal to the construction in [CMSS00] to show that the split
can be performed. To do this we review Invariant 11, Properties 3 and 4, and Lemma
13 of that paper.

Invariant 25 (Invariant 11 of [CMSS00]). Consider a right lazy tree containing
node v. Suppose v is a light node and carries an additional debit (this is referring
implicitly to a border debit). Then

(i) v is not on the left path of the (right) lazy tree.

(ii) If v is on the right path of the (right) lazy tree, then so are its parent and
right child in the splay tree.

An analogous invariant applies to left lazy trees.

Property 1 (Property 3 of [CMSS00]). The restoration of any further invariants
concerning debits (this refers implicitly to Invariants 12 and 14) requires the removal
of at most α additional debits from each lazy tree created by the split, α a constant.

Lemma 15 (Lemma 13 of [CMSS00]). If a lazy tree comprises light and heavy
nodes where the heavy nodes carry lazy and reserve potentials satisfying Invariant
24, then each lazy tree resulting from the split described in [CMSS00] satisfies the
following:

(i) If the nodes on its left path are new to a left path, then they are all light nodes
in the same block.
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(ii) Assume the debits obey Invariants 3–6 and 13, and the invariants implicit in
Property 1, namely Invariants 12 and 14. If the following equations hold, then these
invariants can be restored following a split:

c′ ≥ max{4md, ld+ 3md} = 4md,(38)

b ≥ 3md+ 2ld+ 2sd+ gp+ α ·md,(39)

where md = max{ed, hd}.(40)

Note that b = c′ = min{c3, c4}; they are the additional potentials associated with heavy
and light nodes, respectively, to be used to cover the costs of removing these nodes from
the lazy tree.

Property 2 (Property 4 of [CMSS00]). The potential must be partitionable
following a split; i.e., each (component of each) lazy tree created by the split must be
provided with an appropriate potential (e.g., a lazy complete tree potential).

Clearly Invariant 25 is true of the border debits (see Invariant 14). We use the
splitting method from [CMSS00]. To justify its use we need to bound α and prove
Property 2. Both results rely on Lemma 15(i). Indeed, Property 2 is already known
for the lazy complete tree potential. It remains to consider the other types of potential
and to determine a bound on α.

The Path RP . The nodes not on path RP ′ are treated as ordinary rightist lazy
tree nodes. The nodes on RP ′, are separated into two paths, RP ′1, RP ′2, by the split
(one of these paths may be empty). If either path RP ′i is of length 1, then it is

converted to a rightist node (that is, its potential is reduced from a2

∑i+1
j=1 j + b2 to

a1

∑i+1
j=1 j+ b1 for some i). We note that this restores Invariant 22. There is no other

change to the potentials of the nodes on the paths RP ′i . It is clear that Invariants
19–21 and 23 continue to hold.

The paths P1 and P2 are treated in the same way.

The Path P3. Following the partitioning we need to provide c2 potential to each
node which is newly on a right extreme path (unless it is part of a contiguous sequence
of nodes of length at least 4α(cl)). We note that there are no nodes newly on a left
extreme path and in a P3 component (for such nodes become part of a BL component).
Each node, v, which had been in component P3, and which has been promoted or is
now in an extreme left subblock of a new lazy tree or is now in a normal subblock
(a subblock that is no longer part of a lazy tree), may spend up to c2 · (4α(cl) + 1)
potential in order to provide c2 potential for each of the up to 4α(cl) + 1 following
nodes: those nodes in the contiguous portion of the new right extreme path, if any,
immediately below and to the left of v in the splay tree, selected so as to restore
the proper distribution of c2 potentials (see section 3.3.4); this is a portion of a right
extreme path in component P3 for a neighboring new lazy tree (the new component
P3 is a portion of the old component P3). As node v is no longer in a P3 component,
it can afford to spend potential 4c2α(cl) + c2.

Also, when the tree formed from P3 is split, the potential associated with P3 is
partitioned in proportion to how many 2α(cl)-right cascades can be performed on
each tree formed from P3 (by Sundar’s bound [Su89], there is sufficient potential at
hand). To see this, consider the tree induced by the original component P3 plus
the root of the splay tree in its normal form. We simulate the actual rotations as
follows. Only traversals of extreme paths of current P3 components are simulated,
and then only on couples comprising two nodes of P3. The effect is to maintain
each current P3 component in its normal form, so all extreme path traversals are
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simulated as right cascade sequences. So the effect of a split is merely to reduce the
possible sequences of right cascades; hence Sundar’s bound applies, or in other words,
the potential associated with P3 suffices to provide each of its partitions with their
associated potential.

Bounding α. The additional constraints on the debits are given in Invariants 12
and 14, in the requirement that neighbors of a node with a lazy or border debit be in
the same component and not simply in the lazy tree.

For each lazy tree created by the split, for each component, we remove the lazy
or border debits, if any, from the leading and tail nodes of the components on the
extreme paths. Clearly, there are at most twelve such lazy debits for each new lazy
tree. So we can choose α = 12.

By Lemma 10 of [CMSS00] the cost of the promotions is bounded as follows.
Lemma 16 (Lemma 10 of [CMSS00]). The promotions in a split have the fol-

lowing cost: 2gp times the increase in global rank along the right split path plus 2gp
times the increase in global rank along the left split path.

Corollary 3. Consider a single access A and the consequential promotions of
nodes in lazy trees on the skeleton of superblock B. Let b be the number of blocks in
superblock B. The promotions of access A cost at most 4gp(log 2b + 2) units, there
being a charge of 2gp(log 2b + 1) to the right split path and of 2gp(log 2b + 1) to the
left split path.

3.6. Multiple level lazy trees. Because the access paths for a sequence, Si,
of accesses to an i-block may include nodes of a current lazy tree, we may seek to
make the root of a lazy tree a global node carrying a lazy potential in a new lazy tree.
We therefore generalize the form of the lazy trees. Now, a “block” in a lazy tree may
itself be another lazy tree. The generalization is exactly as in [CMSS00]; the analysis
proceeds exactly as described there. Lemma 16 continues to hold. The only detail is
that (38) needs to be replaced by (see (25) of [CMSS00])

c′ ≥ 4md+ α ·md = 16md.(41)

Recall that c′ = min{c3, c4} and α = 12.

3.7. The full result. We pull together the various equations from the previous
subsections in order to bound the cost of an access. First, we define an access to be
of type i if the previous access is to a distinct i-block but to the same (i + 1)-block.
We show a bound of the form f1 log bi+1 + f2(log log n)2 + f3 log log nα(n)+ f4 on the
amortized cost of a type i access, where fi, i = 1, 2, 3, 4 are constants. (Recall that

we are choosing bi = 22i

.) Then we show how to replace the log bi+1 term by a 4 log d
term, where d is the distance between the currently accessed item and the previously
accessed item.

To avoid tedious computations, we will assume that n ≥ 16.
Recall the statement of Lemma 13; we chose sd = s + 1, ld, c = 17(s + 1),

gp = 19(s + 1), and vp = 30(s + 1). We need to satisfy the constraints present
in (15)–(41). By choosing equalities in some of these constraints we satisfy them
all, as we demonstrate. Equalities in (26), (28), and (40) yield ed = 18(s + 1),
md = hd = 37(s + 1). Equality in (27) yields c1 = 75(s + 1), and equality in
(39) yields c3 = c4 = 610(s + 1) (this subsumes (25), (38), and (41)). Equality
in (24) yields c2 = 37(s + 1). Now, we choose s = 1 and hence s′ = 1

3 . With
equalities in (30) and (31) we obtain d1 = 1332 (which subsumes (35)), and a1 =
1332 × 222(s + 1) = 295, 704(s + 1) (this subsumes (15)). Next, we choose b1 = 0.
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With equalities in the following equations we obtain: (36) (which is identical to (33))
a2 = 591, 408(s+1); (37), b2 = 2, 069, 946(s+1) (this subsumes (32) and (34)); (22),
a3 + b3 = 2, 662, 574(s + 1), and on choosing a3 = b3, this subsumes (18)–(20) and
(23); (21), q1 = 2, 662, 574(s + 1) (this subsumes (16) and (17)). Finally, from (9),
(13), and (14), we deduce that e′ = 24 suffices.

Substituting these values into (10), (11), and (12), we obtain that the amortized
cost for the portion of the traversal in which the accessed item has visibility i for the
first access to an i-block is bounded by 4, 000 log 2bi+1 + 4, 200, and the amortized
cost for a subsequent access is bounded by [6, 000, 000 + 3, 000, 000α(ci+1)]. Sum-
ming over all levels, we obtain a bound for the first access in Si of 8, 000 log bi+1 +

log log n [6, 000, 000 + 3, 000, 000α(n)] (for recall that bi = 22i

).
Now, we show how to avoid the dependence on block boundaries, which so far has

meant that a search a short distance from the previous access may be treated as if it
were far away (if a boundary between two high level blocks is crossed). The idea is
to average over many possible positions for the block boundaries so that if two nodes,
u, v, are distance d apart (counting the number of items spanned by (u, v] or (v, u],
according as v > u or v < u) then, on average, the two items are contained in a block
of size less than d4.

More precisely, imagine an ordered set of 2n − 1 items, with the n items of the
tree occupying n contiguous positions in the set. We define block boundaries on the
set of 2n− 1 items, and consider the n positions that can be occupied by the items in
the tree. For each such position, the block boundaries partition the tree of n items;
the corresponding potential is associated with the tree. The overall potential for the
tree is simply the average of these associated potentials.

Now it is straightforward to bound the cost of a search. Suppose the current

access is distance d ≥ 16 from the previous access. Suppose 22k+1 ≤ d < 22k+2

. As we
have seen, the first access to a j-block, which we call a search of type j, costs f12

j+1+
f5 log log(2n− 1) , where f1 = 8, 000 and f5 = [6, 000, 000 + 3, 000, 000α(2n − 1)].
For the n choices of block boundary at hand, let nj denote the number of boundaries

for which the current access is a search of type j. Then nk+h = d · n/22k+h+1

. The
cost of the search is therefore

≤ 1

n

∑
h≥1

f12
k+h+1nk+h + f12

k+1 + f5
log log(2n− 1)�

≤ f5
log log(2n− 1)�+ f1

∑
h≥1

2k+h+1 · d/22k+h+1

+ f1 · log d

≤ f5
log log(2n− 1)�+ f12
k+1

∑
h≥1

2h · 22k+2

/22k+h+1

+ f1 · log d

≤ f5
log log(2n− 1)�+ f1 log d · 4 = 4f1 log d+ f5
log log(2n− 1)�.
For d < 16, the log d term can be absorbed into the log log term.

So we have shown the following.
Theorem 1. Consider a sequence of searches performed on an n-node splay tree,

n ≥ 16. Let item v be the current item being accessed and u the previous item accessed.
Suppose that the distance from u to v is d. Then the amortized cost of the access, in
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rotations, is bounded by 32, 000 log d+ log log(2n− 1) [6, 000, 000+3, 000, 000α(2n−
1)].

Finally, we need to consider the initialization costs. For each i-block, we need to
provide its root with its global potential, unless it is the root of an i-superblock. Per
i-block root, this costs at most gp(2i+1+1); there are at most n/22i+1

+2 such nodes,
allowing for up to two undersize nodes. In addition, we need to provide the path and
reserve path potentials, whose cost is bounded by 144c ·n as shown in Lemma 12 (the
proof requires slight modification to account for up to two undersize blocks per level,
but the result is unchanged), and the zig-zag potentials, with cost bounded by cn.

Summing over all levels i, we obtain that the initialization costs are bounded by

144c · n+ gp
vis∑
i=1

(2 + n/22i+1

) · (2i+1 + 1) + cn

≤ 4930 + 3gp · n
∑
i≥1

(2i+1 + 1)/22i+1

+ gp(2vis+3 + 2vis)

≤ 4930 + 3gp · n+ 9gp · n

≤ 6000n.

We conclude the following.
Theorem 2. Consider a sequence of searches performed on an n-node splay

tree, n ≥ 16. Let item v be the current item being accessed and u the previous item
accessed. Suppose that the distance from u to v is d. (For the first search, d =
n.) Then the amortized cost of the access, in rotations, is bounded by 32, 000 log d +
log log(2n− 1) [6, 000, 000 + 3, 000, 000α(2n − 1)], where the cost of initializing the

potential is at most 6000n.

4. Paying for the level jumps. In this section we show how to remove the
additive term of O([log logn]α(n)) for each access. This charge is associated with the
increases in visibility on the part of the accessed item. Recall that an item on the
inner skeleton of an i-superblock has visibility i and an item on an external path of
the vis-block has visibility vis. For each increase in the visibility of the accessed item
there are three distinct charges. We detail these charges for the rotation that causes
the accessed item to attain visibility i+ 1, for i ≥ 1:

(i) the charge vp (see section 2);

(ii) the charge, a3α(2
2i+2

)+ b3, for making the topmost node of the just traversed
right access path lazy (see section 3.1). Recall that an i-superblock contains c′ items;

now we are setting c′ = min{n, 22i+2};
(iii) the charge of c for each h-block, h ≤ i+ 1, which receives a new root; this is

a charge of at most 2c for each unit increase in visibility (see Lemma 13).
These costs arise at most once at each increase in the visibility of the accessed

item. They are charged to the new visibility of the accessed item. The total charge
to visibility level i+ 1 is bounded by costi+1 = vp+ a3α(2

2i+2

) + b3 + 2c.
The cost of the rotation in which the accessed item attains visibility 1 is charged

to the access itself; this is a charge of at most vp + 2c (for no lazy trees are created
within a 1-block as accesses to the same 0-block are accesses to the same item, which
therefore is to be found at the root of the splay tree).



PROOF OF THE DYNAMIC FINGER CONJECTURE 79

The analysis focuses on an access to the right of the splay tree root; an access to
the left of the root is treated entirely analogously.

A few definitions will be helpful. Let B be the i-superblock being accessed cur-
rently. Suppose the current access is to the same i-block as the preceding access. The
right i-header, i hr, is defined to be the topmost node on the right access path for B
(see section 3.1 for the definition of the right access path). The right i-leader is defined
to be the lowest ancestor of the right i-header which is on the right extreme path of
the splay tree. We say the right i-header is available if it is on the left path (the left
i-path) descending from the right i-leader. The number of proper right ancestors of
i hr, called its right depth, is denoted i dr.

i hr has potential c5(costi+1 ·min{i dr, d5i · costi+1}), where c5 and d5 are con-
stants to be specified.

If the right i-header is not traversed there are no charges to visibility level i+ 1.

Consider an access which traverses the right i-header. The intuition is that the
right i-header reduces its right depth and this either reduces its potential, or if it is too
deep, i-spares (to be defined) will be available; in either case, these pay for the charge
costi+1. Specifically, if the right i-header is available, but is neither the topmost nor
the second highest node on the left i-path, then on traversal its right depth decreases.
If it is at right depth at most d5i · costi+1, then the decrease in its potential provides
the required costi+1 charge. If it is at greater depth, then s′/2 of the spares associated
with the nodes on the left i-path at right depths (d5(i−1) · costi+1, d5i · costi+1] cover
the costi+1 charge (note that these nodes are traversed). While the accesses are to
the same i-block, whether or not the right i-header is traversed, its right depth does
not increase.

Next, we handle the case that the right i-header is at right depth 0 or 1. But here
charge (ii) is reduced: it becomes a2 + b2 (see section 3.3.3). This is charged to the
access operation itself, as is charge (i). This is a total charge of at most a2 + b2 +2vp
(there may be two charges vp: one for a segment ending at the deepest node at right
depth 1 and one for a segment ending at the deepest node at right depth 0). In this
case we do not provide potential c to a node displaced from the root of its h-block,
for h ≤ i. Instead, we eventually provide the unlabeled portions of the extreme paths
of such blocks with new path potentials. Recall that the old root of the h-block was
unlabeled because only a top portion of the chain adjacent to the root was traversed
(see section 2). As we will see, for each such block there are two possibilities.

To understand the possibilities, consider the right access path up to the right
i-header. Consider an h-block B, h ≤ i, whose left extreme path is partially on the
right access path. If a chain of block B has a node on the right access path, then
the bottommost node of this chain is on the right access path (for its left child, if
any, on the right access path is the root of another h-block). Thus at any point, for
each i ≤ vis, for each h ≤ i, there is at most one chain belonging to an h-block, for
which nodes remain on the right access path and for which paths of unlabeled nodes
have been created. It remains to explain how to pay for these unlabeled paths. This
happens in one of two ways.

(i) The chain becomes a path (i.e., all its nodes are contiguous in the splay tree).
The above process may have created up to two paths of unlabeled nodes without
associated path potentials (note we intend paths and not just chains); one path was
created while the root of the block had right depth 1, and the other was created while
the root had right depth 0. These two paths are provided with path potentials by
using the reserve path potential associated with the chain.
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(ii) An access is made to a new i-block. Besides the h-block which was being
accessed previously, there are at most 2(i − h + 1) h-blocks, h ≤ i, which have ex-
treme paths with unlabeled nodes without associated path or chain potentials. The
additional h-blocks are those whose roots are the j-leaders, h ≤ j ≤ i, if these j-
leaders are the highest or second highest nodes on their j-paths. Again, each such
block has at most two unlabeled paths. These paths are provided with path po-
tentials and the cost is charged to the new access. This is a charge of at most∑i
h=1 8c(i− h+ 1)�log ch� ≤ 8c

∑i
h=1(i− h+ 1)2h+1 ≤ 64c · 2i.

Now, suppose that the right i-header is not available. Then it need not be the
case that its right height will be reduced when next traversed. However, the right i-
header then becomes available. Note that once available, the right i-header can cease
to be available only if it is traversed, at least during accesses to the same i-block.
To cover the cost of the traversal of an unavailable right i-header, we provide it with
an additional costi+1 potential. Outside of the initialization cost, this is obtained by
doubling the charge for the traversals of the right i-header when available; i.e., in this
case a charge of 2costi+1 needs to be covered. Thus it suffices to have

c5 ≥ 2,(42)

d5s
′/2 ≥ 2.(43)

When an access to a new i-block is made, following the access, the potentials for
the right and left h-headers are reinitialized, for h ≤ i, at a cost of

2
i∑

h=1

[c5d5hcost
2
h+1 + costh+1] ≤ 2i(i+ 1)c5d5cost

2
i+1,

which is bounded by

2(i+ 1)2c5d5(a3α(2
2i+2

) + b3 + vp+ 2c)2.

In addition, in an access to a new i-block, the charge for the portion of the access
in which the accessed item has not yet reached the inner (i+ 1)-skeleton totals

∑
1≤h≤i

[(4e′ + 9)gp · (2h+1 + 1) + vp+ 2c · h]

(see (10)). The costs of the remainder of the access are covered by the analysis of this
section; they total

a2 + b2 + 2vp+ 64c · 2i.

Finally, we note that each node on the access path spends at most 3 sets of s′/2
spares (one set is used for the pseudotraversals of section 3.1, one set for traversing
an extreme path of a lazy tree, and one set is used for the analysis of this section).
This is a total of s/2 spares per traversed node; these spares are at hand for s spares
are provided per couple.

On taking equality in (42), (43), we obtain c5 = 2, d5 = 12. On summing the

charges for this section, we obtain a charge of 48[(i+ 1)α(22i+2

)]2(6 · 106)2 + 10, 000 ·
2i+1 + 4, 300i + 34i2 + 3 · 106 for an access to a new i-block which is an access to
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the same i-superblock. In addition to the initialization costs present previously, we
also have to initialize the right and left h-headers, for h ≥ 1; this costs less than
1016( log log n α(n))2. Using the argument of section 3.7, we obtain the following.

Theorem 3. Consider a sequence of searches performed on an n-node splay
tree, n ≥ 16. Let item v be the current item being accessed and u the previous item
accessed. Suppose that the distance from u to v is d. (For the first search, d =
n.) Then the amortized cost of the access, in rotations, is bounded by 42, 000 log d +
1016( log log d α(d2))2, where the cost of initializing the potential is at most 6000n+
1016( log log n α(n))2.

5. Insertions and deletions. In this section, the result is extended to incorpo-
rate insertions and deletions. The main idea is to allow blocks to have varying sizes
and to combine or partition them as they become too small or too large. The previous
bounds on block sizes will become lower bounds: An i-superblock will contain at least
b′i+1 = 22i+1

i-blocks and at most bi+1 = 8b′i+1 i-blocks. Now, a 1-block will contain
between 16 and 8 · 16 items. There will be no undersize blocks, except possibly at
the topmost level, where there is just one vis-block, which contains all the (vis− 1)-
blocks. In fact, with one exception dealt with later, an i-superblock will contain at
most 4b′i+1 i-blocks.

We use the following rule: when an i-superblock reaches its usual upper boundary
size (4b′i+1 i-blocks), it is partitioned into two i-superblocks, one containing the left-
most 2b′i+1 i-blocks and the other the rightmost 2b′i+1 i-blocks. When an i-superblock
reaches its lower bound size, it is combined with a neighboring i-superblock in the
same (i + 1)-superblock; this new i-superblock is partitioned in turn if it has size
at least 4b′i+1 i-blocks. If the vis-block is partitioned, then we need to create a new
higher level block, a (vis+1)-block, to contain the two vis-blocks at hand. Likewise, if
there are only 2 (vis−1)-blocks and they are combined, then the vis-block is removed
and the top level block is at level vis− 1.

Comment. We use the terms combine and partition rather than the more natural
join and split to avoid confusion with the split of a lazy tree.

We determine the cost of the combine and partition operations on an i-superblock.
When performing a partition we have the following costs. Each global node on the
two extreme paths between the new superblocks has its rank raised to log 2K , where
K = 2 log bi+1 . This costs up to 4 · 22i+1 · (2i+1 +3) · gp. In addition, a path potential
has to be provided for up to four new chains: these are the chains starting and ending
at the node that has newly become the root of an i-superblock, chains which are
also parts of the extreme paths of i-superblocks. An i-superblock contains at most
4i+1 · 22i+2

items. So a chain can contain at most one fewer items, and hence the cost
of the new chains is at most 24c[2(i + 1) + 2i+2] + 4c (see section 2). In addition,
on the new chains, the i-global nodes may need to be provided with an extra zig-zag
potential of c units each, if they are not adjacent to two chain nodes. In fact this
applies only to the global nodes newly on an extreme path of an i-superblock, which
is at most 4b′i+1 nodes. So this is a further cost of 4c · 22i+1

. Finally, the new root of
an i-superblock receives its (i+1)-global potential, which costs at most (2i+1 +3)gp.
This in turn may raise the global potential of some of its ancestors for a further cost
of (2i+1 + 3)gp. The total cost of the partition is

part = 22i+1

[4gp(2i+1 + 3) + 4c] + 2i+1 · (48c+ 2gp) + i · 48c+ (52c+ 6gp).

The combine has zero cost.
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In addition, when a combine or partition is performed, we treat it as ending the
current sequence of accesses to the superblock being combined or partitioned. This
entails additional costs of 48[(i+2)α(22i+3

)]2(6 · 106)2 +10, 000 · 2i+2 +4, 300(i+1)+
34(i+ 1)2 + 3 · 106 (see section 4).

In order to cover these costs, each time an i-block is combined or partitioned,
it provides the following potential to its parent (the i-superblock in which it is con-
tained): pi+1 = 4gp(2i+1 +3)+4c+ [2i+1 · (48c+2gp)+ i · 48c+(52c+6gp)+ 48[(i+

2)α(22i+3

)]2(6 · 106)2 +10, 000 · 2i+2 +4, 300(i+1)+ 34(i+1)2 +3 · 106 + pi+2]/2
2i+1

.
It can be checked that pi+1 = 152 · 2i+1 + 1016 suffices. The accumulation of this
potential by an i-superblock will ensure that when and if it is removed by a combine
or partition it will have enough potential at hand to pay for its removal and for the
potential that has to be provided to its parent block; for between the creation and re-
moval of an i-superblock there will have been at least b′i+1 combines and/or partitions
of its i-blocks. At level 0, when an item is inserted or deleted, it needs to provide
potential p1 to its 1-block, but this is O(1).

Next, we need to modify the analysis. For the moment, we ignore the question of
accesses that straddle a block boundary. A search is treated as before. An insertion
is analyzed as follows. The item is inserted as in a binary search tree. After adding
the item, we perform any necessary block partitions. The item is splayed now. When
the item is added, it is not provided with any potential, nor are the appropriate
chain potentials increased. The reason is that the item does not need any associated
potential in order to be splayed; the potential is needed at nodes which are traversed.
The access is analyzed as before: as the access proceeds, the item will be provided
with potential as described in the earlier analysis. So the cost of an insertion at
distance d from the previous access is p1 plus the cost of a search at distance d.

For the deletion, at least for our analysis, we need to modify the operation de-
scribed by Sleator and Tarjan [ST85]. We offer reasons as to why such a modification
may be needed in order to obtain the finger search result we seek. Sleator and Tar-
jan proceed as follows. First the item e is splayed, placing it at the root. Then the
resulting two subtrees of e are joined (for example, by splaying the rightmost item in
the left tree, and then making the right tree its child). Our method differs. First we
swap the item, e, to be deleted with its predecessor, if e has a left child. Then the
current predecessor of e (previously, the second predecessor, if e had a left child at
the start of the operation) is splayed. Following the splay, e has no children, and it is
removed. The reason for our choice of deletion method is that the change in potential
owing to the removal of item e might be nonconstant if it is the root of a block.

There is an unpleasing assymmetry to the operation described above. An alter-
nate implementation is to perform two splays, in turn on the predecessor and successor
of the item, e, to be deleted; then e is deleted—it is the right child of the left child of
the root of the splay tree and has no children at this point. The accesses are analyzed
as before and the deletion can only reduce the potentials associated with the various
blocks. The unattractive feature here is that two searches and two splays are needed.

Now, we analyze the first implementation of the delete operation. The access is
analyzed as before. The only novel feature is the elimination of an item, which may
add nodes to the extreme path of the blocks to which the item belongs and thereby
increase the potential of the splay tree; but this effect can arise only if the item in
question is an extreme item in its block. In fact, at the time item e is deleted it
is childless, so no nodes are added to the extreme paths of any blocks; indeed, the
removal of e can only shorten these paths, thereby reducing the potential. So the cost
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of a deletion is at most c1 plus the cost of an access at distance d+ 2.
It remains to deal with nearby accesses that straddle a block boundary. First we

explain how to form sequences of accesses. Consider the i-blocks. The accesses are
partitioned into maximal subsequences Si of accesses to pairs of neighboring i-blocks.
Whenever an i-block is partitioned or combined a new sequence is started.

It may be that a particular sequence Si accesses only one i-block. But suppose
that Si accesses two neighboring i-blocks, B′1 and B′2. If they are contained in distinct
i-superblocks, B1 and B2, respectively, then at the start of the sequence Si, B1 and
B2 are combined into i-superblock B; at the end of the sequence B is split into B1 and
B2 with the new boundary being between B′1 and B′2, as before. B′1 and B′2 still exist
at this point in time for no partition or combine of these blocks has been caused by
their becoming too large or small during sequence Si, although they may have been
combined and partitioned because of accesses straddling neighboring (i − 1)-blocks.
As before the cost of the combine is zero. The cost of the split is modest, because the
most recent accesses to the combined B1 and B2 are to adjacent i-blocks B′1 and B′2.
We need only provide the following potentials: chain potential for up to three new
chains, which costs at most 18c[2(i+ 1) + 2i+2] + 3c, and the (i+ 1)-global potential
for the new root of an i-superblock, which costs at most (2i+1 + 3) · gp. There are no
i-global nodes whose potential needs increasing.

The subsequence Si is further partitioned, so that all the accesses in each new
subsequence are to the same block. Suppose the i-blocks B′1 and B′2 are not combined
for some pair of accesses of Si which straddle the boundary between i-superblocks
B1 and B2; this implies these two accesses are to nonneighboring i-subblocks. So an
access to a nonneighboring (i− 1)-block, i.e., an access at distance at least 22i

, may
start a new i-sequence of accesses to an i-block. Let d denote the distance spanned
by this access; then d + 2 ≥ 22i

(the d + 2 takes account of the possible additional
shift by 2 due to a delete operation). Following the analysis of section 4, the cost of
this access is bounded by

∑
1≤h≤i

[(4e′ + 9)gp · (2h+1 + 4) + vp+ 2c · h]

+
∑

1≤h≤i
2(i+ 1)2c5d5(a3α(2

2i+2

) + b3 + vp+ 2c)2 + p1 + a2 + b2 + 2vp+ 64c2i.

The term (2h+1 + 4) reflects the increased maximum rank on the boundary of an h-

block. The cost is bounded by new costi = 20, 000·2i+1016[(i+1)α(22i+2

)]2+1016. In
turn this is bounded by 20, 000 log(d+2)+1016[(log log(d+2)+1)α(24 log(d+2))]2+1016.

The last step in the analysis is to account for a series of accesses which each shift a
small distance, but cummulatively shift a large distance and cause a high index block
boundary to be crossed. Clearly a simple amortization can handle this; we specify this
precisely next. Suppose the current access is at distance d from the previous access,
where 22i ≤ d+2 < 22i+1

. Then potential 2new-costi · 52−h is provided to the (i+h)-
block to which the previously accessed item belongs, for h ≥ 0. Consider a maximal
sequence Sj of accesses to a j-block, Bj , and the access immediately following it.

The distance spanned by these accesses is at least 22j − 2, for otherwise the accesses
would all be in adjacent (j − 1)-blocks and hence in the same j-block (because of
our combining rule). We determine the contribution made by these accesses to Bj
and show that it is at least new-costj . The contribution by an access of length d,

where 22j−h ≤ d+ 2 < 22j−h+1

is 2new-costj−h · 52−h ≥ 2new-costj · 52−2h. The total
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contribution is minimized when each d takes on the maximal value consistent with a
given contribution; this yields a total contribution of the form

∑
l 2new-costj · 52−2hl ,

where
∑
l[2

2j−hl+1 − 3] ≥ 22j − 2; by inspection, the contribution is minimized with
hl = 2, when it totals at least new-costj .

The additional charge for each operation is 25
2 new-costi, where 2

2i ≤ d+2 < 22i+1

.
We have shown the following.
Theorem 4. The extension of the dynamic finger conjecture to incorporate the

insert and delete operations is true when the delete is modified as described above.
The amortized cost of an access at distance d from the previous access is bounded by
250, 000 log(d+ 2) + 1018[(log log(d+ 2) + 1)α(24 log(d+2))]2 + 1018.

6. Improved constants. Our conjecture is that the true bound has much
smaller constants than those shown here. We briefly sketch one approach for ob-
taining such a bound.

The main difficulty in improving the bounds lies in the potentials needed for the
lazy trees. If it were possible to have log n levels of visibility, where each superblock
contained just a constant number of blocks, we would avoid the need for global po-
tentials and hence for lazy trees. There would still be a need for potentials associated
with extreme paths (small and large debits and chain potentials), but changes in these
would all be paid for by increases in visibility. This would now be of size Θ(logn),
rather than Θ(log logn), so there would be a continued need to pay for level jumps
(see section 4). Unfortunately, following the analysis used there would lead to an
O(log2 d) cost for an access at distance d from the previous access. It appears pos-
sible to improve this by not providing the chain potentials in full and instead taking
a lazy approach. In particular, we would provide only O(1) potential for each indi-
vidual jump in visibility on the access path, however large. This eliminates the need
for potentials associated with right i-headers; offsetting this, we now have to handle
“missing” chain potentials. We have not worked out all the details, however, for it
appears that we still need an inverse Ackerman term, arising for similar reasons to
the inverse Ackerman term used in analyzing paths P3 (see section 3.3.4). At present
we do not see how to amortize this term, and it leads at the very least to an additive
inverse Ackerman term on the amortized cost of each access. In fact, we suspect
that this bound can be reduced to O(1). Perhaps this would follow from improving
Sundar’s bound for the dequeue conjecture [Su89], or some variant of this conjecture.
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Abstract. Priority queues are some of the most fundamental data structures. For example, they
are used directly for task scheduling in operating systems. Moreover, they are essential to greedy
algorithms. We study the complexity of integer priority queue operations on a RAM with arbitrary
word size, modeling the possibilities in standard imperative programming languages such as C. We
present exponential improvements over previous bounds, and we show tight relations to sorting.

Our first result is a RAM priority queue supporting find-min in constant time and insert

and delete-min in time O(log logn), where n is the current number of keys in the queue. This is

an exponential improvement over the O(
√

logn) bound of Fredman and Willard [Proceedings of the

22nd ACM Symposium on the Theory of Computing, Baltimore, MD, pp. 1–7]. Plugging this priority
queue into Dijkstra’s algorithm gives an O(m log logm) algorithm for the single source shortest path

problem on a graph with m edges, as compared with the previous O(m
√

logm) bound based on

Fredman and Willard’s priority queue. The above bounds assume O(n2εw) space, where w is the
word length and ε > 0. They can, however, be achieved in linear space using randomized hashing.

Our second result is a general equivalence between sorting and priority queues. A priority queue
is monotone if the minimum is nondecreasing over time, as in many greedy algorithms. We show that
on a RAM, the amortized operation cost of a monotone priority queue is equivalent to the per-key
cost of sorting. For example, the equivalence implies that the single source shortest paths problem
on a graph with m edges is no harder than that of sorting m keys. With the current RAM sorting,
this gives an O(m log logm) time bound, as above, but the relation holds regardless of the future
developments in RAM sorting.

From the equivalence result, for any fixed ε > 0, we derive a randomized monotone O(
√

logn
1+ε

)
priority queue with expected constant time decrease-key. Plugging this into Dijkstra’s algorithm

gives an O(n
√

logn
1+ε

+ m) algorithm for the single source shortest path problem on a graph

with n nodes and m edges, complementing the above O(m log logm) algorithm if m � n. This
improves the O(n logn/ log logn+m) bound by Fredman and Willard [Proceedings of the 31st IEEE
Symposium on the Foundations of Computer Science, St. Louis, MO, 1990, pp. 719–725], based on
their O(logn/ log logn) priority queue with constant decrease-key.

Key words. priority queues, sorting, greedy algorithms, shortest paths, RAM model
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1. Introduction. Priority queues are some of the most fundamental data struc-
tures. For example, they are used directly for task scheduling in operating systems.
Moreover, they are essential to greedy algorithms. A priority queue is a dynamic rep-
resentation of an ordered set, or multiset, X of keys. A basic priority queue supports
the operations find-min(X) returning minX, insert(x,X) setting X := X ∪ {x},
and delete-min(X) setting X := X \ {minX}. Often we will talk about extracting
the minimum key, which is the combination of finding and deleting the minimum
key from X. Using the previous operations, extracting the minimum key can be
implemented as x := find-min(X); delete-min(X); return x. Sometimes we will
go beyond basic priority queues and consider the operations delete(x,X) setting
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X := X \ {x}, and decrease-key(x, d,X) setting X := (X \ {x}) ∪ {x− d}. Finally,
we will study monotone priority queues, which are priority queues with the restriction
that the minimum should be nondecreasing. Here the minimum of an empty priority
queue is considered to be 0. The monotonicity restriction on priority queues has been
considered previously by Ahuja et al. [1] and is not a problem for applications in
greedy algorithms such as Dijkstra’s single source shortest paths algorithm [13]. Our
priority queues will allow the user to associate extra information with inserted keys.
Then find-min returns not only the minimal key but also the information associated
with it.

We study the complexity of priority queue operations on a RAM modeling the
possibilities in imperative programming languages such as C. The memory is divided
into addressable words of w bits. Addresses are themselves contained in words. Hence,
assuming that we have at least n input words to address, w ≥ log n. Moreover, we
have a constant number of registers, each with capacity for one word. The basic ma-
chine instructions are conditional jumps and direct and indirect addressing for loading
and storing words in registers. Moreover, we have some computational instructions for
manipulating words in registers. The computational instructions used in this paper
are shifts, comparisons, bit-wise Boolean operations, conversion of integers to floating
points, addition, subtraction, multiplication, and division. Except for multiplication
and division, all the above operations are in AC0 meaning that they can be imple-
mented by a constant depth circuit of size polynomial in w. We refer to them as
standard AC0 operations to emphasize the fact that they are available in most im-
perative programming languages. The time complexity is the number of instructions
performed and the space complexity is the maximal memory address used. All keys
are assumed to be nonnegative integers, each stored in one word, and hence we can
operate on them in constant time. We shall return to a discussion of the model and
the “dirty tricks” it allows in section 1.3.

On the above RAM, we present exponential improvements over previous bounds
for priority queues. Moreover, we establish an equivalence between monotone priority
queues and sorting.

1.1. A fast basic priority queue. Our first main result is the following theo-
rem.

Theorem 1.1. There is a priority queue supporting find-min in constant time
and insert and delete-min in O(log log n) time, where n is the current number of
keys in the queue.

This matches the best known per-key cost of integer RAM sorting due to
Andersson et al. [3]. Here, by the per-key cost of sorting we mean the total sort-
ing time divided by the number of sorted keys.

1.1.1. A historical perspective. In the comparison based model, we can sup-
port a general search structure in Θ(logn) time per operation, matching the per-key
cost of sorting. Here by a search structure, we mean a dynamic ordered set with
insert and delete, and an operation succ(x,X) returning y, where y is the smallest
element in X which is bigger than or equal to x. This generalizes a priority queue
since find-min(X) = succ(0) and delete-min(X) = delete(succ(0)). Then again,
priority queues generalize sorting in that we can sort a set X by first inserting all
elements from X in an empty priority queue and then extract them in increasing
order.

When Fredman and Willard in 1990 broke the Ω(n log n) barrier for RAM integer
sorting [17], they did it in terms of a general search structure working in O(

√
log n)
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time per operation, implying O(n
√

log n) sorting as a special case.

Then in 1995, Andersson et al. presented an O(n log log n) integer RAM sorting
algorithm [3]. As they point out in [3], their sorting algorithm does not work for
dynamic sets. Nevertheless, as stated in Theorem 1.1, here we will generalize their
O(log log n) bound to priority queues for dynamic sets.

It turns out that our O(log log n) bound provably does not generalize to search-

ing. Miltersen has pointed out that for n = 2log3/2 w, his results in [28] imply an

Ω(log1/3−o(1) n) lower bound for search structures. This lower bound holds even if
we allow randomization and amortization, and it has later been improved to
Ω(
√

log n/ log log n) by Beame and Fich [8]. In [28], Miltersen asks if the lower bounds
for searching can be beaten if we restrict ourselves to a basic priority queue. Our new
O(log log n) upper bound for all word sizes answers Miltersen’s question in the affir-
mative. In particular, this implies a separation between priority queues and searching
on the RAM.

1.1.2. Space bounds. The priority queue of Theorem 1.1 is simple and imple-
mentable with standard AC0 operations, but it needs O(n2wε) space for an arbitrarily
small constant ε > 0. If we are satisfied with a monotone priority queue, we can get
an amortized time bound of O(log log n) using O(n+ 2wε) space. We can also get the
whole way down to linear space even without amortization if we are willing to use
randomization giving O(log log n) expected time per operation. Thereby we also in-
volve multiplication which is not in AC0. The above mentioned sorting and searching
results from [3, 17] have similar space bounds. However, in [17] they also achieve a
deterministic O(log n/ log log n) worst-case bound in linear space.

1.1.3. Applications in greedy algorithms. Plugging the priority queue of
Theorem 1.1 into Dijkstra’s algorithm [13], we get the following.

Corollary 1.2. There is an O(m log logm) algorithm for the single source short-
est path problem on a graph with m edges.

Dijkstra’s algorithm above should only be taken as a representative for greedy
algorithms. We could equally well apply our priority queue to Hu and Tucker’s algo-
rithm from [23] and get an O(n log log n) algorithm for the alphabetic tree problem on
n codes. Based on Fredman and Willard’s priority queue from [18], the previous best
bounds for the two problems were O(m

√
logm) and O(n

√
log n), respectively. The

advantage of focusing on Dijkstra’s algorithm is that it facilitates later discussions of
constant time decrease-key operations.

1.1.4. Techniques. In order to prove Theorem 1.1, we first prove a result for
short keys.

Theorem 1.3. There is a priority queue with capacity for n (w/(log n log log n))-
bit keys, supporting insert, find-min, and delete-min on integers in constant time
per operation and in space O(n). The priority queue can be implemented with stan-
dard AC0 operations. Moreover, it allows one word of information to be associated
with each key inserted. Then find-min returns the smallest key and the information
associated with it.

The point of the associated word is that it could be an address to some additional
information on the key, or it could be an identification of the key in case we had several
keys with the same value. Note that associating one word of information is trivial
for priority queues dealing with one-word keys, for then, by only doubling the key
length, we can just append the information directly to the key as a least significant
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part. Doubling the key length is not a problem because our RAM can simulate 2w-bit
instructions with a constant number of w-bit instructions.

Having proved Theorem 1.3, we reduce the general case of one-word keys to the
case of (w/(log n log log n))-bit keys using the recursion underlying van Emde Boas’
data structure [35, 36].

1.2. Monotone priority queues ≡ sorting. Our other main result is a com-
putational equivalence between sorting and monotone priority queues.

Theorem 1.4. For a RAM with arbitrary word size w, if we can sort n w-bit
keys in time n · s(n), where s is nondecreasing, then (and only then) there is a mono-
tone priority queue with capacity for n w-bit keys, supporting find-min in constant
time and insert and delete-min in s(n) + O(1) amortized time. The amortization
presumes that the priority queue starts empty.

The reduction is deterministic and uses linear space. As stated, it needs either
multiplication or some nonstandard AC0 operations. A variant using only standard
AC0 operations supports find-min in constant time and insert and delete-min

in O(
∑logg∗n
i=0 s(logg(i)n)) amortized time. Here logg n = log n log log n, f (0)n = n,

f (i)n = f(f (i−1)), and f∗n = min{i|f (i)n ≤ 1}.
The “only then” part follows because we can sort a set of keys by first inserting

them into a monotone priority queue and then extract them in increasing order.

To prove Theorem 1.4 we will show how to maintain a monotone priority queue
spending constant time on find-min and constant amortized time on insert and
delete plus some sorting time. Each key passing through the queue participates in
at most one sorting, and when we sort a set of keys, they are all currently contained
in the queue.

As an immediate consequence of Theorem 1.4, we get the following strengthening
of Corollary 1.2.

Corollary 1.5. On a RAM, the single source shortest path problem on a graph
with m edges is no harder than that of sorting m keys, no matter the future develop-
ments in sorting.

Note that Theorem 1.4 potentially could be used to obtain lower bounds for
sorting. As mentioned above, [28] implies amortized nonconstant lower bounds on
search operations. Similar nonconstant lower bounds on monotone priority queue
operations would imply a nonlinear lower bound for RAM sorting.

1.2.1. Applications to constant cost decrease-key. We will now show
how Theorem 1.4 can be used to construct priority queues with a constant cost
decrease-key operation. First, Andersson et al. [3] have shown that we can sort
n keys in linear expected time if (logn)2+ε ≤ w for some fixed ε > 0. Thus by
Theorem 1.4, we have the following.

Corollary 1.6. If (log n)2+ε ≤ w for some fixed ε > 0, there is a randomized
linear space monotone priority queue for n keys supporting find-min in constant time
and insert and delete-min in expected constant amortized time.

Based on Fredman and Willard’s AF-heaps [18], we will get the following lemma.

Lemma 1.7. Provided a monotone/unrestricted basic priority queues for up to
f(n) = Ω(log2 n), f(n) = O(n), keys supporting find-min, insert, and delete-min

in constant amortized time, there is a monotone/unrestricted priority queue with ca-
pacity n, supporting the operations find-min, insert, and decrease-key in constant
amortized time, and delete in time O(log n/ log f(n)). The reduction is deterministic
and uses linear space, and it can be implemented with standard AC0 operations.
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In [18], Fredman and Willard show that given O(n) space and preprocessing time,
they can support unrestricted priority queues with constant amortized operation cost
for up to (logn)2 keys. By Lemma 1.7, this gives them an unrestricted priority queue
with capacity n, supporting find-min, insert, and decrease-key in constant amor-
tized time, and supporting delete in O(log n/ log(log n)2) = O(log n/ log log n) amor-
tized time.

Corollary 1.6 together with Theorem 1.4 implies a monotone priority queue with
constant amortized operation cost for up to exp(

√
w

1−ε
) keys for any fixed ε > 0.

Thus we get delete in time O(log n/ log(exp(
√
w

1−ε
))) = O(log n/

√
w

1−ε
). Using

w ≥ log n, we conclude the following.

Corollary 1.8. There is a randomized monotone priority queue with capacity
n supporting find-min, insert, and decrease-key in expected amortized constant

time, and delete in expected amortized time O(log n/
√
w

1−ε
) = O(

√
log n

1+ε
) for any

fixed ε > 0.

Plugging Corollary 1.8 into Dijkstra’s algorithm [13], we get the following corol-
lary.

Corollary 1.9. For any ε > 0, randomized and in linear space, we can solve the
single source shortest path problem on a graph with n nodes and m edges in expected

time O(n
√

log n
1+ε

+m).

The previous best bound linear in m was O(n log n/ log log n+m), based on the
priority queues from [18]. For completeness, Corollary 1.9 should also be compared
with the word size dependent bound of O(n

√
w + m) due to Ahuja et al. [1]. In

fact, the bound from [1] is based on priority queues restricted beyond monotonicity,
tailored particularly for Dijkstra’s algorithm. Since w ≥ log n, this bound is only
better for w = (log n)1+o(1). Recall that for small m, we have the complementing
O(n+m log logm) bound from Theorem 1.1.

1.3. Machine model. The RAM model distinguishes itself from the so-called
comparison based model in that besides comparing the integer keys, we can also add,
subtract, and multiply them. Of course, it is meaningless to work on integers and say
that one can compare but not add them. The point in the comparison based model
is that it works for any domain supporting comparisons. In this context it should be
noted that ordering nonnegative integers actually covers many more domains than
just nonnegative integers. For example, in the standard representation of signed
integers, we get the right ordering if we flip the sign bit and interpret the result as
an unsigned integer. Floating points are even easier, for the IEEE 754 floating-point
standard is designed so that the ordering of floating-point numbers can be deduced
by perceiving their representations as multiple word integers. Also, if we are working
with fractions where both numerator and denominator are w-bit integers, we get the
right ordering if for each fraction, we make the division in floating-point numbers with
2w bits of precision. Now we get the correct ordering of the original integer fractions
by perceiving the corresponding floating-point numbers as integers. Finally, it will be
shown later that we can implement an efficient priority queue for �-word keys using
the priority queue for one-word keys from Theorem 1.1.

The essential benefit of adding and subtracting integers is in coding multiple
comparisons. The idea of multiple comparisons was first introduced by Paul and
Simon [29] in 1980. In our paper, the multiple comparisons are hidden in a black box
provided by Albers and Hagerup [2]. It should be noted that this use of uniprocessors
as vector processors is a standard trick in practice, not in connection with sorting,
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but in connection with graphics, where a single word operation is used to manipulate
the information on several pixels, each represented by one byte of the word. With
modern MMX graphics processors, these kinds of tricks are even supported directly
in hardware, for example, with a special byte-wise multiplication that views words
as vectors of bytes and then multiplies the bytes coordinate-wise. This byte-wise
multiplication is faster than a multiplication over the full word.

The RAM model further distinguishes itself both from the comparison based
model and from the pointer machine in that we allow ourselves to use keys and
segments of keys as addresses. We will use this for bucketing in the same way as done in
van Emde Boas’s data structure [35, 36]. The use of buckets has a very long tradition
within sorting. In radix sort, for example, the integers are bucketed according to one
digit at the time, starting from the least significant digit. According to Knuth [25],
radix sort was mentioned as early as in 1929 by Comrie. Another classic use of buckets
in sorting is bucket sort proposed in 1956 by Isaac and Singleton [21]. Bucket sort
is interesting in this context because it provides an elementary expected linear time
sorting algorithm for uniformly distributed w-bit unsigned integer keys, thoroughly
surpassing the Ω(n log n) comparison based lower bound for average case sorting.
Bucket sort may even be implemented efficiently with standard AC0 operations: let
X be a set of n unsigned w-bit integer keys. Compute � = �log2 n and ∆ = w − �.
Bucket each key x according to �x × 2�/2w� = x � ∆, where � denotes right
shift. More precisely, we allocate an array B of 2� = O(n) lists and put x in list
B[x� ∆]. Second, we use insertion sort to sort each list B[i] independently. Finally,
we concatenate the sorted lists B[i] into one sorted list containing all the elements
of X. As analyzed in [25, pp. 99–102], the above algorithm takes linear time for
uniformly distributed keys.

Fredman and Willard [17] further use the RAM for advanced tabulation of com-
plicated functions over small domains. Their tabulation is too complicated to be of
practical relevance, but tabulation of functions is in itself commonly used to tune
code. As a simple example, Bentley [10, pp. 83–84] suggests that an efficient method
for computing the number of set bits in 32-bit integers is to have a preprocessing
where we first tabulate the number of set bits in all the 256 different 8-bit integers.
Now, given a 32-bit integer x, we view it as the concatenation of four 8-bit integers,
and for each of these, we look up the number of set bits in our table. Finally we just
add up these four numbers to get the number of set bits in x.

Summing up, in the above discussion, it has been argued that all the “dirty
tricks” facilitated by the RAM are well established in the practice of writing fast
code. Hence, if we disallow these tricks, we are not discussing the time complexity of
running imperative programs on real world computers. For further discussion of the
model, the reader is referred to [20].

1.4. Subsequent work and historical remarks. Since an extended abstract
of this paper was presented at SODA’96 [32], the results and constructions have
been involved in several other papers. In [32], Theorem 1.3 appeared in two weaker
forms. In one form the keys were of size w/ log n instead of w/(log n log log n), but
then the time bounds were O(log log n) instead of constant. The other form had
constant but amortized time bounds. The key size in the amortized version was
w/(log n log log n) as in the current paper. The amortized version used multiplication
as it was based on Fredman and Willard’s atomic heaps [18]. Later, Raman [30] has
found a simple multiplication-free alternative to the atomic heaps inside the priority
queue of Theorem 1.3 (cf. Lemma 3.4 below). Consequently, he got an amortized
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Table 1.1
State of the art in priority queues. The capital letters following a bound show the weaknesses

of the result: “M” denotes monotone, “A” denotes amortization, “R” denotes randomization, and
“×” denotes use of mutiplication. Finally, “D” means that we use a dictionary over a large set of
integers. Using hashing, “D” can be replaced by RM, but alternatively, we may use nonlinear space.
If there is no letter following a bound, it means that it is unrestricted, deterministic, and worst-case,
and it uses linear space and only standard AC0 operations.

Priority queue O(log logn) D [this paper] • O(log logn) MAR [33] •
O((log logn)2) [7] • O(logw) D [35, 36]

Constant decrease-key O(logn) A [19] • O(logn/ log log n) A× [18] •
O(

√
logn log log n) MA [30] • O( 3

√
w logw) MA [12] •

O(min{ 4
√
w1+ε, 3

√
logn1+ε}) MAR× [31]

version of Theorem 1.3 using only standard AC0 operations. Raman applied this
within an O(

√
log n log log n) amortized monotone priority queue with constant time

decrease-key which uses only linear space and only standard AC0 operations. In
this paper, Theorem 1.3 reaches its final form with constant worst-case time per oper-
ation using only standard AC0 operations. This strong form has not been announced
previously.

In the original abstract [32] of this paper, Corollary 1.8 quoted the O(
√

log n
1+ε

)

bound but not the O(log n/
√
w

1−ε
) bound. In [32], w was replaced by log n ≤ w

already in the derivation leading to Corollary 1.8 as the author found it more esthetic
just to quote a bound based on n exclusively.

Later, Cherkassky, Goldberg, and Silverstein [12] used the O(
√

log n
1+ε

) bound
from Corollary 1.8 for a randomized O( 3

√
w1+ε) monotone priority queue with ex-

pected constant cost decrease key, improving over a previous O(
√
w) bound of Ahuja

et al. [1].
However, Raman [31] has observed that for Cherkassky, Goldberg, and Silver-

stein’s construction [12] it is beneficial not to replace w by logn ≤ w but to use the

O(log n/
√
w

1−ε
) of Corollary 1.8 directly. In an elegant balancing, Raman arrived

at an O(min{ 4
√
w1+ε, 3

√
log n1+ε}) bound for monotone priority queues with constant

cost decrease key, thus improving both over Cherkassky, Goldberg, and Silverstein’s

bound of O( 3
√
w1+ε) and over the O(

√
log n

1+ε
) bound of Corollary 1.8. For a nice

survey of these developments, the reader is referred to Raman’s paper [31].
The author [33] has used the reduction of Theorem 1.4 to derive a randomized

monotone priority queue with an expected amortized operation cost of O(log log n)
which is implementable in linear space using only standard AC0 operations. Further,
the author [34] has provided an amortized deterministic unrestricted priority queue
with operation time O((log logn)2) using linear space and standard AC0 operations.
The construction was later deamortized together with Andersson [7]. An overview of
the current theoretically strongest results on priority queues is presented in Table 1.1.

1.5. Contents. After some preliminaries in section 2, the priority queue of The-
orem 1.3 is presented in section 3. Next we derive the time bounds of Theorem 1.1 in
section 4 and discuss the corresponding space bounds in section 5. Section 6 contains a
brief discussion on priority queues for strings of words. The general reduction of The-
orem 1.4 is presented in section 7, and finally, we discuss the reduction of Lemma 1.7
in section 8.
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2. Preliminaries. Unless otherwise stated, all logarithms are assumed to be
base 2. Our integers are viewed as bit-strings, stored with the most significant bit to
the left. Hence, we get the right ordering if we view them as lexicographically ordered
bit-strings. By bit i of an integer x, denoted x[i], we mean the (i+ 1)th bit from the

left. Thus, if x is a b-bit integer, the number represented by x is
∑b−1
i=0 2ix[b− 1− i].

We have defined standard AC0 operations as AC0 operations available in a stan-
dard programming language such as C. These include shifts, bit-wise Boolean oper-
ations, addition, subtraction, and conversion from integer to floating-point represen-
tation. We use � and � to denote left and right shifts. Typically, we use shifts to
divide and multiply by powers of two, e.g., �x/2i� = x� i. Also, we will use shifts to
extract parts of a word x: for i ≤ j < w, let x[i..j] denote x[i] · · ·x[j]. Using shifts,
we move x[i..j] to the right of x, making all other bits 0 by (x� i)� (i+w− 1− j).
Finally, we use shifts to flip, set, and unset bits in words. For example, we flip bit i
in x by x⊕ (1� (w − 1− i)).

The reason for mentioning conversion to floating-point is that if we convert an
integer x to floating-point and extract the exponent expo(x), then expo(x) = �log x�.
Here we presume normalized representation of floating-point numbers, as recom-
mended in the IEEE 754 floating-point standard. In particular, the first set bit in x
is bit w − 1 − expo(x). We shall use this computation in section 7. Although this
method of computing the first set bit may seem contrived, it is not just a theoretical
trick to stay within AC0. A quick test on an SGI computer indicated it to be faster
than a hard-coded binary search combined with tabulation. It should be noted that
Fredman and Willard have shown that expo can be computed in constant time using
multiplication without the trick of conversion to floating-point [17]. This solution is,
however, worse in theory as multiplication is not in AC0, and worse in practice as it
is both more complicated and uses slower operations.

The rest of this section is devoted to some simple standard-type observations on
priority queues that will prove helpful in later sections.

2.1. Variable versus fixed size. As our end result, we want variable-sized
priority queues whose space consumption is proportional to the current number of
keys in them. In our constructions, however, we will just focus on priority queues
with some given capacity n, meaning priority queues with room for n keys. We can
then use the following standard-type simulation to get from given capacities to variable
size.

Lemma 2.1. We can simulate a basic variable-sized priority queue Q using two
basic priority queues Q′ and Q′′ with given capacity linear in the current number of
keys in Q. Each operation on Q will translate into a constant number of operations
on Q′ and Q′′.

Proof. All keys ofQ will either be inQ′ or inQ′′, but not in both. The smallest key
will always be in Q′, so find-min(Q) = find-min(Q′). Also insert and delete-min

operations are addressed to Q′. While Q has at most four keys, we are in an initial
state with all keys in Q′ and with Q′′ = ∅. In the initial state, Q′ has capacity of
five keys. Whenever Q gets more than four keys, we enter a general state described
below. If Q later gets down to four keys again, we return to our initial state.

In the general state, after each insert and delete-min, if |Q′′| > 3, we extract
the two smallest keys from Q′′ and insert them in Q′. If |Q′′| ≤ 3, we move all keys
from Q′′ to Q′, set Q′′ := Q′, reallocate Q′ with capacity 3/2 times the current number
of keys, rounding up to the nearest integer, extract the smallest key µ from Q′′, and
put µ in Q′. Note that we automatically enter the latter case when we insert a fifth
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key, bringing us from the initial to the general state.
We need to argue that both Q′ and Q′′ always have enough capacity for the keys

inserted and that their capacities remain linear in the current number of keys in Q.
When Q∗ = Q′ is first allocated, it gets capacity �3n/2, where n is the current
number of keys. After �n/2� operations, all keys from Q′′ are moved to Q∗ = Q′. In
this period, the total number of keys in Q remain between n/2 and Q∗’s capacity of
�3n/2. Next Q∗ is assigned to Q′′. Since no more keys can be inserted in Q∗ = Q′′,
its capacity can never be exceeded. Let n′ be the number of keys in Q∗ when Q∗ was
assigned to Q′′. After �n′/2� operations, all keys are moved from Q′′ = Q∗ to Q′ and
Q∗ is deallocated. Hence during the life time of Q∗, the number of current keys in Q
remain between �n′/2 ≥ n/4 and �3n′/2� ≤ 9n/4, both of which are linear in Q∗’s
capacity of �3n/2.

2.2. Associating information with the keys. In applications of priority
queues, we will often want to associate a word of information with the keys of the
priority queue. That is, the priority queue contains key-information pairs, but the
pairs are only required ordered with respect to the keys. For example, the informa-
tion could be a pointer to some additional information about the key. If the keys
are themselves one word, we can just append the information directly to the key,
so that it becomes a two-word key, where the most significant word is the original
key. However, here we will also deal with very short keys, and then we need different
techniques.

Proposition 2.2. Using linear space and a basic priority queue for distinct 2b-
bit keys, we can maintain a priority queue for b-bit keys allowing multiplicity of key
values and associating one word of information with each key.

Proof. First observe that it suffices to associate an index ∈ {0, . . . , n − 1} with
each key, for then we can just allocate a table I of n words mapping indices to the
desired words of information. If n ≤ 2b, we simply append the indices to the keys as
an extra least significant part. The uniqueness of the indices implies uniqueness of
the augmented keys. If n > 2b, we use a priority queue for distinct b-bit keys and a
table with 2b entries, mapping each possible key value x to a list L[x] of indices of
keys with that value. The minimum key-index pair (x, i) is then the minimum key
value x together with the first index in L[x].

2.3. Amortized deletions. Most of the priority queues in this paper are basic
priority queues from which only the minimum keys can be deleted. Occasionally, we
will need to augment a basic priority queue with a general delete, which is the concern
of this subsection. In our applications, for delete we are satisfied with amortized time.
In principle the implementation via basic priority queues is straightforward. We just
take notes on which keys are to be deleted but postpone the actual removal till the
keys come out as minimum keys. Then the amortized cost of general deletions is
that of find-min and delete-min. One obstacle in supporting general deletions is,
however, that we need to settle on a good interface between the priority queue and
its user.

The main issue that arises in implementing a general delete(x,Q) is if the priority
queue Q contains several keys with the same value x. Then the user may need to be
able to specify which of them is to be deleted. This issue becomes even more prominent
in connection with the decrease-key operation in Lemma 1.7, where the priority
queue actually needs a pointer to the key in order to decrement it at constant cost.

The standard solution in practice is that when insert(x,Q) is called, the pri-
ority queue Q returns a unique identifier ıx. If the user wants to delete x, he calls
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delete(ıx, Q), and then the priority queue knows exactly which key to delete.
For a given capacity n, our identifiers will be indices {0, . . . , 2n−1}. The priority

queue Q has a table D which keeps track of which keys are to be deleted when they
come out at minimum keys. Thus delete(ix, Q) is implemented by setting D[ix] := 1.
Then find-min and delete-min are implemented so that they skip keys that are to
be deleted according to D.

If ever we run out of indices, we “clean” the priority queue Q as follows. First we
extract all keys from the queue, finding all keys to be deleted including their indices.
These indices are freed for reuse, and all the nondeleted keys are returned to Q. Since
the capacity of Q is n, we identify ≥ n keys to be deleted, and the removal of these
keys pays for the cleaning.

Now, if we want a variable-sized priority queue, we actually need some extra
collaboration with the user. Increasing sizes could quite easily be supported by the
priority queue alone, but for shrinking sizes, we may have problems with large indices.
The simplest solution is to leave the change of size to the user. That is, whenever the
number of keys in the queue doubles or halves, the user should extract all keys from
the queue and reinsert them into a new priority queue with capacity twice the current
number of keys. Thereby all keys get reassigned their indices. Asymptotically, this
does not affect the amortized operation cost. Assuming the interface described above,
we conclude the following lemma.

Lemma 2.3. A basic priority queue can be augmented to support a general delete
with the same amortized time bound as find-min and delete-min. This includes
variable-size and associated one-word information.

In applications of Lemma 2.3, we will typically not be explicit about the exact
interface but just implicitly assume that the user is maintaining the identifiers as
described above.

3. A priority queue for small integers. The goal of this section is to prove
the following theorem.

Theorem 3.1. There is a priority queue with capacity for n (w/(log n log log n))-
bit keys, supporting insert, find-min, and delete-min on integers in constant time
per operation and in space O(n).

Combined with Proposition 2.2, this gives the statement of Theorem 1.3.
We need the following result due to Albers and Hagerup.
Lemma 3.2 (see [2]). We can merge two sorted lists, each of at most k (w/k)-

bit keys stored in a single word, into a single sorted list stored in two words in time
O(log k).

As an immediate consequence, we get the following lemma.
Lemma 3.3. For n ≥ k, given two sorted lists of n (w/k)-bit integers, spread

over �n/k words, we can merge them into �2n/k words in time O(n/k · log k).
Lemma 3.3 is implicit in [2] but in a parallel setting. We note the following simple

sequential derivation.
Proof. Pop the first word of each of the two lists to be merged. Apply Lemma 3.2

to these two words, obtaining w0 and w1. Now w0 is the first word in the merged list,
while w1 is pushed on the list from which its biggest key came from. Thus we repeat
until one list is empty. Hence each application of Lemma 3.2 extracts one word for
the final merged list, while the other goes back for the next iteration.

Further, we shall use the following result by Raman.
Lemma 3.4 (see [30]). There is a priority queue with up to O(k) (w/k)-bit

integers, supporting insert, find-min, and delete-min in constant time. Further,
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it supports delete in constant amortized time.

To prove Theorem 3.1, we will use Lemma 3.2, Lemma 3.3, and Lemma 3.4 with
k = log n log log n. First, in order to present the intuition, we give a simple amortized
version of the result. Afterwards, we deamortize.

3.1. Amortized bounds. Our data structure has the following components: a
“reception” R which is a priority queue from Lemma 3.4 with capacity for k keys.
Further we have “buffers” B0, . . . , Blog(n/k) containing 0, 1, or 2 sorted lists of ≤ 2ik
keys where the keys are packed in words with k keys in each word. By Lemma 3.3,
two full lists in Bi can be merged in O(2i log k) time, which is O(2i log k/(2ik)) =
O(1/ log n) time per key. The minimum of R and of each Bi is collected in a priority
queue M from Lemma 3.4. Thus, the minimum key in the whole priority queue is
found in M . Using Proposition 2.2, we associate with each key information about
which R or Bi it came from.

It is only temporarily that a buffer may contain more than one list. Whenever
we start supporting an operation, insert, find-min, or delete-min, we may assume
that no buffer contains more than one list.

Deleting the minimum is done by deleting the minimum key fromM and deleting
it from the corresponding R or Bi. To support constant time deletions of the minimum
key of a packed sorted list, we keep an index of the first nondeleted key in the first
word. Deleting the minimum is then done by incrementing this index and removing
the first word when all keys in it are deleted.

When an element is inserted, it is inserted into R in constant time. If thereby R
gets full, the keys are extracted from R in sorted order and packed in a sorted list
in one word. This list is put in B0. If there was already a list in B0, these two lists
are merged. If the resulting list has ≤ 20k = k keys, it stays in B0. Otherwise, it is
moved to B1, which may now have two lists that have to be merged. If the resulting
list has > 21k = 2k keys, it is moved to B2 and so forth. As the lists are merged and
moved, the minima of R and the Bi in M are updated accordingly.

Finding the minimum and possibly deleting it takes constant time. For the inser-
tions, first note that inserting the key in R takes constant time. Also, moving keys
from R to B0 takes constant time per key. We will now consider the per-key cost
accumulated over the merges. For the analysis, we will be a bit lazy removing deleted
keys from the list. Lists in buffer Bi will have exactly 2ik keys, some of which may
have to be deleted. It is only when we merge two lists in Bi and discover that ≥ 2ik
are to be deleted that we remove exactly 2ik of the keys to be deleted. Thus, the
result of the merge is of length 2ik or 2i+1k. In the former case, the result stays in Bi
and it is the 2ik removed keys that pay for the merge. In the latter case, the result
is moved to Bi+1. Since the per-key cost of the merge is 1/ log n and since there are
only logn buffers, the total cost of merges moving keys to larger buffers is O(1) per
key.

Since the buffers have exponentially increasing sizes, the space usage is dominated
by that of the maximal buffer Bmax. Further, when we created the buffer Bmax, we
know we did it with a newly merged list from Bmax−1 with > 2max−1k nondeleted
keys. Hence the space bound for the buffers is O(n/k), and for R and M , the space
is constant.

3.2. Worst-case insertions. We are now going to translate the above priority
queue into one working in worst-case constant time. First we ignore deletions of the
minimum and focus on deamortizing the merging.
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Instead of one reception R, we will in fact have three of them: R′, R′′, and R′′′.
The first two, R′ and R′′, consist of priority queues from Lemma 3.4 with at most
k keys. The third, R′′′, consists of a sorted list of k keys stored in one word. All
keys in R′′′ will be smaller than those in R′′, that is, maxR′′′ ≤ minR′′. Each of the
buffers Bi contains 0, 1, or 2 sorted lists of 2ik keys. If there are two lists, we may
have parts of them merged. As in the amortized version, we have a priority queue M
from Lemma 3.4 taking care of the minimum keys of R′, R′′, R′′′, and each Bi. Using
Proposition 2.2, we associate information with the keys inM telling whether they are
from R′, R′′, R′′′, or some Bi. Until section 3.4, we will pretend that M supports
general deletions in constant time.

We proceed in rounds of k insertions. At the beginning of a round, R′ is empty
and so is the sorted list R′′′. When a key is inserted, it is inserted in R′. Moreover, if
the priority queue R′′ is nonempty, the smallest key of R′′ is moved to the end of the
sorted list R′′′. After k insertions, we have moved all keys from R′′ to R′′′. We then
set R′′ := R′ and R′ := ∅. Further, we move the packed sorted list R′′′ of k keys to
B0 and set R′′′ = ∅.

If a buffer Bi has two packed sorted lists, we will start merging them. Each
list is stored in at most 2i words of k keys, so by Lemma 3.3, merging them takes
O(2i log k) = O(2ik/ log n) time. The merging is viewed as divided into 2ik/ log n
steps, each taking constant time.

We are going to merge all buffers in parallel as follows. A round of k insertions
is divided into logn mini-rounds, one for each buffer. We will have a counter i telling
which buffer Bi we are working in. When a round starts i = (logn) − 1, and we are
going to count i down by one modulo logn at the end of every mini-round.

In a given mini-round, if Bi contains two lists, for each of the k/ log n inserts in
the mini-round, we perform a merge step on the two lists. If the merging is thereby
completed, we move the resulting list to Bi+1. Finally, no matter whether we merged
or not, we complete the round by setting i := i− 1 (mod log n).

In the last mini-round of a round, i = 0. It is not until this mini-round is
completed, and we have moved a possible merged list from B0 to B1, that we complete
the round by moving the packed list from R′′′ to B0.

3.3. No overloading. We are now going to show that we never get more than
two lists in any buffer. Here we are still ignoring deletions. First observe the following.

Observation 3.5. Merging two lists in Bi takes 2i rounds.

Proof. Within every round we spend one mini-round of k/ log n merge steps in
Bi. However, by definition, it takes 2ik/ log n merge steps to merge the lists.

Concerning B0, it receives a packed sorted list of k keys from R′′′ at the very end
of every round. Suppose B0 receives a second list at the very end of one round. By
the above observation, the two lists will be merged completely during the subsequent
round. Then B0 is emptied before we, at the very end of the subsequent round, receive
a third list from R′′′.

For the other buffers, we have to show that when Bi sends a merged list to Bi+1,
Bi+1 does not already have two lists. To see this, we first argue the following.

Lemma 3.6. Buffer Bi is emptied at most every 2i+1th round.

Proof. The proof is by induction on i. For i = 0, it takes two rounds for B0 to
receive two lists, so B0 is emptied every other round.

For the inductive step, we note that when the first list is moved to Bi, then Bi−1

is emptied. Thus, by induction, it takes at least 2i rounds before a second list is
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moved from Bi−1 to Bi, and by Observation 3.5, it further takes 2i rounds before the
two lists are merged so that the result can be moved to Bi+1.

For i ≥ 0, by Observation 3.5, Bi+1 contains two lists for at most 2i+1 rounds,
but this is the minimum time it takes before it receives a third list. Hence Bi+1 can
never have more than two lists.

Introducing delete-min. We are now going to introduce deletions in a way that
does not tamper with the scheduling of our parallel merging. A key to the scheduling
is that it takes exactly 2i rounds to merge two lists in buffer Bi. Simultaneously 2i

is an upper bound on the number of rounds two lists can remain in Bi, and a lower
bound on the number of rounds it takes before Bi can receive a third list from Bi−1.

When the minimum key µ is to be deleted from M , we extract µ together with
information telling us whether it comes from R′, R′′, R′′′, or some Bi. If µ comes
from R′ or R′′, we delete µ with delete-min. If µ comes from R′′′, it is the first key
in the list, and it is just deleted. Clearly, deleted keys can only make it faster to move
keys from R′′ to R′′′, so this move is still completed within one round.

Suppose now that µ is from some Bi. If we have two partially merged lists in Bi,
we preserve the original lists till the merging is completed. Keys are deleted from the
original lists, that is, for each list, we have a min-pointer to the first nondeleted key,
and one of these two keys is the smallest key in Bi. If µ is deleted from Bi, first we
delete it by moving the min-pointer of the list of µ to the µ’s successor in the list.
Second, we find out which of the two lists in Bi now has the smallest nondeleted key.
This new smallest key of Bi is inserted in M . In connection with such a deletion, we
further make one merge step in Bi. As a consequence, if we have d deletions from Bi
during the merging of Bi, the merging will terminate at least d steps early. Hence
to terminate the merging within the 2i rounds, we have d time steps that we can
use to remove d keys from the merged list. These removals may be interspersed with
new deletions via M . New deletions are still done in the original lists, but we make
a simultaneous deletion in the merged list. Thus we arrive at a merged list with all
deleted keys removed within 2i rounds. In case we finish early, however, for the sake
of scheduling we will not view the merging as completed before exactly 2i rounds have
passed. Consequently, this gives us the following.

Observation 3.7. Merging two lists in Bi interspersed with deletions takes 2i

rounds.
Lemma 3.8. Despite deletions, buffer Bi is emptied at most every 2i+1th round.
Proof. As the proof of Observation 3.5, the proof is by induction on i. For i = 0,

we note that Bi still needs to receive at least two lists before it can be emptied, but
now, of course, it may need more lists.

For the inductive step, suppose Bi has just been emptied. When the first new list
is moved to Bi, Bi−1 is emptied. Thus, by induction, it takes at least 2i rounds before
a second list is moved from Bi−1 to Bi, and by Observation 3.7, it further takes 2i

rounds before the two lists are merged so the result can be moved to Bi+1. Note that
the merged list is not moved to Bi+1 if it contains ≤ 2ik keys. Then it will take at
least another 2i rounds before Bi is emptied.

Now, by Observation 3.7, Bi+1 contains two lists for at most 2i+1 rounds, but
this is the minimum time it takes before it receives a third list.

3.4. Deletions from M. Recall from section 3.2 that when we emptied a buffer,
we assumed that we could just delete the minimum of the buffer from M in constant
time. However, M does not solve deletions in constant time. We circumvent this
problem as follows. While a buffer contains two lists, it may actually have the minima
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of both lists inM . The minima are then associated with the lists rather than with the
buffers, so when a list is moved, its minimum remains unchanged in M . The point is
that when a buffer receives its second list, it will have two lists for at least one round
of k inserts, and this will be plenty of time for us to remove the bigger of the minima
of the two lists from M . More precisely, during every round, we will copy M to M ′,
extracting the keys one by one from M, and insert them in M ′ only if they are not
the bigger of the minima of two lists in a buffer. We make one such move from M to
M ′ in connection with each insert. Since we have O(log n) keys in M , M is emptied
within O(log n) insertions, which is less time than a round. When M is emptied, we
swap the roles of M and M ′. This completes the proof of Theorem 3.1.

3.5. Sequential storage. It should be mentioned that merging previously has
been used in connection with priority queues to adapt them for sequential storage
[15]. Our algorithm seems simpler than the one in [15], so it could be interesting to
see how it performs on sequential storage if we ignore the packing of keys in words.

4. Priority queues for arbitrary integers. In this section we derive the time
bounds of Theorem 1.1, postponing the space bounds to the next section. To get
from arbitrary integers to short integers we will use a recursive range reduction which
can be seen as a simple specialized variant of van Emde Boas’ data structure [35, 36],
inspired by the developments in [6, 22, 24, 27]. Let T (n, b) be the time for insert

and delete-min in a priority queue with up to n distinct b-bit integers supporting
find-min in constant time. We assume that b but not n is known in advance. By
Theorem 3.1, T (n,w/(log n log log n)) = O(1). We will show that

T (n, b) = O(1) + T (n, b/2).(4.1)

Here b is assumed to be a power of 2. We will now implement a b-bit key priority
queue Q. For any b-bit integer x, let low(x) denote the contents of last b/2 bits, and
let high(x) denote the contents of the first b/2 bits. Thus, x = high(x)2b/2 + low(x).

Let H be a (b/2)-bit key priority queue. H will be used for the high-values of
the inserted keys. We will assume that we can freely allocate constant access time
tables with entries from the values in H. We shall return to the implementation of
these, including space issues, in the next section. Particularly, such tables allow us
to answer whether a value is in H in constant time. Moreover, for each h ∈ H, they
allow us to store a (b/2)-bit key l[h] and a (b/2)-bit key priority queue L[h] such that

• {l[h]} ∪ L[h] = {low(x)|x ∈ Q, high(x) = h}.
• l[h] < minL[h].

Besides, we will have an integer hmin = minH. Initially H = ∅ and hmin =∞. If Q
is nonempty,

find-min(Q) = 2b/2hmin + l[hmin] = (hmin � b/2) + l[hmin].

We are now ready to present concrete implementations of insert and delete-min

settling recurrence (4.1).
Algorithm A. insert(x,Q)
A.1. (h, l) := (high(x), low(x)).
A.2. If h �∈ H,
A.2.1. hmin := min(h, hmin).
A.2.2. insert(h,H).
A.2.3. l[h] := l.
A.2.4. Allocate an empty priority queue L[h].
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A.3. If h ∈ H,
A.3.1. (l[h], l) := (min(l[h], l),max(l[h], l)).
A.3.2. insert(l, L[h]).
Algorithm B. delete-min(Q)
B.1. If |L[hmin]| > 0, then
B.1.1. l[hmin] := find-min(L(hmin)).
B.1.2. delete-min(L(hmin)).
B.2. Else
B.2.1. Deallocate L[hmin].
B.2.2. hmin := find-min(H).
B.2.3. delete-min(H).
Each of the above algorithms makes exactly one recursive call, so this settles the

time bound described in recurrence (4.1).
We are now essentially in the position to settle Theorem 1.1. By Proposition

2.2 we can support a basic w-bit key priority queue with multiplicity of key values
and associated information if we have a basic priority queue for distinct 2w-bit keys.
Starting with these 2w-bit keys, we apply recurrence (4.1) log(2 logn log log n) =
O(log log n) times. In time O(log log n) per operation, this reduces our problem to
dealing with (w/(log n log log n))-bit keys. By Theorem 3.1 together with Lemma
2.1, these can be dealt with in constant time, so the total time is O(log log n) per
operation. We are still missing, however, how we can test membership in H and how
we can use the members of H as entries for tables. These issues are the subject of
the next section.

5. Space issues. In order to clarify the space usage of our algorithm, we need
to discuss dynamic dictionaries. A dynamic dictionary maintains a subset X of a
typically much bigger universe U . Elements can be inserted and deleted from X,
and further, we can ask membership queries, that is, given x ∈ U , does x belong to
X? In addition, we want it to associate with each element x ∈ X a unique index
ıX of size O(|X|). These indices allow us to use X, or really {ıx|x ∈ X}, as entries
to arrays/tables. Thus a dynamic dictionary is exactly what we needed in the last
section for testing membership of H and for allocating the tables l and L with entries
from H. For our O(log log n) time bound for priority queues to hold, we can only use
dictionaries where all operations are supported in constant time.

Lemma 5.1 (see [11, 16, 26]). We can support a dynamic dictionary for a set
X ⊆ {0, 1}w

(1) deterministically with constant operation time in space O(|X|2εw) using stan-
dard AC0 operations (here ε is any positive constant),

(2) randomized with expected constant operation time in space O(|X|).
Proof. The randomized solution is simply Carter and Wegman’s multiplicative

hashing [11]. For the deterministic solution, based on Fredkin’s tries [16], Mehlhorn
[26, section III, Theorem 1] has shown that for universe size N and for any k, we
can get operation time O(logkN) using O(|X|k) space. Here N = 2w, and we set
k = 2εw, getting an operation time of O(log2εw 2w) = O(1/ε) = O(1). The algorithm
divides by k and division is not an AC0 operation. However, we can choose k as a
power of 2, and then the division is just a right shift.

The space dependence on w in the deterministic AC0 solution is unsatisfying, but
if we insist on AC0 operations, Andersson et al. [4] have proved that there cannot
be a solution to the dynamic dictionary problem combining constant operation time
with space polynomial in |X|.
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We will now take a closer look at the dynamic dictionaries needed for the priority
queue from the last section. The recursive structure only depends on the keys in
the queue. Hence the per-key space consumption can be found by analyzing insert.
In connection with a call to insert, we may introduce a new entry h to l and L.
Further, we allocate an empty priority queue L[h]. Since the depth of the recursion
is O(log log n), we conclude that both the total number of dictionaries used and the
total number of entries used in all dictionaries is O(n log log n).

Following ideas of van Emde Boas [35], we can reduce the number of dictionaries
and entries to O(n) as follows. The keys are collected as they are inserted into a list of
micro sets, each of size log log n. For each micro set, it is only the minimum key that is
inserted in our recursive priority queue Q. Hence the overall minimum key µ is always
found in Q. When µ is deleted from Q, it is deleted from the corresponding micro set
S. The new minimum x of S \ {µ} is found by a simple scan in O(|S|) = O(log log n)
time, and then x is inserted in Q. If ever two neighboring sets together get less
than log logn elements, we merge them. This can only happen in connection with a
deletion, and only for one pair of neighbors. The merge is done in O(log log n) time.
Thus, without violating our O(log log n) time bound, we can reduce the number of
keys in Q to O(n/ log log n). Hence the total number of dictionaries and dictionary
entries in Q become O((n/ log log n) log log(n/ log log n)) = O(n). The space bounds
in Lemma 5.1 are both linear in |X|, so we get the following theorem.

Theorem 5.2. There is a priority queue supporting find-min in constant time
and insert and delete-min in O(log log n) time, where n is the current number of
keys in the queue. It uses O(n2εw) space and may be implemented with standard AC 0

operations. Also, there is a randomized implementation using non-AC 0 operations
giving O(log log n) expected time and O(n) space.

In the introduction, we also mentioned that we could get O(n+ 2εw) space deter-
ministically for a monotone priority queue with an O(log log n) amortized operation
time. This matches the space bound of the deterministic sorting O(n log log n) algo-
rithm of Andersson et al. [3], so to get the monotone amortized priority queue, we
simply plug the sorting algorithm from [3] into Theorem 1.4.

6. A priority queue for strings. In this section, we implement a priority
queue for �-word keys using the priority queues for one-word keys from Theorem 1.1.
Essentially, we just use Fredkin’s trie [16] as presented by Mehlhorn [26, section III].
Each key is viewed as a string of � characters. The keys are stored in a trie, which
is a rooted tree of depth �. Each edge is labeled by a one-word character, and each
leaf v represents the string of characters labeling the path from the root to v. Thus
n strings are represented by a trie with n leaves.

In order to facilitate basic priority queue operations, we associate with each in-
ternal node with more than one child, a dictionary and a priority queue over the
characters of its outgoing edges. Thereby we get a total of n − 1 entries in the dic-
tionaries and the priority queues, so by Lemma 5.1 and Theorem 5.2, the total space
bound for all the dictionaries and priority queues becomes O(n2εw) for a deterministic
solution implemented with standard AC0 operations, and O(n) for a randomized solu-
tion using non-AC0 operations. Additionally, we need O(n�) space to store the keys.

Now, in order to find the minimum string in the queue, we descend from the root
of the trie, using a find-min operation at each internal node to figure out which child
to descend to. Thereby we end at the leaf representing the minimum string. Since
find-min takes constant time, the time bound for finding the minimum string is O(�).

Having performed find-min and identified the path from the root to the leaf w
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representing the minimum string, we can delete the minimum string by deleting the
path from the leaf and up to its first ancestor v with > 1 child. Let a be the character
that labeled the edge from v towards w. Then a has to be deleted from the dictionary
and the priority queue at v. Deleting the path nodes takes time O(�), deleting a from
the dictionary at v takes constant time, and deleting a from the priority queue at v is
done using delete-min in time O(log log n). Finally, if v has now only one child, the
dictionary and priority queue at v are deallocated in constant time. Consequently,
the cost of deleting the minimum string is O(�+ log log n).

To insert a new string s, we first use O(�) finds in dictionaries to descend to the
node v at which the path representing s should branch out from the current trie.
Then the remaining part of the path to the leaf representing s is added to the trie.
Finally, the character a on the new path below v has to be inserted in the dictionary
and priority queue at v in time O(log log n). Note that if v does not already have > 1
child, we first allocate a dictionary and priority queue at v in constant time. Thus,
the total cost of an insertion is O(�+ log logn).

7. From monotone priority queues to sorting. We are now going to present
a general reduction of Theorem 1.4 from monotone priority queues. More precisely, fix
k = Θ(logn log log n) as a power of 2. Each key of the priority queue will participate in
one sorting and go through one priority queue for (w/k)-bit integers and one priority
queue with capacity for at most k+ 1 integers at the time. The former priority queue
has constant operation cost by Theorem 3.1, and the latter priority queue has constant
operation cost due to the following result of Fredman and Willard [18].

Lemma 7.1 (see [18]). Given O(n) space and preprocessing time, we can main-
tain an unrestricted priority queue for up to O(log2 n) keys at constant amortized cost
per operation.

Thus, the operation cost of our priority queue becomes the per-key cost of sorting
plus a constant. The construction of Lemma 7.1 relies heavily on multiplication,
which is not an AC0 operation [9]. However, Andersson, Miltersen, and Thorup [5]
have shown that the construction can be implemented using AC0 operations only if
we allow ourselves some simple nonstandard AC0 operations.

7.1. Preliminaries. In our reduction, keys are viewed as divided into k (w/k)-
bit characters. For i = 0, . . . , k−1, x〈i〉 denotes character i in x. Further, for i ≤ j <
k, x〈i..j〉 denotes x〈i〉 · · ·x〈j〉. For different keys x and y, split(x, y) denotes the first
i such that x〈i〉 �= y〈i〉. If x = y, we define split(x, y) = k. Since our integer keys are
stored with the most significant bit first, x < y ⇐⇒ x〈split(x, y)〉 < y〈split(x, y)〉.

Lemma 7.2. For any two words x, y, split(x, y) is computable in constant time
with standard AC0 operations.

Proof. If x = y, split(x, y) = k, and we are done, so assume x �= y. Then
split(x, y) = �(w − 1 − expo(x ⊕ y))/(w/k)�. Now k and w are powers of 2, and
hence so is w/k, that is w/k = 2e for some e. Now, we compute split(x, y) as
(w − 1− expo(x⊕ y))� e.

7.2. The general idea. Fix µ to denote the minimum key in Q. Since µ is the
minimum key, for any other keys x, y ∈ Q

split(x, µ) < split(y, µ)⇒ x > y.(7.1)

Thus split(·, µ) provides us with a preordering of the keys in Q. We will use this for
an initial bucketing of the keys into buckets B0, . . . , Bk−1. That is, when a key x �= µ
is first inserted, it is put in a bucket Bsplit(x,µ).
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Now, when µ is increased, this may violate the placement of some keys x in a
bucket Bi. That is, when µ increases, we may get split(x, µ) > i. In this case, all
such x will be sorted and put in a list Li. It will turn out that we never will need
more than one list Li for i = 0, . . . , k − 1.

Thus each key of Q is either in a buckets Bi or in some sorted lists Li but not in
both.

The minimum key in all the lists Li is maintained by a priority queue from Lemma
7.1. Maintaining the minimum key in each bucket Bi will essentially be done using
the priority queue from Theorem 3.1.

It should be noted that bucketing according to split(·, µ) goes back to Denardo
and Fox [14]. However, in [14], when a key x is misplaced because of an increase in
the minimum key µ and split(x, µ), x is reinserted in a new bucket Bsplit(x,µ). This
gives up to k reinsertions per key. Here, instead, we sort all misplaced keys, adding
them to a set of sorted lists. The key insight is that only k sorted lists are needed at
any time.

7.3. Components. We are now ready to formally state the components of the
reduction.

Description C.
C.1. The smallest key µ in the queue. Thus find-min is trivially implemented

in constant time.
C.2. Some sorted lists L0, . . . , Lk−1 of keys where Li satisfies for all x ∈ Li :

split(µ, x) > i. Note that i < j implies that any key in Lj could also have
been in Li. Also note that all keys in Lk−1 have the same value as µ.
Using a priority queue from Lemma 7.1, we keep track of which of the lists
L0, . . . , Lk−1 has smallest first key. This key is then the smallest of all
the keys in the lists, so µL = min

⋃
i Li = mini{minLi} is computable in

constant amortized time.
C.3. Some buckets B0, . . . , Bk−1. Every key x ∈ Bi has split(x, µ) = i. Thus

every key x in
⋃
iBi fits in a unique bucket Bi; namely Bsplit(x,µ).

The keys in Bi are stored in a monotone priority queue from Theorem 3.1
with (w/k)-bit key and w-bits of information. Each keys x ∈ Bi is entered
as the pair (x〈i〉, x). That is, in Bi, the original keys are only ordered with
respect to character i.

C.4. The maximum index imax of a nonempty Bi. This is done using a single
word α. In α, we set bit w − 1 − i if and only if Bi is nonempty. Then
imax = expo(α).

Above it is understood that each key in Q is only represented once, either as the
minimum key µ, or in one Li, or in one Bi.

7.4. Implementing find-min and insert. As mentioned above, find-min is
trivially implemented in constant time by returning the value of µ. Concerning inser-
tions, since the priority queue is monotone, an insertion cannot change the minimum
key µ, and hence an insertion cannot misplace any key currently in the queue. The
implementation is therefore straightforward.

Algorithm D. insert(x,Q)
D.1. If x = µ, add x to Lk−1.
D.2. If x �= µ then
D.2.1. i := split(x, µ).
D.2.2. insert((x〈i〉, x), Bi).
D.2.3. Set bit w − 1− i in α (cf. C.4).
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7.5. Implementing delete-min. In order to implement delete-min, we need
to find the current second smallest key µ′ in Q. Note that in case of multiplicities,
the second smallest key may have the same value as µ.

Lemma 7.3. Let µB be the smallest key in
⋃
iBi. Then µB is in Bimax and if

(a, x) = find-min(Bimax
), µB〈0, . . . , imax〉 = µ〈0, . . . , imax − 1〉a.

Proof. By (7.1), for all i < imax, maxBimax < minBi. Further, since the keys in
Bimax agree on characters 0, . . . , imax − 1, the smallest key in Bimax must minimize
character imax.

Let µB , and a be as defined in the above lemma. Further, let µL be the minimum
key over all lists Li. Then the current second smallest key µ′ is the smaller of µB and
µL, or either if µB = µL. From C.2 we know that µL = mini{minLi} is available in
constant time. On the other hand, µB is not automatically available. However, by
Lemma 7.3, µB〈0, . . . , i〉 = µ〈0, . . . , imax〉a, where µ, imax, and a are all available in
constant time. That is, we know µB〈0, . . . , imax〉.

We now divide in cases depending on whether or not µL〈0, . . . , imax〉 <
µB〈0, . . . , imax〉.

Suppose µL〈0, . . . , imax〉 < µB〈0, . . . , imax〉. Then µ′ = min{µB , µL} = µL.
Hence we delete µL from the list Li it came from and set µ := µL.

We need to argue that replacing µ with µL maintains for all x ∈ Li : split(µ, x) >
i and for all x ∈ Bi : split(µ, x) = i for i = 0, . . . , k−1. In the argument, µold denotes
the old value of µ.

To see that for all x ∈ Li : split(µ, x) > i is maintained, note that for any x, y, z,
x ≤ y ≤ z implies split(x, z) ≤ split(y, z). Since µL was the second smallest key in
the queue, it follows that replacing µ with µL can only increase split(µ, x) for the
remaining keys x. Hence the replacement maintains for all x ∈ Li : split(µ, x) > i.

We will now argue that for all x ∈ Bi : split(µ, x) = i is maintained for i =
0, . . . , k−1. Since µL is strictly smaller than all keys in theBi, by (7.1), split(µL, µ) ≥
imax. Hence µL〈0..imax − 1〉 = µold〈0..imax − 1〉, so split(µ, x) = i is preserved
for i < imax. It follows for i < imax that for all x ∈ Bi : split(µ, x) = i is
maintained. Consider any x ∈ Bimax

. Then x〈0..imax − 1〉 = µold〈0..imax − 1〉 =
µL〈0..imax − 1〉. Moreover, x〈0..imax〉 ≥ µB〈0..imax〉 > µL〈0..imax〉, so we conclude
that split(µL, x) = i, as desired. Since Bi = ∅ for all i > imax, we conclude that for
all x ∈ Bi : split(µ, x) = i is maintained, for i = 0, . . . , k − 1, as desired.

Suppose µB〈0, . . . , imax〉≤µL〈0, . . . , imax〉. Then µ′〈0, . . . , imax〉=µB〈0, . . . , imax〉.
Further, we have the following key lemma.

Lemma 7.4. If µB〈0, . . . , imax〉 ≤ µL〈0, . . . , imax〉, Limax = ∅.
Proof. Suppose for a contradiction that there is a key x ∈ Limax . By definition

(cf. C.2), split(x, µ) > imax. However, µ ≤ µL ≤ x, so by (7.1), split(µL, µ) >
imax. Hence µL〈0, . . . , imax〉 = µ〈0, . . . , imax〉. Since µ is the smallest key in Q and
split(µB , µ) = imax, this contradicts µB〈0, . . . , imax〉 ≤ µL〈0, . . . , imax〉.

Since Limax = ∅ is empty, we can now extract the set X of all keys x from
Bimax

with x〈imax〉 = a, sort S, and make S the new sorted list Limax
. Since

µ′〈0, . . . , imax〉 = µB〈0, . . . , imax〉 = µ〈0, . . . , imax − 1〉a, all keys x in Limax satisfy
split(x, µ′) > imax. Now, µB is simply the first key in Limax

, so delete-min is
implemented, setting µ to the smaller of µB and µL, deleting µ from the list Li
it is in.

We need to argue that we have maintained for all x ∈ Li : split(µ, x) > i and
for all x ∈ Bi : split(µ, x) = i for i = 0, . . . , k − 1. Let µold and be the old value of
µ. Further, we have µ′ denoting the new value of µ. We have already argued that for
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all x ∈ Limax
: split(µ′, x) > imax, and the rest of the argument follows the same

lines as in the previous case of µL〈0, . . . , imax〉 < µB〈0, . . . , imax〉. First, since µ′ was
the second smallest key, split(µ, x) can only increase for the remaining keys, so for
all x ∈ Li : split(µ, x) > i is preserved for i �= imax.

It remains to argue that for all x ∈ Bi : split(µ, x) = i is maintained for
i = 0, . . . , k − 1. Since µ′〈0..imax〉 = µB〈0..imax〉, and split(µB , µold) = imax,
µ′〈0..imax − 1〉 = µold〈0..imax − 1〉. Hence for all x ∈ Bi : split(µ, x) = i is main-
tained for i < imax. However, all remaining keys x in Bimax

have x〈imax〉 > a,
so split(µ′, x) = imax, as desired. Hence, we conclude that for all x ∈ Bi :
split(µ, x) = i is maintained for i = 0, . . . , k − 1. This completes our proof that
delete-min is implemented correctly.

The above of description delete-min is turned into pseudocode as follows.
Algorithm E. delete-min(Q)
E.1. µL := min

⋃
h Lh. Here min ∅ =∞ and split(µ,∞) = 0 for µ <∞.

E.2. imax := expo(α) (cf. C.4).
E.3. (a, x) := find-min(Bimax).
E.4. If µ〈0, . . . , imax − 1〉a ≤ µL〈0, . . . , imax〉 then
E.4.1. loop
E.4.1.1. Limax := Limax ∪ {x}.
E.4.1.2. delete-min(Bimax

).
E.4.1.3. if Bimax = ∅, unset bit w−1− imax in α (cf. C.4) and exit the loop.
E.4.1.4. (b, x) := find-min(Bimax

).
E.4.1.5. if b > a, exit the loop.
E.4.2. Sort Limax .
E.4.3. µL := min{µL,minLimax}.
E.5. µ := µL.
E.6. Delete µL from its list.
Above we maintain the priority queue spending constant amortized time per

insert or delete-min operation plus sorting. Each key participates in exactly one
sorting; namely when it is transferred from Bimax to Limax . Thus sorting is only done
for disjoint subsets of the keys, and all keys sorted are current keys in the queue.
This completes the proof of Theorem 1.4 except for the remarks on a variant us-
ing only standard AC0 operations. For s(n) the per-key cost of sorting n keys and
logg n = log n log log n, it was claimed that we could support insert and delete-min

in O(
∑logg∗n
i=0 s(logg(i)n)) amortized time.

The only part of our construction that is not implementable with standard AC0

operations is a priority queue QL from Lemma 7.1, which was used to maintain the
smallest of the minima of the lists Li (cf. C.2). There are only k = logg n such lists Li,
so in order to get the claimed bound, it suffices to maintain their minima recursively.
Unfortunately, the QL is not immediately monotone even though the overall priority
queue is monotone. The problem is in delete-min if we pass the condition of step
E.4 and create a new list Limax . If µB < µL, the new list Limax will have minimum
µB which is strictly smaller than the previous minimum µL of QL.

To preserve monotonicity, note that we do not need to know µL if
µ〈0, . . . , imax − 1〉a ≤ µL〈0, . . . , imax〉 (cf. E.4). Set µ−B := µ〈0, . . . , imax − 1〉a �
(w − imax − 1). Then µ < µ−B ≤ µB . Before deleting µ from QL, we insert µ−B .
Suppose µ−B becomes the minimum after µ is deleted. Then we pass the condition of
step E.4, and the new minimum µB of Limax is not smaller than µ−B , so monotonic-
ity is respected. If µ−B does not become the new minimum after deleting µ, we do
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not pass the condition of step E.4. Then µ−B is just skipped whenever it comes out.
Here we refer to the methods described in section 2.3. This completes the proof of
Theorem 1.4 including the case of standard AC0 operations.

8. Getting constant cost decrease-key. In this section, we want to prove
the statement of Lemma 1.7:

Provided a monotone/unrestricted basic priority queues for up to
f(n) = Ω(log2 n), f(n) = O(n), keys supporting find-min, insert,
and delete-min in constant amortized time, there is a monotone/
unrestricted priority queue with capacity n, supporting the operations
find-min, insert, and decrease-key in constant amortized time,
and delete in time O(log n/ log f(n)). The reduction is determin-
istic and uses linear space, and it can be implemented with standard
AC0 operations.

The result of Lemma 1.7 is essentially achieved by Fredman and Willard’s AF-heaps
[18, section 2.2], except that the AF-heaps are not concerned with monotonicity. As
in [18], we shall refer to the small constant cost priority queues from the assumption
of the lemma as atomic priority queues. By Lemma 2.3, we can assume that atomic
priority queues support general deletions of arbitrary keys, also at amortized constant
cost. Below we briefly repeat the construction of AF-heaps, referring the reader to [18,
section 2.2] for further explanations. The emphasis in our presentation is to ensure
that if the overall priority queue is monotone, then so are all involved atomic heaps.

The keys in the overall priority queue Q are distributed over B-trees with B =
f(n)/ log n. Here, a B-tree is a rooted tree where all leaves are on the same depth
and where the degree of each internal node is between B/2 and B. Since the to-
tal number of keys is n, the depth of any involved B-tree is O(log n/ logB). Since
f(n) = Ω(log2 n), f(n) = Ω(

√
B), and hence the maximal depth is O(log n/ logB) =

O(log n/ log f(n)), which is the claimed cost of deletions.

The keys are placed in heap order meaning that the keys get smaller as we get
closer to the root. Thus, the minimum key is among the roots of the trees. There will
be at most B trees of each possible height. Since the maximal height isO(log n/ logB),
the maximal number of trees is O(B log n/ logB) = O(B log n) = O(f(n)). An atomic
priority queue, called the “root queue,” can therefore maintain the minimum key
among the roots, which in turn is the minimum key in the priority queue. Further,
at each internal node, we have an atomic priority queue, called the “children queue,”
maintaining the smaller key among its ≤ B = O(f(n)) children.

In order to implement insert, decrease-key, and delete, we will temporarily
relax the requirements to how many keys there are in the different priority queues.
Also, we will temporarily allow some node in a B-tree to be empty in the sense of
having no key associated with it.

insert(x,Q). Create a single node tree containing x, adding x to the root queue.
Since the root queue always contains the smallest key in Q, we are not violat-
ing monotonicity of the root queue if the overall priority queue is monotone.

delete(x,Q). If x is a leaf, we just delete x. Otherwise, we replace x by its smallest
child y, and then, recursively, we delete y from where it was. Since y ≥ x, we
are sure to avoid violating monotonicity if we insert y into the children queue
of the parent of x before we delete x. Above, if x was a root, the children
queue of its “parent” is understood to be the root queue.

decrease-key(x, d,Q). First, if x is not a root, cut x from its parent, deleting x from
the children queue of its parent. Now the subtree of x is an independent tree
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with root x, and then x is added to the root queue. If x is not a root, x is
already in the root queue. Now we replace x by x−d in the root priority queue.
Since the root queue always contains the smallest key in Q, monotonicity of
the root queue is not violated if Q is monotone.

The above operations may result in too many trees, or in some internal node having
< B children. As long as any of these problems appear, we repeat.

(i) Suppose at some stage we get B or more trees of the same height h. We then
collect a set F of B such trees and remove all but the smallest root x in F
from the root queue. Next we create a new tree T . Its root is a new node v
with the same value as x, and the subtrees under v are the trees in F . Then
T is a B-tree of height h + 1. The root v already has its value in the root
queue, and the roots of F are collected in children queue under v. Finally,
we perform a delete(v,Q), getting rid of the extra copy of x.

(ii) If at some stage, some internal key x gets < B/2 children, we first cut all the
children from x. The subtrees of the children are now independent, and the
children are moved from priority queue at x to the root queue. Next, if x is
not a root, we cut x from its parent, making x a single node tree, and move
x from the priority queue at its parent to the root queue.

Above, we always apply (i) before applying (ii). Thereby, we will never get more
than 3B/2 trees of any given height. To see the efficiency of AF-heap, consider the
potential function Π = τ + 2γ where τ is the number of trees in Q and γ is the sum
over all internal nodes v of B − d(v), where d(v) is the degree of v.

Now, insert(x,Q) creates a single node tree x in constant time. This incre-
ments τ by one while γ is unchanged since x is a leaf. Thus the amortized cost of
insert(x,Q) is O(1), as desired.

Calling delete(x,Q) takes time proportional to the height, which is
O(log n/ log f(n)). The only structural change is that some leaf is deleted, increasing
γ by 1. Hence the amortized cost of delete(x,Q) is O(log n/ log f(n)), as desired.

When calling decrease-key(x, d,Q), structurally, we cut x from its parent. This
turns the subtree rooted in x into a new tree whose root x is decreased by d and added
to the root queue. All this takes constant time. Since we decrease the degree of x’s
original parent, we increase γ by one. Further, the creation of a new tree increases
τ by 1. Summing up, the total amortized cost of decrease-key(x, d,Q) is O(1), as
desired.

Finally, we need to argue that (i) and (ii) have no associated cost. Now (i) takes
O(log n/ log f(n)) time as it deletes v. However, structurally, it decreases the number
τ of trees by B − 1 = Ω(f(n)/ log n), thus paying for the time spent. Note that
the new internal node v does not change γ since it gets B children. Hence γ is only
increasing by one as part of the deletion.

Clearly (ii) takes O(B) time to execute. It may create as many as B/2 new trees,
thus increasing τ by B/2. On the other hand, the change in γ around x is a decrease
by ≥ B/2 − 1, so the change in Π is a decrease of B/2 − 2 = Ω(B), paying for the
time spent on (ii).

Referring the reader to [18, section 2.2] for further details, this completes the
proof of Lemma 1.7.
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Abstract. We consider the problem of online robot navigation in an unfamiliar two-dimensional
environment, using comparatively limited sensing information. In particular, the robot has local sen-
sors to detect the proximity of obstacles and permit boundary-following, and it is able to determine
its current distance and relative bearing to its final destination (via distance queries). By contrast,
most previous algorithms for online navigation have assumed that the robot knows its exact current
position. Because determining exact location is prone to error that accumulates over time, the use-
fulness of such algorithms may be limited. In contrast, distance queries give less information, but
the accuracy of each query is independent of the number of queries, which means distance queries
can be more robust. We formally define our model and give new, efficient navigation algorithms and
lower bounds for this setting.
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1. Introduction. We consider the problem of navigating a robot from its ini-
tial position to a target destination in a two-dimensional (2D) environment partially
obstructed by initially unknown obstacles of arbitrary shapes. We assume that the
robot is equipped with two kinds of abstract sensors: (1) local sensors, which allow it
to detect the proximity of an obstacle and travel along the boundary of an obstacle,
and (2) range sensors, which allow it to determine the distance of its current position
from the target destination and its relative bearing to the target.

Previous theoretical work on navigation has generally assumed that the robot has
access to the (x, y) coordinates of both the target destination and the robot’s current
position. In practice, an estimate of the robot’s current position is usually obtained
by odometry, i.e., by integrating a speed estimate over time. This means that error
in the position estimate steadily accumulates as the robot travels. The difficulty of
determining exact position has recently led robotics researchers to look for navigation
algorithms that do not need exact global position but use weaker information that can
be determined without cumulative error. In this connection, Taylor and Kriegman [8]
introduced the idea of distance queries, based on the capabilities of their robot, RJ.

The general question of how much and what kinds of sensory information a robot
needs for various tasks constitutes an exciting area of research; the main contribu-

∗Received by the editors November 14, 1997; accepted for publication (in revised form) April
27, 1999; published electronically April 25, 2000. A preliminary version of this paper appeared in
Proceedings of the 28th ACM Symposium on the Theory of Computing, Philadelphia, 1996.

http://www.siam.org/journals/sicomp/30-1/33005.html
†Department of Computer Science, Yale University, P.O. Box 208285, New Haven, CT 06520-8285

(dana.angluin@yale.edu). This research was partially supported by National Science Foundation
grants CCR-9213881 and CCR-9610295.
‡AT&T Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 09732-0971

(jeffw@research.att.com). This research was done while this author was at the Department
of Computer Science, Yale University.
§Amiable Technologies, Inc., International Plaza Two, Suite 625, Philadelphia, PA 19113

(wzhu@amiableworld.com). This research was done while this author was at the Department of
Computer Science, Yale University, and was partially supported by ARPA/ONR contract N00014-
93-1-1235.

110



ROBOT NAVIGATION WITH DISTANCE QUERIES 111

tion of this paper is to explore the implications for online navigation of replacing
the assumption of exact position by the weaker assumption of distance queries. An-
other contribution of this paper is the definition of our model, the distance query
model, which we now describe sufficiently to state our results. (More details appear
in section 3).

The boundary of an obstacle is represented as a simple closed curve in R2 of finite
length, with two additional restrictions given below. Each obstacle has an obstructed
region, which for normal obstacles is the interior and for a room wall is the exterior.
This allows us to model navigation inside a closed room. An obstacle is the union of
its boundary and its obstructed region.

A scene consists of a nonzero finite number of nonintersecting obstacles, a start
point S, and a target point T . Free space, the set of points that a robot may reach,
consists of all points not in the obstructed region of any obstacle. The boundaries of
obstacles are in free space. Open space consists of all points not contained in obstacles.
The boundaries of obstacles are not in open space. S is assumed to be in free space,
but T may be in free space (reachable) or not (unreachable.) We distinguish between
two situations: the indoor setting, in which the scene may contain a room wall, and
the outdoor setting, in which there is no room wall and the robot is effectively located
on an unbounded plane.

We place two restrictions on obstacles. The first is that any line segment intersects
a given obstacle boundary in a finite number of points and segments. The second is
that a clockwise (or counterclockwise) traversal of an obstacle boundary consists of
a finite number of maximal segments, each of which is of monotonically increasing,
monotonically decreasing, or constant distance to the target. These segments intersect
only at their endpoints. The points at which distinct segments intersect are break
points. The number of these segments is the complexity of the obstacle. The parameter
n is the maximum complexity of any obstacle in the scene; n is not known to the robot
but is used in quantifying the performance of our navigation algorithms.

The robot is modeled as a point. The sensing and action capabilities of the robot
are precisely defined in section 3. Informally speaking, there are two actions available
to the robot: (1) It may travel toward T through open space until it reaches T or
hits an obstacle boundary. When the robot hits an obstacle boundary, it learns its
distance to T . (2) It may follow an obstacle boundary in clockwise or counterclockwise
direction until it reaches T or a break point. At a break point, the robot learns its
distance to the target and whether the directions toward and away from T are blocked.
If the direction to T is unblocked, the robot may choose action (1) or (2). Otherwise,
it may choose action (2) to continue traversing the boundary of the obstacle in either
direction.

We consider four general kinds of problems related to navigation; in each, the
robot is started at S, executes some sequence of legal actions, and must eventually
halt.

• Target reachability. The robot must correctly declare T reachable or not.
• Circumnavigation. S is on the boundary of an obstacle, and the robot is
required to visit every point on that boundary.
• General navigation. The robot must halt at T if it is reachable; otherwise it
must halt and declare T to be unreachable. Clearly a solution of the general
navigation problem also solves the target reachability problem.
• Reachable-target navigation. T is in free space. The robot must halt at T .

We measure the performance of a navigation algorithm by comparing the distance
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traveled by the robot to the sum of the perimeters of the obstacles in the scene. In
particular, the excess distance traveled by a robot in a scene is the length of its path
minus the straight-line distance from S to T . The excess distance ratio of a navigation
algorithm with respect to a scene is the ratio of the excess distance traveled by the
robot to the sum of the perimeters of the obstacles in the scene. This ratio measures
how much the navigation algorithm has to retrace the boundaries of obstacles in the
course of getting from S to T .

The excess distance ratio of a navigation algorithm is f(n) if, for every n, the
supremum over all scenes of complexity n of the excess distance ratios is f(n). Lumel-
sky and Stepanov give a construction that implies the following result for the distance
query model.

Theorem 1.1 (Lumelsky and Stepanov [4]). For any deterministic algorithm for
reachable-target navigation in the outdoor setting, the excess distance ratio is bounded
below by 1 for all n ≥ 4.

We present the following new results for the distance query model.
1. If T may be unreachable, then no deterministic algorithm can solve either

the target reachability, the circumnavigation, or the general navigation problems.
2. There is a deterministic algorithm for reachable-target navigation in the in-

door setting with an excess distance ratio of O(log n/ log log n).
3. There is a matching lower bound of Ω(logn/ log log n) for a restricted class

of deterministic algorithms for reachable-target navigation in the indoor setting.
4. There is a deterministic algorithm for reachable-target navigation in the out-

door setting with an excess distance ratio bounded by 3. (Compare the lower bound of
1 for this problem.) A variant of this algorithm solves the circumnavigation problem
in the outdoor setting when the target is reachable.

Our navigation and circumnavigation algorithms for reachable-target navigation
can be used in the general case, but they will fail to halt if the target is unreachable. It
is interesting to note that our algorithms will still work if the distance queries return
not the exact distance to the target, but values that preserve the linear ordering on
distances. This is potentially useful in practice, as discussed below.

2. Related results. Previous theoretical research on online robot navigation
has progressed in at least two research communities: the online competitive anal-
ysis community [1, 2, 6] and the theoretical robotics community [3, 4, 5, 8]. The
competitive analysis community has generally considered various restricted types of
polygonal obstacles and has measured the performance of a navigation algorithm by
the ratio of the distance traveled by a robot using that algorithm to the length of the
shortest obstacle-avoiding path from S to T . The theoretical robotics community has
considered obstacles of essentially arbitrary shape and measured the performance of
a navigation algorithm by the excess distance ratio, defined above. Since our work
continues this latter line of research we now briefly sketch the background.

Lumelsky and Stepanov [3, 4] began this line of research, giving navigation algo-
rithms for a robot with local sensors and access to its exact current position. Their
algorithm, BUG1, navigates directly toward T in free space until an obstacle bound-
ary is detected. It then follows the obstacle boundary until it circumnavigates the
obstacle, keeping track of the minimum distance to T among points on the boundary.
When the robot completes the circumnavigation, it follows the boundary back to one
of the points at minimum distance to T and resumes navigating directly toward T in
free space.

As described, BUG1 achieves an excess distance ratio bounded by 2 for general
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navigation in the outdoor setting in Lumelsky and Stepanov’s setting. Assuming
the additional capability of keeping track of path lengths, a refinement of BUG1
achieves an excess distance ratio bounded by 3/2, by taking the shorter direction on
the boundary back to the departure point. Lumelsky and Stepanov also give a lower
bound of 1 on the excess distance ratio for deterministic navigation algorithms in their
setting, as mentioned above.1

Taylor and Kriegman [8], addressing the practical difficulty of determining a
robot’s exact position, consider a model in which the robot’s global sensors can deter-
mine only distance and relative bearing to the target.2 On their experimental mobile
robot, RJ, this information is provided by a vision system which tracks the target as
the robot moves. The vision system gives quite accurate distance data using known
properties of the target, and the error in the answers is not cumulative. The vision
system can give a linear ordering of points by distance simply by comparing the size
of the target image at each point. The local sensors are implemented primarily with
sonar, which gives a localized map of the free space around the robot.

Taylor and Kriegman give an adaptation of Lumelsky and Stepanov’s BUG1 al-
gorithm for this setting. Their algorithm, however, requires a subroutine to solve the
circumnavigation problem, and they leave open the question of whether such a subrou-
tine can actually be implemented with local sensors and distance queries. Assuming
that the subroutine both exists and traverses the boundary of an obstacle exactly
once, Taylor and Kriegman show that their algorithm achieves an excess distance
ratio of 2 for general navigation in open space. They use the navigation algorithm as
a subroutine in an exploration procedure to find all the recognizable targets in the
environment.3

The existence of a circumnavigation subroutine is crucial to Taylor and Krieg-
man’s version of BUG1. One goal of our paper is to answer some of the open problems
implied by their work: Under what conditions do local sensors and distance queries
suffice to solve the circumnavigation problem? When they don’t suffice, and hence
Taylor and Kriegman’s algorithm is unusable, is there some other solution to general
navigation with distance queries?

We remark that if the robot has an accurate compass in addition to distance data,
then exact position can be recovered. Magnetic compasses are subject to distortions
inside buildings due to metals in the construction, and inertial compasses are quite
expensive. Therefore, the use of compasses is generally considered impractical for
indoor navigation. Nevertheless, Lumelsky and Tiwari [5] examined the use of pure
directional information, assuming a robot with an on-board compass and relative
bearing to the target in addition to local sensors but no distance data. They give a
navigation algorithm for this setting with an Ω(n) excess distance ratio.

3. The distance query model. We propose a model of navigation in the plane
in which an obstacle is defined as the interior or exterior of a simple closed path with
some mild restrictions. We hope that the model is intuitive, but we also provide a
careful theoretical development of its properties because we discovered subtle pitfalls

1Their claim that it holds also for randomized algorithms is not proved.
2Differential GPS gives (x, y) position without accumulated error. However, Taylor and Kriegman

state that indoor differential GPS accuracy is still insufficient for typical robot navigation problems.
3Their model also permits some obstacles to obscure the view of the target, so that in certain

regions of space no distance data is available. Their navigation algorithm still works in this setting,
under additional assumptions about the regions of obscuration. Our algorithms for navigation within
a room can also be modified to work in this setting. See section 8 below for further discussion.



114 DANA ANGLUIN, JEFFERY WESTBROOK, AND WENHONG ZHU

and problems in our earlier attempts to formalize the model, particularly in proving
Theorems 4.1 and 7.4.

The environment is an infinite 2D plane, R2. We follow Newman’s treatment
of the topology of the plane [7]. Recall that S and T denote the start and target
positions, respectively. Without loss of generality, we may assume the target T is at
the origin. For any two distinct points P and Q in R2, PQ denotes the line segment
connecting P and Q, and |PQ| denotes the distance between P and Q.

Definition 3.1. A path in R2 is a continuous mapping p of some closed interval
[0, x] ∈ R1 to R2. A closed path is a path such that p(0) = p(x). A simple closed path
is a closed path that intersects itself only at p(0) = p(x). A simple closed path is also
called a Jordan curve.

It is convenient to use polar coordinates to specify paths, with the origin at the
target T and a particular ray from T specified for the measurement of angles. Path
p is specified by the pair of functions (r(t), θ(t)), t ∈ [0, x], where r(t) is the distance
of point p(t) from the origin and θ(t) is its counterclockwise angular displacement
in radians from the specified ray. The angular displacement of any point but the
origin is unique modulo 2π, but since we wish to assume that θ(t) is a continuous
function of t, we permit θ(t) to be outside the interval [0, 2π). We use the notation
(r1, θ1) ≡ (r2, θ2) to indicate that (r1, θ1) and (r2, θ2) denote the same point in the
plane.

3.1. Obstacles and scenes.
Definition 3.2. An obstacle boundary is a simple closed path of finite length

β : [0, 1] → R2. (We specify some additional conditions on an obstacle boundary
below.) By Jordan’s theorem, β divides the plane into two domains, one bounded and
the other unbounded (containing a point arbitrarily far from the origin). The bounded
region is called the interior and the unbounded region is called the exterior. Note
that Definition 3.1 implies a direction on an obstacle boundary, given by increasing
t. We will assume that the boundary curve β = (r(t), θ(t)) is parameterized so that
increasing t corresponds to a counterclockwise traversal of the boundary path.

Definition 3.3. An obstacle is a region Ob ⊂ R2 consisting of an obstacle
boundary together with an obstructed region, obs(Ob), which is either the interior, in
the case of a normal obstacle, or the exterior, in the case of a room wall. POb denotes
the length of the boundary of Ob.

Our definition of obstacle precludes holes without loss of generality. In an actual
application the boundary may come from a physical object that contains arbitrarily
many holes, but since the robot cannot physically reach any part of the region inside
the obstacle boundary, it cannot distinguish this from an obstacle without holes.

Definition 3.4. A (proper) boundary segment of an obstacle with boundary
β : [0, 1] → R2 is defined to be β([a, b]) for any nonempty interval [a, b] ⊂ [0, 1], or
β([a, 1]) ∪ β([0, b]), where 0 < b < a < 1.

Definition 3.5. Let O denote a set of nonintersecting obstacles. The obstructed
space with respect to O is the union of the obstructed regions of all the obstacles in
O. The free space with respect to O is the complement of the obstructed space with
respect to O. Free space therefore includes the obstacle boundaries. The open space
with respect to O is the complement of O. Open space therefore excludes the obstacle
boundaries.

Definition 3.6. A scene consists of a finite set of nonintersecting obstacles O,
a start position S in free space, and a target position T that may be located anywhere,
including in the obstructed region of an obstacle. Note that a scene may contain at
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most one room wall.

Restrictions on obstacles. As we have indicated, the boundary of an obstacle is a
simple closed curve of finite length with some additional restrictions. Previous papers
have generally assumed obstacle boundaries to be piecewise smooth. We instead
require the following two conditions, which are primarily intended to keep the bound-
aries sufficiently well behaved to allow us to speak reasonably of an “algorithm.”

1. The intersection between an obstacle boundary and a line segment can be
expressed as the union of a finite number of closed intervals. (A point is a closed
interval of length zero.)

2. In any scene, each obstacle boundary can be divided into a finite number of
maximal segments such that each of them is of monotonically increasing, monotoni-
cally decreasing, or constant distance from T . The segments intersect only at their
endpoints.

Definition 3.7. A local minimum or maximum of distance to T on a bound-
ary segment is a point closest to or furthest from T, respectively, within some small
neighborhood of the point.

Definition 3.8. Each point where distinct segments of increasing, decreasing, or
constant distance intersect is called a break point. A break point is a local minimum
or maximum, depending on the precise types of intersecting segments.

Definition 3.9. The complexity of the obstacle is the number of break points on
its boundary.

Lemma 3.10. Suppose P and Q are distinct points in an arbitrary scene. The
line segment PQ can be partitioned into a finite sequence of maximal intervals, each
of which is contained entirely in one of

1. the obstructed region of exactly one obstacle,
2. the boundary of exactly one obstacle, or
3. open space.

Proof. Let a segment PQ be given. By the conditions on obstacle boundaries
the intersection of PQ and each obstacle boundary is the union of a finite number
of closed intervals. Since there are finitely many obstacles, and they are pairwise
disjoint, the intersection of PQ and all the obstacle boundaries is the union of a finite
number of closed intervals. If we consider the endpoints of these intervals in order
along the segment from P to Q, the open intervals between two consecutive endpoints
must be contained in the boundary of a single obstacle or contained in open space.
The lemma follows.

Note that in the relative topology of the segment PQ, intervals of types (1) and
(3) are open, and intervals of type (2) are closed. Hence intervals of types (1) and (3)
can be adjacent to only intervals of type (2) and vice versa.

Definition 3.11. In the sequence of intervals just described, a boundary crossing
is a triple of intervals of types (1), (2), and (3) in sequence, or (3), (2), and (1) in
sequence. That is, there is a transition from the obstructed region of an obstacle to
open space, or vice versa, crossing the boundary of that obstacle. Note that because of
the alternation required, a segment with both ends in obstructed space (or both ends
in open space) must have an even number of boundary crossings.

Definition 3.12. For points P 
= Q, the PQ-probe is the subsegment PQ′ of
PQ, obtained from the partition described above by starting at P and taking the first
interval if it is of nonzero length or by taking the union of the first two intervals if
the first one is of length zero (that is, just a single point).
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Fig. 3.1. A scene with a room wall and three normal obstacles. Point A is blocked-away and
unblocked-toward. B is both blocked-toward and blocked-away. C, D, E, and F are all break points:
C and E are local maxima, D and F are local minima, and F is the closest point of the obstacle to
T.

We note that the PQ-probe is contained either in free space or (except possibly
for the point P ) in the obstructed region of one obstacle. This is clear if the first
interval in sequence from P is of nonzero length; otherwise, the point P must be
on the boundary of an obstacle and the following interval is contained either in the
obstructed region of that obstacle or in open space. If the PQ-probe is contained
in free space, we say it is free; otherwise, we say it is obstructed. The PQ-probe is
thus an idealization of a sensor probe which determines if a robot at point P has an
unobstructed path starting in the direction of Q.

Definition 3.13. A point P 
= T is unblocked-towards T if the PT -probe is
free. Point P is blocked-towards T if the PT -probe is obstructed.

Definition 3.14. Let P 
= T and let Q 
= P be any point such that P ∈ QT . P
is unblocked-away from T if the PQ-probe is free. Point P is blocked-away from T
if the PQ-probe is obstructed.

Informally, the robot may move toward the target from a point that is unblocked-
towards, and it may move away from the target from a point that is unblocked-
away. Although none of our algorithms moves directly away from T, the open space
navigation algorithm in section 7 uses the information of whether that direction is
blocked or unblocked. Figure 3.1 gives examples of the definitions.

3.2. The robot.

Definition 3.15. A robot is a point-like automaton with the following acting
and sensing capabilities:

1. move-to-T(): Move directly along a ray toward T through free space until
the robot reaches T or arrives at a point that is blocked-towards. In the latter case,
the robot is said to collide with the obstacle. This function returns a ground track
entry, defined below.

2. follow-boundary(DIR): Follow the boundary of an obstacle in a clockwise or
counterclockwise direction, according to DIR, until the robot reaches T or a break
point. DIR is “RIGHT” or “CCW” to indicate a counterclockwise direction and
“LEFT” or “CW” to indicate a clockwise traversal. This function returns a ground
track entry.
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A point at which the robot collides with an obstacle is called a hitpoint. By defi-
nition, a hitpoint must be blocked-towards. The robot’s ground track is the sequence
of ground track entries generated during its travels. A ground track entry contains
the following:

1. the distance to the target from the current hitpoint or break point;
2. a field indicating whether the entry was generated by a hitpoint, a local

maximum break point; a local minimum break point, or the start point S;
3. a bit indicating whether the point is blocked-towards or unblocked-towards;
4. a bit indicating whether the point is blocked-away or unblocked-away.

Our model is a particular choice of discretization of the control of the robot for
navigation tasks. We assume a lower-level reactive control system using the sensors
and actuators of the robot that enable it to travel toward the target in free space, to
detect the proximity of an obstacle, and to follow the boundary of an obstacle in either
direction to a local minimum or maximum of distance to the target. After colliding
with an obstacle, the robot can turn right to follow the boundary in a counterclockwise
direction or turn left to follow clockwise. Since there may be segments of the boundary
of constant distance to the target, we assume that the robot will traverse these to
their endpoints (that is, to break points.)

At a hitpoint or break point, the robot receives information about its current
situation (summarized as a ground track entry) and decides upon its next action. We
assume that the global sensors give distance to the target and also the relative bearing
of the target. Combining this with the local sensors, we assume the robot can detect
whether the directions straight toward and away from the target are immediately
obstructed by obstacles. In the case of Taylor and Kriegman’s robot, RJ, the local
sensors are implemented by sonar, which in effect gives a localized map of the free
space around the robot. Thus, the information we assume to be available in a ground
track entry is empirically reasonable.

At the start of an execution, the robot receives an initial ground track entry de-
scribing the start point S. Each subsequent ground track entry is associated with
a particular point on the boundary of some obstacle in the scene. Multiple (indis-
tinguishable) ground track entries may be associated with the same boundary point.
(This happens, for example, if the robot circumnavigates an obstacle twice.)

Specification of the robot’s path. Let rp(k) denote the path traveled by the robot
up to the kth ground track entry. The path is specified as rp(k) = (ρk(t), ϑk(t)),
t ∈ [0, 1], where ρk(t) and ϑk(t) are functions defining the polar coordinates of the
points on the robot path. The parameter t is a nondecreasing function of real time, so
that as t increases the robot’s path is traversed in the forward direction. The actual
time taken by the robot and the speed at which the robot travels are irrelevant, since
we do not assume that the robot has sensors to measure these quantities.

Path rp(0) consists only of the start point, S. For k > 0, path rp(k−1) is a prefix
of path rp(k); path rp(k − 1) is extended to rp(k) as follows. Let Pk−1 be the point
that generated ground track entry k − 1. Either Pk−1 ≡ S or Pk−1 ≡ β(s), where β
is the boundary of some obstacle and s ∈ [0, 1]. We determine the subpath path, p′,
followed by the robot from Pk−1 to the next hitpoint or break point. If there is no
such next hitpoint or break point, then the robot does not halt and rp(k) is undefined.
Otherwise, path p′ is appended to rp(k− 1), and the result is reparameterized, giving
rp(k). The subpath p depends on the action of the robot after receiving ground track
entry k − 1.

Case 1. The robot executes follow-boundary(CCW). Let s′ be the minimum value
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such that s ≤ s′ ≤ 1 and β(s′) is a break point. Then p′ = β([s, s′]). If there is no
such s′, then let s′ be minimum such that 0 ≤ s′ ≤ s and β(s′) is a break point and
let p′ = β([s, 1]) ∪ β([0, s′]). If there is still no such s′, then rp(k) is undefined.

Case 2. The robot executes follow-boundary(CW). Let s′ be maximum such that
s ≥ s′ ≥ 0 and β(s′) is a break point. Then p′ = β([s′, s]). If there is no such s′,
then let s′ be maximum such that s ≤ s′ ≤ 1 and β(s′) is a break point and let
p′ = β([s′, 1])∪ β([0, s]). If there is still no such s′, then rp(k) is undefined. The path
p′ must be reparameterized so that p′(0) = β(s) and p′(1) = β(s′).

Case 3. The robot executes move-to-T(). If the robot is blocked-towards, then
p′ = ∅ and rp(k) = rp(k − 1). Otherwise, p′ is the segment of the inbound ray from
Pk−1 to the next hitpoint reached (or to T if the robot reaches T first).

3.3. Properties of scenes. In this section, some basic properties of scenes are
established.

Property 3.16. The distance between any two obstacles is positive.
Proof. This follows because the boundaries of obstacles are nonintersecting closed

and bounded sets.
Property 3.17. Other than T, every point is either unblocked-towards or blocked-

towards, and every point is either unblocked-away or blocked-away.
Proof. If P 
= T, then the PT -probe is either free or obstructed (see the remark

following Definition 3.12). Hence P is either unblocked-towards or blocked-towards
but not both. A similar argument applies to the blocked/unblocked-away case.

Property 3.18. Let Ob be an obstacle with boundary β. Either (a) all points on
β are equidistant from T or (b) β contains at least two break points: one at a point
at maximum distance from T and one at a point at minimum distance from T .

Proof. Suppose (a) is false, so that β contains two points P, Q such that |PT | <
|QT |. Then there are distinct points P ′ and Q′ on β at minimum and maximum
distance from T, respectively. Either P ′ is an endpoint of a maximal segment of
monotonically decreasing distance, in which case it is a break point by definition, or
it is in the middle of a segment of constant distance, in which case either endpoint of
the segment is a break point. A similar argument establishes the existence of a break
point at maximum distance from T .

Property 3.19. Let Ob be an obstacle not containing T with boundary β. Any
point P on β at minimum distance from T is unblocked-towards.

Proof. If P is on the boundary of an obstacle Ob, then the PT -probe is contained
either in the obstructed region of Ob or in open space. The former is impossible,
since otherwise PT must intersect Ob at a point besides P, implying P is not at
minimum distance to T . Thus, the PT -probe is free, implying that P is unblocked-
towards.

Property 3.20. Let Ob be a normal obstacle with boundary β. Any point P on
β at maximum distance from T is unblocked-away.

Proof. An argument analogous to that for Property 3.19 suffices.
Property 3.21. If the boundary of an obstacle Ob not containing T has a point

P that is blocked-towards, then it has a break point.
Proof. Since P is blocked-towards, the PT -probe, PT ′, must be contained in the

obstructed region of Ob except for P . Hence T ′T must intersect the boundary of Ob
at a point Q closer to T than P . Hence the boundary of Ob contains two points at
different distances from T, and we apply Property 3.18.

Property 3.22. Let Ob be a normal obstacle not containing T . Let P be a break
point on the boundary of Ob that is unblocked-towards and a local minimum. Then
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the PT -probe is contained in open space except for the point P .
Proof. Because P is unblocked-towards, the PT -probe is contained in free space

and must be either exterior to Ob except for the point P or contained in the boundary
of Ob, which means that there are points of the boundary of Ob arbitrarily close to
P that are closer to T than P . However, this would contradict the assumption that
P is a local minimum of distance to T .

Property 3.23. Let Ob be a normal obstacle not containing T, and let P be
a break point on the boundary of Ob that is unblocked-away and a local maximum of
distance to T . Let Q 
= P be any point such that P is in the segment QT . Then the
PQ-probe is contained in open space except for the point P .

Proof. The proof is analogous to the proof of Property 3.22.

4. The limits of distance queries. In this section we show that the circum-
navigation, target reachability, and general navigation problems cannot be solved by
deterministic algorithms. This shows that distance information is strictly weaker than
exact position information, because all these problems can be solved deterministically
if exact position information is available [3, 4].

These negative results are derived from a theorem, proved below, which states
that there is no deterministic algorithm which will successfully circumnavigate every
obstacle that contains the target in its interior. There is one obstacle that defeats every
algorithm: a circular obstacle boundary centered on the target. Once a robot hits
this obstacle and starts to follow the boundary in any direction, it never encounters
a break point, or indeed any point distinguishable from the hitpoint, and so never
halts. A similar statement is true for a circular room wall centered on T .

The case of a circle centered at T, however, is uniquely pathological in having
no break points; all other obstacle boundaries have at least two break points. One
might hypothesize therefore that navigation is possible as long as there are no such
pathological obstacles. We will show, however, that even if the obstacles are required
to have an arbitrarily large number of break points, any deterministic algorithm will
fail on some obstacle.

The intuition behind this result is as follows. Let Ob be some normal obstacle of
the desired complexity with T in its interior. Let β = (r(t), θ(t)) be the boundary
of Ob, t ∈ [0, 1], where the angle is taken with respect to T, and θ(0) = 0. Let A be
a deterministic circumnavigation algorithm, used to control a robot that is started
at position (r(0), θ(0)) = (x, 0). If A fails to circumnavigate Ob, then the desired
result is immediate. Suppose A circumnavigates Ob exactly once. Now consider the
curve β∗ = (r(t), θ(t)/2), which starts at angle 0 and stops at angle π. Since scaling
the angle does not affect distance, the curve β∗ contains the same sequence of local
minima and maxima, at exactly the same distances from T and with exactly the same
blocked/unblocked status, as the entire boundary of Ob. Therefore, if the robot is
started on β∗ at (r(0), θ(0)/2) = (x, 0), it will see exactly the same sequence of ground
track entries and will halt upon reaching point t = 1. We can close β∗ in any way (in
particular, with another copy of β∗) to get an obstacle Ob∗ which A will thus fail to
circumnavigate.

In general, the robot may go around the obstacle more than once, in one or both
directions. This can be dealt with by scaling the obstacle boundary more strenuously
and joining several scaled copies of it in a circle around T . Figure 4.1 shows an ex-
ample spiral-like obstacle and Figure 4.2 shows how six scaled copies of this obstacle
are combined. Thus, an algorithm that made five counterclockwise circumnavigations
of the obstacle in Figure 4.1 and then halted would not complete a circumnavigation
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Fig. 4.1. A spiral-like obstacle Ob. The target T is at (0, 0). Letting β denote the boundary
curve, a = β(0) = β(1) = (1, 0).
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Fig. 4.2. Obstacle Z(Ob, 6) constructed from the obstacle Ob of Figure 4.1. (The function Z is
defined precisely in the appendix.) The first scaled copy of the original boundary is shown in bold.
Letting β∗ denote this scaled curve, point a = β∗(0) = (1, 0) and b = β∗(1) = (1, π/3).

of the obstacle in Figure 4.2. In the appendix to this paper we formalize this trans-
formation and prove the indistinguishability of the robot’s ground track on the two
obstacles, which leads to a proof of the following result.
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Theorem 4.1. In the distance query model, if there may exist an obstacle whose
interior contains the target (either a normal obstacle with the target in its obstructed
region, or a room wall with the target in its complement), then there is no deterministic
algorithm for circumnavigation. Furthermore, there are arbitrarily complex obstacles
which any given deterministic algorithm fails to circumnavigate.

Corollary 4.2. In the distance query model, there is no deterministic algorithm
for target reachability.

Proof. We show that any algorithm A that solves target reachability must also
solve circumnavigation. Consider an obstacle Ob containing the target T, and suppose
we start A at some point on the boundary of T . Suppose A halts and declares T
unreachable but does not circumnavigate Ob. Then there is some nonzero segment of
the boundary of Ob, no point of which is traversed by A. Consider the obstacle Ob∗

in which that segment is replaced by an arbitrarily narrow passage that leads to T .
Since A never reaches any point on the segment, its behavior on Ob∗ will be the same
as on Ob, and in particular it will incorrectly declare the target unreachable.

5. Target-reachable navigation inside a room. For the remainder of this
paper we assume that the target is reachable. If the target is contained in the ob-
structed region of an obstacle, the algorithms we present will reach that obstacle but
will not halt.

In any instance of the navigation problem, the robot alternates between moving
toward T in free space and following an obstacle boundary searching for T or a possible
departure point, that is, an unblocked-towards break point from which it can head back
into free space. A point at which the robot heads back into free space is an actual
departure point. In general, an obstacle may have many possible departure points,
and making a good choice of actual departure points is the heart of a navigation
algorithm in this setting.

One strategy is to search in a fixed direction for the first possible departure point
and leave from there. A simple construction (adapted from Lumelsky and Stepanov)
forces this strategy to cycle indefinitely, repeatedly departing from an obstacle and
hitting it again. A variant requiring the actual departure point to be a local minimum
also cycles.

For example, in Figure 5.1, if the robot starts in the center interior of the U-
shaped obstacle, the nearest break points in either direction are the tips of the U. But
departing from those points leads the robot right back to the center of the obstacle.

Cycling is prevented if the robot always leaves from a monotone departure point,
that is, a possible departure point whose distance from T does not exceed the
distance from T of the preceding hitpoint. To formalize this, we define the class
MONOTONE of navigation algorithms that operate as follows. Initially the robot
executes move-to-T(). If any action ever returns a ground track entry at distance zero
from T, the robot halts, having reached T . Whenever move-to-T() returns a hitpoint,
the robot uses some sequence of follow-boundary(DIR) operations to search the ob-
stacle boundary, either halting at T or choosing some monotone departure point from
which to execute move-to-T() and leave the obstacle.

Lemma 5.1. Regardless of how the actual departure points are chosen, any algo-
rithm from the class MONOTONE reaches T after a finite number of actions.

Proof. If the robot moves straight to T without colliding with any obstacle, then it
reaches T . Suppose the robot collides with some obstacle. If T is not on the boundary,
then Properties 3.18 and 3.20 show that there is at least one monotone departure point
on the boundary, namely, a break point at the global minimum distance from T . If
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Fig. 5.1. After hitpoint, turn left or right and leave at the nearest break point. The robot never
escapes the cup.

T is on the boundary, then either there is a monotone departure point or the robot
must reach T .

Thus, if the robot never reaches T, it must do so by repeatedly colliding with ob-
stacles that have monotone departure points and departing from them. Let h1, d1, h2,
d2, . . . be the sequence of distance values of the robot’s position at each hitpoint and
subsequent actual departure point, ordered by time. By the definition of monotone
departure point, hi ≥ di. On the other hand, by the definition of unblocked-towards,
di > hi+1. Hence the departure point distances form a monotonically decreasing se-
quence. This implies that the robot can depart from a specific break point at most
once. But each obstacle has a finite number of break points, and there are a finite
number of obstacles.

We remark that if the robot starts on the boundary of a room wall consisting of
a circle centered at T, then there are no break points, which is why the first action of
the algorithm is to move toward T .

Perhaps the simplest algorithm in the class MONOTONE searches the bound-
ary in a fixed direction for the first monotone departure point. The construction in
Figure 5.2 shows that this strategy has excess distance ratio Ω(n).

On the other hand, a very good choice of a departure point is a break point at
the global minimum distance to T among all boundary points; this is the choice made
by Lumelsky and Stepanov’s BUG1 algorithm. If a robot departs from an obstacle at
such a point, it will never revisit the obstacle again, since any subsequent departure
point is some positive distance closer to the target, and there is no such point on Ob.
If the robot could solve the circumnavigation problem, it could guarantee to find and
depart from such a point. However, the results of section 4 show that deterministic
circumnavigation of a room wall is impossible. Hence the algorithms we develop in
this section do not attempt to circumnavigate objects but rather try to limit the
number of times an obstacle boundary will be revisited.

5.1. Algorithm 2-REPEATS. We now describe 2-REPEATS, our first nav-
igation algorithm for the indoor setting. Initially the robot executes move-to-T().
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Fig. 5.2. After each hitpoint, turn left and leave at the nearest monotone break point. (The
distance L is Ω(k).) The robot escapes the comb after traveling completely around the inside of the
upper loop Ω(k) times. The obstacle complexity n = Θ(k).

If any action returns a ground track entry indicating that the robot has reached T,
it halts. When the robot collides with an obstacle, it turns left and begins traveling
clockwise around the boundary, saving its ground track from the hitpoint. If the robot
has not already reached T, then as soon as its ground track forms a 2-repeat departure
sequence the robot leaves the obstacle by executing move-to-T().

A 2-repeat departure sequence has the form

hα0g0α1g1α2g2,

where h is the hitpoint, gi is a ground track entry, αj is a possibly empty sequence of
ground track entries, and ‖α0‖ ≤ ‖α1‖ = ‖α2‖, where ‖α‖ denotes the length of the
sequence (number of break points). Each gi, 0 ≤ i ≤ 2, is a ground track entry for an
unblocked-towards local minimum which is also the global minimum in the sequence.
That is, |Tgi| = |Tgj | for all 0 ≤ i < j ≤ 2, and |Tgi| ≤ |TQ| for all break points Q
in the departure sequence.

Lemma 5.2. Let Ob be an obstacle and H any hitpoint at which the robot collides
with Ob. As the robot travels clockwise around the boundary, either it will reach T or
its ground track will eventually form a 2-departure sequence.

Proof. By Properties 3.18 and 3.20, the existence of a hitpoint implies the exis-
tence of a break point G on the obstacle boundary at minimum distance to T . If the
robot travels around the obstacle boundary for sufficiently long, it will either reach T
or generate the 2-departure sequence in which h = H, gi = G, hα0 is the ground track
from H to G, and α1 = α2 is the ground track given in one complete circumnavigation
of Ob starting and ending at G.

Either the robot finds T or it leaves the obstacle from a point no farther from T
than the most recent hitpoint. Therefore 2-REPEATS is in the class MONOTONE.
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Lemma 5.2 provides some intuition for 2-REPEATS. If the robot sees the same min-
imum distance twice, then it may well have circumnavigated the obstacle and found
the closest point to the target. In this case, the robot will leave and never return to
this obstacle. Of course, it may be that a small segment of the boundary, far from
the closest point, just happens to contain a departure sequence. The next lemma
shows that by looking for the repetition α1gα2g, the robot avoids going over the same
ground too many times.

Lemma 5.3. Let Ob be an obstacle of complexity n. Any particular break point P
on the boundary is traversed O(log n) times over the total operation of finding a path
from S to T .

Proof. Define an encounter with obstacle Ob to be a particular collision with,
search around, and departure from Ob by the robot. Since 2-REPEATS is monotone,
the robot eventually halts at T (Lemma 5.1), so it encounters Ob a finite number
of times. Between each encounter with Ob, the robot may collide with many other
obstacles. On the other hand, if Ob is sufficiently complicated, the robot may depart
from one point of Ob only to immediately collide with another arm of Ob.

Let E1, E2, . . . , Ek be the subsequence of encounters in which break point P
is traversed. If it is traversed more than once in an encounter, then Ob has been
circumnavigated, and, as remarked above, the robot will never collide with Ob again.
Therefore, in encounter Ei, i < k, P is traversed exactly once. In the last encounter,
Ek, P is traversed O(1) times: at most three times if Ek circumnavigates Ob, or once
otherwise. Hence P is traversed O(k) times. We now bound k.

Let Di denote the segment of the boundary that is traversed during Ei, and let
ni be the number of break points in Di. In all encounters but the last there is a
one-to-one correspondence between ground track entries in the departure sequence
and break points of Di, so we will not distinguish between them.

Claim 5.4. For any i, j such that j < i, Dj contains none of the points hi or
gi�, 0 ≤ ' ≤ 2.

To verify this claim, observe that at each encounter, the hitpoint is strictly closer
to T than the preceding departure point, so |hiT | < |gj2T |. Since |gi�T | ≤ hiT, and
gj2 is the point at minimum distance in Dj , none of the specified points can be in Dj .

Since Dj and Di both contain P, Dj intersects Di. Claim 5.4 implies that Dj

is entirely contained in one of the three subsegments of Di lying between hi, gi0, gi2,
and gi3, respectively. Therefore all the break points in Dj must be a subset of the
break points in exactly one of αi0, αi1, or αi2. Hence nj ≤ ‖αi1‖. Since 2‖αi1‖ ≤ ni,
we conclude 2nj ≤ ni.

Since n1 = 2 and ni < n for all i, it follows that k = O(log n).

Each point on the boundary of an obstacle either is a break point or will be
traversed at most as many times as the first break point in the clockwise direction.
We have the following theorem.

Theorem 5.5. Let O be the set of obstacles with a point at distance at most |ST |
from T . Let POb be the length of the boundary of Ob ∈ O and nOb be its complexity.
The length of the path generated by 2-REPEATS is bounded by

|ST |+
∑
Ob∈O

O(POb log nOb).(5.1)

Thus, the excess distance ratio of 2-REPEATS is O(log n), where n is the maximum
complexity of any obstacle in O.
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5.2. An improved worst-case bound. We can generalize the above algorithm
by making the robot repeat the sequence αg more than twice in the departure se-
quence. This makes the robot search farther in hopes of finding a better departure
point. On the other hand, if the robot finds the closest point right away, then all the
remaining repetitions are just a waste of time.

A q-repeat departure sequence is a sequence of the form

hα0g0α1g1 . . . αqgq

such that ‖αi−1‖ = ‖αi‖ for 2 ≤ i ≤ q and gi is a global minimum in the sequence.
Lemma 5.2 can be easily extended to q-departure sequences, for any q, since the robot
can generate such a departure sequence by going entirely around an obstacle q times.
The containment property established by Claim 5.4 still holds, and for any constant
q, we can extend Lemma 5.3 to show that a boundary point is traversed O(logq n)
times.

To decrease the asymptotic bound we further require departure sequences to
satisfy either the conditions

‖α1‖ < 4 and q = 2

or the conditions

‖α1‖ ≥ 4 and q =

⌈
log ‖α1‖

log log ‖α1‖
⌉
.

We call the navigation algorithm using departure sequences of this form MORE-
REPEATS.

Theorem 5.6. Using the algorithm MORE-REPEATS, the length of the path
generated by the robot is bounded by

|ST |+
∑
Ob∈O

O(POb log nOb/ log log nOb),(5.2)

where O, POb, and nOb are defined as in Theorem 5.5.
Proof. Consider a particular break point P on an obstacle Ob of complexity n.

Suppose P is traversed in a sequence of encounters E1, . . . , Ek. Our goal is to bound
the length of the sequence, k, since for j < k each boundary point is traversed exactly
once and in encounter k the obstacle is circumnavigated O(log n/ log log n) times. For
convenience we assume n ≥ 4. Otherwise each break point is visited O(1) times.

We use the definitions of Di and ni from the proof of Lemma 5.3. Claim 5.4
from that proof can be extended to any value of q. We can therefore conclude that
ni−1 ≤ ‖αi1‖ < ni for i > 1.

To bound k, we first bound the number of encounters Ei in which ni ≤ n1/ log log n.
Let k′ be maximal such that nk′ ≤ n1/ log log n. Since ni ≥ 2‖αi1‖ by either condition,
we have 2ni−1 ≤ ni for 1 < i. Also, n1 = 2. Therefore ni ≥ 2i, and nk′ ≤ n1/ log log n

implies k′ < log n/ log log n.
Now we bound the number of encounters Ei when i > k′ + 1. For any i > k′ + 1,

the number of repetitions q satisfies

q ≥ (log ‖αi1‖)/(log log ‖αi1‖)
and

‖αi1‖ ≥ ni−1 ≥ nk′ ≥ n1/ log log n,
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which imply that

q ≥ (log n)/(log log n)2.

By construction, ni ≥ qni−1, and thus

ni ≥ ni−1
log n

(log log n)2

≥
(

log n

(log log n)2

)i−k′
.

Since nk ≤ n

n ≥ (log n/(log log n)2)k−k
′
,

which implies

k − k′ = O(log n/ log log n).

Thus, the excess distance ratio of MORE-REPEATS is O(log n/ log log n), where
n is the maximum complexity of any obstacle in O.

6. Lower bounds in the indoor setting. In the previous section we defined
the class MONOTONE, containing navigation algorithms that always depart an ob-
stacle from a point no farther from the target than the hitpoint. We now define
another class of navigation algorithms, ONE-WAY. A one-way navigation algorithm
chooses a fixed direction (clockwise or counterclockwise) for the robot to travel around
obstacle boundaries. Upon hitting an obstacle, the robot always travels around the
obstacle in that direction and never reverses its direction of traversal. We allow a
one-way algorithm to use any possible departure point, and therefore MONOTONE
and ONE-WAY are incomparable classes.

The navigation algorithms in this paper all belong to the intersection of MONO-
TONE and ONE-WAY. We now show that the excess distance used by MORE-
REPEATS is optimal among deterministic algorithms in the union of MONOTONE
and ONE-WAY.

Theorem 6.1. Each deterministic ONE-WAY algorithm for target-reachable nav-
igation in the indoor setting has an excess distance ratio of Ω(log n/ log log n).

Proof. Let A be a deterministic ONE-WAY navigation algorithm for the indoor
setting. We assume that it directs the robot to travel CCW (i.e., turn right) around
any obstacle; the CW case is analogous. Let n be a sufficiently large positive integer.
We construct a room wall of complexity at most n on which the excess distance
traveled by A is Ω(log n/ log log n) times the perimeter of the obstacle. Let k =
log n/c1 log log n, where the constant c1 > 1 is chosen to make k an integer and will
be determined later.

The overall plan is shown in Figure 6.1. T is placed at the origin, and a room
wall is constructed. Most of the wall is a circular arc of radius 1. The shaded region
contains a fractal-like boundary segment.

To fill the shaded region, we recursively construct an open path parameterized
from t = 0 starting at the left side, called the entry point, to t = 1 at the right
side called the exit point. The entry and exit points of the path will be at distance
1 from T . To complete the room wall, the open path is closed by an arc of radius
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T

Fig. 6.1. The structure of the obstacle for the lower bound proofs. The dark shaded region will
contain a complex boundary segment spliced into a circular wall centered on T .

1 centered on T, connecting the exit to the entry. The path is constructed so that
vertical segments have very small dimension, and horizontal segments have either very
small dimension or dimension slightly greater than 1.

For simplicity, we describe, picture, and analyze our constructions in a Cartesian
coordinate system and then consider the effect of transforming them to our actual
setting. In Cartesian coordinates, the path will consist of axis-parallel horizontal and
vertical segments. Horizontal segments represent arcs of circles centered at T, and
vertical segments represent segments of rays from T . We use a rectangle of width w
and height h to represent a portion of an annulus between a circle of radius 1 and a
circle of radius 1− h, with outer arc length w and inner arc length (1− h)w. Then a
boundary of path length L in the rectangle represents a boundary of path length L′

in the portion of the annulus, where

(1− h)L ≤ L′ ≤ L.

The basic structure used is a hook-shaped piece of room wall boundary, as indi-
cated in Figure 6.2. This structure is called a simple hook. The L-shaped portion of
the boundary is called the arm of the hook, and the boundary segment shown in bold
is called the recursive region of the hook.

If we assume that the boundary corresponding to the recursive region of a hook
has been defined, with its entry and exit points, we go on to define the remaining
boundary of the hook as follows. Let ε = 1/k2k. The entry point of the hook is ε
to the left of the left edge of the arm, and the exit point of the hook is aligned with
the right edge of the arm. The arm itself has width ε and extends ε to the right of
the exit point of the recursive region. It also clears the lowest point of the recursive
region by ε. This is indicated schematically in Figure 6.2.

We define long and short hooks at level i (HL
i and HS

i ) and long and short hook
sequences at level i (BL

i and BS
i ) as follows. The recursive region of HL

1 is a horizontal
segment of length 1; the recursive region of HS

1 is a horizontal segment of length 0.
Once HL

i and HS
i are defined, BL

i consists of one level i long hook (HL
i ) followed by

k − 1 level i short hooks (HS
i ), while BS

i consists of k consecutive level i short hooks
(HS

i ). Finally, once long and short hook sequences at level i are defined, we define
level i+ 1 long and short hooks as follows. HL

i+1 has BL
i in its recursive region, and
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Fig. 6.2. The basic hook shape. The recursive region is contained in the dark rectangle.

S

T

Fig. 6.3. Constructing BL
3 (with k = 3). BL

2 is the recursive region of the long hook HL
3 , and

two copies of the short hook HS
3 are added on the right.

HS
i+1 has BS

i in its recursive region. Figure 6.3 gives an example of the construction
of a long hook sequence at level 3 (assuming k = 3.)

The intuition behind the construction is as follows. The robot cannot differentiate
between traversing a long hook at a given level and traversing a short hook of the
same level, since both yield the same ground track. If the robot ever traverses the
boundary of a long hook followed by all k − 1 short hooks at the same level, then
replacing the short hooks by a circular arc makes the robot repeat the boundary of
the long hook k times. On the other hand, if the robot always takes off toward T
after traversing the long hook on a level (for example, leaving from the bottom of one
of the short hooks), then at each level i the long hook will be traversed k− i+1 times
because of the recursive construction, thus also resulting in a path that is Ω(k) times
as long as the obstacle’s perimeter.

Define the width of a hook or hook sequence to be the minimum width of an axis-
parallel rectangle containing it, and similarly define height. Let W (i, S) and W (i, L)
denote the width of HS

i and HL
i , respectively. Let ht(i) denote the height of both

HS
i and HL

i . These functions satisfy the following recurrences:

W (1, S) = 3ε,

W (i, S) = 3ε+ k ·W (i− 1, S), i > 1,

W (1, L) = 1 + 3ε,

W (i, L) = 3ε+W (i− 1, L) + (k − 1)W (i− 1, S), i > 1,

ht(1) = 2ε,
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ht(i) = ht(i− 1) + 2ε, i > 1.

Using these recurrences, it follows that W (i, S) = Θ(εki−1), W (i, L) = 1 + Θ(εki−1),
and ht(i) = 2iε.

Next we consider the path lengths of the boundary segments. Recall that W (i, L)
is the width of hook HL

i . The path length of the arm HL
i is 2W (i, L)+2ht(i)−ε. Since

ε = 1/k2k and ht(i) = Θ(iε), the contribution of the arm to the path length of HL
i

is Θ(W (i, L)) for i ≤ k. A similar statement holds for HS
i . Let P (i, L) and P (i, S)

denote the total length of HL
i and HS

i , respectively. According to our discussion,
these path lengths satisfy the following recurrences:

P (0, S) = 0,

P (i, S) = Θ(W (i, S)) + kP (i− 1, S), i > 0,

P (0, L) = 1,

P (i, L) = Θ(W (i, L)) + (k − 1)P (i− 1, S) + P (i− 1, L), i > 0.

Together with the formulas forW (i, S) andW (i, L), these recurrences imply P (i, S) =
Θ(εiki−1) and P (i, L) = Θ(i+ εiki−1).

Now we consider the transformation from the Cartesian obstacles to the actual
obstacles composed of arcs of circles centered at T and segments of rays to T . At
the risk of slight confusion, we will use the same names, HS

i , H
L
i , and so on, for the

transformed obstacles. Then ht(i) = 2iε is equal to 1 minus the minimum distance to
T at any point on the boundary of HL

i or HS
i . Let P

′(i, L) denote the path length of
the transformed boundary HL

i . By our previous remarks,

P ′(i, L) ≥ (1− 2iε)P (i, L).

Finally, consider the complexity of Hi, denoted C(i). A single Hi consists of O(1)
new boundary segments plus the number of segments in the recursive region. Hence
C(i) satisfies

C(1) = Θ(1),

C(i) = Θ(1) + kC(i− 1).

This implies C(i) = Θ(ki−1).
It can be verified by induction on the level that HL

i contains exactly one long hook
and one long hook sequence at each of the levels 1 . . . i and that HL

j (respectively,

BL
j ) is the leftmost hook (respectively, hook sequence) of level j ≤ i. It can also be

verified by induction that if the robot executes move-to-T() from some point in the
recursive region of Hi it will hit a point that belongs to the boundary of Hi and lies
clockwise from the departure point.

The bad obstacle will be constructed from HL
i , for some i ≤ k, together with the

circular arc around T that closes the path. To choose the value of i, consider the
actions of a robot using some algorithm A to navigate out of the obstacle HL

k . The
robot is started inside the level 1 long hook, shown as S in Figure 6.4.

The robot’s motion can be divided into phases that correspond to the levels of the
obstacle. Assume that at the start of phase i, i < k, the robot executes move-to-T()
from a point s that is unblocked-towards and such that the first obstacle the robot
will hit is the arm of the single long level i hook, HL

i . This assumption holds true in
phase 1, when the robot is started at point S.
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S

T

Fig. 6.4. The result of the construction in Figure 6.3.

Upon hitting the hook of HL
i , the robot must turn right (recall the assumption of

CCW traversal) and follow the boundary. Eventually, it must make its way through
the recursive region and reach the exit point of HL

i . Otherwise, it can never reach
the target, because the arm of HL

i intersects all rays from the target to points in the
recursive region. (We say the hook blocks the target from these points.)

After reaching the exit of HL
i , the robot may continue on through the subsequent

copies of HS
i that make up the hook sequence BL

i . Either it passes through all k
copies and reaches the exit of BL

i , or it departs from a point that is not blocked from
the target by any portion of the boundary making up BL

i , for example, the bottom
of some short hook.

If the robot passes through all k copies, then we choose HL
i to be the obstacle.

Observe that the robot cannot distinguish the ground track given by passing through
each successive copy of HS

i from the ground track formed by going completely around
the circular arc from exit to entry and then through the single copy of HL

i . Hence the
robot will circumnavigate the obstacle boundary k times, giving an excess distance
ratio Θ(k).

If the robot departs from a point on BL
i that is not blocked from the target by any

other point on that boundary, then at that time the robot satisfies the assumptions
for the start of phase i+ 1. Now suppose that the robot completes k phases, in each
phase departing before visiting all k copies. We choose the bad obstacle to be HL

k .
We show that in this case, the total distance traveled by the robot is Ω(k2).

Claim 6.2. The distance traveled by the robot in phase i is at least P ′(i, L).
Proof. The robot must at least move from the starting point of phase i to the exit

of HL
i by executing some sequence consisting of follow-boundary(RIGHT) operations

and move-to-T() operations. Since any move-to-T() will put the robot at a point
clockwise (left) of the departure point, and hence farther from the exit than the
departure point, omitting all move-to-T() operations only decreases the total distance
traveled. But a sequence of follow-boundary(RIGHT) operations will still traverse all
points on the path between the starting point and the exit.

Using Claim 6.2, the total distance traveled over all phases is at least

k−1∑
i=1

P ′(i, L) ≥ (1− 2kε)

k−1∑
i=1

P (i, L) = Ω((1− 2kε)(k2 + kk+1ε)).

Since ε = 1/k2k, the ratio of distance traveled to the length of the perimeter of
the obstacle, O(k + εkk), is Ω(k).

The maximum value of k is determined by the maximum allowed complexity of
the obstacle, n. Since C(k) = Θ(kk−1), any obstacle which satisfies kk−1 ≤ n is
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T
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Fig. 6.5. A simple corral, with left and right exit points and recursive regions shown in bold.

feasible, and in particular we may choose c1 > 1 and k = log n/c1 log log n. The
theorem follows.

Using a somewhat more complex construction, we prove a similar lower bound on
the excess distance used by any deterministic MONOTONE algorithm for reachable-
target navigation in a room.

Theorem 6.3. Any deterministic MONOTONE algorithm for reachable-target
navigation in the indoor setting has an excess distance ratio of Ω(log n/ log n log n).

Proof. Let A be a deterministic MONOTONE navigation algorithm for the indoor
setting. Recall that algorithm A has a property such that upon hitting an obstacle
it follows the obstacle boundary, changing direction at any break point. However, it
will never leave from a point that is farther from the target than its hitpoint on the
obstacle. Let n be a sufficiently large positive integer. We construct a room wall of
complexity at most n on which the excess distance traveled by A is Ω(log n/ log log n)
times the perimeter of the obstacle. Let k = log n/c1 log log n, where c1 > 1 is a
constant chosen to make k an integer, which will be determined later.

As in the proof of Theorem 6.1, we specify our construction using Cartesian
coordinates and then transform the boundary so that the top edge lies on the arc of
a circle of radius 1 centered at T and is closed using the rest of the circle to form
a room wall obstacle. The basic structure we use is a U-shaped piece of room wall
boundary, as indicated in Figure 6.5, and referred to henceforth as a simple corral. A
simple corral has two exits, marked l and r, and two recursive regions, shown in bold.

We first describe the construction of short corrals and short corral sequences. Let
ε = 1/kβk, where β > 0 is a constant to be determined below. As in the preceding
proof, widths and clearances are taken to be size ε in the construction of short and long
corrals. A level 1 short corral, CS

1 , is a simple corral in which the recursive regions
are horizontal segments of length 0. A level i short corral sequence, BS

i , consists of
2k + 1 copies of CS

i connected end to end. For i > 1, a level i short corral, CS
i , is

constructed from a simple corral by replacing both the left and right recursive regions
with BS

i−1. Figure 6.6 gives an example of the construction of a level 3 short corral
for k = 1. If W (i, S) denotes the width of a level i short corral, then we have

W (1, S) = 9ε,
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T

Fig. 6.6. A level 3 short corral.

and for i > 1,

W (i, S) = 9ε+ 2(2k + 1)W (i− 1, S).

The solution to the recurrence is

W (i, S) = 9ε((4k + 2)i − 1)/(4k + 1)) = Θ(ε(4k + 2)i−1).

We also define long corrals and long corral sequences. For level i, there are 2i

possible different long corrals; which one we use at each level in the final construction
will depend on the behavior of the algorithm A. A level 1 long corral is a simple corral
in which the one of the two recursive regions is a horizontal segment of length 1, and
the other is a horizontal segment of length 0. A level i long corral sequence consists of
a sequence of k level i short corrals, followed by one level i long corral, followed by k
more level i short corrals. For i > 1, a level i long corral is constructed from a simple
corral by replacing one recursive region by a level i long corral sequence and the other
recursive region by a level i short corral sequence. The width of a level i long corral is
exactly one more than the width of a level i short corral, that is, 1+Θ(ε(4k+2)i−1).

To specify the final obstacle, we consider the motion of the robot in a bottom-
up fashion with respect to the transformed boundaries in which horizontal segments
represent arcs of circles centered at T, and vertical segments represent segments of
rays from T . As before, we use the same names for the transformed constructions,
CS
i , C

L
i , and so on. As in the proof of Theorem 6.1 we divide the robot’s motion into

phases. The robot begins phase 1 inside one of the two possible level 1 long corral
sequences, where the level 1 long corral has its long arc in the left recursive region
if the robot first leaves the corral at the left exit, and in the right recursive region
otherwise. The starting point S is shown in Figure 6.7; in this example, the robot
exits the level 1 long corral at the left exit.

Assume that at the start of phase i, 1 < i < k, we have constructed a path
consisting of a particular level (i − 1) long corral sequence, BL

i−1, and the choice of
long and short corrals is completely specified within the path. Assume also that the
robot has just executed move-to-T() from some point s on one of the bottom segments
of BL

i−1 and that this is the first action the robot has taken so far that would result
in it reaching a point not on BL

i−1.
Consider the level i long corral Cl given by embedding BL

i−1 into the left recursive
region of a simple corral and embedding a copy of BS

i−1 into the right region. To
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Fig. 6.7. A level 2 long corral with a level 1 long corral in its right recursive region. The level
1 long corral has a long arc in its left recursive region.

escape the corral in phase i, the robot must eventually reach one of two exit points, l
or r. Since it is MONOTONE, the robot must eventually traverse every point on the
boundary between the hitpoint and whichever exit it reaches. (This property is not
true of a ONE-WAY algorithm on this boundary.)

If the robot reaches the left exit, then we have guaranteed that the robot retraces
all of BL

i−1 during phase i. Suppose it only reaches the right exit, r. Then consider
the level i long corral Cr given by embedding BL

i−1 into the right recursive region of a
simple corral and embedding a copy of BS

i−1 into the left region. Since the robot has
not ventured outside of BL

i−1 prior to the start of phase i, its behavior up until the
start of phase i is the same regardless of whether it starts in Cl or Cr. Furthermore,
the robot’s behavior between the start of phase i and its reaching r must also be the
same whether it is started in Cl or Cr. This follows from two observations: first,
the initial hitpoint is on a segment of constant distance, and so the robot cannot tell
from which side it departed at the start of phase i; second, the ground track given by
traversing the recursive region is the same whether the region is long or short. Hence
on obstacle Cr the robot still reaches the right exit and so retraces all of BL

i−1 during
phase i. We set CL

i to be whichever of Cr or Cl is chosen. In Figure 6.7 we show an
example in which the phase 1 choice is the left exit and the phase 2 choice is the right
exit.

Having chosen a particular level i long corral CL
i , we use it to construct the long

corral sequence BL
i by adding k copies of CS

i to both sides of CL
i . Consider the behav-

ior of the robot onBL
i . The robot executes some sequence σ of follow-boundary(LEFT)

and follow-boundary(RIGHT) instructions. It ends with a follow-boundary(·) instruc-
tion that will take it beyond one of the ends of the boundary path, or it executes
move-to-T() from the bottom of one of the level i corrals.

Suppose the robot executes a follow-boundary(·) instruction that will take it past
the left (respectively, right) end of BL

i . Then the robot must have traveled at least
once through each of the k level i short corrals between CL

i and the left (right) end
of BL

i . We choose the final obstacle Ob to be just CL
i , extended to wrap entirely

around the target. The robot cannot distinguish the ground track observed while
executing instruction sequence σ on this obstacle from the ground track observed on
while executing σ on BL

i . Since σ includes k traversals of level i corrals, the robot
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must make k traversals of the boundary of obstacle Ob, giving an excess distance ratio
of Ω(log n/ log logn).

On the other hand, suppose the robot executes move-to-T() before exiting from
BL
i . At this point, phase i ends and phase i + 1 starts. Note that the assumptions

for the start of a phase are satisfied. If the robot completes k phases, let the final
obstacle Ob be the long corral CL

k that is constructed in phase k, with an arc joining
the exit point to the entry point. Let P (i, L) denote the path length of the Cartesian
boundary CL

i . For this quantity we can show P (i, L) = Θ(i+(4k+2)i−1ε). If P ′(i, L)
is the path length of the transformed boundary CL

i , then we have

(1− 3iε)P (i, L) ≤ P ′(i, L) ≤ P (i, L).

We can choose ε = 1/kβk small enough that P ′(i, L) = Θ(i). As shown above, the
obstacle is constructed so that in phase i the robot retraces the whole path CL

i−1.
Hence the total distance traveled by the robot is Ω(k2), and the excess distance ratio
is Ω(k) = Ω(log n/ log log n). The maximum value of k is determined by the maximum
allowed complexity of the obstacle, n. The complexity of a level i corral, denoted C(i),
is described by a recurrence analogous to that in the proof of Theorem 6.1 and can be
seen to be Θ(kαk) for a small constant α. Hence C(i) ≤ n for an appropriate choice
of c1 in the equation k = log n/c1 log log n.

7. Navigation and circumnavigation in the outdoor setting. In this sec-
tion we present an algorithm, FAR-NEAR, for reachable-target navigation in the
outdoor setting. FAR-NEAR has an excess distance ratio bounded by 3. A variant
of FAR-NEAR performs circumnavigation in the reachable-target outdoor setting,
traveling around the obstacle boundary at most two times.

7.1. The FAR-NEAR algorithm. The robot starts by moving toward T . If
any action brings it to T, it halts, having reached T . When the robot collides with
obstacle Ob, it searches left until it reaches T or until its ground track forms a cir-
cumnavigating departure sequence.

A circumnavigating departure sequence has the form

hα0Q1α1P1α2Q2α3P2,

where P1 and P2 are unblocked-towards break points of minimum distance and Q1

and Q2 are unblocked-away break points of maximum distance, where maximum and
minimum are taken over all break points in the sequence.4 The robot departs from
P2.

Lemma 7.1. Suppose the robot collides with normal obstacle Ob at hitpoint h.
Traveling clockwise from h, either the robot will reach T or its ground track will even-
tually form a circumnavigating departure sequence.

Proof. If T is on the boundary of Ob, then the robot will reach T by the time it has
circumnavigated Ob from h. If T is not on the boundary of Ob, then Properties 3.18,
3.19, and 3.20 of section 3 imply the existence of points P, Q such that P is a break
point on the boundary at minimum distance to T and Q is a break point at maximum
distance to T . Starting at P, two circumnavigations of the boundary of Ob give the
desired ground track. (The lemma is not true if the obstacle is a room wall.)

Thus, the algorithm FAR-NEAR is in the class MONOTONE. The next lemma
shows that if the robot encounters a departure sequence of the above form, it has
completely circumnavigated the obstacle boundary.

4Thus perhaps the algorithm should be called FAR-NEAR-FAR-NEAR.
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Lemma 7.2. Let Ob be a normal obstacle with boundary β. In any proper subseg-
ment s of β there is no sequence of distinct points P1, Q1, P2, Q2 (or Q1, P1, Q2, P2)
in order, such that P1 and P2 are unblocked-towards and of minimum distance (within
s) to T, and Q1 and Q2 are unblocked-away and of maximum distance (within s) to
T .

Proof. Without loss of generality we may assume T 
∈ Ob. To see this, suppose
there is a counterexample to the lemma consisting of an obstacle Ob containing T and
a proper subsegment s of its boundary with the required properties. By rerouting the
boundary of Ob, we can construct an obstacle Ob′ such that T 
∈ Ob′ and Ob′ and
s also constitute a counterexample to the lemma. If T is in the interior of Ob, we
take a segment of the boundary of Ob disjoint from s and cut a narrow channel from
there into the interior of Ob that includes T, so that T 
∈ Ob. If T is on the boundary
of Ob, then T is not in s (otherwise, P1 = P2 = T, contradicting the distinctness of
P1 and P2) and we slightly reroute the boundary of Ob near T to ensure T 
∈ Ob′.
Because the points in s are unaffected by the rerouting in either case, Ob′ and s give
a counterexample to the lemma in which T 
∈ Ob′. Thus, we assume T 
∈ Ob for the
remainder of the proof.

The proof is by contradiction. Consider a scene containing only the given obstacle
and suppose there is a proper subsegment s of the boundary of the obstacle that starts
with point P1, contains point Q1, then point P2, and ends with point Q2, where P1

and P2 are unblocked-towards and of minimum distance to T among points of s and
Q1 and Q2 are unblocked-away and of maximum distance to T among points of s.

Let s11 denote the segment of s from P1 to Q1, let s12 denote the segment of s
from Q1 to P2, and let s22 denote the segment of s from P2 to Q2. Also, let s′ denote
the rest of the boundary, that is, the segment from Q2 back to P1.

We define three circles centered at T : Cex, which completely contains the obstacle
in its interior; Cmax, which contains the points Q1 and Q2; and Cmin, which contains
the points P1 and P2 (see Figure 7.1.) We now argue that Q2 must be interior to the
boundary b consisting of line segments P1T, P2T and boundary segments s11 and s12.
Since every point interior to this boundary has distance to T strictly smaller than
|Q1T |, this contradicts our assumption that Q2 is also at maximum distance to T in
the segment s.

To argue that Q2 must be interior to b, we construct two paths to divide the disc
Dex bounded by Cex using the following pieces. Let R1 be the point on Cex that is
beyond Q1 on the ray TQ1. Since T is exterior to the obstacle by assumption, there
exists a simple path p to T from outside Dex that does not intersect the boundary
of the obstacle. There must be a segment u of p that intersects Cmin in some point
R3, intersects Cmax in some point R4, and otherwise is contained strictly between the
two circles Cmin and Cmax. Let R2 be the point on Cex beyond R4 on the ray TR4.
Since R4 is different from Q1, R2 must be different from R1.

Now we construct a simple path β1 inDex from R2 to R1 consisting of line segment
R2R4, path segment u, line segment R3T, line segment TP1, boundary segment s11,
and line segment Q1R1. The path β1 does not contain the points P2 or Q2 and divides
the disc Dex into two regions. P2 and Q2 must be in the same region of Dex with
respect to β1, because the boundary segment s22 joining them does not intersect β1.
To see this, note that s22 lies between the circles Cmin and Cmax and cannot intersect
path segment u (by construction) or boundary segment s11. Since these are the only
portions of β1 between Cmin and Cmax, s22 does not intersect β1.

We construct another simple path β2 from R2 to R1 consisting of line segment
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Fig. 7.1. Figure for proof of Lemma 7.2.

R2R4, path segment u, line segment R3T, line segment TP2, boundary segment s12,
and line segment Q1R1. Then β2 does not contain points P1 or Q2 and it also divides
the disc Dex into two regions. We now argue that P1 and Q2 must be in the same
region of Dex with respect to β2. To do so, we consider the segment s′ of obstacle
boundary from Q2 to P1. Although s remains between circles Cmin and Cmax, we
have no such guarantee for s′. However, we argue that s′ must cross the path β2 an
even number of times, which means P1 and Q2 are in the same region of Dex with
respect to β2.

Considering each piece of the path β2 in turn, we have the following. The segment
R2R4 joins two points exterior to the obstacle and must be crossed by the boundary
of the obstacle an even number of times. Because s lies between the circles Cmin and
Cmax, the only crossings of R2R4 must be by s′. The path segment u does not intersect
the boundary of the obstacle at all, so there are zero crossings of it by s′. The segment
R3T joins two points exterior to the obstacle and must be crossed by the boundary
of the obstacle an even number of times. The only portion of the boundary that can
intersect this segment is s′. By Property 3.22, the P2T -probe, which we denote by
P2X, is exterior to the obstacle except for the point P2, because P2 is unblocked-
towards and a local minimum of distance to T . Since T and X are both exterior to
the obstacle, the subsegment TX must be crossed by the boundary of the obstacle an
even number of times, and the only part of the boundary that can intersect it is s′.
Since the segment P2X is exterior to the obstacle except for P2, it does not intersect
s′ at all. The boundary segment s12 does not intersect the boundary segment s′ at
all. Finally, by Property 3.23, the Q1R1-probe, which we denote by Q1Y, is exterior
to the obstacle except for the point Q1 (because Q1 is unblocked-away and a local
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Fig. 7.2. Obstacles for circumnavigation.

maximum of the distance to T ). Then s′ does not intersect Q1Y at all, and it crosses
Y R1 an even number of times, because Y and R1 are exterior to the obstacle.

Since each portion of the path β2 either is not intersected by s′ or is crossed an
even number of times, P1 and Q2 are in the same region of Dex with respect to β2.

Finally, since Q2 and P2 are in the same region of Dex with respect to β1 and
also Q2 and P1 are in the same region of Dex with respect to β2, Q2 is in the region
bounded by b consisting of s11, s12, and line segments TP1 and TP2. ClearlyQ2 cannot
be a point of the boundary b, so it must be interior to b, which is the contradiction
we sought. The case in which the points appear in the order Q1, P1, Q2, and P2 is
handled analogously.

Theorem 7.3. Let O be the set of obstacles with a point at distance at most |ST |
from T . Let POb be the length of the boundary of Ob ∈ O. The length of the path
generated by the FAR-NEAR navigation algorithm is bounded by |ST |+∑Ob∈O 3POb.

Proof. The robot collides with any obstacle Ob at most once, since by Lemma 7.2,
the departure sequence circumnavigates Ob at least once.

Traveling from the hitpoint toQ1 is at most one traversal of the obstacle boundary,
from Q1 to Q2 is at most a second, and from Q2 to P2 is at most a third. As remarked
in [4, 8], if the robot leaves an obstacle by a circumnavigating departure sequence, it
will never hit that obstacle again.

Thus, the FAR-NEAR algorithm has excess distance ratio ≤ 3. Compare this to
the lower bound of 1 from Lumelsky and Stepanov [4]. A variant of the navigation
algorithm can be used to detect circumnavigation.

Theorem 7.4. There is a deterministic algorithm to circumnavigate any normal
obstacle that does not contain the target in its interior, using at most two complete
traversals of its boundary.

Proof. By Lemma 7.2, if the robot detects a sequence of break points P1, Q1,
P2, and Q2 (or Q1, P1, Q2, and P2) such that P1 and P2 are unblocked-towards and
of minimum distance to T among the boundary points traversed so far, and Q1 and
Q2 are unblocked-away and of maximum distance to T among the boundary points
traversed so far, then it has circumnavigated the obstacle. Moreover, if T is exterior to
the obstacle, then such a sequence of points will be detected in at most two traversals
of the boundary, using Properties 3.19 and 3.20. In the case that T is on the boundary
of the obstacle, this fact will be detected in one boundary traversal, and, by the time
T is reached again, the robot has circumnavigated the obstacle.

The optimality of two boundary traversals for deterministic circumnavigation of
normal obstacles not containing T in the interior is shown in the next subsection.

7.2. A lower bound for detecting complete circumnavigation.
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Theorem 7.5. For any deterministic boundary-following circumnavigation algo-
rithm and for any ε > 0, there exists a normal obstacle not containing the target for
which the robot’s path length is at least 2− ε times the perimeter of the obstacle.

Proof. Suppose we are given any deterministic algorithm for boundary-following
circumnavigation in our model and any ε > 0. We first analyze the behavior of the
algorithm on the three obstacles depicted in Figure 7.2 to show that when it is started
at point x on the rectangle, every possible computation path must make, in addition
to an initial traversal of half the edge ad, at least two complete traversals of one of
the vertical edges and one complete traversal of the other. If we take the horizontal
dimension of the rectangle to be sufficiently small compared to the vertical dimension,
this implies that the robot’s path length will be at least 7/4− ε times the perimeter
of the rectangle in every computation path. (As before, the vertical segments of the
diagram represent segments aligned along rays to T and the horizontal segments
represent arcs of a circle centered at T .)

Consider any computation path of the given algorithm when started at point
x on the rectangle. The initial segment of the robot’s path must traverse half the
edge ad to reach either a or d. Suppose the point reached is a; then we focus on the
�-shaped object; a corresponding argument will hold for the �-shaped object if the
robot reaches d instead.

Note that the only points in the �-shaped object that are distinguishable to the
robot from their counterparts in the rectangle are the points c′ and d′′. Clearly, to
complete a circumnavigation of the rectangle, the robot must completely traverse both
edge ad and edge bc. (Recall that in our model, the robot has no way of stopping in
the middle of traversing a vertical edge.) Suppose for the sake of contradiction that
these are the only two full traversals of vertical edges of the rectangle. Then in this
computation path, either edge ad is traversed first and then edge bc or vice versa.

In the case that the edge ad is traversed first, consider what can happen when the
robot, making the same choices, is started at point x′ on the �-shaped obstacle. The
initial segment of the path takes it to point a′. Then it traverses the edge a′d′ and
then the edge b′′c′′ and halts without traversing any other vertical edges and without
reaching either of the distinguishing points c′ and d′′. Thus, in this computation, the
robot erroneously halts without circumnavigating the �-shaped object.

A similar argument holds in the case that the computation path of the robot
traverses edge bc and then edge ad. In this case, there is a corresponding computation
path for the robot when started at point x′′ in the �-shaped obstacle that first proceeds
to a′′, traverses edge b′′c′′ and then edge a′d′, and halts without circumnavigating the
�-shaped obstacle. Thus in either case our assumption that the path contained only
two full traversals of vertical edges leads to a contradiction.

The other case is that in which the computation path we are considering takes
the robot first to point d. Analogously, the assumption that the robot performs only
two further full traversals of vertical edges in the rectangle leads to a contradiction by
considering the behavior of the robot using the same choices in the �-shaped object,
starting either at x′ or x′′.

To improve the lower bound to 2− ε, start the robot at point x on the rectangle
and observe whether it proceeds to point a or point d. If it proceeds to point a,
then we slide the rectangle up until the point x is very close to the point d. If the
robot begins by proceeding to point d, then we slide the rectangle down until point x
is very close to point a. Then in either case, the initial segment traversed is very
nearly the whole vertical edge ad. The argument that we have at least three more
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vertical traversals to go still holds, which gives a lower bound of 2 − ε times the
perimeter.

8. Remarks. Although our definition of a scene specifies a finite collection of
obstacles, our results hold as long as a finite number of obstacles intersect the disk
centered at the target with radius equal to the distance from start to target.

If the robot is given an a priori upper bound on the number of break points on
any obstacle, then it can detect circumnavigation of an obstacle by simple counting.
Our negative result of section 4 will not hold. Our algorithms will still be preferable,
however, when the average number of break points on an obstacle is substantially less
than the upper bound. Our algorithms do not need to save their entire ground track;
they can be implemented using O(1) registers.

An important problem in vision-based tracking is that the robot’s view of the
target is sometimes occluded by intervening obstacles. Taylor and Kriegman classify
obstacles into transparent obstacles, which are invisible to the robot until it actually
collides with them, and opaque obstacles, which the robot can detect because they
intervene in the line of sight [8]. Although the robot can detect the existence of opaque
obstacles, it cannot determine the distance to such an obstacle until, once again, it
actually collides with it. In practice, transparent obstacles are things such as tables
and boxes that are lower than the robot camera, and opaque obstacles are tall cabinets,
bookcases, and partitions. Taylor and Kriegman’s procedures work even if the target
is obscured at various positions, as long as the target is visible from the start point.

Our algorithm for navigation within a room can be modified to cope with regions
of obscured visibility, provided the target is visible from the starting point. The key
intuition is that whenever the robot moves in open space it moves directly toward T,
so when it encounters an obstacle, T is visible at the hit point. This ensures that the
obstacle has some unblocked-towards point that is nearer to T than the hitpoint and
from which T is visible. The above bounds still hold, but the definition of break point
must be extended to include points at the end of boundary segments from which the
target is continuously visible.

There are several interesting problems left open by our work. Is there a determin-
istic algorithm for navigation in the indoor setting that achieves an excess distance
ratio of o(log n/ log log n)? Our lower bound results (section 6) show that if there
is such an algorithm, it must be neither MONOTONE nor ONE-WAY, that is, it
must travel in both clockwise and counterclockwise directions, and it must sometimes
depart obstacles from break points that are farther from the target than the prior
hitpoint. Can the excess distance ratio for navigation in the free space problem be
reduced below 3? Do these results extend to other surfaces besides the plane? Is
there a significant advantage in using randomized algorithms for these problems? We
note that the lower bound of 7/4 − ε for circumnavigation given in section 7.2 holds
against randomized algorithms (for an appropriate definition of randomization). We
believe that the impossibility results of section 4 and the lower bounds of section 6
can also be extended to randomized models.

Appendix. Proof of Theorem 4.1.

We begin by proving some technical lemmas, and then we restate Theorem 4.1
and give its proof.

Definition A.1. Let p = (r(t), θ(t)), t ∈ [0, 1], be an arbitrary path. Let j and
k be integers j ≥ 0 and k > 0. Then Γ(p, j, k) is the path (r′(t), θ′(t)) for t ∈ [0, 1],
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where

r′(t) = r(t),

θ′(t) =
1

k
(θ(t) + 2πj).

Γ(p, j, k) is an angularly scaled and rotated copy of the path p. It preserves dis-
tances from the origin but divides angular displacements by k, and it also rotates the
start of the path counterclockwise around the origin by 2πj/k. We use Γ(p, j, k)(t) to
indicate the point on the curve Γ(p, j, k) given by parameter t. The following technical
lemmas will be useful.

Lemma A.2. Given paths p1 and p2 let p′1 = Γ(p1, j1, k) and p′2 = Γ(p2, j2, k). If
p′1(t1) ≡ p′2(t2) for some t1, t2 ∈ [0, 1], then p1(t1) ≡ p2(t2).

Proof. Let p1 = (r1(t), θ1(t)) and let p2 = (r2(t), θ2(t)). By hypothesis and the
definition of Γ,

r1(t1) = r′1(t1) = r′2(t2) = r2(t2)

and

(θ1(t1) + 2πj1) /k = (θ2(t2) + 2πj2) /k + 2πi

for some integer i. Hence θ1(t1) = θ2(t2)+2π(j2−j1+ ik). This implies p(t1) ≡ p(t2),
since j1, j2, i, and k are integers. Note that p1 and p2 may be the same path.

Lemma A.3. Given paths p1 and p2, suppose p1(t1) ≡ p2(t2) for some t1, t2 ∈
[0, 1]. Then for any nonnegative integer j1 < k there exists a nonnegative integer
j2 < k such that p′1(t1) = Γ(p1, j1, k)(t1) ≡ Γ(p2, j2, k)(t2) = p′2(t2).

Proof. Let p1 = (r1(t), θ1(t)) and let p2 = (r2(t), θ2(t)). For any choice of j1, j2,

r′1(t1) = r1(t1) = r2(t2) = r′2(t2)

by hypothesis and definition of the transform Γ. By hypothesis, for some integer i,

θ1(t1) = θ2(t2) + 2πi.

Given integer j1 with 0 ≤ j1 < k, let j2 = (i + j1) (mod k). Then for some integer
m, j2 = (i+ j1) +mk, and

θ′2(t2) =
θ2(t2) + 2πj2

k
=

θ2(t2) + 2πi+ 2πj1 + 2πmk

k
=

θ1(t1) + 2πj1
k

+ 2πm

≡ θ′1(t1).

Lemma A.4. Given path p = (r(t), θ(t)) let p1 = Γ(p, j1, k) and p2 = Γ(p, j2, k)
for 0 ≤ j1, j2 < k. If p1(t0) ≡ p2(t0) for some single value of the parameter t = t0,
then j1 = j2.

Proof. By hypothesis θ1(t0) = θ2(t0) + 2πi for some integer i. Hence

(θ(t0) + 2πj1) /k = (θ(t0) + 2πj2) /k + 2πi.

This implies (j1−j2)/k = i. But since 0 ≤ j1, j2 < k, equality can only hold if j1 = j2
and i = 0.

Definition A.5. Let p = (r(t), θ(t)), t ∈ [0, 1], be an arbitrary curve, and let
k > 0 be an integer. Then Z(p, k) is the path given by the union of the family of
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curves Γ(p, j, k) for 0 ≤ j < k. That is, the angular part of p is scaled by k, and then
k copies of the result are placed around the origin, the ith copy starting at angle 2πi/k
and ending at angle 2π(i+ 1)/k. Z(p, k) can be written as

(r({s}), (θ({s}) + 2π�s�) /k),
s ∈ [0, k] (where {s} = s− �s� denotes the fractional part of s).

Let Ob be an obstacle containing T in its bounded domain (i.e., interior). We
assume the target is at the origin (0, 0) and that the boundary of Ob, β = (r(s), θ(s)),
s ∈ [0, 1], is parameterized so that θ(0) = 0, θ(1) = 2π, and θ increases in a coun-
terclockwise direction. Let β∗ = Z(β, k). The next sequence of lemmas establishes
that β∗ is a simple closed curve. Furthermore, β∗ can be used to define an obstacle
Ob∗ such that the sequence of ground track entries produced by one circumnavigation
of Ob∗ is exactly the same as the sequence of ground track entries produced by k
circumnavigations of Ob. Figure 4.1 shows an example obstacle and Figure 4.2 shows
the result of applying Z to that obstacle with k = 6.

Lemma A.6. The curve β∗ = Z(β, k) is simple and closed.
Proof. That β∗(0) ≡ β∗(k) follows from the definition of Γ(·, ·, ·) and the fact that

r(0) = r(1), θ(0) = 0, and θ(1) = 2π. Hence β∗ is closed.
To show that β∗ is simple, we show that for any s1, s2 such that 0 ≤ s1 < s2 < k,

β∗(s1) 
≡ β∗(s2). (Since β∗(0) ≡ β∗(k) all cases with s2 = k are covered by cases with
s1 = 0.)

Let j1 = �s1� and j2 = �s2�. Then β∗(s1) is the point on curve Γ(β, j1, k) given
by parameter {s1}, and β∗(s2) is the point on curve Γ(β, j2, k) given by parameter
{s2}. If β∗(s1) ≡ β∗(s2), then by Lemma A.2, β({s1}) ≡ β({s2}). Since β is a simple
closed curve by definition, this is only possible if {s1} = {s2}. Applying Lemma A.4
we conclude j1 = j2, and hence s1 = s2, a contradiction.

Since β∗ is a simple closed curve, it divides the plane into two regions, one of
which contains T .

Lemma A.7. The target T is in the interior (bounded) domain of β∗.
Proof. Suppose T is not in the bounded domain. Then there is a path q∗ from

T to a point Q arbitrarily far from T such that q∗ does not intersect β∗. Define
q∗ = (r′(t), θ′(t)), t ∈ [0, 1], and let q be the path (r′(t), k · θ′(t)).

Since Q can be made arbitrarily far from T, q(1) is in the unbounded region of Ob.
Therefore, path q must cross β at some point β(s0) ≡ q(t0). By definition, therefore,

r′(t0) = r(s0),(A.1)

k · θ′(t0) = θ(s0) + 2πi(A.2)

for some integer i. Now let j = i (mod k), and consider the curve Γ(β, j, k) at point
s0. By definition Γ(β, j, k)(s0) = (r(s0), (θ(s0) + 2π(i (mod k)))/k). On the other
hand, A.2 yields

θ′(t0) =
θ(s0) + 2π(kx+ i (mod k))

k
=

θ(s0) + 2π(i (mod k))

k
+ 2πx

for some integer x. Therefore q∗(t0) ≡ Γ(β, j, k)(s0). This contradicts the assumption
that q∗ does not touch β∗, since Γ(β, j, k)(s0) ⊂ β∗.

If Ob is a normal obstacle, then let Ob∗ be the obstacle with boundary β∗ whose
obstructed region is the bounded domain containing T . If Ob is a room wall, then let
the obstructed region of Ob∗ be the unbounded domain not containing T . Next we
study the relationship between the break points of Ob and those of Ob∗.
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Lemma A.8. Point P ∗ = β∗(s) is a local minimum or local maximum with respect
to distance if and only if point P = β({s}) is a local minimum or local maximum,
respectively.

Proof. Since distances are unchanged, the distances of the points in a small
neighborhood of P ∗ are the same as the distances of the points in the corresponding
neighborhood of P . The only special case occurs when {s} = 0, but in this case the
points on β∗ in the distance s − ε are the same as the points on β in the distance
1− ε.

Lemma A.9. Point P ∗ = β∗(s0) is unblocked-towards if and only if P = β({s0})
is unblocked-towards.

Proof. For convenience, assume for the moment that Ob is a normal obstacle. We
show that if P is unblocked-towards, then P ∗ is also unblocked-towards. By definition,
if P is unblocked-towards, the PT -probe is a segment PR of nonzero length that is
contained entirely in free space. Let Q be some point in free space at distance greater
than any boundary point of Ob. Since Q is in free space (the unbounded region is free
with respect to Ob) there is a path connecting R to Q that lies entirely in free space.
Let q denote a path consisting of the segment from P to R followed by the path from
R to Q.

Let j0 = �s0�. Let q′ = Γ(q, j0, k). Then P ∗ ≡ q′(0). Note that q′ begins with
a segment P ∗R∗ of nonzero length that lies along the ray P ∗T . We show that q′ lies
entirely in free space, which implies that the segment P ∗R∗ is in free space. This then
implies that P ∗ is unblocked-towards.

To show that q′ lies entirely in free space, we observe that by Lemma A.2, the
curve q′ can only intersect β∗ at point q′(0) ≡ P ∗. Since the point Q∗ is at a distance
greater than any point on Ob∗, this point must be in free space, and since q′ does not
cross the boundary of Ob∗, all other points on q′ must be in the same region as Q∗.

Suppose on the other hand that point P is blocked-towards. We construct a path
q that begins at P, starts with a small segment PR along ray PT, and then continues
from R to T along a path entirely contained within the obstacle. We apply the same
transformation to q to derive a path from T to P ∗ lying entirely within one domain of
the obstacle boundary β∗. Since T is in the obstructed domain by definition, this path
is entirely within the obstructed region and hence shows that P ∗ is blocked-towards.

If the obstacle is a room wall rather than a normal obstacle, then the exterior
domain is the obstructed region. In this instance, we reverse the cases of unblocked-
towards and blocked-towards, since if a point is blocked-towards, then there is a path
within the obstacle to some point Q very far away, and if it is unblocked-towards,
then there is a path in free space to T .

Lemma A.10. Point P ∗ = β∗(s0) is unblocked-away if and only if P = β({s0})
is unblocked-away.

Proof. The proof is analogous to that of Lemma A.9, the only difference being
that the probes point away from T rather than toward T .

Corollary A.11. Point P ∗ = β∗(s0) is a break point if and only if P = β({s0})
is a break point. Furthermore, if P ∗ = β∗(s0) is a break point, then the ground track
entry generated at P ∗ is identical to the ground track entry generated at P .

Proof. The corollary is a consequence of Lemmas A.8, A.9, and A.10.

Theorem 4.1. In the distance query model, if there may exist an obstacle whose
interior contains the target (either a normal obstacle with the target in its obstructed
region, or a room wall with the target in its complement), then there is no deterministic
algorithm for circumnavigation. Furthermore, there are arbitrarily complex obstacles
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which any given deterministic algorithm fails to circumnavigate.
Proof. Let A be any circumnavigation algorithm. Let Ob be any sufficiently

complex obstacle containing T in its bounded domain (i.e., interior). We assume
the target is at the origin and the boundary of Ob, β = (r(s), θ(s)), s ∈ [0, 1], is
parameterized so that θ(0) = 0 and θ(1) = 2π. The robot is started at point β(0) =
(r(0), θ(0)) using algorithm A.

If algorithm A fails to circumnavigate Ob, either by halting incorrectly or never
halting, then the theorem holds immediately. Otherwise we construct an obstacle Ob∗

which A fails to circumnavigate.
Choose a constant k as follows. Suppose the robot halts after receiving m ground

track entries. Then rp(m) = (ρ(t), ϑ(t)), t ∈ [0, 1], is the complete path followed by
the robot while performing its circumnavigation.

Choose any integer k such that k > maxt{|ϑ(t)|}/π. Let β∗ = Z(β, k), and let
Ob∗ be the obstacle with boundary β∗ whose interior region contains T . Lemmas A.8–
A.10 and Corollary A.11 hold of the obstacle Ob∗ and its boundary β∗. We claim that
on Ob∗ the robot will follow the path p∗ = (ρ(t), ϑ(t)/k). If this claim is true, then
for all s,

−maxs{|ϑ(s)|}
k

≤ ϑ∗(s) ≤ maxs{|ϑ(s)|}
k

.

Since k > maxs{|ϑ(s)|}/π, this implies −π < ϑ∗(s) < π. But since every ray from T
intersects Ob∗ at some point there must be a point at angle π, which is not reached
by the robot in traveling over path p∗. Hence the robot fails to circumnavigate Ob∗.

It remains to prove the claim. The proof is by induction on the number of ground
track entries generated as the robot travels path p. We show that

(i) if rp(') on Ob is (ρ(t), ϑ(t)), t ∈ [0, 1] then rp∗(') on Ob∗ is (ρ(t), ϑ(t)/k).
To do this, we show that two additional invariants hold:
(ii) For all ', the first ' ground track entries generated while running on Ob∗ are

identical to the first ' entries generated while running on Ob.
(iii) If rp∗(') = β∗(j0 + s0), s0 ∈ [0, 1), and 0 ≤ j0 < k, then rp(') = β(s0).
For the basis case, observe rp(0) ≡ rp∗(0) = S, and all the invariants are trivially

true. Now suppose the robot has generated ' ground track entries while running on
Ob∗. By invariant (ii), on both Ob and Ob∗, the navigation algorithm, having seen
the same set of ground track entries, will take the same action.

Case 1. The robot executes follow-boundary(CCW). On both Ob and Ob∗, the
robot’s path is coincident with the respective obstacle boundary until reaching the
first break point in the CCW direction. On Ob, rp('+ 1) = rp(') + β([s0, s1]). Now
set

j1 =

{
j0 if s0 < s1 < 1,
j0 + 1 mod k if 0 ≤ s1 < s0.

By Corollary A.11, β∗(j1+s1) is the first break point the robot reaches on Ob∗. There-
fore invariants (ii) and (iii) hold. Either path rp∗('+1) = rp∗(')+Γ(β, j0, k)([s0, s1])
or rp∗('+1) = rp∗(') + Γ(β, j0, k)([s0, 1]) + Γ(β, j1, k)([0, s1]), depending on whether
s0 < s1 < 1. By the definition of Γ(β, j, k), invariant (i) holds.

Case 2. The robot executes follow-boundary(CW). This is analogous to Case 1.
Case 3. The robot executes move-to-T(). Let Q = β(s0) be the point on Ob

from which the robot departs. By invariant (iii), the robot will depart Ob∗ at Q∗ =
β∗(s0 + j0). Consider the ray q = TQ and the transformed ray q∗ = S(q, j0, k). From
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Ob the robot travels inbound on ray q and from Ob∗ the robot travels inbound on ray
q∗. Let P be the hitpoint reached on Ob and let P ∗ be the hitpoint reached on Ob∗.
We argue that P = β(s1) and P ∗ = β∗(s1 + j1) for some j1. This will immediately
establish invariants (ii) and (iii). Invariant (i) also follows, since from both Ob and
Ob∗ the robot follows an inbound ray, without changing its angular coordinate, until
stopping at a point at the same radius in both cases.

Since ray q intersects β at P, it follows from Lemma A.3 that ray q∗ intersects β∗

at some point R∗ = β∗(s1 + j1). Since P is blocked-towards, R∗ is blocked-towards
(Lemma A.9). If R∗ ≡ P ∗ we are done. Suppose therefore that R∗ 
≡ P ∗. Then P ∗

must have a radius coordinate greater than R∗. Since ray q∗ intersects β∗ at P ∗, it fol-
lows from Lemma A.2 that ray q intersects β at some point R = β(s2). Furthermore,
R has the same radius coordinate as R∗ and is also blocked-towards (Lemma A.9).
But this contradicts the assumption that P is the first hitpoint encountered when
the robot heads in along ray q. Therefore it must be the case that R∗ = P ∗,
as desired.
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Abstract. We study the problem of processor scheduling for n parallel jobs applying the method
of competitive analysis. We prove that for jobs with a single phase of parallelism, a preemptive
scheduling algorithm without information about job execution time can achieve a mean completion
time within 2 − 2

n+1
times the optimum. In other words, we prove a competitive ratio of 2 − 2

n+1
.

The result is extended to jobs with multiple phases of parallelism (which can be used to model
jobs with sublinear speedup) and to interactive jobs (with phases during which the job has no CPU
requirements) to derive solutions guaranteed to be within 4− 4

n+1
times the optimum. In comparison

with previous work, our assumption that job execution times are unknown prior to their completion
is more realistic, our multiphased job model is more general, and our approximation ratio (for jobs
with a single phase of parallelism) is tighter and cannot be improved. While this work presents
theoretical results obtained using competitive analysis, we believe that the results provide insight
into the performance of practical multiprocessor scheduling algorithms that operate in the absence
of complete information.
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1. Introduction. The CPU scheduling problem for computer systems distin-
guishes itself from general scheduling problems (e.g., job shop scheduling) in its variety
of requirements of the system and variety of performance metrics. While minimizing
makespan (the time at which the last job completes execution) is usually a natu-
ral objective function for many general scheduling problems, a number of different
possibilities exist for CPU schedulers in a general purpose multiuser computing en-
vironment [31]. Nevertheless, minimizing the mean completion time (the sum of the
times at which each job completes, divided by the number of jobs) is a commonly
used objective function [22], [18], [34], [35], [27]. We can equivalently just consider
the sum of the completion times. In this paper, the phrase completion times is used to
imply that all jobs are available for execution at time zero, while the phrase response
time implies that there are new job arrivals.
Several recent analytic results have been obtained for the problem of minimizing

mean completion times using nonpreemptive scheduling algorithms which assume that
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job information is completely known [35], [34], [27], [18]. These results initiated the
first (theoretical) step toward understanding the general problem. Our work takes
the next significant step and is distinguished from these results in that we remove the
unrealistic assumption that the job execution time is known. Knowledge of execution
times for some jobs may be obtained, but this is clearly not a valid assumption for all
jobs in general purpose computing environments.
Using the terminology of Feitelson et al. [9], the work by Turek et al. [35] and

Schwiegelshohn et al. [27] examines nonpreemptive scheduling policies using a rigid
job model. That is, the number of processors required by a job is defined by the job
and must be assigned to the job for its lifetime. Subsequent work [34], [18] relaxes the
job model to consider moldable jobs. A moldable job [9] is one which can be run on
any number of processors provided that once the processors have been allocated they
remain allocated to that job for the duration of its execution. In this case the scheduler
is free to determine the number of processors to allocate to each job. However, once a
job is assigned processors it cannot be preempted. Additionally, some of these studies
[34], [18] explicitly model jobs with sublinear speedup.
By comparison, in this work we model malleable jobs in order to examine dynamic

preemptive scheduling policies. That is, we model jobs that are capable of executing
with a changing number of processors and scheduling algorithms that can modify the
number of processors allocated to jobs during their execution in order to adjust to
changing requirements or system loads. Note that in using this model, threads of a
job can migrate (i.e., they can be suspended on one processor and resumed at a later
time on another processor). We also explicitly study jobs with multiple phases of
parallelism in order to approximate jobs with sublinear speedups. During each phase
of execution a job is capable of executing with perfect speedup until a maximum degree
of parallelism is reached. The addition of extra processors beyond this limit neither
increases nor decreases the execution time of the job. While each phase executes
with linear speedup (up to the maximum degree of parallelism), multiple phases of
execution with different maximum degrees of parallelism can be combined to produce
an overall model of sublinear speedup.
In this paper we show that the dynamic equipartition (DEQ) policy [33], [38]

produces mean completion times that are no more than 2− 2
n+1 times the optimum

for any set of n parallel jobs with one phase of parallelism, and that no policy can
guarantee a better competitive ratio without a priori knowledge of job execution times.
Although the competitive ratio turns out to be the same as in the sequential problem
(not necessarily by accident), our result requires a completely different and rather
difficult proof. In fact, the ratio of 2− 2

n+1 cannot be further improved mathematically
for jobs with a single phase of parallelism.

This result provides a theoretical foundation for analyzing and understanding the
performance of the DEQ policy, which, along with its various derivatives, has been
shown to be superior to nonpreemptive algorithms in recent simulation and experi-
mental studies [33], [17], [38], [16], [20], [21].
The remainder of the paper is organized as follows. We complete section 1 with a

further description of the problem and a discussion of related work. In section 2, we
give a formal definition of the DEQ allocation policy. Then we establish a lower bound
on the optimal total completion time for parallel jobs by extending the squashed area
bound and the height bound [34], using a completely different approach from those
used previously. In section 3, we give a formal proof that the total completion time
of DEQ is no more than twice the optimal total completion time for any job set. The
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mathematical induction used in this proof requires a delicate balance of the squashed
area and height bounds on the work needed to be executed by each job. Furthermore,
in section 4, we show that our results can be extended to jobs which may change
the number of processors required during their execution, including interactive jobs
which may block and therefore need not be assigned to a CPU while waiting for user
input. In section 5, we present theoretical results which demonstrate that DEQ is
robust in the presence of faulty jobs. We consider the case where there are faulty jobs
which may execute infinitely and show that, in this case, DEQ achieves the optimal
competitive ratio for makespan. In section 6, we conclude the paper.

1.1. Preemptive scheduling. Schedulers in most general purpose computer
systems are preemptive for several reasons [31]. First, job execution times may not be
known prior to their completion. Thus, when nonpreemptive scheduling algorithms
are used, short jobs may be penalized by long jobs which utilize the CPUs for long
periods of time. Second, interactive jobs require some processing, and preemptive
(time-sharing) scheduling policies allow them to execute by providing them with a
slice of CPU time. Third, some jobs may execute infinitely, due to programming
errors. If a nonpreemptive scheduling policy is used they may execute forever and
exclude other jobs from being processed. Obviously, the preemptive execution of jobs
incurs some overhead. For multiprocessor systems, this may become more expensive.
However, these overheads can be absorbed in a time-sharing scheme by choosing a
scheduling quantum that is sufficiently large or by dynamically space-sharing pro-
cessors instead [33], [38], [20], [26]. This is consistent with the trend toward coarse
grained machines for general purpose parallel computations, as suggested in the LogP
model [3]. Setup costs can then be absorbed by pipeline routing if the size of a prob-
lem is sufficiently large in comparison with the number of processors in the system
[36]. Independently, there have been extensive empirical studies on the preemptive
cost caused by time/space-sharing scheduling policies [38], [20], [37]. Even for some
cases when the preemption cost is relatively high, simulation and experimental studies
support preemptive over nonpreemptive scheduling policies [38], [20], [23], [24].

1.2. Competitive analysis. We make the assumption that job execution times
are not known prior to their completion. This is quite realistic for modern general
purpose multiprocessors. Since execution times are not known at the time jobs are
scheduled, it is possible that any given scheduling policy may not perform very well on
some specific job set. For this reason, we use competitive analysis to study policies that
do not deviate from the optimal solution (which has and uses complete information
about the job set) by more than a constant factor. The competitive analysis of
algorithms is a measure of algorithms operating with incomplete information, first
introduced in the study of system memory management [32], [13], [19]. Policies for
this problem are required to handle future unknown requests. The competitive ratio
of a policy is defined to be the worst case ratio of the cost of the policy (which is
different for different problems) to the optimal cost for the same input sequence.
In the CPU scheduling problem the situation is similar in that the execution time
of a job is unknown until its execution is completed. The competitive ratio of a
scheduling policy S is thus defined as the worst case ratio of the mean completion
time (or makespan), S(J ), of the policy on a set of jobs, J , over the minimum mean
completion time (or makespan) OPT (J ) on the same job set J : maxall J S(J )

OPT (J ) .

An algorithm is said to be f(n)-competitive in mean completion time (or makespan) if
S(J ) ≤ f(n)OPT (J ). The goal is to find an algorithm which leads to the minimum
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competitive ratio. Shmoys, Wein, and Williamson studied the optimal competitive
ratio in the makespan of sequential jobs being scheduled on parallel machines [30].
For minimizing the mean completion time of sequential jobs, Motwani, Phillips, and
Torng have shown that a preemptive time-sharing policy, round-robin, achieves the
optimal competitive ratio. It guarantees a mean completion time which is within
2 − 2

n+1 times optimal, and no policy can guarantee a better competitive ratio [22].
As further evidence that preemptive policies should be preferred to nonpreemptive
policies, it is not hard to see that any nonpreemptive policy can result in a mean
completion time that is Ω(n) times the optimum when n jobs are scheduled.

1.3. The job model. The most detailed description of a parallel program’s exe-
cution on a multiprocessor is a data-dependency directed acyclic graph (DAG), where
edges represent data dependencies between the data (nodes). The DAG is revealed as
the computation proceeds as a result of data-dependent conditional statements. Using
a delay model introduced by Papadimitriou and Yannakakis [25], Deng and Koutsou-
pias show that given uniform communication delay, τ , for any scheduler, there exists
a DAG for which the scheduler will produce a schedule whose execution is at least
τ

log τ times the optimal execution time of that DAG [4]. The same claim holds for

both the bulk synchronous parallelism (BSP) and the LogP models. That is, for a
parallel system with communication latency L between processors, the competitive
ratio of any scheduler is at least L

logL . This work shows that it is not possible for

a compiler to optimally (or near-optimally) execute all jobs for distributed memory
parallel systems, and it calls for the characterization of parallel jobs and the use of
these characteristics in scheduling policies.
We characterize a parallel job, Ji, using two parameters: its execution time, hi,

and its parallelism, Pi. Pi is the number of processors a job is capable of using
during its execution, and hi is the time that the job needs to complete execution if
it is allocated Pi processors. When less than Pi processors are allocated to job Ji,
we assume that the job’s execution will be prolonged proportionally. That is, if pi
processors (pi < Pi) are allocated to Ji, its actual execution time is

Pi

pi
hi. For a

job, (Pi, hi), its parallelism Pi is known to the scheduler but the execution time hi
is unknown prior to its completion. Therefore, jobs are considered malleable and the
scheduling algorithms are dynamic and preemptive, since they can adjust the number
of processors allocated to a job during its execution [9].
In general, we can use parallelism profiles to characterize parallel jobs. A paral-

lelism profile is defined as the number of processors an application is capable of using
at any point in time during its execution [15]. During execution, if the parallelism of
an application varies with time, it is said to have multiple phases of parallelism. Note
that although our job model assumes linear speedup within each phase of parallelism,
jobs with multiple phases of parallelism will execute with sublinear speedup. We also
consider interactive jobs by introducing phases during which a job does not require
access to a processor because it is blocked while waiting for user input.

1.4. Related results. Motwani, Phillips, and Torng [22] show that, for unipro-
cessor systems, the mean completion time of the round-robin scheduling policy is
2− 2

n+1 times the optimum and that without a priori information about job execution
times, no policy can guarantee mean completion times within a better approximation
factor of the optimum (called the competitive ratio [32], [13], [19]).
The problem of minimizing the mean completion time of parallel jobs executing

on multiprocessors is also of interest, and here a number of positive results exist.
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Recently, there have been several analytic results which assume that job information is
completely known. The first significant work is that of Turek et al. [35] who introduce
an approximation algorithm of 32 times the optimum for a nonpreemptive scheduling
model. This result for nonpreemptive algorithms has been subsequently improved and
extended [34], [27], [18].
A number of different preemptive policies have been proposed and studied for

scheduling parallel jobs in multiprocessors [33], [29], [38], [20], [28], [26], [23], [24], [2].
In particular, experimental and simulation studies have shown that the DEQ algo-
rithm yields low mean completion times under a variety of workloads and is reported
to possess desirable properties of a good scheduler [33], [17], [16]. DEQ was first intro-
duced to parallel scheduling by Tucker and Gupta as a process control policy [33] and
was modified by Zahorjan and McCann [38]. The main idea behind this approach is
to distribute processors evenly among jobs, provided they have sufficient parallelism.
One of the main drawbacks of DEQ, when compared with other approaches like

gang scheduling, is that it requires each job to be implemented in such a way that
the number of processes allocated to the job can change during its execution. It
also requires significant coordination between the operating system and the run-time
system. While these requirements might seem restrictive, studies have shown that
it is relatively simple to write malleable applications, that coordination between the
scheduler and run-time system is not prohibitive, and that performance is improved
significantly when compared with other techniques [20], [10], [23], [24]. In addition,
the DEQ algorithm is simple to implement and requires no information about job
execution times. Therefore, this work examines the DEQ scheduling algorithm.
Our proof that DEQ is 2 − 2

n+1 -competitive uses the notion of a squashed area
bound, introduced for the nonpreemptive scheduling of parallel jobs [18], [35], [27],
[34]. Turek et al. show that the minimum completion time for a set of jobs, J =
{(P1, h1), (P2, h2), . . . , (Pn, hn)}, is no more than the minimum completion time of
the job set Jsquash = {(P, P1h1

P ), (P,
P2h2
P ), . . . , (P,

Pnhn
P )} [35]. The squashed area

bound is the total completion time (the product of the number of jobs and the mean
completion time) for Jsquash under the least work first (LWF) policy. Sevcik shows
that the LWF policy is optimal if all jobs have the same parallelism P [28].

2. Preliminaries. Consider n jobs in a system of P processors. Job Ji is charac-
terized by the parallelism-time pair (Pi, hi), and the amount of work is wi = Pihi, 1 ≤
i ≤ n. Denote the job set by J = {J1, J2, . . . , Jn}. Suppose that under a scheduler S
the actual completion time of job Ji is ti, 1 ≤ i ≤ n. The total completion time of J ,
denoted by TCS(J ), is defined as

∑n
i=1 ti. Then the mean completion time MCS(J )

is defined as TCS(J )
n . The height bound H(J ) is defined as ∑ni=1 hi [35]. Since Ji

requires at least hi units of execution time, 1 ≤ i ≤ n, H(J ) is an obvious lower
bound on the optimal total completion time. Let the jobs be ordered according to
their total work w1 ≤ w2 ≤ · · · ≤ wn. The squashed area bound A(J ) is then defined
as
∑n
i=1(n− i+1)wi

P [35]. Notice that any preemptive scheduling of the job set J can
be obtained by a preemptive scheduling of the job set {(P, w1

P ), (P,
w2

P ), . . . , (P,
wn

P )}.
It follows that OPT (J ) ≥ OPT{(P, w1

P ), (P,
w2

P ), . . . , (P,
wn

P )}. Since each job has the
same parallelism, the shortest job first (or LWF) strategy gives the optimal solution
for the total completion time, easily provable as in sequential systems (see [35], [28]
for details). This gives exactly the squashed area bound.
Our main result utilizes a nontrivial extension to the squashed area bound and

the height bound. Suppose each job (Pi, hi) is divided into two parts: (Pi, hi1) and
(Pi, hi2) such that hi = hi1 + hi2. Let J (1) = {(Pi, hi1) : 1 ≤ i ≤ n} and J (2) =
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{(Pi, hi2) : 1 ≤ i ≤ n}. We have the following lemma for a lower bound on the optimal
total completion time of the job set J .

Lemma 2.1. OPT (J ) ≥ A(J (1)) +H(J (2)).
Proof of Lemma 2.1. Consider the optimal scheduling algorithm on the input

J . Let ti1 be the time when the remaining portion of Ji is (Pi, hi2) and ti2 be the
time when Ji completes execution 1 ≤ i ≤ n. Obviously, ti2 − ti1 ≥ hi2. The total
completion time for the optimal scheduler is

OPT (J ) =
n∑
i=1

ti2 ≥
n∑
i=1

ti1 +

n∑
i=1

hi2 ≥ A(J (1)) +H(J (2)),

where the last inequality is derived from the height bound and the squashed area
bound [35].
We formally define the DEQ allocation policy recursively as follows:
(1) If Pi ≥ Pn for all i : 1 ≤ i ≤ n, each job is assigned Pn processors.
(2) Otherwise, each job Ji with parallelism Pi <

P
n is allocated Pi processors.

Update n and P . If n > 0, recursively apply DEQ.
Obviously, this schedule is valid only when Pn is an integer. In practice, if

P
n is a

rational number, and larger than 1, we can take its integer part �Pn 	 and ignore its
fraction part Pn − �Pn 	. The result will be affected by a small constant factor. If Pn
is a fractional number smaller than 1, we view all the parallel jobs as sequential jobs
and apply the round-robin policy so that in unit time, a fraction Pn of one processor’s
CPU time is assigned to one job. To simplify our proof, we allow a fractional number
of processors to be assigned to a job, Pn , as long as that number is smaller than the
parallelism of the job. Let Jpara be the set of jobs that are allocated Pi processors,
and the rest of the jobs form the set Jequi (which are each assigned an equal number
of processors, denoted by p̄).

Lemma 2.2. If there are no idle processors, then
∑
Ji∈Jpara

Pi + |Jequi|p̄ = P ,

(∀Ji ∈ Jpara)Pi ≤ p̄, and p̄ ≥ Pn .
Consider the execution of jobs under the DEQ policy. Each job (Pi, hi) is divided

into two modes of execution: It is in full-parallelism mode if Pi processors are assigned,
and it is in equipartition mode if less than Pi processors are assigned. It is not difficult
to see that under the DEQ allocation policy, once a job enters full-parallelism mode, it
will stay in that mode until completion. Let hi(f) be the length of execution of job i
in full-parallelism mode, and hi(e) = hi−hi(f). Let J (f) = {(Pi, hi(f)) : 1 ≤ i ≤ n}
and J (e) = {(Pi, hi(e)) : 1 ≤ i ≤ n}. In the next section, we prove

TCDEQ(J ) ≤
(
2− 2

n+ 1

)
[A(J (e)) +H(J (f))].(2.1)

Combining this with Lemma 2.1, we have the following theorem.
Theorem 2.3. TCDEQ(J ) ≤ (2− 2

n+1 )OPT (J ).
It is not hard to extend the lower bound for the competitive ratio of sequential

jobs by Motwani, Phillips, and Torng [22] to this situation. In fact, we can replace
each job in their proof with a parallel job of the same execution time with parallelism
P , the number of processors in the system. Thus, this competitive ratio is optimal.

3. Minimizing mean completion time. In this section, we prove that (2.1)
holds. Suppose jobs are initially divided into Jpara and Jequi according to the dis-
cussion in section 2. We need the following lemma.
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Lemma 3.1. If there are no idle processors, then

(n+ 1)P |Jequi| ≤ (n− 1)P |Jpara|+ np̄|Jequi|(|Jequi|+ 1).

Proof of Lemma 3.1.

RHS = P (|Jequi|+ |Jpara| − 1)|Jpara|+ np̄|Jequi|(|Jequi|+ 1)
≥ P |Jequi||Jpara|+ P (|Jpara| − 1)|Jpara|+ P |Jequi|(|Jequi|+ 1)
≥ P |Jequi|(|Jpara|+ |Jequi|+ 1) = P |Jequi|(n+ 1).

In the above, the first inequality follows from Lemma 2.2, and the second inequality
follows from the fact (|Jpara| − 1)|Jpara| ≥ 0.
When one of the jobs, say J1, finishes its execution under DEQ, we will reallocate

processors according to DEQ. Every job in Jpara will still be assigned the same number
of processors as its parallelism. Let J ′para ⊆ Jequi be the subset of jobs in Jequi which
are assigned the same number of processors as their parallelism after the reallocation
of processors. Let J ′equi = Jequi − J ′para. Thus, jobs in J ′equi are now assigned the
same number of processors.

Proof of (2.1). For simplicity of presentation, let C = 2− 2
n+1 . In order to avoid

case-by-case analysis in the proof, we prove the claim by induction on the number of
jobs which have nonzero execution time, n.
Since 2− 2

n+1 is an increasing function of n and jobs of zero length would change
neither the squashed area bound nor the height bound, the claim would also hold when
we allow n to be the number of total jobs, including jobs of zero length. Therefore,
we can simply prove the claim for the case when all jobs have nonzero lengths while
allowing the induction hypothesis to include the case when jobs of zero length are
present.
For the base case n = 1, if the parallelism, P1, of job J1 is less than or equal to

P (P1 ≤ P ), it is assigned P1 processors (h1(f) = h1). Otherwise, P processors are
assigned to the job (h1(e) = h) and its execution ends in time

P1h1
P , which is the same

as the squashed area bound.
Assume the claim holds when the number of jobs of nonzero length is less than

n. Consider the case of n jobs, all of nonzero length, J = {(Pi, hi) : 1 ≤ i ≤ n}. If
there are idle processors, the claim follows immediately. So we assume there are no
idle processors. Without loss of generality, let J1 = (P1, h1) be the first to finish and
let τ denote its completion time. Therefore, the remaining portion of jobs Ji ∈ Jequi
is (Pi, hi− τp̄Pi

), and the remaining portion of jobs Ji ∈ Jpara is (Pi, hi−τ). Therefore,
the total completion time is

TCDEQ(J ) = nτ + TCDEQ
({(

Pi, hi − τ p̄

Pi

)
: i ∈ Jequi

}
(3.1)

∪ {(Pi, hi − τ) : i ∈ Jpara}
)
,

where the first term is the completion time of J1 plus the time that the other n − 1
jobs have been in the system so far, and the second term is needed in recursion for
the remaining portion of the n− 1 jobs. By the induction hypothesis,the second term
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in (3.1) is bounded by C times

A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ Jequi

})
(3.2)

+ H({(Pi, hi(f)) : i ∈ Jequi}) +
∑
i∈Jpara

(hi − τ),

where hi(e) ≥ τp̄Pi
for each i ∈ Jequi. DEQ will redistribute processors among jobs in

Jequi after the departure of J1. Let J ′para ⊆ Jequi be the subset of Jequi such that
for each i ∈ J ′para, Ji is assigned Pi processors after the redistribution. Let J ′equi be
the rest of the jobs in Jequi. Since jobs in J ′para will stay in full parallelism mode, we
have

∀i ∈ J ′parahi(e) =
τ p̄

Pi
.(3.3)

Similarly,

∀i ∈ J ′equihi(e) >
τp̄

Pi
.(3.4)

From (3.3), we have

(3.5)

A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ Jequi

})
= A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ J ′equi

})
.

Let the jobs in J ′equi be ordered as j1, j2, . . . , jk, k = |J ′equi|, according to the
increasing order of the amount of remaining work Pi(hi(e)− τp̄Pi

), i ∈ J ′equi, which is
the same as the increasing order of Pihi(e), i ∈ J ′equi. Then,

A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ J ′equi

})
=
1

P

k∑
i=1

(k − i+ 1)Pji
(
hji(e)−

τ p̄

Pji

)

=
1

P

k∑
i=1

(k − i+ 1)Pjihji(e)−
1

P

k∑
i=1

(k − i+ 1)τ p̄.

Therefore,

(3.6)

A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ J ′equi

})
= A({(Pi, hi(e)) : i ∈ J ′equi})−

k(k + 1)

2P
τp̄.

We also have

H(Jequi(f)) +
∑
i∈Jpara

(hi − τ) = H(J (f))− |Jpara|τ.(3.7)

Combining (3.1) and (3.2), we know that TCDEQ(J ) is no more than

nτ + C ·
(
A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ Jequi

})

+ H({(Pi, hi(f)) : i ∈ Jequi}) +
∑
i∈Jpara

(hi − τ)
)
.
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By (3.5), this is the same as

nτ + C ·
(
A

({(
Pi, hi(e)− τ p̄

Pi

)
: i ∈ J ′equi

})

+ H({(Pi, hi(f)) : i ∈ Jequi}) +
∑
i∈Jpara

(hi − τ)
)
.

Now by substituting (3.6) and (3.7), we have the following upper bound for TCDEQ(J ):

nτ − C · k(k + 1)τ p̄
2P

− C · |Jpara|τ + C ·A(J ′equi) + C ·H(J (f)).

Since

A(Jequi(e)) = A(J ′equi(e)) +
|J ′

para|∑
i=1

(k + |J ′para| − i+ 1)τ p̄
P

,

the above upper bound is equal to

nτ − C · k(k + 1)τ p̄
2P

− C · |Jpara|τ − C ·
|J ′

para|∑
i=1

(k + |J ′para| − i+ 1)τ p̄
P

+ C · (A(Jequi(e)) +H(J (f))).

To show that this is no more than

C ·A(J (e)) + C ·H(J (f)) = C ·A(Jequi(e)) + C ·H(J (f)),

it is sufficient to show that

n ≤ C · k(k + 1)p̄
2P

+ C · |Jpara|+ C ·
|J ′

para|∑
i=1

(k + |J ′para| − i+ 1)p̄
P

.

This inequality is the same as

nP ≤ C · |Jpara|P + C

2
|Jequi| ( |Jequi| + 1)p̄.

Equivalently,

|Jequi|P ≤ (C − 1) |Jpara|P + C

2
|Jequi| ( |Jequi| + 1)p̄.

Since C = 2− 2
n+1 , the above inequality follows from Lemma 3.1.

4. Multiphased parallelism and interactive jobs. At any point in time
some jobs are assigned a number of processors equal to their parallelism (those in
full-parallelism mode) and others are assigned p̄ processors (those in equipartition
mode). Both the parallelism of the jobs and p̄ may change over time. We continue to
use the notation J (f) for the portion of jobs in J in full-parallelism mode, and J (e)
for the portion of jobs in equipartition mode.
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Theorem 4.1. For jobs with multiple phases of parallelism, we have

TCDEQ(J ) ≤
(
2− 2

n+ 1

)
A(J (e)) +

(
2− 2

n+ 1

)
H(J (f)).(4.1)

Therefore, DEQ is 4− 4
n+1 competitive for mean job completion time.

Proof. The conclusion of 4 − 4
n+1 competitiveness follows immediately from the

fact that both the squashed area bound and the height bound are lower bounds on the
optimal total completion time. Our focus is thus on (4.1). We consider an inductive
proof using the result for single-phased jobs as the base case. A difficulty in this case
is that the order of jobs in the squashed area bound may change as execution of the
jobs (according to DEQ) proceed. To deal with this problem, we divide the execution
time of the jobs into intervals such that in each interval, the parallelism of all jobs does
not change; and the order, according to which the squashed area bound is applied,
of the total remaining work to be executed under the equipartition mode of all jobs
does not change. Thus between two consecutive intervals, either some job changes
its parallelism or two jobs have the same amount of remaining work to be executed
under the equipartition mode. We prove our claim by induction on the number of
such intervals.
For the base case, the parallelism of all jobs is the same and the claim follows from

our result on jobs with a single phase of parallelism in section 3. To apply the inductive
proof, consider the execution of all jobs for τ time units in the interval during which
no job changes its parallelism. The case with idle processors is trivial. So we assume
there are no idle processors. For jobs in full-parallelism mode during this period of
time (denoted by Jpara), their height decreases by τ . For jobs in equipartition mode
during this period of time (denoted by Jequi), their work decreases by p̄τ . Applying
the induction hypothesis to the remaining portions after the first time interval, we
have

TCDEQ(J ) ≤ nτ + C ·

A(J (e))−

|Jequi|∑
i=1

(n− i+ 1)τ p̄
P




+ C ·

H(J (f))−

|Jpara|∑
i=1

τ


 ,

where C = 2 − 2
n+1 . The condition that the order of total work in J (e) does not

change is crucial in the above formulation. At the end of the interval, it is possible
that two jobs may be tied in the remaining portion of J (e). We can exchange their
order without changing the squashed area bound. The new order would then be used
for the next interval. To obtain our proof, it is sufficient to show

nτ ≤ C ·
|Jequi|∑
i=1

(n− i+ 1)τ p̄
P

+ C · |Jpara|τ.

This holds if we have

nτ ≤ C ·
|Jequi|∑
i=1

iτ p̄

P
+ C · |Jpara|τ,
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which is equivalent to

nP ≤ C · |Jequi|(|Jequi|+ 1)p̄
2

+ C · |Jpara|P.

This can be shown in the same way as in the proof of Theorem 2.3 by applying
Lemma 3.1. In fact, Lemma 3.1 holds independently of the fact that jobs contain a
single phase of parallelism or multiple phases of parallelism.
Interactive jobs can be formulated as jobs alternating between periods of being

blocked while waiting for input from a user (requiring no processor), and periods of
processing. Our result above also applies to such interactive jobs. We assume that
users respond to each request for input in a finite amount of time. The degenerate
case, where a user may not respond to an input request, is considered in detail in
section 5. Thus, we have the following corollary.

Corollary 4.2. DEQ is 4 − 4
n+1 competitive for the mean completion time of

interactive jobs.
This result immediately carries over to sequential job scheduling problems and

produces the same competitive ratio for the round-robin policy. However, in this case
we have a better result.

Theorem 4.3. Round-robin is 3− 2
n+1 competitive for the mean completion time

of interactive jobs on sequential machines.
Proof. LetW (J ) =∑ni=1(n−i+1)ti for a job set J = {J1, J2, . . . , Jn}, where ti is

the cumulative time job Ji requires CPU processing, 1 ≤ i ≤ n, and t1 ≤ t2 ≤ · · · ≤ tn.
Let H(J ) = ∑ni=1 hi, where hi is the cumulative time job Ji does not require CPU
processing (i.e., when it is blocked). We now show

TCRR(J ) ≤
(
2− 2

n+ 1

)
W (J ) +H(J ).(4.2)

The theorem follows from (4.2) since both W (J ) and H(J ) are lower bounds for the
optimal total completion time.
In a fashion similar to the above proof of Theorem 4.1, we use the round-robin

policy to divide the execution of jobs into a finite number of intervals in which the
order of remaining cumulative CPU times of jobs does not change and each job is in
the same phase (ready to execute or be blocked). We apply an inductive proof to the
number of such intervals. The base case follows from the result of Motwani, Phillips,
and Torng [22]. Consider one such interval of length τ ; let K be the set of jobs ready
to execute, k = |K|. The case k = 0 is trivial and we thus assume k ≥ 1. Each such
job is executed for τk time units. The cumulative blocked time for each of the other
jobs is decreased by τ . Thus we have

TCRR(J ) ≤nτ +
(
2− 2

n+ 1

)[
W (J )−

∑
i∈K
(n− i+ 1)τ

k

]
+H(J )− (n− k)τ,

which is less than or equal to (2− 2
n+1 )W (J ) +H(J ) if

n ≤
(
2− 2

n+ 1

)∑
i∈K
(n− i+ 1)1

k
+ (n− k).

This last inequality holds even for the worst choice of set K. Therefore, the theorem
follows.
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5. Robustness of DEQ. Competitive analysis has been successfully applied in
multiple processor scheduling problems to minimize the makespan [30]. There are,
however, some objections to using makespan as a computer system’s performance
measure. One of them is that makespan does not distinguish one policy from another.
Under our model, any work-conserving policy (i.e., no processors are idle as long as
there are jobs available for execution [6]) has a competitive ratio of two, which is
asymptotically optimal [1]. On the other hand, when there are new arrivals and the
scheduler has no a priori information about the execution time, using mean response
time as the performance objective, Motwani, Phillips, and Torng [22] have shown
that no scheduling policy can achieve a performance ratio that is better than n1/3. In
this case, mean response time is a performance metric that is extremely difficult to
minimize without any a priori information, since the adversary is able to choose arrival
times and job sizes that can defeat any scheduler. Rather than using competitive
analysis one might consider using mathematical analysis or simulation to compare
various scheduling algorithms. In addition, Kellerer, Tautenhahn, and Woeginger
[14] have shown that mean response time is also difficult to minimize even in the
presence of complete job information. Unfortunately, these approaches require either
knowing or making assumptions about job arrival and execution times. The power of
competitive analysis is that a positive result applies without the need to understand
or justify the workload model. That is, it applies for all workloads.
Since it is not possible to obtain a positive result for minimizing the competitive

ratio for mean response times when there are new arrivals, as a compromise, we ex-
amine competitive scheduling policies for minimizing makespan. These policies are
robust in the presence of infinite (possibly faulty) jobs. More precisely, we assume
that there are up to K infinite jobs in the system but the scheduler does not know
which jobs they are. Let TA(J ) be the completion time of the last finished finite job
under the scheduling policy A. Let OPT (J ) be the optimal completion time with full
information about finite jobs (and information about which are infinite jobs). Notice
that from now on, OPT (J ) refers to the optimal makespan instead of mean comple-
tion time. Obviously, infinite jobs are not executed under the optimal scheduler. The

competitive ratio is defined as maxJ
TA(J )
OPT (J ) .

Since the same issue arises in uniprocessor systems, we first consider this case.
Theorem 5.1. In a system with K infinite jobs, when there are new arrivals, the

competitive ratio of the makespan of the round-robin policy is K+1, which is optimal.
Proof. To show that (K+1) is a lower bound on the competitive ratio, consider

a case of K + 1 jobs including K infinite jobs and one finite job with execution time
t. No matter what scheduling algorithm is used, the adversary always assigns the
finite job to execute last. Thus, the total time required to complete the finite job
is at least (K + 1)t. An optimal schedule with complete information will take only
t time units, running only the finite job in t time units and not even running the
infinite jobs. Therefore, the competitive ratio is at least K + 1 for any scheduling
algorithm.
For the upper bound, without loss of generality, we assume that all K faulty jobs

are present in the system at time t0, and there are N other jobs, whose execution
time is x1, x2, . . . , xN , arriving at time t1, t2, . . . , tN , respectively. We consider the
following two cases.
Under the optimal scheduling algorithm with complete information, if new jobs

always arrive before the last finite job in the system has finished, no processor will
be left idle, and the optimal makespan will be

∑N
i=1xi. A round-robin scheduler will
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always execute at least 1
K+1 of the finite jobs, and all of the finite jobs will complete

by time 1
K+1

∑N
i=1xi. Therefore, the competitive ratio is bounded above by K + 1 in

this case.
The second case to consider under the optimal scheduling algorithm is when new

jobs arrive some time after the last finite job in the system has finished execution.
Let indices be defined according to job arrival orders. In this case, denote by m
the maximum index when a job arrives at time tm and finds no remaining jobs in
the system (all previous jobs have completed their execution). Let t∗ = tm. In this

case, the optimal completion time will be OPT = t∗ +
∑N
i=mxi. Consider the last

consecutive interval [τ1, τ2], 0 ≤ τ1 < τ2 ≤ t∗, during which there is at least one
finite job executing under the round-robin policy. The total length of finite jobs
arriving during this interval will be no more than τ2 − τ1, since an optimal scheduler
(with complete information) will finish all of them. Since the round-robin policy
will assign at least 1

K+1 of the total processing power to one finite job whenever
there is one in the system, by time τ2 the remaining total length of jobs is no more
than K

K+1 (τ2 − τ1) ≤ K
K+1 t

∗. From then on, the processor will always devote a
fraction (at least 1

K+1 ) of its time to finite jobs. Therefore, round-robin will finish

all of the finite jobs within at most (K + 1)( KK+1 t
∗ +

∑N
i=m xi) time units after t

∗.
Thus the completion time of all finite jobs will be at most (K + 1)(t∗ +

∑N
i=m xi),

which is (K+1)OPT . Therefore, the round-robin policy achieves a competitive ratio
of K + 1.
A similar argument can be applied to parallel job scheduling on multiprocessors.
Theorem 5.2. In a multiprocessor system with new job arrivals with multiple

phases of parallelism and K infinite jobs, the competitive ratio for the makespan of
DEQ is K + 1, which is the best possible competitive ratio.

Proof. Without loss of generality, assume that all K faulty jobs are present in
the system at time t0 = 0, and there are N other finite jobs, J1, J2, . . . , JN , which
arrive at time t1, t2, . . . , tN , respectively. Similarly, we examine the last finished finite
job Ji according to the DEQ policy. Again, we divide the execution of this job Ji
into two parts: let tpara be the total time during which the number of processors
allocated to the job is equal to its parallelism, and let tequi be the total time during
which it is assigned its fair share of processors according to DEQ. Let Wequi be the
total amount of work executed by Ji during the period it is assigned its fair share of
processors (i.e., during tequi). Since there are at most K infinite jobs, the total amount
of work performed on the infinite jobs during the period when Ji is assigned its fair
share of processors is no more than KWequi. Let W

′ be the total work performed
on finite jobs during the same period. Then the completion time of DEQ is bounded

by ti + tpara +
KWequi+W

′

P . On the other hand, for the optimal completion time, we

have ti + tpara +
Wequi

P ≤ OPT , which is the minimum time to complete Ji, ignoring
all other jobs. Furthermore,

(K−1)Wequi

P ≤ (K − 1)OPT , and W ′
P ≤ OPT . This

concludes our proof that DEQ has a competitive ratio of K + 1 when the system has
new arrivals of jobs with multiple phases of parallelism.

6. Remarks and discussion. We started our work on competitive analysis for
the parallel scheduling problem by facing two obstacles with this approach: the lower
bound of Deng and Koutsoupias on scheduling an arbitrary DAG [4] and the lower
bound of Motwani, Phillips, and Torng for scheduling with new job arrivals. While
the former points out that it is impossible to obtain a general on-line strategy that
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schedules arbitrary jobs on parallel machines (with a given communication latency)
near-optimally, the latter points out that it is impossible to obtain a general on-
line preemptive strategy that schedules sequential jobs on a uniprocessor to minimize
mean response time if job arrivals are unpredictable [22]. (This result can also be
extended to parallel jobs.) These two results raise serious doubts about the possibility
of obtaining a near-optimal scheduling strategy in realistic computing environments
for parallel jobs with new arrivals.
In this paper, we avoid the first difficulty by utilizing a special class of parallel jobs.

This class includes jobs with sublinear speedups by modeling them using multiple
phases of parallelism. With Edmonds and Chinn we have also recently extended some
of our positive results to larger classes of jobs and to models of systems which more
explicitly account for communication delays [7]. It seems that the second difficulty
may be much harder to overcome since it holds even for single processor scheduling.
If the objective of computer system scheduling is indeed to minimize mean response
time, more empirical workload studies will help to understand arrival times and job
sizes in typical computer systems. (Recent work has begun to examine workload
characteristics on multiprocessor systems [8], [11].) Workload information could be
used to more accurately reflect typical arrival times and job sizes and to perhaps avoid
scenarios that prevent competitive ratios from being obtained for algorithms that
perform well in practice. Alternatively, we may study other objective functions. The
explicit definition of interactive jobs introduced in this paper and the related constant
competitive ratio (for minimizing makespan) is an effort in this direction. Under these
conditions (including the presence of infinite jobs), the DEQ policy stands out among
other parallel scheduling policies in that it achieves the optimal competitive ratio for
makespan. An alternative approach to this second difficulty has been proposed by
Kalyanasundaram and Pruhs [12]. They show that a moderate increase in the speed
of the processor used by a nonclairvoyant scheduler can effectively give this processor
power equal to clairvoyance.
A central question that must be considered when developing and comparing

scheduling algorithms for multiprocessors is, What is the objective function being
used to determine how well the algorithm is performing? For example, is it more
desirable to minimize mean response time than to minimize makespan, or should
maximizing throughput be the main goal of the scheduler? As well, real systems
must also be careful to provide quick turnaround time to interactive programs. Ad-
ditional consideration must also be given to the fact that in some cases knowing or
deriving a competitive ratio for an algorithm does not mean that the complexity of
the algorithm is acceptable or that an algorithm can be easily constructed. These
issues are quite similar to solution concepts in the game theoretical framework for the
study of sharing economic resources, and it might be interesting to explore possible
links between them [5].
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Abstract. The first main result of this paper is a novel nonuniform discretization approximation
method for the kinodynamic motion-planning problem. The kinodynamic motion-planning problem
is to compute a collision-free, time-optimal trajectory for a robot whose accelerations and velocities
are bounded. Previous approximation methods are all based on a uniform discretization in the time
space. On the contrary, our method employs a nonuniform discretization in the configuration space
(thus also a nonuniform one in the time space). Compared to the previously best algorithm of Donald
and Xavier, the running time of our algorithm reduces in terms of 1/ε, roughly from O((1/ε)6d−1) to
O((1/ε)4d−2), in computing a trajectory in a d-dimensional configuration space, such that the time
length of the trajectory is within a factor of (1+ ε) of the optimal. More importantly, our algorithm
is able to take advantage of the obstacle distribution and is expected to perform much better than
the analytical result. This is because our nonuniform discretization has the property that it is coarser
in regions that are farther from all obstacles. So for situations where the obstacles are sparse, or the
obstacles are unevenly distributed, the size of the discretization is significantly smaller.

Our second main result is the first known polynomial-time approximation algorithm for the
curvature-constrained shortest-path problem in three and higher dimensions. We achieved this by
showing that the approximation techniques for the kinodynamic motion-planning problem are appli-
cable to this problem.

Key words. robotic motion planning, nonholonomic motion planning, kinodynamic motion
planning, nonuniform discretization
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1. Introduction. Nonholonomic motion planning involves planning a collision-
free path (or trajectory) for a robot subject to nonholonomic constraints on its dynam-
ics. A holonomic constraint is one that can be expressed as an equation of the robot’s
configuration parameters (a placement of a robot with k degrees of freedom can be
uniquely specified by k such parameters), while a nonholonomic one can only be ex-
pressed as a nonintegrable equation involving also the derivatives of the configuration
parameters (see [30] for a more detailed discussion on nonholonomic constraints).
Examples of nonholonomic constraints are bounds on velocities, accelerations, and
curvatures. Although there has been considerable recent work in the robotics litera-
ture (see [2, 3, 4, 5, 6, 7, 19, 24, 27, 28, 29, 31, 33, 34, 39, 42, 45, 47, 48] and references
therein) on nonholonomic motion-planning problems, relatively little theoretical work
has been done on these problems. Nonholonomic motion planning is considerably
harder than holonomic. For one thing, a robot with k degrees of freedom cannot be
described completely by k parameters. A complete description has to include the k
parameters and their derivatives. The configuration-space approach, which is widely
used for the holonomic motion-planning problems, does not apply to the problems
with nonholonomic constraints because such constraints are not expressed by the
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configuration-space representation. On the other hand, these problems bear major
significance in robotic engineering. In reality, a robot arm has to move not only in a
collision-free fashion, but also in conformation of the dynamic bounds due to limited
force or torque from motors.

It is also desirable, in many cases, to minimize the cost of a motion plan under
some cost function (e.g., path length, time length, number of turns, clearance, etc.).
Finding an optimal solution is significantly harder than just finding any solutions. For
example, the seemingly easy problem of finding the shortest path for a point robot
in three dimensions among polyhedral obstacles is already NP-hard (see Canny and
Reif [10]), even without constrained dynamics.

In this paper, we study two optimal nonholonomic motion-planning problems:
the kinodynamic motion-planning problem and the curvature-constrained shortest-
path problem. The kinodynamic motion-planning problem studies the problem of
finding collision-free time-optimal trajectories for a robot whose motion is governed
by Newtonian dynamics and whose accelerations and velocities are bounded. A tra-
jectory of a robot with d degrees of freedom is a map Γ: [0, T ] → R

d × R
d given by

Γ(t) = (p(t), ṗ(t)), where p(t) and ṗ(t) give the location and the velocity at time t,
respectively, in a d-dimensional configuration space. p̈(t) is the acceleration function,
which determines a trajectory uniquely once an initial state is fixed. The constraints
on dynamics are given by bounding the norms of the accelerations and velocities. The
most studied norms are the L∞-norm (called the decoupled case) and the L2-norm
(called the coupled case). In this paper, we study the coupled kinodynamic problem,
which happens to be harder than the decoupled one. The decoupled case is simpler
because each dimension is independent of the others, and a d-dimensional problem
can be reduced to a one-dimensional (1D) one.

The curvature at one point on a path describes how fast the direction of the
path changes at that point. Generally, a curvature constraint requires that a path
has a curvature of at most c at every point along the path, where c > 0 is a given
parameter. The curvature-constrained shortest-path problem is to compute a shortest
collision-free path such that the path satisfies the given curvature constraint.

Our major contribution in this paper is a nonuniform discretization approxima-
tion method for the kinodynamic motion-planning problem. The discretization is
nonuniform in the sense that it is coarser in regions which are farther from all obsta-
cles. The intuition behind this is that in regions that are far away from all obstacles,
even with a coarse discretization, we are still able to find an approximation trajec-
tory which does not intersect obstacles. The nonuniform discretization on one hand
reduces the search space and the running time, and on the other hand still enables
us to obtain a collision-free trajectory whose time length is within a given factor of
the optimal time length. Nonuniform discretization is widely used in solving PDEs
(see Miller et al. [35, 36] and references therein), but research in that area focuses on
quite different issues. Applying the idea to kinodynamic motion planning was first
suggested by Xavier [49] but without a rigorous proof. As it happens, provably good
bounds given by us are quite intriguing to obtain.

Our nonuniform discretization is based on a box decomposition of the configu-
ration space. Other geometric algorithms using similar box decompositions include
the work of Mitchell, Mount, and Suri [38] on ray-shooting problems and that of
Hershberger and Suri [21] on two-dimensional (2D) shortest-path problems without
constraints. Using nonuniform discretization for geometric planning with nonholo-
nomic constraints presents a new challenge.
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Instead of using a deterministic discretization, Kavraki et al. [25, 26] developed a
random sampling technique, where in preprocessing, grid-points (calledmilestones) are
chosen randomly and are connected by feasible paths to form a network. The method
is similar to ours in that both do a preprocessing to obtain a set of valid paths (or
trajectories) which are used later in answering planning queries. However, they have
to preprocess for each new environment, where in our method, the preprocessing is
only done once for some fixed parameters, and can be used repeatedly for different
environments.

1.1. Previous work on the kinodynamic motion-planning problem. With
the exceptions of 1D and 2D cases (see Ó’Dúnlaing [40] and Canny, Rege, and Reif
[9]), there are no exact solutions for the kinodynamic motion-planning problem. In
fact, as an implication of the result of [10], the problem is at least NP-hard in three
and higher dimensions. In light of this lower bound, most study has been focusing
on finding approximation solutions. The earlier approximation algorithms of Sahar
and Hollerbach [44] did not guarantee goodness of their solutions. Moreover, the
running time was exponential in the resolution. Canny et al. [8, 16] developed the
first provably good, polynomial-time approximation algorithm for the decoupled kin-
odynamic case. Their work was followed up by a series of work in which Donald and
Xavier [11, 15] improved the running time for the decoupled case, Heinzinger et al. [20]
and Donald and Xavier [13, 14] investigated the problem for open chain manipulators,
and independent work of Donald and Xavier [12, 13, 15] and Reif and Tate [43] gave
approximation algorithms for the coupled kinodynamic problem. The best-known re-
sult for the coupled case, given by [15], is that given an ε > 0, one can compute in
time O(c(d)p(n, ε, d)Ld(1/ε)6d−1) an approximation trajectory whose time length is
at most (1 + ε) times the time length of an optimal safe trajectory (roughly speaking,
a safe trajectory is one that can be perturbed without intersecting obstacles), where
d is the dimension, L is the size of the configuration space to which the robot is
confined, n is the number of equations describing the configuration obstacles, c(d) is
a function depending solely on d, and p(n, ε, d) is a lower-order polynomial in n, ε,
and d.

1.2. Previous work on the curvature-constrained shortest-path prob-
lem. Dubins [17] was perhaps the first to study the curvature-constrained shortest
paths who gave a characterization of the shortest paths in 2D in the absence of obsta-
cles. Reeds and Shepp [41] extended the obstacle-free characterization to robots that
can make reversals. (Boissonnat, Cerezo, and Leblond [4] gave an alternative proof
for both cases, using ideas from control theory.) In the presence of obstacles, Fortune
and Wilfong [18] gave a 2poly(n,m)-time algorithm, where n is the number of vertices
and m is the number of bits of precision with which all points are specified; their
algorithm only decides whether a path exists, without necessarily finding one. Jacobs
and Canny [23] gave an O((n+L

ε )2 + (n+L
ε )n2 log n)-time algorithm that computes an

approximation path whose length is at most (1 + ε) times the length of an optimal
path, where n is the number of obstacle vertices and L is the total edge length of the
obstacles. This running time was later improved significantly by Wang and Agarwal
[46] to O((n2/ε2) log n). Agarwal, Raghavan, and Tamak [1] studied a special case
when the boundaries of obstacles are also constrained to have a curvature of at most 1.
There has also been work on computing curvature-constrained paths when the robot
is allowed to make reversals [2, 32, 37]. However, no result has been obtained for the
curvature-constrained problem in three or higher dimensions, even in the absence of
obstacles.
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1.3. Models and results. Let B be a point robot moving in a d-dimensional
configuration space. The velocity of B is bounded by vmax in L2-norm and the
acceleration of B is bounded by amax in L2-norm, where vmax > 0 and amax > 0 are
arbitrary. In section 2.7, we show that we can always scale vmax and amax to 1 by
scaling both time and the size of the configuration space. Therefore, without loss of
generality, we will set vmax = 1 and amax = 1.

A state x of B is a pair (loc(x),vec(x)), where loc(x) is a point representing
the location of B in the d-dimensional configuration space and vec(x) is a vector
representing the velocity of B. A trajectory is an (ā, v̄)-trajectory if at any time
during the trajectory, the acceleration is bounded by ā and the velocity is bounded
by v̄, both in L2-norm. Thus only (1, 1)-trajectories are valid trajectories for robot B.
Let Ω be a set of configuration obstacles. A trajectory is collision free if its path does
not intersect the interior of Ω. A trajectory from state x to state y is optimal if it is
a collision-free (1, 1)-trajectory with a minimum time length, where the minimum is
taken over all collision-free (1, 1)-trajectories from x to y. The kinodynamic motion-
planning problem is to compute such optimal trajectories.

Since we have seen that computing exact solutions is hard, we focus on developing
fast approximation algorithms. To discuss approximation solutions, the notion of a
safe trajectory needs to be introduced. A point p has a clearance of µ if for any point
q ∈ Ω, ‖p− q‖∞ ≥ µ, where ‖ · ‖∞ denotes the L∞-norm operation. A path is µ-safe
if for any point p along the path, p has a clearance of µ. A trajectory is a µ-safe
trajectory if its path is µ-safe. A trajectory is an optimal µ-safe trajectory from state
x to state y if its time length is the minimum over all µ-safe (1, 1)-trajectories from x
to y.

The first main result of this paper is a faster algorithm for computing approxi-
mations to optimal safe trajectories. Let W be a d-dimensional configuration space
of size L (without loss of generality, we can assume that W is a d-dimensional cube),
where the point robot is confined to move. Let Ω be a set of configuration obsta-
cles defined by a total of n algebraic equations, each of O(1) degrees. Given the
initial and the final states i and f and two parameters l > 0 and ε > 0, we can
compute an approximation to the optimal 3l-safe (1, 1)-trajectory from i to f in time
O(nN + N logN(1/ε)4d−2), where N = O((L/l)d). The time length of the com-
puted trajectory is at most (1 + ε) times the time length of the optimal trajectory.
The computed trajectory connects two states which are close to i and f , respec-
tively. More precisely, if the computed trajectory is from state i′ to state f ′, then
‖loc(i′)− loc(i)‖∞ ≤ εl, ‖vec(i′)− vec(i)‖∞ ≤ ε, ‖loc(f ′)− loc(f)‖∞ ≤ εl, and
‖vec(f ′)− vec(f)‖∞ ≤ ε.

Here we introduce two parameters ε and l, which are independent except that in
general ε < l. ε describes how close the approximation should be to the optimal safe
trajectory in time, while l describes how safe the optimal trajectory is. If we require
that l be as small as ε, the running time of our algorithm in terms of ε is roughly
O((1/ε)5d−2), which improves over the running time O((1/ε)6d−1) of the previously
best algorithm of Donald and Xavier. If we choose a big l, our algorithm may fail to
find a trajectory because 3l-safe trajectories connecting the initial state to the final
state may not exist due to, for example, the crowded obstacles. However, we can
still choose the parameters such that l 	 ε, with both parameters being small. In
this case, the running time of our algorithm in terms of ε is O((1/ε)4d−2). Moreover,
because of our nonuniform discretization, there are cases when the number of boxes
is much smaller than the worst-case bound of N = O((L/l)d). In these cases, our
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algorithm is expected to perform much better than the given time bound. Such cases
include sparse obstacle distributions and uneven obstacle distributions. As will be
pointed out in the conclusion section, one future work is to look for more accurate
bounds on the number of boxes with respect to different obstacle distributions.

By showing that the approximation techniques for kinodynamic motion planning
are applicable to the curvature-constrained shortest-path problem, we are able to
obtain the second main result of this paper—the first known polynomial-time approx-
imation algorithm for the curvature-constrained shortest-path problem in three and
higher dimensions. The detailed model and result are presented in section 3.

2. The kinodynamic motion-planning problem.

2.1. Preliminaries. In this paper, we generally use ‖ · ‖∞ to denote the L∞-
norm operation and ‖ · ‖ the L2-norm one.

Given a trajectory Γ, let T (Γ) be the time length of Γ. Let pΓ(t), vΓ(t), aΓ(t) for
0 ≤ t ≤ T (Γ) be the location, the velocity, and the acceleration of Γ, respectively, at
time t.

Let Π be a path and A a subset of the configuration space. We say that d(Π, A) ≤
ρ for some real number ρ ≥ 0 if for every point p ∈ Π, there is a point q ∈ A such
that ‖p − q‖∞ ≤ ρ. d(Π, A) = 0 if every point p ∈ Π is also in A. Similarly, for two
paths Π and Π′, we say that d(Π′,Π) ≤ ρ if for every point p ∈ Π′, there is a point
q ∈ Π such that ‖p− q‖∞ ≤ ρ. Let Γ and Γ′ be two trajectories and let Π and Π′ be
the paths of Γ and Γ′, respectively. d(Γ′,Γ) ≤ ρ if d(Π′,Π) ≤ ρ. Also d(Γ′, A) ≤ ρ if
d(Π′, A) ≤ ρ, where A is a subset of the configuration space.

For a state x, define

ngb(x, ρ, ν) = {x′ | ‖loc(x′)− loc(x)‖∞ ≤ ρ and ‖vec(x′)− vec(x)‖∞ ≤ ν}

for some ρ, ν > 0. Thus ngb(x, ρ, ν) defines a set of states which are close to x. Notice
that if x′ ∈ ngb(x, ρ, ν), then x ∈ ngb(x′, ρ, ν).

Lemma 2.1 (time-rescaling lemma, Hollerbach [22]). Let Π be the path of an
(ā, v̄)-trajectory Γ. Π can be traversed by an (ā/(1 + ε)2, v̄/(1 + ε))-trajectory Γ′ in
time (1 + ε)T (Γ) for any ε > 0.

The time-rescaling lemma shows a trade-off between time and the dynamic bounds.
Later we will see that in our approximation algorithm, we first compute a trajectory
whose acceleration and velocity bounds are slightly bigger than 1. Then applying the
time-rescaling lemma, we can reduce the dynamic bounds to 1 by sacrificing the time
length by a small factor.

The TC-graph method developed in [13] by Donald and Xavier applies a graph-
searching technique to compute approximations to time-optimal trajectories (for a
brief description of the method, see the appendix). The following corollary states a
result of the TC-graph method.

Corollary 2.2 (see [13]). Let W be a d-dimensional configuration space of size
L. Let Γ be a (1, 1)-trajectory from state i to state f such that Γ lies inside W . Given
any ε > 0 and ρ = O(1), applying the TC-graph method with appropriate parameters,
we can compute in time O(Ld(1/ε)6d−1) a (1, 1)-trajectory Γ′ from a state i′ to a state
f ′ such that i′ ∈ ngb(i, ερ/2, ε/2), f ′ ∈ ngb(f, ερ/2, ε/2), T (Γ′) ≤ (1 + ε)T (Γ), and
d(Γ′,W ) ≤ ερ/2.

The above corollary states that by applying the TC-graph method, one can com-
pute in polynomial time (in terms of L and ε) a trajectory which obeys the dynamic
constraints and which approximates the given trajectory in the following ways. The
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computed trajectory connects two states which are close to the given initial and final
states, respectively. The time length of the computed trajectory is within (1 + ε)
times that of the given trajectory. Also the path of the computed trajectory stays
close to the region W , within which the path of the given trajectory lies.

We will see that in later sections we apply the TC-graph method to precompute a
set of trajectories which in turn become the building-block trajectories in our approx-
imation method. Here we present the result for cases where there are no obstacles.
This is sufficient for our purpose, though the TC-graph method works also in the
presence of obstacles.

In the rest of the paper, we fix l > 0 and ε > 0 unless otherwise stated, where l
gives the size of the smallest box in the box decomposition and ε describes the fineness
of the discretization.

2.2. Overview of the algorithm. Following the framework of many motion-
planning algorithms, our algorithm reduces the problem to that of computing and
then searching on a graph. The nodes of the graph correspond to a set of states (see
section 2.3) which are induced by a nonuniform discretization over the configuration
space. Therefore, we term our method the CS-graph method, where C stands for the
configuration space and S the state space.

Section 2.5 describes how to compute the edge set of the graph. Each edge
corresponds to a collision-free, near-optimal trajectory between two nodes. It is shown
in this section that the graph satisfies the property that if there is an optimal safe
trajectory, then there exists a path in the graph that corresponds to a collision-free
trajectory whose time length is near optimal. Thus the problem is reduced to a
shortest-path search on the computed graph.

In order to compute the edge set efficiently, we perform precomputations. We
derive a set of canonical trajectories (section 2.4), which are sufficient for building
the graph. These trajectories, once computed, can be used repeatedly for different
problem instances with different distributions of obstacles.

A technical lemma, the correcting lemma (Lemma 2.15), is described in section
2.6. This lemma is a precise statement of our intuition that the discretization can be
coarser in regions farther away from all obstacles.

2.3. Nonuniform grids. The set of nonuniform grids is generated based on a
box decomposition of the configuration space (see section 2.3.1). The decomposition
is such that the size of a box is roughly proportional to the smallest distance between
the box and the obstacles. Each box contributes the same number of grids, despite
its size; the distances among grids induced by larger boxes are larger. Thus the grids
are nonuniform (see section 2.3.2).

2.3.1. A box decomposition. Let Ξ̃(s) be a set {p = (p1, . . . , pd) | − s/2 ≤
p1, . . . , pd ≤ s/2}. Ξ̃(s) is called a d-dimensional canonical box of size s. Each set of
{p | p ∈ Ξ̃(s) and pj = −s/2} and {p | p ∈ Ξ̃(s) and pj = s/2} for 1 ≤ j ≤ d is called

a face (of size s) of Ξ̃(s). Ξ is a d-dimensional box of size s if it is a region which can
be obtained from Ξ̃(s) by translation and rotation (reflection is not necessary because
of the symmetry of the box). Similarly we can define the faces of Ξ. Notice that a
face of a d-dimensional box Ξ of size s is really a (d− 1)-dimensional box of size s. A
d-dimensional box has 2d faces.

Given a d-dimensional box of size s, we can decompose it into 2d boxes, each of
size s/2. Each of them can be further decomposed into 2d boxes of size s/4 and so on.
We stop further decomposing until certain conditions hold. We refer to this procedure,
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Fig. 2.1. (a) A box decomposition satisfying C1; (b) one also satisfying C2 and C3.

as well as the collection of nondecomposed boxes obtained, as a box decomposition.
When we refer to a box of a decomposition, we mean a nondecomposed box.

Let W be a d-dimensional configuration space (assuming without loss of generality
that W is a d-dimensional box) of size L, with a set Ω of configuration obstacles. (We
consider the initial and final locations also as obstacle vertices.) A box is free if it
does not intersect the interior of Ω. A box is occupied if it is a subset of Ω. Otherwise
a box is called partially occupied. A box B1 is adjacent to a box B2 (or B1 and B2

are neighbors) if B1 and B2 share common points. We perform a box decomposition
on W until the following conditions are satisfied:

C1. The size of every partially occupied box is l.
C2. If a free box is adjacent to a nonfree box, or to a free box with nonfree boxes

as neighbors, its size is l.
C3. The decomposition is balanced, i.e., a free box has only adjacent free boxes

whose sizes are either twice as large or half as small.

Figure 2.1 shows an example of a box decomposition in two dimensions. The
shaded triangle is an obstacle, and the shaded disk represents the initial location.
Figure 2.1(a) gives a box decomposition only satisfying C1. In Figure 2.1(b), boxes
are further decomposed to satisfy C2 (e.g., boxes Ξ1 and Ξ2) and C3 (e.g., boxes Ξ3

and Ξ4).

We use a tree structure to represent the box decomposition, where an internal
node represents a decomposed box and a leaf node a nondecomposed one. Each
internal node has 2d children. We can perform the box decomposition in two stages.
In the first stage, decompose until C1 is satisfied. Let M be the number of boxes
obtained after this stage. It is easy to see that this stage can be computed in time
O(nM), where n is the number of obstacle constraints. In the second stage, we further
decompose certain boxes until C2 and C3 are satisfied. Basically, we check all the leaf
nodes in a bottom-up manner, working from small boxes to large ones. For each leaf
node, find its neighbors and further decompose them if their sizes are too large. Let
N be the size of the final box decomposition. We claim that the time spent in this
stage is O(Nlog(L/l)). Since the size of the smallest box is l, the box-decomposition
tree has a depth of O(log(L/l)). Thus finding the neighbors of a box takes at most
O(log(L/l)) time. Since we find neighbors for at most N boxes, the total running
time is O(N log(L/l)).

Notice that in the worst case, N = O((L/l)d), but N tends to be much smaller
for cases where the obstacles are sparse.
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Let B be the final box decomposition of W . Later, when we refer to a box (resp.,
a face) of B, we mean a nondecomposed box (resp., face) of B.

2.3.2. Discretization. Let B be the box decomposition of W (with respect to
Ω) satisfying C1–C3. For each face ∆ of B such that ∆ is not further decomposed
(recall that ∆ is a (d−1)-dimensional box), we select (2/ε)d−1 uniformly spaced points
on ∆, with spacing εs/2, where s is the size of ∆. The set of points obtained in this
way are called the CS grid points of B. Notice that the number of grid points on each
face is the same, while the spacing of grid points grows linearly with the size of the
faces. Thus we obtain a nonuniform discretization of the configuration space.

Let

V = {v = (j1ε, . . . , jdε) | j1, . . . , jd ∈ Z and ‖v‖ ≤ 1}.(2.1)

V is called the set of grid velocities. A state a is called a CS grid state of B if loc(a)
is a CS grid point of B and vec(a) ∈ V. The grid states of B (including the initial
and the final states) are the nodes of the graph to be constructed.

For a state a that lies on a face ∆, let s(a) be the function returning the size
of the face ∆. Define ngb(a) = ngb(a, εs(a)/4, ε/2). By the construction of the grid
states, it is easy to show the following result.

Lemma 2.3. If a is a state such that loc(a) lies on a face ∆ of B, there exists
a CS grid state a′ such that a ∈ ngb(a′).

2.4. Precomputing canonical trajectories. In this section, we derive a set
of canonical trajectories, which once computed can be used repeatedly for different
problem instances with different obstacle distributions. These canonical trajectories
are from grid states to grid states which lie on the faces of an extended box. The
extended boxes are to guarantee that each canonical trajectory has a length at least
proportional to the size of the box it lies in (see section 2.4.1). Section 2.4.2 describes
the canonical trajectories and how to compute them.

2.4.1. Extended boxes. Let B be the box decomposition of W . Given a state
a, define ξ(a) to be the extended box of a, which is the smallest region composed of
boxes such that (i) the boundary of the union of these boxes forms a closed (d− 1)-
dimensional surface and (ii) for any point q that lies on the closed surface, ‖loc(a)−
q‖∞ ≥ s(a)/2.

Let ∆ be a face of B of size s and let Ξ be the box that contains ∆ (pick one
arbitrarily if both of the two boxes containing ∆ have size s). Decompose ∆ into 2d−1

(d− 1)-dimensional boxes, each of size s/2, and label them ∆1, . . . ,∆2d−1 . Given any
two states a and b, if both loc(a) and loc(b) lie in the interior of ∆j , then ξ(a) and
ξ(b) are the same. This implies that we can extend the definition of extended boxes
for faces. Define ξ(∆j) to be the extended boxes of ∆j , which are the same as the
extended boxes of ξ(a), for any state a such that loc(a) lies in the interior of ∆j .
ξ(∆j) is called an extended box of size s/2, since ∆j is a face of size s/2.

An extended box (resp., a box) is said to have a clearance of µ if for any point
p that lies in the extended box (resp., the box), p has a clearance of µ. Notice that
a free box has a clearance of s if all its neighbors are free boxes and have a size of
at least s. The following two lemmas describe the clearance properties of extended
boxes of different sizes.

Lemma 2.4. An extended box of size s ≥ 2l has a clearance of at least s/2; an
extended box of size l has a clearance of at least l.



NONUNIFORM DISCRETIZATION FOR KINODYNAMIC MOTION 169

4s

s2s

s

Fig. 2.2. Some canonical extended boxes of ∆̃(s), where ∆̃(s) is a line segment drawn in thick
lines.

Proof. Suppose that the extended box is an extended box of face ∆j whose size
is s. Let Ξ be the box containing ∆j and the size of Ξ be 2s. Each other box in
the extended box is a neighbor of Ξ. Thus their sizes are at least s, by the balanced
property of the box decomposition.

If s ≥ 2l, for any box Ξ′ in the extended box, its neighbors must have sizes
≥ s/2. By property C2 of the box decomposition, these neighbor boxes must be free.
Otherwise, the size of Ξ′ cannot be larger than l. Thus Ξ′ has a clearance of ≥ s/2.
This implies that the extended box has a clearance of ≥ s/2.

If s = l, then Ξ is a box of size 2l. Since the box decomposition satisfies C2, we
know that all Ξ’s neighbors and all their neighbors are free boxes whose sizes are at
least l. This implies that the extended box has a clearance of l. This completes the
proof.

Lemma 2.5. Let ξ(∆j) be an extended box of a face ∆j of size l/2. If there exists
a point p on ∆j such that p has a clearance of 3l, then the clearance of the extended
box is at least l.

Proof. It suffices to prove that for each point q on the boundary of ξ(∆j), q has
a clearance of l. If q lies on the face of a box of size l, then ‖q − p‖∞ ≤ 2l. Since
the clearance of p is 3l, the clearance of q is at least 3l − 2l = l. If q lies on the face
of a box of size ≥ 2l, its clearance is at least l, since the clearance of this box is at
least l.

Let ∆̃(s/2) = {p = (p1, . . . , pd) | p1 = −s/2 and 0 ≤ p2, . . . , pd ≤ s/2}. ∆̃(s/2)
is called the canonical face of size s/2. We can transform ∆j , Ξ, and ξ(∆j) by

translation, rotation, and reflection such that Ξ becomes Ξ̃(s), the canonical box of
size s, and ∆j becomes ∆̃(s/2). The transformed extended box ξ(∆j) is called a

canonical extended box of ∆̃(s/2), or a canonical extended box of size s/2. Since the
box decomposition B is balanced, the number of canonical extended boxes of a fixed
size is a function depending only on the number of dimensions d, but not on the size or
the location. Let ξ(s) be the set of canonical extended boxes of ∆̃(s). We can give an
order to ξ(s) and let ξ(s, j) be the jth canonical extended box of ∆̃(s) for some valid
j. Figure 2.2 gives some examples of canonical extended boxes in two dimensions.

Let P(s) be the set of (1/ε)d−1 uniformly spaced points on ∆̃(s) with spacing
εs. Define Q(s, j) as follows. If ∆ is a face of size s′ belonging to the boundary
of ξ(s, j), include the set of (2/ε)d−1 uniformly spaced points with spacing εs′/2 on
∆ in Q(s, j). Let I(s) = P(s) × V and F(s, j) = Q(s, j) × V. A state in the set
I(s) is called a canonical starting state and a state in the set F(s, j) is called a
canonical ending state of ξ(s, j). It is easy to see that |I(s)| = O((1/ε)2d−1). It also
holds that |F(s, j)| = O(d(1/ε)2d−1). This is because of the balanced property of the
box decomposition. The boundary of ξ(s, j) can contain at most O(d) faces, each
contributing O((1/ε)2d−1) states.
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2.4.2. Computing connection tables. Let ξ(s, j) be the jth canonical ex-
tended box of ∆̃(s) for some valid s and j. Let CT (s, j) be the connection table of
ξ(s, j). The connection table contains precomputed trajectories which connect canon-
ical starting states and canonical ending states. In this section we describe how to
compute the connection tables.

First we introduce our correcting lemma (whose proof can be found in section 2.6),
which states a result essential to the proofs of other lemmas.

Lemma 2.6 (correcting lemma). Fix a constant c ≤ 1 and let ρc = v̄2/(cā), where
ā, v̄ > 0 are arbitrary. Let Γ be an (ā, v̄)-trajectory from i to f . Given any ρ > 0
and ε > 0 and given any two states g and h, if ρ > ρc, ‖loc(f) − loc(i)‖∞ ≥ ρ,
g ∈ ngb(i, ερ/2, εv̄/2), and h ∈ ngb(f, ερ/2, εv̄/2), we can construct a trajectory Γ′

from g to h by correcting Γ such that Γ′ satisfies the following properties:
P1. T (Γ′) = T (Γ).
P2. Γ′ is a ((1 + 4c

√
dε)2ā, (1 + 4c

√
dε)v̄)-trajectory.

P3. d(Γ′,Γ) ≤ (17/16)ερ.

Here onwards, we fix

c = max(2/l, 1),(2.2)

where l is the size of the smallest box. In our later application of this lemma, it always
holds that v̄2/ā = 1, thus ρc = 1/c. This implies that

l/2 ≥ ρc.(2.3)

Also let

e = 4c
√
d.(2.4)

Consider a pair of states (i, f) that lie on the boundary of an extended box ζ.
A (1, 1)-trajectory from i to f is called legal if its path lies inside ζ. The pair (i, f)
is legal if there exists at least a legal trajectory from i to f . We will see later that
these legal trajectories are the potential trajectories that we need to approximate.
We call a pair of grid states (i, f) good if there exists at least a legal pair (g, h) such
that g ∈ ngb(i) and h ∈ ngb(f). Recall that ngb(i) = ngb(i, εs(i)/4, ε/2), where s(i)
gives the size of the face where the location of state i lies. Roughly speaking, the
next lemma (existence lemma) states that if (i, f) is a good pair, then there exists a
trajectory Γ from i to f such that Γ approximates any legal trajectories for any legal
pair (g, h), where g ∈ ngb(i) and h ∈ ngb(f). Thus for our purpose of approximation,
it is enough to compute only the trajectories for good pairs. For a pair of legal states
(a, b), let T̂ (a, b) be the time length of the legal trajectory from a to b whose time
length is the smallest among all legal trajectories from a to b.

Lemma 2.7 (existence lemma). Let ξ(s, j) be the jth canonical extended box of
∆̃(s) for some valid s and j. For any i ∈ I(s) and f ∈ F(s, j), if (i, f) is good, then
there exists a trajectory Γ from i to f such that the trajectory satisfies the following
properties:

P1. For any i′ ∈ ngb(i) and f ′ ∈ ngb(f), if (i′, f ′) is legal, T (Γ) ≤ T̂ (i′, f ′).
P2. Γ is a ((1 + eε)2, (1 + eε))-trajectory.
P3. d(Γ, ξ(s, j)) ≤ (17/8)εs.

Proof. Let g ∈ ngb(i) and h ∈ ngb(f) be such that (g, h) is legal and that T̂ (g, h)
is the smallest among those of all such legal pairs;let Γ′ be the (1, 1)-trajectory from g



NONUNIFORM DISCRETIZATION FOR KINODYNAMIC MOTION 171

to h whose time length is T̂ (g, h). We will show the existence of a trajectory satisfying
P1–P3 by constructing one from Γ′. There are three cases depending on whether s(f)
(the size of the face where f lies) is s, 2s, or 4s. We will prove the case when s(f) = 4s;
this case gives the worst bounds. The other two cases can be handled in a similar
way.

Let Γ be the trajectory obtained by correcting Γ′. Let ā = 1, v̄ = 1, and ρ = 2s
in the correcting lemma (Lemma 2.6). Since s ≥ l/2, ρ = 2s ≥ l > ρc. We can
show that ‖loc(h) − loc(g)‖∞ ≥ 2s = ρ. Since g ∈ ngb(i), g ∈ ngb(i, ε s(i)/4, ε/2).
Since ρ = 2s = s(i), it is also true that g ∈ ngb(i, ερ/2, ε/2). This implies that
i ∈ ngb(g, ερ/2, ε/2). Similarly, f ∈ ngb(h, ερ/2, ε/2). Thus the conditions of the
correcting lemma are satisfied. This implies that T (Γ) ≤ T̂ (g, h), satisfying P1.
Γ is a ((1 + eε)2, (1 + eε))-trajectory, and d(Γ,Γ′) ≤ (17/16)ερ = (17/8)εs. Since
d(Γ′, ξ(s, j)) = 0, d(Γ, ξ(s, j)) ≤ (17/8)εs, proving P3.

For a good pair (i, f) (with respect to ξ(s, j)), our goal is to approximate (since
we do not know how to compute exactly) such a trajectory Γ as stated in the existing
lemma (Lemma 2.7). The approximation is done in two steps. First, we apply the TC-
graph method to compute a trajectory Γ′ which is close to Γ timewise and spatially.
However, the TC-graph method does not guarantee that Γ′ is from i to f . Instead,
we only know that Γ′ is from some i′ close to i to some f ′ close to f . Second, we
correct Γ′ to obtain a trajectory Γ′′ which is really from i to f . By the correcting
lemma, Γ′′ approximates Γ′, and thus approximates Γ. In the first step, by setting
ρ = l/2 and ε = ε in Corollary 2.2, we are able to guarantee that

• Γ′ is a ((1+eε)2, (1+eε))-trajectory. (Notice that even though Corollary 2.2 is
about (1, 1)-trajectories, the results apply to ((1+eε)2, (1+eε))-trajectories.)

• T (Γ′) ≤ (1 + ε)T (Γ).
• Γ′ is from some i′ ∈ ngb(i, εl/4, ε/2) to some f ′ ∈ ngb(f, εl/4, ε/2).
• d(Γ′, ξ(s, j)) ≤ (17/8)εs + εl/2. The existence of a trajectory satisfying this

condition in the TC graph is due to the fact that d(Γ, ξ(s, j)) ≤ (17/8)εs and
to the existence of a trajectory Γ̃ in the graph such that d(Γ̃,Γ) ≤ εl/2.

In the second step, setting ā = (1 + eε)2, v̄ = 1 + eε, and ρ = l/2 ≥ ρc, we can see
that the conditions of the correcting lemma are satisfied. Thus Γ′′ is a ((1 + eε)4, (1 +
eε)2)-trajectory, T (Γ′′) = T (Γ′) ≤ (1 + ε)T (Γ), and d(Γ′′,Γ′) ≤ (17/32)εl. Since
d(Γ′, ξ(s, j)) ≤ (17/8)εs + εl/2, d(Γ′′, ξ(s, j)) ≤ (17/8)εs + (33/32)εl ≤ 5εs (using the
fact that s ≥ l/2). In summary, we obtain the following result.

Lemma 2.8 (loose-tracking lemma). Let ξ(s, j) be the jth canonical extended box
of ∆̃(s) for some valid s and j. Let i ∈ I(s) and f ∈ F(s, j). If (i, f) is good, then
Γ′′ computed as above satisfies the following properties:

P1. For any g ∈ ngb(i) and h ∈ ngb(f), if (g, h) is legal, T (Γ′′) ≤ (1 + ε) T̂ (g, h).
P2. Γ′′ is a ((1 + eε)4, (1 + eε)2)-trajectory.
P3. d(Γ′′, ξ(s, j)) ≤ 5εs.

Fix a canonical extended box ξ(s, j) for some valid s and j. For each i ∈ I(s) and
f ∈ F(s, j), we precompute a trajectory from i to f as described above. We store the
trajectory (i.e., the initial state i, the final state f , the acceleration function, and the
time length) in the connection table CT (s, j). A connection table computed in this
way satisfies the following property.

Lemma 2.9 (connection-table property). Let ξ(s, j) be the jth canonical extended
box of ∆̃(s) for some valid s and j and let CT (s, j) be the connection table for ξ(s, j).
For any canonical starting state i ∈ I(s) and any canonical ending state f ∈ F(s, j),
if (i, f) is good, then CT (s, j) contains a trajectory Γ from i to f and Γsatisfies the
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following properties:

P1. For any g ∈ ngb(i) and h ∈ ngb(f), if (g, h) is good, T (Γ) ≤ (1 + ε) T̂ (g, h).
P2. Γ is a ((1 + eε)4, (1 + eε)2)-trajectory.
P3. d(Γ, ξ(s, j)) ≤ 5εs.

Let ξ(l/2, 0) be the canonical extended box that consists of four boxes of size l.
Apart from CT (l/2, 0), we maintain a special connection table CT0 for this canonical
extended box. For each i ∈ I(l/2), we construct a TC graph G rooted at i (for a
description of the TC-graph method, see the appendix). We add a trajectory Γ from
i to f in CT0, if (i) f is a node of G, (ii) f either lies inside ξ(l/2, 0) or its L∞ distance
to the extended box is no more than εl/2, (iii) there is a path on G from i to f (whose
corresponding trajectory is Γ). By the property of the TC-graph method, we can
show the following.

Lemma 2.10. Let i ∈ I(l/2). For any pair of states g and h such that g ∈
ngb(i, εl/2, ε/2), h lies inside ξ(l/2, 0), and the optimal (1, 1)-trajectory from g to h
lies inside ξ(l/2, 0), there exists a (1, 1)-trajectory in CT0 from i to some f such that
f ∈ ngb(h, εl/2, ε/2) and the time length of this trajectory is no more than (1 + ε)
times the time length of the optimal (1, 1)-trajectory from g to h.

To correct a trajectory takes only O(1) time, since it basically involves computing
and adding O(1) number of corrective acceleration terms (see section 2.6). So the time
complexity of computing a connection table CT (s, j) is determined by how fast we
can compute a trajectory Γ′ for each pair of canonical starting and ending states. We
can compute the trajectories using the TC-graph method in the following manner.
For each canonical starting state i, compute the TC graph rooted at i. Expand the
graph until all the canonical ending states of ξ(s, j) are reached, or no new nodes can
be added. A shortest graph path from i to a canonical ending state gives a trajectory
between these two states. All these paths can be stored in a concise way by storing
at each node its preceding node along the paths. Since the extended box is of size
s, the graph has O(sd(1/ε)6d−1) edges. (For a brief analysis on the number of TC-
graph edges, see the end of the appendix.) This also bounds the time and space
for computing the trajectories for a single canonical starting state. Since there are
O((1/ε)2d−1) canonical starting states for an extended box, it takes O(sd(1/ε)8d−2)
time and space to compute a connection table CT (s, j). A similar analysis shows that
CT0 can also be computed in O(ld(1/ε)8d−2) time and space.

2.5. Approximation in the presence of obstacles.

2.5.1. The algorithm. In this section we present our approximation algorithm
for computing collision-free near-optimal trajectories in the presence of obstacles. Let
W be a d-dimensional configuration space of size L with a set Ω of obstacles. Let i and
f be the initial and the final states, respectively. And let B be the box decomposition
of W satisfying C1–C3 (recall that we presented C1–C3 and how to obtain such a box
decomposition in section 2.3.1). Our approximation algorithm constructs a weighted
directed graph G = (V,E), where V includes i, f , and a subset of CS grid states
induced by B. A CS grid state a is included in V if (i) s(a) ≥ 2l or (ii) s(a) = l and
the clearance of ξ(a) is at least l.

Let a and b be two states that lie within an extended box ζ. To see if there
is a precomputed trajectory from a to b, we transform ζ to its canonical form, and
also a and b with it. If T is the transformation, we say that there is a precomputed
trajectory from a to b if there is a trajectory from T ◦ a to T ◦ b in the connection
table of T ◦ ζ. If Γ is the trajectory from T ◦a to T ◦ b, then T −1 ◦Γ is the trajectory
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Fig. 2.3. (a) ξ(a0) and ξ(a3); (b) ξ(a4) and ξ(a9).

from a to b. It is easy to see that T −1 ◦ Γ satisfies the connection-table properties
P1–P3 (see Lemma 2.9) with respect to ζ.

We construct the edge set in the following way. For node i, add an edge from i
to another node a if (i) i lies within ξ(a) and (ii) there is a precomputed trajectory
from1 a− to i−. Similarly, for node f , add an edge from a node a to f if (i) f lies
within ξ(a) and (ii) there is a precomputed trajectory from a to f . For any other
node a, add an edge from a to another node b if (i) b lies on the boundary of ξ(a) and
(ii) there is a precomputed trajectory from a to b. The weight of each edge is equal
to the time length of its corresponding trajectory.

Theorem 2.11 (safe loose-tracking theorem). If there exists an optimal 3l-safe
(1, 1)-trajectory Γ from state i to state f , then the graph G, constructed as above,
contains a path whose corresponding trajectory Γ′ satisfies the following properties:

P1. T (Γ′) ≤ (1 + ε)T (Γ).
P2. Γ′ is a ((1 + eε)4, (1 + eε)2)-trajectory.
P3. Γ′ does not intersect the interior of Ω.
P4. Γ′ is from some i′ ∈ ngb(i, εl/2, ε/2) to some f ′ ∈ ngb(f, εl/2, ε/2).
Proof. Let Γ be divided into segments of trajectories Γa0a1‖Γa1a2‖ . . . ‖Γam−1am

such that a0 = i, am = f , and each aj is the state where Γ first exits ξ(aj−1) for
1 ≤ j ≤ m− 1. Figure 2.3 gives an example in 2D. The optimal (1, 1)-trajectory from
i to f (drawn in thick curve) is divided into 10 segments (each dark circle represents
an aj for 1 ≤ j < 10). Some of the extended boxes are shown as shaded regions. We
consider the following parts Γa0a1 , Γa1a2‖ . . . ‖Γam−2am−1 , and Γam−1am separately.

Since each aj , for 1 ≤ j ≤ m−1, is on some face of B, by Lemma 2.3, we can find
a CS grid state bj such that aj ∈ ngb(bj). If s(aj) ≥ 2l, then s(bj) ≥ 2l and bj is in
the node set V . Otherwise, since aj is 3l-safe, ξ(aj) has a clearance of at least l. Since
ξ(bj) = ξ(aj), ξ(bj) also has a clearance of at least l and bj is in the node set V . We
will show that the graph path (b1, b2)‖ . . . ‖(bm−2, bm−1) corresponds to a trajectory
satisfying P1–P3. To this end, we show that there is an edge from bj−1 to bj whose
corresponding trajectory Γbj−1bj satisfies P2, P3, and T (Γbj−1bj ) ≤ (1 + ε)T (Γaj−1aj )
for 1 < j < m.

By the way Γ is divided, d(Γaj−1aj , ξ(aj−1)) = 0. Thus each pair (aj−1, aj) is
legal. This implies that each (bj−1, bj) is good. By the connection table property

1For a state a, we use a− to denote a state of (loc(a),−vec(a)).
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(Lemma 2.9), there is a precomputed trajectory Γbj−1bj from bj−1 to bj . Thus an
edge from bj−1 to bj is added in the construction of G. Also by the connection table
property, Γbj−1bj is a ((1 + eε)4, (1 + eε)2)-trajectory, and its time length is no more
than (1 + ε)T (Γaj−1aj ). Next we need to show that Γbj−1bj is collision free.

Let s be the size of ξ(bj−1). We consider the three cases s ≥ 2l, s = l, and s = l/2
separately. If s ≥ 2l (resp., s = l), the extended box ξ(bj−1) has a clearance of s/2
(resp., l). On the other hand, d(Γbj−1bj , ξ(bj−1)) ≤ 5εs. Thus if ε ≤ 1/10 is chosen
small enough, Γbj−1bj is collision free. When s = l/2, ξ(bj−1) has a clearance of at
least l. This is because aj−1 is 3l-safe. By Lemma 2.4, ξ(aj−1) has a clearance of at
least l. This implies that ξ(bj−1) has a clearance of at least l, since ξ(bj−1) = ξ(aj−1).
Since d(Γbj−1bj , ξ(bj−1)) ≤ (5/2)εl, Γbj−1bj is collision free if ε is chosen small enough.

Now consider the part Γam−1am , which lies inside ξ(am−1). When constructing
B, loc(f) is considered as an obstacle vertex. Thus the box containing loc(f) and
its neighbors all have size l. This means that ξ(am−1) is an extended box consisting
of four boxes of size l. By Lemma 2.10, there exists in CT0 a precomputed trajectory
Γbm−1f from bm−1 to some f ′ ∈ ngb(f, εl/2, ε/2). Thus an edge from bm−1 to f is
added in the construction of G. Also Γbm−1f is a (1, 1)-trajectory whose time length
is no more than (1 + ε)Γam−1am . To show that Γbm−1f is collision free, notice that the
clearance of ξ(am−1) is at least l, since am−1 is 3l-safe. But d(Γbm−1f , ξ(bm−1)) ≤ εl/2,
so this trajectory is also collision free. We can show similar results for Γa0a1 . This
completes the proof of this theorem.

Thus the approximation problem is transformed to one of searching for a shortest
path on the graph G. Notice that in order for this algorithm to be correct, each edge
introduced in G must correspond to a collision-free trajectory. This is guaranteed by
the way we choose the node set V and the connection table properties (a proof similar
to the one showing that each Γbj−1bj is collision free, used in the above theorem). We
do not have to explicitly check whether each trajectory segment is collision free. The
obtained shortest path corresponds to a ((1+eε)4, (1+eε)2)-trajectory. Applying the
time-rescaling lemma (Lemma 2.1) with a scaling factor of (1 + eε)2, we can obtain
the following.

Corollary 2.12. LetW be a d-dimensional configuration space of size L and Ω a
set of obstacles. Let Γ be an optimal 3l-safe (1, 1)-trajectory from i to f . We can com-
pute a (1, 1)-trajectory Γ′ from some i′ ∈ ngb(i, εl/2, 3eε) to some f ′ ∈ ngb(f, εl/2, 3eε)
such that T (Γ′) is at most (1 + 3eε) times T (Γ).

2.5.2. The time complexity. The running time of the algorithm consists of
the following components:

1. Time to generate the graph nodes (i.e., the grid states). If N is the total
number of boxes in the final decomposition, the time to perform the decom-
position is O(nN + N logN), where n is the number of constraints defining
the configuration obstacles. Since each box contributes at most O((1/ε)2d−1)
grid states, the time to generate the grid states, after a decomposition, is
O(N(1/ε)2d−1).

2. Time to compute the graph edges. Since each node is connected to at most
O((1/ε)2d−1) other nodes, the total number of edges is O(N(1/ε)4d−2). This
bounds the time to compute the edges, since it takes O(1) time to compute
an edge.

3. Time to search for a shortest graph path. Using Dijkstra’s algorithm with
the priority queue implemented with a binary heap, this time is O((|V | +
|E|) log |V |), where |V | and |E| are the number of nodes and edges, respec-
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tively. Plugging in our numbers, the searching time is roughly O(dN logN
(1/ε)4d−2).

4. Time to rescale the obtained trajectory to a (1, 1)-trajectory, which is O(1).
Combining Corollary 2.12 and the time-complexity analysis, and choosing ε suf-

ficiently small, we obtain the following result.
Theorem 2.13. Fix an l > 0 and an ε > 0. After some precomputation, we can

achieve the following.
Let W be a d-dimensional configuration space of size L. Let Ω be a set of configu-

ration obstacles defined by a total of n algebraic equations, each of O(1) degrees. Given
any two states i and f , we can compute a collision-free (1, 1)-trajectory from i′ to f ′

such that the time length of the trajectory is at most (1+ε) times the time length of an
optimal 3l-safe (1, 1)-trajectory from i to f . Furthermore, ‖loc(i′)− loc(i)‖∞ ≤ εl,
‖vec(i′)−vec(i)‖∞ ≤ ε, ‖loc(f ′)−loc(f)‖∞ ≤ εl, and ‖vec(f ′)−vec(f)‖∞ ≤ ε.

The running time of our algorithm is O(nN + N logN(1/ε)4d−2), where N =
O((L/l)d).

2.6. Correcting a trajectory. In this subsection we prove the correcting lemma
(Lemma 2.6). The correcting lemma roughly states the following. Let Γ be an (ā, v̄)-
trajectory from a state i to a state f . Given another pair of states g and h, we can
construct a trajectory Γ′ from g to h by correcting Γ. Furthermore, we show that if
g and h are close to i and f , respectively, the correction is small. Note that in this
subsection, the results are presented in the absence of obstacles.

For simplicity of illustration and analysis, we first look at the 1D case. Let δa(t)
be the corrective acceleration, i.e., aΓ′(t) = aΓ(t) + δa(t) for 0 ≤ t ≤ T (Γ). Let
δv(t) = vΓ′(t) − vΓ(t) and δp(t) = pΓ′(t) − pΓ(t). Also let ∆vi = vΓ′(0) − vΓ(0) =
vec(g)− vec(i), ∆vf = vΓ′(T )− vΓ(T ) = vec(h)− vec(f), ∆pi = pΓ′(0)− pΓ(0) =
loc(g)− loc(i), and ∆pf = pΓ′(T )− pΓ(T ) = loc(h)− loc(f). Thus,

δv(t) = vΓ′(0) +

∫ t

0

(aΓ(µ) + δa(µ)) dµ−
(
vΓ(0) +

∫ t

0

aΓ(µ) dµ

)

= ∆vi +

∫ t

0

δa(µ) dµ

and

δp(t) = pΓ′(0) +

∫ t

0

(vΓ(µ) + δv(µ)) dµ−
(
pΓ(0) +

∫ t

0

vΓ(µ) dµ

)

= ∆pi +

∫ t

0

δv(µ) dµ

= ∆pi +

∫ t

0

(
∆vi +

∫ µ

0

δa(ν) dν

)
dµ

= ∆pi + ∆vit +

∫ t

0

∫ µ

0

δa(ν) dν dµ.

Our object is to find δa(t) such that

∆vi +

∫ T

0

δa(µ) dµ = ∆vf and

∆pi + ∆viT +

∫ T

0

∫ µ

0

δa(ν) dν dµ = ∆pf ,
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Fig. 2.4. The correcting scheme.

where T = T (Γ). We also want to keep the absolute values of δv(t), δa(t), and δp(t)
small.

Fix a constant c ≥ 1 and let

ρc = v̄2/(cā).

Assume that

|loc(f)− loc(i)| ≥ ρ ≥ ρc

for some ρ, and let

φ = ρ/v̄.

Thus T (Γ) ≥ φ. Our correcting scheme is illustrated in Figure 2.4. Basically, we
correct in three phases. In the first phase, we use a constant corrective acceleration to
make δv(t) become 0, while in the last phase, we use a constant corrective acceleration
to make δv(t) become ∆vf . The middle phase is used to correct the distance. Notice
that at the beginning and the end of the second phase, δv(t) = 0.

The time length of the first and the last phases is φ/8. Let ∆a1 be the constant
corrective acceleration used in the first phase. Then

∆a1 = −∆vi
φ/8

= −8∆vi
φ

.

If ∆p1 is the distance covered in this phase, then ∆p1 = ∆viφ/16. In this phase, |δv(t)|
is getting smaller and is upper bounded by |∆vi|, while |δp(t)| is upper bounded by
|∆pi|+ |∆p1|. Let ∆a3 be the constant corrective acceleration used in the last phase.
Similarly, we have

∆a3 =
8∆vf
φ

.

∆p3 = ∆vfφ/16 is the distance covered in this phase. In this phase, |δv(t)| is upper
bounded by |∆vf |. At the beginning of this phase, δp(t) = ∆pf −∆p3. Thus |δp(t)|
is upper bounded by |∆pf |+ |∆p3| during this phase.

Let T ′ = T (Γ)−φ/4 be the time spent in the second phase. This phase is divided
into two subphases of equal length. The corrective accelerations used in these two
subphases have the same absolute value but opposite directions. The effect is that at
the end of this phase, δv(t) becomes 0 again. If ∆p2 is the distance covered in this
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phase, ∆p2 = ∆pf −∆pi −∆p1 −∆p3. Notice that |∆p2| and δp(t) are both upper
bounded by |∆pi| + |∆p1| + |∆p3| + |∆pf |. Let ∆a2 be the corrective acceleration
used in the first subphase. Then

∆a2 =
4∆p2

(T ′)2
.

In this phase, |δv(t)| is upper bounded by 2|∆p2|/T ′.
Lemma 2.14. For any ε > 0 and any two states g and h, if g ∈ ngb(i, ερ/2, εv̄/2)

and h ∈ ngb(f, ερ/2, εv̄/2), where ρ is defined as above, then the trajectory Γ′, con-
structed as above, satisfies the following properties:

P1. T (Γ′) = T (Γ).
P2. Γ′ is a ((1 + 4cε)2ā, (1 + 4cε)v̄)-trajectory.
P3. d(Γ′,Γ) ≤ (17/16)ερ.
Proof. P1 holds obviously. During the whole time period T (Γ), the maximum

difference in position is upper bounded by

|∆pi|+ |∆p1|+ |∆p3|+ |∆pf | ≤ 1

2
ερ +

|∆vi|φ
16

+
|∆vf |φ

16
+

1

2
ερ

≤ ερ +
(εv̄)(ρ/v̄)

16

≤
(

1 +
1

16

)
ερ

≤ 17

16
ερ.

This implies that |pΓ′(t) − pΓ(t)| ≤ (17/16)ερ for 0 ≤ t ≤ T (Γ). By definition,
d(Γ′,Γ) ≤ (17/16)ερ, proving P3. The maximum difference in velocity is upper
bounded by

max

(
|∆vi|, |∆vf |, 2|∆p2|

T ′

)
≤ max

(
εv̄

2
,

2(17/16)ερ

(1− 1/4)φ

)

≤ max

(
εv̄

2
,

3ερ

φ

)

≤ max
(εv̄

2
, 3εv̄

)
≤ 4cεv̄.

The maximum difference in acceleration is upper bounded by

max (|∆a1|, |∆a2|, |∆a3|) ≤ max

(
8|∆vi|

φ
,

4|∆p2|
(T ′)2

,
8|∆vf |

φ

)

≤ max

(
4εv̄

φ
,

4(17/16)ερ

((3/4)φ)2

)

≤ max

(
4εv̄

φ
,

8εv̄

φ

)

=
8εv̄

φ

=
8εv̄2

ρ
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≤ 8εv̄2

ρc
= 8cεā.

Thus the velocity of Γ′ is upper bounded by (1+4cε)v̄ and the acceleration is bounded
by (1 + 4cε)2ā, proving P2.

In higher dimensions, we can add corrective accelerations for each dimension
separately. Since the time length of the trajectory is not changed, the corrections
can be carried out simultaneously without affecting each other. Let vjΓ(t) be vΓ(t)
projected in the jth dimension for 1 ≤ j ≤ d. By Lemma 2.14, we have

|vjΓ′(t)| ≤ 4cεv̄ + |vjΓ(t)|.
By the triangle inequality,

‖vΓ′(t)‖ ≤ ‖vΓ(t)‖+ ‖vΓ′(t)− vΓ(t)‖

≤ v̄ +

√√√√ d∑
j=1

(vjΓ′(t)− vjΓ(t))2

≤ v̄ +

√√√√ d∑
j=1

(4cεv̄)2

≤ v̄ + 4c
√
dεv̄

= (1 + 4c
√
dε)v̄.

Similarly for the acceleration, we can obtain that

‖aΓ′(t)‖ ≤ (1 + 4c
√
dε)2ā.

In summary, we have Lemma 2.6, reproduced here as Lemma 2.15.
Lemma 2.15 (correcting lemma). Fix a constant c ≥ 1 and let ρc = v̄2/(cā),

where ā, v̄ > 0 are arbitrary. Let Γ be an (ā, v̄)-trajectory from a state i to a state
f . Given any ρ > 0 and ε > 0 and given any two states g and h, if ρ > ρc,
‖loc(f)− loc(i)‖∞ ≥ ρ, g ∈ ngb(i, ερ/2, εv̄/2), and h ∈ ngb(f, ερ/2, εv̄/2), then we
can construct a trajectory Γ′ from g to h by correcting Γ such that Γ′ satisfies the
following properties:

P1. T (Γ′) = T (Γ).
P2. Γ′ is a ((1 + 4c

√
dε)2ā, (1 + 4c

√
dε)v̄)-trajectory.

P3. d(Γ′,Γ) ≤ (17/16)ερ.

2.7. Scaling the dynamic bounds. So far, our presentation considers only the
case when both the accelerations and the velocities are upper bounded by 1. This is
sufficiently general because, as we mentioned in section 1.3, we can scale arbitrarily
given bounds to 1 by scaling time and the configuration space. In this section, we
will show how the scaling is done. Basically, for given arbitrary bounds, we scale
the configuration space (also the locations and the velocities of the initial and final
states) by some appropriate factors decided by the given bounds. We then apply the
algorithm described in section 2.5 to compute a trajectory in the scaled configuration
space with both dynamic bounds set to 1. Finally we “scale back” the computed
trajectory. We will see that the scaled trajectory abides by the given dynamic bounds
and is a close approximation to an optimal trajectory.
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For a path Π, we use L(Π) to denote the path length of Π. Let Π and Π′ be two
paths. We say that Π′ = αΠ, or that Π′ is Π scaled by a factor of α, if L(Π′) = αL(Π)
and Π′(3) = αΠ(3/α) for 0 ≤ 3 ≤ αL(Π).

In the following, we first present the velocity-scaling lemma, which shows the scal-
ing relation between the velocity and the time and the space. Next, the acceleration-
scaling lemma shows how to scale the acceleration by scaling the time and the space.
By combining these two lemmas, we obtain the acceleration-velocity scaling lemma.
Note that unlike the time-rescaling lemma (Lemma 2.1), the acceleration and the
velocity can be scaled by different and unrelated factors in our lemma.

Lemma 2.16 (velocity-scaling lemma). Let Γ be an (ā, v̄)-trajectory and Π be its
path. The path (1/α2)Π can be traversed by an (ā, v̄/α)-trajectory Γ′ in time T (Γ)/α.
Moreover Γ is an optimal (ā, v̄)-trajectory if and only if Γ′ is an optimal (ā, v̄/α)-
trajectory.

Proof. Define Γ′ to be the following: pΓ′(0) = pΓ(0)/α2, vΓ′(0) = vΓ(0)/α, and
aΓ′(t) = aΓ(αt), 0 ≤ t ≤ T (Γ)/α. We will show that, for 0 ≤ t ≤ T (Γ)/α,

vΓ′(t) = vΓ(αt)/α and

pΓ′(t) = pΓ(αt)/α2.

This is because

vΓ′(t) = vΓ′(0) +

∫ t

0

aΓ′(s) ds

= vΓ(0)/α +

∫ t

0

aΓ(αs) ds

= vΓ(0)/α +

∫ αt

0

aΓ(s′)(1/α) ds′

= vΓ(0)/α +

(∫ αt

0

aΓ(s′) ds′
)
/α

= vΓ(αt)/α

and

pΓ′(t) = pΓ′(0) +

∫ t

0

vΓ′(s) ds

= pΓ(0)/α2 +

∫ t

0

vΓ(αs)/α ds

= pΓ(0)/α2 +

∫ αt

0

(vΓ(s′)/α2) ds′

= pΓ(0)/α2 + (1/α2)

∫ αt

0

vΓ(s′) ds′

= pΓ(αt)/α2.

Let Π′ be the path traversed by Γ′, and let 3 and t be such thatΠ′(3) = pΓ′(t).
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Thus

3 =

∫ t

0

vΓ′(s)ds

=

∫ t

0

vΓ(αs)/αds

= (1/α2)

∫ αt

0

vΓ(s)ds.

This implies that Π(α23) = pΓ(αt). Since

Π′(3) = pΓ′(t)

= pΓ(αt)/α2

= Π(α23)/α2,

therefore Π′ is (1/α2)Π. The scaling preserves the optimality. This completes the
proof of the lemma.

Lemma 2.17 (acceleration-scaling lemma). Let Γ be an (ā, v̄)-trajectory and
Π be its path. The path (1/α)Π can be traversed by an (ā/α, v̄/α)-trajectory Γ′ in
time T (Γ). Moreover Γ is an optimal (ā, v̄)-trajectory if and only if Γ′ is an optimal
(ā/α, v̄/α)-trajectory.

Proof. Define Γ′ to be the following: pΓ′(0) = pΓ(0)/α, vΓ(0) = vΓ(0)/α, and
aΓ′(t) = aΓ(t)/α, 0 ≤ t ≤ T (Γ). We can show that, for any 0 ≤ t ≤ T (Γ),

vΓ′(t) = vΓ(t)/α and

pΓ′(t) = pΓ(t)/α.

This is because

vΓ′(t) = vΓ′(0) +

∫ t

0

aΓ′(s) ds

= vΓ(0)/α +

∫ t

0

aΓ(s)/α ds

= vΓ(0)/α +

(∫ t

0

aΓ(s) ds

)
/α

= vΓ(t)/α

and

pΓ′(t) = pΓ′(0) +

∫ t

0

vΓ′(s) ds

= pΓ(0)/α +

∫ t

0

vΓ(s)/α ds

= pΓ(0)/α +

(∫ t

0

vΓ(s) ds

)
/α

= pΓ(t)/α.
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Let Π′ be the path traversed by Γ′. Similarly to the proof of Lemma 2.16, we can
show that Π′ = (1/α)Π. This completes the proof of the lemma.

Lemma 2.18 (acceleration-velocity scaling lemma). Let Γ be an (ā, v̄)-trajectory
and let Π be its path. The path (β/α2)Π can be traversed by an (ā/β, v̄/α)-trajectory
Γ′ in time (β/α)T (Γ). Moreover Γ is an optimal (ā, v̄)-trajectory if and only if Γ′ is
an optimal (ā/β, v̄/α)-trajectory.

Proof. Let Π′′ = (1/β)Π. By Lemma 2.17, Π′′ can be traversed by an (ā/β, v̄/β)-
trajectory Γ′′ in time T (Γ).

Let γ = α/β and let Π′ = (1/γ2)Π′′. By Lemma 2.16, Π′ can be traversed by an
(ā/β, v̄/(βγ))-trajectory in time T (Γ′′)/γ. Since

Π′ = (1/γ2)Π′′ = (1/γ2)(1/β)Π = (β/α2)Π,

v̄/(βγ) = v̄/α,

and

T (Γ′′)/γ = T (Γ)/γ = (β/α)T (Γ),

therefore this trajectory is the one desired.
By applying the acceleration-velocity scaling lemma, we obtain the following

corollary.
Corollary 2.19. Given a kinodynamic motion-planning problem with the fol-

lowing parameters: the size of the configuration space L, the dynamic bounds ā and
v̄, the two parameters l and ε, the initial state i, and the final state f , we can scale
the problem to one with ā = 1 and v̄ = 1 by scaling the initial and final velocities by
a factor of (1/v̄) and scaling the configuration space (including the obstacles, the pa-
rameter l, loc(i), and loc(f)) by a factor of (ā/v̄2). Let Γ be the trajectory obtained
for the scaled problem. Then the trajectory Γ′ such that

aΓ′(t) = ā · aΓ((ā/v̄)t)

for 0 ≤ t ≤ (v̄/ā)T (Γ) is the solution for the original problem.

3. The curvature-constrained shortest-path problem in three and higher
dimensions.

3.1. Introduction. Let P : I → R
d be a d-dimensional differentiable path

parameterized by arclength s ∈ I. The average curvature of P in the interval [s1, s2] ⊆
I is defined by ‖Ṗ (s1)− Ṗ (s2)‖/|s1 − s2|. In the curvature-constrained shortest-path
problem, we require that the path have an average curvature of at most 1 in every
interval. Again, we can always scale an arbitrarily given curvature bound to 1 by
scaling the configuration space, thus it is general enough to consider the case when
the bound is 1. Notice that we use average curvature instead of curvature because the
curvature of a differentiable path may not exist at certain points. Also, the curvature
of a path, wherever it is defined, is bounded by 1 if and only if its average curvature
is bounded by 1 for all intervals.

A position X is a pair (loc(X),orn(X)), where loc(X) is a point in the d-
dimensional space and orn(X) is a vector representing an orientation in the d-
dimensional space. Notice that ‖orn(X)‖ = 1. Given a set Ω of obstacles in a
d-dimensional space, an initial position I, and a final position F , the curvature-
constrained shortest-path problem is to find a shortest path from I to F such that
the path obeys the curvature constraint and does not intersect Ω.
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It has been observed in [18] that the curvature-constrained shortest-path problem
is a restricted case of the kinodynamic motion-planning problem, with the L2-norms
of the velocities fixed to be 1. However, if we require that the velocities of the
approximation trajectories be fixed in L2-norm, the techniques developed so far for
the general kinodynamic case cannot be applied to this restricted case. As pointed
out in [12], a necessary condition for the techniques to apply is that the set of feasible
instantaneous accelerations (accelerations that can be applied without violating the
dynamic constraints) spans d dimensions. On the other hand, if the velocities are
fixed in L2-norm, the set of instantaneous accelerations spans only d− 1 dimensions,
because they have to be perpendicular to the instantaneous velocity.

Our contribution is that we look at the curvature-constrained shortest-path prob-
lem from a different viewpoint, which enables us to overcome the difficulty mentioned
above. Basically, instead of requiring that the L2-norms of the velocities be fixed
to be 1, we only force them to fall within a small range close to 1. In this way, we
are able to obtain a path whose maximum curvature is slightly larger than, but can
be arbitrarily close to, 1. It should be noted that under this same variation, the
former approximation algorithms of Donald and Xavier [15] and Reif and Tate [43]
can also be applied to compute approximating solutions for the curvature-constrained
shortest-path problem.

In this section, we use lowercase letters to denote states as defined for the kin-
odynamic case, but uppercase letters (usually X,Y, U, V ) to denote positions (i.e.,
‖orn(X)‖ = ‖orn(Y )‖ = ‖orn(U)‖ = ‖orn(V )‖ = 1). A path is called a c-
constrained path if its average curvature is at most c. We say that Γ is a (1, 1̃)-
trajectory if ‖aΓ(t)‖ ≤ 1 and ‖vΓ(t)‖ = 1 for 0 ≤ t ≤ T (Γ). Given a path Π, let L(Π)
be its path length. Notice that the notation of ngb extends to positions. Therefore,
for a position X, a position X ′ ∈ ngb(X, ρ, ν) if ‖loc(X ′) − loc(X)‖∞ ≤ ρ and
‖orn(X ′)− orn(X)‖∞ ≤ ν.

3.2. Approximating in the absence of obstacles. The following lemma
states a result similar to Corollary 2.2 but for the curvature-constrained case. This
lemma enables us to apply the method developed in the previous sections to the
curvature-constrained shortest-path problem.

Lemma 3.1. Let W be a d-dimensional configuration space of size L. Let Π be
a 1-constrained path from position X to position Y and lying inside W . Given any
ε > 0 and ρ = O(1), we can compute in time O(Ld(1/ε)6d−1) a path Π′ such that Π′

satisfies the following properties:
P1. Π′ is (1 + ε)-constrained.
P2. L(Π′) ≤ (1 + ε)L(Π).
P3. d(Π′,W ) ≤ ερ/2.
P4. Π′ is from some position X ′ ∈ ngb(X, ερ/2, ε/2) to some position Y ′ ∈

ngb(Y, ερ/2, ε/2).
Proof. Let δ = ε/8, ηx = ερ/2, and ηv = ε/(8

√
d).

We consider Π to be the path of a trajectory Γ such that Γ is from state i =
(loc(X),orn(X)/(1 + δ)) to state f = (loc(Y ),orn(Y )/(1 + δ)) and ‖vΓ(t)‖ =
1/(1 + δ). Notice that T (Γ) = (1 + δ)L(Π). Since Π is a 1-constrained path, and at
any time t, the curvature of Π is given by ‖aΓ(t)‖/‖vΓ(t)‖2, the acceleration of Γ is
bounded by

‖aΓ(t)‖ ≤ 1 · ‖vΓ(t)‖2 ≤ 1/(1 + δ)2.

This implies that Γ is a (1/(1 + δ)2, 1/(1 + δ))-trajectory. Let Aδ be the set of accel-
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erations whose L2-norms are bounded by 1/(1 + δ)2. This is the set of accelerations
used by Γ.

Let µ = κl = δ/(4
√
d) and Aµ be the set of accelerations as defined in the

appendix (see (A.5) and (A.6)). Thus Aµ has a uniform advantage of κl over Aδ.
By the tracking lemma (see the appendix), there exists a τ = O(ε) (satisfying (A.4))
and a τ -bang trajectory Γ′ using Aµ such that T (Γ′) = T (Γ) and Γ′ tracks Γ to a
tolerance of (ηx, ηv). This implies that

‖vΓ′(t)− vΓ(t)‖∞ ≤ ηv,

‖vΓ′(t)− vΓ(t)‖ ≤
√
dηv,

‖vΓ(t)‖ −
√
dηv ≤ ‖vΓ′(t)‖ ≤ ‖vΓ(t)‖+

√
dηv,

1

1 + δ
−
√
d

ε

8
√
d
≤ ‖vΓ′(t)‖ ≤ 1

1 + δ
+
√
d

ε

8
√
d
,

1

1 + δ
− ε

8
≤ ‖vΓ′(t)‖ ≤ 1

1 + δ
+

ε

8
,

1− ε

4
≤ ‖vΓ′(t)‖ ≤ 1 +

ε

8
.

Let Π′ be the path of trajectory Γ′. We will show that Π′ satisfies P1–P4. Since
‖aΓ′(t)‖ ≤ 1, this bounds the maximum curvature of Π′ to be at most

1

(1− ε/4)2
≤ 1 + ε,

proving P1. Since T (Γ′) ≤ T (Γ) = (1 + δ)L(Π), then

L(Π′) ≤
(

1 +
ε

8

)
T (Γ′) ≤

(
1 +

ε

8

)
(1 + δ)L(Π) ≤ (1 + ε)L(Π),

proving P2, where (1 + ε
8 ) is the upper bound on ‖vΓ′(t)‖. P3 follows directly from

the fact that Γ′ tracks Γ to a tolerance of (ηx, ηv) with ηx = ερ/2, and that Γ lies
inside W .

Let i′ and f ′ be the initial and the final states of Γ′, and X ′ and Y ′ be the
initial and the final positions of Π′. Thus loc(X ′) = loc(i′), loc(Y ′) = loc(f ′),
orn(X ′) = vec(i′)/‖vec(i′)‖, and orn(Y ′) = vec(f ′)/‖vec(f ′)‖, and

‖orn(X ′)− orn(X)‖∞
≤ ‖orn(X ′)− orn(X)‖
= ‖orn(X ′)− vec(i′) + vec(i′)− vec(i) + vec(i)− orn(X)‖
≤ ‖orn(X ′)− vec(i′)‖+ ‖vec(i′)− vec(i)‖+ ‖vec(i)− orn(X)‖
≤ (1− ‖vec(i′)‖) +

√
dηv +

δ

1 + δ

≤ ε

4
+

ε

8
+

ε

8

=
ε

2
.

Similarly we can show that ‖orn(Y ′)− orn(Y )‖∞ ≤ ε/2. This proves P4 for Γ′.
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Such a trajectory Γ′ (and thus a path Π′) can be obtained by the TC-graph
method. In constructing the graph, an edge is added if (i) it is a (µ, τ)-bang, (ii)
the bang does not diverge from W by more than ερ/2, and (iii) the L2-norms of the
velocities of the bang fall into [1− ε/4, 1 + ε/8]. Since µ and τ are O(ε), the number
of edges in this graph is bounded by O(Ld(1/ε)6d−1), and thus so is the running time.
This completes the proof of the lemma.

Notice that we do not explicitly constrain the velocities of the tracking trajectory
Γ′. This allows us to apply the tracking lemma (Lemma A.1). However, it happens
that ‖vΓ′(t)‖ falls into a small range of [1− ε/4, 1 + ε/8] by being able to track closely
a trajectory Γ whose velocities are fixed to be 1 in L2-norm. By upper bounding
the accelerations and lower bounding the velocities of Γ′, we are able to bound the
curvature of Π′.

3.3. Approximating with obstacles. Let W be a d-dimensional configuration
space of size L with a set Ω of obstacles. Let B be the box decomposition of W ,
as described in section 2.3.1. Let Π be an optimal 3l-safe 1-constrained path from
position X to position Y .

As we did in the proof of the safe loose-tracking theorem (Theorem 2.11), we can
divide Π into segments of paths, ΠU0U1‖ . . . ‖ΠUm−1Um , such that U0 = X, Um = Y ,
and each Ui is the position where Π first exits ξ(Ui−1) for 1 ≤ i ≤ m. Each segment
ΠUiUi+1 is a 1-constrained path from Ui to Ui+1 and lies inside ξ(Ui). These are the
paths we need to approximate.

We define the set of CS grid states, the canonical extended boxes, the canonical
starting states, and the canonical ending states in the same way as we did in the
previous sections, except that we let V be the set of unit vectors that are uniformly
spaced with spacing δ. If δ = O(ε) is chosen small enough, for any unit vector v,
there is a unit vector v′ ∈ V such that ‖v′ − v‖∞ ≤ ε/2. Thus V suffices for the
curvature-constrained case, since if we consider Ui as a state then ‖vec(Ui)‖ = 1 for
all Ui’s along Π. The following corollary can be derived from the correcting lemma
(Lemma 2.6).

Corollary 3.2. Fix a constant c > 1 and let ρc = 1/(cκ), where κ > 0 is
arbitrary. Let Π be a κ-constrained path from position I to position F . Given any ρ >
0 and ε > 0 and given any two positions U and V , if ρ > ρc, ‖loc(F )−loc(I)‖∞ ≥ ρ,
U ∈ ngb(I, ερ/2, ε/2), and V ∈ ngb(F, ερ/2, ε/2), we can construct a path Π′ from U
to V by correcting Π such that Π′ satisfies the following properties:

P1. L(Π′) = (1 + eε)L(Π),
P2. Π′ is ((1 + eε)2/(1− eε)2)κ-constrained,
P3. d(Π′,Π) ≤ (17/16)ερ,

where e = 4c
√
d.

The consequence of Lemma 3.1 and Corollary 3.2 is that we are able to precom-
pute paths which approximate Uii+1’s and store them in the connection tables. Similar
to what we did for the kinodynamic case, we can prove a version of the loose-tracking
lemma (Lemma 2.8) and the safe loose-tracking theorem (Theorem 2.11) for the
curvature-constrained case. Since |V| = O((1/ε)d−1) (as opposed to O((1/ε)d) for the
kinodynamic case), the number of edges in the CS graph is reduced to O((1/ε)4d−4).

Combining the above, and choosing small enough ε = O(ε), we can obtain the
following result.

Theorem 3.3. Fix an l > 0 and an ε > 0. After some precomputation, we can
achieve the following.

Let W be a d-dimensional space of size L and let Ω be a set of obstacles with a
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total of n vertices. Given any two positions X and Y , we can compute a collision-
free (1 + ε)-constrained path from a position X ′ ∈ ngb(X, εl, ε) to a position Y ′ ∈
ngb(Y, εl, ε), such that the path length is at most (1+ε) times the length of an optimal
1-constrained 3l-safe path from X to Y .

The running time of our algorithm is O(nN + N logN(1/ε)4d−4), where N =
O((L/l)d).

4. Conclusions. In this paper we have presented a faster approximation al-
gorithm for the kinodynamic motion-planning problem. Contrary to the previous
approximation algorithms which all use a uniform discretization in time, our method
employs a nonuniform discretization in the configuration space. The discretization is
nonuniform in that it is coarser in regions which are farther from all obstacles. The
nonuniform discretization leads to a smaller search space and thus a faster algorithm.
Moreover, our method is sensitive to the distribution of obstacles in the configura-
tion space. It is expected to perform better (i.e., faster) than the given theoretical
time bound in cases where the obstacles are sparsely or unevenly distributed. In de-
veloping the approximation algorithm, we utilize a hierarchical decomposition of the
configuration space. We also developed the idea of using trajectories precomputed in
the absence of obstacles as building blocks to construct trajectories in the presence of
obstacles. Finally, we have applied this algorithm to give the first-known polynomial-
time approximation algorithm for the curvature-constrained shortest-path problem
in three and higher dimensions. The computed paths may have curvatures slightly
larger (but can be arbitrarily close to) the given curvature bound.

It should be pointed out that, though improved, the time complexity of our ap-
proximation algorithm is still too high for the method to have real-world applications.
At this point, the proposed method and results are of pure theoretical interest.

One future research direction is to give a more precise bound on N , the number
of boxes in the box decomposition. Instead of describing N as a function of L, the
size of the configuration space, we would prefer to describe N as a function of some
parameters that describe the obstacle scene, for example, the aspect ratios of the
obstacles.

In the kinodynamic motion-planning problem, we only considered Cartesian robots,
i.e., robots whose inertia tensor is constant (see [15] for a more precise definition).
We believe that our approach can also be applied to more general robots with open
kinematic chains. In order to do this, we need to generalize our correcting lemma
(Lemma 2.6) to open chains.

A key further problem is to determine cases of kinodynamic motion-planning
problems that we can solve in closed forms, or for which we can give sufficient char-
acterizations for developing fast algorithms. An example along this line is the case
of planning for a point robot moving on a plane amid polygonal obstacles and with
decoupled kinodynamic constraints. It is characterized in [9] that the minimum-time
trajectory is a sequence of segments, where each segment is a “bang-bang” control
between two obstacle boundary points. It is interesting to investigate whether such
characterizations extend to coupled cases and higher dimensions.

The complexity of the kinodynamic motion-planning problem in two dimensions
is still open.

Appendix. The TC-graph method. For the sake of completeness, we describe
the gist of the tracking lemma (Lemma A.1) and the TC-graph method in this section.

A trajectory Γ′ is said to track another trajectory Γ to a tolerance (ηx, ηv) if for
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all t ∈ [0, T ],

‖pΓ(t)− pΓ′(t)‖∞ ≤ ηx and(A.1)

‖vΓ(t)− vΓ′(t)‖∞ ≤ ηv.(A.2)

Notice that (A.1) implies that d(Γ′,Γ) ≤ ηx.
A τ -bang is a trajectory segment of time duration τ during which a constant

acceleration is applied.2 A τ -bang trajectory is a trajectory consisting of a sequence
of τ -bangs. The set of bang trajectories is a restricted set of trajectories. But they
suffice to track any nonrestricted trajectories if the acceleration set used by the bang
trajectories has some advantage over the acceleration set used by the nonrestricted
trajectories. Next we define the notion of advantage more formally.

Let P and Q be two sets of accelerations. For any acceleration a ∈ P and any
direction given by a d-length vector σ of 1’s and −1’s, if there exists an acceleration
b ∈ Q such that

σj(bj − aj) ≥ κl(A.3)

for 1 ≤ j ≤ d, then Q is said to have a uniform κl advantage over P (αj means the jth
element of a vector α). The tracking lemma relates the parameter τ to the uniform
advantage κl and the tracking tolerance (ηx, ηv).

Lemma A.1 (tracking lemma [15]). 3 Let P and Q be two sets of accelerations
such that for each a ∈ Q, ‖a‖ ≤ 1, and Q has a uniform κl advantage over P.

Let Γ be a trajectory that uses P. Let (ηx, ηv) be a tracking tolerance. There
exists a time step τ , and a τ -bang trajectory Γ′ that uses Q such that Γ′ tracks Γ to
tolerance (ηx, ηv).

Moreover, it is sufficient that

τ = O(min(ηv,
√
ηxκl)).(A.4)

Let A (resp., Aε) be the set of accelerations whose L2-norms are bounded by
1 (resp., 1/(1 + ε)2). Next we show how we can choose a finite set of accelerations
such that this set has a uniform advantage over Aε. Given a parameter µ, a set of
grid-points of A with spacing µ is defined to be

{a = (i1µ, . . . , idµ) | i1, . . . , id = 0,±1,±2, . . . , a ∈ A}.(A.5)

Let Aµ be the set of boundary grid-points4 (see Figure A.1; the dark dots represent
the boundary grid-points in two dimensions). It is shown in [15] that if µ is chosen

2Here we slightly abuse the notion of a bang. A bang usually means that its acceleration should
be extremal in some sense.

3This is a simplified version of the tracking lemma presented in [15]. In [15], Q is a set of
instantaneous accelerations that depends on the current state, and may be a subset of the set
of allowed accelerations. This is because applying certain accelerations may violate the velocity
constraint. In the context where we apply this tracking lemma, we do not explicitly bound the
velocities of the tracking trajectory. This means that the set of instantaneous accelerations equals
the set of all allowed accelerations.

4In [15], two approximation algorithms, the true-extremal algorithm and the near-extremal al-
gorithm, are described. They differ in the way of choosing a discretized acceleration set and in the
way of defining bangs. The description here follows from the near-extremal algorithm.
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Fig. A.1. The acceleration set Aµ in two dimensions.

such that

µ ≤ κl ≤ ε

4
√
d
,(A.6)

then Aµ has a uniform advantage of κl over Aε. Notice that |Aµ| = O(d(1/µ)d−1).

A τ -bang (resp., τ -bang trajectory) is a (µ, τ)-bang (resp., (µ, τ)-bang trajectory)
if the acceleration set used is Aµ. Given a tracking tolerance (ηx, ηv) and any ε > 0,
there exist µ (satisfying (A.6)) and τ (satisfying (A.4)) such that for any (1/(1 +
ε)2, 1/(1 + ε))-trajectory Γ, there exists a (µ, τ)-bang trajectory Γ′ (also a (1, 1)-
trajectory) that tracks Γ to a tolerance of (ηx, ηv). To approximate any given (1, 1)-
trajectory Γ to within a factor of (1 + ε) in time length, we first time-rescale Γ to a
(1/(1 + ε)2, 1/(1 + ε))-trajectory Γ′, with time length extended by a factor of (1 + ε).
Since there exists a (µ, τ)-bang trajectory Γ′′ that tracks Γ′ to a tolerance of (ηx, ηv),
Γ′′ approximates Γ in that T (Γ′′) ≤ (1 + ε)T (Γ). But Γ′′ does not track Γ to the
tolerance of (ηx, ηv). However, d(Γ′′,Γ) ≤ ηx. This is because Γ′ and Γ trace the
same path and d(Γ′′,Γ′) ≤ ηx. Also the two end states of Γ′′ are close to the two end
states of Γ, respectively.

Having discovered the existence of a tracking bang trajectory, the next question
is how to compute one. What makes it more difficult is that most of the time, the
original (1, 1)-trajectory Γ is not given except in its initial and final states. The TC-
graph method transforms this problem to that of finding a shortest path in a directed
graph. (In the following, we only describe the TC-graph method in the absence of
obstacles, where we do not have to do collision-free checking.) The TC graph G is
roughly as follows: (i) the root node of G approximates the initial state of Γ; (ii) a
directed edge corresponds to a (µ, τ)-bang whose velocities are also bounded by 1 in
L2-norm; the weight of the edge is always τ ; (iii) the graph is generated and explored
from the root node in a breadth-first manner, and the search terminates when either
a node approximating the final state is found or when no new nodes aregenerated.
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Note the following:
• The size of G is finite (see the following analysis).
• The breadth-first search produces a trajectory whose time length is no more

than (1+ ε)T (Γ). The breadth-first search suffices for finding a shortest path
since each edge has a uniform weight of τ .
• Suppose that Γ lies within a subset W of the configuration space. Since

there exists a bang trajectory Γ′′ satisfying d(Γ′′,Γ′) ≤ ηx, then d(Γ′′,W ) ≤
ηx. We can find such a trajectory by considering only those edges whose
corresponding bangs do not diverge from W by more than ηx. Notice that it
still holds that T (Γ′′) ≤ (1 + ε)T (Γ).

Each node of G corresponds to a state. By carefully choosing the initial velocity,
we can bound the number of possible velocities by O((1/(µτ))d) and the number of
possible locations by O((L/(µτ2))d), where L is the size of W . Thus the total number
of nodes is bounded by

O

((
L

µ2τ3

)d)
.(A.7)

Each node can have at most O(d(1/µ)d−1) outgoing edges (because it can have at
most this many choices of accelerations), thus the total number of graph edges is

O

(
dLd

µ3d−1τ3d

)
.(A.8)

This also bounds the running time.
If we set

ηx = ερ/2 and ηv = ε/2,(A.9)

where ρ = O(1), we obtain Corollary 2.2. Notice that since τ = O(ε) and µ = O(ε),
the running time is O(Ld(1/ε)6d−1).
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Abstract. In this paper, we undertake the first study of statistical multiplexing from the
perspective of approximation algorithms. The basic issue underlying statistical multiplexing is the
following: in high-speed networks, individual connections (i.e., communication sessions) are very
bursty, with transmission rates that vary greatly over time. As such, the problem of packing multiple
connections together on a link becomes more subtle than in the case when each connection is assumed
to have a fixed demand.

We consider one of the most commonly studied models in this domain: that of two communicating
nodes connected by a set of parallel edges, where the rate of each connection between them is a
random variable. We consider three related problems: (1) stochastic load balancing, (2) stochastic
bin-packing, and (3) stochastic knapsack. In the first problem the number of links is given and we
want to minimize the expected value of the maximum load. In the other two problems the link
capacity and an allowed overflow probability p are given, and the objective is to assign connections
to links, so that the probability that the load of a link exceeds the link capacity is at most p. In bin-
packing we need to assign each connection to a link using as few links as possible. In the knapsack
problem each connection has a value, and we have only one link. The problem is to accept as many
connections as possible.

For the stochastic load balancing problem we give an O(1)-approximation algorithm for arbitrary
random variables. For the other two problems we have algorithms restricted to on-off sources (the
most common special case studied in the statistical multiplexing literature), with a somewhat weaker
range of performance guarantees.

A standard approach that has emerged for dealing with probabilistic resource requirements is the
notion of effective bandwidth—this is a means of associating a fixed demand with a bursty connection
that “represents” its distribution as closely as possible. Our approximation algorithms make use of
the standard definition of effective bandwidth and also a new one that we introduce; the performance
guarantees are based on new results showing that a combination of these measures can be used to
provide bounds on the optimal solution.

Key words. combinatorial optimization, approximation algorithms, statistical multiplexing,
effective bandwidth

AMS subject classifications. 05C85, 68R10, 68Q20

PII. S0097539797329142

1. Introduction.

Motivation and previous work. The issues of admission control and rout-
ing in high-speed networks have inspired recent analytical work on network routing
and bandwidth allocation problems in several communities (e.g., [10, 1, 5]). One
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line of work has been directed towards the development of approximation algorithms
and competitive on-line algorithms for admission control and virtual circuit routing
problems (see the survey by Plotkin [16]). The network model in this line of work
represents the links of the network as edges of fixed capacity and connections as pairs
of vertices with a fixed bandwidth demand between them. The algorithms and their
analysis are motivated by this network flow perspective.

In fact, however, traffic in high-speed networks based on asynchronous transfer
mode (ATM) and related technologies tends to be extremely bursty. The transmission
rate of a single connection can vary greatly over time; there can be infrequent periods
of very high peak rate, while the average rate is much lower.

One can try to avoid this issue by assigning each connection a demand equal to
its maximum possible rate. The use of such a conservative approximation will ensure
that edge capacities are never violated. But much of the strength of ATM comes
from the advantage of statistical multiplexing—the packing of uncorrelated, bursty
connections on the same link. In particular, suppose one is willing to tolerate a low
rate of packet loss due to occasional violations of the link capacity. As the “peak”
states of different connections coincide only very rarely, one can pack many more
connections than is possible via the above worst-case approach and still maintain a
very low rate of packet loss due to overflow.

Queueing theorists recently have devoted a great deal of study to the analysis
of statistical multiplexing (see the book edited by Kelly, Zachary, and Zeidins [13]).
Typically, this work models a single connection either as a discrete random variableX,
with Pr[X = s] indicating the fraction of the time that the connection transmits at rate
s, or as a finite-state Markov chain with a fixed transmission rate for each state. (A
much-discussed case is whenX is an on-off source. In our context, such a connection is
equivalent to a weighted Bernoulli trial.) This line of work has concentrated primarily
on the case of point-to-point transmission across a set of parallel links; this allows
one to study the packing and load balancing issues that arise without the added
complication of path selection in a large network.

One of the main concepts that has emerged from this work has been the develop-
ment of a notion of effective bandwidth for bursty connections. This is based on the
following natural idea. Suppose one is willing to tolerate a rate p of overflow on each
link. One first assigns a number βp(X) to each connection (i.e., random variable)
X, indicating the “effective” amount of bandwidth required by this connection. One
then uses a standard packing or load balancing algorithm to assign connections to
links, using the single number βp(X) as the demand of the connection X. This notion
of effective bandwidth is indeed what underlies the modeling of routing problems as
network flow questions.

Consensus has more or less been reached (see Kelly [12]) on a specific formula for
βp, first studied by Hui [10]: a scaled logarithm of the moments-generating function
of X. One of its attractions is that packing according to βp(X) always provides
a relatively conservative estimate in the following sense: If the sum of the effective
bandwidths of a set of independent connections does not exceed the link capacity, then
the probability that the sum of their transmission rates exceeds twice the capacity at
any instant is at most p.

Problems studied in this paper. In this paper, we undertake the first study of
the issues inherent in statistical multiplexing from the perspective of approximation
algorithms. We are motivated primarily by the following fact: the queueing theo-
retical work discussed above does not attempt to prove that its methods, based on
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effective bandwidth, provide solutions that are near-optimal on all (or even on typi-
cal) instances. Indeed, researchers have recognized that claims about the power of the
effective bandwidth approach depend critically on a number of fundamental assump-
tions about the nature of the underlying traffic (e.g., de Veciana and Walrand [18]).
Thus an analysis of statistical multiplexing problems in the framework of approxima-
tion algorithms can provide tools for understanding the performance guarantees that
can be attained in this domain.

We mentioned above that the model studied in this area concentrates primarily
on the case of two communicating nodes connected by a set of parallel edges. Thus,
the problem of assigning bursty connections to edges is equivalent to that of assigning
(bursty) items to bins. As a result, we have a direct connection between the standard
questions addressed in statistical multiplexing and stochastic versions of some of the
classical resource allocation problems in combinatorial optimization. We design and
analyze approximation algorithms for the following fundamental problems:

Stochastic load balancing. An item is a discrete random variable. We are
given items X1, . . . , Xn. We want to assign each item to one of the bins 1, . . . ,m so as
to minimize the expected maximum weight in any bin. That is, we want to minimize

E


max

i

∑
Xj∈Bi

Xj


 ,

where Bi is the set of items assigned to bin i.

Stochastic bin-packing. We are given items as above, and we define the over-
flow probability of a subset of these items to be the probability that their sum exceeds
1. We are also given a number p ≥ 0. We want to determine the minimum number of
bins (of capacity 1) that we need in order to pack all the items, so that the overflow
probability of the items in each bin is at most p.

Stochastic knapsack. We are given p ≥ 0 and a set of items X1, . . . , Xn, with
item Xi having a value vi. We want to find a subset of the items of maximum value,
subject to the constraint that its overflow probability is at most p.

Thus, the above problems provide us with a very concrete setting in which to
try assessing the power of various approaches to the statistical multiplexing of bursty
connections. These problems are also the natural stochastic analogues of some of the
central problems in the area of approximation algorithms; and hence we feel that their
approximability is of basic interest.

Of course, each of these problems is NP-hard, since the versions in which each
item Xi is deterministic (i.e., takes a single value with probability 1) correspond to
the minimum makespan, bin-packing, and knapsack problems, respectively. However,
the stochastic versions introduce considerable additional complications. For example,
we show that even given a set of items, determining its overflow probability is #P -
complete (see section 2).

Moreover, we also show that simple approaches such as (i) applying Hui’s def-
inition of effective bandwidth [10] to the items, and then (ii) running a standard
algorithm for the case of deterministic weights (e.g., Graham’s lowest-fit makespan
algorithm or first-fit for bin packing) can lead to results that are very far from opti-
mal. Indeed, we show in section 2 that in a certain precise sense there is no “direct”
use of effective bandwidth that can provide approximation results as strong as those
we obtain.
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1.1. Our results. This paper provides the first approximation algorithms for
these load balancing and packing problems with stochastic items. Our algorithms
make use of effective bandwidth, and their analysis is based on new results showing,
roughly, that it is possible to define a notion of effective bandwidth that can be used
to obtain bounds on the value of the optimum.

However, the relationships between the effective bandwidth and the optimum are
quite subtle. In particular, while Hui’s definition is a useful ingredient in our algorithm
for the case of load balancing, we show in the cases of bin-packing and knapsack that
it is necessary to use a definition of effective bandwidth that is different from the
standard one. Our new effective bandwidth function β′ has a number of additional
properties that make its analysis particularly tractable. In particular, it was through
β′ that we were able to establish our basic relations between the function β and the
value of the optimum for the case of load balancing.

Load balancing. Perhaps our strongest result is for the load balancing prob-
lem: we provide a constant-factor approximation algorithm for the optimum load for
arbitrary random variables. With a somewhat larger constant, we can modify our
algorithm to work in an on-line setting, in which items arrive in sequence and must
be assigned to bins immediately.

Let us give some indication of the techniques underlying this algorithm. First, we
mentioned above that the standard effective bandwidth βp comes with an upper bound
guarantee: if the sum of the effective bandwidths of a set of items is bounded by 1,
then the probability that the total load of these items exceeds 2 is at most p. (This
fact is due originally to Hui [10] and has been extended and generalized by Kelly [11],
Elwalid and Mitra [4], and others.)

Our proof of the constant approximation ratio uses a new lower bound guarantee
for effective bandwidth. Suppose we have a set of random variables X1, . . . , Xn, so
that each Xi is a weighted Bernoulli trial taking on the values 0 and 2−i for an integer
0 ≤ i ≤ log log p−1. We show that there is an absolute constant C ≤ 7 so that if the
sum of the effective bandwidths of the Xi is at least C, then the probability that their
sum exceeds 1 is at least p.

A number of issues must be resolved in order to use these bounds in the design
and analysis of our algorithm. First, the upper bound guarantee holds only under
some restricting assumptions on the item sizes, which are not necessarily valid for our
input. Therefore, we have to handle exceptional items separately. Second, our lower
bound concerns overflow probabilities, whereas our objective function is the expected
maximum load in any bin. Finally, we have to use this lower bound in the setting
of arbitrary random variables, despite the fact that the concrete result itself applies
only to a restricted type of random variable.

Bin-packing and knapsack. In the case of the bin-packing and knapsack prob-
lems we consider primarily on-off sources. In our context, such a connection is equiv-
alent to a weighted Bernoulli trial. Our emphasis on on-off sources is in keeping with
the focus of much of the literature (see, e.g., the book [13]). With somewhat weaker
performance guarantees, we can also handle the more general case of high-low sources:
connections whose rates are always one of two positive values.

For the bin-packing problem with on-off items we give an algorithm that finds

a solution with at most O(
√

log p−1

log log p−1 )B∗ + O(log p−1) bins, where B∗ is the mini-

mum possible number of bins. For the knapsack problem we provide an O(log p−1)-
approximation algorithm. We also provide constant-factor approximation algorithms
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for both problems, in which case one is allowed to relax either the size of the bin or the
overflow probability by an arbitrary constant ε > 0. Our algorithm for bin-packing
can be modified to work in an on-line setting, in which items arrive in sequence and
must be assigned to bins immediately.

Our algorithms are based on a notion of effective bandwidth, but not the standard
one in the literature. In particular, the guarantee provided by the standard definition
is not strong enough for the bin-packing and knapsack problems: it says that if the
sum of the effective bandwidths of a set of items is bounded by 1, then the probability
that the total load of these items exceeds 2 is at most p. While such a guarantee is
strong enough for the load balancing problem—a load of 2 is within a constant factor
of a load of 1—it is inadequate for the bin-packing and knapsack problems, which fix
hard limits on the size of each bin. Stronger guarantees without exceeding the link
capacity were provided by Hui [10], Kelly [11], and Elwalid and Mitra [4] using large
overflow buffers. We provide such stronger guarantees without resorting to overflow
buffers. In particular, for items of large peak rate (the most difficult case for the
standard definition β), we make use of our new effective bandwidth β′ to provide the
desired performance guarantee.

1.2. Connections with stochastic scheduling. Although we have so far ex-
pressed things in the context of bursty traffic in a network, our result on load balancing
also resolves a natural problem in the area of stochastic scheduling.

There is a large literature on scheduling with stochastic requirements; the recent
book on scheduling theory by Pinedo [15] gives an overview of the important results
known in this area. In a stochastic scheduling problem, the job processing times are
represented by random variables; typical assumptions are that these processing times
are independent and identically distributed, and that the distribution is Poisson or
exponential. For some of these cases, algorithms have been developed that guarantee
an asymptotically optimal schedule with high probability (e.g., Weiss [19, 20]).

We can naturally view our load balancing problem as a scheduling problem on m
identical machines (the bins), with a set of n stochastic jobs (the items). Since the
problem contains the NP-hard deterministic version as a special case, we cannot expect
to find an optimal solution. What our load balancing result provides is a constant
approximation for the minimum makespan problem on m identical machines, when
the processing time of each job can have an arbitrary distribution.

One distinction that arises in these scheduling problems is the following: must all
the jobs be loaded onto their assigned machines immediately, or can we perform an
assignment adaptively, learning the processing times of earlier jobs as they finish? Our
model, since it is motivated by a circuit-routing application, takes the first approach.
This is also the approach taken by, e.g., Lehtonen [14], who considers the special
case of exponentially distributed processing times; that work left the case of general
distributions—which we handle here—as an open problem.

2. Preliminary results and examples. For much of the paper, we will be
discussing random variables that are Bernoulli trials. We say that a random variable
X is a Bernoulli trial of type (q, s) if X takes the value s with probability q and the
value 0 with probability 1− q.

The load balancing, bin-packing, and knapsack problems are all NP-complete even
when all items are deterministic (i.e., they assume a single value with probability 1).
As mentioned above, the introduction of stochastic items leads to new sources of
intractability.
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Theorem 2.1. Given Bernoulli trials X1, . . . , Xn, where Xi is of type (qi, si), it
is #P -complete to compute Pr[

∑
iXi > 1].

Proof. Membership in #P is easy to verify. We prove #P -hardness by a reduction
from the problem of counting the number of feasible solutions to a knapsack problem.
That is, given numbers y1, . . . , yn and a bound B, we want to know how many subsets
of {y1, . . . , yn} add up to at most B. We make two modifications to this problem which
do not affect its tractability:

(i) We assume that B = 1.
(ii) We consider the complementary problem of counting the number of subsets

of {y1, . . . , yn} that sum to more than B.
Thus, given y1, . . . , yn, we create Bernoulli trials X1, . . . , Xn such that Xi is of type
( 1
2 , yi). Let p = Pr[

∑
iXi > 1]. The theorem follows from the fact that the number

of subsets of {y1, . . . , yn} that sum to more than 1 is equal to p · 2n.
The use of effective bandwidth is a major component in the design of our ap-

proximation algorithms. We now give some examples to show that no “direct” use
of effective bandwidth will suffice in order to obtain the approximation guarantees
presented in later sections. These examples also provide intuition for some of the
issues that arise in dealing with stochastic items.

First we consider the load balancing problem. A natural approximation method
one might consider here is Graham’s lowest-fit algorithm applied to the expected
values of the items. However, this fails to achieve a constant-factor approximation.
This is a consequence of the following much more general fact. Let γ be any function
from random variables to the nonnegative real numbers. If X1, . . . , Xn are random
variables, and φ is an assignment of them to m bins, we say that φ is γ-optimal if it
minimizes the maximum sum of the γ-values of the items in any one bin.

Theorem 2.2. For every function γ as above, there exist X1, . . . , Xn and a
γ-optimal assignment φ of X1, . . . , Xn to m bins such that the load of φ is
Ω(logm/ log logm) times the optimum load.

Proof. For an arbitrary function γ, we consider just two kinds of distributions:
a Bernoulli trial of type (m−

1
2 , 1) and a Bernoulli trial of type (1, 1). (This latter

distribution is simply a deterministic item of weight 1.) By rescaling, assume that γ

takes the value 1 on Bernoulli trials of type (1, 1) and the value am−
1
2 on Bernoulli

trials of type (m−
1
2 , 1). We consider two cases.

Case 1. a ≤ ε logm
log logm for some sufficiently small constant ε. In this case, we

consider the following γ-optimal assignment: one item of type (1, 1) in each of the

m−√m bins, and
√
m/a items of type (m−

1
2 , 1) in each of the remaining

√
m bins.

With high probability, at least ε logm
log logm of the latter type of item will be on in the

same bin, and hence the load of this assignment is Ω(logm/ log logm). By placing at
most one item of each type in every bin, one can obtain a load of 2 for this problem.

Case 2. a > ε logm
log logm . In this case, consider the following γ-optimal assignment

φ: C
√
m logm items of type (m−

1
2 , 1) in each of m − 1 bins, for a sufficiently large

constant C, and aC logm items of type (1, 1) in the mth bin. Thus, the load of φ
is at least aC logm. However, with high probability, the maximum load in the first
m−1 bins will be Θ(logm), and hence the assignment that evenly balances the items
of both types has load O((1 + a

m ) logm). This is better by a factor of Ω( am
a+m ).

We now discuss a similar phenomenon in the case of bin-packing. Let us say that
a packing of items into bins is incompressible if merging any two of its bins results in
an infeasible packing. For the problem of packing deterministic items, a basic fact is
that any incompressible packing is within a factor of 2 of optimal. In contrast, we can
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show the existence of a set of stochastic items that can be packed in only two bins,
but for which there is an incompressible packing using Ω(p−

1
2 ) bins.

Theorem 2.3. Consider a bin-packing problem with overflow probability p. There
exist sets of weighted Bernoulli trials S1 and S2 with the following properties.

(i) |S1| = |S2| = Ω(p−
1
2 ).

(ii) All the items of S1 can be packed in a single bin.
(iii) All the items of S2 can be packed in a single bin.
(iv) One cannot pack one item from S1 and two from S2 together in one bin.

Thus there is a packing of S1 ∪ S2 in two bins, but the packing that uses Ω(p−
1
2 )

and places one item from each set in each bin is incompressible.
Proof. Let p be the given overflow probability, q a real number slightly greater

than p, and ε a small constant. One can verify that the above properties hold for
the following two sets of weighted Bernoulli trials: S1 consists of εp−

1
2 items of type

(q, 1−√p); S2 consists of εp−
1
2 items of type (1,

√
p).

Corollary 2.4. No algorithm which simply looks at a single “effective band-
width” number for each item can provide an approximation ratio better than Ω(p−

1
2 ).

Proof. Note the behavior of any effective bandwidth function γ in the example of
the above theorem. If X ∈ S1 and Y ∈ S2, then we have just argued that there exists
a set of items whose effective bandwidths add up to γ(X) + 2γ(Y ) and which cannot
be packed into one bin. But the entire set of items can be packed into two bins; and
its total effective bandwidth is εp−

1
2 [γ(X) + γ(Y )]. This example also shows that the

first-fit heuristic applied to a given item ordering can use a number of bins that is
Ω(p−

1
2 ) times optimal.

The effective bandwidth we use. As discussed in the introduction, we will
use both the standard definition of effective bandwidth βp and a new modified effective
bandwidth β′p that turns out to be necessary in the case of bin-packing and is also
used in proving our lower bounds on optimality for the load balancing problem. For
a random variable X, one defines [10, 12]

βp(X) =
log E[p−X ]

log p−1
.(2.1)

For a Bernoulli trial X of type (q, s), we define its modified effective bandwidth by

β′p(X) = min{s, sqp−s}.(2.2)

For a set of random variables R, we will use the notation βp(R) =
∑

X∈R βp(X) and
β′p(R) =

∑
X∈R β

′
p(X).

We first give an inequality relating our modified effective bandwidth to the stan-
dard one. The proof follows from elementary calculus.

Proposition 2.5. For a Bernoulli trial X, βp(X) ≤ β′p(X).
Proof. First, we establish the following claim.

(A)For a ≥ 1, define f(x) = ax − 1 and g(x) = xax ln a. Then f(x) ≤ g(x) for all
x ∈ [0, 1].

We prove (A) by noting that

lim
x→0

f(x)

g(x)
= 1,

and f ′(x) ≤ g′(x) for all x ∈ [0, 1].



198 JON KLEINBERG, YUVAL RABANI, AND ÉVA TARDOS

Now if X is of type (q, s), then we have

βp(X) =
log (qp−s + (1− q))

log p−1
=

log (1 + q(p−s − 1))

log p−1
.

To prove the proposition, it is sufficient to show that βp(X) ≤ s and βp(X) ≤ sqp−s.
The first of these statements follows by taking logarithms base p−1 of the inequality
qp−s + (1− q) ≤ p−s. To show the second, note that by Taylor’s inequality

βp(X) ≤ q(p
−s − 1)

log p−1
,

and by fact (A)

q(p−s − 1)

log p−1
≤ qsp−s.

3. Stochastic load balancing. Let X1, X2, . . . , Xn be mutually independent
random variables taking nonnegative real values. We shall refer to them as items.
Let φ : {1, . . . , n} → {1, . . . ,m} be a function assigning each item Xi to one of m
bins. We define the load of the assignment φ, denoted L(φ), to be the expected
maximum load on any bin; that is, L(φ) = E[maxi

∑
j∈φ−1(i)Xj ]. We are interested

in designing approximation algorithms for the problem of minimizing L(φ) over all
possible assignments φ. Note that the maximum of the expectations would be easy
to approximate by simply load balancing the expectations.

3.1. The algorithm for on-off items. In this subsection we present an O(1)-
approximation algorithm for the case of weighted Bernoulli trials; we then extend this
to handle arbitrary distributions in the following subsection. For a Bernoulli trial of
type (q, s), we can further assume that s is a power of 2—by reducing all item sizes
to the nearest power of 2 we lose only a factor of 2 in the approximation ratio.

Our load balancing algorithm is on-line. It proceeds through iterations; in each
iteration it maintains a current estimate of the optimum load, which will always be
correct to within a constant factor. An iteration can end in one of two ways: the
input can come to an end, or the iteration can fail. In the latter case, the estimate of
the optimum is doubled, and a new iteration begins.

For ease of notation, the algorithm rescales all modified sizes that it sees so that
the estimate in the current iteration is always equal to 1. An item Xi of type (qi, si)
is said to be exceptional if si > 1, and normal otherwise. Throughout the algorithm,
we define p = m−1 (recall that m is the number of bins) and C to be an absolute
constant. (C = 18 is sufficient.) One iteration proceeds as follows; suppose that item
Xi has just been presented.

(1) For each bin j, let Bj denote the set of all nonexceptional items from this
iteration that have been assigned to j.

(2) If Xi is normal, then we assign it to the bin j with the smallest value of
βp(Bj). If this would cause βp(Bj) to exceed C, then the iteration fails.

(3) Suppose Xi is exceptional. If the total expected size of all exceptional items
seen in this iteration (including Xi) exceeds 1, then the iteration fails. Oth-
erwise, Xi is assigned to an arbitrary bin.

To prove that this algorithm provides a constant-factor approximation, we show that
(i) if an iteration does not fail, then the load of the resulting assignment is within
a constant factor of the estimate for that iteration; and (ii) if iteration fails, then
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the load of any assignment must be at least a constant times the estimate for that
iteration. We start with (ii).

Lower bounding the optimal solution. First we prove a lower bound on the
optimal solution to the load balancing problem. This lower bound is the main new
technical contribution of this part, and will be used also in analyzing the bin-packing
and knapsack algorithm in the next two sections. In this subsection we state and prove
the lower bound for the special case of weighted Bernoulli trials. (In section 3.2 we
show how the general case follows from the special case.) Assume that X1, X2, . . . , Xn

are independent Bernoulli trials such that Xi is of type (qi, si). We will sometimes
say that “item Xi is on” to refer to the event that Xi = si.

We use the following basic claim repeatedly.
Claim 3.1. Let E1, . . . , Ek be independent events, with Pr[Ei] = qi. Let E ′ be

the event that at least one of these events occurs. Let q ≤ 1 be a number such that∑
i qi ≥ q. Then Pr[E ′] ≥ 1

2q.
Proof. Let q̄ = 1

k

∑
i qi.

Pr[E ′] = 1−
∏
i

(1− qi) ≥ 1− (1− q̄)( 1
q̄

∑
i
qi)

≥ 1− e−
∑

i
qi ≥ 1− e−q ≥ q − 1

2
q2 ≥ 1

2
q.

Our key technical lower bound is in the following lemma. Here p ∈ [0, 1] is a
target probability (in this section we use p = m−1).

Lemma 3.2. Let X1, . . . , Xn be Bernoulli trials of types (q1, s1), . . . , (qn, sn),
respectively, such that log−1 p−1 ≤ si ≤ 1 for each i, and each si is an inverse power
of 2. If

∑
i β
′
p(Xi) ≥ 7, then Pr[

∑
iXi ≥ 1] ≥ p.

Proof. Our goal is to modify the given set of Bernoulli trials so as to obtain a
new problem in which (i) the probability of the sum exceeding 1 is no greater than
originally and (ii) the probability of the sum exceeding 1 is at least p.

If there is any Xi for which β′p(Xi) = si, we lower qi until qi = psi . This preserves
the assumption that

∑
i β
′
p(Xi) ≥ 7.

Let s be an inverse power of two, and consider the set W (s) of items Xi for which

si = s. We partitionW (s) into setsW
(s)
1 , . . . ,W

(s)
rs such that for all j = 1, 2, . . . , rs−1,

2ps ≤∑
i|Xi∈W (s)

j

qi ≤ 3ps and
∑

i|Xi∈W (s)
rs

qi < 2ps. This can be done because qi ≤ ps

for all Xi ∈ W (s). We define a set V (s) of Bernoulli trials Y
(s)
1 , . . . , Y

(s)
rs−1, each of

type (ps, s). Intuitively, each Y
(s)
j approximates well the behavior of

∑
Xi∈W (s)

j

Xi.

In particular, we show that the former is stochastically dominated by the latter. We
will prove the following:

(A) Pr[
∑

s

∑
j Y

(s)
j ≥ 1] ≤ Pr[

∑
iXi ≥ 1];

(B) β′p(∪sV (s)) ≥ 1;

(C) Pr[
∑

s

∑
j Y

(s)
j ≥ 1] ≥ p.

The claim clearly follows from (A) and (C).

To prove (A), we show that Pr[
∑

Xi∈W (s)
j

Xi ≥ s] ≥ ps = Pr[Y
(s)
j ≥ s]. The

expression on the left-hand side is simply the probability that any of the items in

W
(s)
j is on; by Claim 3.1, the fact that

∑
i|Xi∈W (s)

j

qi ≥ 2ps, and the fact that ps ≤ 1
2 ,

this probability is at least ps, and (A) follows.
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To prove (B), notice that β′p(W
(s)
rs ) ≤ 2pssp−s = 2s, and for 1 ≤ j < rs,

β′p(W
(s)
j ) ≤ 3pssp−s = 3s. On the other hand, β′p(Y

(s)
j ) = pssp−s = s. Thus

β′p(V (s)) ≥ 1
3 (β′p(W (s))− 2s). Hence

β′p(∪sV (s)) =
∑
s

β′p(V (s)) ≥
∑
s

β′p(W (s))− 2s

3

=
1

3

∑
s

β′p(W (s))− 2

3

∑
s

s ≥ 1,

where the last inequality follows from the fact that
∑

s β
′
p(W (s)) ≥ 7, and

∑
s s ≤ 2

because s only takes on the values of inverse powers of 2.

To prove (C), recall that for all j, s, β′p(Y
(s)
j ) = pssp−s = s. Now, let V denote

a subset of ∪sV (s) consisting of items whose sizes sum to 1. That such a set exists
follows from (B) and the fact that all sizes are inverse powers of 2. Let {Y ′1 , . . . , Y ′� }
denote the items in V , and let s′1, . . . , s

′
� denote their sizes, respectively. Note that

the probability that Y ′i is on is equal to ps
′
i .

The probability of the event
∑

s

∑
j Y

(s)
j ≥ 1 is at least as large as the probability

that all items in V are on. But this latter probability is equal to
∏�

i=1 p
s′i = p.

The lower bound for exceptional items follows by an argument using Claim 3.1.

Lemma 3.3. Let X1, . . . , Xn be such that L ≤ s1 ≤ · · · ≤ sn and
∑

i qisi ≥ L.
Then for all φ, we have L(φ) ≥ 1

2L.

Proof. Without loss of generality, we may assume
∑

i qisi = L. Let q′i =
∑

j≥i qj .
Let Ei denote the event that at least one item among {Xj}j≥i is on, and let q′′i = Pr[Ei].
Note that because

∑
i qisi = L and si ≥ L for all i, we have

∑
i qi ≤ 1 and hence

q′i ≤ 1 for all i. Thus, by Claim 3.1, q′′i ≥ 1
2q
′
i. Write s0 = 0 and q′n+1 = 0.

Observe that
∑

i qisi =
∑

i q
′
i(si − si−1), because each si is counted with a mul-

tiplier of qi on the right-hand side.

Since Pr[Xi is on and not Ei+1] = q′′i − q′′i+1, we have

E[max{X1, . . . , Xn}] ≥
∑
i

si(q
′′
i − q′′i+1) =

∑
i

q′′i (si − si−1).

Thus for any assignment φ we have

L(φ) ≥ E[max{X1, . . . , Xn}] ≥
∑
i

q′′i (si − si−1)

≥ 1

2

∑
i

q′i(si − si−1) =
1

2

∑
i

qisi =
1

2
L.

Our main lower bound for the load balancing problem is the following lemma.

Lemma 3.4. Suppose that for all i, si is an inverse nonnegative integral power
of 2 (so si ≤ 1). Further suppose that

∑
i β
′
m−1(Xi) ≥ 17m. Then, for all φ,

L(φ) = Ω(1).

Proof. Let φ be an arbitrary assignment of the items to bins. Let B1, . . . , Bm

denote the sets of items assigned to bins 1, . . . ,m, respectively. Apply the following
construction: as long as some set B′i contains a subsetS with β′m−1(S) ≥ 8, we
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put aside a minimal subset S with this property. Note that β′m−1(S) ≤ 9 as the
bandwidth of a single item of size at most 1 never exceeds 1. When we can no longer
find such a subset, then the set of remaining items R has β′m−1(R) ≤ 8m. Thus, this
construction produces at least m subsets, such that each is assigned to a single bin
by φ. We denote the first m of these subsets by W1, . . . ,Wm.

Call a Bernoulli trial X of type (q, s) small if s < 1/ log p−1. Using the fact that
small items have p−s ≤ 2, we can see that the effective bandwidth β′p(X) of a small
item is at most twice its expectation E[X] = qs. Call a set Wi dense if the set of small
items Si ⊆ Wi has β′m−1(Si) ≥ 1. If there exists a dense set Wi, then the expected
size of Wi is at least 1

2 . Since L(φ) is at least as large as the expected size of Wi,
L(φ) ≥ 1

2 and the lemma follows.

Thus, we consider the case in which no Wi is dense. Let W ′i ⊆ Wi denote the
set of items in Wi which are not small. Since Wi is not dense, β′m−1(W ′i ) ≥ 7. By
Lemma 3.2, the probability that size of W ′i exceeds 1 is at least m−1. Hence the
probability that some W ′i exceeds 1 is at least 1 − (1 − m−1)m ≥ 1 − e−1. Since
L(φ) ≥ E[max{W ′1, . . . ,W ′m}], the lemma follows.

Recall that the algorithm maintains a current estimate. The iteration fails if
the total effective bandwidth of the small and normal items in a bin would exceed a
constant C (we use C = 18) or if the total expected size of all exceptional items seen
in this iteration exceeds 1.

Theorem 3.5. Let W denote the set of items presented to the algorithm in
an iteration that fails. For any assignment φ of W to a set of m bins we have
L(φ) = Ω(1), where 1 is the estimate for the iteration.

Proof. Let φ be an arbitrary assignment of items in W to bins. An iteration can
fail in one of two ways: either because the expected total size of exceptional items
exceeds 1, or because the assignment of the new item to any bin j would cause βp(Bj)
to exceed C.

In the first case, Lemma 3.3 implies that L(φ) ≥ 1
2 . Concerning the second case,

consider the moment at which the iteration fails. We have
∑

j βp(Bj) ≥ m(C − 1)
(because the new item’s size, and therefore its effective bandwidth, cannot exceed 1).
Recalling that C ≥ 18, Lemma 3.4 asserts that L(φ) = Ω(1).

Upper bounding the solution obtained. The following proposition is essen-
tially due to Hui [10], who stated it with a = 2 and b = 1. We give a short proof for
the sake of completeness.

Proposition 3.6 (see [10]). Let X1, . . . , Xn be independent random variables,
and X =

∑
iXi. Let a > b. If

∑
i βp(Xi) ≤ b, then Pr[X ≥ a] ≤ pa−b.

Proof. First, if
∑

i βp(Xi) ≤ b, then
∑

i log E[p−Xi ] ≤ log p−b and hence
∏

i

E[p−Xi ] ≤ p−b.
Thus we have Pr[X ≥ a] = Pr[p−X ≥ p−a] ≤ paE[p−X ] = pa

∏
i E[p−Xi ] ≤ pa−b,

where the first inequality follows from Markov’s inequality, the equation from the
independence of the Xi, and the last inequality from inequality above.

Lemma 3.7. Consider the assignment produced by any iteration of the algorithm.
The load of this assignment is O(1). (Recall that sizes are scaled so that 1 is the
estimate for that iteration.)

Proof. The expected size of the sum of exceptional items placed in this iteration
is at most 1, so they only add at most 1 to the expected maximum load.

Let Sj =
∑

Xi∈Bj
Xi. Let x ≥ 0. As βp(Bj) ≤ C, Pr[Sj > x + C] ≤ m−x by

Proposition 3.6. Let S∗ = max{S1, . . . , Sm}. We havePr[S∗ ≥ y] ≤ ∑j Pr[Sj ≥ y].
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Hence

E[S∗] =

∫ ∞
0

Pr[S∗ ≥ x]dx ≤ C + 1 +

∫ ∞
C+1

Pr[S∗ ≥ x]dx

= C + 1 +

∫ ∞
1

Pr[S∗ ≥ x+ C]dx

≤ C + 1 +

∫ ∞
1

m ·m−xdx

= C + 1 +m
1

m lnm
= C +O(1),

from which the lemma follows.
Since the estimates increase geometrically, a consequence of Lemma 3.7 is the

following theorem.
Theorem 3.8. Let φA be the assignment produced by the algorithm. Then

L(φA) = O(1), where item sizes are scaled so that 1 is the estimate for the final
iteration.

Combining Theorems 3.8 and 3.5, we get our main result.
Theorem 3.9. The algorithm provides a constant-factor approximation to the

minimum load.

3.2. Extension to arbitrary distributions. We may assume that the only
values taken on by our random variables are powers of 2. If not, other values are
rounded down to a power of 2. As in the previous section, this increases our ap-
proximation guarantee by a factor of 2 at most. Call a random variable that only
takes values that are powers of 2 geometric. By the following claim we can reduce the
problem for geometric items to the problem for Bernoulli trial items, which we have
already solved.

Lemma 3.10. Let X be a geometric random variable. Then there exists a set
of independent Bernoulli trials Y1, . . . , Yk, with Y =

∑
i Yi, such that Pr[X = s] =

Pr[s ≤ Y < 2s].
Proof. Suppose that X takes the value si with probability qi for i = 1, . . . , k.

Suppose that s1 > s2 > · · · > sk. We define Yi to be of type (q′i, si), where

q′i =
qi

(1− q1 − · · · − qi−1)
.

Notice that the events X = si, i = 1, . . . , k, are mutually exclusive, and therefore q′i
is simply Pr[X = si | X ≤ si]. The set {q′i} is the solution to

q1 = q′1,
q2 = (1− q′1)q′2,
q3 = (1− q′1)(1− q′2)q′3,

...
...

...

qk =

(
k−1∏
i=1

(1− q′i)
)
q′k,

and hence

Pr[max
j
Yj = si] = q′i

i−1∏
j=1

(1− q′j) = qi = Pr[X = si].
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As si >
∑

j>i sj , the claim follows.
The algorithm is essentially the same as before. It uses the standard definition

of effective bandwidth (Equation (2.1)), which applies to any distribution. The only
change arises from the fact that we must define what we mean by “exceptional” in
this case. Each item Xi is now divided into an exceptional part Xi · 1{Xi>1} and a
nonexceptional part Xi · 1{Xi≤1}. When the expected total value of all exceptional
parts exceeds 1, the iteration fails; before this, exceptional parts are (necessarily) just
packed together with their nonexceptional parts.

Theorem 3.11. The algorithm provides a constant-factor approximation to the
minimum load.

Proof. Recall that in the case of Bernoulli trials exceptional items could be packed
in any bin. The upper bound argument follows as before, using Proposition 3.6 for
the nonexceptional parts of the items.

The lower bound argument requires the approximation of each item by a sum of
Bernoulli trials using Lemma 3.10. We replace each item Xi of a geometric random
variable by the corresponding independent Bernoulli trials and apply the lower bound
of the previous subsection to the resulting set of Bernoulli trials.

4. Bin packing with stochastic on-off items. In this section we consider the
bin packing problem with independent weighted Bernoulli trials, which we will refer
to as “items.” In addition we are given an allowed probability of overflow p. The
problem is to pack the items into as few bins of size 1 each as possible, so that in each
bin the probability that the total size of the items in the bin exceeds 1 is at most p.
We assume throughout that p ≤ 1

8 ; this is consistent with routing applications, where
p is much smaller than this [4].

We develop approximation algorithms parameterized by a number ε, 0 < ε < 1
2 .

Our results show that a solution whose value is within a factor of O(ε−1) to optimal
can be obtained if we relax either the bin size or the overflow probability. That is, we
compare the performance of our algorithm to the optimum for a slightly smaller bin
size or overflow probability. Using these results we then give an approximation algo-
rithm without relaxing either the bin size or the overflow probability. Our algorithms
will be on-line, as before.

The basic outline of the method is as follows. As in the load balancing algo-
rithm, we will classify items according to their sizes. For the case with relaxed sizes
and/or probabilities, an item will be small if si ≤ 1/ log2 p

−1, large if si ≥ 1
2ε for the

parameter ε, and normal otherwise. We pack using the expectation for small items,
using the effective bandwidth βp(X) for normal items, and we develop techniques for
packing large items based on our version of the effective bandwidth β′p(X). It can in
fact be shown that the standard definition of effective bandwidth is not adequate for
obtaining a strong enough approximation ratio.

For a large item of type (qi, si), we effectively discretize its size, and work with
its effective size s̄i; this is the reciprocal of the minimum number of copies of weight
si that will overflow a bin of size 1: s̄−1

i = min{j : jsi > 1}. Notice that s̄i < si for
all i.

An algorithm with relaxed bin size and probability. We start by describing
a simpler version of the algorithm in which we relax both the bin size and the overflow
probability. Each bin will contain items only of the same type (small, normal, or
large). Each item is assigned a weight, according to which it is packed. Bins of each
type can be packed according to any on-line bin-packing heuristic, applied to the
weights; to be concrete, we will assume that the first-fit heuristic is being used.
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Small items are given a weight equal to their expectation. A bin with small items
will be packed so that its total weight does not exceed 1

6 . Each normal item X is
assigned a weight of βp(X). A bin of normal items will be packed so that its total
weight does not exceed ε.

The set of large items can have at most �2ε−1� different effective sizes. They are
classified into groups by the following two criteria.

(i) Each bin will only contain items of the same effective size.
(ii) We say that a large item Xi of type (qi, si) and effective size s̄ has large

probability if qi ≥ ps̄ and normal probability otherwise. No bin will contain
items of both large and normal probabilities.

We pack large probability items in bins so that fewer than 1
s̄ are in any bin. We pack

normal probability items so that the sum of the probabilities of items in a bin does
not exceed ps̄/s̄e where e ≈ 2.7.. is the base of the natural logarithm. We now argue
that the algorithm yields a feasible packing in bins of size 1 + ε.

First we consider large items. If a bin contains items of effective size s̄ = 1
k , then

it will overflow if and only if at least k items are on. This implies that bins with large
probability items do not overflow even if all items are on. Large items with normal
probability are handled by the following lemma, which involves an analysis of our
modified effective bandwidth.

Lemma 4.1. Let X1, . . . , Xn be independent Bernoulli trials of types {(qi, si)},
and assume that the effective size s̄i = s̄ and qi ≤ ps̄ for all i. Let X =

∑
iXi, and

assume that
∑

i qi ≤ ps̄/s̄e. Then Pr[X ≥ 1] ≤ p.
Proof. We get overflow in a bin if and only if at least k items are on, where k = 1

s̄ .
Let I denote the set of all items. For a set of items S ⊆ I of size k, the probability
that all items in S are on is

∏
i∈S qi. Thus the probability of overflow is at most

∑
S⊆I,|S|=k

∏
i∈S
qi.(4.1)

We claim that this formula is maximized for a given sum of probabilities
∑

i qi if
all probabilities qi are all the same. To see this, suppose that we have two items
Xi, Xj with different probabilities, and consider modified items with probabilities
q′i = q′j = 1

2 (qi + qj). We now observe that the sum of probabilities has remained the
same, but the probability of overflow is larger: the terms of (4.1) that contain 0 or 1
of the values qi, qj contribute in total the same as before, and terms containing both
are each increased.

Assume now that all items have the same probability q. The sum of the proba-
bilities of items is at most ps̄/s̄e; hence, the number of these items is at most ps̄/s̄qe.
Now the probability that k items are on is bounded by

(
ps̄/qs̄e

1/s̄

)
q

1
s̄ ≤

(
ps̄

q

) 1
s̄

q
1
s̄ = p;

the inequality follows from the estimate
(
n
k

) ≤ ( enk )k.
The feasibility for small items follows easily from Chernoff bounds.
Lemma 4.2. If X1, . . . , Xk be independent Bernoulli trials of types (q1, s1), . . . ,

(qk, sk), such that si ≤ 1
log2 p

−1 , and
∑

i E[Xi] ≤ 1
6 , then Pr[

∑
iXi ≥ 1] < p.

Proof. We use Chernoff bounds to bound the probability that the sum exceeds 1.
With µ = 1

6 log p−1, we have Pr[
∑

iXi > 1] < (e5/6/6)6µ < 2−6µ = p.
For the normal items, we apply Proposition 3.6 with a = 1 + ε and b = ε.
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We state this special case here for easy reference.
Lemma 4.3. Let X1, . . . , Xn be independent random variables, and X =

∑
iXi.

Let ε > 0. If
∑

i βp(Xi) ≤ ε, then Pr[X ≥ 1 + ε] ≤ p.
Theorem 4.4. The on-line algorithm finds a packing of items in bins with the

property that for each bin, the probability that the total size of the items in that bin
exceeds 1 + ε is at most p.

Note that large and small items are also feasible with bin size 1; it is only the
normal items that require the relaxed bin size.

To prove the approximation ratio, we need to lower-bound the optimum. For
small items, Chernoff bounds are sufficient; for normal items and large items of a
given effective size we make use of a more careful analogue of Lemma 3.2.

Lemmas 4.7 and 4.8 will show that on large items of a given effective size the
number of bins used by our algorithm is at most a constant factor away from the
minimum possible. Since there are only �2ε−1� different large effective sizes, this
implies a bound of O(ε−1) on large items. Lemma 4.6 shows that normal items with
large total effective size (more than 5(1 + 2ε)) have overflow probability more than
p1+3ε. This will imply that the number of bins used for normal items is at most an
O(ε−1) factor away from optimal. Finally, small items are again handled directly with
Chernoff bounds.

Lemma 4.5. Let p < 1
2 and X1, . . . , Xk be independent Bernoulli trials of types

(q1, s1), . . ., (qk, sk), such that si ≤ log2 p
−1. If

∑
i E[Xi] ≥ 4, then Pr[

∑
iXi > 1] >

p.
Proof. We use Chernoff bounds to bound the probability that the sum exceeds 1.

With µ = 4 log p−1, we have

Pr

[∑
i

Xi ≤ 1

]
≤ e− 1

2 ( 3
4 )

2
µ < p,

and hence Pr[
∑

iXi > 1] > 1− p ≥ p.
Next we consider normal items. In the load-balancing algorithm we proved a

lower bound for effective bandwidth in Lemma 3.2; here we require a stronger version
of this lemma. For later use we state the lemma with a parameter δ. Here we will use
it with δ = 1.

Lemma 4.6. Let X1, . . . , Xk be independent Bernoulli trials of types (q1, s1), . . . ,
(qk, sk), such that si ≥ 1

log2 p
−1 , and

∑
i βp(Xi) ≥ (3δ + 2)(1 + 2ε); then

Pr

[∑
i

Xi > δ

]
> pδ(1+2ε)+ε.

Proof. Recall that βp(X) ≤ β′p(X) for all Bernoulli trials; hence we have that∑
i β
′
p(Xi) ≥ (3δ + 2)(1 + 2ε). Further, we will round up the size of each Bernoulli

trial Xi to an integer power of 1 + ε. Let X ′i denote the resulting rounded item, and
let (qi, s

′
i) denote its type. Rounding up cannot decrease the effective bandwidth, so

we have that
∑

i β
′
p(X ′i) ≥ (3δ + 2)(1 + 2ε).

Next we prove an analogue of Lemma 3.2 for the rounded items. We claim that
with probability more than pδ(1+2ε)+ε, the total size of the rounded items exceeds
δ(1 + ε). Notice that this implies that the total size of the original items exceeds
δ with probability more than pδ(1+2ε)+ε. The proof is analogous to the proof of
Lemma 3.2.
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We may assume without loss of generality that qi ≤ psi for all i. Now we have
that

∑
i

qisip
−si ≥ (3δ + 2)(1 + 2ε).(4.2)

We define the sets of itemsW (s) for each size s; partitionW (s) into setsW
(s)
1 , . . . ,W

(s)
rs

such that 2ps ≤ ∑
Xi∈W (s)

j

qi < 3ps for j = 1, . . . , rs − 1; and define the set V (s) of

Bernoulli trials Y
(s)
1 , . . . , Y

(s)
rs−1, each of type (ps, s), as in the proof of Lemma 3.2.

Next we want to argue that (i) the probability of the sum
∑

j,s Y
(s)
j exceeding

δ(1 + ε) is no greater than the probability of
∑

iX
′
i exceeding δ(1 + ε), and (ii) the

probability of the sum
∑

j,s Y
(s)
j exceeding δ(1 + ε) is at least pδ(1+2ε)+ε.

To argue part (i) we show as before, using Claim 3.1, that Pr[
∑

X′
i
∈W (s)

j

X ′i ≥
s] ≥ ps = Pr[Y

(s)
j ≥ s]. The fact that ps ≤ 1/2 follows from the assumption that

si ≥ 1/ log2 p
−1 for all i.

To show part (ii) we claim, using the notation from the proof of Lemma 3.2, that
β′p(∪sV (s)) > δ(1 + ε). To prove this, we note that as before we have β′p(V (s)) >
β′

p(W (s))−2s

3 . Hence

β′p(∪sV (s)) =
∑
s

β′p(V (s)) >
∑
s

β′p(W (s))− 2s

3
=

1

3

(∑
s

β′p(W (s))− 2
∑
s

s

)

=
1

3

(∑
s

β′p(W (s))− 2(1 + ε)

)
≥ δ(1 + 2ε),

since
∑

s β
′
p(W (s)) ≥ (3δ+ 2)(1 + 2ε) by (4.2), and

∑
s s ≤ (1 + ε) since s only takes

on values that are integer powers of (1 + ε) and at most ε.

We complete the proof of the lemma by showing Pr[
∑

s

∑
j Y

(s)
j > δ(1 + ε)] ≥

pδ(1+2ε)+ε. Note that for all j, s, β′p(Y
(s)
j ) = pssp−s = s. Now, let V denote a subset

of ∪sV (s) consisting of items whose sizes sum to a number in (δ(1+2ε), δ(1+2ε)+ε);
such a set can be chosen as we have shown above that the sum of all sizes in ∪sV (s)

is at least δ(1 + 2ε), and all sizes are at most ε. Let {Y ′1 , . . . , Y ′� } denote the items
in V , with s′1, . . . , s

′
� denoting their sizes. Note that the probability that Y ′i is on is

equal to ps
′
i .

The probability of the event

∑
s

∑
j

Y
(s)
j ≥ δ(1 + 2ε) > δ(1 + ε)

is at least as large as the probability that all items in V are on. But this latter
probability is equal to

�∏
i=1

ps
′
i = p

∑�

i=1
s′i > pδ(1+2ε)+ε.

Next we consider a group of large items of effective size s. The packing created
by the algorithm is clearly optimal for items of large probability.
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Lemma 4.7. If 1
s large probability items of effective size s are in the same bin,

then the probability of overflow is more than p.
Proof. Let X1, . . . , Xs denote 1

s large probability items of effective size s. Note
that if all 1

s items are on, then the total size exceeds the bin size 1. The probability
of item i is qi > p

s for all i. The probability that all s items are on is therefore at
least

∏
i qi > (ps)

1
s = p.

Finally, consider large items of a given effective size and normal probability.
Lemma 4.8. Let X1, . . . , Xk be independent Bernoulli trials of effective size s

and probability q1, . . . , qk, such that s ≥ 1
log2 p

−1 ; qi ≤ ps for all i, and
∑

i qi ≥ 3ps/s.

Then Pr[
∑

iXi > 1] > p.
Proof. We need to argue that the probability that at least 1

s of the items are on
exceeds p. We partition the set of items into sets W1, . . . ,Wr+1 such that

2ps <
∑

Xi∈Wj

qi ≤ 3ps

for j = 1, . . . , r, and r ≥ 1
s . This is possible as

∑
i qi ≥ 3ps/s and qi ≤ ps for each i.

By the assumption that ps ≤ 1
2 , Claim 3.1 implies that in any set Wj for j =

1, . . . , r the probability that at least one of the items is on the set is more than ps.
Now the probability that at least one item is on in each of the first 1

s groups is more

than (ps)
1
s = p. This implies the lemma.

Now we are ready to prove the general bound.
Theorem 4.9. For a parameter ε ≥ 1

log2 p
−1 , the above on-line algorithm finds

a packing of items in bins of size 1 + ε such that the number of bins used is at most
O(ε−1) times the minimum possible number of bins in any packing with bin size 1 and
overflow probability at most p1+3ε.

Proof. We show that the number of bins used by our algorithm for small, normal,
and large items is within O(ε−1) of optimal.

First, suppose we use B bins for small items. Each bin is packed up to an expected
value of at least 1

6 − 1
log p−1 since packing an extra small item in the bin would exceed

the expected value of 1
6 . It follows that the total expected value of all small items is

at least B(log p−1−6)
6 log p−1 . Hence, if fewer than B(log p−1−6)

24 log p−1 bins are used, some bin will
overflow with probability exceeding p, by Lemma 4.5.

Next, suppose we use B bins for normal items. Each bin is packed up to a βp-
value of at least 1

2ε since adding a new normal item to a bin would exceed the total
βp value of ε, and each normal item has βp value at most 1

2ε. Therefore, the total

βp-value of normal items is at least 1
2εB. Hence, if fewer than εB

10(1+2ε) bins of size 1

are used for normal items, then Lemma 4.6 implies that some bin will overflow with
probability exceeding p.

Finally, we consider large items of a given effective size. We show that we are
within a constant factor of optimal on this set of items, where the constant does not
depend on ε; thus, since there are only �2ε−1� different effective sizes, our packing of
large items will be within O(ε−1) of optimal. First, Lemma 4.7 implies that for each
effective size, the number of bins used for large items of large probability is optimal.
Now suppose that we use B bins for large items of normal probability and a given
effective size s. Then the total probability of this set of items is at least Bps/2se.
Therefore, if fewer than B/6e bins were used for this set of items, the items in at
least one bin would have total probability more than 3ps/s, and by Lemma 4.8 the
probability of overflow would exceed p.
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Algorithms with either relaxed bin size or probability. In fact, we can
obtain the same approximation ratios (up to a constant factor) by only relaxing either
the bin size or the overflow probability, but not both. Since the relaxed guarantees
were only needed for normal items, the idea is to slightly “inflate” or “deflate” the
size of the normal items that we present to the above algorithm and argue that we
still do not lose too much in comparison to the optimum.

Theorem 4.10. There is a constant c such that for any parameter ε ≥ c
log p−1 the

following holds. There is an on-line polynomial time algorithm that finds a packing of
items in bins of size 1 with overflow probability p, such that the number of bins used
is at most O(ε−1) times the minimum number of bins in any packing with bin sizes 1
and overflow probability at most p1+ε.

Proof. As just noted, the analysis for large and small items follows as before. The
trouble with applying the previous analysis for normal items, of course, is that the
packing created by the algorithm above might overflow bins of size exactly 1.

Here, we continue to use the effective bandwidth to pack normal items; however,
for each normal item of type (qi, si), we present the algorithm with an inflated item
of type (qi, si(1 + ε)). We also set the threshold for large items at 1

2ε(1 + ε), so that
inflated items remain normal. Lemma 4.3 implies that the probability that the total
sizes of the inflated items exceeds 1+ε is at most p; hence, the probability that the total
size of the original items exceed 1 is at most p. For the lower bound on the optimum,
we apply Lemma 4.6 to the inflated items, with δ = 1 + ε to conclude that if the total
effective bandwidth of the inflated items is sufficiently large then the probability that
these items overflow a bin of size 1 + ε is at least p(1+ε)(1+2ε)+ε ≥ p1+5ε. Finally,
we observe that a set of inflated items overflows a bin of size 1 + ε if and only if the
original items overflow a bin of size 1.

To get the bound claimed in the theorem, we must run the above algorithm with
a parameter ε′ = 1

5ε.
Theorem 4.11. For a parameter ε ≥ 1

log2 p
−1 , there is a polynomial time algo-

rithm that finds a packing of items in bins of size 1+ε with overflow probability p such
that the number of bins used is at most O(ε−1) times the minimum possible number
of bins in any packing with bin sizes 1 and overflow probability at most p.

Proof. We use an algorithm similar to that of Theorem 4.10, except that now we
decrease the size of each normal item by a factor of 1 − ε. Lemma 4.3 implies that
the decreased sized items do not overflow a bin of size 1 + ε, and hence the original
items do not overflow a bin of size 1+ε

1−ε ≤ 1 + 4ε.
To obtain the lower bound, we want to prove that if the total effective bandwidth

of the decreased sized items is sufficiently large, then the probability that the total
size of these items exceeds 1 − ε is at least p. This will imply that the total size of
the original items is at least 1 with probability at least p. The proof follows from
Lemma 4.6 applied to the decreased item sizes and δ = 1−ε

1+ε .
To get the bound claimed in the theorem, we must run the above algorithm with

a parameter ε′ = 1
2ε.

An algorithm without relaxing bin size or probability. In this section we
use the results above to obtain an approximation algorithm without relaxing either
the bin size or the capacity. In fact, our algorithm will simply be the on-line algorithm
from the previous section, with ε = 1

log2 p
−1 . Thus, there will be no items classified

as normal—only small and large. One can give a weak analysis of this algorithm
as follows: since the relaxed probabilities and sizes were only required for normal
items, this algorithm produces a packing that is with O(ε−1) = O(log p−1) times the
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optimum with bin size 1 and overflow probability p.

Our goal in this section is to give a more involved analysis of the same algorithm,
showing that its performance is actually much better than this: it produces a packing

with O(
√

log p−1

log log p−1 )B∗ + O(log p−1) bins, where B∗ is the optimum number of bins

required (with size 1 and overflow probability p).

The main step of the analysis is the following extension of Lemma 3.2.

Lemma 4.12. Let ε = 1
6

√
log log p−1

log p−1 . If X1, . . . , Xk are independent Bernoulli

trials of types (q1, s1), . . . , (qk, sk), ε ≥ si ≥ 1
log2 p

−1 , and
∑

i β
′
p(Xi) ≥ 7ε−1, then

Pr[
∑

iXi > 1] > p.

The proof relies heavily on our modified effective bandwidth, with a grouping
scheme as in the proof of Lemma 3.2. However, we cannot afford to analyze the
groups in each effective size separately; thus we require a combinatorial argument
which analyzes the antichain of minimal collections of groups that would cause the
bin to overflow.

Before proving this lemma, we require a simple combinatorial fact. Let S be a
set of size n, let k ≤ * ≤ n, and let Fk� denote the collection of all subsets of S whose
size is at least k and at most *. We say that I ⊆ Fk� is an antichain if no set in I
contains any other set, and a maximal antichain if it is maximal with this property.

Claim 4.13. Assume k ≤ * ≤ n
2 . Then the number of elements in a maximal

antichain I ⊂ Fk� is at least
(
n
k

)
/
(
�
k

)
.

Proof. Consider a maximal antichain A. Each k-element set S must be contained
in one of the sets T of the maximal antichain A. An antichain element T can contain
up to

(
�
k

)
k-element subsets, and there are altogether

(
n
k

)
k-element sets. This implies

the claim.

Proof of Lemma 4.12. The proof starts out analogous to the proof of Lemma 4.6.
We round item sizes up to a power of (1 + ε) and assume without loss of generality
that all items have normal probability, i.e., qi ≤ psi . Then we have that

∑
i qisip

−si ≥
7ε−1.

We partition the set of items into sets W
(s)
j for each size s such that 2ps ≤∑

Xi∈W j

(s)
qi ≤ 3ps for j = 1, . . . , rs; and define the set V (s) of Bernoulli trials

Y
(s)
1 , . . . , Y

(s)
rs−1, each of type (ps, s), as in the proof of Lemma 3.2. As before we have

that β′p(V (s)) ≥ β′
p(W (s))−2s

3 . Further
∑

s s ≤ 1 + ε, hence we get that β′p(∪sV (s)) ≥
2ε−1. Note also that β′p(∪sV (s)) ≤ 1

2β
′
p(∪sW (s)) ≤ 7

2ε
−1.

Next we form groups G1, . . . , Gk from the items in ∪sV (s) so that in each group
Gj for j = 1, . . . , k the sum of the sizes is in the range [ε, 2ε) and k ≥ 7

2ε
−2. This is

possible as each item has size at most ε, so we can form groups of the right size, and the
number of groups that can be formed is at least ε−2, since β′p(∪sV (s)) ≥ 7

2ε
−1, and

the effective bandwidth of each item in ∪sV (s) is equal to its size by definition (since
pssp−s = s). Moreover, the number of groups formed is at most ε−1 · β′p(∪sV (s)) ≤
7
2ε
−2.

A subset I ⊆ {1, . . . , k} is called critical if it is minimal subset to the property
that the total size of the items in ∪j∈IGi exceeds 1. We note the following facts:

• The number of groups in a critical set is at least 1 + ε−1

2 and at most 1 + ε−1.
• The probability that all items are on in the groups of a critical set is at

least p1+2ε. This follows from the facts that the total size of items in the
groups of a critical set is at most 1 + 2ε, and each item in ∪jGj of size s has
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probability ps.

• The number of critical sets is at least 1
2 ( ε

−1

2 )−
ε−1

2 . To see this consider the
set of critical sets. The critical sets form a maximal antichain. We want to
use Claim 4.13 for this antichain. From the first fact we see that the claim
should be applied to 1+ ε−1

2 ≤ 1+ε−1 ≤ k
2 . We have that k ≥ ε−2; therefore,

the number of critical sets is at least(
ε−2

1 + ε−1

2

)/ (
1 + ε−1

1 + ε−1

2

)
.

To get the claimed bound above, we bound
(1+ε−1

1+ ε−1

2

) ≤ 21+ε−1

, and
( ε−2

1+ ε−1

2

) ≥
(2ε−1)

ε−1

2 .
We say that a group is on if all elements of the group are on, and the group is off

if at least one element in the group is not on. The probability that a group is on is
at least pε and at most p2ε. Consider a critical set I. The probability that all groups
not in I are off is at least

(1− pε)k = (1− pε) 7
2 ε

−2 ≥ e−
7
2
ε−2

p−ε .

By the choice of ε we have that

ε−2 = 36 · log p−1

log log p−1

and p−ε = eΘ(
√

log p−1 log log p−1), and so 7
2ε
−2 ≤ p−ε and the probability that all

groups not in I are off is at least e−1.
Now, the probability of overflow is at least the sum, over all critical sets I, of the

probability that the groups which are on are precisely those in I. Thus, by the above
bounds, we have all

Pr

[∑
i

Xi ≥ 1

]
≥ 1

2

(
ε−1

2

)− ε−1

2

p1+2ε 1

e
.

Finally, since p ≥ (18ε2)(ε
−2/18), it is straightforward to see that

1

2

(
ε−1

2

)− ε−1

2

p2ε
1

e
> 1.

This lemma allows us to give a stronger analysis of our algorithm: although
the algorithm only recognizes small and large items, our analysis further partitions
the large items depending on whether their sizes are smaller or larger than ε =
1
6

√
log log p−1

log p−1 . For large items with sizes below ε, we apply Lemma 4.12.

Theorem 4.14. The above algorithm finds a packing of items in bins of size 1

with overflow probability p such that the number of bins used is at most O(
√

log p−1

log log p−1 )

B∗ +O(log p−1), where B∗ is the minimum possible number of bins.
Proof. Although the algorithm only recognizes small and large items, our analysis

makes use of three types of items. Let ε = 1
6

√
log log p−1

log p−1 , and say that an item of type
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(q, s) is large if s ≥ 1
2ε
−1, small if s ≤ log p−1, and normal otherwise. By earlier

arguments, the algorithm is within a constant factor of optimal on small items and
within an O(ε−1) factor on large items. The problem is that the algorithm treats
normal items as though they were large and packs them according to β′p applied to
their effective sizes. Since there are Θ(log p−1) different effective sizes of normal items,
our analysis cannot consider each effective size separately. Thus, we use Lemma 4.12.

As before, we distinguish (normal) items as having large or normal probability.
By giving up a factor of 2, we can still afford to analyze bins with items of normal
probability separately from those with items of large probability. We say that a bin
with large probability items of effective size s is filled if there are 1

s − 1 items in the
bin. For each effective size there is at most one bin of large probability items that
is not filled. For a bin with normal probability items we say that the bin is filled if
the total probability of the items in the bin is at least ps/2se (half of the maximum
possible). Again, for each effective size there is at most one bin of normal probability
items that is not filled. So the number of nonfilled bins of normal items is O(log p−1).

Next we consider filled bins. We claim that the total β′p-value in a filled bin is

at least 1
2e . To show this, we first recall that the effective size is smaller than the real

size, and that effective bandwidth is monotone in the size. This implies that a large
probability item X of effective size s has effective bandwidth β′p(X) ≥ s. Therefore,
the effective bandwidth of a bin filled with large probability items of effective size s is
at least s( 1

s −1) = 1−s. A small probability item X of probability q and effective size
s has effective bandwidth at least β′p(X) ≥ sqp−s, and so the effective bandwidth of

a bin filled with normal probability items of effective size s is at least ps

2esp
−ss = 1

2e .
If our algorithm produces B filled bins, then the total effective bandwidth over

all items in filled bins is at least B
2e . Lemma 4.12 implies that any packing of these

items with fewer than εB
14e bins would result in at least one bin with too high an

overflow probability. Thus the number of bins used for normal sized items is at most
O(ε−1)B∗ +O(log p−1), and we are finished.

It is natural to ask whether this analysis can be further tightened to show that
the same algorithm is in fact producing a packing with O(B∗) + O(log p−1) bins. In
fact this is not possible; this is contained in the following theorem.

Theorem 4.15. There exist instances in which B∗ is arbitrarily large, and the
above algorithm uses more than B∗ · Ω(log log log log p−1) bins.

Proof. Let b be an arbitrarily large constant, let k = ln ln p−1

ln ln ln p−1 , and let J be the

set of all prime numbers less than or equal to k. For r ∈ J and 1 ≤ i ≤ b, let Xi
r be

a Bernoulli trial of type (p1/r, 1/r).
First, we claim that the set of items Si = {Xi

r : r ∈ J} can be packed in a
single bin. To prove this, consider any set S′ ⊂ S whose sizes sum to a number
strictly greater than 1; call such a set large. Since the sizes of the items in S′ have
denominators that are pairwise relatively prime, the sum of these sizes must be at
least 1 + 1/k!. Thus we have

Pr[S overflows] ≤
∑

large S′⊂S
Pr[S′ is on] ≤ 2kp1+1/k! ≤ p,

with the last inequality following from the fact that

k <
1

k!
ln p−1.

Thus, the set of all items can be packed in b bins.



212 JON KLEINBERG, YUVAL RABANI, AND ÉVA TARDOS

Now consider the packing produced by our algorithm. Of the items of size r, it
will pack at most r in each bin. Thus, the total number of bins it produces will be at
least

∑
r∈J

b

r
= Θ(b log log k) = Θ(b log log log log p−1).

The form of the final bound suggests that it is possible that our analysis could be
tightened further, albeit not to provide a constant ratio.

5. The knapsack problem. Finally, we consider the knapsack problem. First
we consider a simple version of the knapsack problem with items X1, X2, . . . , Xn

that are independent Bernoulli trials. Each item has a value vi, and we are given a
knapsack size, say 1, and an allowed probability of overflow p. The problem is to find
a set of items of maximum value such that the probability that the total size of the
set exceeds 1 is at most p.

The lower bounds and techniques developed in the previous section yield similar
results for the knapsack problem. We distinguish items by their sizes (small, normal,
and large), we group large items by their effective size, and we distinguish large and
small probability items just as in the previous section. The solution we construct for
the knapsack problem only contains one type of item (either small, normal, or large
with a given effective bandwidth). We will look for a near-optimal solution in each of
these groups and select the best alternative. Thus, we can show the following.

Theorem 5.1. Let X1, . . . , Xn be independent Bernoulli trials.

• There is a polynomial time algorithm that finds a solution to the knapsack
problem with items X1, . . . , Xn of value at least an O(log p−1) fraction of the
optimum.
• For any ε > 0, there is a polynomial time algorithm that finds a solution to
the knapsack problem, using knapsack size 1 + ε and overflow probability p,
of value at least an O(ε−1) fraction of the maximum possible with a knapsack
of size 1 and overflow probability p.
• For any ε > 0, there is a polynomial time algorithm that finds a solution to
the knapsack problem, using knapsack size 1 and overflow probability p, of
value at least an O(ε−1) fraction of the maximum possible with a knapsack of
size 1 and overflow probability p1+ε.

Proof. For small items we use a knapsack approximation algorithm to find a set
of items of approximately maximum value with at most a total of 1

2 expected value.

For normal items we use a knapsack approximation algorithm to find a set of items
of approximately maximum value with at most a total of ε total effective bandwidth.
As in the previous section, we need to increase or decrease the item sizes by a factor
of (1 + ε) before computing the effective bandwidth depending on the type of result
desired.

We group large items according to their effective size. For large items of effective
size s we either (i) take the (at most) 1−s

s items of largest value; or (ii) use a knapsack
approximation algorithm on the large items of normal probability to find a set of
approximately maximum value with a total probability of at most ps

es .

To prove the lower bound we note that the optimal value of a deterministic
knapsack problem grows only linearly with the knapsack size, as long as new items
of larger size are not considered. Our approximation algorithm is simply the greedy
algorithm, which either (i) takes the single most valuable item, or (ii) orders the items
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in decreasing order of value divided by weight (i.e., expectation, effective bandwidth,
or probability) and greedily fills the knapsack in this order.

Fact 5.2. Consider a deterministic knapsack problem where the knapsack has
size 1, and all items have size at most 1.

• The value of the solution obtained by the above greedy method is at least a 1
2

of the optimal.
• For any c > 1, the value of the optimal solution with knapsacks of size 1 is
at least a fraction of 1

2c of the optimal value with knapsack size c.
For small items Lemma 4.2 implies that the resulting knapsack solution is feasible,

and Lemmas 5.2 and 4.2 imply that its value is within a constant factor of the optimal
packing of small items.

For normal items we use Lemma 4.3 to show either that (1) the packing obtained
is feasible with a knapsack of size 1 + ε or (2) if we increased sizes before computing
the effective bandwidth, then it is feasible with a knapsack of size 1. Lemmas 5.2
and 4.6 imply that the packing obtained is within an O(ε−1) factor of any packing of
normal items with either (1) a knapsack of size 1 and overflow probability at most p
or (2) a knapsack of size 1 and overflow probability at most p1+ε.

For large items of effective size s, Lemma 4.1 shows that the solution is feasible,
and Lemmas 4.7 and 4.8 and Fact 5.2 imply that the solution is within a constant
factor to any packing using items of effective size s.

In total we get an O(1) approximation algorithm for small items, and items of a
given effective size. There are O(ε−1) different effective sizes. For normal items, we
get an O(ε−1) approximation. The approximation ratio of the best solution among
these options is the sum of the approximation ratios of the special cases. Thus, the
theorem follows.

Extension to other distributions. Next we extend the solution to a distri-
bution that is somewhat more general than the on-off distribution we have been
considering so far. We assume that each item is parameterized by numbers lo, hi, and
q, where the item is of size hi with probability q and of size lo ≤ hi otherwise. This
kind of item is a simple model of a bursty communication, with lo being the normal
rate of transmission and hi being a burst that occurs with probability q.

Consider the optimal knapsack packing. Assume we used items X1, . . . , Xk in the
packing, and let g =

∑
i loi. The idea is that we guess the value of g in the optimal

solution, and for every guess we look for packings that are feasible and in which the
total of the lo values is at most g.

We define small items depending on the size si = hii − loi of the probabilistic
part, limiting the value si to be at most half of what it was for the size in the case of
Bernoulli trials. We pack small items using expectation, subject to the the fact that
the total expectation is at most 1

2 , and we use Lemmas 4.2 and 4.5 and Fact 5.2 to
see that the value of the packing is within a constant factor of the maximum possible
using small items.

We define normal items also using si = hii− loi and pack normal items using the
effective bandwidth. However, to compute the right effective bandwidth for normal
items we need to know 1− g, the amount of space left for the probabilistic part of the
items, since the effective bandwidth formula assumed that the bin size is 1, so we will
have to rescale the bin size to apply the formula. Notice, however, that it suffices to
know 1− g roughly up to a factor of 1 + ε.

Notice that it is essentially no loss of generality to assume that g ≤ 1
2 . Among

items with lo values above 1
2 at most one can be in the knapsack, so we can either
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pack a single one of these items in the knapsack by itself or assume that we are not
using any of them. For items with lo ≤ 1

2 the restriction that g ≤ 1
2 will not change

the optimum value by more than a small constant factor. Therefore, we need only to
consider O(ε−1) different values for g to obtain an O(ε−1) approximate solution the
optimal value of a solution using normal items.

In the case of Bernoulli trials we used the greedy method to pack items in each
category into a knapsack using expectation, effective size, or the probability depending
on whether we considered items that are small, normal, or large. Here we cannot use
the greedy method to find a solution to the resulting deterministic problem, as we
have to consider an extra parameter, the sum of the lo values. We use the following
method instead.

A deterministic two-dimensional knapsack problem is defined by a set of items
X1, . . . , Xn, each with a value vi, size si, and weight wi. In addition, we are given a
knapsack size S and a weight limit W . The problem is to find a subset I of items of
maximum total value so that the total size

∑
i∈I si is at most S and the total weight∑

i∈I wi is at most W .

Lemma 5.3. A simple greedy algorithm yields a constant factor approximation for
the two-dimensional knapsack problem. Using dynamic programming we can obtain a
1 + δ-approximation for any fixed value δ > 0.

Proof. First notice that it is no loss of generality to assume that the size S and
the weight limit W are both 1.

Consider items that have both size and weight at most 1
2 . We claim that the

following greedy method provides an approximation: Find a greedy solution to max-
imizing using the sum si + wi as size, i.e., this greedy algorithm approximates the
maximum possible value subject to the limit that the total size plus the total weight
is at most 1. The optimal solution has size at most 1 and weight at most 1, so the
sum of the total size and weight is at most 2. Hence, by Fact 5.2, the value obtained
is at least 1

4 th of the optimal.

For items that have either size above 1
2 or weight above 1

2 at most 2 can fit in a
knapsack, so we can get the optimal solution by trying all pairs.

The better of the two solutions obtained has a value of at least 1
5 th of the

optimum.

Next we consider large items. The definition of effective size is also related to
1 − g: The effective size of an item of type (hi, lo, q) is defined as s̄, where 1

s̄ =
min{j : j(hi− lo) > 1− g}, the number of copies the probabilistic part of this item
can fit in a knapsack of size 1− g. Given an estimate for the value g, we group large
items according to their effective size and pack items of one effective size using the
two-dimensional knapsack problem above. As before, we separate items of identical
effective size, depending on whether they have large or normal probability. For large
probability items of effective size s, we need at most 1

s − 1 items of total lo value
at most g and maximum total value. For normal probability items one dimension
is the lo value, where the total lo value is limited to g, and the other dimension is
the probability, bounded by ps/se. In both cases we can use Lemma 5.3 to obtain a
knapsack solution.

Next we consider the issue of how many different estimates we have to consider
in order to get a near-optimal solution using large items. Depending on the value of
g the effective size of an item can change. Each item can have at most ε−1 different
effective sizes, and hence it creates at most ε−1 different “cut-off” values for g. Hence,
the grouping of large items changes for at most nε−1 discrete values of g, where n
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is the number of large items. This implies that it suffices to try O(nε−1) different g
values in order to get an approximately optimal solution.

The above discussion proves the following theorem.

Theorem 5.4. Let X1, . . . , Xn be independent trials of the type defined above.

• There is a polynomial time algorithm that finds a solution to the knapsack
problem with items X1, . . . , Xn of value at least an O(log p−1) fraction of the
optimum.
• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this knapsack problem using a knapsack size 1 + ε and overflow probability at
most p of value at least an O(ε−1) fraction of the maximum possible with a
knapsack of size 1 and overflow probability p.
• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this knapsack problem using a knapsack size 1 and overflow probability p of
value at least an O(ε−1) fraction of the maximum possible with a knapsack of
size 1 and overflow probability p1+ε.

Bin-packing with other distributions. Using the knapsack result and set-
cover we get a bin-packing algorithm for independent items of type (lo, hi, q). To get
a solution to the bin-packing problem we repeatedly take the maximum number of
items possible to include in a single bin. The result is an O(log n) extra factor in the
approximation ratio.

Corollary 5.5. Let X1, . . . , Xn be independent trials of the type defined above.

• There is a polynomial time algorithm that finds a solution to the bin-packing
problem with items X1, . . . , Xn using at most O(log p−1 log n) times the min-
imum possible number of bins.
• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this bin-packing problem using bins of size 1 + ε and overflow probability at
most p with a number of bins that is at most O(ε−1 log n) times the minimum
possible with bins of size 1 and overflow probability p.

• For any ε > 0, there is a polynomial time algorithm that finds a solution to
this bin-packing problem using bins size 1 and overflow probability p with at
most O(ε−1 log n) times as many bins as the minimum possible with bins of
size 1 and overflow probability p1+ε.

6. Extensions to general networks. The model we have been considering—
two nodes communicating over a set of parallel links—is a common one in the study
of bursty traffic. However, it is interesting to consider the extent to which one can
carry over the results developed here to the problem of routing bursty connections in a
general network. The model for a general network follows directly from the discussion
in the introduction: we are given a graph G = (V,E) with capacities {ce} on the
edges, and source-sink pairs (si, ti) indicating connection requests in the network.
For each source-sink pair, we are given a random variable Xi corresponding to the
demand of that connection; a routing is a choice of a path Pi in G for each connection
(si, ti).

There are several options for how one might want to model the capacity constraints
for a problem of this type; we define two main possibilities here. Suppose we are given
an allowed overflow probability p.

(i) The link-based overflow constraint requires that for each edge e, we have
Pr[
∑

i:e∈Pi
Xi > ce] ≤ p.

(ii) The connection-based overflow constraint requires that for each connection
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(si, ti), we have

Pr

[
∃e ∈ Pi :

∑
i:e∈Pi

Xi > ce

]
≤ p.

One can argue that from the perspective of providing guaranteed quality of service
to users in a network, the connection-based overflow constraint is more natural. In
this section we use this model.

Now suppose we are in a “high-capacity” setting in which the capacity of ev-
ery edge exceeds the peak bandwidth rate of every connection Xi by a factor of
c log(p−1|E|) for an appropriate constant c. Let us define the value of a set of con-
nections to be the sum of their expectations; we consider the problem of accepting
a set of connections of maximum value. We run the on-line algorithm of Awerbuch,
Azar, and Plotkin [2], using E[Xi] as the demand for connection (si, ti) and 1

4ce as
the capacity of edge e. The analysis of [2] can then be used to show the following.

Lemma 6.1. For any constant γ there is a constant C such that, if k denotes the
total value of connections accepted by the algorithm, then in any routing of a set of
connections of value at least C(log |E|)k, there is some edge e carrying a total expected
value greater than γce.

Theorem 6.2. The set of connections accepted by the above algorithm satis-
fies the connection-based overflow constraints, and the total value of the connections
accepted is within an O(log |E|) factor of the off-line optimum on the graph G.

Proof. Without loss of generality, we may assume that the minimum edge capacity
in the network is 1. Recall our assumption that the peak rate of any connection X
is at most 1/(c log(p−1|E|)); thus, for each connection X, the effective bandwidth
βp|E|−1(X), with respect to probability p

|E| , is at most 2E[X]. Now Proposition 3.6

implies that our routing satisfies the link-based overflow constraint with probability
p
|E| and hence the connection-based overflow constraints with probability p.

To compare our performance to that of the optimum, we use Lemma 6.1 with
γ = 8. Further, we give up a constant factor in the approximation ratio and use
Lemma 3.10 to model each connection. Using the notation of the lemma we model a
connection X as a sum of of independent Bernoulli trials 1

2Y =
∑

i
1
2Yi whose peak

rates are inverse powers of two, such that Y ≤ X and E(Y ) ≤ 1
2E(X).

Lemma 4.5 shows that such a routing violates the link-based overflow constraint
on edge e, and hence any path through the edge e violates the connection-based
overflow constraint. It follows that our routing is within O(log |E|) of optimal.

We note that the analysis of [2] also allows us to provide performance guarantees
in terms of more general notions of “value.”
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Abstract. We study the problem of computing the free space F of a simple legged robot called
the spider robot. The body of this robot is a single point and the legs are attached to the body. The
robot is subject to two constraints: each leg has a maximal extension R (accessibility constraint)
and the body of the robot must lie above the convex hull of its feet (stability constraint). Moreover,
the robot can only put its feet on some regions, called the foothold regions. The free space F is the
set of positions of the body of the robot such that there exists a set of accessible footholds for which
the robot is stable. We present an efficient algorithm that computes F in O(n2 logn) time using
O(n2α(n)) space for n discrete point footholds where α(n) is an extremely slowly growing function
(α(n) � 3 for any practical value of n). We also present an algorithm for computing F when the
foothold regions are pairwise disjoint polygons with n edges in total. This algorithm computes F in
O(n2α8(n) logn) time using O(n2α8(n)) space. (α8(n) is also an extremely slowly growing function.)
These results are close to optimal since Ω(n2) is a lower bound for the size of F .

Key words. legged robots, computational geometry, motion planning
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1. Introduction. Although legged robots have already been studied in robotics
[13, 14], only a very few papers consider the motion planning problem amidst obsta-
cles [9, 8, 2]. In [9, 8], some heuristic approaches are described, while, in [2], efficient
and provably correct geometric algorithms are described for a restricted type of legged
robot, the so-called spider robot to be defined precisely below, and for finite sets of
point footholds.

A legged robot consists of a body with legs. Each leg has one end attached to the
body and the other end (called the foot) that can lie on the ground (or move in space
between two positions on the ground). Compared to the classic piano movers problem,
legged robots introduce new types of constraints. We assume that the environment
consists of regions in the plane, called foothold regions, where the robot can safely
put its feet. A foothold is a point in a foothold region. The legged robot must satisfy
two different constraints: the accessibility and the stability constraints. A foothold
is said to be accessible from a placement (position of the body of the robot) if it can
be reached by a leg of the robot. A placement is called stable if there exist accessible
footholds and if the center of mass of the robot lies above the convex hull of these
accessible footholds. The set of stable placements is clearly relevant for planning the
motion of a legged robot: we call this set the free space of the legged robot. Note that
a legged robot has at least four legs; three legs ensure the stability of a placement and
a fourth leg permits the motion of the robot.

A first simple instance of a legged robot is the spider robot (see Figure 1.1). The
spider robot was inspired by Ambler, developed at Carnegie Mellon University [1].
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Fig. 1.1. The spider robot.

The body of the spider robot is a single point in the Euclidean plane, and all its legs
are attached to the body. The legs are retractable and their lengths may vary between
0 and a constant R. We also assume that the center of mass of the robot is its body.
It follows that a placement is stable if the body of the robot lies above the convex
hull of the accessible footholds.

The constraint that the body of the spider robot lies in the plane (instead of in
three dimensions) is not really restrictive. Indeed, consider a legged robot for which
that constraint is relaxed. Then, if a placement (x, y, z) of such a legged robot is
stable, then any placement (x, y, z′), 0 � z′ � z, is also stable. Reciprocally, it can
be shown that if (x, y) is in the interior of the free space of the spider robot, then
there exists z > 0 such that (x, y, z) is a stable placement of the corresponding legged
robot.

The problem of planning the motion of a spider robot has already been studied
by Boissonnat et al. [2]. However, their method assumes that the set of footholds is
a finite set of points and cannot be generalized to more complex environments. This
paper proposes a new method for computing the free space of a spider robot in the
presence of polygonal foothold regions. This method is based on a transformation
between this problem and the problem of moving a half-disk amidst obstacles. Our
method requires the computation of some parts of the free space of the half-disk.
These computations are rather technical and complicated. Consequently, for the sake
of clarity, we first present our algorithm for the simple case of discrete footholds, and
then we show how it can be generalized to the case of polygonal foothold regions.

Once the free space of the spider robot has been computed, it can be used to find
trajectories and sequences of legs assignments allowing the robot to move from one
point to another. Indeed, once the free space is known, a trajectory of the body can
be found in the free space. Then, a sequence of legs assignments can be computed as
follows (see [2] for details). Given an initial legs assignment, the body of the robot
moves along its trajectory until it crosses the convex hull of its (three) feet that are
on the ground, or one leg reaches its maximal extension. Then, a suitable foothold is
found for the fourth leg and one leg leaves its foothold.

The paper is organized as follows: some notations and results of [2] are recalled in
the next section. Section 3 shows the transformation between the spider robot problem
and the half-disk problem. We present in section 4 our algorithm for computing the
free space of a spider robot for a discrete set of footholds. Section 5 shows how to
extend the algorithm to polygonal foothold regions.

2. Notations and previous results. In sections 2, 3, and 4, S denotes a
discrete set of distinct footholds {s1, . . . , sn} in the Euclidean plane. (S will denote
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in section 5 a set of disjoint polygonal regions.) Point G denotes the body of the robot
(in the same plane) and [0, R] is the length range of each leg. The free space F is the
set of all stable placements of G. A placement is said to be at the limit of stability if
it lies on the boundary of the convex hull of its accessible footholds. Notice that F is
a closed set and contains the placements at the limit of stability.

Let Ci denote the circle of radius R centered at si. A is the arrangement of the
circles Ci for 1 � i � n, i.e., the subdivision of the plane induced by the circles.
This arrangement plays an important role in our problem and we will express the
complexity results in term of |A|, the size of A. In the worst case, |A| = Θ(n2),
but if k denotes the maximum number of disks that can cover a point of the plane,
among the disks of radius R centered at the si, it can be shown that |A| = O(kn) [15].
Clearly k is not larger than n and in case of sparse footholds, |A| may be linearly
related to the number of footholds.

For any set E , let ∂(E) denote its boundary, CH(E) its convex hull, int(E) its
relative interior,1 clos(E) its closure, and compl(E) its complementary set. Let S1

denote the set of angles R/2πZ. We denote by x = y[p] the equality of x and y
modulo p. We say in the following that two objects properly intersect if and only if
their relative interiors intersect.

The algorithm described in [2] is based on the following observation: for G in a
cell Γ of A, the set of footholds that can be reached by the robot is fixed; the portion
of Γ that belongs to F is exactly the intersection of Γ with the convex hull of the
footholds that can be reached from Γ. Therefore, the edges of ∂(F) are either circular
arcs belonging to A or portions of line segments joining two footholds. Moreover,
a vertex of ∂(F) incident to two straight edges is a foothold (see Figure 2.1). The
complexity of F has been proved to be |F| = Θ(|A|) [2].

s14

s12

s2

s4

s5s6

s7

s9
s10

s11

s13

s1

s3

s8

Fig. 2.1. An example of the free space of a spider robot.

1The relative interior of a set E in a space E is the interior of E in the space E for the topology
induced by E. For example, the relative interior of a closed line segment in R

3 is the line segment
without its endpoints, though its interior in R

3 is empty.
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P

Fig. 3.1. A placement which is not stable.

xx′

P

R

θ

Fig. 3.2. HD(P, θ).

The algorithm presented in [2] computes the free space F in O(|A| log n) time. It
uses sophisticated data structures allowing the off-line maintenance of convex hulls.

The algorithm described in this paper has the same time complexity, uses simple
data structures, and can be extended to the case where the set S of footholds is a set
of polygonal regions and not simply a set of points. For simplicity, we consider first
the case of point footholds and postpone the discussion on polygonal foothold regions
to section 5.

General position assumption. To simplify the presentation of this paper, we
make the following general position assumptions. All these hypotheses can be removed
by a careful analysis. Recall that we consider here that the set of footholds is discrete.

No two footholds lie at distance exactly R or 2R. Among the circles C1, . . . , Cn
and the line segments joining two footholds, the intersection between three circles, or
two circles and a line segment, or one circle and two line segments is empty.

3. From spider robots to half-disk robots. In this section, we establish the
connection between the free space of the spider robot and the free space of a half-disk
robot moving by translation and rotation amidst n point obstacles.

Theorem 3.1. The spider robot does not admit a stable placement at point P if
and only if there exists a half-disk (of radius R) centered at P that does not contain
any foothold of S (see Figure 3.1).

Proof. Let R be the set of all the footholds that are reachable from placement
P . By definition, P is not stable if and only if the convex hull of R does not contain
P (see Figure 3.1). That is equivalent to saying that there exists an open half-plane
through P containing R or that there exists a closed half-disk of radius R centered
at P which does not contain any foothold.
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Definition 3.2. Let HD(P, θ) be the half-disk of radius R centered at P (see
Figure 3.2) defined by {

(x− xP )
2 + (y − yP )

2 � R2,

(x− xP ) sin θ − (y − yP ) cos θ � 0.

Definition 3.3. For all si ∈ S (1 � i � n), let

Hi = {(P, θ) ∈ R
2 × S1 | P ∈ HD(si, θ)},

H =

n⋃
i=1

Hi,

Ci = Ci × S1.

Hi will be called the helicoidal volume centered at si (see Figure 3.3).

Fig. 3.3. Helicoidal volume Hi.

Notice the typographical distinction between the circle Ci defined in R
2 and the

torus Ci defined in R
2×S1. For convenience, we will often identify S1 and the interval

[0, 2π] of R. This allows us to draw objects of R
2×S1 in R

3 and to speak of the θ-axis.
Πθ0 denotes the “plane” {(P, θ) ∈ R

2 × S1 | θ = θ0}.
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Definition 3.4. The free space L of a half-disk robot moving by translation and
rotation amidst the set of obstacles S is the set of (P, θ) ∈ R

2 × S1 such that the
half-disk HD(P, θ + π) does not intersect S.

Proposition 3.5. L = compl(H).

Proof. For all θ ∈ S1, the set L∩Πθ is the free space of the half-disk HD(P, θ+π)
moving by translation only amidst the obstacle s1, . . . , sn. Since the set of points P
such that HD(P, θ+ π) contains an si is HD(si, θ), L∩Πθ is the complementary set
of the union of the HD(si, θ). Thus, L is the complementary set of the union of the
Hi, that is H.

Let p//θ denote the mapping (called “orthogonal projection”): R
2 × S1 −→

R
2, (P, θ) �→ P .

Theorem 3.6. F = compl(p//θ(compl(H))).

Proof. By definition of L, p//θ(L) is the set of points P ∈ R
2 such that there

exists an angle θ ∈ S1 such that the half-disk HD(P, θ) does not intersect S. By
Theorem 3.1, it is equivalent to say that there exists θ ∈ S1 such that HD(P, θ)
does not intersect S, or that P is not a stable placement of the spider robot. Thus,
p//θ(L) is the set of points P , where the robot does not admit a stable placement,
i.e., F = compl(p//θ(L)). The result then follows from Proposition 3.5.

Remark 3.7. compl(p//θ(compl(H)))×S1 is the largest “cylinder” included in H,
whose axis is parallel to the θ-axis (in grey in Figure 3.4). The basis of this cylinder
is F .

0

θ

2π

E

compl(p//θ(compl(E)))

Fig. 3.4. compl(p//θ(compl(E))).

Remark 3.8. The results of this section do not depend on the fact that the
footholds are discrete points. For more general foothold regions, we simply need to
replace the helicoidal volumes by their analogue. This will be done in section 5.

4. Computation of F . In this section, we propose an algorithm for computing
F based on Theorem 3.6.
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A first attempt to use Theorem 3.6 may consist of computing L = compl(H) and
projecting it onto the horizontal plane. The motion planning of a convex polygonal
robot in a polygonal environment has been extensively studied (see, for example,
[10, 11]). Such algorithms can be generalized to plan the motion of a half-disk. It
should lead to an algorithm of complexity O(nλs(n) log n), where λs(n) is an almost
linear function of n. The projection can be done using classical techniques, such as
projecting all the faces of L and computing their union. Since the complexity of the
three-dimensional object L is not directly related to the complexity of its projection,
this approach does not provide a combinatorial bound on F . However, if we assume
|F| = O(λs(|A|)) (which will be proved in this paper), the time complexity of the
algorithm of Kedem Sharir, and Toledo is O(nλs(n) log n+ λs(|A|) log2 n).

In this paper, we present a direct computation of F . This approach provides
an upper bound on the size of F , namely |F| = O(λs(|A|)). It also provides an
algorithm for computing F in O(λs(|A|) log n) time. As in [16] and contrary to [11],
the algorithm proposed here is sensitive to |A| which is usually less than quadratic.
Another advantage of our direct computation is to avoid the explicit construction of
the three-dimensional object L which is useless for our application. Our algorithm
manipulates only two-dimensional arrangements or lower envelopes, and we provide
a detailed description of the curves involved in the construction.

Let us now detail the computation of F in the case of point footholds. We know
that each arc of the boundary ∂(F) of F is either a straight line segment belonging
to a line joining two footholds or an arc of a circle Ci (see section 2). The circular
arcs ∂(F) ∩Ci are computed first (sections 4.1, 4.2, and 4.3) and are linked together
with the line segments in a second step (sections 4.4 and 4.5).

4.1. Computation of ∂(F)∩A. In what follows, the contribution of an object
X to another object Y is X ∩ Y . We compute the contribution of each circle Ci0 ,
i0 = 1, . . . , n, to ∂(F) in turn. Recall that Ci0 denotes the torus Ci0 × S1. The
contribution of each circle Ci0 to ∂(F) will be obtained by computing the intersection
of all the Hi, i = 1, . . . , n, with the torus Ci0 . Let Zi, i = 1, . . . , n, denote these
intersections:

Zi = Hi ∩ Ci0 .
We first show how to compute the contribution of Ci0 to ∂(F) in term of the Zi

and leave the studies of the shape and properties of Zi to section 4.2. Figures 4.1 and
4.2 show some (hatched) Zi ⊂ Ci0 (i �= i0), where Ci0 is parameterized by (u, θ) (u
and θ parameterize Ci0 and S1, respectively); the dark grey region shows Zi0 .

Proposition 4.1. The contribution of Ci0 to ∂(F) is

Ci0 ∩ ∂(F) = compl(p//θ(compl(∪iZi))) \ int(compl(p//θ(compl(∪i �=i0Zi)))).
Proof. Since F is a closed set, Ci0 ∩ ∂(F) = [Ci0 ∩F ] \ [Ci0 ∩ int(F)]. According

to Theorem 3.6, F = compl(p//θ(compl(H))). One can easily prove that for any
set E ∈ R

2 × S1, int(compl(E)) = compl(clos(E)), clos(compl(E)) = compl(int(E)),
and clos(p//θ(E)) = p//θ(clos(E)). It then follows from the expression of F that
int(F) = compl(p//θ(compl(int(H)))).

Recall that for any sets X,Y ∈ R
2 × S1, compl(X ∩ Y ) = compl(X)∪ compl(Y ),

p//θ(X ∪ Y ) = p//θ(X) ∪ p//θ(Y ), and compl(X ∪ Y ) = compl(X) ∩ compl(Y ). That
implies

compl(p//θ(compl(X ∩ Y ))) = compl(p//θ(compl(X))) ∩ compl(p//θ(compl(Y ))).
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u

θ

0 π

π

2π

: Zi0 = Hi0 ∩ Ci0

2π

θ1 θ3

θ1

θ3

θ1 + π

θ3 + π

θ2

θ2

θ2 + π

: Zi = Hi ∩ Ci0

θ = u+ π
2

Zi

Zi0

ρ+i

ρ−i

Zi0

θ3

si

x

Ci

Ci0

si0

θ1

θ1

θ2
θ3

si

x

Ci

Ci0

si0

θ1

θ2

θ2

θ3

si

x

Ci

Ci0

si0

θ1

θ2 θ3

HD(si, θ1) HD(si, θ3)HD(si, θ2)

Fig. 4.1. Example of Zi for ‖si0si‖ =
√

2R and some corresponding critical positions
of HD(si, θ).
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We now consider that equation with X equal to H or int(H), and Y equal to the
torus Ci0 . Since compl(p//θ(compl(Ci0))) is the circle Ci0 , we get

compl(p//θ(compl(H ∩ Ci0))) = F ∩ Ci0 and

compl(p//θ(compl(int(H) ∩ Ci0))) = int(F) ∩ Ci0 .

Since H = ∪ni=1Hi and Zi = Hi ∩ Ci0 by definition, H ∩ Ci0 = ∪ni=1Zi and
int(H) ∩ Ci0 = ∪ni=1(int(Hi) ∩ Ci0). By the general position assumption, no two
footholds lie at distance 2R, thus for i �= i0, int(Hi) ∩ Ci0 = int(Zi).2 As int(Hi0) ∩
Ci0 = ∅, we get int(H) ∩ Ci0 = ∪i �=i0int(Zi). The study of the shape of Zi will
yield (see Lemma 4.8) that ∪i �=i0int(Zi) = int(∪i �=i0Zi). Therefore, int(F) ∩ Ci0 =
compl(p//θ(compl(int(∪i �=i0Zi)))) = int(compl(p//θ(compl(∪i �=i0Zi)))) and F ∩Ci0 =
compl(p//θ(compl(∪iZi))). Using Ci0 ∩ ∂(F) = [Ci0 ∩ F ] \ [Ci0 ∩ int(F)], we get the
result.

Thus, the contribution of Ci0 to ∂(F) comes from the computation of ∪iZi and
∪i �=i0Zi.

Geometrically, compl(p//θ(compl(∪iZi))) is the vertical projection (along the θ-
axis) of the largest vertical strip Σi0 included in ∪iZi (see Figure 4.2). Similarly,
compl(p//θ(compl(∪i �=i0Zi))) is the projection of the largest vertical strip Σ′i0 included
in ∪i �=i0Zi. Thus, ∂(F) ∩ Ci0 is the vertical projection onto Ci0 of the vertical strip
Σi0 \ int(Σ′i0).

In order to compute F efficiently, we need to compute the union of the regions
Zi efficiently. More precisely, we will show that the union of the regions Zi can be
computed in O(ki0 log ki0) time, where ki0 is the number of helicoidal volumes Hi
intersecting Ci0 .

This is possible because the Zi have special shapes that allow us to reduce the
computation of their union to the computation of a small number of lower envelopes
of curves drawn on Ci0 , with the property that two of them intersect at most once.
The geometric properties of the Zi are discussed in section 4.2, and in section 4.3 we
present and analyze the algorithm for constructing ∂(F) ∩ Ci0 .

4.2. Properties of the Zi. Here we study the regions Zi = Hi ∩ Ci0 . Recall
that we parameterize Ci0 = Ci0 × S1 by (u, θ), where u and θ parameterize Ci0 and
S1, respectively. (u = 0 corresponds to the point of Ci0 with maximum x-coordinate.)
Figures 4.1 and 4.2 show examples of such regions Zi. For convenience, we will use
the vocabulary of the plane when describing objects on the torus Ci0 . For instance,
the curve drawn on the torus Ci0 with equation a θ + b u + c = 0 will be called a
line. The line u = u0 will be called vertical and oriented according to increasing θ.
Lower and upper will refer to this orientation. The discussion below considers only
nonempty regions Zi (such that ‖si0si‖ < 2R).

First we introduce some notations. Let HCi(θ) be the half-circle of the boundary
of HD(si, θ), i.e., HCi(θ) = Ci ∩HD(si, θ). Let ri(θ) be the spoke of Ci that makes
an angle θ with the x-axis, i.e., ri(θ) = {si + λ%uθ | λ ∈ [0, R]}, where %uθ is the unit

2Recall that int denotes the relative interior, thus int(Hi) is the interior of Hi in R
2 × S1, but

int(Zi) denotes the interior of Zi in Ci0 .



MOTION PLANNING OF LEGGED ROBOTS 227

u

θ

Z3

Z1Z2

: Σi0 : Σ′
i0

Zi0

Σi0

Σ′
i0

θ = u+ π
2

θ = u− π
2

Z1

: Z1,Z2,Z3 : Zi0

ρ3+2

ρ1+2

ρ1+1

ρ2+2 ρ2+1

Fig. 4.2. Contribution of Ci0 to ∂(F) (0 < ‖s1si0‖ < R, R � ‖s2si0‖ <
√

2R,
√

2R �
‖s3si0‖ < 2R).

vector whose polar angle is θ. The boundary of Hi is composed of the following three
patches:

Ti = {(HCi(θ), θ) ∈ R
2 × S1},

R+i = {(ri(θ), θ) ∈ R
2 × S1},

R−i = {(ri(θ + π), θ) ∈ R
2 × S1}.

Let ρ−i and ρ+i denote the curves R−i ∩ Ci0 and R+i ∩ Ci0 , respectively. Since R−i
and R+i are translated copies of one another, i.e., R−i = R+i ± (0, 0, π), we have the
following lemmas.

Lemma 4.2. ρ−i and ρ+i are translated copies of one another, i.e.,

ρ+i = {(u, θ) ∈ S1 × S1 | (u, θ − π) ∈ ρ−i } = {(u, θ) ∈ S1 × S1 | (u, θ + π) ∈ ρ−i }.

Lemma 4.3. The curves ρ±i are monotone in u.
Proof. Assume for a contradiction that a curve ρ±i is not monotone in u. Then

there exists u and θ �= θ′ in S1 such that (u, θ) and (u, θ′) parameterize points of ρ±i .
By the definition of R±i , it then follows that the point U ∈ Ci0 parameterized by u
belongs to the two spokes ri(θ) (or ri(θ+π)) and ri(θ

′) (or ri(θ′+π)). The intersection
between any two of these spokes is exactly si. Thus, U = si, which contradicts (since
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si0

si

Ci0

T
θ

r′′i (θ)

r′i(θ)
T (θ)

Ci

Fig. 4.3. For the definition of r′i(θ) and r′′i (θ).

U ∈ Ci0) the general position assumption saying that the distance between si and si0
is not R.

Lemma 4.4. The region Zi0 is the subset of Ci0 parameterized by {(u, θ) ∈ S1 ×
S1 | θ � u � θ + π} (shown in grey in Figures 4.1 and 4.2).

Proof. For any θ ∈ S1, the intersection between Hi0 and the “horizontal plane”
Πθ is the half-disk HD(si0 , θ). Similarly, the intersection between Ci0 and that plane
is Ci0 . Thus, the intersection between Zi0 and Πθ is HCi0(θ), which is parameterized
on Ci0 by {u ∈ S1 | θ � u � θ+π}. That intersection is actually on the plane Πθ and
is therefore parameterized on Ci0 by {(u, θ) ∈ S1 × S1 | θ � u � θ + π}.

Proposition 4.5. Zi is a connected region bounded from below by ρ−i and from
above by ρ+i , i.e., Zi = {(u, θ) ∈ S1×S1 | ∃x ∈ [0, π], (u, θ−x) ∈ ρ−i , (u, θ−x+π) ∈ ρ+i }
(see Figures 4.1 and 4.2).

Proof. By cutting Ci0 and Hi by the “horizontal plane” Πθ, we get that a point
parameterized by (u, θ) on Ci0 belongs to Hi if and only if the point U parameterized
by u on Ci0 belongs to HD(si, θ). Since HD(si, θ) can be seen as the union of the
spokes {ri(θ + γ) | γ ∈ [0, π]}, (u, θ) ∈ Zi if and only if there exists γ ∈ [0, π] such
that U ∈ ri(θ + γ), or, equivalently, U ∈ ri(θ − x+ π) with x = π − γ ∈ [0, π]. Since
R−i = {(ri(θ− x+ π), θ− x) | θ− x ∈ S1}, it follows from U ∈ ri(θ− x+ π) that the
point of Ci0 parameterized by (u, θ − x) belongs to R−i and thus to ρ−i = R−i ∩ Ci0 .
From Lemma 4.2, we get that the point parameterized by (u, θ − x + π) belongs to
ρ+i . Therefore, Zi is a connected region bounded from below by ρ−i and from above
by ρ+i .

We want to compute the union of the Zi by computing the “lower envelope”3 of
the lower edges ρ−i , and the “upper envelope” of the upper edges ρ+i . Unfortunately it
is impossible to do so because some upper edges ρ+i may be “below” or intersect some
lower edges ρ−j . However, we can subdivide the regions Zi into blocks Zki , k ∈ K, and

separate these blocks into two sets Ω1 and Ω2 such that the union of the Zki in Ω1
(respectively, Ω2) is the region bounded from above by the upper envelope of the upper
edges of the Zki ∈ Ω1 and bounded from below by the lower envelope of the lower edges
of the Zki ∈ Ω1 (respectively, Ω2). Such property can be realized by showing that all
the upper edges of the Zki ∈ Ω1 belong to the strip {(u, θ) ∈ S1× [u+ π2 , u+

3π
2 ]} and

3Note that the lower and upper envelopes of curves in S1 × S1 are not actually defined.
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Fig. 4.4. For the proof of Proposition 4.6.

all the lower edges of the Zki ∈ Ω1 belong to the strip {(u, θ) ∈ S1 × [u− π
2 , u+ π

2 ]}.
(A similar property is shown for Ω2.) Note that the upper and lower envelopes are
then defined since they are considered in S1 × R.

We subdivide Zi into blocks Zki when R < ‖si0si‖ <
√
2R. That subdivision

is performed such that the upper and lower edges of the Zki are θ-monotone. Recall
that the upper edge ρ+i of Zi is the intersection of R+i = {(ri(θ), θ) | θ ∈ S1} and
Ci0 . The spoke ri(θ) intersects Ci0 twice (for some θ) when R < ‖si0si‖ <

√
2R,

which implies that ρ+i is not θ-monotone. We cut the spoke ri(θ) into two pieces
such that each piece intersects Ci0 at most once. Let T be the intersection point
between Ci0 and on one of the two lines passing through si and tangent to Ci0 (see
Figure 4.3). Let T (θ) be the point on ri(θ) at distance ‖siT‖ from si. Cutting
ri(θ) at T (θ) defines two subspokes r′i(θ) and r′′i (θ) that intersect Ci0 in at most
one point each; without loss of generality, let r′i(θ) denote the subspoke joining si to
T (θ). The set of θ ∈ S1 for which r′i(θ) intersects Ci0 is clearly connected but the
set of θ ∈ S1 for which r′′i (θ) intersects Ci0 consists of two connected components.
We denote by ρ2+i the intersection {(r′i(θ), θ) | θ ∈ S1} ∩ Ci0 and by ρ1+i and ρ3+i
the two connected components of the intersection {(r′′i (θ), θ) | θ ∈ S1} ∩ Ci0 (see
Figure 4.2). Since r′i(θ) and r′′i (θ) intersect Ci0 at most once for any θ ∈ S1, the
curves ρ1+i , ρ2+i , and ρ3+i are θ-monotone. The lower edges ρk−i , k = 1, 2, 3, can be
defined similarly or in a simpler way as the translated copies of ρk+i , k = 1, 2, 3, i.e.,
ρk−i = {(u, θ) ∈ S1 × S1 | (u, θ + π) ∈ ρ+ki }. We denote by Zki , k = 1, 2, 3, the subset
of Zi bounded from above by ρk+i and from below by ρk−i .

We can now prove the following proposition that will allow us to compute the
union of the Zi by computing the upper and lower envelopes of their upper and lower
edges.

Proposition 4.6. If 0 � ‖si0si‖ < R, the line θ = u− π
2 properly intersects Zi,

and the lines θ = u± π
2 properly intersect neither ρ

+
i nor ρ−i .

If R < ‖si0si‖ <
√
2R, the line θ = u + π

2 properly intersects Z2i , and the line
θ = u− π

2 properly intersects Z1i and Z3i . Furthermore, the lines θ = u± π
2 properly

intersect none of the edges ρ1+i , ρ1−i , ρ2+i , ρ2−i , ρ3+i , and ρ3−i .

If
√
2R � ‖si0si‖ < 2R, the line θ = u + π

2 properly intersects Zi, and the lines
θ = u± π

2 properly intersect neither ρ
+
i nor ρ−i .

Proof. Let (uP , θP ) parameterize a point of a curve ρi. Let P denote the point
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(b): R < ‖si0si‖ < 2R, (θ2, θ2 + π
2 ) ∈ Zi

(d): R < ‖si0si‖ <
√
2R, (θ3, θ3 − π

2 ) ∈ Z3
i

(a): 0 < ‖si0si‖ < R, (θ2, θ2 − π
2 ) ∈ Zi

(c): R < ‖si0si‖ <
√
2R, (θ1, θ1 − π

2 ) ∈ Z1
i

Fig. 4.5. For the proof of Proposition 4.6: section of Hi and Ci0 by the “planes” Πθ2−π
2
,

Πθ2+
π
2
, Πθ1−π

2
, and Πθ3−π

2
, respectively.

of Ci0 with parameter uP and γ = ∠(
−−→
Psi0 ,

−→
Psi) [2π] (see Figure 4.4). One can

easily show that γ = θP − uP [π]. We prove that γ �= π
2 [π], except possibly when

(uP , θP ) is an endpoint of ρi (or ρ
k
i when R < ‖si0si‖ <

√
2R), which implies, since

γ = θP − uP [π], that the lines θ = u ± π
2 intersect neither ρ+i nor ρ−i (respectively,

neither ρk+i nor ρk−i ), except possibly at their endpoints.

Case 1. 0 � ‖si0si‖ < R. Since si belongs to the disk of radius R centered
at si0 , γ ∈ (−π2 , π2 ) for any P ∈ Ci0 (see Figure 4.4). Thus, the lines θ = u ± π

2

properly intersect neither ρ+i nor ρ−i . Finally, the point of Ci0 (θ2, θ2 − π
2 ), where

θ2 = ∠(%x,−−→si0si) [2π], belongs to the line θ = u− π
2 and also to the relative interior of

Zi since it belongs to the interior of Hi (see Figure 4.5a). Therefore, the line θ = u− π2
properly intersects Zi.

Case 2. R < ‖si0si‖ <
√
2R. Let (uP1 , θP1) parameterize the point connecting

ρ1+i and ρ2+i and (uP2 , θP2) parameterize the point connecting ρ2+i and ρ3+i . Let P1
and P2 denote the points of Ci0 parameterized by uP1 and uP2 , respectively. According
to the construction of ρ1+i , ρ2+i , and ρ3+i , the tangent lines to Ci0 at P1 and P2 pass
through si. At most two tangent lines to Ci0 pass through si, thus P1 and P2 are
the only points of Ci0 where γ = π

2 [π]. Since ρ+i is u-monotone by Lemma 4.3,
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(uP1
, θP1

) and (uP2
, θP2

) are the only points of ρ+i where γ = π
2 [π]. Therefore, the

lines θ = u± π2 do not properly intersect ρk+i , k = 1, 2, 3. Similarly, the lines θ = u± π2
do not properly intersect ρk−i , k = 1, 2, 3.

Let θ1 and θ3 be the parameters on Ci0 of the intersection points between Ci0
and Ci (see Figures 4.5c and d); to differentiate θ1 from θ3, assume without loss of
generality that, for any ε > 0 small enough, the points of Ci0 parameterized by θ1+ ε
and θ3−ε are in the disk of radius R centered at si. Then, the points (θ1, θ1− π2 ) and
(θ3, θ3− π2 ) of Ci0 belong to Z1i and Z3i (or to Z3i and Z1i ), respectively (see Figures 4.5c
and d). However, these points do not belong to the relative interior of Z1i and Z3i
(because they lie on the border of HD(si, θ1− π2 ) and HD(si, θ3− π2 )). Nevertheless,
there clearly exists ε > 0 small enough such that the point parameterized by θ1 + ε
(respectively, θ3− ε) on Ci0 belongs to the interior of the half-disk HD(si, θ1− π2 + ε)
(respectively, HD(si, θ3− π2 −ε)). Thus, the points (θ1+ε, θ1+ε− π2 ) and (θ3−ε, θ3−
ε− π2 ) of Ci0 belong to the relative interior of Z1i and Z3i , respectively. Therefore, the
line θ = u− π

2 properly intersects Z1i and Z3i .
On the other hand, (θ2, θ2 +

π
2 ) (where θ2 = ∠(%x,−−→si0si) [2π]) belongs to relative

interior of Z2i because the point of Ci0 parameterized by θ2 belongs to the relative
interior of the subspoke r′i(θ2 + π) (see Figure 4.5b) which belongs to interior of
HD(si, θ2 +

π
2 ). Therefore, the line θ = u+ π

2 properly intersects Z2i .
Case 3.

√
2R � ‖si0si‖ < 2R. Since ri(θ) intersects Ci0 at most once, γ ∈ [π2 ,

3π
2 ]

(see Figure 4.4). Moreover, γ = π
2 [π] only when ‖si0si‖ =

√
2R, but then P is at

distance R from si which implies that (uP , θP ) is an endpoint of ρi. Thus, the lines
θ = u± π2 intersect neither ρ+i nor ρ−i , except possibly at their endpoints. Finally, the
point (θ2, θ2 +

π
2 ) of Ci0 (where θ2 = ∠(%x,−−→si0si) [2π]) belongs to the line θ = u + π

2
and also to the relative interior of Zi (see Figures 4.5b and 4.1). Therefore, the line
θ = u+ π

2 properly intersects Zi.
By Proposition 4.6, we can compute the union ∪i �=i0Zi by separating the Zi,

Zki into two sets Ω1 and Ω2 (where Zi, Zki belongs to Ω1 if and only if ρ+i , ρ
k+
i

belongs to the strip {(u, θ) ∈ S1 × [u + π
2 , u + 3π

2 ]} and ρ−i , ρ
k−
i belongs to the

strip {(u, θ) ∈ S1 × [u− π
2 , u+ π

2 ]}) and by computing the union of the Zi, Zki in Ω1
(respectively, Ω2) by computing the upper envelope of their upper edges and the lower
envelope of their lower edges. In order to compute efficiently these upper and lower
envelopes, we show that the curves ρ+i , ρ

−
i , ρ

k+
i , and ρk−i intersect each other at most

once. However, we need for that purpose to split the regions Zi when 0 < ‖si0si‖ < R
into two blocks Z1i and Z2i separated by the vertical line u = θ2 = ∠(%x,−−→si0si); it also
remains to split the θ-interval (or the u-interval) over which ρi is defined into two
intervals of equal length over which ρ1±i and ρ2±i are defined (see Figure 4.2). Note
that Proposition 4.6 still holds if we replace (when 0 < ‖si0si‖ < R) Zi by Zki and
ρ±i by ρk±i , k = 1, 2.

For consistency, we split Zi0 into two blocks Z1i0 and Z2i0 separated by a vertical

line (chosen arbitrarily, say u = π). Also for consistency, the curves ρ±i when
√
2R �

‖si0si‖ < 2R are occasionally denoted in what follows by ρ1±i .
Lemma 4.7. Let ρ′i and ρ

′
j be some connected portions of ρ

±
i and ρ

±
j , respectively

(i �= j). If ρ′i or ρ
′
j is monotone in θ and defined over a θ-interval smaller than π,

then ρ′i and ρ
′
j intersect at most once.

Proof. Let (uI , θI) be a point of intersection between ρ′i and ρ
′
j and I be the point

of the circle Ci0 with parameter uI . Since ρ
′
i is a portion of the intersection between

Ci0 and R±i , I is a point of intersection between Ci0 and the diameter of HD(si, θI).
Therefore, the line passing through si and I has slope θI .
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By applying the same argument to ρ′j , we obtain that si and sj belong to the
same straight line of slope θI . Therefore, if ρ′i and ρ′j intersect twice, at (uI , θI) and
(uJ , θJ), then θI = θJ [π]. It follows, if ρ′i or ρ

′
j is defined over a θ-interval smaller

than π, that θI = θJ [2π]. Furthermore, if ρ′i or ρ
′
j is monotone in θ, then (uI , θI) and

(uJ , θI) are equal.
Lemma 4.8. For all i, j, int(Zi) ∪ int(Zj) = int(Zi ∪ Zj).
Proof. We assume that i �= j because otherwise the result is trivial. One can

easily show that int(Zi)∪ int(Zj) �= int(Zi ∪Zj) only if the boundaries of Zi and Zj
partially coincide, i.e., the dimension of ∂(Zi) ∩ ∂(Zj) is 1.

By Proposition 4.5, ∂(Zi) consists of the edges ρ+i and ρ−i and of two vertical line
segments joining the endpoints of ρ+i and ρ−i when these endpoints exist (which is the
case when i �= i0). Moreover, these vertical line segments are clearly supported by
the vertical lines u = θ1 and u = θ3, where θ1 and θ3 parameterize on Ci0 the points
of intersection between Ci0 and Ci (see Figure 4.1).

By Lemma 4.7, the edges ρ±i and ρ±j do not partially coincide. By the general
position assumption, no three distinct circles Ci0 , Ci, and Cj have a common inter-
section point. Thus, for any i �= j, Ci0 ∩ Ci and Ci0 ∩ Cj are disjoint. Therefore, the
vertical lines ∂(Zi) \ {ρ+i , ρ−i } and ∂(Zj) \ {ρ+j , ρ−j } do not partially coincide. Finally,

since ρ±i is nowhere partially supported by a vertical line by Lemma 4.3, ρ±i and the
vertical lines ∂(Zj) \ {ρ+j , ρ−j } do not partially coincide.

Proposition 4.9. Any two curves among the curves ρk±i intersect at most once
(where k ∈ {1, 2} if 0 � ‖si0si‖ < R, k ∈ {1, 2, 3} if R < ‖si0si‖ <

√
2R, and k = 1

if
√
2R � ‖si0si‖ < 2R).
Proof. By Lemma 4.7, it is sufficient to prove that all the curves ρk±i , i �= i0 are

monotone in θ and defined over θ-intervals smaller than π. Indeed, the curves ρ1+i0 ,

ρ1−i0 , ρ2+i0 , and ρ2−i0 clearly do not pairwise intersect more than once, by Lemma 4.4.

If 0 < ‖si0si‖ < R, any spoke of Ci intersects Ci0 at most once. Hence, ρ±i is
monotone in θ. ρ±i is defined over a θ-interval greater than π but smaller than 2π.
Since we have split that interval in two equal parts, ρ1±i and ρ2±i are defined over a
θ-interval smaller than π (see Z1 in Figure 4.2).

If R < ‖si0si‖ <
√
2R, the θ-interval where ri(θ) (or ri(θ + π)) intersects Ci0 is

smaller than π, which implies that ρi is defined over a θ-interval smaller than π. The
curves ρk+i , k = 1, 2, 3, are defined as the connected components of {(r′i(θ), θ) | θ ∈
S1}∩Ci0 and {(r′′i (θ), θ) | θ ∈ S1}∩Ci0 . Since the subspokes r′i(θ) and r′′i (θ) intersect
Ci0 at most once for any θ ∈ S1, the curves ρk+i , k = 1, 2, 3, are θ-monotone.

If
√
2R � ‖si0si‖ < 2R, ri(θ) (and also ri(θ + π)) intersects Ci0 in at most one

point, which proves that ρi is monotone in θ. Furthermore, the θ-interval where ρi is
defined is smaller than π because the θ-interval where ri(θ) (or ri(θ + π)) intersects
Ci0 is smaller than π.

4.3. Construction of ∂(F) ∩ Ci0 . We first show how to compute ∪iZi. Let
Ω1 and Ω2 be the following sets of Zki :

Ω1 = {Zi |
√
2R � ‖si0si‖ < 2R} ∪ {Z2i | R < ‖si0si‖ <

√
2R},

Ω2 = {Z1i ,Z2i | 0 � ‖si0si‖ < R} ∪ {Z1i ,Z3i | R < ‖si0si‖ <
√
2R}.

By Proposition 4.6, the line θ = u+ π2 properly intersects all the Zki ∈ Ω1 but the

lines θ = u± π
2 properly intersect none of their upper and lower edges ρk+i and ρk−i .

Thus, the regions Zki ∈ Ω1 can be seen as regions of {(u, θ) ∈ S1 × [u − π
2 , u + 3π

2 ]}
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such that all their upper edges ρk+i lie in {(u, θ) ∈ S1 × [u+ π
2 , u+ 3π

2 ]} and all their

lower edges ρk−i lie in {(u, θ) ∈ S1 × [u − π
2 , u + π

2 ]}. Therefore, the union of the
Zki ∈ Ω1 is the region of {(u, θ) ∈ S1 × [u − π

2 , u + 3π
2 ]} bounded from above by the

upper envelope of their ρk+i and bounded from below by the lower envelope of their
ρk−i . Similarly, the union of the Zki ∈ Ω2 is the region of {(u, θ) ∈ S1× [u− 3π

2 , u+
π
2 ]}

bounded from above by the upper envelope of the ρk+i and bounded from below by
the lower envelope of the ρk−i .

The union of Ω1 and Ω2, which is ∪iZi, can be achieved by computing, on one
hand, the intersection between the upper edge chain of ∪Zk

i ∈Ω1
Zki with the lower edge

chain of ∪Zk
i ∈Ω2

Zki (which both belong to {(u, θ) ∈ S1 × S1 | θ ∈ [u + π
2 , u + 3π

2 ]}),
and on the other hand, the intersection between the upper edge chain of ∪Zk

i ∈Ω2
Zki

with the lower edge chain of ∪Zk
i ∈Ω1

Zki (which both belong to {(u, θ) ∈ S1 × S1 | θ ∈
[u − π

2 , u + π
2 ]}). These intersections can simply be performed by following the two

edge chains for u from 0 to 2π, since they are monotone in u by Lemma 4.3.

Let us analyze the complexity of the above construction. The ki0 helicoidal vol-
umes Hi that intersect Ci0 can be found in O(ki0) amortized time once the Delaunay
triangulation of the footholds has been computed, which can be done in O(n log n)
time [6, 17]. By Proposition 4.9, the upper and lower envelopes can be computed
in O(ki0 log ki0) time using O(ki0α(ki0)) space where α is the pseudo inverse of
Ackerman’s function [7]. Also by Proposition 4.9, the union of Ω1 and Ω2 can be
done in linear time in the size of the edge chains, that is O(ki0α(ki0)) time. Thus,
we can compute ∪iZi in O(ki0 log ki0) time using O(ki0α(ki0)) space after O(n log n)
preprocessing time. We can compute ∪i �=i0Zi similarly by removing Z1i0 and Z2i0
from Ω2.

The contribution of Ci0 to ∂(F) is, according to Proposition 4.1, Ci0 ∩ ∂(F)
= compl(p//θ(compl(∪iZi))) \ int(compl(p//θ(compl(∪i �=i0Zi)))). By Remark 3.7,
compl(p//θ(compl(∪iZi))) and compl(p//θ(compl(∪i �=i0Zi))) are the projections onto
Ci0 of the largest vertical strips Σi0 and Σ′i0 included in ∪iZi and ∪i �=i0Zi, respec-
tively (see Figure 4.2). These projections are easily computed because the edges of
∪iZi and ∪i �=i0Zi are monotone with respect to u (Lemma 4.3). These projections,
and therefore the computation of Ci0 ∩ ∂(F), can thus be done in linear time and
space in the size of ∪iZi and ∪i �=i0Zi, that is O(ki0α(ki0)).

Moreover, we label an arc of ∂(F) either by i if the arc belongs to the circle Ci or
by (i, j) if the arc belongs to the straight line segment [si, sj ]. The labels of the edges
of ∂(F) incident to Ci0 can be found as follows, without increasing the complexity.
An arc of ∂(F)∩Ci0 corresponds to a vertical strip Σi0 \Σ′i0 . An endpoint P of such
an arc is the projection of a vertical edge or the projection of a point of intersection
between two curved edges. In the first case, P is the intersection of Ci0 with some Ci
and in the second case, P is the intersection of Ci0 with some line segment [si, sj ]. By
the general position assumption, among the circles C1, . . . , Cn and the line segments
joining two footholds, the intersection between three circles, two circles and a line
segment, or one circle and two line segments is empty. Thus, P is the intersection
between Ci0 and either a unique Ci or a unique line segment [si, sj ]. Therefore, the
edge of ∂(F) incident to Ci0 at P is either a circular arc supported by Ci or a line
segment supported by [si, sj ]. Hence, the labels of the edges of ∂(F) incident to Ci0
can be found at no extra cost during the construction.

Since A is the arrangement of the circles of radius R centered at the footholds,∑n
i0=1

ki0 = O(|A|). The above considerations yield the following theorem.
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Theorem 4.10. We can compute ∂(F) ∩ A and the labels of the edges of ∂(F)
incident to the arcs of ∂(F) ∩ A in O(|A| log n) time using O(|A|α(n)) space.

4.4. Computation of the arcs of ∂(F) issued from a foothold. The pre-
vious section has shown how to compute all the vertices of F that are incident to at
least one circular arc. It remains to find the vertices of F incident to two straight
edges. As we have seen in section 2, a vertex of F incident to two straight edges of
∂(F) is a foothold. Furthermore, considering a foothold si0 in a cell Γ of A, si0 is a
vertex of F incident to two straight edges of ∂(F) if and only if si0 is a vertex of the
convex hull of the footholds reachable from si0 . The k′i0 footholds contained in the
disk of radius R centered at si0 can be found in O(k′i0) amortized time because we
have already computed the Delaunay triangulation of the footholds [6, 17]. Thus, we
can decide if si0 is a vertex of the convex hull of these k′i0 footholds in O(k′i0) time
and space. When si0 is a vertex of the convex hull, we can also find the two edges
of the convex hull adjacent to si0 in O(k′i0) time and space. As the sum of the k′i for
i ∈ {1, . . . , n} is bounded by the size of A, we obtain the following theorem.

Theorem 4.11. The footholds belonging to ∂(F) and the labels of the arcs of
∂(F) issued from these footholds can be found in O(|A|) time and space.

4.5. Construction of F .
Theorem 4.12. The free space of the spider robot can be computed in O(|A| log n)

time using O(|A|α(n)) space.
Proof. By Theorem 4.10, we have computed all the circular arcs of ∂(F) and the

labels of the edges of ∂(F) incident to them. By Theorem 4.11, we have computed
all the vertices of ∂(F) that are incident to two straight edges of ∂(F) and the label
of these two edges. It remains to sort the vertices of ∂(F) that appear on the line
segments [si, sj ]. We only consider the line segments [si, sj ] such that the correspond-
ing label (i, j) appears during previous computations. Then, we sort the vertices of
∂(F) that belong to each such relevant line. Since |∂(F)| = Θ(|A|) [2], sorting all
these vertices can be done in O(|A| log n) time. A complete description of ∂(F) then
follows easily.

5. Generalization to polygonal foothold regions.

5.1. Introduction and preliminaries. We consider now the case where the
set of footholds is no longer a set of points but a set S of pairwise disjoint polygonal
regions bounded by n line segments e1, . . . , en. Clearly, S is a subset of the free space
F of the spider robot. Let Fe denote the free space of the spider robot using as
foothold regions only the edges e1, . . . , en. Suppose that the spider robot admits a
stable placement outside S with its feet inside some polygonal footholds; then the
placement remains stable if it retracts its legs on the boundary of these polygonal
regions. Hence, F = Fe ∪ S. We show how to compute Fe.

As observed in Remark 3.8, the results of section 3 remain true if the foothold re-
gions are line segments provided that Hi is replaced by Hei , the generalized helicoidal
volume defined by (see Figure 5.1)

Hei = {(P, θ) ∈ R
2 × S1 | P ∈ HD(s, θ), s ∈ ei}.

The helicoidal volume associated to a point site si will be, henceforth, denoted by
Hsi .

Similarly, we define the generalized circle Cei as the set of points at distance R
from ei. Let Ae denote the arrangement of the n generalized circles Ce1 , . . . , Cen .
Notice that |Ae| = Θ(n2).
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θ

ei

Fig. 5.1. Section of Hei by the “plane” Πθ.

Each arc of the boundary ∂(Fe) of Fe is either an arc of Cei corresponding to a
maximal extension of one leg or an arc corresponding to placements at the limit of
stability of the spider robot. Similar to what we did in section 4, we compute first the
contribution of each Cei to ∂(Fe) (section 5.2). Thereafter, we compute the arcs of
∂(Fe) that correspond to placements where the spider robot is at the limit of stability
(section 5.3). Finally, we show how to construct Fe (and F) in section 5.4.

Figure 5.2 shows an example of free space Fe for polygonal foothold regions.

5.2. Computation of ∂(Fe) ∩ Ae. We compute the contribution to ∂(Fe) of
each generalized circle Cei in turn. We consider the contribution of Cei0 to ∂(Fe)
for some i0 ∈ {1, . . . , n}. Cei0 is composed of two half-circles and two straight line
segments. In order to compute the contribution of Cei0 to ∂(Fe), first we evaluate the
contribution of the half-circles and then the contribution of the straight line segments.
For convenience, we will not compute the contribution of the half-circles to ∂(Fe) but
the contribution of the whole circles. Similarly, we will compute the contribution of
the whole straight lines supporting the line segments of Cei0 .

Let si0 and s′i0 denote the two endpoints of the line segment ei0 , and let Csi0 and
Cs′i0

denote the unit circles centered at si0 and s′i0 , respectively. Let li0 and l′i0 denote

the two straight line segments of Cei0 , and Li0 and L′i0 their supporting lines. We
show how to compute the contributions of Csi0 and Li0 to ∂(Fe); the contributions
of Cs′i0

and L′i0 can be computed likewise.

Let Csi0 = Csi0 ×S1 and Li0 = Li0 ×S1. Basically, we compute ∂(Fe)∩Csi0 and
∂(Fe)∩Li0 , as explained in section 4.1, by computing ∪i(Hei∩Csi0 ), ∪i �=i0(Hei∩Csi0 ),∪i(Hei∩Li0), and ∪i �=i0(Hei∩Li0). The properties of the new regions Zei = Hei∩Csi0
and Yei = Hei ∩Li0 are different though similar to the properties of Zsi = Hsi ∩ Csi0
described in section 4.2. The analysis of Zei and Yei is subdivided into two parts: first,
we consider the line Di supporting ei and we examine the regions ZDi = HDi ∩ Csi0
and YDi = HDi ∩Li0 , where HDi is the generalized helicoidal volume induced by Di,

HDi = {(P, θ) ∈ R
2 × S1 | P ∈ HD(s, θ), s ∈ Di}.

Then we deduce Zei (respectively, Yei) from ZDi , Zsi , and Zs′i (respectively, YDi ,
Ysi = Hsi ∩ Li0 , and Ys′i), where si and s′i are the two endpoints of ei. Thereafter,
we compute the contribution of Cei0 to ∂(Fe) in a way similar to what we did in
section 4.3. The following theorem sums up these results.



236 J.-D. BOISSONNAT, O. DEVILLERS, AND S. LAZARD

Arc of conchoid
Arc of ellipse

Circular arcs

Arc of conchoid

Arc of ellipse

Circular arc

Circular arc

Arc of conchoidArc of conchoid

Arc of ellipse

Line segments

Arc of conchoid

Circular arc

Fig. 5.2. Example of free space Fe for polygonal foothold regions. The polygonal foothold
regions are shown in dark grey. The other parts of Fe are in light grey. The Cei and some arcs of
conchoid are dashed. All the line segments touching the polygons in two points are of length 2R and
represent the ladder introduced in section 5.3.

Theorem 5.1. We can compute ∂(Fe) ∩Ae and the labels of the edges of ∂(Fe)
incident to the arcs of ∂(Fe) ∩ Ae in O(|Ae|α7(n) log n) time using O(|Ae|α8(n))
space.

The proof of this theorem, omitted here, is a direct generalization of the proof of
Theorem 4.10. Details are given in [5] and [12].

5.3. Arcs of ∂(Fe) corresponding to the placements where the spider
robot is at the limit of stability. We now have to compute the edges of Fe that
do not belong to Ae. The arcs of ∂(Fe)∩Ae correspond to placements at the limit of
accessibility of the spider robot, and vice versa. Thus, other edges of Fe correspond to
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placements at the limit of stability of the spider robot. We denote by ∂(Fe)stab the set
of those edges. A placement P of the spider robot is at the limit of stability if and only
if there exists a closed half-disk of radius R centered at P that does not contain any
foothold except at least two footholds located on the diameter of the half-disk such
that P is between these footholds (see Figure 5.3). Therefore, the edges of ∂(Fe)stab
are portions of the curves drawn by the midpoint of a ladder of length 2R moving by
translation and rotation such that the ladder touches the boundary of the foothold
regions in two points but does not intersect the interior of the foothold regions. Hence,
the edges of ∂(Fe)stab are supported by the projection (onto R

2) of the edges of the
boundary of the free space of the ladder moving by translation and rotation amidst
the foothold regions considered as obstacles, i.e., the set of (P, θ) ∈ R

2 × R/πZ such
that the ladder of length 2R that has its midpoint at P and makes an angle θ with
the x-axis does not properly intersect the interior of the foothold regions. According
to [16], the edges of the boundary of the free space of the ladder can be computed
in O(|Ae| log n) time using O(|Ae|) space. The projection (onto R

2) of each edge can
easily be computed in constant time. Thus, we can compute, in O(|Ae| log n) time
and O(|Ae|) space (using [16]), a set of curves in R

2 that contains the arcs of ∂(Fe)
that correspond to placements at the limit of stability of the spider robot. However,
it remains to compute the portions of these curves that belong to ∂(Fe).

P

Fig. 5.3. Example of placement P at the limit of stability.

5.3.1. Notations and definitions. The relative interior of an ei is called a
wall. An endpoint of an ei is called a corner (when several walls share an endpoint,
we define only one corner at that point). The ladder is a line segment of length 2R.
A placement of the ladder is a pair (P, θ) ∈ R

2×R/πZ, where P is the location of the
midpoint of the ladder and θ is the angle between the x-axis and the ladder. A free
placement of the ladder is a placement where the ladder does not properly intersect
the walls or partially lies on some walls and does not properly intersect the others.
(If none of the polygonal regions of S are degenerated into line segments or points,
then a free placement of the ladder is a placement where the ladder does not intersect
the interior of the polygonal regions of S.) A placement of type corner-ladder is a
placement of the ladder such that the relative interior of the ladder touches a corner.
A placement of type wall-endpoint is a placement of the ladder such that an endpoint
of the ladder touches a wall. A placement of type corner-endpoint is a placement
of the ladder such that an endpoint of the ladder touches a corner. We now define
k-contact placements of the ladder.

A 1-contact placement is a free placement of type corner-ladder or wall-endpoint.
A 2-contact placement is either the combination of two 1-contact placements or a
free placement of type corner-endpoint. A 2-contact placement is said to be of
type (corner-ladder)2, (corner-ladder, wall-endpoint), (wall-endpoint)2, or (corner-
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(a) (b) (c) (d)

Ladder

Walls

Fig. 5.4. Examples of 2-contact placements of type (a): (corner-ladder)2, (b): (corner-ladder,
wall-endpoint), (c): (wall-endpoint)2 and (d): (corner-endpoint).

endpoint), in accordance to the types of placements involved in the 2-contact place-
ment (see Figure 5.4). Given two walls (respectively, a wall and a corner, two corners,
one corner), the set of 2-contact placements induced by these two walls (respectively,
the wall and the corner, the two corners, the single corner) is called a 2-contact curve.
The type of a 2-contact curve is the type of the 2-contact placement defining the curve.
Note that the 2-contact curves are defined in R

2 × R/πZ. A 3-contact placement is
a combination of a 1-contact placement and a 2-contact placement. The types of
3-contact placements are naturally given by (corner-ladder)3, (corner-endpoint, wall-
endpoint). With this definition, we unfortunately cannot guarantee that all the 2-
contact curves end at 3-contact placements. Indeed, a 2-contact curve defined by the
ladder sliding along a wall (see Figure 5.4b) ends on one side (if no other wall blocks
the sliding motion) at a 2-contact placement of type (corner-endpoint), where the
ladder is collinear with the wall, without properly intersecting it. In order to ensure
that all the 2-contact curves end at 3-contact placements, we consider these 2-contact
placements as 3-contact placements and denote their type by (corner-endpoint, ‖). A
k-contact placement, k > 3, is the combination of p 1-contact placements, q 2-contact
placements, and r 3-contact placements such that p+ 2q + 3r = k.

Now, we define a 2-contact tracing as the projection onto R
2 of a 2-contact curve.

Similarly as above, we define the types of the 2-contact tracings. Notice that, to any
point P on a given 2-contact tracing K corresponds a unique placement (P, θ) on the
2-contact curve that projects onto K. It follows that to any point P on a 2-contact
tracing K corresponds a unique pair (M,N) of points of contact between the ladder
at (P, θ) and the walls (M and N are equal when K is a 2-contact tracing of type
(corner-endpoint)); when P is an endpoint of K, a 3-contact placement corresponds
to P , however, (M,N) is uniquely defined by continuity. The points M and N are
called the contact points corresponding to P ∈ K. We also define the three contact
points corresponding to a 3-contact placement.

A 2-contact tracing is a straight line segment, an arc of ellipse, an arc of conchoid,
or a circular arc. Indeed (see Figures 5.5, 5.6, 5.7, and 5.8), a 2-contact tracing of
type (corner-endpoint) is a circular arc; a 2-contact tracing of type (wall-endpoint)2

is an arc of ellipse; a 2-contact tracing of type (corner-ladder, wall-endpoint) is an
arc of conchoid (see [5]); and a 2-contact tracing of type (corner-ladder)2 is a straight
line segment. As we said before, we can compute all these 2-contact tracings in
O(|Ae| log n) time using O(|Ae|) space [16], and it remains to compute the portions
of these curves that belong to ∂(Fe).

5.3.2. Overview. We first show that only some portions of the 2-contact trac-
ings correspond to positions at the limit of stability of the spider robot (section 5.3.3).
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These portions are called the relevant 2-contact tracings. Then, we prove that we do
not have to take into consideration the intersections between the relative interior of
relevant 2-contact tracings (Proposition 5.2). We also show that, if a point A is an
endpoint of several relevant 2-contact tracings, only two of them can support edges
of ∂(Fe)stab in the neighborhood of A (Propositions 5.3). Finally (section 5.3.4), we
compute a graph whose edges are relevant 2-contact tracings and where the degree of
each node is at most two. This graph induces a set ∆ of curves supporting ∂(Fe)stab
(Theorem 5.4) that will allow us to compute ∂(Fe)stab in section 5.4.

5.3.3. Relevant 2-contact tracings. As mentioned above, a placement P of
the spider robot is at the limit of stability if and only if there exists a closed half-disk
of radius R centered at P that does not contain any foothold except at least two
footholds located on the diameter of the half-disk, one on each side of P . Thus, a
point P of a 2-contact tracing K belongs to an arc of ∂(Fe)stab only if P lies between
the two contact points corresponding to P ∈ K. The portions of the 2-contact tracings
for which that property holds are called the relevant 2-contact tracings. The other
portions are called the irrelevant 2-contact tracings. We now show how to compute
the relevant 2-contact tracings for each type of contact. Let K denote a 2-contact
tracing, let P ∈ K and let M and N be the two contact points corresponding to
P ∈ K. In Figures 5.5, 5.6, 5.7, and 5.8, the walls and the relevant 2-contact tracings
are thick, the irrelevant 2-contact tracings are dashed thick, and the ladder is thin.

Type (corner-endpoint): K is a circular arc, and M and N coincide with one
endpoint of the ladder. Thus, all the 2-contact tracings of type (corner-endpoint) are
wholly irrelevant.

Type (wall-endpoint)2: K is an arc of ellipse, M and N are the endpoints of
the ladder, and thus, P lies between them. Therefore, all the 2-contact tracings of
type (wall-endpoint)2 are wholly relevant.

Type (corner-ladder, wall-endpoint): K is an arc of conchoid. If the distance
between the corner and the wall is greater than R, then K is wholly relevant.

Otherwise, if that distance is smaller than R, then the two relevant portions and
the irrelevant portion of K are incident to the corner involved in the type of K.

Notice that if the corner is an endpoint of the wall (see Figure 5.4b), then K
degenerates into a line segment, and the irrelevant portion of K is the portion which
is not supported by the wall.

Type (corner-ladder)2: K is a line segment. If the distance between the two
corners is greater than R, then K is wholly relevant; otherwise, the portion of K which
is relevant is the line segment joining the two corners.

We now show that the intersections between the relative interiors of the relevant
2-contact tracings are not interesting for the spider robot motion problem. We recall
that if a vertex A of ∂(Fe) belongs to Ae, then we know by Theorem 5.1 the labels of
the edges of ∂(Fe) incident to A. Otherwise, if A �∈ Ae, then the two edges of ∂(Fe)
that end at A correspond to placements at the limit of stability of the spider robot.

Proposition 5.2. Any vertex A of ∂(Fe), such that A �∈ Ae, is an endpoint of
the two relevant 2-contact tracings supporting the edges of ∂(Fe) ending at A.

Proof. Since the two edges of ∂(Fe) that end at A correspond to placements at
the limit of stability of the spider robot, they are both supported by some relevant
2-contact tracings. Thus, we only have to prove that A is an endpoint of these two
relevant 2-contact tracings.
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K

Fig. 5.5. Irrelevant 2-contact tracing of

type (corner-endpoint), i.e., circular arc.

K

Fig. 5.6. Relevant 2-contact tracing of type

(wall-endpoint)2, i.e., arc of ellipse.

K

K

Fig. 5.7. Relevant, and partially relevant,

2-contact tracings of type (corner-ladder,

wall-endpoint), i.e., arcs of conchoid.

K

K

Fig. 5.8. Relevant, and partially relevant,

2-contact tracings of type (corner-ladder)2.

Let K1 and K2 be these two relevant 2-contact tracings and assume for a con-
tradiction that A is not an endpoint of K1 (nothing is assumed for A with respect
to K2). Let L1 = (A, θ1) (respectively, L2 = (A, θ2)) be the placement of the ladder
that correspond to A ∈ K1 (respectively, A ∈ K2) and let M1 and N1 (respectively,
M2 and N2) be the corresponding contact points (see Figure 5.9). First, notice that
L1 �= L2. Indeed, otherwise, L1 is at least a 3-contact placement, and then A must
be an endpoint of K1, which contradicts our assumption.

By the definition of the relevant 2-contact tracings, A is between M1 and N1.
Moreover, A cannot be equal to M1 or N1 since A is not an endpoint of K1. It follows
that neither M2 nor N2 is equal to A, because otherwise L1 would be a 3-contact
placement. Therefore, A is strictly between M1 and N1 and strictly between M2 and
N2. Thus, A is strictly inside the polygon (M1M2N1N2).

On the other hand, since A �∈ Ae, A does not belong to any Cei , and therefore,
the walls supporting M1, N1, M2, and N2 intersect the open disk DA of radius R
centered at A. Thus, there exist four points M ′1, N

′
1, M

′
2, and N ′2 on these walls and

in DA that are close enough to M1, N1, M2, and N2, respectively, to ensure that
A belongs to the interior of the polygon (M ′1M

′
2N
′
1N
′
2). Since the distances from A

to M ′1, N
′
1, M

′
1, and N ′2, are strictly smaller than R, A belongs to the interior of

Fe. This contradicts our assumption that A is a vertex of ∂(Fe) and yields the
result.

Consider now the adjacency graph G of the relevant 2-contact tracings such that
two relevant 2-contact tracings are connected in G if and only if they have a common



MOTION PLANNING OF LEGGED ROBOTS 241

L1

L2

M2

M1

N1

N2

DA

A

Fig. 5.9. For the proof of Proposition 5.2.

ei3

ei2

ei1

ei4

R

P6 = P
′
6

K7

K1

K2

K3

K4

K5

P ′
1

P4 = P
′
4

P1

P2 P ′
2

P ′
3

P7

P3

P5

A

K6

P ′
5

P ′
7

Fig. 5.10. Relevant 2-contact tracings K1, . . . ,K7 ending at A. K1,K2,K3, and K5 are 2-
contact tracings of type (corner-ladder, wall-endpoint) (i.e., arcs of conchoid). K7 is a degenerated
2-contact tracing of type (corner-ladder, wall-endpoint) (i.e., a line segment). K4 and K5 are 2-
contact tracings of type (corner-ladder)2 (i.e., line segments).

endpoint (the intersections between the relative interiors of the relevant 2-contact
tracings are not considered). Notice that, given the set of relevant 2-contact tracings,
G can be easily computed in O(|Ae| log n) time. Now, given two vertices of ∂(Fe)∩Ae
that are connected along ∂(Fe) by arcs of ∂(Fe)stab, we want to compute these arcs.
For computing these arcs, we cannot simply use the graph G because the degree of
some nodes of G may be arbitrarily large (see Figure 5.10). We show in the next
proposition that we can deduce from G a graph G∗ such that the degree of each
node of G∗ is at most two and that G∗ supports any portion of ∂(Fe) which is the
concatenation of arcs of ∂(Fe)stab.

We consider four hypotheses (H1,. . . ,H4) that obviate the need to consider de-
generate cases. They are not essential but substantially simplify the proof of the
following proposition. The first three hypotheses are made to ensure that the degree
of each vertex of the free space of the ladder is 3.

(H1) The line segments e1, . . . , en compose the boundary of a set of nondegenerated
polygons (i.e., no polygon is reduced to a line segment or to a point).

(H2) The ladder does not admit any 4-contact placement.
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APi1

Pi2 = P ′i2

h2

P ′i1

h1

AP ′i1P
′
i2

AP ′i1Pi2APi1P
′
i2

DA

Fig. 5.11. Wedge Pi1APi2 is in Fe near A.

(H3) The arc (of conchoid) drawn by an endpoint of the ladder when its other
endpoint moves along a wall while the ladder remains in contact with a corner
is not tangent to any other wall.

(H4) The ladder does not admit any 3-contact placement when its midpoint is
located at a corner.

Proposition 5.3. For any node A of G of degree k such that A �∈ Ae, at most
two relevant 2-contact tracings can support ∂(Fe) in a sufficiently small neighborhood
of A. Moreover, we can determine these at most two curves in O(k log k) time using
O(k) space.

Proof. Let A �∈ Ae be a node of G of degree k. We assume that k > 2, otherwise
Proposition 5.3 is trivial. Let K1, . . . ,Kk be the relevant 2-contact tracings that end
at A and let Li = (A, φi) be the placement of the ladder that corresponds to A ∈ Ki.
DA is the open disk of radius R centered at A. We distinguish two cases whether A
is a corner or not.

Case 1. A is a corner. (See Figure 5.10.)

The 2-contact tracing Ki involves at least another contact than the corner-ladder
contact at A. This contact cannot be of type corner-endpoint by (H4). If the contact
is of type wall-endpoint, we define Pi as the contact point between this wall and the
ladder at placement Li (see Figure 5.11). Since A �∈ Ae, the wall must intersect
DA and we define P ′i as a point close to Pi in that intersection. If the contact is of
type corner-ladder, we define Pi = P ′i as the corner (distinct from A) involved in this
contact (notice that Pi = P ′i ∈ DA by (H4)).

Fact. For all i �= j , φi �= φj .

Otherwise, Li = Lj is a 3-contact placement contradicting (H4).

Fact. A is a nonflat vertex of CH(A,P1, . . . , Pk) or belongs to the interior of Fe.
Assume that A ∈ ∂(Fe). Then A lies on the boundary of CH(A,P1, . . . , Pk)

because otherwise the P ′i provides footholds such that the spider robot can move in
a neighborhood of A. Furthermore, A must be a nonflat vertex of CH(A,P1, . . . , Pk)
by (H4).

Assume now that A ∈ ∂(Fe), and let Pi1 and Pi2 be the two vertices of CH(A,
P1, . . . , Pk) such that Pi1 , A, and Pi2 are consecutive along the boundary of CH(A,
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P1, . . . , Pk) (see Figure 5.11). We will exhibit a stable placement for the spider robot
at any position P inside the intersection of the wedge Pi1APi2 and a neighborhood of
A. Let h1 and h2 be two points in the wedge Pi1APi2 such that the wedges Pi1Ah1
and h2APi2 are right (see Figure 5.11).
— If P is in the wedge Pi1Ah2 and is close enough to A, the footholds A, Pi1 , and
P ′i2 yield a stable placement for the spider robot.
— If P is in the wedge h2Ah1 and is close enough to A, the footholds A, P ′i1 , and P ′i2
yield a stable placement for the spider robot.
— If P is in the wedge h1APi1 and is close enough to A, the footholds A, P ′i1 , and
Pi2 yield a stable placement for the spider robot.

Fact. Ki, i �∈ {i1, i2}, cannot support an edge of ∂(Fe) incident to A.
We assume that A ∈ ∂(Fe), because otherwise the claim is obvious. It follows

that A is a nonflat vertex of CH(A,P1, . . . , Pk). A 2-contact tracing Ki, i �∈ {i1, i2}
cannot be an arc of ellipse, because otherwise Li is a 3-contact placement (because A
is a corner here) contradicting (H4). Then, Ki can be either the segment APi or an arc
of conchoid. If Ki is an arc of conchoid, then, by the general properties of conchoids
(see [5]), Ki is tangent to the segment APi at A. Thus, Ki is always tangent to the
segment APi at A. The point Pi strictly belongs to the wedge Pi1APi2 , because we
have shown that φi �∈ {φi1 , φi2}. Thus, in a neighborhood of A, Ki is strictly inside
the wedge Pi1APi2 and thus strictly inside Fe. Therefore, Ki cannot support ∂(Fe)
in a neighborhood of A.

Hence, by sorting the Pi by their polar angles around A, we can determine, in
O(k log k) time, if A is a nonflat vertex of CH(A,P1, . . . , Pk) and, if so, determine
i1 and i2. If A is a nonflat vertex of CH(A,P1, . . . , Pk), then only Ki1 and Ki2 can
support an edge of ∂(Fe) incident to A. Otherwise, A belongs to the interior of Fe
and none of the 2-contact tracings K1, . . . ,Kk can support an edge of ∂(Fe) incident
to A.

Case 2. A is not a corner.

Fact. If there exists i �= j such that φi �= φj, then A belongs to the interior of Fe.
For each relevant 2-contact placement Li = (A, φi), there exists two contact points

Mi and Ni on each side of A at distance less than or equal to R. Since A is not a
corner, neither Mi nor Ni is equal to A, thus A belongs to the relative interior of the
segment MiNi. When φi �= φj , it follows that A belongs to the interior of the polygon
(MiMjNiNj) (see Figure 5.9). Similarly as in the proof of Proposition 5.2, since
A �∈ Ae, there exist four footholds M ′i , N

′
i ,M

′
j , N

′
j in DA and in some neighborhoods

of Mi, Ni,Mj , Nj , respectively, such that A belongs to the interior of the polygon
(M ′iM

′
jN
′
iN
′
j). Thus, A belongs to the interior of Fe.

Hence, if there exists i �= j such that φi �= φj , none of the 2-contact tracings
K1, . . . ,Kk can support an edge of ∂(Fe) incident to A. We now assume that φi = φj
∀i, j.

Fact. There are at most six 2-contact tracings incident to A.

The general position hypothesis (H2) forbids k-contacts for k > 3; thus A corre-
sponds to a 3-contact placement. The three possible choices of two contacts among
three give three 2-contact tracing intersecting in A and thus six arcs incident to A.

Fact. There are three 2-contact tracings incident to A.

If the 3-contact placement L is of type (corner-endpoint, ‖), then there are only
three 2-contact tracings incident to A that are two circular arcs and one line segment.
Otherwise, it comes from the general position hypotheses (H1), (H2), and (H3) (de-
signed to ensure that property) that a 2-contact tracing cannot be valid on both side
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of the 3-contact, i.e., on one side of the 3-contact placement, the placements are not
free. The proof that the hypotheses ensured that fact is detailed in [5].

Fact. There are two relevant 2-contact tracings incident to A.

Since A is not a corner, at the 3-contact placement L, two contact points are on
the same side of A. Thus, only two of the three 2-contact tracings incident to A are
relevant.

5.3.4. Construction of ∆. Now consider the graph G and each node A in turn.
If A ∈ Ae, we disconnect all the edges of G that end at A. Notice that for each such
node A, we know, by Theorem 5.1, whether A ∈ ∂(Fe) and, in such a case, the labels
of the edges of ∂(Fe) incident to A. If A �∈ Ae, we disconnect the edges ending at
A except those (at most two) that may support ∂(Fe) in a neighborhood of A (see
Proposition 5.3). In this way, we obtain a graph G∗ such that the degree of each node
is one or two. We consider each connected component of this new graph as a curve.
Let ∆ be this set of curves. These curves are represented in G∗ as chains (open or
closed). Even if a curve is not simple, it follows that there exists a natural order along
the curve. Then, according to Propositions 5.2 and 5.3, we get the following theorem.

Theorem 5.4. We can compute, in O(|Ae| log n) time using O(|Ae|) space, a set
∆ of curves that support the edges of ∂(Fe) corresponding to placements at the limit
of stability of the spider robot. Moreover, any portion P of ∂(Fe) either intersects Ae
or belongs to a unique curve of ∆.

5.4. Construction of Fe and F . We can now construct Fe and F . Let λk(n)
denote the maximum length of the Davenport–Schinzel sequence of order k on n
symbols and αk(n) = λk(n)/n. Note that α3(n) = α(n).

Theorem 5.5. Given, as foothold regions, a set of n nonintersecting straight line
segments that satisfies (H1), (H2), (H3), and (H4), we can compute the free space Fe
of the spider robot in O(|Ae|α8(n) log n) time using O(|Ae|α8(n)) space.

Proof. By Theorem 5.1, we can compute the contribution of Ae to ∂(Fe) and
the label of the edges of ∂(Fe) incident to them in O(|Ae|α7(n) log n) time using
O(|Ae|α8(n)) space. By Theorem 5.4, we can compute, in O(|Ae| log n) time using
O(|Ae|) space, a set ∆ of curves that support the edges of ∂(Fe) that do not belong
to Ae. Moreover, any portion P of ∂(Fe) such that P ∩ Ae = ∅ belongs to a unique
curve of ∆. Thus, by sorting all the vertices of ∂(Fe)∩Ae ∩∆ on the relevant curves
of ∆, we obtain all the edges of ∂(Fe) that belong to a connected component of
∂(Fe) intersecting Ae. Indeed, for each vertex A ∈ ∂(Fe) ∩ Ae ∩ ∆, we know, in a
neighborhood of A, the portion of the curve of ∆ that belongs to ∂(Fe) because we
can simply determine, for each edge, a side of the edge that belongs to Fe. (The
contact points corresponding to the edges determine a side that necessarily belongs
to Fe.)4 Then it is an easy task to deduce all the connected components of ∂(Fe)
that intersect Ae.

It remains to compute the connected components of ∂(Fe) that do not intersect
Ae. Each of these components must be a closed curve of ∆. Moreover, all the curves
of ∆ belong to Fe. Thus, according to Theorem 5.4, any closed curve K of ∆ that
does not intersect Ae is either a connected component of ∂(Fe) or is strictly included
in Fe. Therefore, by considering, in addition, all the closed curves of ∆ that do not
intersect Ae, we finally obtain a set Ψ of closed curves that contains ∂(Fe) such that
any curve of Ψ is either a connected component of ∂(Fe) or is strictly included in Fe.

4Observe that when the edge belongs to Fe, its two sides belong to Fe.
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At last, as we can simply determine, for each curve of Ψ, a side of the edge
that belongs to Fe, we can easily deduce from Ψ the free space Fe. That concludes
the proof since all these computations can be done in O(|Ae|α8(n) log n) time using
O(|Ae|α8(n)) space.

As we said at the beginning of section 5, the free space of the spider robot using
as foothold regions a set of polygonal regions is obtained by adding these polygonal
regions to Fe. This does not increase the geometric complexity of the free space the
complexity of the computation. Thus, we get the following theorem.

Theorem 5.6. Given a set of pairwise disjoint polygonal foothold regions with
n edges in total that satisfies (H1), (H2), (H3), and (H4), we can compute the free
space F of the spider robot in O(|Ae|α8(n) log n) time using O(|Ae|α8(n)) space.

The function α8(n) is extremely slowly growing and can be considered as a small
constant in practical situations. This result is almost optimal since, as shown in [2],
Ω(|Ae|) is a lower bound for the size of F .

6. Conclusion. We have seen in Theorem 4.12 that, when the foothold re-
gions are n points in the plane, the free space of the spider robot can be computed
in O(|A| log n) time using O(|A|α(n)) space, where α(n) is the pseudo inverse of
Ackerman’s function and A the arrangement of the n circles of radius R centered at
the footholds. By [2] the size of F is known to be Θ(|A|). The size of A is O(n2) but
it has been shown in [15] that |A| = O(kn), where k denotes the maximum number of
disks of radius R centered at the footholds that can cover a point of the plane. Thus,
in case of sparse footholds, the sizes of A and F are linearly related to the number of
footholds.

When the foothold regions are polygons with n edges in total, the free space of the
spider robot can be computed in O(|Ae|α8(n) log n) time using O(|Ae|α8(n)) space,
where nαk(n) = λk(n) is the maximum length of a Davenport–Schinzel sequence of
order k on n symbols, and Ae is the arrangement of the n curves consisting of the
points lying at distance R from the straight line edges. Note that the size of Ae is
O(n2).

It should be observed that, in the case of point footholds, our algorithm im-
plies that O(|A|α(n)) is an upper bound for |F|. However, this bound is not tight
since |F| = Θ(|A|) [2]. In the case of polygonal footholds, our analysis implies that
O(|Ae|α8(n)) is an upper bound for |F|. We leave as an open problem to close the
(small) gap between this upper bound and the Ω(|Ae|) lower bound.

Once the free space F is known, several questions can be answered. In particular,
given two points in the same connected component of F , the algorithm in [2] computes
a motion of the spider robot, i.e., a motion of the body and a corresponding sequence
of legs assignments that allows the robot to move from one point to the other.

The motion planning problem for other types of legged robots remains to be
studied. The case where all the legs are not attached at the same point on a polygo-
nal/polyhedral body is particularly relevant. A spider robot for which all the legs are
not of the same length is also an interesting model.
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Abstract. This paper lays a theoretical foundation for scaling fault tolerant tasks to large and
diversified networks such as the Internet. In such networks, there are always parts of the network
that fail. On the other hand, various subtasks interest only parts of the network, and it is desirable
that those parts, if nonfaulty, do not suffer from faults in other parts. Our approach is to refine
the previously suggested notion of fault local algorithms (that was best suited for global tasks) for
which the complexity of recovering was proportional to the number of faults. We refine this notion
by introducing the concept of tight fault locality to deal with problems whose complexity (in the
absence of faults) is sublinear in the size of the network. For a problem whose time complexity on
an n-node network is T (n) (where possibly T (n) = o(n)), a tightly fault local algorithm recovers a
legal global state in O(T (x)) time when the (unknown) number of faults is x.

This concept is illustrated by presenting a general transformation for maximal independent set
(MIS) algorithms to make them tightly fault local. In particular, our transformation yields an

O(log x) randomized mending algorithm and an exp(O(
√

log x)) deterministic mending algorithm
for MIS. The methods used in the transformation may be of interest by themselves.
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1. Introduction.

1.1. The problem. Many parallel models assume that information can be col-
lected from all processors quickly. In real computer networks, however, communica-
tion is local; hence it takes at least diameter time to collect all information, leading
to global (i.e., linear in the number of nodes) running times on worst-case topolo-
gies. Consequently, Linial and others (cf. [L92, AGLP]) promoted the notion of local
algorithms, namely, algorithms that require the collection of data only from small
neighborhoods. We refer to these algorithms also as sublinear, since their running
time is sublinear in the diameter (or the number of nodes).

The use of sublinear or local algorithms is becoming more and more essential in
order for solutions to scale to the emerging huge networks of today, e.g., the Internet.
However, one striking characteristic of the research on distributed fault tolerance
is that usually faults are corrected globally , i.e., by algorithms involving the entire
system. In other cases, the running time of the correction algorithm is the same as
that of the algorithm for recomputing the function from scratch (cf. [ACS94, AGLP]).
Fast and local fault correction is the topic of the current paper.

We first describe the types of faults dealt with in this paper. The global state of
a distributed system can be represented as a vector whose components are the local
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states of the various nodes of the system. A transient fault in one node may change the
node’s state to some other local state that still looks legal. However, the global state
may no longer be legal. Intensive research efforts were invested in dealing with this
situation and bringing the system to a correct legal state. A common methodology is
based on separating the task into two distinct subtasks, detection and correction. In
this paper we concentrate on the development of fault-local variants for the correction
phase.

The study of fault-local algorithms was initiated in [KP95], where the following
basic question was raised. Consider a problem Π on graphs, whose solutions are rep-
resentable as a function V from the inputs of the network vertices to their outputs.
The set of legal solutions of Π on a given graph G is denoted by Π(G). Consider a
distributed network, whose nodes collectively store the representation of some solu-
tion V ∈ Π(G) of the problem Π on graph G. Suppose that at time t0, the memory
content stored at some subset F of the network nodes is distorted due to some tran-
sient failures. As a result, while the stored values still look locally legal, the global
representation of V has changed into some inconsistent function V ′ that is no longer
valid.

It is clear that, if the problem Π is computable, then investing sufficient compu-
tational efforts it is possible to mend the function, namely, change the values at some
of (or all) the nodes and reconstruct a valid representation of a (possibly different)
solution of the same type, V ′ ∈ Π(G). The question raised in [KP95] was whether it
is possible to take advantage of the relative rarity of faults and distributively mend
the function in time complexity dependent on the number of failed nodes, |F |, rather
than on the size of the entire network, n. This operation (if and when possible) was
termed fault-local mending. The problem Π is fault locally T -mendable if, following
the occurrence of faults in a set F of nodes, the solution can be mended in O(T (|F |))
time. A problem Π is fault-locally mendable if there exists some complexity function
T such that Π is fault-locally T -mendable.

Note, though, that this definition of [KP95] makes no special requirements of
the function T . For example, an easy-to-solve problem Π (say, solvable from scratch
by an algorithm of complexity log-logarithmic in n) may be considered fault-locally
mendable if it is fault-locally T -mendable for a highly costly function T (say, doubly
exponential in |F |).

In [KP95] it is shown that the actual situation is not all that bad for global (linear)
functions. First, every (computable) problem is fault locally mendable. Moreover,
every problem is fault locally c|F | log |F |-mendable for a small constant c. Hence the
complexity of mending is close to linear in |F |.

Fault-local mending may make a lot of sense especially for local functions, since
faults are very often of extremely local nature and involve only a small number of hosts.
(For example, the famous crash of the ARPANET, Internet’s former incarnation, was
caused by a single node giving all other nodes wrong routing information [R81].)
Moreover, systems reliability has been increasing, so the number of faults grows much
more slowly than the network sizes, especially in domains (or localities) of the network
that employ high security and quality standards.

Yet, the motivating observation of the current paper is that for easy-to-solve (or
sublinear) local problems, fault-local mending can still be very bad in the worst case.
As our illustrative example, we take Π to be the problem of computing the MIS of
the graph. MIS enjoys a randomized logarithmic time algorithm [L86]. Recomputing
the MIS from scratch using Luby’s algorithm will only take logarithmic time, whereas
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the running time of the mending algorithm of [KP95] will be exponentially higher if
|F | is large. Hence for such sublinear problems we may hope to be able to do much
better, although this may require a more careful definition as well as a more elaborate
algorithm.

Toward this goal, we now introduce the new notion of tight fault-local mending. If
the cost of computing Π from scratch on an n-vertex network is Ω(T (n)) and Π is fault
locally T -mendable, then we say that Π is tightly locally mendable (or simply tightly
mendable). If Π is only fault locally poly(T )-mendable, then we say that Π is near-
tightly locally mendable. For randomized algorithms we use analogous terminology.
In particular, if T (n) is the complexity of a randomized algorithm for computing Π,
then we say that Π is randomly locally T -mendable. The notion of tightness is defined
similarly.

We should point out two inherent limitations of any kind of mending, or recovery
in general (including, of course, the fault-local approach). First, note that the precise
value of the original function V may not be recoverable, since we do not necessarily
know the fault configuration, namely, which nodes suffered faults, or even how many
faults occurred. (In fact, it is possible for the faults to change the global state to
look precisely as some other legal solution V ′, in which case no problem will ever be
detected!) Note that this limitation applies, of course, to any kind of correction.

While considered here as a limitation, it should be pointed out that viewed from
another angle, our definition of tight fault locality implies a property that looks
stronger than the one stated. This property can serve as another way to view the
difference between fault locality and tight fault locality.

Consider a fault locally T -mendable problem Π. Suppose that we started from a
legal solution V and through failures at a set of nodes F reached an illegal function
V ′. As discussed above, there is no way for the mending algorithm to know which
nodes suffered faults or what the original solution was. It follows that the mending
algorithm is forced to mend V ′ to the legal solution V ′′ closest to V ′; otherwise it
might be too costly if |F | were small. This may in fact be cheaper in some cases than
returning to the original V. The definition of a “close” solution for tightly fault local
algorithm is different (stronger) than previous definitions.

Put more formally, let d(V,V ′) denote the Hamming distance between the two
solutions V and V ′, namely, the number of nodes on which they disagree:

d(V,V ′) = |{v | V(v) �= V ′(v)}|.
For a problem Π, a graph G and a function V ′, let diff(V ′,Π, G) denote the distance
of V ′ from Π(G):

diff(V ′,Π, G) = min{d(V ′,V) | V ∈ Π(G)}.
Clearly, if V ′ is obtained from V ∈ Π(G) through failures in a set of nodes F , then
diff(V ′,Π, G) is bounded from above by |F |. Our observation implies that the com-
plexity of mending a given faulty solution V ′ of Π must thus be O(T (diff(V ′,Π, G))),
even if, in fact, the number of faults |F | is much larger than O(T (diff(V ′,Π, G))).
This is due to the fact that we cannot eliminate the possibility that indeed V ′′ was
the original solution, rather than V, so we must assume the case that allows us the
smallest cost for correction. Note that this does not always imply that the number of
nodes whose state can be changed by the mending algorithm is O(T (diff(V ′,Π, G))),
since changing the states of a large number of nodes may not take a large amount of
time, e.g., in the case that they are “packed” in a small neighborhood.
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Considered from this point of view, our tightly fault-local mending techniques can
be thought of as facilitating an approach defined formally and promoted in [DH95] as
a basic goal of any algorithm for adjusting to topological changes and faults. That
paper suggests the idea that the recovery algorithm should bring the system from its
currently faulty global state to a “closest” global state. However, the definition of
closeness in [DH95] is somewhat different; they count the number of nodes by which
the states differ, rather than the complexity (as a function of that number) of reaching
from one state to the other. Note also that achieving the goal of [DH95] does not
imply a fault-local algorithm and thus, of course, it does not imply a tightly fault-
local algorithm. For example, the algorithm presented there for achieving closeness
performs a global computation even in response to a single change and is thus not
fault local.

The second inherent limitation of fault-local mending has to do with the specific
representation of the solution function V in the network. A crucial observation is that
if the function is represented minimally, then fault-local mending may be impossible
(see [KP95]). Hence any solution approach must be based on making use of additional
data structures at the various nodes, typically storing information about the local
states of their neighbors. It should be clear that the use of such data structures does
not by itself suffice to solve the problem. In fact, it may increase its complexity, since
any additional data stored at the nodes of the system is just as prone to erasure or
distortion due to faults as is the basic data.

1.2. Contributions. In this paper, we define the concept of tight fault locality to
better capture the desired performance of a mending algorithm for sublinear functions.
We focus mainly on the MIS problem and examine its fault-locality properties. An
MIS of G is a maximal set M ⊆ V of nodes such that no two nodes in M are
neighbors. This is a degenerate case of an input/output function, which has no input.
That is, a solution V is actually a Boolean function of the vertices whose value is
V(v) = 1 if v belongs to the MIS, and 0 otherwise, and given a graph G, the set of
legal solutions MIS(G) contains precisely those functions V that represent an MIS
of G. Transient faults may change some 0’s to 1’s (such that the resulting set V ′ is
no longer independent) and some 1’s to 0’s (such that the resulting set is no longer
maximal).

The MIS problem has been intensively studied before in the context of under-
standing the nature of sublinear distributed algorithms. A number of sublinear algo-
rithms exist for it, and hence it is a natural candidate for demonstrating the concepts
and transformation technique presented in this paper. Moreover, MIS is of special
interest in the context of fault-local mending due to the fact that it is used as a
paradigm for several purposes in a distributed system. One example is for scheduling
access to nearby resources [L80] (a generalization of the drinking philosophers prob-
lem [CM84]), e.g., a communication channel. It models a setting in which whenever
one node accesses a resource, its neighbors are prevented from using that resource.

Our results concerning MIS are the following. We present a generic mending algo-
rithm for MIS, namedMend. This algorithm employs an MIS construction procedure
P as a subroutine, and we denote the resulting algorithm byMend[P ]. The properties
of this algorithm depend on the particular procedure chosen. First, employing the
randomized algorithm of [L86],MISL, as our MIS procedure, we demonstrate that the
MIS problem is randomly locally log |F |-mendable. That is, if only |F | faults occurred,
then the expected running time of the randomized mending algorithm, TMend[L], is
only O(log |F |) rather than O(log n). Thus the (randomized expected) complexity of
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locally mending MIS is as good as that of the best (randomized expected) algorithm
known for distributively computing MIS from scratch.

Since we have no nontrivial lower bound on the (randomized or deterministic)
complexity of distributed MIS, the above result serves only to show that MIS is
randomly near-tightly locally mendable. Actually, we show a more general result,
namely, that the existence of any randomized MIS algorithm whose time complexity
is a “reasonably nice” function T (to be defined precisely later) implies that MIS is
randomly locally T -mendable. This implies, in particular, that if the true random-
ized complexity of MIS is such a nice function, then MIS is randomly tightly locally
mendable.

As for deterministic mending we show similar results. Specifically, relying on the
deterministic algorithm of [PS92], MISPS , as our MIS procedure, we show that MIS

is fault locally 2O(
√

log |F |)-mendable; i.e., the expected running time of the mending
algorithm with this procedure, Mend[PS], is TMend[PS] = 2O(

√
log |F |). Again, we

show a general result stating that the existence of any deterministic MIS algorithm
with “reasonably nice” time complexity T implies that MIS is fault locally poly(T )-
mendable. This implies, in particular, that if the true deterministic complexity of
MIS is such a nice function, then MIS is near-tightly locally mendable.

The methods proposed here for mending MIS can be applied also for obtaining
near-tight mending algorithms for a number of other problems, such as coloring and
scheduling problems.

Note that the results listed above establish with certainty only the existence of
near-tightly locally mendable problems. (Of course, problems that can be checked and
computed in O(1) time are trivially tightly mendable. Such problems are presented
in [NS93].)

1.3. Related work. The problem of distributed fault correction has been the
subject of much research in the area of dynamic networks, where the most common
type of faults is the crash of a communication link. An approach with mostly theoreti-
cal appeal was to run a global “reset” protocol that enables restarting the computation
from scratch [F79, AAG87]. Another approach, more common in practice, is to dis-
seminate every piece of local information globally, so that any global function (e.g.,
routing) can be corrected (when faults or changes occur) by every node, simply by
computing the new value from the known global information [MRR80, CGKK95].
Note that in both approaches, every node must participate in the modification pro-
cess for every topological change, e.g., the addition or the crash of a single node;
hence their worst-case complexity is not very attractive. However, when the number
of changes is small, the update approach may lead to considerable savings in com-
munication for many problems, since most of the information does not need to be
redistributed. It is argued [ACK90] that the reset approach can be avoided, since
other approaches can be made more efficient even in the worst case.

In [ACK90], a spanning tree is maintained rather than recomputed. When a tree
edge fails, the algorithm replaces it by a single other tree edge (if possible), keeping
the rest of the tree intact. This property is called there path preservation, and it
is argued that it keeps the routing on the tree intact for every route that does not
use the failed edge. Similar examples appear in [CP87, CK85, NS93, MNS95, DH95].
In [DH95] this idea was generalized and formalized as a requirement that an illegal
global state is corrected to a global state that is the “closest.” A general global
algorithm (superstabilization) is presented there to perform this task for any problem
if the number of detectable faults is precisely 1. This correctness notion, however,
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is not related to complexity: the superstabilizing general algorithm given therein has
an Ω(diameter) running time even when only one fault occurs (hence it is not fault
local). Thus, the intuition captured by [DH95] may prove a good generalization for
the path preservation (i.e., formalizing the intuitive notion of small disruption), and
fault locality formalizes another intuitive notion—that of efficiency. On the other
hand, the definition of tight fault locality , introduced in the current paper, attempts
to capture both of these intuitive notions.

All of the previous approaches mentioned above are more suitable for global (lin-
ear) problems; and even for those problems they (with the exception of the fault local
approach of [KP95]) consume at least Ω(diameter) time, even for a small number of
faults. This means that even one fault can cause a global computation. Moreover,
these approaches (especially reset) are mainly suitable for a distributed system that
cannot produce “useful work” when some of its nodes suffer a transient fault. A more
dynamic solution to the MIS problem, in which the system corrects itself as locally
as possible, letting undamaged regions of the system operate as usual in the mean-
time, appears in [ACS94]. However, the running time of that correction algorithm is
the same as that of recomputing the function from scratch. On the other hand, the
algorithm in [ACS94] is based on less synchrony assumptions than those used in this
paper; in particular, it is not assumed there that all the nodes start the algorithm at
the same time or that the network is synchronous.

A generalization of dynamic networks to deal with self-stabilization is proposed in
[AKY90]. The reset algorithms in this context (e.g., [AKY90, APV91, AV91, AK93,
APVD94]) suffer from the same disadvantages mentioned above. Other models deal
with other (sometimes even stronger) types of faults, or try to treat several kinds
of faults simultaneously [GP93, DH95]. Other models studied in the literature allow
efficient algorithms through imposing various restrictions; e.g., only one fault may
occur at a time, or the network is a complete graph, etc.

2. Preliminaries.

2.1. Model and definitions. We model a distributed system as a graph G =
(V,E), where V is the set of the system (or network) nodes, |V | = n, and E is the
set of links. Nodes communicate by sending messages over the links. The network is
synchronous; that is, communication proceeds in rounds, where in every round each
node receives all the messages sent to it from its neighbors in the previous round, and
sends messages to some of its neighbors. Moreover, we assume that all faults occur
simultaneously at time t0. To focus on time complexity, we adopt the model employed
in previous studies of locality issues [GPS87, L92], in which message complexity is
abstracted away by allowing the transmission of arbitrary size messages in a single
time unit. (Our messages are nevertheless not very large.)

We consider the problem of mending an MIS of a given graph G. The MIS
is represented distributively by a vector of bits M = (Mv1 , . . . ,Mvn), with each
node v storing its own bit Mv, such that Mv = 1 iff v is in the MIS. Denote by
S(M) = {v | Mv = 1} the set induced by M. Hereafter, we shall occasionally use
M for the MIS S(M), where the intention is clear from the context.

Our approach allows a more general representation, in which in addition to the
output bitMv each node v may maintain an additional data structure Dv, which is a
function ofM and the particular algorithm. Note thatM is a part of the definition of
the problem, whereas different algorithms may use different definitions (and different
value ranges) for Dv.
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We distinguish two important global states: the one just before the faults and
the one just after. LetM∗v be the representation of the MIS before the faults, and let
Mv be the current representation of the MIS (after the faults). Likewise, let D∗v be
the data structure stored at v before the faults, and let Dv be the current structure
stored at v. ThusMv and Dv are the inputs for the mending task. (Clearly,M∗v and
D∗v are not known to v.)

Formally, the set F of faulty nodes and the set H of healthy nodes are defined,
respectively, as

F = {v | Mv �=M∗v or Dv �= D∗v} and H = {v | Mv =M∗v and Dv = D∗v}.
If the resulting set S(M) is not an MIS on a given graph, then there are two

possible types of violations. A node v is said to be uncovered if neither v nor any of
its neighbors are in S(M). A node v is said to be collided if both v and one of its
neighbors are in S(M).

Definition 2.1. The conflict set of the assignmentM, denoted C(M), is the set
of nodes that can detect locally that S(M) is not a legal MIS, namely, the uncovered
nodes and the collided nodes.

Finally, we need a few definitions concerning the immediate surroundings of sets
of nodes. Let Γi(v) be the set of all nodes whose distance from v in G is less than or
equal to i. For a set of nodes W , let Γi(W ) =

⋃
w∈W Γi(w). The complement of a set

of nodes U ⊆ V is defined to be

Co(U) = V \ U.
The i-border of the set U is defined to be the set of nodes in the i most external layers
of U or, formally,

Borderi(U) = Γi(Co(U)) ∩ U.
Border1(U) is denoted simply Border(U).

2.2. Utilizing MIS procedures. To date, the precise complexity of distributed
MIS is not known. Hence to cast our results in as general a form as we can, we describe
our mending algorithm using any distributed MIS procedure as a black box. We are
interested in showing that MIS is tightly locally mendable (or at least near-tightly
locally mendable). We can prove that subject to the assumption that the complexity
of the optimal algorithm is a “reasonably nice” function. To establish that, we show
that the existence of any MIS algorithm whose time complexity is a “reasonably nice”
function T implies that MIS is fault-locally T -mendable in the randomized case and
fault-locally poly(T )-mendable in the deterministic case.

More precisely, by a “reasonably nice” complexity function we mean the following.
A function T : N �→ N is said to be sublogarithmic if it is nondecreasing and positive
for n ≥ 1, and in addition it satisfies the following condition:
(SL1) ∀x, y, T (xy) ≤ T (x) + T (y).

The function T is superlogarithmic if instead of (SL1), it satisfies

(SL2) ∀x, y, T (xy) > T (x) + T (y).

Note that the log function is sublogarithmic and, in fact, most complexity func-
tions likely to be used are either sublogarithmic or superlogarithmic. (Our results may
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possibly hold also for functions that are neither sublogarithmic nor superlogarithmic,
but this is left for further research.)

First consider deterministic MIS procedures. Our definition of “reasonable” com-
plexity allows any deterministic MIS procedureMISD whose complexity TMISD

(n) is
either sublogarithmic or superlogarithmic. This applies, in particular, to the currently
best known procedure, due to [PS92] (whose complexity is superlogarithmic).

Lemma 2.2 (see [PS92]). There exists a deterministic distributed algorithm

MISPS for computing an MIS on an n-vertex graph in time TMISPS
(n) = 2O(

√
logn).

(Note that 2O(
√

logn) is asymptotically larger than any polylogarithmic function
in n but smaller than nε for any ε > 0.)

In our mending algorithm, we invoke an MIS procedure only for a prescribed
number of steps τ , on some region G′ of the graph, of size n′. If τ ≥ TMISD

(n′), then
the procedure will indeed halt with the correct output. If this requirement does not
hold, then we assume that the output is arbitrary.

We now turn to randomized MIS procedures. Since the best known random-
ized MIS algorithm is of expected time complexity O(log n), we need only consider
procedures of sublogarithmic complexity. Consequently, we shall concentrate on ran-
domized Las Vegas type MIS procedures MISR whose expected time complexity
TMISR

(n) is sublogarithmic. Relying on Markov’s inequality, we will in fact make
use of a corresponding Monte Carlo variant of the procedure, MISR(τ), in which the
procedure is halted after τ steps. Based on well known techniques, it is easy to show
the following properties.

Lemma 2.3. Given a randomized Las Vegas MIS procedure MISR of expected
time complexity TMISR

(n), there exists a constant c̃ ≥ 1, such that whenever executing
the corresponding Monte Carlo variant MISR(τ) with τ ≥ c̃ · TMISR

(n), the output
is a legal MIS with probability 3/4.

We point out that our randomized mending algorithm is nevertheless a Las Vegas
algorithm. Also, note that again our requirement applies in particular to the currently
best known randomized procedure due to [L86].

Lemma 2.4 (see [L86]). There exists a randomized distributed algorithm MISL

for computing an MIS on an n-vertex graph in expected time TMISL
(n) = O(log n).

3. Overview of the solution. A first naive solution one may suggest for the
problem of mending an MIS assignment is to have the nodes in the conflict set C(M)
run an MIS protocol, without involving the rest of the nodes of the graph. The
problem with this approach is that, even assuming it is possible to efficiently correct
M in such a way,1 this alone cannot guarantee that the complexity of the mending
process is bounded as a function of the number of corrupted nodes, since the conflict
set might be much larger than the set of corrupted nodes. Consequently, in our
solution every node stores information about its state at neighboring nodes. The
obvious difficulty is that the data stored at a node for its neighbors might get corrupted
just as easily as its own data. Moreover, simple voting schemes (if the node consults
many neighbors) run into difficulties. See [KP95, LPRS93, P96].

We start by presenting a simplified solution for the case that |F | is known in
advance. First we describe the local data structures Dv employed in our solution. In
addition to the output bit Mv, each node v will store a bit Dv(u) = Mu for each
node u whose distance from v in the graph is 2 or less. Formally, Dv = {Dv(u) ∈
{0, 1} | u ∈ Γ2(v)}.

1It is probably not, since it entails solving the problem of MIS completion, which is NP-Hard.
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Given |F |, partition the nodes into two sets: a set Big consisting of the nodes v
whose distance-2 neighborhood Γ2(v) contains more than 2|F | nodes, and a set Small
containing the rest. Each of these sets will be treated separately.

The output of a node v in Big is determined by a majority vote among its 2-
neighbors (including itself), based on the value stored for v in their data structures.
If the result of this vote is different than Mv, then v changes its Mv accordingly.
(The reasons for which we look at the distance-2 neighborhood of nodes rather than
simply their direct neighborhoods will become clear later.) Note that following this
vote the original correct value ofM∗v for any v in Big is recovered.

Now consider all the nodes in Small. Some of them may now belong to the
conflict set C. Denote this subset by Ĉ = C ∩ Small. Notice that it is not enough
to run an MIS algorithm for the nodes in Ĉ only, since some of them have neighbors
in the complement Co(Ĉ), and a combination of an arbitrary new MIS in Ĉ and the
original MISM in Co(Ĉ) does not necessarily form a legal MIS. One would thus like
to select a special kind of MIS in Ĉ, namely, one that is constrained by the values of
the original MISM in Co(Ĉ). More specifically, a node v in Ĉ whose neighbor w in
Co(Ĉ) hasMw = 1 is not allowed to outputMv = 1, and likewise, uncovered nodes
in Co(Ĉ) may impose a 1 value on their neighbors in Ĉ.

Unfortunately, solving such a constrained MIS even by a sequential algorithm is
NP-Hard. To overcome this difficulty, we resort to a more relaxed method of fusing
the new MIS constructed for Ĉ to the existing one on Co(Ĉ). We first employ a
procedure that selects a subset L of some of the nodes in Co(Ĉ) that are at distance 1
or 2 from Ĉ. For L produced by this procedure, the original MISM restricted to the
resulting set Co(Ĉ ∪ L) has the nice property that it is “shielded” from the influence
of fusing to it a new MIS assignment on Ĉ ∪L, no matter what MIS values are chosen
for Ĉ ∪L. More specifically, consider a node v in Co(Ĉ ∪L) that borders with Ĉ ∪L.
Then in the MISM defined on Co(Ĉ ∪ L), the value of v isMv = 0, and, moreover,
v has a neighbor u in Co(Ĉ ∪L) such thatMu = 1. We say thatM is a shielded MIS
on Co(Ĉ ∪ L). Therefore, as we now compute a new MIS assignment on Ĉ ∪ L, it is
easy to see that no matter what this MIS assignment is, its fusing together withM
in Co(Ĉ ∪ L) yields a legal MIS in G.

As for time complexity, the execution time of this protocol is bounded by ensuring
that the size of Ĉ ∪ L is O(|F |). (The dependence on the particular MIS procedure
used for computing the new MIS assignment on this region is discussed in the next
subsection.) For bounding |L|, we rely on the fact that L consists of nodes that are
in the 2-neighborhood of nodes in Ĉ. This ensures that |L| = O(|F |) as a result
of our choice to include in Ĉ only nodes with small 2-neighborhoods. This is an
additional reason for treating nodes with large 2-neighborhoods separately, through
direct majority vote.

We now turn to the general case, where it is not assumed that |F | is known. In
this case, our algorithm runs in phases, performing a search on the number of faults
|F |. In phase i it is “guessed” that the number |F | of faults is not larger than some
λi. The precise definition of λi, given later, depends on the complexity of the MIS
procedure used and is aimed at preventing the number of phases from appearing as a
multiplicative factor in the complexity of the algorithm.

Several things can go wrong when the guess is too small. One minor problem is
that since F is larger than guessed (in the first few phases), the size of the conflict
set Ci may also be larger than anticipated; hence, the MIS computation on Ci ∪ Li

may be too long. An easy way to prevent that from happening is to execute the
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MIS computation in the i’s phase only for the time that would have been needed
for this computation had the size of Ci indeed been λi. That is, phase i is run for
O(TMISR

(λi)) time in the randomized case or O(TMISD
(λi)) in the deterministic case.

A more severe problem is that the computations carried out in the first phases
may increase the number of “currently faulty” nodes. That is, denoting by Fi the set
of nodes v whose MIS value Mv at the beginning of the ith phase is different from
their original valueM∗v, while F1 = F , the set F2 is affected by the outcome of phase
1: The assignment of new MIS values to the nodes of the conflict set C1 in phase 1
may cause many nodes whose original value was correct to erroneously change their
value, thus making the set F2 much larger than F and causing many new conflicts to
show up in phase 2 and so on. This is the case even if phase 1 is terminated after the
fixed time bound.

The only way to completely wipe out the influence of the previous phase would be
to make all participating nodes return to their initial values. Indeed, this operation is
applied at nodes that decide at the end of a phase to participate in subsequent phases
(using the initial values, saved in variables Msav

v ). But applying such a reinitializa-
tion operation globally may be highly time consuming, since it may happen that the
assignment in the neighborhood of some nodes in the conflict set Ci is consistent at
the end of the phase, and hence these nodes are ready to terminate, while some other
nodes observe inconsistencies, implying the necessity of another phase. Therefore,
reinitialization of all nodes requires broadcast of a message from the latter nodes to
the former, which may be time consuming.

It is therefore necessary to ensure two things: first, that the algorithm is able to
detect that the guess was wrong, and, second, that the operations of the algorithm
under the wrong guess did not cause “too much damage.” We achieve this behav-
ior by attempting to prevent seemingly faulty nodes from participating in the voting
process and gaining undue influence. Toward that end, we introduce one additional
“screening” step before performing our votes. The idea is that nodes with a suspi-
ciously high number of conflicts with neighbors (where “high” here is relative to the
phase) will be “guessed” faulty and consequently will be barred from participating in
the voting. It is important to note that despite the possibility of nonvoters, the votes
carried at the nodes of Big will still require a strict majority, namely, more than half
of the entire 2-neighborhood (not just of the voters).

4. MIS completions. Formally, the problem of relaxed MIS completion requires
us to compute an MIS, given a partial MIS assignment. It is permitted to change
any part of the partial MIS assignment, as long as the end result is a legal MIS.
Note that the only difference between this problem and the problem of MIS is that
the complexity of this problem may be lower, due to the given partial information.
We comment that in our specific solution, the only values of the given partial MIS
assignment U that may be changed are at the set Border2(U).

4.1. Shielded MIS, fringed MIS, and shielded kernels. We now describe a
distributed procedure Rel Comp(G,W,M, τ) that, given a graph G, a subset W of
the vertices, a partial MIS assignmentM on W (possibly with some uncovered nodes
on the border of W ), and a time bound τ , computes a relaxed completion of M on
the rest of the graph (with minimal penetration to the region of W ). The procedure
makes use of an MIS procedure, which can be either deterministic or randomized and
is applied only for τ steps.

Definition 4.1. Given a graph G = (V,E), a subset U ⊆ V , and an MIS R on
the subgraph induced by U , we say that R is a Shielded MIS for U if it contains no
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1. Initialize U to be W .
2. Let X = {v ∈ Border(U) | Mv = 1}, and eliminate the nodes of X from U .
3. Let Y = {v ∈ U | v is uncovered}, and eliminate the nodes of Y from U .
4. Define R = {v ∈ U | Mv = 1}.
5. Output (R, U).

Fig. 1. Procedure Shield MIS(G,W,M).

nodes from Border(U).
Definition 4.2. Given a graph G = (V,E), a set W = {v1, . . . , vk} ⊂ V , and

an independent set assignment M = (Mv1 , . . . ,Mvk
) on W , we have that the set

S(M) is a fringed-MIS of W if it is maximal everywhere except possibly on its border;
namely, the only violations that prevent it from being a legal MIS involve nodes v in
Border(W ) that are uncovered.

This definition is motivated by the fact that our mending problem leads to situ-
ations where some of the MIS was ruined, yet other segments remain intact. These
segments now form a fringed-MIS, since although no changes have occurred on these
nodes themselves, their border nodes may become uncovered due to changes in their
neighbors.

Definition 4.3. Given a graph G = (V,E) and a subset W = {v1, . . . , vk} ⊂ V ,
a shielded kernel for W is a pair of subsets (R, U) such that

1. R ⊆ U ⊆W ,
2. U contains (at least) all the internal layers of W up to the last two layers,

namely, W \ Border2(W ) ⊆ U , and
3. R is a shielded MIS for U .
Figure 1 describes a procedure Shield MIS that, given a graph G, a set of nodes

W , and a fringed-MISM on W , generates a shielded kernel (R, U) for W . Figure 2
illustrates the operation of the procedure. (The procedure is sequential; we discuss
its distributed implementation later.)

Lemma 4.4. Procedure Shield MIS provides a shielded MIS for the given prob-
lem and requires O(1) time for a distributed implementation.

Proof. Property 1 in the definition of shielded MIS is guaranteed trivially by the
procedure. For property 2, we need to argue that every node that is eliminated from
U belongs to the external two layers of W . For the first elimination step, step 2,
this is immediate. For the second elimination step, step 3, the claim follows from the
fact that M is a fringed MIS; hence initially it could have uncovered nodes only on
its border, and step 2 could introduce new uncovered nodes only in one of the two
external layers of W .

It remains to prove property 3. We first argue that R forms an MIS on U . Since
S(M) is a fringed MIS on W , and no new 1-valued nodes were introduced, there
are no collision violations in R. Step 3 directly guarantees that U has no uncovered
nodes. Hence R is an MIS on U .

Finally, we need to argue that R contains no nodes from U ’s border. Assume,
to the contrary, that R contains some node v from the border of U . If v was also
on the border of W , then it should have been erased from U in step 2. Therefore,
necessarily v was an internal node of W and was brought to the border of U due
to the elimination of some of its neighbors. But step 2 eliminates only nodes v with
Mv = 1, none of which could have been a neighbor of v (since otherwiseM contains a
collision), and step 3 eliminates only nodes whose neighbors w in U all haveMw = 0;
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000 1

000 1

01 0 1

X Y U

Border(W)

Ext(W) W

Fig. 2. The operation of Procedure Shield MIS on a set W with a fringed-MISM. (M is not
an MIS because the upper left corner node is uncovered.)

1. Applying Procedure Shield MIS(G,W,M), obtain a shielded kernel (R, U)
for W .

2. Let Q = Co(U).
3. Apply an MIS procedure to the subgraph induced by Q for τ steps, and get
an MIS R′.
This can be a deterministic procedureMISD or a Monte Carlo type procedure
MISR(τ).

4. Output R∪R′ as an MIS for the entire graph.

Fig. 3. Procedure Rel Comp(G,W,M, τ).

hence again none of them could be a neighbor of v, a contradiction.

4.2. Using shielded MIS for relaxed MIS completion. We now use the
procedure given in the previous section for deriving a procedure Rel Comp for re-
laxed completion of a given fringed MIS. We are given a graph G = (V,E), a subset
W = {v1, . . . , vk} ⊂ V , and a fringed-MIS assignment M = (Mv1 , . . . ,Mvk

) on W .
Procedure Rel Comp is described in Figure 3, and its properties are stated in the
following lemma.

Lemma 4.5.

1. Procedure Rel Comp reassigns MIS values only at the nodes of a set Q re-
stricted to Co(W ) ∪ Border2(W ).

2. If a deterministic MIS procedure MISD is used, and the time limit τ sat-
isfies τ ≥ TMISD

(|Q|), then procedure Rel Comp provides a relaxed MIS
completion for M.

3. If a randomized MIS procedure MISR(τ) is invoked, and the time limit τ
satisfies τ ≥ c̃ ·TMISR

(|Q|) (for the constant c̃ of Lemma 2.3), then procedure
Rel Comp provides a relaxed MIS completion with probability 3/4.
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4. The time complexity of Procedure Rel Comp is O(τ).

Proof. The fact that R is a shielded MIS for U guarantees that it can be combined
without conflicts with the MIS R′ computed for the complement of U to yield an
MIS for the entire graph. The time complexity of the procedure is composed of
that of procedure Shield MIS, which is O(1), and the time complexity of the MIS
procedure on Q, which is limited to τ steps. The bound on the failure probability in
the randomized case follows from Lemma 2.3.

4.3. Distributed implementation. While the description of the procedure
Rel Comp and its subprocedure Shield MIS is given in “sequential” form, it is
clear that both procedures have a straightforward distributed implementation. The
only delicate point is that these procedures are to be initiated (as we shall see later)
simultaneously not only by the nodes of the set W , but also by some nodes of its
complement, Co(W ). This does not create any special difficulties, though, since the
exact time duration for all the computations is known to all the nodes in the graph.
Moreover, these initiators are neighbors ofW , and thus the nodes inW which perform
the procedure get the initiation messages within a constant time.

5. MIS correction algorithm. We are now ready to describe our mending
algorithm for the MIS problem. The algorithm, Mend, is given below in Figure 4.
The algorithm starts by saving the input values of M and the data structure D in
variables Msav and Dsav. Let Dsav

v (v) = Msav
v . These input values will be used

from time to time throughout the execution. The variables M and D will be used
for recording the output of the computation. Specifically, whenever a node v selects
a new value for its MIS assignment, it stores it in Mv as well as in Dw(v) at every
node w ∈ Γ2(v).

The algorithm makes use of a record inconsistency graph GRI defined on V , whose
edges identify pairs of nodes of which one must be faulty. The edges of this graph
are determined on the basis of an inconsistency between theM value of a node and
the recorded value for that node in the data structure stored at a neighbor. Formally,
this graph is defined as follows.

Definition 5.1. The (undirected) record inconsistency graph GRI consists of
the following edges. For every two nodes u,w ∈ V , the edge (u,w) is included in GRI

if one of the following conditions holds:

1. dist(u,w) ≤ 2 and Msav
u �= Dsav

w (u) or vice versa,
2. Dsav

u (x) �= Dsav
w (x) for some common distance-2 neighbor x of u and w (i.e.,

x ∈ Γ2(u) ∩ Γ2(w)).

Note that GRI can be constructed distributively in constant time, as each node
can find out which other nodes neighbor it in GRI . For every node v, let degRI(v)
denote v’s degree in GRI .

As outlined earlier, the algorithm conducts majority votes to determine the output
of some nodes, using their neighbors’ data structures. However, a node v with high
degRI(v) (where “high” here is w.r.t. the current phase) is “guessed” to be faulty and
is not allowed to vote. In addition, the algorithm maintains a set Detected of nodes
that detected a local inconsistency in their own initial output (i.e., every node v such
that Msav

v = 1 and Dsav
v (w) = 1 for some neighbor w, as well as every node v such

thatMsav
v = 0 and Dsav

v (w) = 0 for every neighbor w). Since the nodes in Detected

are known to be faulty, they too do not vote.

In each phase i, the algorithm separates nodes with large neighborhoods from
ones with small neighborhoods using a threshold λi. The sequence {λi} will be fixed
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on a global start signal do
1. For every node v, setMsav

v ←Mv andDsav
u (v)← Du(v) for every u ∈ Γ2(v).

2. For i = 1 to Jmax do (* i.e., when λi ≤ n *)
(a) For every node v ∈ Bigi that has a collision or uncoverage conflict with

some neighbors (with the currentM values), perform a vote on the value
ofMv among the voting nodes in its 2-neighborhood as follows:
i. LetMv ← 0 if |{w ∈ Voti(v) | Dsav

w (v) = 0}| > γ(v)/2.
ii. LetMv ← 1 if |{w ∈ Voti(v) | Dsav

w (v) = 1}| > γ(v)/2.
iii. If neither of the two votes has the majority (* due to

nonvoters *)
v marks itself and its neighbors in Voti(v) “nonparticipating”
(and leavesMv unchanged).

(b) Let NPi be the set of nonparticipating nodes.
(c) for every participating node v ∈ Smalli \ NPi do:

If v has a collision with a “participating” neighbor w ∈ Bigi
(namely,Mv =Mw = 1), then letMv =Msav

v .
(d) Let Ci = (C(M) ∩ Smalli) \ NPi.

(* Participating nodes that are in Smalli and in the conflict set induced
by the currentM. *)

(e) If Ci �= ∅ then the nodes of Ci invoke Procedure Rel Comp(G,V \
Ci,M, τi) for τi = TMISD

(λi+3) in the deterministic case, and τi =
c̃ · TMISR

(λi+3) in the randomized case.
(f) for every node v whose Mv has changed, let Du(v) = Mv for every

u ∈ Γ2(v).
3. (* Handling the case that all phases failed. *)
In the randomized case only: if any conflict still exists then invoke a Las
Vegas variant of Algorithm MISR.

Fig. 4. Algorithm Mend.

later, as a function of the specific MIS procedure used. The only requirement imposed
on the choice of this sequence is that it must be quadratically growing, namely, satisfy

λi+1 ≥ λ2
i

(thus the length of the sequence is smaller than log logn). This choice also determines
the value of Jmax, the number of phases in the algorithm. (Jmax is taken to be the
first i such that λi ≥ n.)

For the algorithm and analysis, we use the following definitions. Let

NVi = {v | degRI(v) > λi} ∪ Detected and Voti(v) = Γ2(v) \ NVi
(standing, respectively, for “nonvoting” and “voters”). For every node v, let γ(v) =
|Γ2(v)|. Let

Bigi = {v ∈ V | γ(v) > 2λi} and Smalli = {v ∈ V | γ(v) ≤ 2λi}.

6. Correctness and analysis of the main algorithm. We first describe the
general structure of the proof. In Lemma 6.5 (using Lemma 6.4) we show that for a
sufficiently large i, phase i computes a valid MIS. However, the complexity depends
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on the size of the set Fi of “currently faulty” nodes whose outputMv at the beginning
of phase i is different than the original value M∗v. Note that these could be either
faulty nodes or healthy nodes that erroneously computed a newMv during previous
phases. In Lemmas 6.1 and 6.2 we show that the number of such nodes Fi in phase
i is not much larger than the number of faults F . First, in Lemma 6.1 we show that
the number of nodes participating in computing an MIS in phase i is not much larger
than the number of (low-degree) nodes in Fi. Then in Lemma 6.2 we show that the
number of (low-degree) nodes in Fi+1 is not much larger than the number of nodes
that participated in the MIS in phase i.

Lemma 6.1. In any phase i, the set Ci satisfies |Ci| = O(|F |+ |Fi∩Smalli| ·λi).
Proof. Consider a phase i. Partition the set Ci defined in step 2d into CF =

(F ∪Fi)∩Ci and CH = (H ∩Hi)∩Ci. Clearly, |CF | is bounded by |F |+ |Fi ∩ Smalli|,
since Ci ⊆ Smalli. It is therefore sufficient to bound |CH |.

The notion of accusation is defined as follows. Each node in conflict must accuse
some node. In particular, for every v ∈ Ci, the set of nodes accused by v, denoted
Accuse(v), is {w | (v, w) ∈ E,Mv =Mw = 1} if v is collided, and {w | Dsav

v (w) = 1}
if v is uncovered.

We now argue that ∅ �= Accuse(v) ⊆ Fi for every node v ∈ CH . To see that
Accuse(v) is nonempty, for an uncovered v, note that since v is in both H and Hi,
necessarilyM∗v =Msav

v =Mv = 0, and v’s records Dsav
v are identical to the original

D∗v . Hence these records must show a neighbor w such that Dsav
v (w) = 1; hence

w ∈ Accuse(v). The argument for a collided v is similar. To see that each node w
accused by v is in Fi, note that since v ∈ H ∩ Hi, Dsav

v (w) agrees with M∗w, and
henceMw �=M∗w; hence w ∈ Fi.

Consequently, partition the set CH into two sets, the set Acc Bigi of nodes
v ∈ CH that accuse some neighbor w ∈ Fi ∩ Bigi, and the set Acc Smalli of nodes
v ∈ CH for which Accuse(v) ⊆ Fi ∩ Smalli. To bound |CH |, we separately bound
|Acc Bigi| and |Acc Smalli|.

Claim A. |Acc Bigi| ≤ |F |.
Proof. Consider a node v ∈ Acc Bigi, and arbitrarily associate with it one par-

ticular node wv ∈ Fi∩Bigi∩Accuse(v). Observe that wv cannot be a nonparticipating
node, since if wv ∈ NPi then v should have been nonparticipating as well. (See step
2(a)iii in the algorithm.) We use this observation later on to show that wv has many
faulty voting neighbors.

Consider a node w ∈ Bigi. Group the neighbors of w into the following sets. Let
ΓF (w) denote the set of 2-neighbors x of w such that x ∈ F \NVi and Dsav

x (w) =Mw.
Note that ΓF (w) ⊆ Γ2(w) ∩ (F \ NVi). Let ΓAB(w) denote the nodes v ∈ Acc Bigi

for which w = wv. Note that by the definition of Acc Big and of w, ΓAB(w) ⊆ H.
Let γZ(w) = |ΓZ(w)| for any appropriate Z.

Since the majority vote carried by w was won by the nodes of ΓF (w), the voting
rule used to determineMw (step 2(a)), combined with the fact that w ∈ Bigi, imply
that

γF (w) > γ(w)/2 ≥ λi.(1)

Observe that each node of ΓF (w) is connected to each node of ΓAB(w) in GRI .
This follows from the fact that by the definitions of ΓF (w) and ΓAB(w), each node
y ∈ ΓF (w) is at distance 4 or less from each node z ∈ ΓAB(w) (since both y and z are
2-neighbors of w), and in addition, y’s record regarding w’s bit is erroneous while z’s
record is correct; hence Dy(w) �=M∗w = Dz(w), so y and z are connected by an edge
in GRI .
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Let cF (w) denote the number of edges connecting the nodes of Γ
F (w) to the nodes

of ΓAB(w) in GRI . As cF (w) is bounded (for w to be a voting node), we conclude
that not too many nodes can be corrupted, since each corruption “costs” distinct λi

edges in GRI . More precisely,

cF (w) ≥ γF (w) · γAB(w).

Combined with (1), it follows that cF (w) ≥ λi · γAB(w). Hence

|Acc Bigi| =
∑

w∈Bigi
γAB(w) ≤ 1

λi

∑
w∈Bigi

cF (w)

≤ 1

λi

∑
x∈F\NVi

degRI(x) ≤
1

λi
· (λi · |F \ NVi|) ≤ |F |.

(The second inequality holds since the sets ΓAB(w) are distinct for different w’s, and
hence the numbers cF (w) count distinct edges. The third inequality relies on the
definition of NV.)

Claim B. |Acc Smalli| ≤ 2λi|Fi ∩ Smalli|.
Proof. By definition of Acc Smalli, each v ∈ Acc Smalli has a neighbor in

Fi ∩ Smalli (namely, the node it accuses). It follows that Acc Smalli ⊆ Γ(Fi ∩
Smalli). But the neighborhood of every v ∈ Fi ∩ Smalli is of size |Γ(v)| ≤ 2λi by
definition of Smalli. Hence

|Acc Smalli| ≤ |Γ(Fi ∩ Smalli)| ≤ 2λi|Fi ∩ Smalli|.
The lemma now follows immediately from Claims A and B.

Lemma 6.2. In any phase i, the set Fi satisfies |Fi∩Smalli| = O(|F | ·λi+1), and
the set Ci satisfies |Ci| = O(|F | · λi · λi+1).

Proof. The second claim follows from the first claim and the previous lemma as

|Ci| ≤ O(|F |+ |Fi ∩ Smalli| · λi) ≤ O(|F | · λi+1 · λi).

The first claim is proved by induction on i. The claim is clear for the beginning of
phase i = 1. Now assume the claim for phase i and look at the beginning of phase
i + 1. Nodes enter Fi+1 ∩ Smalli+1 (if they are not in Fi) either from Γ2(Ci) (as a
result of performing MIS) or as a result of moving from Bigi to Smalli+1. The first
of those sources is bounded by noting that Ci ⊆ Smalli, so

|Γ2(Ci)| ≤ 2λi|Ci| ≤ O(λi · (|F | · λi+1 · λi)) ≤ O(|F | · λi+2).

(The last inequality follows from the assumption that the sequence {λi} is quadrati-
cally growing.)

As for the second, note that a node v ∈ Bigi that was not participating in the
previous phase enters phase i + 1 with its initial value Msav

v . (Note that it was a
nonparticipating node in all the previous phases.) Hence the number of such nodes
joining Fi+1 ∩ Smalli is bounded by |F |. Also, the number of nodes in F ∩ Bigi that
join Fi+1 is also bounded by |F |.

It remains to consider nodes v ∈ H ∩ Bigi that have participated in the previous
phase i. For such a node v, getting the wrong value (causing it to enter Fi+1) ne-
cessitates the influence of at least γ(v)/2 neighbors from F \ NVi, and thus it incurs
a contribution of at least λi to

∑
x∈F\NVi degRI(x) in GRI . But the above sum is
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bounded from above by λi · |F \ NVi|. Thus the number of nodes in Bigi that can be
influenced in such a way is bounded by |F \ NVi| ≤ |F |.

Lemma 6.3. Let i be such that λi ≥ |F |. Then NVi contains only nodes from F .
Proof. A node v ∈ H can be adjacent only to nodes of F in GRI ; hence its

degree in this graph is at most degRI(v) ≤ |F |. Therefore, NVi does not contain it by
definition.

Lemma 6.4. Let i be such that λi ≥ |F |. Then
(a) every node w in Bigi is participating; and
(b) the voted value for Mw equals M∗w.
Proof. Such a node w has at least γ(w) ≥ 2λi+1 neighbors (including itself), out

of which at most λi are in F . By the previous lemma, none of its healthy neighbors
from H can be in NVi. Thus, at least γ(v)− λi > γ(v)/2 do vote for a value forMw

which is equal toM∗w. The lemma follows.
Lemma 6.5. If |F | ≤ λi, then at the end of phase i, if the algorithm uses a

deterministic MIS procedure MISD thenM is a valid MIS assignment, and if it uses
a randomized MIS procedure MISR thenM is a valid MIS assignment with probability
3/4.

Proof. Suppose that |F | ≤ λi. By Lemma 6.4 all the nodes in Bigi, as well as
their neighbors, are participating nodes. Moreover the nodes in Bigi start then with
their values fromM∗. As for the nodes in Smalli, since they all are participating, a
valid MIS is reached if Procedure Rel Comp computes a valid MIS.

By Lemma 6.1, the set Ci of nodes involved in MIS conflicts after step 2(a) of the
algorithm satisfies |Ci| = O(|F | · λi · λi+1). Since Ci ⊆ Smalli and Q ⊆ Γ2(Ci) (where
Q is the set defined in step 2 of Procedure Rel Comp, namely, the expansion of the
set Ci), it follows that

|Q| ≤ |Ci| · 2λi ≤ |F | · 2λi · λi · λi+1 ≤ 2λ3
iλi+1 ≤ λi+3.

Hence the time required to compute MIS onQ byMISD is TMISD
(|Q|) ≤ TMISD

(λi+3),
and hence the expected time required to compute MIS onQ byMISR is TMISR

(|Q|) ≤
TMISR

(λi+3). Given the choice of time limit prescribed for the ith phase in step 2(e),
Lemma 4.5 guarantees that a valid MIS assignment is produced with certainty in the
deterministic case, and with probability 3/4 in the randomized case.

We are now ready to give the main results.
Lemma 6.6. Given a deterministic distributed procedure MISD, if TMISD

(n) is
sublogarithmic or superlogarithmic, then for a suitable choice of the sequence {λi},
Algorithm Mend[MISD] reaches a legal MIS assignment in time TMend[MISD] =
O(TMISD

(|F |c)) for some constant c ≥ 1 (with c = 1 for the sublogarithmic case).
Proof. Each of the two cases is handled separately. Consider first the case that

TMISD
(n) is superlogarithmic. Then we fix λi = 22

i

. Note that this choice satisfies
the quadratic growth requirement.

Let J be the first phase satisfying λJ ≥ |F |. By the previous lemma, the algorithm
will halt on phase J . The total time consumed by phases 1 through J is bounded by

TMend[MISD] =

J∑
j=1

TMISD
(λj+3) =

J∑
j=1

TMISD

(
22

j+3
)
.

By the superlogarithmic assumption (SL2),

TMend[MISD] ≤ TMISD


 J∏

j=1

22
j+3


 = TMISD

(
2

∑J

j=1
2j+3

)
≤ TMISD

(
22

J+4
)
.
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By the choice of J it follows that |F | ≥ 22J−1

, and hence

TMend[MISD] ≤ TMISD

(
22

J−1·25
)
≤ TMISD

(|F |32).

Next, consider the case that TMISD
(n) is sublogarithmic. Then we fix λi =

T−1
MISD

(2i). This choice satisfies the quadratic growth requirement as well. To show

this, we rely on the fact that since TMISD
is sublogarithmic, its inverse T ≡ T−1

MISD

is superexponential ; i.e., it satisfies

(SE) T (x+ y) ≥ T (x)T (y).

Therefore, λi+1 = f(2i+1) ≥ f(2i)2 = λ2
i .

Letting J be the first phase satisfying λJ ≥ |F |, we have that the total time
consumed by the algorithm (that again halts on phase J) is bounded by

TMend[MISD] =

J∑
j=1

TMISD
(λj+3) =

J∑
j=1

TMISD
(T−1

MISD
(2j+3)) =

J∑
j=1

2j+3 ≤ 2J+4.

By the choice of J it follows that |F | ≥ λJ−1, and hence by choice of λi and the fact
that TMISD

is nondecreasing, TMISD
(|F |) ≥ TMISD

(λJ−1) = 2
J−1. Consequently,

TMend[MISD] ≤ 32 · 2J−1 ≤ 32 · TMISD
(|F |).

Corollary 6.7. The MIS problem is fault locally 2O(
√

log |F |)-mendable.
Proof. Use Procedure MISPS of [PS92] in the mending algorithm. By Lemmas

2.2 and 6.6, Algorithm Mend[PS] mends MIS in time

TMend[PS] = O(TMISPS
(|F |c)) = O(2

√
α log |F |c) = 2O(

√
log |F |)

(using constant c from Lemma 6.6 and for some constant α).
Corollary 6.8. Let the time complexity of the MIS problem be T ∗D(n). If T ∗D(n)

is sublogarithmic, then MIS is tightly locally mendable. If T ∗D(n) is superlogarithmic,
then MIS is near-tightly locally mendable.

Lemma 6.9. Given a randomized distributed procedure MISR, if TMISR
(n) is

sublogarithmic, then for a suitable choice of the sequence {λi}, Algorithm Mend[MISR]
reaches a legal MIS assignment in expected time O(TMISR

(|F |)).
Proof. As in the sublogarithmic case of Lemma 6.6, we fix λi = T−1

MISR
(2i).

Letting J be the first phase satisfying λJ ≥ |F |, we have that the time consumed by
the first J phases is bounded in the same way as in that proof, yielding a bound of

T1 ≤ 32c̃ · TMISR
(|F |).

By Lemma 6.5, the algorithm will halt on any phase i ≥ J with probability 3/4.
Hence the algorithm will reach the execution of phase J + k with probability 1/4k.
The total expected time consumed by phases J + 1 and on is therefore bounded by

T2 =
∑
k>0

1

4k
·c̃·TMISR

(λJ+k+3) =
∑
k>0

1

4k
·c̃·2J+k+3 = c̃·2J+3

∑
k>0

1

4k
·2k ≤ c̃·2J+3.

Again, by the choice of J it follows that |F | ≥ λJ−1, and hence by choice of λi

and the fact that TMISR
is nondecreasing, TMISR

(|F |) ≥ TMISR
(λJ−1) = 2J−1.

Consequently,

T2 ≤ 16c̃ · 2J−1 ≤ 16c̃ · TMISR
(|F |).
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Finally, the algorithm will get to the final step of executing the Las Vegas pro-
cedure MISR only if all phases failed. This will happen with probability 1/4k for
k = Jmax−J , and in that case, the algorithm will require an additional time TMISR

(n);
hence the contribution of this step to the expected time complexity is

T3 ≤ 1

4k
· TMISR

(n) ≤ 1

4k
· TMISR

(λJmax) ≤
1

4k
· 2Jmax =

2J

2k
≤ TMISR

(|F |)
2k−1

.

Overall, the expected time complexity of the algorithm is bounded by

TMend[MISR] = T1 + T2 + T3 = O(TMISR
(|F |))

as required.
Corollary 6.10. The MIS problem is randomly locally log |F |-mendable.
Proof. Use Procedure MISL of [L86] in the mending algorithm. By Lemmas

2.4 and 6.9, Algorithm Mend[L] mends MIS in time TMend[L] = O(TMISL
(|F |)) =

O(log |F |).
Corollary 6.11. Let the randomized expected time complexity of the MIS prob-

lem be T ∗R(n). If T ∗R(n) is sublogarithmic,2 then MIS is randomly tightly locally mend-
able.

Space and communication complexity. The dominating factor in the size of the
storage required is the data structure Dv(u) =Mu, storing, at each node v, a bit for
each node u whose distance from v in the graph is 2 or less. This storage requirement
decreases with the decreased density of the graph. In the worst case it implies O(n)
bits per node. The dominating factor in the communication is the voting according
to Dv(u), where, in the worst case, each node may receive a vote from every other
node. Every vote travels at most over two edges, leading to a total bit communication
complexity of O(n2).

7. Discussion.

7.1. Distributed termination of the algorithm. Lemmas 6.6 and 6.9 discuss
the time until a legal MIS assignment is reached. It may seem as if even after reaching
a legal state, nodes still need to test in subsequent phases that they are not in conflict.
Even if this had been the case, we would still consider it a reasonable requirement,
since in many contexts one needs to address the problem of fault detection and not
just fault correction. For instance, in the approach of self-stabilization, correction is
said to have been achieved once a legal state is reached, yet all nodes must continue
to periodically test the legality of their state.

Still, for completeness, we mention that our algorithm can be implemented in
such a way that nodes that do not detect a conflict at the end of some phase and
do not need to take any further steps in the algorithm, unless notified of conflicts by
other nodes which are still active. Thus if the nodes which take steps at some phase
i are not in any conflict, and have no neighbors in any conflict, at the end of phase i,
then no node will take steps in any phase larger than i. (One should not confuse the
action of taking steps, though, with the status of “nonparticipating” determined in
step 2(a)iii in the algorithm; “nonparticipating” nodes nevertheless took some steps
to determine that they are “nonparticipating.”)

The required modification to the algorithm is described and analyzed in detail in
[KP94].

2Recall that it is at most logarithmic.
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7.2. Summary and open problems. The results presented in this paper are
mainly of theoretical nature, since the solution is limited in a number of ways. In
particular, it is not asynchronous, and, moreover, nodes are not allowed to start at
arbitrary (and different) times. Even more desirable would be to have a self-stabilizing
solution. Some initial steps in this direction have been taken in [KP96]. Finally,
tight mendability is proved only under the assumption that the complexity of MIS
is a function that “behaves nicely.” (Nevertheless, even without this assumption it
is known that MIS is at least nearly tightly mendable.) It would be interesting to
remove that assumption.

Despite these limitations of our specific solution, it is our belief that the proposed
general approach may be of considerable practical significance. Toward that goal, a
number of necessary steps must be taken to remove the limitations discussed above.
In addition, although demonstrated only for MIS, questions related to mendability
and tight mendability can be asked for other distributed problems. In particular, it
is desirable to apply our approach to real-life protocols.

Of course, one can think also of generalizations of our work to other models,
defined by different characteristics; e.g., one can study tight fault locality in shared
memory with, e.g., atomic registers. Related questions can be asked in the context
of interactive tasks (as opposed to input–output tasks). These are tasks that run
forever, guaranteeing certain properties (e.g., that each node enters a critical section
often).

Finally, questions similar to the one asked in this paper can be raised in nondis-
tributed contexts as well. For example, tight mending is meaningful also for sequential
data structures. There, it forms a generalization of the area of dynamic data struc-
tures [Fre85, T83], in which one assumes that F (rather than 1 or n) changes occurred,
and studies the complexity of updating the data structure.

Summary of main notation.

G = (V,E)—a graph representing the system, with node set V , |V | = n, and link
set E.
Mend[P ]—a mending algorithm for MIS, employing an MIS construction proce-
dure P .
TMend—the running time of algorithm Mend.
M = (Mv1

, . . . ,Mvn)—a given MIS vector.
S(M)—the set induced byM.
Dv—an additional data structure maintained by node v.
M∗v, D∗v—the MIS bit and the data structure stored at v before the faults.
Mv, Dv—the MIS bit and the data structure stored at v after the faults.
F , H—the sets of faulty and healthy nodes.
C(M)—the conflict set.
Γi(W )—the i-neighborhood of W .
Co(U)—the complement of U (w.r.t. V ).
Borderi(U)—the i-border of U .
Big, Small—the sets of nodes v s.t. |Γ2(v)| > 2|F | (respectively, |Γ2(v)| ≤ 2|F |) for a
given |F |.
Ĉ—the set of conflicting nodes in Small.
Fi—the set of faulty nodes at the beginning of the ith phase.
GRI—the record inconsistency graph.
degRI(v)—v’s degree in GRI .
Detected—the set of nodes that detected a local inconsistency in their initial output.
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λi—a quadratically growing sequence.
NVi—the nonvoting nodes in phase i.
Voti(v)—the phase i voters in Γ2(v).
γ(v) = |Γ2(v)|.
Bigi, Smalli—the sets of nodes with γ(v) > 2λi (resp., γ(v) ≤ 2λi).
CF—the conflicting nodes which are faulty (now or at the beginning).
CH—the conflicting nodes which are healthy (now and at the beginning).
Accuse(v)—the nodes accused by v.
wv—the faulty accused node associated with v.
Acc Bigi—the set of nodes in CH that accuse some neighbor in Fi ∩ Bigi.
Acc Smalli—the set of nodes in CH that accuse only neighbors from Fi ∩ Smalli.
ΓF (w)—the set of 2-neighbors x of w such that x ∈ F \ NVi and Dsav

x (w) =Mw.
ΓAB(w)—the nodes v ∈ Acc Bigi for which w = wv.
γZ(w) = |ΓZ(w)| (for any appropriate Z).
cF (w)—the number of edges connecting the nodes of Γ

F (w) to the nodes of ΓAB(w)
in GRI .
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Abstract. In this paper we discuss convergence properties for genetic algorithms. By looking at
the effect of mutation on convergence, we show that by running the genetic algorithm for a sufficiently
long time we can guarantee convergence to a global optimum with any specified level of confidence.
We obtain an upper bound for the number of iterations necessary to ensure this, which improves
previous results. Our upper bound decreases as the population size increases. We produce examples
to show that in some cases this upper bound is asymptotically optimal for large population sizes.
The final section discusses implications of these results for optimal coding of genetic algorithms.

Key words. genetic algorithms, convergence criteria, upper bounds, probability, optimal coding
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1. Introduction. Genetic algorithms are robust search mechanisms based on
underlying genetic biological principles. Having been established as a valid approach
to problems requiring efficient and effective search, genetic algorithms are increasingly
finding widespread application in business, scientific, and engineering circles (Gold-
berg (1989)). These algorithms are computationally simple yet powerful in their
search for improvement. They work on a wide range of discrete search spaces and are
very versatile, as few assumptions are needed about these spaces. However, perhaps
because of this versatility, relatively little mathematical theory is available concerning
the performance of these algorithms.

Genetic algorithms comprise three basic mechanisms: reproduction, crossover,
and mutation. Typically the discrete space to be searched is coded as a set of binary
strings of length γ. These strings are analogous to chromosomes. An initial population
of n strings is chosen. For simplicity n is taken to be even. The goal of the genetic
algorithm is to find the maximum of some objective function f (called the fitness
function) defined on the search space.

A simple genetic algorithm is described in Goldberg (1989). Starting with the
original population, a new population of n strings is selected in three stages. First, a
new set of n strings (not necessarily distinct) is chosen from the original n strings by
selecting each member of the population with probability proportional to its fitness.
This is called reproduction. Second, the new set of strings is mated (paired) at
random. For each pair crossover occurs with probability χ. If crossover occurs, then a
position between 1 and γ− 1 is chosen at random, and the first half of the first string
in the pair is matched with the second half of the second string, and the second half
of the first string is matched with the first half of the second to give a new pair (like
chromosomes). Third, each bit of each string in the new population is independently
flipped (changed from zero to one or vice versa) with probability µ. This is called
uniform mutation. Usually the crossover probability χ and the mutation probability
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µ are small. A typical value of µ is less than 0.05. More complex genetic algorithms
may have nonuniform crossover rates between iterations, or nonuniform mutation
rates between iterations, or both. Other possibilities include more complex crossover
schemes (for example, multiple point crossover) and mutation schemes (for example,
mutation of blocks of digits altogether simultaneously).

The process of reproduction probabilistically ensures that individuals of high fit-
ness are preferentially maintained in the population, while crossover and mutation are
necessary to introduce the diversity needed to ensure that the entire sample space is
reachable and avoid becoming stuck at suboptimal solutions. In fact mutation on its
own is sufficient to introduce such diversity. The idea is that after a large number of
iterations the population should consist mainly of individuals very close to the opti-
mal solution. When the genetic algorithm has finished, the fitness of each member of
the population is evaluated and the member corresponding to the maximum fitness
taken as the optimum member of the search space.

However, with this method it is possible for the optimal solution to be seen and
then disappear, if it appears in some population and then is lost due to mutation
or crossover. A more effective method, which requires very little extra effort and is
commonly used, is to save at each stage the population member of maximal fitness
which has been seen so far (in either the initial population or one of the end of iteration
populations up to now). This is updated each time that the fitnesses for a population
are calculated. This is sometimes called a queen bee or elitist approach.

Heuristically genetic algorithms appear in practice to work well, but there is little
mathematical analysis underpinning their performance. One key problem area is how
to decide when to stop. A simplistic approach (but one that is often taken) is to
stop after a (large) arbitrary fixed number of iterations. A slightly more sophisti-
cated approach is described by de Jong (1975), who defines the on-line performance
(describing on-going performance) as the average of all fitness functions evaluated up
to and including the current trial. The off-line performance (describing convergence)
is a running average of the best performance values to a particular time. A more
sophisticated alternative to stopping after a fixed number of iterations is to stop after
either the on-line or, preferably, the off-line performance appears to have stabilized.

As genetic algorithms are stochastic search algorithms it is never possible to
guarantee that an optimal solution (in general there may be more than one) has been
seen after a fixed number of iterations. There is always a probability that we have
not seen an optimal solution. However, we can examine a sort of convergence in
probability. Given a fixed probability δ (0 < δ < 1) we may ask what is the smallest
number of iterations required to guarantee that we have seen an optimal solution with
probability δ. We denote this number by t(δ).

2. Genetic algorithms as Markov chains. Previous work has succeeded in
deriving bounds for this quantity t(δ) by modeling genetic algorithms as Markov
chains. Vose and Liepins (1991) show how genetic algorithms can be expected to
display punctuated equilibria, often appearing to converge to false suboptimal solu-
tions for relatively long times before moving on to better solutions. This behavior is
often seen in practice. Thus convergence criteria such as de Jong’s on-line and off-
line performance can often be misleading. Nix and Vose (1992) characterize genetic
algorithms as Markov chains. They show that if the state variable is taken to be
the current population, then the Markov chain is ergodic if and only if the mutation
probability µ is strictly positive. Hence a steady state behavior exists and it is not
possible for the Markov chain to be trapped at a suboptimal solution indefinitely.
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Aytug and Koehler (1996) use this Markov chain formulation to find bounds for
t(δ). For x ≥ 0 define INT[x] to be the smallest integer greater than or equal to x.
The show that t2(δ) ≤ t(δ) ≤ t1(δ) where

t1(δ) = INT

[
ln(1− δ)

ln[1−min{(1− µ)γn, µγn}]
]

and

t2(δ) = INT

[
max
j

{
ln(1− δ)

ln[ρ(Q−QejeTj )]

}]
.

In the definition of t2(δ) the maximum is taken over all states of the Markov chain,
Q is the Markov chain transition matrix, and ej is the jth unit vector. ρ(A) denotes
the spectral radius of a matrix A. The lower bound is difficult to evaluate, but the
upper bound gives an easily computed sufficient condition that after t1(δ) iterations
we have seen the optimal solution with probability at least δ.

Although simple genetic algorithms use binary coding it is sometimes advanta-
geous to use a nonbinary coding. This time each element of the space to be searched is
represented by a vector in {0, 1, 2, . . . ,K − 1}γ , called a K-string of length γ. Repro-
duction and crossover proceed as before. For mutation, each digit of each population
member independently mutates with probability µ. When a digit mutates it changes
to one of the other K − 1 digits, chosen at random. The case K = 2 is the binary
case. Goldberg (1989) has argued for binary over higher cardinality representations
for maximizing implicit parallelism in genetic processing. Notwithstanding this ar-
gument, practitioners report better performance with nonbinary representations in
many applications (Davis, 1991). Aytug, Bhattacharrya, and Koehler (1996) extend
their results from binary representations to alphabets of cardinality K = 2x (i.e.,
alphabets whose cardinality is a power of 2) to show that in a cardinality K genetic
algorithm the number of iterations necessary to see all populations with probability
δ is bounded above by

t1(δ) = INT


 ln(1− δ)
ln
[
1−min

{
(1− µ)γn,

(
µ

K−1

)γn}]

 .

ForK = 2 this upper bound reduces to the one obtained by Aytug and Koehler (1996).
Note that Aytug, Bhattacharrya, and Koehler (1996) incorrectly define INT[x] as the
smallest integer greater than (as opposed to greater than or equal to) x. The correct
definition is given in Aytug and Koehler (1996).

The bounds of Aytug, Bhattacharrya, and Koehler assume that with specified
probability they have seen every population and hence every optimal solution. This
is a huge overkill. Aytug and Koehler believe tighter bounds could be derived by
establishing a way where all population members (not all populations) are seen at
least once with a specified probability. In fact a very simple argument along the
suggested lines enables us to improve Aytug, Bhattacharrya, and Koehler’s upper
bound.
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3. Main results.

Theorem 1.

t(δ) ≤ t̃1(δ) = INT


 ln(1− δ)
n ln

[
1−min

{
(1− µ)γ−1

(
µ

K − 1

)
,

(
µ

K − 1

)γ}]

 .

Proof. See the appendix.

Note that the only properties of the crossover function used in the proof of The-
orem 1 are in (b), where we show that if after crossover we have exactly one copy of
the optimal string e∗ and one nonoptimal string, they agree in at most γ − 2 digits.
The arguments used to show this do not depend on the crossover scheme having a
one-point crossover or a uniform crossover rate. Thus our results are equally valid if
our crossover scheme is a multiple point crossover or has a nonuniform crossover rate
or both. The arguments also hold for any selection process which at each stage selects
n strings (possibly including some replicated ones) from an original population of n
strings. However, although our results hold for a wide variety of genetic algorithm
models, they do not hold for the general case given by Vose, where mutation masks
and crossover masks are employed instead of rates. The mixing probability formula
was first given in Vose and Wright (1995) and generalized to the general cardinality
case in Koehler, Bhattacharrya, and Vose (1997).

It is straightforward to show this bound is always an improvement on t1(δ).

Lemma 1.

t̃1(δ) ≤ t1(δ).

Proof. If µ ≤ K−1
K , 1−µ ≥ µ

K−1 . Then for n = 1, t1(δ) = t̃1(δ), whence the result

follows as t̃1(δ) is decreasing in n and t1(δ) increasing in n. If µ > K−1
K , 1−µ < µ

K−1

and it is straightforward to show that for n = 1, t1(δ) > t̃1(δ). The result follows
similarly to above.

Thus our bound t̃1(δ) is significantly tighter than the previous one. In addition
it decreases as the population size n increases, whereas t1(δ) increases with n. This
is intuitively correct as increasing the population size means that there is a greater
probability of the optimum being present in any given population. On the other
hand the total number of possible combinations of populations will be larger, and it
will therefore take significantly more iterations to encounter all of them. Moreover
our results hold for alphabets of arbitrary cardinality, whereas the results of Aytug,
Bhattacharrya, and Koehler require that the cardinality K be a power of 2.

In practice the mutation rate µ is usually small so that µγ is often very small. In
this case, using the approximation ln(1 + x) ≈ x for x small and INT[x] ≈ x for x
large, then the original bound may be approximated as

t1(δ) ≈ − (K − 1)γn ln(1− δ)
µγn

if t1(δ) is large and the new bound as

t̃1(δ) ≈ − (K − 1)γ ln(1− δ)
nµγ

(1)
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if t̃1(δ) is large. The ratio is therefore

t1(δ)

t̃1(δ)
≈ n

(
µ

K − 1

)−γ(n−1)

.

As a numerical example we take K = 2, γ = 10, µ = 0.2, n = 15, and δ = 0.9
giving t1(δ) as approximately 1.6×10105 iterations, whereas for the same figures t̃1(δ)
is very much smaller at 1.5× 106 iterations. Indeed if we double the population size
to n = 30, the new bound reduces by half to 7.5 × 105 and the old bound almost
squares to 1.1× 10210.

Aytug, Bhattacharrya, and Koehler (1996) show that the bound t1(δ) is minimized
at n = 1 and µ = K−1

K . It is straightforward to show that for fixed n our new upper

bound t̃1(δ) is also minimized at µ = K−1
K for γ ≥ 2 and at µ = 1 for γ = 1. This

says that as the bound is based only on mutation, it gives the best bound when the
process is diffusing most rapidly, which happens when µ = K−1

K for γ ≥ 2 and when
µ = 1 for γ = 1. This is also true for the upper bound of Aytug, Bhattacharrya, and
Koehler for the most practically relevant situation where γ ≥ 2. However, if γ = 1,
then Aytug and Koehler’s upper bound is still maximized at µ = K−1

K . It is similarly
straightforward to show that t̃1(δ) is monotone increasing in n for µ fixed. This says
that as the population size increases, our search naturally becomes more efficient at
finding the optimal solution. At n = 1, having seen every population is equivalent to
having seen that every member of the search space and the two bounds are the same.

Theorem 1 assumes a uniform mutation rate, where at each stage each digit
mutates independently. These results may carry over to different mutation schemes
by reworking the calculations and redoing some of the proofs. For example, suppose
that at iteration i each digit of each population member mutates independently at
random with probability µi. If µi is bounded above away from one and below away
from zero, so that µ1 > µi > µ2 for some µ1 < 1 and µ2 > 0, then it is straightforward
to modify the proof of Theorem 1 to show that

t(δ) ≤ INT


 ln(1− δ)
n ln

[
1−min

{
(1− µ1)

γ−1

(
µ1

K − 1

)
,

(
µ2

K − 1

)γ}]

 .

We can obtain a better bound (again by modifying the argument of Theorem 1) to
show that t(δ) ≤ T1, where T1 is the smallest integer such that

T1∑
i=1

ln

[
1−min

{
(1− µi)γ−1

(
µi
K1

)
,

(
µi

K − 1

)γ}]
≤ ln(1− δ)

n
.

In most practical situations each µi will be small. In such circumstances define T̃1 to
be the smallest integer T such that

T∑
i=1

µγi ≥ −
(K − 1)γ ln(1− δ)

n
.

Then, using similar approximations to the ones made in deriving (1), we deduce that
T1 can be approximated by T̃1 if each µi is sufficiently small.
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Theorem 1 gives an upper bound t̃1(δ) for t(δ), the number of iterations necessary
to ensure that we have seen the optimal solution with probability δ. This is an
improvement on previous upper bounds. A natural question is whether this bound can
be reduced further. Of course for specific objective functions the genetic algorithm
will usually perform much better than our upper bound. However, the following
examples exhibit circumstances where no further improvement is possible, and our
upper bound is asymptotically optimal (for large n). Thus with a completely general
objective function and population size it is not possible to improve on our result. The
first example shows that no better bound can be obtained for the range µ ≤ K−1

K ,

the second that none can be obtained for the range µ ≥ K−1
K .

Example 1. Consider an objective function f defined on all K-strings of length
γ to be ε everywhere apart from the origin 0 = (0, 0, 0, . . . , 0) and the vector e =
(K − 1,K − 1,K − 1, . . . ,K − 1), 0 < ε < 1, f(0) = 1, and f(e) = 2. There is a
nonzero uniform mutation rate µ. For the sake of definiteness we assume a nonzero
uniform crossover rate with a single point crossover, although our argument would
work equally well with a nonuniform crossover rate or multiple point crossover or
both. At the selection phase individuals are selected in proportion to their fitness.
We start with an initial population of n 0’s.

Result 1. Consider Example 1 for µ ≤ K−1
K . Then

(2)

t̃1(δ) ≥ t(δ) > INT


 ln(1− δ)
n ln

[
1−

(
µ

K − 1

)γ]
+ ln(1− θn)− n ln(1 + (n− 1)ε)


− 1,

where

θ = 1− (1− µ)γ

1−
(

µ

K − 1

)γ (0 < θ < 1).

The proof of Result 1 is given in the appendix. Result 1 shows that the bound
of Theorem 1 is optimal in the following sense. Pick εn = 1

n3 (so ε depends on n).

Then as ln(1 + x) ≤ x for x ≥ 0, 0 ≤ n ln(1 + (n− 1)εn) ≤ n(n−1)
n3 ≤ 1

n for all n. As
n→∞, t̃1(δ) tends to zero as 1

n , and θ
n tends to zero exponentially fast. Hence it is

straightforward to show that for µ ≤ K−1
K and n large enough

∣∣∣∣∣∣∣∣
ln(1− δ)

n ln

[
1−

(
µ

K − 1

)γ] − ln(1− δ)
n ln

[
1−

(
µ

K − 1

)γ]
+ ln(1− θn)− n ln(1 + (n− 1)εn)

∣∣∣∣∣∣∣∣
≤ t̃1(δ) −2

n2 ln

[
1−

(
µ

K − 1

)γ] ,

which tends to zero at a much faster rate than t̃1(δ) does. A consequence of this
result is that provided that n is very large then the upper bound in (2) is one plus
the lower bound for almost all values of δ; so in this case, t̃1(δ) gives an arbitrarily
close approximation to t(δ).
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The idea behind Example 1 is that we have a population initially consisting of all
0’s. At each iteration the optimum solution may appear in the population by direct
mutation for some 0 in one step. Otherwise, provided that at least one 0 remains
at the end of this iteration and ε is very small, after reproduction we are almost
certainly back to the initial population of n 0’s (ignoring small terms in ε). Thus the
only way the optimum can appear in the population is by direct mutation of one of
the population members. This argument breaks down if, in any iteration, all of the
population members simultaneously mutate away from 0 in one iteration, but none of
them mutates to the optimum. However, by making n large enough, we can make the
probability of this happening arbitrarily small, and provided that we choose εn = 1

n3 ,
the small terms in ε can still be neglected. Thus if n is large enough, t̃1(δ) can be
made as close as we like to t(δ).

Our second example shows a similar result when µ ≥ K−1
K .

Example 2. Consider an objective function f defined on all K-strings on length γ
to be ε everywhere apart from e0 = (0,K − 1,K − 1, . . . ,K − 1) and e = (K − 1,K −
1,K − 1, . . . ,K − 1), 0 < ε < 1, f(e0) = 1, and f(e) = 2. There is a nonzero uniform
mutation rate µ. Again for the sake of definiteness we assume a nonzero uniform
crossover rate with a single crossover, although our argument would work equally well
with a nonuniform crossover rate or multiple crossover or both. The selection phase
and the initial population are the same as in Example 1.

Result 2. Consider Example 2 for µ ≥ K−1
K . Then if n is large enough

(3)

t̃1(δ) ≥ t(δ)

> INT


 ln(1− δ)
n ln

[
1− (1− µ)γ−1

(
µ

K − 1

)]
+ ln(1− θn)− n ln(1 + (n− 1)ε)


− 1,

where

θ = 1− (1− µ)γ

1− (1− µ)γ−1

(
µ

K − 1

) (0 < θ < 1).

The proof of Result 2 is similar to that of Result 1. Similarly to Result 1 this
can be used to show that if εn = 1

n3 , then for µ > K−1
K , as n becomes very large

t̃1(δ) again gives a very close approximation to t(δ) for almost all values of δ and so
is asymptotically optimal for large n.

4. Implications for coding of genetic algorithms. Aytug, Bhattacharrya,
and Koehler (1996) discuss the implications of their upper bound for the practical
problem of coding genetic algorithms. They ask: given a problem whose domain can
be represented with a coding of cardinality K, what is the best choice of coding? In
other words, should one use binary or a higher cardinality coding for a given problem?
The answer to this question is given by the following theorem (Aytug, Bhattacharrya,
and Koehler, 1996).
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Theorem 2. If t1(δ) iterations guarantee that an optimal solution has been
found with probability δ by using binary coding, to guarantee the same worst-case level
of confidence in t1(δ) or fewer iterations by using K = 2x cardinality coding, the
mutation rate of the higher cardinality genetic algorithm (µK) has to satisfy

µK ≥ µx2(2x − 1),

where µ2 ≤ 0.5 is the mutation rate used in binary coding.
This theorem shows that when an optimal mutation rate µ2 = 0.5 is used for a

binary genetic algorithm, if the same problem is re-encoded using a higher cardinality
alphabet (and thus a correspondingly shorter string length) in the worst case, the re-
encoded genetic algorithm cannot perform better than the binary genetic algorithm
and can just match the worst case performance of the binary genetic algorithm by
operating with mutation rate µK = K−1

K . However, Aytug, Bhattacharrya, and
Koehler show that for a lower binary genetic algorithm mutation rate we can achieve
a better upper bound, and hence a better worst-case performance with the re-encoded
higher cardinality genetic algorithm, even if the mutation rate for the re-encoded
genetic algorithm is lower than that of the binary genetic algorithm. In other words,
the re-encoded genetic algorithm not only can just match the performance of the
binary genetic algorithm at the optimal binary mutation rate but can also outperform
it even with a mutation rate lower than that of the binary genetic algorithm if the
binary genetic algorithm mutation rate is nonoptimal. Because the functional forms of
the worst-case upper bounds obtained by Aytug, Bhattacharrya, and Koehler (1996)
are very similar to our own, provided that µ2 ≤ 0.5 and γ ≥ 2, it is straightforward
to show that the same results hold using the new improved upper bounds derived in
this paper (provided γ ≥ 2, as will be the case for all practical applications). In fact
it is also straightforward to show that similar results hold when γ = 1 with two minor
modifications. First, for γ = 1 using our new bounds, Theorem 2 holds without any
restriction on the value of µ2. Second, if the optimal mutation rate µ2 = 1 is used
for the binary genetic algorithm, in the worst case the re-encoded genetic algorithm
always performs worse than the binary genetic algorithm, even when operating with
the optimal re-encoded genetic algorithm mutation rate µK = 1.

5. Summary and conclusions. Genetic algorithms are a robust search method
for finding global optima of functions which mimic the biological principles of sexual
reproduction. They have increasing practical applications in many areas (Goldberg
(1989), Harvey and Marshall (1996)). Although they appear to perform well in prac-
tice, there is not a great deal of mathematical work underpinning their performance.
One reason for this is they make few assumptions about the underlying state space.
While this gives them great flexibility it makes general results hard to obtain. The
NFL (no free lunch) work of Wolpert and Macready (Wolpert and Macready (1995),
Wolpert (1996), Salomon (1997)) is a framework that addresses the core aspects of
search, focusing on the connection between fitness functions and effective search al-
gorithms. The key result is the No Free Lunch Theorem, which states that averaged
over all problems, all search algorithms perform equally. This result implies that if we
are comparing a genetic algorithm to some other algorithm (e.g., simulated annealing
or even random search) and the genetic algorithm performs better on some class of
problems, then the other algorithm necessarily performs better on problems outside
the class. Thus it is essential to incorporate knowledge of the problem into the search
algorithm.

In this paper we have examined questions of convergence. We ask how long must
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a genetic algorithm run for it to be reasonably certain that we have seen the optimal
solution. A naive approach is just to run the genetic algorithm for a large, fixed
number of iterations, but there is no guarantee that this will be successful. A better
approach is to look at the on-line and off-line performances, but as the work of Vose
and Liepins (1991) shows that genetic algorithms can often appear to converge to
false optima, this method may also give a misleading result.

Previous work of Aytug, Bhattacharrya, and Koehler has examined this question
using the theory of Markov chains. Taking the state variable to be the current genetic
algorithm population they show that the Markov chain is ergodic. They also show
that given any probability δ < 1, by running the genetic algorithm for sufficiently long,
it is possible to guarantee that we have seen the optimal solution with probability δ
and obtain an upper bound for the time necessary to do this. We have examined
this problem using the simpler approach of looking at the effect of mutation on the
convergence of the genetic algorithm. We also showed that by running the genetic
algorithm for long enough we can guarantee convergence to the global optimum with
any prespecified level of confidence and obtained a much lower bound for the number of
iterations necessary to do this. Moreover our bound has the desirable property that
it decreases as the population size increases (and the genetic algorithm gets more
effective), whereas the bounds of Aytug, Bhattacharrya, and Koehler increase with
increasing population size. The upper bounds we obtain are much smaller than those
of Aytug, Bhattacharrya, and Koehler for realistic parameter values. Nevertheless
they are still large, and for most practical problems the effect of reproduction and
crossover, combined with some smoothness of the objective function, will mean that
in practice the genetic algorithm converges much faster, although as discussed above
it is difficult to say how much faster. The question therefore arises of whether it is
possible to improve on these results further. We have produced examples to show
that in general it is not possible to improve further on our upper bound, at least if
the population size is sufficiently large. In the final section we showed that the results
of Aytug, Bhattacharrya, and Koehler on optimal coding of genetic algorithms carry
over with our new improved upper bounds.

Note that the proof of Theorem 1 assumed that the objective or fitness function
had a unique global maximum attained for exactly one string. In general we will not
know whether this is true. If there are several distinct strings where the objective
function attains its maximum value, then the proof of Theorem 1 is still valid, but in
this case we expect the genetic algorithm to converge faster than our bound. If we
know in advance the number of strings where the fitness function attains its maximum
value and this number of strings is greater than one, then it is possible to improve
further on our upper bound (with this restricted class of objective functions). This is
a possible area for future research. In general we will not know this information and,
as we have shown in our paper, in the general case the bound which we have found
will be asymptotically optimal.

Note added in proof. During the review of this manuscript we were informed
by a referee that Aytug and Koehler submitted a paper in December 1996 to the
INFORMs Journal on Computing (Aytug and Koehler (1999)) which gives similar
results to this paper for the binary case and the more general results are contained
in a working paper by Aytug, Koehler, and Bhattacharrya. We have seen Aytug and
Koehler’s paper but have not yet seen this working paper. The results are similar, but
the proofs in our manuscript were simpler. These results were derived independently,
to the best of our knowledge; as yet, neither of these papers has been published.
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Appendix. Proof of Theorem 1. We assume that the objective function has a
unique global optimum value corresponding to a unique string e∗ and work out the
probability that we have seen this value e∗ by the end of the tth iteration. There is
no loss of generality in this assumption. If the objective function attains its global
optimum value at several distinct strings, then we arbitrarily choose one as e∗ and our
proof will still be valid (although in this case we would expect the genetic algorithm
to actually converge faster).

(i) 1− µ ≥ µ
K−1 .

Given a member of the search space which agrees with the optimal string e∗ in y
digits, the probability that it mutates to this optimal string under mutation alone in
one step is

(1− µ)y
(

µ

K − 1

)γ−y
≥
(

µ

K − 1

)γ
.

Hence the probability that it does not mutate to e∗ under mutation alone in one step
is at most (

1−
(

µ

K − 1

)γ)
.

Although this bound involves only the mutation operator it holds whatever happens
in the reproduction and crossover phases. To see this, note that reproduction and
crossover happen before mutation. Thus whatever happens in the reproduction and
crossover phases immediately before mutation, we end up with a population of n
strings and the probability that any specified one does not mutate to e∗ in the muta-
tion stage is at most (

1−
(

µ

K − 1

)γ)
.

In t iterations of the genetic algorithm there are nt independent mutations. Hence if
Pt is the probability that the optimum has been seen after t iterations,

Pt ≥ 1−
(
1−

(
µ

K − 1

)γ)nt

(whatever happens in the reproduction and crossover phases).
Choosing t1 such that

1−
(
1−

(
µ

K − 1

)γ)nt1
≥ δ(A.1)

guarantees that the optimum has been seen after t1 steps with probability at least δ
(therefore t1 ≥ t(δ)). (A.1) can be rewritten

t1 ≥ ln(1− δ)
n ln

[
1−

(
µ

K − 1

)γ] ,(A.2)

and therefore (A.2) implies t1 ≥ t(δ). Thus

t(δ) ≤ t̃1(δ) = INT


 ln(1− δ)
n ln

[
1−

(
µ

K − 1

)γ]

 ,

and the result of Theorem 1 follows in this case.
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(ii) µ
K−1 ≥ 1− µ.

In t iterations of the genetic algorithm the mutation operator is applied in total
nt times to the population members occurring after reproduction and crossover. If
the optimal solution has not yet been seen in either the initial population or the
populations at the end of each iteration, consider the population members immediately
before mutation; that is, after reproduction and crossover. These can be divided
naturally into pairs according to which crossover they come from. For each pair
either of the following cases occurs.

(a) Neither string in the pair is e∗. Suppose that the strings in the pair agree
with e∗ in y1 and y2 digits, respectively, where 0 ≤ y1 ≤ γ − 1 and 0 ≤ y2 ≤ γ − 1.
For i = 1, 2 the probability that the ith member of the pair mutates to e∗ in one step
is

(1− µ)yi
(

µ

K − 1

)γ−yi
≥ (1− µ)γ−1

(
µ

K − 1

)
.

Hence the probability that neither string in the pair mutates to the optimal string is
at most

(
1− (1− µ)γ−1 µ

K − 1

)2

.

(b) Exactly one member of the pair is e∗. The pair must have been obtained by
crossover from two distinct population members, neither of which was e∗. Suppose
that the pair before crossover agreed with e∗ in z1 and z2 digits, respectively, where
0 ≤ z1 ≤ γ − 1 and 0 ≤ z2 ≤ γ − 1. In this case γ ≥ 2 and the other member of
the pair after crossover must agree with e∗ in z1 + z2 − γ ≤ γ − 2 digits. Hence the
probability that neither member of the pair after crossover mutates to e∗ is

(1− (1− µ)γ)
(
1− (1− µ)z1+z2−γ

(
µ

K − 1

)2γ−z1−z2
)

≤ (1− (1− µ)γ)
(
1− (1− µ)γ−2

(
µ

K − 1

)2
)

as

(1− µ)γ−2

(
µ

K − 1

)2

≤ (1− µ)y1+y2−γ
(

µ

K − 1

)2y−γ1−γ2

≤
(
1− (1− µ)γ−1

(
µ

K − 1

))2

,

using the inequality

2(1− µ)γ−1

(
µ

K − 1

)
≤ (1− µ)γ + (1− µ)γ−2

(
µ

K − 1

)2

.

As the pair of strings immediately before mutation is obtained from reproduction
followed by crossover, it is not possible for both strings in this pair to be e∗. This is
because we have supposed that e∗ has not yet appeared in the initial population or
any of the end of iteration populations.
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Combining the results of (a) and (b) we deduce that 1 − Pt, the probability the
optimal string has not been seen in the end of iteration populations by t iterations,
is less than

(
1− (1− µ)γ−1

(
µ

K − 1

))nt
.

Arguing as in the case where 1− µ > µ
K−1 we deduce that

t(δ) ≤ t̃1(δ) = INT


 ln(1− δ)
n ln

[
1− (1− µ)γ−1

(
µ

K − 1

)]

 .

This completes the proof of Theorem 1.
Proof of Result 1. Consider what happens at the first iteration of the genetic

algorithm. Reproduction and crossover have no effect on the initial population. After
mutation either of the following cases occur.

(i) The optimal string has been seen with probability

1−
(
1−

(
µ

K − 1

)γ)n
.

(ii) The optimal string has not been seen and no 0’s remain. This is equivalent to
saying that all n population members neither mutate to the optimal string nor stay
unchanged and occurs with probability

(
1−

(
µ

K − 1

)γ
− (1− µ)γ

)n
.

(iii) The optimal string has not been seen and at least one 0 remains. This occurs
with probability

(
1−

(
µ

K − 1

)γ)n
−
(
1−

(
µ

K − 1

)γ
− (1− µ)γ

)n
.

Provided that at least one 0 remains and no e’s are present at the end of iteration k,
then in the next iteration of the genetic algorithm after reproduction the population
again consists entirely of 0’s with probability at least ( 1

1+(n−1)ε )
n. Hence as

Prob(Optimal string not seen after t iterations)

≥ Prob(Optimal string not seen, and at least one 0 remains in all t iterations),

1− Pt
≥
[({

1−
(

µ

K − 1

)γ}n
−
{
1−

(
µ

K − 1

)γ
− (1− µ)γ

}n)]t(
1

1 + (n− 1)ε

)n(t−1)

≥
[({

1−
(

µ

K − 1

)γ}n
−
{
1−

(
µ

K − 1

)γ
− (1− µ)γ

}n)(
1

1 + (n− 1)ε

)n]t
.
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Choosing t1 so that

(A.3)

δ > 1−
[({

1−
(

µ

K − 1

)γ}n
−
{
1−

(
µ

K − 1

)γ
− (1− µ)γ

}n)(
1

1 + (n− 1)ε

)n]t1

guarantees that the optimum has been seen after t1 steps with probability strictly less
than δ (so t(δ) > t1). (A.3) can be rewritten

(A.4)

t1 <
ln(1− δ)

ln

[{
1−

(
µ

K − 1

)γ}n
−
{
1−

(
µ

K − 1

)γ
− (1− µ)γ

}n]
− n ln(1 + (n− 1)ε)

and therefore (A.4) implies t1 < t(δ). Thus t(δ) is greater than

INT


 ln(1− δ)
ln

[{
1−
(

µ

K−1
)γ}n

−
{
1−
(

µ

K−1
)γ
−(1−µ)γ

}n]
− n ln(1 + (n− 1)ε)


− 1,

= INT


 ln(1− δ)
n ln

[
1−

(
µ

K − 1

)γ]
+ ln(1− θn)− n ln(1 + (n− 1)ε)


− 1,
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Abstract. We present a new polynomial time approximation scheme (PTAS) for tree alignment,
which is an important variant of multiple sequence alignment. As in the existing PTASs in the liter-
ature, the basic approach of our algorithm is to partition the given tree into overlapping components
of a constant size and then apply local optimization on each such component. But the new algorithm
uses a clever partitioning strategy and achieves a better efficiency for the same performance ratio.
For example, to achieve approximation ratios 1.6 and 1.5, the best existing PTAS has to spend time
O(kdn5) and O(kdn9), respectively, where n is the length of each leaf sequence and d, k are the
depth and number of leaves of the tree, while the new PTAS only has to spend time O(kdn4) and
O(kdn5). Moreover, the performance of the PTAS is more sensitive to the size of the components,
which basically determines the running time, and we obtain an improved approximation ratio for
each size. Some experiments of the algorithm on simulated and real data are also given.

Key words. approximation algorithm, computational biology, evolutionary tree, multiple se-
quence alignment, phylogeny
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1. Introduction. Multiple sequence alignment is one of the fundamental and
most challenging problems in computational molecular biology [1, 2, 5, 13]. It plays an
essential role in the solution of many problems such as searching for highly conserved
subregions among a set of biological sequences and inferring the evolutionary history
of a family of species from their molecular sequences. For example, most methods for
phylogeny reconstruction based on sequence data assume a given multiple sequence
alignment.

An important approach to multiple sequence alignment is the tree alignment
method. Suppose that we are given k sequences and a rooted phylogenetic tree con-
taining k leaves, each of which is labeled with a unique given sequence. The goal is
to construct a sequence for each internal node of the tree such that the cost of the
resulting fully labeled tree is minimized. Here, the cost of the fully labeled tree is the
total cost of its edges, and the cost of an edge is the mutational distance (or weighted
edit distance) between the two sequences associated with both ends of the edge.

The biological interpretation of the model is that the given tree represents the
evolutionary history (known from means other than sequence analysis or postulated

∗Received by the editors December 13, 1996; accepted for publication (in revised form) August 3,
1999; published electronically May 2, 2000.

http://www.siam.org/journals/sicomp/30-1/31350.html
†Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon,

Hong Kong (lwang@cs.cityu.edu.hk). The work of this author was supported in part by Department
of Energy grant DE-FG03-90ER60999 and HK CERG grants 9040444, 9040297, and 9040352. Most
of this author’s work was completed while the author was at UC Davis.
‡Department of Computer Science, University of California, Riverside, CA 92521 (jiang@cs.

ucr.edu). The work of this author was supported in part by NSERC research grant OGP0046613,
a Canadian Genome Analysis and Technology (CGAT) grant, and a CITO grant. This author’s
work was completed while the author was visiting the University of Washington and on leave from
McMaster University.
§Department of Computer Science, University of California, Davis, CA 95616 (gusfield@cs.

ucdavis.edu). The work of this author was supported in part by Department of Energy grant DE-
FG03-90ER60999.

283



284 LUSHENG WANG, TAO JIANG, AND DAN GUSFIELD

in a phylogeny reconstruction experiment) which has created the molecular (DNA,
RNA, or amino acid) sequence written at the leaves of the tree. The leaf sequences are
ones found in organisms existing today, and the sequences to be determined for the
internal nodes of the tree represent inferred sequences that may have existed in the
ancestral organisms. It should be emphasized that the tree is almost always binary in
biological applications.

To see how the above is related to multiple sequence alignment, we demonstrate by
an example that the sequences inferred for the internal nodes actually induce a mutiple
alignment of the given k sequence. Such a multiple sequence alignment is believed to
expose evolutionarily significant relationships among the sequences, according to the
maximum parsimony principle.

Example 1. Consider four sequences ACTG, ATCG, GCCA, and GTTA, and the
tree shown in Figure 1.1(a) connecting these sequences. Suppose that the internal se-
quences are reconstructed as in (b). For each edge of the tree in (b) we can construct
a pairwise alignment of the two sequences associated with the edge, with a cost equal
to the mutational distance of the sequences. Then we can induce a multiple align-
ment that is consistent with all six pairwise alignments by “merging” the pairwise
alignments incrementally as in [3], taking the spaces into consideration. For example,
from the given pairwise alignments of sequences s1, h1 and of sequences s2, h1, we can
obtain a multiple alignment of s1, s2, h1 as shown in (d). The final induced multiple
alignment of the four leaf sequences is shown in (e) (if we ignore everything below the
dashed line).

Tree alignment is also a key step in a particular phylogeny reconstruction method
called generalized parsimony [10, 12]. The basic strategy of generalized parsimony is
to start with a tree consisting of two leaves and grow the tree by gradually inserting
the rest of the leaves (labeled with sequences) at the edges. To add a leaf, we consider
insertion at all possible edges of the current tree and use tree alignment to test which
edge will result in a most parsimonious tree (i.e., one with the smallest cost).

Tree alignment is known to be NP-hard [14]. Many heuristic algorithms have
been proposed in the literature [1, 7, 8, 10, 11], and some approximation algorithms
with guaranteed relative error bounds have been reported recently. In particular, a
polynomial time approximation scheme (PTAS) is presented in [15], and an improved
version is given in [16]. Both PTASs partition the tree into overlapping constant size
components, label the leaves of each such component in some way, and then apply
local optimization on each component, i.e., compute an optimal tree alignment for
each component. The PTAS in [16] achieves an approximation ratio 1+ 2

t − 2
t×2t , i.e.,

it produces a fully labeled tree with cost at most 1+ 2
t − 2

t×2t times the optimal cost,

when the running time is O(kdn2t−1+1), where k is the number of the given sequences,
n is the length of each given sequence, d is the depth of the given phylogeny, and t
is a parameter to control the number of sequences involved in a local optimization
as well as the performance ratio. For any fixed t, a local optimization aligns a tree
with 2t−1 +1 leaves (i.e., sequences), which takes O(n2t−1+1) time [9]. Thus the more
accurate the algorithm is, the more time it consumes. Since in practice n is at least
100, the bottleneck of the time efficiency is the time spent on local optimization. At
present, we can expect to optimally align up to eight sequences of length 200 at a
time, as demonstrated by the software package MSA for a similar multiple alignment
problem [4]. Thus the above PTASs are still far from being practical.

In this paper, we further improve the PTAS in [16]. The new approximation
scheme adopts a more clever partitioning strategy and has a better time efficiency for
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(h3) h3:ACTG

/ \ / \

/ \ / \

/ \ / \

/ \ / \

/ \ / \

(h1) (h2) h1:ACTCG h2:GCTA

/ \ / \ / \ / \

/ \ / \ / \ / \

/ \ / \ / \ / \

/ \ / \ / \ / \

s1:ACTG s2:ATCG s3:GCCA s4:GTTA s1:ACTG s2:ATCG s3:GCCA s4:GTTA

(a) The input sequences and tree. (b) The fully labeled tree.

s1: ACT G s2: A TCG s3: GCCA s4: GTTA h1: ACTCG h2: GCTA

h1: ACTCG h1: ACTCG h2: GCTA h2: GCTA h3: ACT G h3: ACTG

(c) The pairwise alignments.

s1: ACT G s1 ACT G

h1: ACTCG s2 A TCG

s2: A TCG s3 GCC A

s4 GTT A

(d) The alignment of s1, s2, and h1. ----------------------

h1 ACTCG

h2 GCT A

h3 ACT G

(e) The induced multiple alignment.

Fig. 1.1. Tree alignment induces a multiple alignment.

the same performance ratio. For any fixed r, where r = 2t−1 + 1 − q and 0 ≤ q ≤
2t−2−1, the new PTAS runs in time O(kdnr) and achieves an approximation ratio of

1 + 2t−1

2t−2(t+1)−q . Here the parameter r represents the “size” of local optimization. In

particular, when r = 2t−1+1, its approximation ratio is simply 1+ 2
t+1 . A comparison

of the performance of the new PTAS and the PTAS in [16] for small values of t and
r is given in Table 1.1. Note that the new PTAS yields an improved approximation
ratio for every size of local optimization, whereas the previous PTAS does not. This
is because the previous partitioning and analysis method works only when the size of
local optimization has the form of one plus some power of two, and the new method
works for any size. Hence to achieve a ratio 1.5, the new PTAS requires running time
O(kdn5), while the old PTAS would require running time O(kdn9).

Although the new PTAS is only a small improvement to the previous PTASs in
terms of the feasible approximation ratios it can provide, it still represents a concrete



286 LUSHENG WANG, TAO JIANG, AND DAN GUSFIELD

Table 1.1
A comparison of the new PTAS and the best previous PTAS.

r 3 4 5 6 7 8 9
t 2 3 4

Running time O(kdn3) O(kdn4) O(kdn5) O(kdn6) O(kdn7) O(kdn8) O(kdn9)
Old ratio 1.75 1.58 1.47
New ratio 1.67 1.57 1.50 1.47 1.44 1.42 1.40

step towards constructing a practical approximation algorithm for tree alignment with
provable performance bounds, which could be extremely useful in sequence analysis.
The new partitioning strategy is also much more flexible and has the potential of
leading to even better analytical bounds than what is reported here. We observe that
the bounds listed in Table 1.1 do not appear to be tight for either PTAS, and a better
analysis technique may also reduce the approximation ratio by a significant amount.

The paper is organized as follows. We review the uniform lifting technique de-
veloped in [16] in section 2. Sections 3 and 4 present the new approximation scheme
and its analysis, respectively. Finally we describe an implementation of the PTAS and
perform some tests on simulated and real data in section 5.

Remark 1.1. There are many ways to define the mutational distance D(s, s′)
between sequences s and s′. In this paper, we need only assume that the distance is
a metric. That is, it satisfies

1. positive definiteness: D(s, s′) ≥ 0 and D(s, s) = 0;
2. symmetry: D(s, s′) = D(s′, s);
3. triangle inequality: D(s, s′) ≤ D(s, s′′) +D(s′′, s′) for any sequence s′′.

2. Uniformly lifted trees and the general approach. Before we discuss the
new algorithm, let us introduce some useful concepts and results. Let T be a binary
(phylogenetic) tree such that each of its leaves is labeled with a given sequence. For
convenience, convert T to an ordered tree by specifying the children of each internal as
left and right children, arbitrarily. A loaded tree for T is a tree in which each internal
node is also assigned a sequence label (not necessarily a given sequence). A loaded
tree is called a lifted tree if the sequence label of every internal node v equals the
sequence label of some child of v. Figure 2.1(a) exhibits a lifted tree. A lifted tree
is called a uniformly lifted tree if, for each level, either every internal node at that
level receives its sequence label from its left child or every internal node at that level
receives its sequence label from its right child. In other words, the lifting choices for
the internal nodes at the same level are uniform. Figure 2.1(b) exhibits a uniformly
lifted tree.

Let d denote the depth of the tree T . Then there are 2d different uniformly lifted
trees for T . We use a vector V = (x1, . . . , xd) to denote the uniform lifting choices
for all levels, where xi = R or L corresponds to lifting the sequence of the left child
or the right child at ith level. For any vector V, T (V ) denotes the uniformly lifted
tree for T specified by V . For each internal node v, the path from v to the leaf whose
sequence label is lifted to v is called the lifting path of v. Observe that, every node on
the lifting path of v (including v) is assigned the identical sequence.

The following results are proven in [16]. Let Tmin denote an optimal loaded tree
for T .

Theorem 2.1. The average cost of the 2d uniformly lifted trees for T is at most
twice the cost of Tmin.
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Fig. 2.1. (a) A lifted tree. (b) A uniform lifted tree.

Corollary 2.2. There exists a uniformly lifted tree for T with a cost at most
twice the cost of Tmin.

An optimal uniformly lifted tree can be computed in O(kd + kdn2) time by a
straightforward bottom-up dynamic programming, where k is the number of leaves in
T and n is the length of each given sequence [16].

Observe that given any lifted tree, we may further reduce its cost by keeping
the lifted sequences on some nodes and reconstructing the sequences on the other
(internal) nodes to minimize the cost of the edges incident upon these (latter) nodes.
For example, based on the lifted sequences 2, 3, 5, we can compute a sequence for
the dark circled node in Figure 2.1(a) such that the total cost of the three thin
edges is minimized. The new sequence should in general yield a loaded tree with a
smaller cost. This suggests the idea of partitioning a (uniformly) lifted tree into a
collection of overlapping components, keeping the lifted sequences at the leaves of
these components intact, and optimally reconstructing the sequences for the internal
nodes in each component, i.e., doing a local optimization on each component. The
computation can be done in polynomial time as long as each component has a constant
size.

Both PTASs in [15, 16] are based on this idea and partition the tree simply by cut-
ting at levels separated by a fixed constant distance. Our new algorithm also follows
the same general approach, but we use a more sophisticated and flexible partitioning
strategy.

3. The new partitioning strategy and algorithm. Our algorithm involves
partitioning a uniformly lifted tree into many overlapping components, each of which
is a binary tree by itself. Let us first describe the structure of the components used
in a partition.

A degree-1 node in a tree is called a terminal. For a fixed constant r, we consider
components of r terminals. If 2t−2 + 1 ≤ r < 2t−1 + 1 for some positive integer t, a
component contains t levels of nodes, where the top level contains only one terminal,
called the head, the other t − 1 levels form a complete binary tree, and the bottom
two levels contain r−1 leaves. (See Figure 3.1.) Such a component will be referred to
as a basic component of a partition, to avoid ambiguity. The terminals (i.e., the head
and leaves) of a basic component are called its boundary nodes. Note that the child
of the head could be either the left or right child. A basic component is of L-type (or
R-type) if it uses the left (or right, respectively) child of the head.

Let T be a phylogeny, V a uniform lifting choice vector, and T (V ) the correspond-
ing uniformly lifted tree. Suppose that r is an integer such that 2t−2+1 ≤ r ≤ 2t−1+1.
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Fig. 3.1. The L-type basic components for (a) r = 3, (b) r = 5, and (c) r = 4. The boundary
nodes of a basic component are dark circled.

For every uniform lifting choice vector V, we can obtain t partitions P0, P1, . . . , Pt−1

of T (V ) as follows. Observe that to define a partition, it suffices to specify the heads of
the basic components involved and the type of each basic component. First consider
i = 0, 1, . . . , t− 2.

1. Pi has a (deformed) basic component at the top of T (V ), which consists of
2i leaves at the ith level. (The root of the tree is at level 0, and the ith level
is below the (i− 1)th level. See Figures 3.2 and 3.3.)

2. All nodes on the lifting path of each leaf and each head of every basic com-
ponent are heads, and the leaves of the basic components are heads.

3. The type of each basic component is identical to the lifting choice at its head
as given in V . In other words, the basic component is of L-type (R-type) iff
its head receives its sequence from the left child.

The partition Pt−1 is defined similarly except that its top basic component part
is a complete binary tree with r − 1 leaves instead. Figures 3.2, 3.3, and 3.4 give an
example of the partitions P0, P1, P2 when r = 4.

Given a partition Pi, if we preserve the sequences uniformly lifted to all the
boundary nodes and optimally reconstruct the sequences on rest of the nodes (i.e., the
internal nodes of each basic component) to minimize the cost of each basic component,
we obtain a loaded tree, which will simply be called an (r, i)-tree. We use T (V )r,i to
denote the (r, i)-tree obtained from the uniformly lifted tree T (V ). An optimal r-tree
is some (r, i)-tree T (V )r,i with the smallest cost among all possible i and V . For any
loaded tree T1, C(T1) denotes its cost. For any tree T1, denote the set of internal
nodes of T1 as I(T1) and the set of leaves of T1 as L(T1), and for each a ∈ L(T1), T

a
1

denotes the unique (r, 0)-tree for T1 such that the sequence label of leaf a is lifted to
the root of T1.

Now let us begin to describe our algorithm. We will first assume that T is a full
binary tree and then extend the construction to arbitrary binary trees. Let v be a
node of T . The subtree of T rooted at v consisting of all descendants of v is denoted
as Tv. Note that, since we assume that T is a full binary tree, lifting the sequence of
a, for any a ∈ L(Tv), to v uniquely determines a uniform lifting choice for Tv.

Let T ′ be the top basic component of T av and v′ the child of v that is on the
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Fig. 3.2. The partition P0 when r = 4. The uniform lifting choice is (R,R, . . . , R). The dark
circled nodes are boundary nodes of the basic components.
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Fig. 3.3. The partition P1 when r = 4. The uniform lifting choice is (R,R, . . . , R).

lifting path of v in T av . Observe that a uniquely determines the sequences lifted to the
boundary nodes of T ′. The cost of the (r, 0)-tree for T av can be computed using the
recurrence equation

C(T av ) = C(T
′) +

∑
u∈L(T ′)

C(T a(u)
u ) + C(T av′),(3.1)

where a(u) is the leaf whose sequence is lifted to u and a(u) is uniquely determined
by a. (See Figure 3.5.)

Hence we can compute the values C(T av ) for all v and a inductively by traversing
the tree bottom-up. Note that, for each pair v and a, computing (3.1) requires O(r+

nr) time, where n is the length of the sequences, given the value of C(T
a(u)
u ) for

each u ∈ L(T ′) and the value of C(T av′). Thus, computing C(T av ) for all pairs v and
a requires O((r + nr) ·∑v∈T |L(Tv)|) time. Since each leaf a appears in at most d
different L(Tv)s, where d is the depth of T, totally we need O(rkd + kdnr) time.
Similarly, the cost of an (r, i)-tree T ar,i obtained by lifting the sequence label of leaf a
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Fig. 3.4. The partition P2 when r = 4. The uniform lifting choice is (R,R, . . . , R).
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Fig. 3.5. An illustration for the recurrence equation (3.1).

to the root of T can be computed as follows:

C(T ar,i) = C(T
′
i ) +

∑
v∈L(T ′

i
)

C(T a(v)v ),(3.2)

where T ′i is the top basic component of partition Pi and a(v) is the leaf whose sequence
is lifted to v as determined by the choice of a.

The above algorithm only works for full binary trees since, in general, lifting from
a leaf a to a node v does not completely determine the uniform lifting choice for the
subtree Tv if a is not at the bottom level of Tv. In particular, in arbitrary binary
trees, lifting from leaf a to node v does not uniquely determine the leaf a(u) being
lifted to the node u for any internal node u that is lower than v, hence invalidating
the recurrence equation (3.1).

To extend the algorithm to arbitrary binary trees without losing any time effi-
ciency, we need the notion of an extension of a phylogeny. An unlabeled (ordered) tree
T1 extends another unlabeled (ordered) tree T2 if T2 can be obtained from T1 by con-
tracting some subtrees to single leaves. Clearly, if T1 extends T2, then each leaf of T2

uniquely corresponds to a subtree of T1. The minimal extension of a set of unlabeled
trees is the (unique) unlabeled tree with the fewest edges that extends every tree in



AN APPROXIMATION SCHEME FOR TREE ALIGNMENT 291

�
�

�

❅
❅

❅

�
�

�❙
❙

❙ �
�

�❙
❙

❙

�
�

�❅
❅

❅

�
�

�❙
❙

❙

�
�

�❅
❅

❅

�
�

�❙
❙

❙
d ecb

fa

(b) (c)(a)

Fig. 3.6. The minimal extension of the structures of the trees in (a) and (b) is shown in (c).
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Fig. 3.7. An extension of the tree in Figure 3.6(a).

the set. A (partially) leaf-labeled tree T1 extends another (partially) leaf-labeled tree
T2 if (i) the structure of T1 extends the structure of T2; and (ii) for each leaf v of T2,
the subtree of T1 corresponding to v has all its leaves assigned the same label as that
of v. Figure 3.6 gives an example of the minimal extension of two unlabeled trees, and
Figure 3.7 shows an extension of the leaf-labeled tree in given Figure 3.6(a).

Now we are ready to generalize the algorithm to an arbitrary binary tree T . Let
v be an internal node of T . Denote Tv,t−1 as the tree consisting of the top t levels of
the subtree Tv. To compute C(T av ) for each a ∈ L(Tv), we first extend the tree Tv,t−1,
which is in general a partially leaf-labeled tree, to a full binary (partially leaf-labeled)
tree T ′v,t−1 with 2t−1 leaves. Let v1, . . . , v2t−1 be the leaves of this extended tree. For
each vi, i = 1, . . . , 2t−1, we extend Tvi to obtain a leaf-labeled tree T ′vi such that the
structure of T ′vi is the minimal extension of the structures of all Tv1 , . . . , Tv2t−1 . Note

that T ′v,t−1 has 2t−1 leaves v1, . . . , v2t−1 that are the roots of subtrees T ′v1 , . . . , T
′
v2t−1

.

Denote the tree containing Tv,t−1 at the top and T ′v1 , . . . , T
′
v2t−1

at the bottom as

ET (v). We compute the cost C(ET (v)a) for each a ∈ L(ET (v)) first.
Suppose that C(T au ) has been computed for each u ∈ Tv,t−1, where u �= v and

a ∈ L(Tu). We can easily compute the cost C(ET (v)au) of the (r, 0)-tree ET (v)au for
each u ∈ Tv,t−1, where u �= v and a ∈ L(ET (v)u) as follows:

C(ET (v)au) = C(T
b
u), where a ∈ L(ET (v)b).(3.3)

Observe that the subtrees T ′v1 , . . . , T
′
v2t−1

of ET (v) all have the same structure. Thus,

lifting the sequence of a, for any a ∈ L(ET (v)), to v uniquely determines from where
each node of ET (v)v,t−1 receives its lifted sequence. Since ET (v)v,t−1 extends the top
basic component of ET (v)a, lifting the sequence of leaf a, a ∈ L(ET (v)), to v uniquely
determines from where each leaf of the top basic component of ET (v)a receives its
lifted sequence. Therefore, we can compute the cost C(ET (v)a) for each a ∈ L(ET (v))
using the recurrence equation (3.1).
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1. begin
2. for each level i, with the bottom level first
3. for each node v at level i
4. begin
5. Construct the extended tree ET (v).
6. for each u ∈ Tv,t−1

7. Compute C(ET (v)au) for each a ∈ L(ET (v)u) using equation 3.3.
8. for each leaf a ∈ L(ET (v))
9. Compute C(ET av ) using equation 3.1.
10. for each leaf a ∈ L(T (v))
11. Compute C(T av ) using equation 3.4.
12. end
13. for each i = 0, 1, . . . , t− 1
14. Compute C(T ar,i) for every a ∈ L(T ).
15. Find i, a so that C(T ar,i) is minimized.
16. Compute a loaded tree from C(T ar,i) by back-tracing.
17. end.

Fig. 3.8. The algorithm to compute an optimal r-tree.

Once we have the cost C(ET (v)a) for each a ∈ L(ET (v)), we can compute C(T av )
easily for each a ∈ L(Tv) by “reversing” (3.3) as follows:

C(T av ) = min
b∈L(ET (v)a)

C(ET (v)b).(3.4)

The time complexity of the algorithm can be analyzed as follows. Since the struc-
ture of Tv extends the structure of all subtrees Tv1 , . . . , Tv2t−1 , |L(T ′vi)| ≤ |L(Tv)|
for each i, 1 ≤ i ≤ 2t−1. Thus, the extended tree ET (v) can be computed in
O(r|L(Tv)|) time for each v ∈ T . Hence totally it requires at most O(

∑
v∈T r|L(Tv)|)

time to construct all the ET (v)s. Since each leaf of T appears in at most d L(Tv)s,
O(
∑
v∈T r|L(Tv)|) = O(rd|L(T )|) = O(rkd). Computing (3.3) and (3.4) takes merely

a traversal of ET (v) each. Hence the algorithm still runs in time O(rkd + kdnr) on
arbitrary binary trees. The complete algorithm is summarized in Figure 3.8.

4. The analysis of the algorithm. Given an arbitrary binary phylogeny T,
we can extend T into a full binary tree T̂ . Obviously, any loaded tree for T can be
extended to a loaded tree with the same cost for T̂ . Conversely, given any loaded
tree for T̂ , we can obtain a loaded tree for T with equal or smaller cost by pruning
appropriate subtrees and contracting nodes with only one child. The last operation
will not increase the cost by the triangle inequality. Thus for the analysis we may
assume that the given tree T is a full binary tree. For convenience, we number the
levels from top to bottom. That is, the root is at level 0, and the level below level i is
level i+ 1.

First, let us find a good upper bound for the cost of an (r, i)-tree T (V )r,i for an
arbitrary uniform lifting choice V . Again, let Tmin be an optimal loaded tree for T .
For each node v ∈ T, let s(v) denote the sequence label of v in Tmin. We can modify
T (V )r,i by replacing the sequence label of each nonterminal node with the sequence
s(v) to obtain a loaded tree T (V )′r,i. Clearly, the cost of T (V )′r,i is at least that of
T (V )r,i. So, it suffices to upper bound the cost of T (V )′r,i.
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There are four types of edges in the loaded tree T (V )′r,i:
1. the edges whose both ends are assigned an identical lifted sequence;
2. the edges with ends assigned distinct lifted sequences;
3. the edges whose both ends are assigned sequences from Tmin;
4. the edges with one end assigned a sequence from Tmin and the other assigned

a lifted sequence.
(See again Figure 3.2.) Obviously each type 1 edge costs zero and each type 3 edge
(u, v) costs D(s(u), s(v)). Let (u, v) be a type 4 edge, where u is assigned a sequence
from Tmin and v is assigned a lifted sequence according to V . The cost of the edge
(u, v) is upper bounded by

D(s(u), s(v)) + C(Pv,V ),

where Pv,V denotes the lifting path of node v in the uniformly lifted tree T (V ) and
C(Pv,V ) is the cost of the path Pv,V in the optimal tree Tmin. Observe that type 2
edges may only appear at the bottom level of the tree. Hence a type 2 edge can be
viewed as a degenerate type 4 edge, with the lower end (which is a leaf) of the edge
being the node assigned a sequence from Tmin, and can be treated similarly to the type
4 edges. For convenience, call D(s(u), s(v)) and C(Pv,V ) the first and second parts of
the cost of edge (u, v) in T (V ), respectively. For each internal node v in T (V )r,i, the
path from v to the leaf whose sequence label is lifted to v is called the lifting path of
v in T (V )r,i. Call each internal node on a lifting path in T (V )r,i of some node v a
lifted node. A lifted node is heavy if it is involved in two type 4 edges, and is light if
it is involved in one type 4 edge. For a light node v, the cost of the lifted path Pv,V is
charged once in the above upper bound as the second part, whereas for a heavy node
v, the cost of the lifted path Pv,V is charged twice. A maximal lifting path is a lifting
path in T (V )r,i which cannot be further extended. Notice that each maximal lifting
path contains at most one heavy node at the upper end of the path. Since every edge
in a maximal lifting path has type 1 and thus zero cost, we can charge one of the
C(Pv,V )s for a heavy node v to C(Tmin), obtaining the following upper bound for the
cost T (V )r,i:

C(T (V )r,i) ≤ C(Tmin) +
∑

v is a lifted node

C(Pv,V ).(4.1)

To further bound the total cost of the lifting paths, we need the following lemmas.
Lemma 4.1 (see [15, 16]). Let T be a binary tree such that every internal node has

exactly two children. For each leaf l ∈ L(T ), there exists a mapping πl from the internal
nodes of T to its leaves such that (i) for each internal node v, π(v) is a descendant
leaf of v, (ii) the paths from nodes v to their images π(v) are edge-disjoint, and (iii)
moreover, there is an unused path from the root of T to the leaf l that is edge-disjoint
from all the paths in (ii).

In other words, Lemma 4.1 says that a binary tree can be decomposed into a set
of edge-disjoint paths from internal nodes to leaves, with one path for each nonroot
internal node and two paths for the root. Let C(π) denote the cost of the paths
induced by mapping π in the tree Tmin.

Lemma 4.2. There exist mappings {πl|l ∈ L(T )} such that

∑
V

∑
v∈I(T )

C(Pv,V ) ≤
∑

l∈L(T )

C(πl) ≤ 2dC(Tmin),
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where d is the depth of T .

Proof. We prove it by induction on d, the depth of the tree. Recall that T is
a full binary tree. The lemma obviously holds for d = 1. Suppose that it holds for
d ≤ q. Consider a tree T with d = q + 1. Let v0 be the root of T and vL and vR the
left and right children of v0. Recall that TvL and TvR denote the subtrees rooted at
vL and vR, respectively. Then the depth of Tvj (j = L,R) is q. Let V be the set of
lifting choices for T, and Vj the set of lifting choices for T whose first component is
j. Clearly V = VL ∪ VR. By the inductive hypothesis, for each j = L,R, there exist
mappings {πl|l ∈ L(Tvj )} for the subtree Tvj such that

∑
V ∈Vj

∑
v∈I(Tvj

)

C(Pv,V ) ≤
∑

l∈L(Tvj
)

C(πl).

For each mapping πl, l ∈ L(Tvj ), there is an unused path from vj to the leaf l of
Tvj . For any leaf l, let Pl be the path from the root v0 of T to the leaf l. Number the
leaves of T from left to right as l1, . . . , l2q+1 . It is easy to see that for any h = 1, . . . , 2q,
the mappings πlh and πl2q+h

and the path Plh form a mapping for tree T, denoted

πh,1, with an unused path from v0 to l2q+h, and symmetrically the mappings πlh and
πl2q+h

and the path Pl2q+h
form a mapping for tree T, denoted πh,2, with an unused

path from v0 to lh. Thus, we have

∑
V ∈V

∑
v∈I(T )

C(Pv,V ) = 2 ·

 R∑
j=L

∑
V ∈Vj

∑
v∈I(Tvj

)

C(Pv,V )


+

∑
V ∈V

C(Pv0,V )

≤
2q+1∑
h=1

2 · C(πlh) + C(Plh)

≤
2q∑
h=1

2∑
j=1

C(πlh) + C(πl2q+h
) + C(Pl(j−1)2q+h

)

≤
2q∑
h=1

2∑
j=1

C(πh,j)

≤ 2q+1C(Tmin).

Since, there are 2d distinct uniform lifting choices, the average cost of each∑
v∈I(T ) C(Pv,V ) is at most C(Tmin). Observe that Theorem 2.1 follows immediately

from inequality (4.1) and Lemma 4.2, since in a uniformly lifted tree T (V ), every in-
ternal node is a lifted node. Now we are ready to derive the required upper bound for
an optimal r-tree and hence the performance ratio of our approximation algorithm.
To simplify the presentation, consider first the case when r = 2t−1+1 for some t ≥ 1.

4.1. The performance ratio when r = 2t−1+1. Let yi(j) denote the number
of boundary nodes at level j of an (r, i)-tree, where 0 ≤ i ≤ t− 1 and 0 ≤ j ≤ d. It is
easy to see that y0(j) can be computed by the recurrence equation

y0(j) = y0(j − 1) + 2t−1y0(j − t),(4.2)

where t ≤ j ≤ d. The initial values are y0(0) = · · · = y0(t− 1) = 1.
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Let xi(j) =
yi(j)
2j be the fraction of the nodes on level j of an (r, i)-tree that are

boundary nodes, where 0 ≤ i ≤ t− 1 and 0 ≤ j ≤ d. From (4.2), we have

x0(j) =
x0(j − 1) + x0(j − t)

2
,(4.3)

where t ≤ j ≤ d. The initial values are x0(j) = 2−j for each j = 0, 1, . . . , t − 1.
Moreover, it is easy to see that

xi(j) = xi−1(j − 1) = · · · = x0(j − i)(4.4)

for any i ≤ j ≤ d and xi(j) = 0 for any 0 ≤ j < i. The next lemma is a key to our
bound. This gives a complete recurrence relation for all xi(j).

Lemma 4.3.

2x0(j) +

t−1∑
i=1

xi(j) ≤ 2.

Proof. Define f(j) = 2x0(j) +
∑t−1
i=1 xi(j). From (4.3) and (4.4), we obtain

f(j + 1)− f(j) = 2x0(j + 1)− x0(j)− x0(j − t+ 1) = 0

for j ≥ t− 1. Based on the given initial values, we have

f(j) = f(t− 1) = 2x0(t− 1) + x0(t− 2) + · · ·+ x0(0) = 2

for j ≥ t− 1. It is also easy to see that f(j) < f(t− 1) for any j < t− 1.
Combining inequality (4.1) and Lemmas 4.2 and 4.3, we have the following lemma.
Lemma 4.4.

2 ·
(R,...,R)∑

V=(L,...,L)

C(T (V )r,0) +

(R,...,R)∑
V=(L,...,L)

C(T (V )r,1) + · · ·+
(R,...,R)∑

V=(L,...,L)

C(T (V )r,t−1)

≤ (t+ 1)2dC(Tmin) + 2 · 2dC(Tmin).

The left-hand side of the above inequality consists of (t+1)2d distinct (r, i)-trees.
That is, the average cost of each of these (r, i)-trees is 1 + 2

t+1C(T
min). Thus we can

conclude that there exists an (r, i)-tree with cost at most 1 + 2
t+1C(T

min).

Theorem 4.5. When r = 2t−1 + 1, the performance ratio of the algorithm in
Figure 3.8 is 1 + 2

t+1 .

4.2. The performance ratio for an arbitrary r. Assume that r = 2t−1+1−q
for some integer q, 0 ≤ q < 2t−2. Define variables yi(j) and xi(j) as before, and
consider y0(j) and x0(j), j ≥ t first. There are three types of boundary nodes at level
j. Recall that each basic component consists of a head and a complete binary tree
with r − 1 leaves.

1. There are (2t−1 − 2q)y0(j − t) boundary nodes which are at the lowest level
of some basic components.

2. There are qy0(j − t+1) boundary nodes which are at the second lowest level
of some basic components.

3. There are y0(j−1) remaining boundary nodes which are on some lifting paths.
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The above three types of boundary nodes are disjoint. (Note that each node in classes
1 and 2 is always shared by two adjacent basic components, whereas each node in class
3 is only involved in one basic component.) Therefore, we have recurrence equation

y0(j) = y0(j − 1) + qy0(j − t+ 1) + (2t−1 − 2q)y0(j − t)

for j ≥ t. Hence

x0(j) =
1

2
x0(j − 1) +

2q

2t
x0(j − t+ 1) +

2t−1 − 2q

2t
x0(j − t)(4.5)

for j ≥ t. The initial values are

x0(j) =
1

2j
for j = 0, 1, . . . , t− 2,

x0(t− 1) =
q + 1

2t−1
.

Again, it is easy to see that

xi(j) = xi−1(j − 1)(4.6)

for any i = 1, . . . , t− 2, and

yt−1(j) = (2t−1 − 2q)y0(j − t+ 1) + qy0(j − t+ 2).

From the last equation, we have

xt−1(j) =
2t−1 − 2q

2t−1
x0(j − t+ 1) +

2q

2t−1
x0(j − t+ 2).(4.7)

Observing that xi(j) = 0 for any j < i, the above gives a complete recursive definition
of all xi(j).

Lemma 4.6.

2tx0(j) + 2t−1x1(j) + · · ·+ 2t−1xt−3(j) + (2t−1 − 2q)xt−2(j) + 2t−1xt−1(j) ≤ 2t.

Proof. Define

f(j) = 2tx0(j) + 2t−1x1(j) + · · ·+ 2t−1xt−3(j) + (2t−1 − 2q)xt−2(j) + 2t−1xt−1(j).

From (4.6) and (4.7), we have, for j ≥ t− 1,

f(j) = 2tx0(j) + 2t−1x0(j − 1) + · · ·+ 2t−1x0(j − t+ 2) + (2t−1 − 2q)x0(j − t+ 1).(4.8)

From (4.5) and (4.8), we obtain f(j + 1) − f(j) = 0. Plugging the initial values of
x0(j) in (4.8), we have

f(j) = f(t− 1)

= 2tx0(t− 1) + 2t−2x0(j − 1) + · · ·+ 2t−1x0(1) + (2t−1 − 2q)x0(0)

= 2(q + 1) + 2 + · · ·+ 2t−2 + (2t−1 − 2q) = 2t

for any j ≥ t− 1. It is easy to verify that f(j) < f(t− 1) for any j < t− 1.
Similar to Lemma 4.4, we have the following lemma.
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Lemma 4.7.

2t
(R,...,R)∑

V=(L,...,L)

C(T (V )r,0) + 2t−1

(R,...,R)∑
V=(L,...,L)

C(T (V )r,1) + · · ·+ 2t−1

(R,...,R)∑
V=(L,...,L)

C(T (V )r,t−3)

+ (2t−1 − 2q)

(R,...,R)∑
V=(L,...,L)

C(T (V )r,t−2) + 2t−1

(R,...,R)∑
V=(L,...,L)

C(T (V )r,t−1)

≤ (2t−1(t+ 1)− 2q)2dC(Tmin) + 2t · 2dC(Tmin).

Noting that the left-hand side of the above inequality consists of (2t−1(t+1)−2q)2d
distinct (r, i)-trees, we have the main theorem of this section.

Theorem 4.8. Suppose that r = 2t−1 + 1 − q, where 0 ≤ q < 2t−2. The perfor-

mance ratio of the algorithm in Figure 3.8 is 1 + 2t−1

2t−2(t+1)−q .

5. Discussions.

5.1. Further improvement. Note that an approximate solution produced by
the algorithm in Figure 3.8 still uses sequences lifted from the leaves as sequence labels
for some internal nodes. Such a solution can be further improved with the iterative
method proposed by Sankoff, Cedergren, and Lapalme [10].

To illustrate the iterative method in [10], consider the phylogeny in Figure 5.1,
which contains nine given species on its nine leaves. To improve the cost of a loaded
tree, we divide the phylogeny into seven 3-components as shown in Figure 5.1, each
consisting of a center and three terminals. Local optimization is done for every 3-
component based on the labels of its three terminals. The new center label can then
be used to update the center label of an overlapping 3-component. The algorithm
converges since each local optimization reduces the cost of the tree by at least one.
Thus if the process is repeated often enough, every 3-component will become optimal.
Empirical results show that the algorithm produces a reasonably good loaded tree
within five iterations [10].

If we are able to handle local optimization of size r, r ≥ 3, we may extend the
above iterative method to components with r terminals. Augmenting the algorithm
in Figure 3.8 with the iterative method should result in an improved performance.
We do not have an error bound analysis for the combined method at this point that
is better than the bound given in section 4. However, there is a good way to estimate
the error bound of this combined method for a particular input.

5.2. Estimating the error bound for an instance. Theorem 2.1 says that
the average cost of the uniformly lifted trees is at most twice that of an optimal solu-
tion. Thus, a half of the average cost is a lower bound of the optimal cost. Let Cavg(I)
be the cost of the average cost of the uniformly lifted trees for some instance I, and
let X(I) be the cost of the solution obtained by the combination of the approxima-
tion algorithm in Figure 3.8 and the iterative method above for the input I. Then

X(I) is at most 2X(I)
Cavg(I) times the optimum. This suggests a way to estimate the error

bound for a particular instance. In [6], an algorithm to compute the average cost of
the uniformly lifted trees is proposed. The running time of the algorithm is O(kdn2).
It is demonstrated that this lower bound is reasonably tight.

5.3. Some experimental results. We have implemented our algorithm in C
and run the program on a small example from [10]. The given tree topology is shown
in Figure 5.1. Each terminal is labeled with an RNA S5 sequence. The score scheme
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Fig. 5.1. A phylogeny with nine species, which is divided into seven 3-components.

is the same as in [10]. For r = 3, we select the root in the middle of the edge (13,14)
and the cost of the corresponding loaded tree is 332.75. For r = 4, the same root gives
a loaded tree with cost 322.5. Such a cost changes a bit if we try other roots. The
average cost of the uniformly lifted trees is 461.6 [6]. Thus we can conclude that the
costs of the solutions for r = 3 and 4 are at most 1.442 and 1.397 times the optimal
for this example. We then use the iterative method of [10] to further improve the
solution. The costs are further reduced from 332.75 and 322.5 to 321.25 and 298.25,
respectively.
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Abstract. The competitive analysis of online algorithms has been criticized as being too crude
and unrealistic. We propose refinements of competitive analysis in two directions: The first restricts
the power of the adversary by allowing only certain input distributions, while the other allows for
comparisons between information regimes for online decision-making. We illustrate the first with an
application to the paging problem; as a byproduct we characterize completely the work functions of
this important special case of the k-server problem. We use the second refinement to explore the
power of lookahead in server and task systems.
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1. Introduction. The area of online algorithms [14, 10] shares with complexity
theory the following characteristic: Although its importance cannot be reasonably
denied (an algorithmic theory of decision-making under uncertainty is of obvious
foundational significance and practical relevance), certain aspects of its basic premises,
modeling assumptions, and results have been widely criticized with respect to their
realism and relation to computational practice. In this work we revisit some of the
most often voiced criticisms of competitive analysis (the basic framework within which
online algorithms have been heretofore studied and analyzed) and propose and explore
some better-motivated alternatives.

In competitive analysis, the performance of an online algorithm is compared
against an all-powerful adversary on a worst-case input. The competitive ratio of a
problem—the analogue of worst-case asymptotic complexity for this area—is defined
as

R = min
A

max
x

A(x)

opt(x)
.(1)

Here A ranges over all online algorithms, x ranges over all “inputs,” opt denotes the
optimum offline algorithm, while A(x) is the cost of algorithm A when presented with
input x. This clever definition is both the weakness and strength of competitive analy-
sis. It is a strength because the setting is clear, the problems are crisp and sometimes
deep, and the results are often elegant and striking. But it is a weakness for several
reasons. First, in the face of the devastating comparison against an all-powerful offline
algorithm, a wide range of online algorithms (good, bad, and mediocre) fare equally
badly; the competitive ratio is thus not very informative and fails to discriminate
or to suggest good approaches. Another aspect of the same problem is that, since a
worst-case input decides the performance of the algorithm, the optimal algorithms
are often unnatural and impractical and the bounds too pessimistic to be informative
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in practice. Even enhancing the capabilities of the online algorithm in obviously de-
sirable ways (such as a limited lookahead capability) brings no improvement to the
ratio (this is discussed more extensively later). The main argument for competitive
analysis over the classical approach (minimize the expectation) is that the distribution
is usually not known. However, competitive analysis takes this argument way too far:
It assumes that absolutely nothing is known about the distribution, that any distri-
bution of the inputs is in principle possible; the worst-case “distribution” prevailing
in competitive analysis is, of course, a worst-case input with probability one. Such
complete powerlessness seems unrealistic to both the practitioner (we always know,
or can learn, something about the distribution of the inputs) and the theoretician of
another persuasion (the absence of a prior distribution, or some information about it,
seems very unrealistic to a probabilist or mathematical economist).

The paging problem, perhaps the most simple, fundamental, and practically im-
portant online problem, is a good illustration of all these points. An unreasonably
wide range of deterministic algorithms (both the good-in-practice LRU and the em-
pirically mediocre FIFO) have the same competitive ratio—k, the amount of available
memory. Even algorithms within more powerful information regimes—for example,
any algorithm with lookahead � > 0 pages—provably can fare no better. Admittedly,
there have been several interesting variants of the framework that were at least par-
tially successful in addressing some of these concerns. Randomized paging algorithms
have more realistic performance [5, 11, 13]. Some alternative approaches to evaluat-
ing online algorithms were proposed in [1, 12] for the general case and in [2, 6, 7, 15]
specifically for the paging problem.
In this paper we propose and study two refinements of competitive analysis which

seem to go a long way toward addressing the concerns expressed above. Perhaps
more importantly, we show that these ideas give rise to interesting algorithmic and
analytical problems (which we have only begun to solve in this paper).

Our first refinement, the diffuse adversary model, removes the assumption that
we know nothing about the distribution—without resorting to the equally unrealistic
classical assumption that we know all about it.We assume that the actual distribution
D of the inputs is a member of a known class ∆ of possible distributions. That is, we
seek to determine, for a given class of distributions ∆, the performance ratio

R(∆) = min
A

max
D∈∆

ED(A(x))

ED(opt(x))
.(2)

That is, the adversary picks a distribution D among those in ∆, so that the expected,
under D, performance of the algorithm and the offline optimum algorithm are as far
apart as possible. Notice that, if ∆ is the class of all possible distributions, (1) and
(2) coincide since the worst possible distribution is the one that assigns probability
one to the worst-case input and probability zero everywhere else. Hence the diffuse
adversary model is indeed a refinement of competitive analysis.

In the paging problem, for example, the input distribution specifies, for each
page a and sequence of page requests ρ, Prob(a|ρ)—the probability that the next
page fault is a, given that the sequence so far is ρ. It is unlikely that an operating
system knows this distribution precisely. On the other hand, it seems unrealistic to
assume that any distribution at all is possible. For example, suppose that the next
page request is not predictable with absolute certainty: Prob(a|ρ) ≤ ε, for all a and ρ,
where ε is a real number between 0 and 1 capturing the inherent uncertainty of the
request sequence. This is a simple, natural, and quite well-motivated assumption; call
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the class of distributions obeying this inequality ∆ε. An immediate question is, What
online algorithm achieves the optimal competitive ratio R(∆ε)?

As it turns out, the answer is quite interesting. The optimum online algorithm is
robust—that is, the same for all ε’s—and turns out to be a familiar algorithm that is
also very good in practice: LRU. It is noteworthy that LRU emerges from the analysis
as the unique “natural” optimal algorithm, although there are other algorithms that
may also be optimal. An important byproduct of our analysis is that, extending the
work in [9], we completely characterize the work functions of the paging special case
of the k-server problem.

In a preliminary version of this work that appeared in [8], we incorrectly stated
that the competitive ratio R(∆ε) is given by a simple Markov chain of (k + 1

ε )
k−1

states. In fact, the answer is more complicated. The competitive ratio is given by the

“optimal” Markov chain from a family of k(k+ 1
ε )k−1

Markov chains of (k+ 1
ε )
k−1 states

each.

The second refinement of competitive analysis that we are proposing deals with
the following line of criticism: In traditional competitive analysis, the all-powerful
adversary frustrates not only interesting algorithms, but also powerful information
regimes. The classical example is again from paging: In paging, the best competitive
ratio of any online algorithm is k. But what if we have an online algorithm with a
lookahead of � steps, that is, an algorithm that knows the immediate future? It is
easy to see that any such algorithm must fare equally badly as algorithms without
lookahead. In proof, consider a worst-case request sequence, abdc . . . , and take its
(� + 1)-stuttered version, a�+1b�+1d�+1c�+1 . . . . It is easy to see that an algorithm
with lookahead � is as powerless in the face of such a sequence as one without a
lookahead. Once more, the absolute power of the adversary blurs practically important
distinctions. Still, lookahead is obviously a valuable feature of paging algorithms.
How can we use competitive analysis to evaluate its power? Notice that this is not a
question about the effectiveness of a single algorithm, but about classes of algorithms,
about the power of information regimes—ultimately, about the value of information.

To formulate and answer this and similar questions we introduce our second re-
finement of competitive analysis, which we call comparative analysis. Suppose that
A and B are classes of algorithms—typically but not necessarily A ⊆ B; that is, B
is usually a broader class of algorithms, a more powerful information regime. The
comparative ratio R(A,B) is defined as follows:

R(A,B) = max
B∈B

min
A∈A

max
x

A(x)

B(x)
.(3)

This definition is best understood in terms of a game-theoretic interpretation: B
wants to demonstrate to A that it is a more powerful class of algorithms. To this end,
B proposes an algorithm B among its own. In response, A comes up with an algorithm
A. Then B chooses an input x. Finally, A pays B the ratio A(x)/B(x). The larger this
ratio, the more powerful B is in comparison to A. Notice that if we let A be the class
of online algorithms and B the class of all algorithms—online or offline—then (1) and
(3) coincide, and R(A,B) = R. Hence comparative analysis is indeed a refinement of
competitive analysis.

We illustrate the use of comparative analysis by attacking the question of the
power of lookahead in online problems of the “server” type: If L� is the class of all
algorithms with lookahead �, and L0 is the class of online algorithms, then we show
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that, in the very general context of metrical task systems [3], we have

R(L0,L�) = 2� + 1,

(that is, the ratio is at most 2� + 1 for all metrical task systems, and it is exactly
2� + 1 for some), while in the more restricted context of paging,

R(L0,L�) = min{� + 1, k}.

2. Diffuse adversaries. The competitive ratio for a diffuse adversary1 is given
in (2). In order to make the analysis independent of the initial conditions, we shall
allow an additive constant in the numerator. More precisely, a deterministic online
algorithm A is c-competitive against a class ∆ of input distributions if there exists a
constant d such that for all distributions D ∈ ∆,

ED(A(x)) ≤ c · ED(opt(x)) + d.(4)

The competitive ratio of the algorithm A is the infimum of all such c’s. Finally, the
competitive ratio R(∆) of the class of distributions is the minimum competitive ratio
achievable by an online algorithm. It is important to observe that ∆ is a class of
acceptable conditional probability distributions; each D ∈ ∆ is the distribution of the
relevant part of the world conditioned on the currently available information. One can
easily extend the definition to randomized online algorithms. However, in this work,
we deal only with deterministic online algorithms.

In the case of the paging problem with a set of pages M , ∆ is a set of probability
distributions on page sequences M∗. An equivalent and perhaps more natural way to
describe ∆ is by a set of conditional probability distributions, that is, functions of
the form D : M∗ ×M → [0, 1], where for all ρ ∈ M∗

∑
a∈M D(a|ρ) ≤ 1; the sum

may be less than 1 because the adversary may choose to end the sequence. In the
game-theoretic interpretation, as the sequence of requests ρ develops, the adversary
chooses the values of D(a|ρ) from those available in ∆ to maximize the ratio. Since we
deal with deterministic algorithms, the adversary knows precisely the past decisions
of A, but the adversary’s choices may be severely constrained by ∆. It is indicative
of the power of the diffuse adversary model that most of the proposals for a more
realistic competitive analysis are simply special cases of it. For example, the locality
of reference in the paging problem [2, 6] is captured by the diffuse adversary model
where ∆ consists of the following conditional probability distributions: D(a|ρb) = 0
if there is no edge from b to a in the access graph and D(a|ρb) = 0 or 1 otherwise.
Similarly, the Markov paging model [7] and the statistical adversary model [12] are
also special cases of the diffuse adversary model. In the first case, the class ∆ of
distributions contains only one conditional distribution D with D(·|ρb) = D(·|b), and
in the latter case D ∈ ∆ assigns probability one to some request sequence that satisfies
the statistical adversary restriction.

In this section we apply the diffuse adversary model to the paging problem. We
shall focus on the class of distributions ∆ε, which contains all functions D : M∗×M →
[0, ε]—that is to say, all conditional distributions with no value exceeding ε. But first,
we diverge in order to give a useful characterization of work functions for the paging
problem.

1Diffuse adversaries are not related to the diffusion processes in probability theory which are
continuous path Markov processes.
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2.1. The structure of paging work functions. Since the paging problem is
the k-server problem on uniform metric spaces, certain key concepts from the k-server
theory will be very useful (see [9, 4] for a more detailed exposition).

Definition 2.1. Let k denote the number of page slots in fast memory, and
let M be the set of pages. A configuration is a k-subset of M ; we denote the set
of all configurations by C. The work function associated with a sequence ρ ∈ M∗,
wρ (or simply w when ρ is not important or understood from context) is a function
wρ : C → �+, defined as follows: wρ(X) is the optimum number of page replacements
when the sequence of requests is ρ and the final memory configuration is X.

Notice that in some cases, for example, when a configuration X does not contain
the last request, some page replacements may occur not because of page faults but
because we insist that the final configuration is X.

Henceforth we use the symbols + and − to denote set union and set difference,
respectively. Also, we represent unary sets with their element, e.g., we write a instead
of {a}. Finally, we denote the cardinality of a set S by |S|.

Definition 2.2. If w is a work function, define the support of w to be all
configurations X ∈ C such that there is no Y ∈ C, different from X, with w(X) =
w(Y ) + |X − Y |.

Intuitively, the values of w on its support completely determine w: if S is the
support, then w(X) = minY ∈S{w(Y )+ |X −Y |}. Furthermore, we can safely assume
that the optimal offline algorithm (or adversary) is in a configuration of the support.
To see this consider two configurations X and Y with wρ(X) = wρ(Y ) + |X − Y |.
Then the optimal offline algorithm has no advantage being in configuration X instead
of configuration Y after servicing ρ; it can move from Y to X without exceeding the
cost of being at X. In other words, an optimal offline algorithm that replaces a page
only when it is necessary is always in a configuration of the support.

The following lemmas, specific to the paging problem and not true in general
for the k-server problem, characterize all possible work functions by determining the
structure of their support. A similar, but more complicated, characterization is im-
plicit in the work of [11]. The first lemma states that all configurations in the support
have the same value, and hence what matters is the support itself, not the values of
w on it.

Lemma 2.3. The support of a work function w contains only configurations on
which w achieves its minimum value.
Proof. Toward a contradiction assume that there is a configuration A in the

support of w such that w(A) > minX w(X). Choose now a configuration B with
w(A) > w(B) that minimizes |B − A|. By the quasi-convexity condition in [9], there
are a ∈ A−B and b ∈ B −A such that

w(A) + w(B) ≥ w(A− a + b) + w(B − b + a).

Since w(A) > w(B), this holds only if either w(A) > w(A − a + b) or w(A) >
w(B − b + a). In the first case, we get that w(A) = w(A − a + b) + 1 and this
contradicts the assumption that A is in the support of w. The second case also leads
to a contradiction since it violates the choice of B with minimum |B − A|, because
|(B − b + a)−A| = |B −A| − 1.

Since the configuration of the optimal offline algorithm is always in the support,
Lemma 2.3 shows that the offline cost to service a request is simply the increase (0 or
1) of the minimum value of a work function. As a result, it can be determined online
when the adversary has a page fault.
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The next lemma determines the structure of the support.
Lemma 2.4. For each work function w there is an increasing sequence of sets

S1 � S2 � · · · � Sk, with S1 = {r} the most recent request, such that the support of
w is precisely

{X : |X ∩ Sj | ≥ j for all j}.
We postpone the proof of the lemma to introduce some new definitions. We will

call a k-tuple S = (S1, S2, . . . , Sk) of the lemma a signature of w. A signature of w
completely determines its support. But it doesn’t have to be unique. For example, a
work function whose support consists of only one configuration {a1, . . . , ak} has k!
signatures (for each permutation σ let Sj = {aσ1 , . . . , aσj}). We define the type of w
to be the k-tuple P = (|S1| = 1, |S2|, . . . , |Sk|). Although a work function may have
many signatures, its type is unique; it is easy to see that a work function has more
than one signature only when there is a j > 1 such that |Si| = i for 1 ≤ i ≤ j.

We now prove Lemma 2.4.
Proof of Lemma 2.4. The proof is by induction on the length of the request

sequence. The basis case is obvious: Let Sj = {a1, . . . , aj}, where {a1, . . . , ak} is
the initial configuration. For the induction step assume that we have a signature
(S1, S2, . . . , Sk) of w, and let w′ be the resulting work function after request r.

Consider first the case that r belongs to St and not to St−1 for some t ∈
{2, 3, . . . , k}. Since there is at least one configuration in the support of w that con-
tains the request r, the minimum value of w′ is the same as the minimum value of
w. Therefore, the support of w′ is a subset of the support of w. It consists of the
configurations that belong to the support of w and contain the most recent request
r. It is easy now to verify that w′ has the following signature:

S′1 = {r};
S′i = Si−1 + r, 2 ≤ i ≤ t;

S′i = Si, t < i ≤ k.

If, on the other hand, the request r does not belong to Sk, the minimum value of w′ is
one more than the minimum value of w. In this case, the support of w′ consists of all
configurations in the support of w where one point has been replaced by the request
r, i.e., a server has been moved to service r. Consequently, a signature of w′ is given
by

S′1 = {r};
S′i = Si + r, 1 < i ≤ k.

The induction step now follows.
Note that the converse of the lemma, not needed in what follows, also holds: Any

such tower of Sj ’s defines a reachable work function, that is, there exists wρ for some
ρ with signature S.

We define the canonical ordering to be a permutation of all pages such that page a
precedes page b when a has been requested more recently than b. Furthermore, pages
that have not been requested are ordered according to a fixed ordering (for exam-
ple, the lexicographic ordering). For example, if the canonical ordering after request
sequence ρ is a1 . . . am, then ρ has the form . . . a4(a3|a2|a1)

∗a3(a2|a1)
∗a2(a1)

∗a1. An
obvious property of the canonical ordering is that a new request aj doesn’t change
the ordering except from the movement of aj to the front.
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It follows from the proof of Lemma 2.4 that if we know the canonical ordering
a1a2 . . . and the type (p1, . . . , pk) of a work function w, we can determine a signature
(S1, . . . , Sk) of the work function: Si consists of the first pi pages of the canonical
ordering, i.e., Si = {a1, . . . , api}. We will call this signature the canonical signature
of w.

For a type P = (p1 = 1, p2, . . . , pk) that corresponds to a canonical signature
S = (S1, S2, . . . , Sk), we will denote by Pj the type that results from a request in
Sj+1 − Sj . From the proof of Lemma 2.4, we get

P0 = P,
P1 = (1, p1 + 1, p3, p4, . . . , pk),
P2 = (1, p1 + 1, p2 + 1, p4, . . . , pk),

...
Pk−1 = (1, p1 + 1, p2 + 1, p3 + 1, . . . , pk−1 + 1), and
Pk = (1, p2 + 1, p3 + 1, . . . , pk + 1).

The first type P0 corresponds to a request in S1 and the last type to a request not
in Sk. We will also use the following notation: For types P = (p1, p2, . . . , pk) and
Q = (q1, q2, . . . , qk) we write P ≤ Q (or Q ≥ P) if for all j = 1, 2, . . . , k: pj ≤ qj .
We also write P � Q (or Q � P) if for all j = 1, 2, . . . , k − 1: pj ≤ qj+1. The
motivation for this notation is the relation between Pk−1 and Pk: Pk−1 � Pk. In
addition, P0 ≥ P1 ≥ P2 ≥ · · · ≥ Pk−1 � Pk.

We can now state the following crucial property of work functions.
Lemma 2.5. Let ρ and ρ′ be two request sequences that result in the same canoni-

cal ordering. Let P and Q be the types of the two work functions w = wρ and w
′ = wρ′ ,

respectively. If P ≤ Q, then any configuration in the support of w is also in the support
of w′. Furthermore, if P � Q, then for any configuration in the support of w there is
configuration in the support of w′ that differs in at most one position.
Proof. Let S = (S1, S2, . . . , Sk) and S′ = (S′1, S

′
2, . . . , S

′
k) be the canonical signa-

tures of w and w′. The first case of the lemma, when P ≤ Q, is trivial since Sj ⊂ S′j ,
j = 1, 2, . . . , k. For the second case, when P � Q, it suffices to handle the “largest”
possible P, so we may assume that Sj−1 = S′j , for j = 3, . . . , k − 1. Consider now a
configuration X in the support of w. We will show that there is a configuration Y in
the support of w′ such that |Y −X| ≤ 1. Let xk be the last page of X in the canonical
ordering. Also, let b be the first page of the canonical ordering not in X − xk. We
claim that Y = X − xk + b, which differs in at most one position from X, is in the
support of w′. Notice first that Y contains the page in S1. It also contains the second
page of the canonical ordering because either this page is in X−xk or it is equal to b.
It remains to show that |Y ∩S′j | ≥ j, for j = 3, . . . , k. There are two cases to consider:
The first case, when |X ∩ Sj−1| ≥ j, follows from the fact that xk is in S′j (= Sj−1)
only if b is in S′j . For the second case, when |X ∩Sj−1| = j− 1, it suffices to note that
b ∈ S′j but xk �∈ S′j .

2.2. Optimality of LRU. We now turn to the ∆ε diffuse adversary. Our goal
in this section is to show that LRU has optimal competitive ratio against a diffuse ad-
versary. The usual approach to show that an online algorithm has optimal competitive
ratio is to compute its ratio and then show that every other algorithm has no smaller
competitive ratio. The difficulty here is that we cannot compute the competitive ratio
of LRU. Thus we have to compare LRU directly with any other online algorithm.
More precisely, we have to show that for any online algorithm A and any adversary
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(conditional probability distribution) D ∈ ∆ε, there is an adversary D′ ∈ ∆ε such
that the competitive ratio of A against D′ is at least the competitive ratio of LRU
against D. We have to face the problem that D may be very complicated and A may
be erratic.

We attack the problem in two steps. First, we “standardize” the class of adver-
saries, by showing that it suffices to consider only a class of adversaries which we call
conservative (to be defined shortly). In particular, we will show that for any D ∈ ∆ε

there is a better conservative adversary D̂ ∈ ∆ε against LRU, i.e., LRU has a compet-
itive ratio against D̂ that is no less than that against D. Second, we show that for any
conservative D ∈ ∆ε against LRU, there is a conservative adversary D′ ∈ ∆ε against
A, such that the competitive ratio of LRU against D is at most the competitive ratio
of A against D′.

To understand why LRU is optimal against diffuse adversaries and to motivate
the notion of conservatives adversaries, we start by asking what property an optimal
online algorithm must have. Intuitively, if (S1, . . . , Sk) is a signature of the current
work function w, an optimal online algorithm should prefer to have in its fast memory
pages from Si instead of pages not in Si. The intuition is that pages in Si are more
valuable to the offline algorithm than pages not in Si, because a configuration from
the support of w remains in the support when we replace any page not in Si with a
page in Si; the converse does not hold in general. LRU does exactly this. In fact, LRU
keeps in its fast memory the first k pages of the canonical ordering (with appropriate
initialization).

The same intuition suggests that the adversary should prefer as next request a
page a ∈ Si to a page b �∈ Si; the only exception being when a is in the online cache
and b is not. In this case, it is unclear which page (a or b) the adversary should choose
because of the following trade-off: On the one hand, b is more favorable because it
increases the online cost, whereas a does not. On the other hand, a is more favorable
since either the resulting support is larger or b increases the offline cost. The above
intuition suggests the notion of conservative adversary. A conservative adversary as-
signs probability that favors pages with smaller rank in the canonical ordering among
the pages in the online cache and similarly for the pages not in the online cache. To be
more precise, fix a request sequence ρ that results in canonical ordering a1a2 . . . and
configuration C of an online algorithm A. A conservative adversary against A assigns
probabilities with the property that for every ai, aj ∈ C with i < j, aj receives positive
probability, D(aj |ρ) > 0, only if ai receives maximum probability, D(ai|ρ) = ε. Sim-
ilarly for pages ai, aj �∈ C. Thus the probabilities D(·|ρ) are completely determined
by the total probability z assigned to pages in C. We add an additional constraint,
although the proofs do not call for it: At most one page receives probability that is
not zero or ε (equivalently either z or 1− z is an integral multiple of ε). For example,
if ε = 1/5, the online cache C consists of pages 1, 3, 4, 5 of the canonical ordering, and
z = 2/5, then pages 1, 2, 3, 6, 7 receive probability ε.

It seems reasonable that an optimal adversary against LRU is conservative and
indeed we are going to prove shortly that this is the case. For other online algorithms,
however, conservative adversaries may not be optimal, especially for “unreasonable”
and highly suboptimal online algorithms. A central idea of our proof is to disregard this
problem. Even if conservative adversaries are not optimal against an online algorithm
A, it suffices to show that there is a conservative adversary that forces a competitive
ratio no less than the ratio of LRU. We now show that an optimal adversary against
LRU is conservative.
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Lemma 2.6. For any D ∈ ∆ε, there is a conservative adversary D̂ ∈ ∆ε such
that the competitive ratio of LRU against D̂ is at least the competitive ratio of LRU
against D.

Proof. The proof is by induction on the number of requests. To facilitate induction,
we use a strong inductive hypothesis. First, we allow any initial work function (instead
of the work function whose support contains only one configuration). Let opt(ρ,P, C)
be the optimal cost to service ρ when the initial work function has type P and canonical
ordering C. For simplicity, in our notation we use only the type of work functions and
we write opt(ρ,P) instead of opt(ρ,P, C). Notice also that the initial type does not
affect the behavior of LRU at all, so we can simply write LRU(ρ) to denote the cost
of LRU for the sequence request ρ.

Second, since we don’t know the competitive ratio of LRU, we simply use the fact
that the competitive ratio is positive (although we could safely assume a competitive
ratio at least 1). More precisely, the inductive hypothesis is that for any D ∈ ∆ε, any
n, and any c > 0 there is a conservative D̂ such that ED(LRU(xn)− c · opt(xn,P)) ≤
ED̂(LRU(xn)− c · opt(xn,P)), where P is the type of the initial work function and xn
denotes a sequence of length n drawn from the conditional probability distribution D
or D̂. Equivalently, we will show that there is a conservative D that maximizes

ψ(D,n,P) = ED(LRU(xn)− c · opt(xn,P)).(5)

We use induction on the number of requests n. For n = 0, there is nothing to prove.
Assume now that the induction hypothesis holds for n−1 and let D be a distribution
that maximizes ED(LRU(xn)− c · opt(xn,P)). If D is not conservative, we will show
how to alter it to get a conservative adversary D̂ that also maximizes ψ(D̂, n,P).

The proof proceeds as follows: Although D may not be conservative, by induction
it becomes conservative after the first request. So, we want to show that the first
request is also “conservative.” Denote by Dj the resulting conditional distribution
when the first request is the jth request aj of the canonical ordering, i.e., Dj(·|ρ) =
D(·|ajρ). Let also P

(j) denote the type of the work function that results after request
aj . If (S1, . . . , Sk) is the initial canonical signature, then

ψ(D,n,P) =
∑
j≥1

D(aj) ·
[
ψ(Dj , n− 1,P(j)) + I(j > k)− c · I(aj �∈ Sk)

]
,(6)

where D(aj) = D(aj |ε) is the probability assigned to page aj conditioned on the
empty sequence ε, and I(φ) is the indicator function that takes value 1 when φ is true
and 0 otherwise. The last two terms inside the sum of the right-hand side correspond
to the online and the offline cost for the first request. By induction, we can replace
Dj with a conservative D̂j without decreasing the right-hand side of (6). So, without
loss of generality, we assume that the distributions Dj are conservative.

If we fix the conditional distributions Dj , the optimal probabilities for the first
request can be computed as follows: order the pages in decreasing ψ(Dj , n−1,P(j))+
I(j > k)− c · I(aj �∈ Sk) value, assign probability ε to the first �1/ε� pages, and assign
the remaining probability (which of course is less than ε) to the next page.

We simply want to guarantee that the probabilities are assigned in a conservative
manner. Equivalently, if i < j ≤ k (both ai and aj are in LRU’s cache) or when
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k < i < j (neither ai nor aj are in LRU’s cache), it suffices to show that

ψ(Di, n− 1,P(i)) + I(i > k)− c · I(ai �∈ Sk)(7)

≥ ψ(Dj , n− 1,P(j)) + I(j > k)− c · I(aj �∈ Sk).

We first consider the case of i < j ≤ k. The crucial point for establishing (7) is
that we can assume

ψ(Di, n− 1,P(i)) ≥ ψ(Dj , n− 1,P(j)).(8)

To see this, let us consider the adversary D̂ that is identical to D but when the
first request is ai, it continues like Dj instead of Di (taking into account the dif-
ference in the canonical orderings). Formally, if b1b2 . . . is the canonical ordering
that results when the first request is aj and b′1b

′
2 . . . when the first request is ai,

then D̂(b′l|aib′l1 . . . b′lm) = D(bl|ajbl1 . . . blm). We then have ψ(D̂, n,P) = ψ(D,n,P) +

D(ai)(ψ(Dj , n− 1,P(i))− ψ(Di, n− 1,P(i))).
But since P

(i) ≥ P
(j), we can apply Lemma 2.5 and get opt(xn−1,P

(i)) ≤
opt(xn−1,P

(j)), which in turn implies that ψ(Dj , n − 1,P(i)) ≥ ψ(Dj , n − 1,P(j)).

Thus ψ(D̂, n,P) ≥ ψ(D,n,P) + D(ai)(ψ(Dj , n − 1,P(j)) − ψ(Di, n − 1,P(i))). If (8)

does not hold, then ψ(D̂, n,P) ≥ ψ(D,n,P); hence, D̂ maximizes ψ and of course has
the desired property (8).

Combining (8) and the fact that I(i > k) = I(j > k) = I(ai �∈ Sk) = I(aj �∈
Sk) = 0, we get that (7) holds for i < j ≤ k.

Inequality (7) holds for k < i < j. An identical argument as above establishes
it for the case of ai, aj ∈ Sk or ai, aj �∈ Sk. The remaining case, when ai ∈ Sk and
aj �∈ Sk, is treated similarly. In this case, we have that P

(i) � P
(j), which implies

opt(xn−1,P
(i)) ≤ opt(xn−1,P

(j)) + 1. The last inequality implies ψ(Di, n− 1,P(i)) ≥
ψ(Dj , n − 1,P(j)) − c, and together with the facts that I(i > k) = I(j > k) = 1,
I(ai �∈ Sk) = 0, and I(aj �∈ Sk) = 1, we get (7).

The above lemma establishes that the best adversary against LRU is conservative.
We can now proceed to the second part of the proof that LRU has optimal competitive
ratio. We will show that for any online algorithm A and any conservative adversary
D ∈ ∆ε against LRU, there is an adversary D′ ∈ ∆ε against A such that the compet-
itive ratio of LRU against D is at most the competitive ratio of A against D′. The
main idea for constructing a D′ is by enforcing the online cost of LRU against D to
be equal to the online cost of A against D′. This allows us to compare the competitive
ratios of LRU and A, simply by comparing the corresponding offline costs.

Given D, how can we design D′ so that cost of LRU against D is equal to the cost
of A against D′? For the first request it is obvious: the probability that D′ assigns
to pages in the cache of A should be equal to the probability that D assigns to pages
in LRU’s cache. But for the second and subsequent requests, the situation depends
on previous requests (the outcome of random experiments). In general, a conservative
adversary against an algorithm B corresponds to an (infinite) rooted tree T with
outdegree �1/ε� such that each node v has weight z(v) in [0,min{kε, 1}]; furthermore,
either z(v) or 1 − z(v) is an integral multiple of ε. Paths on this tree correspond
to request sequences and the values z(v) are the total probability assigned by the
adversary to pages in the online cache. More precisely, a request sequence is produced
by starting at the root and descending down the tree. At a node v the adversary assigns
probabilities in a conservative manner so that the total probability assigned to pages
of the current cache of B is z(v). Since the adversary is conservative, at most l = �1/ε�
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pages receive nonzero probability. Let r1, . . . , rl be these pages (first the pages in the
current cache of B and then the pages outside the cache in the canonical order). If
the next request (the outcome of the random experiment) is rj , the adversary moves
to the jth child of v and repeats the process to produce the next request. We will call
this conservative adversary the adversary based on T against B and we will denote it
by DT (B). Notice that the conditional probability distribution DT (B) depends on the
online algorithm B (for another algorithm B′ it may be different). It also depends on
the initial configuration of B, although for simplicity we omit this dependence in our
notation.

It is now simple to design D′ so that the expected cost of A against D′ is equal
to the expected cost of LRU against D: if T is the tree such that D = DT (LRU), then
D′ = DT (A). It suffices to show that the expected optimum cost against D is no less
than the expected optimum cost against D′. More precisely, we will show that the
expected offline cost to service a request sequence of length n produced by DT (LRU)

is no less than the offline cost to service a request sequence of length n produced by
DT (A).

We will use induction on the length n of the request sequence. In order to facilitate
induction, we generalize the problem by assuming any initial work function. As in the
proof of Lemma 2.6, our notation will include only the type of the work function.
More precisely, let hT (A)(n,P) denote the expected offline cost to service a request
sequence of length n produced by the conditional distribution DT (A) when the initial
work function has type P. We will show that for every P: hT (LRU)(n,P) ≥ hT (A)(n,P).
But first, we need the following simple lemma.

Lemma 2.7. For all conservative adversaries T , if P ≤ Q, then hT (LRU)(n,P) ≥
hT (LRU)(n,Q), and if P � Q, then hT (LRU)(n,P) + 1 ≥ hT (LRU)(n,Q).

Proof. The crucial observation is that LRU does not depend on the initial type
of the work function, but only on the initial canonical ordering. An immediate conse-
quence is that the conditional probability distribution T (LRU) is independent of the
initial work function. Consider first the case of P ≤ Q. By Lemma 2.5, the offline
cost to service a request sequence starting with a work function w of type P can-
not be less than the offline cost to service the same request sequence starting with
a work function w′ of type Q and the same canonical ordering with w. Therefore,
hT (LRU)(n,P) ≥ hT (LRU)(n,Q). The other case, P � Q, is handled similarly.

We are now ready to show that the expected offline cost of a request sequence
produced by a tree T is maximized when the online algorithm is the LRU algorithm.

Lemma 2.8. For every tree T and every online algorithm A, hT (LRU)(n,P) ≥
hT (A)(n,P).

Proof. By induction on n. For n = 0, the lemma is trivially true. Assume that the
lemma holds for n− 1. Denote by Tj the subtree rooted at the jth child of the root of
T . Let rA and rLRU be the request that is produced when the adversary descends to
Tj for algorithms A and LRU, respectively. Let also PiA , PiLRU denote the resulting
type after requests rA and rLRU. It is important to notice that iA ≤ iLRU; this is the
only property of algorithm A used in the proof.

Child j is chosen with probability that depends on the value z(v), where v is the
root of T . This probability is ε for all values of j except of one child when 1/ε is not
an integer. Obviously, hT (A)(n,P) is equal to the expected value of hTj(A)(n− 1,PiA)
plus the offline cost for the first request; the offline cost is 0 when iA < k and it is
1 when iA = k. In other words hT (A)(n,P) = E[hTj(A)(n − 1,PiA) + I(iA = k)]. A
similar expression holds also for hT (LRU)(n,P). It suffices therefore to show that for
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all j: hTj(A)(n− 1,PiA) + I(iA = k) ≤ hTj(LRU)(n− 1,PiLRU
) + I(iLRU = k).

We consider three cases according to the values of iA and iLRU. In the first case,
iA ≤ iLRU < k, we get

hTj(A)(n− 1,PiA) + I(iA = k) = hTj(A)(n− 1,PiA)

≤ hTj(LRU)(n− 1,PiA)

≤ hTj(LRU)(n− 1,PiLRU
)

= hTj(LRU)(n− 1,PiLRU
) + I(iLRU = k),

where the first inequality follows from the induction hypothesis and the second one
from Lemma 2.7, because PiA ≥ PiLRU . In the second case, iA < iLRU = k, we
get hTj(A)(n − 1,PiA) + I(iA = k) = hTj(A)(n − 1,PiA) ≤ hTj(LRU)(n − 1,PiA) ≤
hTj(LRU)(n − 1,PiLRU

) + 1 = hTj(LRU)(n − 1,PiLRU) + I(iLRU = k). Again, the first
inequality follows from the induction hypothesis and the second one from Lemma 2.7,
because PiA � PiLRU

. Finally, the third case, iA = iLRU = k, is handled similarly:
hTj(A)(n− 1,PiA)+ I(iA = k) = hTj(A)(n− 1,PiA)+ 1 ≤ hTj(LRU)(n− 1,PiLRU)+ 1 =
hTj(LRU)(n− 1,PiLRU) + I(iLRU = k).

The above lemmas establish the main result of this section.
Theorem 2.9. For any ε, LRU has optimal competitive ratio R(∆ε) for the

paging diffuse adversary model.
The above lemmas, however, do not provide any efficient way to estimate the com-

petitive ratio R(∆ε). The approach suggested by the lemmas is to nondeterministically
guess the optimal conservative adversary and then compute the competitive ratio of
LRU against this adversary. A conservative adversary is determined by the values z(v)
that are multiples of ε when 1/ε is an integer; it is slightly more complicated when 1/ε
is not an integer. For a given conservative adversary, the competitive ratio of LRU
is given by a finite Markov chain; the states of the Markov chain are all reachable
types and there are at most (k+1/ε)k−1 such types. This approach provides a doubly

exponential algorithm (approximately k(k+1/ε)k−1

) to compute R(∆ε). It is an inter-
esting open problem to determine R(∆ε) as a function of ε. For the extreme values
of ε, we know that R(∆1) = k and limε→0 R(∆ε) = 1. In the first case, the adversary
has complete power and in the second case, it suffers a page fault in almost every
step. Recently, Young [16] estimated R(∆ε) within (almost) a factor of two; R(∆ε) is

between Φ(ε, k) − 1 and 2Φ(ε, k), where Φ(ε, k) = 1 +
∑k−1
i=1 1/max{1/ε − i, 1} (this

is approximately ln 1
1−(k−1)ε for ε > 1/k, and k + 1− 1/ε otherwise).

Even for the simplest case of k = 2, determining the competitive ratio is not
trivial. Here we give a lower bound which we believe is exact. This is the competitive
ratio against the conservative adversary that always assigns nonzero probability to
exactly one page from the pages in the online fast memory.

Proposition 2.10. For k = 2, if n = 1/ε− 1 is an integer, then

R(∆ε) ≥
∑n
i=0 n

i/i!∑n−1
i=0 ni/i!

∈ [1 +
√
ε/2, 1 + 2

√
ε].

Proof. Consider the conservative adversary that always assigns probability ε to
pages of the current canonical ordering with rank 1, 3, 4, . . . , 1/ε+1. Notice that page
2 is assigned zero probability. The request on the page of rank 1 is identical to the
previous request and does not change anything. Thus, this adversary is equivalent
to the adversary that assigns probability δ = ε/(1 − ε) = 1/n to pages with rank
3, 4, . . . , 1/ε + 1.



312 ELIAS KOUTSOUPIAS AND CHRISTOS H. PAPADIMITRIOU

Let (1, p2) be the type of the current work function. The following table summa-
rizes the possibilities of the next request, together with the probability, the resulting
type, and the associated online and offline cost for servicing the request.

Request Probability Type Online cost Offline cost

3 . . . p2 (p2 − 2)δ (1, 2) 1 0
p2 + 1 . . . 1/δ + 2 1− (p2 − 2)δ (1, p2 + 1) 1 1

In summary, the competitive ratio is given by a Markov chain Mδ with states the types
(1, p2) for p2 = 2, 3, . . . , 1/δ + 2. The transition probabilities from state (1, p2) are
given in the above table. It is not difficult to see that the Markov process is identical
to the following random process: In each phase repeatedly choose uniformly a number
from {1, 2, . . . , n}, where n = 1/δ; a phase ends when a number is chosen twice. The
state (1, p2) of Mδ corresponds to the case that p2−2 numbers have been drawn. This
random process is a generalization of the well-known birthday problem in probability
theory. A phase corresponds to a cycle in the Markov chain that starts (and ends) at
state with type (1, 2). The expected offline cost per phase is equal to the length of
a phase minus one (all transitions in the cycle have offline cost one except the last
one). Similarly, the expected online cost per phase is equal to the length of a phase
(all transitions have online cost one). It is not hard now to verify the expression for
R(∆ε).

For the purpose of bounding the expected length of a phase, notice that each of
the first

√
n numbers has probability at most 1/

√
n to end the phase. In contrast, each

of the next
√
n numbers has probability at least 1/

√
n to end the phase. Elaborating

on this observation we get that Rε is in the interval [1 +
√
ε/2, 1 + 2

√
ε].

Numerical evaluations suggest that the value of Rε is approximately 1 + 0.8
√
ε,

when ε→ 0.
A preliminary version of this work [8] had an incorrect proof of optimality of LRU.

The proof was based on the unjustified assumption that a conservative adversary that
achieves optimal competitive ratio against LRU assigns probability ε to exactly one
page in the online fast memory. As was pointed out to us by Neal Young (see also
[16]), this assumption does not hold in general.

An important open problem is to determine the competitive ratio of known paging
algorithms against a diffuse adversary. The most important direction is to estimate the
competitive ratio of FIFO. The recent work of Young [16] estimates the competitive
ratio of marking algorithms—both LRU and FIFO are marking algorithms—almost
within a factor of 2. He gives similar bounds for randomized algorithms. Our proof of
the optimality of LRU seems to suggest that for certain values of ε, the competitive
ratio of FIFO is not optimal. In particular, FIFO does not always keep in its fast
memory the first k pages of the canonical ordering or an equivalent set of pages. This
then is an indication that a conservative adversary may force FIFO to have larger
cost than LRU. We conjecture that FIFO is suboptimal for some values of ε. If indeed
this is the case, it will add some extra validity to the paging diffuse adversary model,
in the sense that the model can actually distinguish between LRU and FIFO.

3. Comparative analysis. Online algorithms deal with the relations between
information regimes. Formally but briefly, an information regime is the class of all
functions from a domain D to a range R that are constant within a fixed partition of D.
Refining this partition results in a richer regime. Traditionally, the literature on online
algorithms has been preoccupied with comparisons between two basic information
regimes: the online and the offline regime (the offline regime corresponds to the fully
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refined partition). As we argued in the introduction, this has left unexplored several
intricate comparisons between other important information regimes.
Comparative analysis is a generalization of competitive analysis allowing compar-

isons between arbitrary information regimes, via the comparative ratio defined in (3).
Naturally, such comparisons make sense only if the corresponding regimes are rich
in algorithms—single algorithms do not lend themselves to useful comparisons. As in
the case of the competitive ratio for the diffuse adversary model, we usually allow an
additive constant in the numerator of (3).

We apply comparative analysis in order to evaluate the power of lookahead in task
systems. An online algorithm for a metrical task system has lookahead � if it can base
its decision not only on the past but also on the next � requests. All online algorithms
with lookahead � comprise the information regime L�. Thus, L0 is the class of all
traditional online algorithms.

Metrical task systems [3] are defined on some metric space M; a server resides
on some point of the metric space and can move from point to point. Its goal is to
process online a sequence of tasks T1, T2, . . . . The server is free to move to any position
before processimg a task, although it has to pay the distance. The cost c(Tj , aj) for
processing a task Tj is determined by the task Tj and the position aj of the server
while processing the task. The total cost for processing the sequence is the sum of the
distance moved by the server plus the cost of servicing each task Tj , j = 1, 2, . . . .

Theorem 3.1. For any metrical task system, R(L0,L�) ≤ 2� + 1. Furthermore,
there are metrical task systems for which R(L0,L�) = 2� + 1.
Proof. Trivially the theorem holds for � = 0. Assume that � > 0 and fix an

algorithm B in L�. We shall define an online algorithm A without lookahead whose
cost on any sequence of tasks is at most 2� + 1 times the cost of B. Algorithm A is a
typical online algorithm in comparative analysis: it tries to efficiently “simulate” the
more powerful algorithm B. In particular, A knows the position of B � steps ago. In
order to process the next task, A moves first to B’s last known position, and then
processes the task greedily, that is, with the minimum possible cost.

Let T1, T2, . . . be a sequence of tasks and let b1, b2, . . . be the points where algo-
rithm B processes each task and a1, a2, . . . the corresponding points for algorithm A.
For simplicity, we define also points bj = aj = a0 for negative j’s.

Then the cost of algorithm B is∑
j≥1

(d(bj−1, bj) + c(Tj , bj))

and the cost of algorithm A is∑
j≥1

(d(aj−1, bj−�) + d(bj−�, aj) + c(Tj , aj)) .(9)

Recall that in order to process the jth task, algorithm A moves to B’s last known
position bj−� and then processes the task greedily, that is, d(bj−�, aj) + c(Tj , aj) is
the minimum. In particular,

d(bj−�, aj) + c(Tj , aj) ≤ d(bj−�, bj) + c(Tj , bj).

From this, the fact that costs are nonnegative, and the triangle inequality we get

d(aj−1, bj−�) ≤ d(aj−1, bj−�−1) + d(bj−�−1, bj−�)
≤ d(bj−1, bj−�−1) + c(Tj−1, bj−1) + d(bj−�−1, bj−�).
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We can now bound the cost of algorithm A in (9) by

∑
j≥1

(d(bj−1, bj−�−1) + c(Tj−1, bj−1) + d(bj−�−1, bj−�) + d(bj−�, bj) + c(Tj , bj)) .(10)

Using the triangle inequalities of the form

d(bi, bi+2) ≤ d(bi, bi+1) + d(bi+1, bi+2),

we can expand d(bj−�−1, bj−1) ≤ d(bj−�−1, bj−�)+ · · ·+d(bj−2, bj−1) and similarly we
can expand d(bj−�, bj). Observe now that each term d(bi−1, bi) appears in (10) 2�+ 1
times and each term c(Ti, bi) appears twice. We can therefore conclude that the cost
of algorithm A is at most

∑
j≥1

((2� + 1)d(bj−1, bj) + 2c(Tj , bj)) ≤ (2� + 1)
∑
j≥1

(d(bj−1, bj) + c(Tj , bj)) .

The last expression is (2� + 1) times the cost of algorithm B.

To show the converse, we consider a task system with metric spaceM a (rooted)
binary tree, where the distance between adjacent vertices is 1. Let B be the “greedy”
algorithm with lookahead �. In other words, B services the next task in such a way
that minimizes the total cost to service the next � tasks. Consider now an algorithm
A with no lookahead. We will describe a sequence of tasks T1, T2, . . . that force a
comparative ratio 2� + 1 for A against B. For this, let aj−1 be the position where A
services the task Tj−1. With appropriate initialization, assume that aj−1 is at depth
j + �. The next task Tj has infinite cost on all vertices except for the 2� vertices that
are on depth j+�+1 and on distance 2�+1 from the current position aj−1. (To move
to one of these vertices A must move up to level j and then down to level j + � + 1.)
The cost of Tj on these vertices is 0. Thus, the cost for A to service each such task
is 2� + 1, while the cost for B is 1. (Using its lookahead power, it simply walks down
the tree.)

We remark here that although the above lower bound uses an infinite metric
space, a finite metric space that looks locally like a binary tree can also be used. In
particular, consider a butterfly (the FFT graph) of 2�+ 2 levels and identify the first
and last levels. Then we can embed the infinite binary tree into this graph in such
a way that every subtree of � + 1 levels is embedded isometrically (in a distance-
preserving manner). We conclude that there are task systems with metric spaces of
2O(�) points and comparative ratio 2�+ 1. We leave it as an interesting open problem
to determine the comparative ratio for smaller metric spaces.

Of course, for certain task systems the comparative ratio may be less than 2�+1.
For the paging problem, it is min{� + 1, k}.

Theorem 3.2. For the paging problem

R(L0,L�) = min{� + 1, k}.

Proof. Let n = min{�, k−1} and let B be an algorithm for the paging problem in
the class L�, that is, with lookahead �. Without loss of generality we assume that B
moves pages only to service requests. Consider the followingonline algorithm A which
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is a generalization of LRU:
To service a request r not in its fast memory, A evicts a page

that is not one of the n most recent distinct requests (including r).
Among the remaining pages, A chooses to evict a page such that
the resulting configuration is as close as possible to the last known
configuration of B. A does nothing for requests in its fast memory.

To show that the comparative ratio of A is n+1, it suffices to show that for every n+1
consecutive page faults of A, B suffers at least one page fault. This can be achieved by
showing that after each subsequence of requests that causes n page faults to A and no
page fault to B, both algorithms are in the same configuration. To do this, we show
by induction on the number of requests the stronger claim that after a subsequence
of requests that cause c page faults to A and no fault to B, the configurations of A
and B differ by at most n− c pages.

Fix a request sequence ρ = r1r2 . . . and let A0, A1, . . . and B0 = A0, B1, . . . be the
configurations of A and B that service ρ. The base of the induction is trivial. Assume
that the induction hypothesis holds for t− 1. We have to deal with a few cases. First
of all, when rt ∈ At−1, A suffers no page fault and the inductive step follows from
the fact that |At − Bt| ≤ |At−1 − Bt−1|. Similarly, when the request rt �∈ Bt−1, B
suffers a page fault and |At−Bt| ≤ |At−1−Bt−1|, which is at most n by the induction
hypothesis. Assume now that rt ∈ Bt−1 − At−1. Let xt be the page evicted by A to
service rt. It is easy to see that if xt �∈ Bt−1, then |At −Bt| = |At−1 −Bt−1| − 1. The
final and more complicated case is when xt ∈ Bt−1. By the definition of algorithm
A, xt is not one of the n most recent requests and consequently xt is also in Bt−n.
It follows that At−1 ⊆ Bt−n + {rt−n+1, . . . , rt−1} (otherwise A would not choose
xt ∈ Bt−n to evict) and

At ⊆ Bt−n + {rt−n+1, . . . , rt−1, rt}.

We also have the obvious relation

Bt ⊆ Bt−n + {rt−n+1, . . . , rt−1, rt}.

(Recall that we assumed that B moves pages only to service requests.) If B suffered
no page fault during the last c requests, i.e., Bt = Bt−1 = · · ·Bt−c, the set Bt−n +
{rt−n+1, . . . , rt−1, rt} has cardinality at most k+n− c. We conclude that |At ∪Bt| ≤
k + n− c, which implies the desired |At −Bt| ≤ n− c.

To show that min{� + 1, k} is a lower bound of the comparative ratio, let B be
a variant of the optimal offline algorithm adapted to lookahead �. More precisely, B
never evicts one of the next n requests. Fix a set of k + 1 pages. Clearly, for every
request sequence ρ, B suffers at most one page fault for every n + 1 consecutive
requests. The lower bound follows because for any algorithm A, there is a request
sequence ρ such that A suffers a page fault for every request.

4. Open problems. We introduced two refinements of competitive analysis,
the diffuse adversary model and comparative analysis. Both restrict the power of the
adversary: the first by allowing only certain input distributions and the second by
restricting the refinement of the adversary’s information regime. In general, we believe
that the only natural way to deal with uncertainty is by designing algorithms that
perform well in the worst world which is compatible with the algorithm’s knowledge.

There are a lot of interesting open problems suggested by this approach. The most
important open problem is to determine the competitive ratio of FIFO for the paging
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diffuse adversary model. As mentioned above, we conjecture that FIFO is in gen-
eral suboptimal. There are numerous other applications of these two frameworks for
evaluating online algorithms. We simply mention here two challenging open problems.

The Markov diffuse adversary. Consider again the paging problem. Suppose that
the request sequence is the output sequence of an unknown Markov chain (intuitively,
the program generating the page requests) with at most s states, which we can only
partially observe via its output. That is, the output f(q) of a state q of the unknown
Markov process is a page in M . The allowed distributions ∆ are now all output distri-
butions of s-state Markov processes with output. We may want to restrict our online
algorithms to ones that do not attempt to exhaustively learn the Markov process.
One way to do this would be to bound the length of the request sequence to O(s).
A better way, however, is to require the additive constant d in (4) to be independent
of s. We believe that this is a useful model of paging whose study and solution may
enhance our understanding of the performance of actual paging systems.

The power of vision. Consider two robots, one with vision α (its visual sensors can
detect objects in distance α) and the other with vision β, β > α. We want to measure
the disadvantage of the first robot in navigating or exploring a terrain against the
second robot. Naturally, comparative analysis seems the most appropriate framework
for this type of problem. Different restrictions on the terrain and the objective of the
robot result in different problems but we find the following simple problem particularly
challenging: On the plane, there are n objects (points). The objective of the robot
is to construct a map of the plane, i.e., to find the position of all n objects. We ask
what the comparative ratio R(Vα,Vβ) for this problem is, where Vα and Vβ denote
the information regimes of vision α and β, respectively.
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Abstract. We consider the problem of designing a near-optimal linear decision tree to classify
two given point sets B and W in �n. A linear decision tree defines a polyhedral subdivision of
space; it is a classifier if no leaf region contains points from both sets. We show hardness results
for computing such a classifier with approximately optimal depth or size in polynomial time. In
particular, we show that unless NP = ZPP, the depth of a classifier cannot be approximated within
any constant factor, and that the total number of nodes cannot be approximated within any fixed
polynomial. Our proof uses a simple connection between this problem and graph coloring and uses
the result of Feige and Kilian on the inapproximability of the chromatic number. We also study the
problem of designing a classifier with a single inequality that involves as few variables as possible
and point out certain aspects of the difficulty of this problem.
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1. Introduction. Classifying point sets in �n by linear decision trees is of great
interest in pattern analysis and many other applications [4, 5, 14]. Typically, in such
a problem we are given a set W of white points and a set B of black points in �n, and
we must produce a linear decision tree which classifies them. That is, the tree defines
a linear decision at each internal node, such that for each leaf � of this tree, either
only white or only black points lead the algorithm to �. We call such a linear decision
tree a classifier. In many situations W and B are not given explicitly but implicitly
in terms of concepts, images of objects, etc.

The problem is already well studied. Constructing a size-optimal classifier is NP-
complete even in three dimensions [10]; in high dimensions it is NP-complete even for
constant size trees [2, 16]. There is much algorithmic work toward computing clas-
sifiers that meet various local optimality conditions [4, 17], but very little is known
about how well such local optima approximate the optimal solution. An exception
is the use of random sampling to find near-optimal splitting planes in low dimen-
sions [10].

In this paper we prove some very strong negative results on high-dimensional
classifying trees (the important case in practice). We point out a simple connection
between the problem of designing optimal linear classifying trees and the classical
problem of coloring a graph. Given a graph G, we construct its geometric realization;
roughly speaking, the white points are the vertices of the graph arranged at the corners
of a simplex, and the black points correspond to the edges of the graph, with each
black point placed at the midpoint between the two endpoints of its edge. It is not
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hard to prove then that the optimum size of any classifier is the chromatic number of
the graph χ(G), while the optimum depth is log2(χ(G) + 1). We then use the result
of Feige and Kilian [8] on the inapproximability of the chromatic number to obtain
the following two results.

Theorem 1.1. Unless NP = ZPP, no polynomial-time algorithm for optimizing
the number of nodes in a classifier can approximate the optimum within any fixed
polynomial. For ε > 0 and large enough dimension n, the approximation ratio is no
better than n1−ε.

Theorem 1.2. Unless NP = ZPP, no polynomial-time algorithm for optimizing
the depth a classifier can have approximation ratio better than any fixed constant.

Here ZPP is the class of problems solved by polynomial expected-time randomized
algorithms with neither false negatives nor false positives. NP = ZPP is a situation
almost as unthinkable as NP = P. In the next section we prove these two results.

Finally, in section 3 we look at another aspect of the difficulty of optimizing clas-
sifiers: Suppose that the two point sets can be separated by a single linear inequality,
but we want to find the inequality that separates them and involves as few variables
as possible. This situation is of interest when we use functions of the points as addi-
tional coordinates to facilitate classification [4, 11]. We point out that variants of
this problem are hard for various levels of the W hierarchy [3, 6], which implies that
(unless an unlikely collapse occurs), they cannot be solved in polynomial time even if
the optimum sought is small (bounded by any very slowly growing function).

2. Definitions and proofs. LetW,B ⊆ �n be two point sets. A linear classify-
ing tree for W and B is a decision tree with internal nodes of the form

∑n
i=1 aixi > b,

each with two branches, the true branch and the false branch. A leaf � of such a tree
corresponds in a straightforward way to a convex cell in a subdivision of �n, call it
C(�), containing all points that satisfy (or falsify) the inequality in each internal node
I that is an ancestor of � in the tree, and such that � is in the true (respectively, false)
subtree of I.

There are two important measures of the difficulty of such a classifier. The first
is the number of internal nodes of the tree and corresponds to the program size of the
classifier. The other is the depth of the tree and corresponds to the running time of
the decision algorithm. We denote by d(W,B) the depth of the classifier for W and
B that has the smallest possible depth among all such classifiers; similarly, n(W,B)
is the optimum number of internal nodes.

For example, a classifier for the two 2-dimensional point sets W and B shown in
Figure 2.1(a) is shown in Figure 2.1(b). The subdivisions corresponding to the leaves
are also shown in Figure 2.1(a). It has depth two, and a total of three nodes. Here it
is easy to see that d(W,B) = 2 and n(W,B) = 2; thus the tree shown is optimal with
respect to depth, but not with respect to the number of nodes.

Let G = (V,E) be any graph, with vertices V = {v1, . . . , vn} and edges E =
{e1, . . . , em}. Consider the following two point sets in �n (indeed, on the (n − 1)-
dimensional hyperplane

∑n
i=1 xi = 1): the white set W (G) = {w1, . . . , wn}, where

wi is the ith elementary basis vector (that is, (wi)i = 1 and all other coordinates
are zero); and the black set B(G) = {b1, . . . , bm}, with bk = 1

2 (wi + wj), where
ek = {vi, vj}. In other words, the white points are the nodes of G placed at the
vertices of the simplex, while the black points are the edges of G, each placed at the
midpoint of its two endpoints.

The chromatic number of G, χ(G), is the smallest number of colors that can be
used to color the nodes of G so that no two adjacent nodes have the same color;
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Fig. 2.1. A 2-dimensional classifier.

equivalently, it is the smallest number of independent sets that can be used to cover
all nodes of G.

The following two lemmas now characterize the complexity of classifying W (G)
and B(G) in terms of χ(G).

Lemma 2.1. n(W (G), B(G)) = χ(G).
Proof. Consider any white leaf � in any decision tree for W (G), B(G). Since

its cell C(�) is convex, it follows that the nodes of G it contains share no edge,
because otherwise the corresponding black midpoint would also be in C(�). Thus,
C(�) contains an independent set of G. Since the leaves of the decision tree must cover
all nodes of G, there are at least χ(G) white leaves in any decision tree. In addition
there must be at least one black leaf, and hence there are at least χ(G) + 1 leaves
overall, and at least χ(G) internal nodes. It follows that n(W (G), B(G)) ≥ χ(G).

For the other direction let S1, . . . , Sχ(G) be the independent sets in the optimum
coloring of G. We can construct a decision tree with χ(G) internal nodes, of which
the kth has the inequality

∑
vi∈Sk

xi ≥ 2
3 , with the true branch leading to a white

leaf and the false branch leading to either the k + 1st internal node or a black leaf
if k = χ(G). It is easy to see that this is a classifier for W (G), B(G), and hence
n(W (G), B(G)) ≤ χ(G).

Lemma 2.2. �log2(χ(G) + 1)	 ≤ d(W (G), B(G)) ≤ �log2(χ(G) + 1)	+ 1.
Proof. The lower bound follows from the previous lemma, since d(W,B) ≥

�log2(n(W,B) + 1)	. For the upper bound, consider the optimum coloring of G with

χ(G) colors. We let V1 be the union of the first 
χ(G)
2 � color classes, and let V2 be

the remaining nodes of G. Our first inequality is
∑
vi∈V1

xi ≥ 1
3 , and it separates the

white nodes in two subgraphs, each with about half the chromatic number. Continu-
ing the same way we arrive at nodes that contain white nodes that are independent,
plus certain black nodes; these can be separated with one more internal node. The
total depth is thus �log2 χ((G) + 1)	+ 1.

To prove Theorems 1.1 and 1.2 from the lemmas, we now need only the following
result of Feige and Kilian [8], building on earlier results of Lund and Yannakakis [15]
and Fürer [9].

Theorem 2.3. Unless NP = ZPP, no polynomial-time algorithm for approximat-
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ing the chromatic number of a graph with n nodes can have an approximation ratio
better than n1−ε for a fixed ε > 0 and large enough n.

In other words, for a given efficient algorithm and ε > 0, there are graphs with
chromatic number nε, such that the algorithm cannot find a coloring better than n1−ε.
Theorem 1.1 then follows from Lemma 2.1 and Theorem 2.3, and Theorem 1.2 follows
from Lemma 2.2 and Theorem 2.3.

3. Single linear decisions. In this section we point out aspects of the difficulty
of classifier optimization that hold even in the case in which W and B are separable,
that is, there is a single linear inequality that separates W from B (in other words, the
optimum classifying tree has just one internal node). In this case we are interested in
minimizing the number of variables that are actually needed in the decision node.

Naturally, the interesting classification problems are not linearly separable; how-
ever, the separable case is practically interesting because it arises when we introduce
“extra variables” to make classification possible. For example, one may introduce low-
degree monomials (products of variables) or radial basis functions (simple functions
of the distance from a point) [11, 13] and then construct a linear decision tree treating
the outputs of these functions as new variables. Or one could even allow more costly
special-purpose classifying heuristics and also treat their outputs as variables. It is
clear that any disjoint finite sets W and B may be separated given enough such extra
functions, so the real question is how to minimize their number and cost. Besides
the obvious consideration of computational efficiency, by the principle of Occam’s ra-
zor we expect that optimal classifiers of this sort are in some sense “better-quality”
classifiers.

We wish thus to solve the following problem: We are given two point sets W,B ⊆
�n that we know are separable by a single hyperplane. We are asked to find the
hyperplane

∑n
i=1 aixi ≥ b that separates W from B, and such that |{i : ai = 0}| is

minimized. In another version (better suited for modeling the case of extra functions),
the first m < n variables are free, and we wish to minimize |{i > m : ai = 0}|.

We next make a very useful simplification—we assume that B = {0} (that is,
there is only one black point, the origin): Given any classification problem W,B we
can transform it into an equivalent classification problemW −B, {0}, whereW −B =
{w−b : w ∈W and b ∈ B} is the Minkowski difference. Thus, we seek the hyperplane
that separates a given point set W from the origin and has the smallest number of
nonzero coefficients (respectively, excluding the coefficients of the first m variables).
We call these problems the smallest separating inequality problem and its version with
free variables.

Both versions of this problem are easily seen to be NP-complete. In this section
we point out their high parameterized complexity. In [3, 6] a theory of parameterized
complexity has been initiated. The issue is whether a minimization problem of the
form “given instance x and integer parameter k, is the optimum k or less?” can be
solved in time, say, O(np), where n is the size of the input x, and the hidden constants
(but not p) may depend on k. For some problems, such as bandwidth and node cover,
such algorithms are possible; for others, no such algorithms are known. These latter
problems classify into a hierarchy of classes, denotedW [1],W [2], . . . , plus an ultimate
class W [P ]. Hardness of a problem (via “parameterized reductions” appropriate for
these problems; see [3]) for such a class is evidence that the problem does not have a
polynomial algorithm even when the parameter is severely bounded. The higher the
class, the more devastating the evidence of intractability.

Theorem 3.1. The smallest separating inequality problem is hard for W [2], and
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its version with free variables is hard for W [P ].
Proof. For W [2]-hardness we shall reduce the W [2]-complete hitting set problem

[1, 12] to the minimum separating hyperplane problem. In the hitting set problem
we are given a family F = {S1, . . . , Sk} of subsets of some set {1, 2, . . . , n}, and a
parameter p, and we are asked to determine whether there is a set H, |H| ≤ p, such
that H∩Si = ∅ for all i. From F we construct a set of pointsW = {w1, . . . , wk} ⊆ �n,
where wi is the characteristic vector of Si. Let

∑n
i=1 aixi = 1 be a hyperplane

separating W from the origin, and let H = {i : ai = 0}. If H ∩ Si = ∅ for some
i, then the hyperplane fails to separate wi from the origin, and hence the nonzero
coordinates of the hyperplane must be a hitting set. Conversely, for any hitting set
H, the hyperplane

∑
i∈H xi =

1
2 separates W from the origin. This completes the

proof of the first part.
For the second part, we shall reduce to the version of the problem with free

variables the W [P ]-complete minimum monotone circuit value problem [7]. In it we
are given a monotone circuit, and a parameter k, and we wish to determine whether
there is an input vector with k or fewer 1’s that makes the output of the circuit 1.
Given such a circuit with n gates, of which all but the first m are input gates, we
construct the following point set W in �n: If i is the output gate, we add to W the
point −ei—recall that ei is the unit vector in the ith coordinate. If i is an OR gate
with inputs j and �, then we add to W the point ei − ej − e�. If i is an AND gate
with inputs j and �, then we add to W the points ei− ej and ei− e�. This completes
the construction. It is not very hard to argue that there is a hyperplane separating
W from the origin with k or fewer nonzero coefficients in its last n−m coordinates, if
and only if the given circuit has a satisfying truth assignment with k or fewer positive
inputs.
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Abstract. We introduce the miss-match form for two-prover one-round proof systems. Any
two-prover one-round proof system can be easily modified so as to be in miss-match form. Proof
systems in miss-match form have the “projection” property that is important for deriving hardness
of approximation results for NP-hard combinatorial optimization problems.

Our main result is an upper bound on the number of parallel repetitions that suffice in order
to reduce the error of miss-match proof systems from p to ε. This upper bound depends only on
p and on ε (polynomial in 1/(1 − p) and in 1/ε). Based on previous work, it follows that for any
ε > 0, NP has two-prover one-round proof systems with logarithmic-sized questions, constant-sized
answers, and error at most ε.

As part of our proof we prove upper bounds on the influence of random variables on multivariate
functions, which may be of independent interest.
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1. Introduction. A two-prover one-round proof system [6] is a protocol by
which two provers jointly try to convince a computationally limited probabilistic ver-
ifier that a common input belongs to a prespecified language. The verifier selects a
pair of questions at random. Each prover sees only one of the two questions and sends
back an answer. The verifier evaluates a predicate on the common input and the two
questions and answers, and accepts or rejects according to the output of the predicate.
For inputs in the language, the provers have a strategy (where a strategy for a prover
is a function from incoming messages to outgoing messages) that always causes the
verifier to accept. For inputs not in the language, regardless of the strategy used by
the provers, the verifier accepts with probability at most ε. The smaller the value of
ε, known as the error, the greater the verifier’s confidence in the result of the proof
system.

The class MIP(2,1) denotes those languages L accepted by a two-prover one-
round proof system with a probabilistic polynomial-time verifier. More generally, an
MIP(2,1) game is one in which a verifier engages in a single round of communication
with two cooperating but not communicating players (the provers); the verifier de-
termines based on the messages and its private coin tosses whether the players win.
Similarly, in an MIP(2,1) proof system, “yes” instances (when x ∈ L) give rise to
trivial games, in which the provers can always win (we only consider proof systems
with perfect completeness) and “no” instances give rise to nontrivial games in which
the provers can win with probability at most ε < 1. We call ε the error of the proof

∗Received by the editors August 4, 1997; accepted for publication (in revised form) November 23,
1999; published electronically May 15, 2000. A preliminary version of this manuscript appeared in
Proceedings of the 26th Annual ACM Symposium on the Theory of Computing, Las Vegas, NV,
1994, pp. 172–183.

http://www.siam.org/journals/sicomp/30-1/32537.html
†Department of Computer Science and Applied Mathematics, The Weizmann Institute, Rehovot,

Israel (feige@wisdom.weizmann.ac.il). This author is the incumbent of the Joseph and Celia Reskin
Career Development Chair. This research was done in part while this author was visiting the NEC
Research Institute.
‡NEC Research Institute, 4 Independence Way, Princeton, NJ (joe@research.nj.nec.com).

324



TWO-PROVER PROTOCOLS—LOW ERROR AT AFFORDABLE RATES 325

system. Reducing the error in MIP(2,1) proof systems (while preserving triviality
for “yes” instances) is a subtle issue. A natural approach is to repeat an MIP(2,1)
protocol n times and accept only if all executions are accepting. Ideally, one would
hope that this method would reduce the error to εn. This is indeed true if each exe-
cution is performed with a fresh pair of provers, requiring n pairs of provers, or if the
executions are performed sequentially (each prover must answer each question online
before seeing the question for the next execution), requiring n rounds of communi-
cation. However, parallel repetition—in which there are only two provers and one
round, and each prover sends out its answers only after receiving all its questions—is
not guaranteed to reduce the error to εn [15]. Much work was invested in trying
to analyze the rate at which parallel repetition reduces the error in MIP(2,1) proof
systems (see, e.g., [15, 22, 7, 13, 14]).

We analyze a specific class of MIP(2,1) proof systems which we call miss-match
proof systems. In the basic one-round proof system, the question to the first prover is
composed of two “half questions” (α1, α2), and the first prover replies with two “half
answers” (β1, β2). Based on α1, α2, β1, and β2, the verifier makes an initial decision
on whether to reject or provisionally accept, pending the results of its interaction with
the second prover. This acceptance predicate depends on the specific proof system
and may differ from one miss-match proof system to another. The common feature of
all miss-match proof systems is the way in which the second prover is used to confirm
a decision to accept. Here the verifier has two options. The first, miss option, is to
ask the second prover a null question λ, ignore the second prover’s answer, and accept.
The second, the match, is to ask the second prover one of the two half questions αi
sent to the first prover and to accept only if the second prover’s answer β matches
(i.e., is equal to) the half answer βi given by the first prover. The verifier chooses its
question to the second prover uniformly from {α1, α2, λ}. For formal definitions, see
section 2.

Our main result is an upper bound, for proof systems in the miss-match form,
on the number of parallel repetitions that suffice in order to reduce the error from an
initial value of p to a desired value of ε. This upper bound is polynomial in 1/(1− p)
and in 1/ε.

Though our upper bound applies only to proof systems in miss-match form, it can
be used in order to reduce the error from one constant to another in any MIP(2,1) proof
system. The reason is that any MIP(2,1) proof system can be easily transformed into
miss-match form (see Proposition 3.1), with only constant overhead in communication
and randomness, and insignificant loss in the error p. In [2] it was shown that any NP-
language has an MIP(2,1) proof system with logarithmic-size questions and constant-
size answers. The error p for these proof systems is a constant less than 1 but larger
than 1

2 . Our main result implies that the error can be reduced to any constant ε > 0,
while increasing the question and answer sizes by only a multiplicative constant factor.
We remark that these error-reducing transformations preserve triviality; on “yes”
instances of the proof system the provers can always make the verifier accept.

A major application of MIP(2,1) proof systems for NP is to prove hardness of ap-
proximation results. Decreasing the error of an MIP(2,1) proof system often translates
into stronger hardness of approximation results (cf. [12, 5, 4]).

Our analysis of parallel repetition of MIP(2,1) proof systems in miss-match form
is based in part on an analysis of the influence of random variables on an arbitrary
function. This part is presented in a self-contained way in section 4 and may be
of independent interest. Essentially, we present an exact formulation of the intuition
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that for any function, knowing the value of an α-fraction of the input variables (chosen
at random) is expected to give at most an α-fraction of the information regarding the
output of the function. Here, we measure “information” in terms of the variance of
the function. Theorem 4.3 is an essentially optimal version of a lemma that appeared
in the conference version of this paper [12]. It was developed with the help of Leonid
Gurvits, who gave the first proof, based on Fourier analysis. In section 4, we present
a more elementary proof of this theorem.

1.1. Related work. A preliminary version of this paper appeared in [12]. In
discussing related work, we distinguish between work done prior to the preliminary
version and work done since. We also discuss the improvements of the current version
over the preliminary one.

Prior work. MIP(2,1) proof systems were introduced by Ben-Or, Goldwasser, Kil-
ian, and Wigderson [6]. A major result there was a two-prover perfect zero-knowledge
proof system for NP. The authors remarked that parallel repetition of these proof sys-
tems preserves zero-knowledge properties, but the issue of its effect on the error was
not touched upon. Initial beliefs that n parallel repetitions reduce the error from ε
to εn were refuted by an explicit example in [15]. Since then, the problem of error
reduction for MIP(2,1) proof systems has attracted much attention, because of both
the intellectual challenge and the potential applications of these proof systems. Ap-
plications were initially made to cryptography [18], and later to the design of efficient
probabilistically checkable proofs and to proving hardness results for approximating
NP-hard optimization problems [2, 20, 3].

Initially, bounds on the rate by which parallel repetition reduces the error in
MIP(2,1) proof systems were obtained only in special cases (see, e.g., [8, 18]). In this
respect, the result most related to our current work was the method of [7, 10] that
can reduce the error in any MIP(2,1) proof system from p > 1/2 to 1/2 + ε with an
overhead that depends only on p and ε. Our work on miss-match proof systems gives
a result of similar flavor that extends to arbitrarily small errors.

The most successful approach for reducing the error was through algebraic tech-
niques [9, 19, 13]. These techniques may dramatically change the structure of the
original protocol, but thereafter the analysis of error reduction becomes relatively
simple and the rate of error reduction becomes exponential. Algebraic techniques
became the method of choice for reducing the error in MIP(2,1) proof systems.

Our preliminary version. The preliminary version of our paper [12] had two parts.
The first part, on which the current version is based, analyzed the effect of parallel
repetition on MIP(2,1) proof systems of a certain form, which we called confuse-or-
compare. The second part showed how to preserve the zero-knowledge property when
algebraic error reduction techniques are applied. We shall not discuss this second part
further, nor shall we discuss zero-knowledge.

Confuse-or-compare proof systems give the verifier two options of what to do with
the second prover, similar to the case of miss-match proof systems. The “compare”
option is identical to the “match” option. The “confuse” option was our original
version of the “miss” option. Rather than send the second prover the null question,
the verifier sends him a random half question γ, unrelated to α1 and α2. As with
the miss option, the verifier ignores the second prover’s answer if the confuse option
is employed. The results presented for the confuse-or-compare proof systems were
qualitatively similar to the results presented here for miss-match proof systems, and
the analysis was slightly simpler. The reason we switched from confuse-or-compare
to miss-match will be explained shortly.
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The main point of the results in [12] was that they provided a way of reducing
the error from one constant to another with only constant overhead. In contrast,
known algebraic error reduction techniques require more than a constant overhead
in modifying the original proof system. Using the confuse-or-compare proof systems,
previously known hardness of approximation results could be derived under weaker
complexity assumptions (e.g., under the assumption that P �= NP instead of the
assumption that NP does not have quasi-polynomial algorithms). Additional results
in [12] included further strengthening of hardness of approximation results for clique
and chromatic number, based on observations regarding which parameters of proof
systems are really relevant to obtaining such results.

Results obtained since. Concurrently with our preliminary work in [12], Verbitsky
proved that for any MIP(2,1) proof system, parallel repetition can reduce the error to
be arbitrarily small. However, the method of analysis used by Verbitsky does not give
useful bounds on the number of repetitions needed [22]. Subsequently, Raz proved
the following parallel repetition theorem, which gives almost tight bounds on the rate
of error reduction by parallel repetition.

Parallel repetition theorem (see [21]). For any MIP(2,1) proof system with error ε
there exists some constant α > 0 (that depends on ε and on the answer length of the
proof system) such that the error obtained by n parallel repetitions is at most εαn.

Raz’s theorem is strongest when the initial error and answer length are constant,
as then α is just some other constant. This is indeed the case in the places where the
use of error reduction by transformation to a confuse-or-compare proof system was
suggested, and hence Raz’s theorem could replace the results of [12] in all suggested
applications. Moreover, as was pointed out in [5, 4], Raz’s theorem has the further
advantage of not introducing the confuse rounds. Certain efficient constructions in
the theory of probabilistically checkable proofs [4] (leading to better inapproximability
ratios for NP-hard optimization problems) require that the underlying MIP(2,1) proof
system have the “projection” property: the answer of the second prover is a function
of the answer of the first prover. This indeed holds for compare rounds, but does not
hold for confuse rounds. Even though the verifier ignores the answer of the second
prover on the confuse rounds, the second prover cannot tell which are the confuse
rounds, and for this reason cannot be used by the construction of Bellare, Goldreich,
and Sudan [4]. With Raz’s theorem, the problem does not arise because the confuse
rounds are not needed in order to reduce the error.

Despite the above, the confuse-or-compare structure does offer advantages that
cannot be achieved by straight parallel repetition. There are families of MIP(2,1)
proof systems for which the number of parallel repetitions required in order to reduce
the error from 3/4 to 1/8 is not bounded by any constant [14]. However, as will
be discussed in section 3, any MIP(2,1) proof system with error at most 3/4 can be
converted to one in miss-match form, with error at most 11/12, and then amplified by
parallel repetition to achieve any constant error. This method uses only a constant
number of “black box” invocations of the original proof system. Thus, we have an
alternative generic amplification method that in some cases works substantially better
than parallel repetition.

The current version. The main disadvantage of the confuse-or-compare structure,
not having the projection property, is circumvented in the current version of the paper.
Here the confuse-or-compare structure is replaced by the miss-match structure, which
does have the projection property (as explained in section 2). This makes our results
applicable for the construction of [4]. We analyze error reduction by parallel repetition
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for miss-match proof systems and show that the number of repetitions that is required
in order to reduce the error from p to ε is some constant that depends only on p and ε.
Our analysis follows closely our preliminary analysis in [12], with a slight twist toward
the end. (The inspiration for this slight twist came from [16].) We also improve our
analysis of the influence of random variables on a function. This stronger analysis was
developed with the help of Leonid Gurvits and gives essentially tight bounds. (Our
previous bounds gave away unnecessary logarithmic terms.) In the current version
of the paper, we omit discussion of applications of our results to the construction of
efficient probabilistically checkable proofs and to obtaining hardness of approximation
results. The reader is referred to [4] for this purpose.

For further discussion on error reduction by parallel repetition, see [11]. For a
discussion on the influence of variables on Boolean functions, see [17].

2. Definitions. Two-prover one-round proof systems are often modeled as a
game between a verifier and two cooperating but not communicating provers. It is
not an adversarial game, as the strategy of the verifier is fixed in advance. Rather,
it is a cooperative game with two players (provers) who coordinate a joint strategy
that gives them the highest probability of winning. Modeling MIP(2,1) proof systems
as games suppresses the language recognition aspects of these proof systems, but
preserves the concept of error in a proof system and the issue of how error can be
reduced. One may best think of a game as an instantiation of an MIP(2,1) proof
system on a single input that is not in the given language. We use the following
notation.

G = G(X,Y,Q, π,A,B, V ) - a two-prover one-round game;
X - set of questions to prover P1;
Y - set of questions to prover P2;
A - set of answers available to P1;
B - set of answers available to P2;
π - probability distribution on X × Y ;
Q - support of π. Q ⊆ X × Y ;
V - acceptance predicate on (X,Y,A,B).
Game G proceeds as follows. The verifier selects at random a question pair

(x, y) ∈ Q, according to probability distribution π. Question x is sent to P1, who
replies with an answer P1(x) ∈ A. Question y is sent to P2, who replies with an
answer P2(y) ∈ B. (We identify the name of a prover and the strategy that it
employs.) The verifier then evaluates a predicate V (x, y, P1(x), P2(y)) and accepts if
the predicate is satisfied. The goal of the provers is to select a strategy (namely, two
functions, one for each prover, specifying an answer to each possible question) that
maximizes the probability that the verifier accepts. The probability that the verifier
accepts under the optimal strategy of the provers is denoted by ω(G). If ω(G) = 1
the provers are said to have a perfect strategy for G, and the game G is trivial. For
nontrivial games, ω(G) is also called the error of the game. We shall be interested
only in nontrivial games.

An n-fold parallel repetition of game G is a new game, denoted by Gn, played on n
coordinates, corresponding to playing n versions of game G in parallel. The questions
and answers are now n-vectors, the ith element corresponding to the ith game. The
verifier treats each coordinate of Gn as an independent copy of the original game G
and accepts in Gn only if it would have accepted all the n copies of G. The support set
of Gn is Qn ⊆ Xn×Y n, the answer sets are An and Bn. The verifier selects n question
pairs (xi, yi) ∈ Q independently, each according to the probability distribution π. We
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denote �x = x1x2 · · ·xn and �y = y1y2 · · · yn. (Hence �x ∈ Xn and �y ∈ Y n.) A strategy
for the provers is 2n functions, P i

1 : X
n −→ A and P i

2 : Y
n −→ B, where 1 ≤ i ≤ n.

The acceptance predicate is V n =
∧n
i=1 V (xi, yi, P

i
1(�x), P

i
2(�y)). That is, the verifier

accepts if all n copies of the original game G are accepting.

Observe that even though the verifier treats each coordinate of Gn independently,
the provers may not. In particular, the answer a prover gives in coordinate i may
depend on the questions that the prover receives in other coordinates. For this reason,
it is not true in general that ω(Gn) = (ω(G))n.

We shall often refer to the following special classes of games. A game is uniform
if π is uniform on Q. A game is free if it is uniform and has full support, i.e.,
Q = X × Y . (The term free was introduced in [8].) A game has the projection
property if the question to prover P2 is a projection of the question to prover P1, and
the verifier accepts only if the answer of prover P2 is a projection of the answer to
prover P1. More formally, the question sets are of the form X = X1 ×X2 × · · · ×Xk

for some k, and Y =
⋃k
i=1 Xi, where the sets Xi are disjoint. The support of the

probability distribution π includes only pairs (x, y) ∈ X×Y for which y is xi for some
i ∈ {1, 2, . . . , k}, where xi is the ith component of the question x = (x1, x2, . . . , xk).
The answer sets are of the form A = A1 × A2 × · · · × Ak for the same k as above,
and B =

⋃k
i=1 Ai, where the sets Ai are disjoint. The acceptance predicate V is

a conjunction of two parts V = V1 ∧ V2. One is a predicate V1(X,A) that ignores
the communication with P2. The other is V2(X,Y,A,B), which accepts only if the
answer of P2 is precisely the ith component of the answer of P1, where i is the same
coordinate on which the question y is a projection of the question x. We observe that
games with the projection property may be uniform, but cannot be free (unless the
cardinality of X is one).

We are now ready to define miss-match games. These are games with the projec-
tion property, also satisfying the following requirements. The question set to prover
P1 is X = X1 ×X2 × {λ}, where λ is a character which the reader can interpret as
saying “a miss.” Hence the question set to P2 is Y = X1

⋃
X2

⋃{λ}. The proba-
bility distribution π is arbitrary on X1 × X2, and uniform with respect to selecting
which of the three components of x ∈ X to choose as y. Hence we shall often refer
to π as a probability distribution over X1 × X2. The answer set for prover P1 is
A = A1 × A2 × {λ}. Hence the answer set for P2 is B = A1

⋃
A2

⋃{λ}. Since the
third component of the question to P1 is {λ} and the third component of his answer
is {λ}, the acceptance predicate V1 is defined only on (X1 ×X2, A1 × A2). The full
acceptance predicate is V = V1 ∧ V2, where V2 is the predicate for the projection
property. Observe that the projection property forces P2 to answer λ with a λ.

When the question to P2 is λ we say that it is a miss. When the question to P2

is in X1

⋃
X2 we say that it is a match. When a miss-match game is repeated many

times in parallel, some of the rounds will be miss rounds and the others will be match
rounds. Though there is no advantage in introducing a miss when the game is played
only once, our analysis of the error of the repeated game will make use of the presence
of the miss rounds.

3. Preliminaries and main results. Though miss-match games are a re-
stricted form of games, any other MIP(2,1) game can be easily transformed into
a miss-match game. Let G(X,Y,Q, π,A,B, V ) be an arbitrary game. Then its miss-
match version G′ = G′(X ′, Y ′, Q′, π′, A′, B′, V ′) is as follows:

• X ′ = X × Y × {λ};
• π′ is identical to π over X × Y ;
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• A′ = A×B × {λ}.
Recall that V ′ = V1 ∧V2. V1 is identical to V on (X,Y,A,B). The rest of the param-
eters (Y ′, Q′, B′, V2) are implicit from G′ being a miss-match game. Note that if G is
trivial, then G′ is trivial.

Proposition 3.1. For the games G and G′ as described above, ω(G′) ≤ ω(G)+2
3 .

Proof. Recall that in G′, prover P2 receives questions y′ ∈ X
⋃

Y
⋃{λ}. Fix an

arbitrary deterministic strategy for P2 in G′. (P2’s strategy can be made deterministic
without loss of generality.) For every question x ∈ X, this fixes a unique answer a ∈ A,
and for every question y ∈ Y, this fixes a unique answer b ∈ B. Observe that the
provers in the original game G can follow this strategy, and then the probability that
V is satisfied is at most ω(G). Now fix an arbitrary strategy for P1, who receives
questions x′ ∈ X × Y × {λ}. Use the strategies of P1 and P2 in order to partition all
questions x′ to P1 into two classes. The first class contains those x′ for which P1’s
answers in A × B agree with P2’s fixed strategy. The second class contains those x′

for which at least one of P1’s two answers in A×B disagrees with P2’s fixed strategy.
Let q denote the probability that x′ is from the first class; x′ is from the second class
with probability (1− q). The joint probability that x′ is from the first class and V1 is
satisfied is at most q and is also at most ω(G). (Otherwise, the provers for the original
game can win with probability higher that ω(G).) Hence this joint probability is at
most min[q, ω(G)] ≤ (ω(G) + 2q)/3. The joint probability that x′ is from the second
class and V2 is satisfied is at most

2
3 (1 − q): whenever x′ is from the second class

(probability (1− q)), there is a 1/3 chance of the inconsistent answer being detected.
Thus, the acceptance probability is at most (2 + ω(G))/3, the sum of these upper
bounds.

For a miss-match game G′, we say that prover P1 has a projection strategy if, for
every two questions x = (x1, x2, λ) and x′ = (x′1, x

′
2, λ) and their respective answers

a = (a1, a2, λ) and a′ = (a′1, a
′
2, λ), it holds that a1 = a′1 whenever x1 = x′1, and

a2 = a′2 whenever x2 = x′2. Let the basic error p(G′) be the maximum probability
that V1 is satisfied, where the maximum is taken over all projection strategies of P1.
For miss-match games, we will find it more convenient to work with p rather than ω.
Note that when transforming an arbitrary game G to a miss-match game G′, there is
a correspondence between deterministic strategies for G and projection strategies for
G′. We thus obtain the following simple relation between p(G′) and ω(G).

Proposition 3.2. For G and G′ as above, p(G′) = ω(G).

Propositions 3.1 and 3.2 imply that ω(G′) ≤ p(G′)+2
3 .

The following theorem is our main result.

Theorem 3.3. Let G′ be an arbitrary miss-match game with basic error p < 1.
Then ω((G′)n) ≤ ε, whenever n ≥ c/((1 − p)ε)c, where c ≥ 0 is a universal constant
independent of G′, p, n, and ε.

Using Proposition 3.2 and the fact that for any miss-match game G′, p(G′) ≤
ω(G′), we can restate Theorem 3.3 in terms of the original win probabilities.

Corollary 3.4. For G′ an arbitrary miss-match game, ω((G′)n) ≤ ε when
n ≥ c/((1 − ω(G′))ε)c, where c ≥ 0 is some universal constant independent of G′, p,
and ε. Furthermore, for G an arbitrary nontrivial MIP(2,1) game, ω((G′)n) ≤ ε when
n ≥ c/((1− ω(G))ε)c, where G′ is obtained by transforming G as described above.

We remark that the proof of our theorem is robust enough to support simple
modifications to the notion of a miss-match game. (These modifications change only
the value of the constant c.) In particular, the requirement that X = X1 ×X2 × {λ}
can be relaxed to X = X1×X2× · · ·×Xk×{λ} for any fixed k, and the requirement
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that the question to P2 is chosen uniformly from the k+1 parts of the question to P1

can be relaxed to any other distribution with full support.

To appreciate Theorem 3.3, one should contrast it with the following theorem
of [14].

Feige–Verbitsky theorem (see [14]). There exists an infinite family G of free games
such that ω(G) ≤ 3/4 for every G ∈ G, and for any n there is some G ∈ G with
ω(Gn) ≥ 1/8.

Hence Theorem 3.3 does not hold for arbitrary games, and there is something
special in the miss-match form that makes it work. Miss-match games have two
ingredients—the miss (sending an occasional λ to P2) and the match (the projection
property). It turns out that the miss property alone does not suffice in order to prove
Theorem 3.3. The constant 1/2 in the following proposition is arbitrary and can be
replaced with any other constant.

Proposition 3.5. Let λ ◦ G denote a modification of a game G in which, with
probability 1/2, the question to P2 is replaced by λ, and the verifier accepts. For any
free game G, and for any integer n ≥ 1, ω((λ ◦G)n) ≥ ω(Gn).

Proof. Fix an optimal strategy S for P1 and P2 in Gn. Based on S, we design
a randomized strategy for the provers in (λ ◦G)n. P1 deterministically answers each
question of (λ ◦G)n with the answer that P1 would have given on the same question
using strategy S. P2 uses the following randomized strategy. Independently, in each
coordinate on which P2 receives a λ in (λ ◦ G)n, prover P2 replaces λ by a question
y ∈ Y chosen uniformly at random. As a result, the question that P2 receives in
(λ ◦ G)n is transformed into a randomly distributed question in Gn. Moreover, the
assumption that G is a free game implies that the question pair that P1 and P2 now
hold is distributed uniformly at random over all question pairs of the game Gn. Hence
if the provers use strategy S, then the probability that the verifier of Gn accepts (taken
over the choice of question to P1 and transformed question to P2) is at least ω(Gn).
Indeed, P2 answers the transformed question according to strategy S.

Corollary 3.6. There exists an infinite family G of free games such that ω(λ ◦
G) ≤ 7/8 for every G ∈ G, and for any n there is some G ∈ G with ω((λ◦G)n) ≥ 1/8.

Proof. Apply Proposition 3.5 to the family of games from the Feige–Verbitsky
theorem [14] cited above.

Corollary 3.6 implies that there are families of games that have the miss property
yet for which parallel repetition does not yield the error reduction obtained in Theo-
rem 3.3. We were unable to resolve the question of whether the projection property
alone makes Theorem 3.3 work or whether the combination of projection and miss is
required.

We now give some intuition to explain why having miss rounds facilitates er-
ror reduction through parallel repetition. To win several parallel games with high
probability, the provers must coordinate their strategies very carefully. A miss round
disrupts this coordination: each prover has less understanding about what the other
prover knows. Unfortunately, we know of no direct, easily motivated way of analyzing
this effect.

We now give some intuition for the proof of Theorem 3.3. First, we actually
analyze the error rate of G4n, not Gn; the difference between n and 4n is easily
swallowed up by an appropriate choice of c. In the analysis, out of the 4n rounds of
G4n, we concentrate only on n rounds, of which onlym� n are match rounds and the
rest are miss rounds. (In fact, our analysis is somewhat simplified if we start directly
with a proof system that has n rounds, of whichm rounds chosen at random are match
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rounds, and n − m rounds are miss rounds.) Oversimplifying, P1 has two possible
modes of behavior. One is to employ a projection strategy for all n rounds, answering
each round independently, and within each round using a projection strategy. The
other is to base the answer in any particular round on the questions in all other
rounds. If P1 employs a projection strategy, then he is not using the fact that rounds
are repeated in parallel, and standard Chernoff bounds imply that the probability of
simultaneous success on all rounds is low. If P1 does not employ a projection strategy,
then his answers on the m match rounds highly depend on the questions received on
the n−m miss rounds. But prover P2 receives only a λ on the miss rounds and has
no idea what P1 receives. So P2 cannot know how to answer the match rounds in a
way that indeed produces a match.

The rest of the paper is organized as follows. The proof of the main theorem
itself appears in section 6. Prior to the proof, in sections 4 and 5, we present some
general properties of multivariate functions. In section 4 we study the influence of
a small number of random variables on the value of a function. This is related to
the information available to the second prover, who sees only the questions on m
match rounds, regarding the output of the first prover on these m rounds, which is
a function of the questions of all n rounds. In section 5 we characterize the “gray
area” between the two extreme strategies for the first prover in the simplified overview
above: the projection strategy and a strategy in which the answer in each round is
highly influenced by the questions in all other rounds. We show that in some exact
sense, there is no gray area in between.

4. The influence of random variables on a function. The results of this
section were developed with the help of Leonid Gurvits.

Let Q be a finite set and let xi ← πi denote a random variable xi ∈ Q chosen at
random according to probability distribution πi over Q. Let π = π1 × π2 × · · · × πn
be a product distribution over Qn, and let x ← π denote a random n-vector chosen
according to probability distribution π. That is, for each coordinate i of x, xi ← πi,
independently of the other coordinates of x. Let f : Qn → R	 be a function whose
values are points in %-dimensional real space, and let the mean µ[f, π] of f under π
denote the expectation of f over the choice of x← π (which is the center of mass of
the points in R	 if probability is interpreted as mass). That is,

µ[f, π]
def
= Ex←π[f(x)] =

∑
x

π(x)f(x).

Similarly, we define the variance σ2[f, π] by

σ2[f, π]
def
= Ex←π

[
(f(x)− µ[f, π])2

]
= Ex←π[f(x)2]− µ[f, π]2.

Let [n] denote the set of integers from 1 to n. For m ≤ n, we will be interested
in m-vectors �ı ∈ [n]m in which all coordinates are distinct and ascending. Thus, �ı
denotes anm-element subset of [n]. As a convention,�ı← [n]m denotes a vector chosen
uniformly at random from all vectors of [n]m with distinct ascending entries. Let �q
denote a vector in Qm. Let x[�ı ] denote the projection of x to the coordinates indexed
by �ı (x[i], for scalar i, is interpreted in the obvious manner).

Definition 4.1. An m-block B = (�ı, �q) is a sequence of m pairs (ij , qj) (for
1 ≤ j ≤ m), where qj ∈ Q, ij ∈ [n], and ij < ik when j < k. In our intended use, an
m-block specifies the values of m of the input variables for an n-variate function.

A vector x ∈ Qn satisfies the m-block B if for every pair (ij , qj) ∈ B, xij = qj .
For a fixed m-block B, let the conditional mean µ[f, π|B] denote the expectation of
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f(x) when x is chosen at random according to π, conditioned on x satisfying B. Let

B
m← π denote an m-block (�ı, �q) chosen at random, where �ı ← [n]m, and each entry

of qj of �q is chosen independently according to πij .
Clearly, for any function f, the expectation of the conditional mean is the same

as the mean. That is, E
B

m←πµ[f, π|B] = µ[f, π]. We shall show that if m is small
compared to n, then for most choices of an m-block B, the conditional mean is close
to the mean. In other words, the value of x on m random coordinates is unlikely to
significantly influence the mean of f(x). Our analysis is essentially tight.

We define the inner product of two vectors u and v by 〈u, v〉 def
=
∑

uivi and the

norm of vector x by ‖x‖ def
=
√〈x, x〉.

Definition 4.2. For a function f : Qn → R	 and probability distribution π, the
m-variance σ2[f, π,m] is the mean square distance between the mean of f and the
conditional mean of f . Formally,

σ2 [f, π,m]
def
= E

B
m←π
[‖µ [f, π|B]− µ [f, π] ‖2] .

By the linearity of expectation and of the inner product operation, it can be
easily verified that E

B
m←π[‖µ[f, π|B] − µ[f, π]‖2] = E

B
m←π[‖µ[f, π|B]‖2] − ‖µ[f, π]‖2,

giving an alternative formulation of the variance which we shall often use. To simplify
notation, we use the convention that v2 is interpreted as ‖v‖2 whenever v is a vector.

The m-variance generalizes the notion of the variance in the sense that when
m = n (that is, the input as a whole is revealed), σ2[f, π, n] = Ex←π[‖f(x)‖2] −
‖µ[f, π]‖2 = σ2[f, π]. Intuitively, the m-variance is related to the influence that a
random set of m variables has on the value of a function.

For simple examples of the concept of m-variance, consider the following Boolean
functions, where n > 1, π is uniform over {0, 1}n, and xi denotes the ith variable
(coordinate) of x. The parity function f(x) =

∑n
i=1 xi(mod 2) has zero m-variance

for all m ≤ n− 1, since as long as one variable remains unknown, the parity function
remains balanced. The majority function, f(x) = 1 iff

∑n
i=1 xi ≥ n/2, has 1-variance

Θ(1/n), because knowing the value of one variable biases the majority function by

Θ(1/
√
n). More generally, the k-majority function, f(x) = 1 iff

∑k
i=1 xi ≥ k/2, also

has 1-variance Θ(1/n) for any k, because with probability k/n the sampled variable
is among the k variables on which the majority is computed, and then it biases their
majority by Θ(1/

√
k).

Note that if the function f depends only on one variable, then σ2[f, π,m] =
mσ2[f, π]/n, since a block B influences the value of f if it contains the distinguished
variable (which happens with probabilitym/n), and then it completely determines the
value of the function. The following theorem generalizes this to arbitrary functions.

Theorem 4.3. Let f : Qn → R	 be an arbitrary function and let π be an arbitrary
product probability distribution on Qn. Then for any m, where 1 ≤ m ≤ n, the m-
variance of f satisfies

σ2 [f, π,m] ≤ m

n
σ2 [f, π] .

Proof. We first concentrate on f : Qn → R; we relax this restriction later.
In our computations of expectations and variances, xi is always distributed ac-

cording to πi. We will at times specify a set of variables in the subscript of an expec-
tation {variance}; this denotes taking the expectation {variance} over the choice of
all the variables in the subscript, where each variable xi is independently distributed
according to πi.
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Given a subset of the variable indices, S = {i1, . . . , ik}, we define fS by

fS(xi1 , . . . , xik) = Exj :j �∈S [f(x1, . . . , xn)].

That is, fS gives the expected value of f conditioned on the values of xi1 , . . . , xik . We
define πS = (πi1 , . . . , πik) and σ2[f, π, S] by

σ2[f, π, S]
def
= σ2[fS , πS ] = Exi:i∈S [fS(xi1 , . . . , xik)

2]− µ[f, π]2,(4.1)

where the latter equality follows from µ[f, π] = µ[fS , πS ].
By definition, σ2[f, π,m] = ES [σ

2[f, π, S]], where S is distributed uniformly over
m-element subsets of [n]. The crux of our proof is to upper bound σ2[f, π, S] by
a quantity IS whose expected value (over the choice of S) is (m/n)σ2[f, π]. Let
P = i1, . . . , in be an arbitrary ordering of the variables. We define

Iij = σ2[f, π, {i1, . . . , ij}]− σ2[f, π, {i1, . . . , ij−1}]

and

IS =
∑
i∈S

Ii.

When P is unclear we write Ii(P ). It follows via a telescoping sum that σ2[f, π] =∑
i Ii; by the linearity of expectation, it follows that ES [IS ] = (m/n)

∑
i Ii, hence

ES [IS ] = (m/n)σ2[f, π]. The theorem, restricted to the case where the range of f is
R, then follows immediately from Lemma 4.4 below.

To extend the proof to the case that the range of f is R	, consider an arbitrary
orthonormal basis for R	. Now view f as % different functions f1, . . . , f	, where fi(x)
is the projection of f(x) on the ith basis vector. For each function fi separately, the
range is just R, and hence the theorem holds. As the square of the distance of two
points in R	 is the sum of squares of their distances when projected to the % basis
vectors, the theorem follows also for f .

Lemma 4.4. For any ordering P on {1, . . . , n}, σ2[f, π, S] ≤ IS.
For our purposes, a single P that works for all S would suffice, but considering an

arbitrary P will be useful in the proof. Before proving Lemma 4.4, we prove a useful,
presumably known inequality on variances.

Proposition 4.5. Let f : Q2 −→ R be an arbitrary function and let (x, y) be
distributed according to an arbitrary product probability distribution on Q2. Then

σ2
x[Ey[f(x, y)]] ≤ Ey[σ2

x[f(x, y)]].

Proof. We first observe that for any function g(y), the function f ′(x, y) = f(x, y)+
g(y) satisfies σ2

x[f
′(x, y)] = σ2

x[f(x, y)] for all y, and Ey[f
′(x, y)] = Ey[f(x, y)] +

Ey[g(y)] for all x. It follows that σ
2
x[Ey[f(x, y)]] ≤ Ey[σ2

x[f(x, y)]] iff σ2
x[Ey[f

′(x, y)]] ≤
Ey[σ

2
x[f
′(x, y)]], since both quantities are unchanged by this translation. We therefore

assume without loss of generality that for all y, Ex[f(x, y)] = 0; if not, translate by
g(y) = −Ex[f(x, y)]. It follows that ExEy[f(x, y)] = 0, and hence that

σ2
x[Ey[f(x, y)]] = ExEy[f(x, y)

2].

Similarly, it follows that

Ey[σ
2
x[f(x, y)]] = EyEx[f(x, y)

2]

= ExEy[f(x, y)
2].
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Fixing x, we have σ2
y[f(x, y)] = Ey[f(x, y)

2] − Ey[f(x, y)]2. Hence, by the positivity
of the variance, Ey[f(x, y)]

2 ≤ Ey[f(x, y)2]. The proposition follows.
Proof of Lemma 4.4. When S is a prefix of P, then by the definitions and a

telescoping sum it follows that σ2[f, π, S] = IS . To show the inequality for arbitrary S,
we make incremental changes P → P ′ such that IS(P ′) ≤ IS(P ), finally obtaining an
ordering Q that contains S as a prefix. Then, IS(Q) = σ2[f, π, S] and IS(Q) ≤ IS(P ),
implying the lemma.

For ease of exposition, we assume without loss of generality that P = 1, . . . , n.
We consider the ordering

P ′ = 1, . . . , i− 2, i, i− 1, i+ 1, . . . , n,
where i ∈ S and i− 1 �∈ S. That is, we move a variable indexed by S one step closer
to the beginning of the ordering, moving it past a variable that is not in S. Clearly, a
sequence of such operations can be used to move all the variables of S to the beginning
of the sequence. It remains to show that IS(P

′) ≤ IS(P ). Clearly, Ij(P
′) = Ij(P ) for

j �∈ {i− 1, i}. It thus suffices to show that Ii(P
′) ≤ Ii(P ), since Ii−1 does not affect

IS .
Let A = {1, . . . , i}, B = {1, . . . , i−1}, C = {1, . . . , i−2, i}, and D = {1, . . . , i−2}.

Expanding out the definitions, we obtain,

Ii(P ) =
(
Ex1,...,xi−2

Exi−1
Exi

[fA(x1, . . . , xi)
2]− µ[f, π]2

)
− (Ex1,...,xi−2

Exi−1
[fB(x1, . . . , xi−1)

2]− µ[f, π]2
)
.

Given x1, . . . , xi−2, we define g(xi−1, xi) = fA(x1, . . . , xi). Noting that

fB(x1, . . . , xi−1) = Exi
[fA(x1, . . . , xi)],

we obtain,

Ii(P ) = Ex1,...,xi−2
Exi−1 [σ

2
xi
[g(xi−1, xi)]].

By similar manipulations, we obtain

Ii(P
′) =

(
Ex1,...,xi−2

Exi [fC(x1, . . . , xi−2, xi)
2]− µ[f, π]2

)
− (Ex1,...,xi−2 [fD(x1, . . . , xi−2)

2]− µ[f, π]2
)

= Ex1,...,xi−2 [σ
2
xi
[Exi−1 [g(xi−1, xi)]]].

However, by Proposition 4.5 it follows that for all x1, . . . , xi−2,

σ2
xi
[Exi−1 [g(xi−1, xi)]] ≤ Exi−1 [σ

2
xi
[g(xi−1, xi)],

implying the lemma.
Theorem 4.3 has the following useful corollary, that we shall use repeatedly in

subsequent parts of the paper.
Corollary 4.6. Let Q and A be finite sets, let f : Qn → A be an arbitrary

function, and let π be an arbitrary product probability distribution on Qn. Then the
influence of a random m-block on the probability that f(x) attains any particular value
a ∈ A is bounded as follows:

E
B

m←π

[∑
a∈A

(
Prx←(Qn,π) [f (x) = a]− Prx←(π|B) [f (x) = a]

)2] ≤ m/n.
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Proof. By the linearity of expectation, it suffices to show that

∑
a∈A

E
B

m←π
[(
Prx←π [f (x) = a]− Prx←(π|B) [f (x) = a]

)2] ≤ m/n.(4.2)

For each a ∈ A, define fa : Q
n → {0, 1} by fa(x) = 1 if f(x) = a and fa(x) =

0 otherwise. For any distribution D, we have µ[fa, D] = Prx←D[f(x) = a]. By
Definition 4.2, we can write the left-hand side of (4.2) as

∑
a∈A σ2[fa, π,m]. By

Theorem 4.3, σ2[fa, π,m] ≤ m
n σ2[fa, π]. Now, σ2[fa, π] = pa(1 − pa) ≤ pa, where

pa = Prx←π[f(x) = a], so

∑
a∈A

σ2[fa, π,m] ≤ m

n

∑
a∈A

pa =
m

n
.

5. Correlations within multivalued functions. Let Q and A be finite sets,
let f : Qn → An be a function, and let π be a probability distribution over Q,
extended as a product distribution πn over Qn. Recall that �ı ∈ [n]m denotes a
vector of m distinct, ascending entries in {1, . . . , n}, the notion of an m-block (�ı, �q),
and the projection notation from section 4. Let Pr[�a|(�ı, �q)] denote the probability
that f(x)[�ı ] = �a, conditioned on x[�ı ] = �q (i.e., the probability is taken over x ←
(Qn, πn|(�ı, �q))). This notation is extended in a natural way to Pr[�a|(�ı, �q)(i, q)] (in
which case the conditioning is done on one coordinate more than the projection), and
to Pr[�a, a|(�ı, �q)(i, q)] for a ∈ A. Throughout we use the convention that i has to be
distinct from all coordinates of �ı.

Definition 5.1. For a parameter ε > 0, the m-triple (�ı, �q,�a) is alive if
Pr[�a|(�ı, �q)] ≥ ε. The m-block (�ı, �q) is alive if for some �a the m-triple (�ı, �q,�a) is alive.

Definition 5.2. An m-block (�ı, �q) (1 − η)-determines a pair (i, q) if for every
live m-triple (�ı, �q,�a) there exists a ∈ A such that

Pr [�a, a| (�ı, �q) (i, q)] ≥ (1− η) Pr [�a| (�ı, �q) (i, q)] .
The above inequality may be thought of in terms of conditional probability.

Conditioned on x[�ı, i] = �q, q and f(x)[�q ] = �a, f(x)[i] = a with probability at least
(1− η).

Definition 5.3. An m-block (�ı, �q) is (1 − η)-good if it is alive and (1 − η)-
determines a randomly chosen pair (i, q) (i← ([n]−�ı) and q ← π) with probability at
least 1− η.

It is useful to consider the “majority answer” guess for the value of f(x) at some
coordinate, given partial information about x and f(x).

Definition 5.4. Given (�ı, �q,�a), we define maj(i, q) to be the most likely (breaking
ties lexicographically) value for f(x)[i], over the choice of x, conditioned on x[�ı ] = �q,
f(x)[�ı ] = �a, and x[i] = q.

A good block (�ı, �q) has the property that for any live (�ı, �q,�a) a large fraction of
the other answers are expected to agree with the majority answer defined above.

The following proposition will be used in the proof of our main theorem.
Proposition 5.5. Suppose that (�ı, �q) is (1− η)-good, for η < 1

2 , and that (�ı, �q,�a)
is alive. Then f(x)[i] = maj(i, q) with probability at least 1 − 2η/ε in the following
experiment:

1. Choose x according to πn, conditioned on x[�ı ] = �q and f(x)[�ı ] = �a.
2. Choose i uniformly from [n]−�ı.
3. Let q = x[i].
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Proof. Consider the experiment of choosing (i, q) by i ← ([n] − �ı), q = x[i],
conditioned on x[�ı ] = �q but not conditioned on f(x)[�ı ] = �a. Since (�ı, �q) is good, by
Definition 5.3, (i, q) fails to be (1−η)-determined by (�ı, �q) with probability at most η.
The probability that it fails to be (1− η)-determined, conditioned on f(x)[�ı ] = �a, is
at most η/Pr(f(x)[�ı ] = �a) ≤ η/ε. Hence, (i, q) is (1− η)-determined with probability
1 − η/ε, conditioned on x[�ı ] = �q and f(x)[�ı ] = �a. By Definition 5.2, there is some
a such that under this same conditioning (and additionally conditioning on x[i] = q)
f(x)[i] = a with probability at least (1− η); by the definition of maj and the above,
we have that f(x)[i] = maj(i, q) with probability at least

(1− η/ε) (1− η) ≥ 1− 2η/ε.
Intuitively, for any function f : Qn → An, either the value of the projection of

f(x) on a random coordinate can be guessed with high confidence by looking only
at the same coordinate of x, or else, when one looks at the value of x at m random
coordinates, errors build up, making it improbable to simultaneously guess correctly
the projection of f(x) on the respective m coordinates. The following lemma builds
upon this intuition.

Lemma 5.6. For m < n/2, n > 210η−4ε−8, η ≤ 1
2 , and m > 25η−2ε−4, there

exists a good block size k, 1 ≤ k ≤ m, such that one of the following two conditions
holds:

1. The probability that a random k-block (�ı, �q)
k← πn is alive is at most ε.

2. If one chooses (�ı, �q) at random from the live k-blocks, (�ı, �q) will be (1−η)-good
with probability at least (1− ε). That is,

Pr
(�ı,�q)

k←πn
[(�ı, �q) is (1− η)-good | (�ı, �q) live] ≥ 1− ε.

Proof. For each j, 1 ≤ j ≤ n/2, let Ej denote the following expectation:

Ej = E(�ı,�q)

[∑
�a∈Aj

Pr [�a| (�ı, �q)]2
]
,

where the expectation is taken over the choice of random j-block (�ı, �q). For every j,
0 < Ej ≤ 1.

Let us give some insight on what Ej is measuring. Given (�ı, �q), the summation
term measures the predictability of �a: if �a is completely determined by (�ı, �q), the
summation will be 1; if �a is uniformly distributed with N possible values, the summa-
tion will be 1/N . There are two competing considerations governing the relationship
between Ej and Ej+1. Having more questions, and hence more answers, tends to
fragment the set of possible answer vectors, causing Ej to be larger than Ej+1. How-
ever, seeing more questions may give so much information about the answers that the
answer vectors are less fragmented. For example, if questions (q1, q2) are answered by
(q2, q1), then E1 may be quite small and E2 = 1. We will show that, for our choice
of parameters, if j is not a good block size, then the former consideration dominates;
quantitatively, Ej −Ej+1 ≥ 1/m. Hence if there is no good block size between 1 and
m, then E1 − Em+1 ≥ 1, a contradiction.

In order to lower bound Ej − Ej+1, we introduce a hybrid quantity:

E∗j = E(�ı,�q)(i,q)

[∑
�a∈Aj

Pr [�a| (�ı, �q) (i, q)]2
]
,
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where the expectation is taken over the choice of random j-block (�ı, �q) and random
pair (i, q) (i �∈�ı).

Let us give some more insight. E∗j measures the average predictability of �a given
(�ı, �q) and an additional pair (i, q). Our proof proceeds as follows. First, we show
that E∗j is not much larger that Ej . The idea is that a random (i, q) is not likely to
have much influence on �a, and hence knowing (i, q) will not make �a that much more
predictable on average. We then show that if j is not a good block size, then Ej+1

is significantly smaller than E∗j . That is, given (�ı, �q) and (i, q), (�a, a) is significantly
harder to predict on average than just �a. Combining these relations between Ej , E

∗
j ,

and Ej+1, we show that Ej+1 is significantly smaller than Ej when j ≤ n/2 is not a
good block size.

It follows from the above definitions that

E∗j − Ej = E(�ı,�q)

[
E(i,q)

[∑
�a∈Aj

Pr [�a| (�ı, �q) (i, q)]2 − Pr [�a| (�ı, �q)]2
]]

(5.1)

and

E∗j − Ej+1 = E(�ı,�q)(i,q)

[∑
�a∈Aj

(
Pr [�a| (�ı, �q) (i, q)]2 −

∑
a∈A

Pr [�a, a| (�ı, �q) (i, q)]2
)]

.(5.2)

Proposition 5.7. For any block size j ≤ n/2 (whether good or not),

E∗j − Ej ≤ 2√
n− j

≤
√
8

n

.

Proof. Fix a j-block (�ı, �q). The value of �a is now a function of n − j vari-

ables. Let % denote the cardinality of A and consider the vector v ∈ R	j of
probabilities Pr[�a|(�ı, �q)]. Then ‖v‖2 =

∑
�a∈Aj (Pr[�a|(�ı, �q)])2 ≤ 1. Now fix also a

pair (i, q) and consider the vector u ∈ R	j of probabilities Pr[�a|(�ı, �q)(i, q)]. Then
‖u‖2 =

∑
�a∈Aj Pr[�a|(�ı, �q)(i, q)]2 ≤ 1, and by the triangle inequality, ‖u + v‖ ≤ 2.

Moreover,

∑
�a∈Aj

(
Pr [�a| (�ı, �q) (i, q)]2 − Pr [�a| (�ı, �q)]2

)
= ‖u‖2 − ‖v‖2 = 〈(u+ v) , (u− v)〉

≤ ‖u+ v‖ · ‖u− v‖ ≤ 2‖u− v‖.

By convexity and Corollary 4.6 (with m = 1) we obtain

E(i,q) [‖u− v‖]2 ≤ E(i,q)

[‖u− v‖2] ≤ 1

n− j
.

Combining this with the previous inequality yields

E(i,q)

[∑
�a∈Aj

(
Pr [�a| (�ı, �q) (i, q)]2 − Pr [�a| (�ı, �q)]2

)]
≤ 2√

n− j
.

The proposition follows by taking expectations over (�ı, �q).
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Proposition 5.8. If block size j ≤ n/2 is not good, then E∗j − Ej+1 ≥ η2ε4/8.

Proof. Clearly, for any j-block (�ı, �q) and any pair (i, q) with i �∈�ı, and any �a ∈ Aj ,

Pr [�a| (�ı, �q) (i, q)]2 ≥
∑
a∈A

Pr [�a, a| (�ı, �q) (i, q)]2 .(5.3)

When(i, q) is not (1 − η)-determined by (�ı, �q), then strict inequality holds. We
quantify the effect of these inequalities. First, we show that with a reasonably large
probability, some useful events occur.

Proposition 5.9. Suppose that j ≤ n/2 is not a good block size. Let (�ı, �q) be
a randomly chosen j-block and let (i, q) be a randomly chosen pair with i �∈ �ı. Then
with probability at least ηε2/2, there will exist some �a such that

1. (For all a ∈ A)Pr[�a, a|(�ı, �q)(i, q)] ≤ (1− η)Pr[�a|(�ı, �q)(i, q)], and
2. Pr[�a|(�ı, �q)(i, q)] ≥ ε/2.
We defer the proof of Proposition 5.9 and proceed to analyzing its consequences.

We first use a straightforward convexity argument to show that for (�ı, �q), (i, q), and
�a satisfying the conclusions of Proposition 5.9,

∑
a∈A

Pr [�a, a| (�ı, �q) (i, q)]2 ≤ (1− 2η + 2η2
) · Pr [�a| (�ı, �q) (i, q)]2 .

In general, if one wants to maximize X2
1 + · · · +X2

k subject to X = X1 + · · · +Xk,
where all quantities are positive, it always helps to subtract from smaller values in
order to add to larger values. Given the added constraint that Xi ≤ (1 − η)X, the
maximum is attained by setting X1 = (1 − η)X, X2 = ηX, and all the rest equal to
0, giving X2

1 + · · ·+X2
k = (1− 2η + 2η2)X2.

This implies (when η ≤ 1/2) that

Pr [�a| (�ı, �q) (i, q)]2 −
∑
a∈A

Pr [�a, a| (�ı, �q) (i, q)]2 ≥ η · Pr [�a| (�ı, �q) (i, q)]2 ≥ η · (ε/2)2.
(5.4)

By (5.3), (5.1), and (5.4), each ((�ı, �q), (i, q)) that satisfies the condition of Proposi-
tion 5.9 contributes at least η(ε/2)2 = ηε2/4 times the probability of the event occur-
ring to E∗j −Ej+1. Thus the good events contribute at least (ηε

2/2)(ηε2/4) = η2ε4/8
to E∗j −Ej+1. (Recall that all the other ((�ı, �q), (i, q)) terms contribute nonnegatively,
by (5.3).)

Proof of Proposition 5.9. The statement of the proposition considers �a such that
(among other properties) Pr[�a|(�ı, �q)(i, q)] ≥ ε/2. We first show that if we modify this
property, asking instead that Pr [�a|(�ı, �q)] ≥ ε, then such �a exist with sufficiently high
probability. We then show it unlikely that an �a exists that has the modified property
but not the original property.

If j is not a good block size, then the probability that (�ı, �q) is alive is at least ε,
and conditioned on being alive, the probability that (�ı, �q) is not good is again at least
ε. Thereafter, the probability that (�ı, �q) does not (1− η)-determine a random (i, q) is
at least η. Assume that all three of these events occur (this has probability at least
ηε2). Then because (�ı, �q) is alive and (�ı, �q) does not (1− η)-determine (i, q), there is
some �a such that Pr [�a|(�ı, �q)] ≥ ε and, for every a ∈ A,

Pr [�a, a| (�ı, �q) (i, q)] ≤ (1− η) Pr [�a| (�ı, �q) (i, q)] .
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It remains to bound the probability that for some �a, Pr [�a|(�ı, �q)] ≥ ε but
Pr [�a|(�ı, �q)(i, q)] < ε/2. We say that ((�ı, �q), (i, q)) is discardable if, for some �a,
Pr[�a|(�ı, �q)] − Pr[�a|(�ı, �q)(i, q)] ≥ ε/2. Note that if Pr[�a|(�ı, �q)] ≥ ε and ((�ı, �q), (i, q)) is
not discardable, then Pr[�a|(�ı, �q)(i, q)] ≥ ε/2. We show that discardable ((�ı, �q), (i, q))
occur with probability at most ηε2/2; combined with the above bound, this implies
the proposition.

Consider a live j-block (�ı, �q) and define a function g : Qn−j → Aj that receives
as an argument the value of an input x on the coordinates other than �ı, and outputs
the value of f(x) on the coordinates indexed by �ı. By Corollary 4.6,

E(i,q)←(Q,π)

[∑
�a∈Aj

(
Prx←(Qn,πn|(�ı,�q)) [g (x) = �a]− Prx←(Qn,πn|(�ı,�q)(i,q)) [g (x) = �a]

)2]

≤ 1/ (n− j) ≤ 2/n.
Using Markov’s inequality and simple manipulations, it follows that the probabil-

ity (over the choice of (i, q)) that there is any �a with Pr[�a|(�ı, �q)]−Pr[�a|(�ı, �q)(i, q)] ≥ ε/2
is at most (2/n)/(ε/2)2 = 8/ε2n. For n > 16/ηε4 this probability is at most
ηε2/2.

Finally, we conclude the proof of Lemma 5.6. From Propositions 5.7 and 5.8 we

obtain that Ej − Ej+1 ≥ η2ε4/8 −
√

8
n . For j ≤ m ≤ n/2 and n > 210η−4ε−8,

Ej − Ej+1 ≥ η2ε4/32. For m > 25η−2ε−4, this difference is more than 1/m and the
lemma follows.

6. Proof of the main theorem. For notational convenience we write the initial
miss-match game as G rather than G′. For ease of exposition, rather than consider
Gn, we shall consider a related game that we denote by Ĝ, which is derived from Gn

by conditioning that there be exactly m match rounds. Hence Ĝ contains n parallel
rounds of G, with the restriction of having exactly m match rounds and n−m miss
rounds, where m < n/2 will be determined later. The locations of the match rounds
is random. Proposition 6.1 implies that upper bounding the error for Ĝ will suffice to
prove our main theorem, though with a different value for c (that “swallows up” the
difference between 4n and n).

Proposition 6.1. For Ĝ as described above, ω(Ĝ) ≥ ω(G4n)− 4e−n/32.
Proof. We describe a probability measure on strategies P = (p1, p2) for the

provers in Ĝ. Each strategy corresponds to a particular way in which the game Ĝ can
be completed to a game G4n. Let pk denote the probability that G4n has exactly k
match rounds, conditioned on it having at least m match rounds and at least n−m
miss rounds (the latter condition is equivalent to having at most 3n+mmatch rounds).

We can view such a completion as the following random process:
1. The provers uniformly choose a set S ⊂ [4n] indexing the n rounds into which
they place the rounds of Ĝ.

2. The provers choose k ∈ [m, 3n + m] according to the probability measure
Pr[k] = pk.

3. The provers uniformly choose a set M ⊆ [4n] \ S of size k − m. For each
round indexed by M the provers agree on the questions for match rounds,
generated according to G.

4. For all the remaining rounds (not indexed by S or M), the provers agree on
the questions for miss rounds, generated according to G.

The provers, prior to the start of the protocol, jointly sample one member P from the
space of completion strategies.
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When a prover receives a list of n questions in the game Ĝ, the prover uses the
agreed upon completion to embed these as part of a list of 4n questions in the game
G4n; then the prover employs the optimal strategy of the game G4n and sends back
only the n answers that correspond to the original questions of Ĝ. It can readily be
seen that the probability that V accepts is at least the probability that the optimal
strategy for G4n wins, given the distribution on the questions. This distribution is
the “usual” distribution for G4n, conditioned on there being at least m match rounds
and n−m miss rounds. By standard Chernoff bounds, the probability that there are
less than n−m miss rounds or less than m match rounds out of 4n rounds is at most
4e−n/32; this probability is negligible compared to ε when n is sufficiently large. Hence
the expected probability of winning is at least ω(G4n) − 4e−n/32, where expectation
is taken over the random choice of completion strategy and random questions for Ĝ.

Finally, by averaging, there is at least one deterministic strategy P that ensures
probability of acceptance of at least ω(G4n)− 4e−n/32 in the game Ĝ.

We now prove Theorem 3.3 by showing that ω(Ĝ) ≤ ε.

Proof. Fix a (deterministic) strategy (p1, p2) for Ĝ with highest probability of
success for the two provers. This strategy is a pair of functions p1 : (X1 × X2)

n →
(A1 × A2)

n and p2 : (X1

⋃
X2

⋃{λ})n → (A1

⋃
A2)

m. Observe that once p1 is fixed,
the function p2 is characterized using the maximum likelihood principle. That is, on
seeing the sequence �q of n questions, it is best for P2 to consider all possible sequences
of n questions to P1 that are consistent with P2 receiving �q, compute the answers of
P1 on the match rounds for each of these sequences, and then answer the match
rounds of �q in a way identical to the most likely answer sequence by P1 (breaking ties
arbitrarily).

Let Q = X1×X2×{1, 2}, let A = A1

⋃
A2, and let π

′ be a probability distribution
over Q that agrees with π over X1×X2 and is uniform over {1, 2} (that is, choose the
first two coordinates according to π and then choose the last coordinate uniformly
from {1, 2}). Based on p1 we define the function f : Qn → An, described as follows.
For an input in Qn, first strip off the last component of each coordinate, obtaining
an input in (X1 ×X2)

n. Then compute the output of p1 on the stripped input. This
will be a vector in (A1×A2)

n. Finally, for each coordinate in this output vector, save
only one of its two components (either the one in A1 or the one in A2), based on the
respective value of the {1, 2} component of the original input vector. The function f
corresponds to what P2 would need to respond if all rounds were match rounds. In
Ĝ some rounds are miss rounds, and our analysis will concentrate on coordinates of
f that correspond to match rounds.

Recall the notion of a k-block from section 4. Assume that m < n/2. (We will
enforce this condition in our choice of m.) Applying Lemma 5.6 with respect to f and
probability distribution (π′)n, we have a good block of size k ≤ m in the sense defined
in Lemma 5.6. (We shall expand on this below.) Fix this k for the rest of the proof.

For the purpose of our proof, we describe a three-step procedure by which the
verifier selects the questions to the two provers in the n rounds. It can easily be
verified that this three-step procedure induces the correct probability distribution on
the questions.

Step 1. Select at random a k-block (�ı, �q)
k← (π′)n for f . That is, select at random

k distinct rounds, and in each such round select a question pair from
X1 × X2 with probability π (to be sent to P1), and an index uniformly
from {1, 2} specifying which half is sent to P2. This specifies k match
rounds.
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Step 2. From the remaining rounds, select at random an (m− k)-block, B, spec-
ifying m− k additional match rounds.

Step 3. Make the remaining n −m rounds miss rounds. Select the questions to
P1 for these n−m rounds. (P2 receives λ on these rounds.)

To outline the rest of the analysis, we describe five events, at least one of which
will occur when the verifier accepts. For each event, we bound the probability that the
event occurs and that the verifier accepts. Although these events are not independent,
we can conservatively bound the probability that the verifier accepts by the sum of
the individual bounds.

Consider the k-block (�ı, �q) selected by the verifier in Step 1, and consider the
eventual answer �a that P2 gives on his respective half questions on the rounds specified
by �ı. Based on (�ı, �q) and on function f, consider a new function g : Qn−k → Ak that
gives the value of f on the k coordinates specified by �ı as a function of the remaining
n − k coordinates of the input. For the verifier to accept, P2 must give the same
answers on these half questions. There are two cases:

1. The answer �a of P2 was an unlikely answer for P1, in the sense that
Prx←(π′)n−k [g(x) = �a] < ε, where ε < ε will be chosen later. There are
two subcases to consider, depending on whether �a continues to be an unlikely
answer even after the (m− k)-block B is chosen.
(a) Prx←((π′)n−k|B)[g(x) = �a] < 2ε. This subcase is handled by Event 1.
(b) Prx←((π′)n−k|B)[g(x) = �a] ≥ 2ε. This subcase is handled by Event 2.

2. Prx←(π′)n−k [g(x) = �a] ≥ ε. This implies that the k-block (�ı, �q) is alive (with
respect to f). We have two subcases.
(a) The k-block (�ı, �q) is not (1 − η)-good, where the precise value of η will

be chosen later. This is handled by Event 3.
(b) The k-block (�ı, �q) is (1 − η)-good. There are two subcases depending

on the number of the remaining coordinates that are answered by P1

according to the majority strategy. The subcase that this number is
small is handled by Event 4, and the subcase that this number is large
is handled by Event 5.

We now describe and analyze these events in greater detail.
Event 1. If Prx←((π′)n−k|B)[g(x) = �a] < 2ε, we say that Event 1 occurs and assume

that the verifier accepts with probability 2ε. This is indeed an upper bound on the
acceptance probability in this case, because the verifier accepts only if P1 and P2

answer identically these k questions, and Pr[g(x) = �a] measures the probability (over
the choices of the questions to P1 in the miss rounds) that P1 answers the same way
as P2 does. (Note that P2’s answer �a is determined by (�ı, �q) and B.) The contribution
of Event 1 to the total acceptance probability is 2ε. (Note that we need not bound
the probability of an event if we can bound the error probability conditioned on the
event.)

Event 2. The outcome of Step 1 is a k-block (�ı, �q). Event 2 happens when
1. Prx←(π′)n−k [g(x) = �a] < ε, and
2. Prx←((π′)n−k|B)[g(x) = �a] ≥ 2ε.

It follows that

Prx←((π′)n−k|B) [g (x) = �a]− Prx←(π′)n−k [g (x) = �a] ≥ ε.

We show that this happens with low probability, thus bounding the probability that
Event 2 occurs and the verifier accepts. (Note that we do not need to consider the
probability that the verifier accepts if we can bound the probability of the event.)
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For function g, we apply Corollary 4.6 to bound the influence of Step 2 (in which
an additional (m− k)-block is selected), obtaining

E
B

m−k← (π′)m−k


∑
�a∈Ak

(
Prx←(π′)n−k [g (x) = �a]− Prx←((π′)n−k|B) [g (x) = �a]

)2



≤ (m− k) / (n− k) ≤ m/n.

Now, if Event 2 occurs, then there is some �a that contributes ε2 to the above
summation term. Note that all the other terms in the summation are nonnegative.
By Markov’s inequality, the probability of Event 2, taken over the choice of B, is at
most m/nε2.

Event 3. Event 3 is the event that (�ı, �q), selected in Step 1, is alive but not
(1− η)-good. We upper bound the probability of Event 3 by ε as follows. Recall that
k was selected to be good with respect to (f, π′) in the sense of Lemma 5.6. Hence,
either (�ı, �q) is alive with probability at most ε or it is the case that live (�ı, �q) fail to
be (1− η)-good with probability at most ε. In either case, the probability that (�ı, �q)
is alive but not (1− η)-good is at most ε.

To define Events 4 and 5, recall the notion of majority answer from Definition 5.4.
We introduced the notation maj(i, q) to denote the most likely value for f(x)[i] when

x[i] = q
def
= (q1, q2, b) (also conditioned on x[�ı ] = �q and f(x)[�ı ] = �a). In our case, this

corresponds to P1’s most likely bth half answer on coordinate i when x[i] = q. For
j ∈ {1, 2}, we extend this notation to maj(i, q, j) to denote P1’s most likely jth half
answer on coordinate i when x[i] = q. Note that j need not be equal to b.

Event 4. Event 4 occurs when

1. (�ı, �q) is alive and good;
2. Prx←(π′)n−k [g(x) = �a] ≥ ε; and
3. given (�ı, �q,�a), less than a 1 − 2η/δ fraction of the 2(n − k) remaining half
answers of P1 equal their respective majority answer, maj(i, q, j). Here, δ is
a parameter that will be chosen later.

Note that for a fixed k-block (�ı, �q), at most 1/ε different �a may satisfy this con-
dition. We shall concentrate on an arbitrary one such �a and later multiply the prob-
ability of acceptance by a factor of 1/ε.

The k-block (�ı, �q) is good and the triple (�ı, �q,�a) is alive. By Proposition 5.5, the
following experiment succeeds with probability α ≥ 1− 2η/ε.

1. Choose i uniformly from [n]−�ı and choose z according to (π′)n, conditioned
on z[�ı ] = �q and f(z)[�ı ] = �a.

2. Let q = z[i]. Succeed iff f(z)[i] = maj(i, q).

Recall that maj is defined with respect to (�ı, �q,�a).

Let β denote the expected fraction of half answers given by P1 that are equal to
their respective maj(i, q, j), where the conditioning is as in the definition of Event 4.
We will show that α = β, and hence that β ≥ 1− 2η/ε. By Markov’s inequality, the
probability that P1 gives the majority answer on less than a 1− 2η/δ fraction of the
half questions is at most δ/ε. Summing over at most 1/ε possible �a, we have that
Event 4 occurs with probability at most δ/ε2.

It remains to show that α = β. Given z = (q1
1 , q

1
2 , b

1), (q2
1 , q

2
2 , b

2), . . . , define
z\b = (q1

1 , q
1
2), (q

2
1 , q

2
2), . . . and b(z) = b1, b2, . . . . Using the linearity of expectation we

can express β as the success probability of the following experiment.
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1. Choose i uniformly from [n]−�ı and choose z according to (π′)n, conditioned
on z[�ı ] = �q and f(z)[�ı ] = �a.

2. Let q = z[i]
def
= (q1, q2, b). Choose j uniformly from {1, 2}. Let (a1, a2) =

p1(z\b)[i]. Succeed iff aj = maj(i, q, j).
By the definition of f, we can rewrite the second step in the experiment defining α to
be the following:

2. Let q = z[i]
def
= (q1, q2, b). Choose j ∈ {1, 2} as j = b. Let (a1, a2) = p1(z\b)[i].

Succeed iff aj = maj(i, q, j).
Thus, the only difference between the two experiments is in the distribution on j.
The experiment for β chooses j uniformly, independently of all other events, whereas
the experiment for α chooses j = b. We now use the fact that b is not an input to P1,
and hence the answers of P1 are independent of b.

We can imagine choosing z according to (π′)n, then conditioning on (�ı, �q) and
then conditioning on f(z)[�ı ] = �a. Initially, b(z) is uniformly distributed, conditioned
on z\b. After conditioning on �q, b(z)[�ı ] is fixed, but b(z)[[n] −�ı ] remains uniformly
distributed over {0, 1}n−k. Now, f(z)[�q ] is completely independent of b(z)[[n]−�ı ], so
further conditioning based on this value has no effect on the distribution of b(z)[[n]−�ı ].
Hence b is uniformly distributed and so is j in the experiment for α.

We established that j is identically distributed in the two experiments. To com-
plete the proof of α = β we observe that the correlation between j and b in the ex-
periment defining α is irrelevant to its probability of success, because neither (a1, a2)
nor (maj(i, q, 1),maj(i, q, 2)) depends on b.

Event 5. Event 5 occurs when
1. (�ı, �q) is alive and good;
2. Prx←(π′)n−k [g(x) = �a] ≥ ε; and
3. given (�ı, �q,�a), at least a 1−2η/δ fraction of the 2(n−k) remaining half answers
of P1 equal their respective majority answer, maj(i, q, j).

It follows that for at least a 1−4η/δ fraction of these coordinates, P1 answers both half
questions according to a majority strategy. Which majority strategy is used depends
on �a; there are at most 1/ε values of �a such that Prx←(Qn−k,(π′)n−k)[g(x) = �a] ≥ ε.
Fixing �a and assuming that P1 plays the majority strategy for a 1− 4η/δ fraction of
the n − k subgames, consider the probability that verifier accepts on each of them.
This probability is bounded above by the probability that the verifier accepts on a
1− 4η/δ fraction of the n− k subgames, when P1 plays the majority strategy for all
n− k subgames.

Fixing a strategy for P1, whether the verifier accepts or rejects is a function of its
random coins, which are chosen independently for each subgame. Since the majority
strategy is a projection strategy, for each subgame the probability that the verifier
accepts is at most p, independent of any of the other games. We can therefore apply
a Chernoff bound (Theorem A.4 in [1]) and conclude that the probability that the
verifier accepts in more than a (1 + p)/2 fraction of the n− k coordinates is at most

e−(1−p)2(n−k)/2 < e−(1−p)2n/4. When η < (1− p)δ/8, then (1 + p)/2 < 1− 4η/δ, and
Event 5 occurs with probability at most e−(1−p)2n/4/ε.

Summing up the probabilities for the five events, the verifier accepts with proba-
bility at most

2ε+m/nε2 + ε+ δ/ε2 + e−(1−p)2n/4/ε.

The various parameters need to satisfy m < n/2, η < 1
2 , n > 210η−4ε−8, and m >

25η−2ε−4 from Lemma 5.6 and η < (1 − p)δ/8 from Event 5. If n ≥ c/((1 − p)ε)c,
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for a sufficiently large c, then the other parameters can be chosen to make the above
expression at most ε, as desired. Needless to say, our analysis is not tight.

Remark. The main difference between the proof of the above theorem in the
current version and the preliminary version [12] is in the definition of the function f .
In the miss-match case, the function f is based on the strategy of prover P1, and its
definition is a bit complicated. In the confuse-or-compare case [12], the function f was
simply the strategy p2 of prover P2. The simpler definition for f allowed subsequent
arguments to be stated more simply.

Acknowledgments. We thank Leonid Gurvits for his help in proving Theo-
rem 4.3. We thank the referees for numerous useful comments.
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ent links, and each node may have a different switching time between messages. The well-studied
telephone model is obtained when all link delays and switching times are equal to one unit. We in-
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1. Introduction. The task of disseminating a message from a source node to
the rest of the nodes in a communication network is called broadcasting. The goal
is to complete the task as fast as possible assuming all nodes in the network par-
ticipate in the effort. When the message needs to be disseminated only to a subset
of the nodes, this task is referred to as multicasting. Broadcasting and multicasting
are important and basic communication primitives in many multiprocessor systems.
Current networks usually provide point-to-point communication only between some
of the pairs of the nodes in the network. Yet, in many applications, a node in the
network may wish to send a message to a subset of the nodes, where some of them
are not connected to the sender directly. Due to the significance of this operation, it
is important to design efficient algorithms for it.

Broadcast and multicast operations are frequently used in many applications for
message-passing systems (see [10]). It is also provided as a communication primitive
by several collective communication libraries, such as Express by Parasoft [7] and
the message-passing library (MPL) [1, 2] of the IBM SP2 parallel systems. This
operation is also included as part of the collective communication routines in the
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message-passing interface (MPI) standard proposal [22]. Application domains that
use broadcast and multicast operations extensively include scientific computations,
network management protocols, database transactions, and multimedia applications.
In most of these applications the efficiency depends on the time it takes to complete
the broadcast or multicast operations.

There are two basic models in which trivial optimal solutions exist. In the first
model, all nodes are assumed to be connected, a node may send a message to at most
one other node in each round, and it takes one unit of time (round) for a message
to cross a link. Therefore, in each round the number of nodes receiving the message
can be doubled. If the target set of nodes is of size k, then this process terminates
in �log k� rounds. In the second model the communication network is represented
by an arbitrary graph, where each node is capable of sending a message to all of
its neighbors in one unit of time. Here, the number of rounds required to deliver a
message to a subset of the nodes is the maximum distance from the source node to
any of the nodes in the subset.

The model in which a node may send a message to at most one other node in each
round is known as the telephone model. It is known that for arbitrary communication
graphs, the problem of finding an optimal broadcast in the telephone model is NP-
hard [11], even for 3-regular planar graphs [19]. Following the two easy cases given
above, it is not hard to verify that in the telephone model two trivial lower bounds hold
for the minimum broadcast time. The first one is �log n�, where n denotes the number
of nodes in the graph, and the second one is the maximum distance from the source
node to any of the other nodes. Research in the past three decades has focused on
finding optimal broadcast algorithms for various classes of graphs such as trees, grids,
and hypercubes. Also, researchers have looked for graphs with minimum number of
links for which a broadcast time of �log n� can be achieved from any source node.
Problems related to broadcast which were extensively investigated are the problems
of broadcast multiple messages, gossiping, and computing certain functions on all n
inputs in a network. See, e.g., [4, 5, 6, 8, 12, 13, 14, 18, 21, 24, 25].

An assumption central to the telephone model is that both sender and receiver
are busy during the whole sending process. That is, only after the receiver received
the message, both ends may send the message to other nodes. More realistic models
in this context are the postal model [3] and the LogP model [17]. The idea there is
that the sender may send another message before the current message is completely
received by the receiver, and the receiver is free during the early stages of the sending
process. We note that in both the postal model and the LogP model it is assumed
that the delay of a message between any pair of nodes is the same.

Optimal solutions for broadcast in the postal model are known for the case of a
complete graph and for some other classes of graphs. However, not much is known
for arbitrary graphs. In the postal model, researchers have also concentrated on other
dissemination primitives and almost always assumed that the communication graph
is complete.

1.1. Our results. In this paper we define a more general model based on the
postal model and call it the heterogeneous postal model. Assume node u sends a
message to node v at time 0 and the message arrives at v at time λuv. The assumption
is that u is free to send a new message at time su, and v is free from time 0 to time
λuv − rv. We call λuv the delay of the link (u, v), su the sending (or switching) time
of u, and rv the receiving time of v. By definition, both su and rv are smaller than
λuv. In the single-message multicast problem each node receives no more than a single
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message. Thus, for this problem the receiving time has almost no relevance. Because
of this, and to keep the presentation clearer, we assume for the rest of the paper that
ru = su for all nodes u. Observe that when the delay, sending time, and receiving
time are all equal to 1, we obtain the telephone model.

We believe that our framework may be useful to model modern communica-
tion networks, where the major components—the processors and the communication
links—are not homogeneous. Some processors are faster than others, and some links
have more bandwidth than others. These disparities are captured by the different
values of the delay and the switching time.

Since finding the minimummulticast time is NP-hard even in the telephone model,
we turn our focus to approximation algorithms. The main result we present is an ap-
proximation algorithm for computing a multicast scheme in the heterogeneous postal
model. The approximation factor is O (log k), where k denotes the number of pro-
cessors in the target set. Previous approximation algorithms for multicasting were
known only in the telephone model. Kortsarz and Peleg [16] gave an approximation
algorithm that produces a solution whose value is bounded away from the optimal
solution by an O(

√
n) additive term. This term is quite large, especially for graphs

in which the broadcast (multicast) time is polylogarithmic. Later, Ravi [20] gave an
algorithm that achieves a multiplicative approximation factor of O( logn log k

log log k ).
We also show that it is NP-hard to approximate the minimum broadcast time

within a factor of three in a model which is only slightly more complicated than the
telephone model.

The rest of the paper is organized as follows. In section 2 we define our model.
In section 3 we describe our solution. Finally, in section 4 we show that this problem
is hard to approximate by a small constant factor.

2. The model and the problem. We define our model as follows. Let G =
(V,E) be an undirected graph representing a communication network, where V is a
set of n nodes and E is the set of point-to-point communication links. Let U ⊆ V
denote a special set of terminals, and let r be a special node termed the root. Let the
cardinality of the set U be k. To simplify notation assume that r ∈ U .

We associate with each node v ∈ V a parameter sv that denotes the sending
time. We sometimes refer to sv as the switching time of v to indicate that this is the
time it takes node v to send a new message. In other words, 1/sv is the number of
messages node v can send in one round (unit of time). We associate with each node
v ∈ V a parameter rv that denotes the receiving time. We assume that rv = sv, for
each node v. We associate with each link (u, v) ∈ E a length λuv that denotes the
communication delay between nodes u and v. By definition, λuv is greater than both
su and rv (= sv). We can think of the delay λuv as taking into account the sending
time at u and the receiving time at v.

Let the generalized degree of node v ∈ V be the actual degree of v in the graph
G multiplied by the switching time sv. Observe that the generalized degree measures
the time it would have taken the node v to send a message to all of its neighbors.

Our goal is to find a minimum-time multicast scheme, that is, a scheme in which
the time it takes for all nodes in the set U to receive the message from the root r is
minimized. Without loss of generality, we may consider only multicast schemes that
are “not lazy,” i.e., schemes in which a node that has not finished sending the message
to its neighbors (but has already started) is not idle. Such multicast schemes can be
represented by an outward directed tree T that is rooted at r and spans all the nodes
in U , together with orderings on the edges outgoing from each node in the tree. The
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multicast scheme corresponding to such a tree and orderings is a multicast in which
each node in the tree upon receiving the message (through its single incoming edge)
sends the message along each of its outgoing edges in the specified order. From now
on, we refer to the tree in the representation of a multicast scheme as the tree “used”
by the scheme.

For a rooted tree T , denote by ∆T its maximum generalized degree, and by LT
the maximum distance from r to any of the nodes in U (with respect to the lengths
λxy associated with each link (x, y)). By definition, the multicast time of tree T is
greater than ∆T and greater than LT . Hence, we obtain the following lemma.

Lemma 1. Let OPT denote the multicast time of an optimal solution using tree
T ∗; then OPT ≥ 1

2 (∆T∗ + LT∗)

3. The approximation algorithm. In this section we describe the approxima-
tion algorithm for multicasting a message to a set of terminals U from a root node
r ∈ U .

The main tool used by our algorithm is a procedure ComputeCore(U ′) that com-
putes for a given set of terminals U ′, where r ∈ U ′,

(1) a subset W ⊂ U ′ which we call the core of U ′, of size at most 3
4 |U ′|, where

r ∈W ;
(2) a scheme to disseminate a message known to all the nodes in W to the rest

of the nodes in U ′ in time proportional to the minimum multicast time from
r to U ′.

The algorithm that computes the multicast scheme proceeds in � phases. Let U0 = U .
Upon termination, U� = {r}. In the ith phase, i = 1, . . . , �, procedure Compute-
Core(Ui−1) is invoked to compute

(1) the core of Ui−1, denoted by Ui;
(2) a scheme to disseminate the message from Ui to the set Ui−1 in time propor-

tional to the minimum multicast time from r to Ui−1.
Since |Ui| ≤ 3

4 ·|Ui−1| and |U0| = k, we have that � = O(log k). The resulting multicast
scheme is given by looking at the rounds of the algorithm in backward order. Namely,
starting at i = � downwards, in each round of the multicast scheme the message is
disseminated from Ui to Ui−1. Since U� ⊂ U�−1 ⊂ · · · ⊂ U0 = U , each dissemination
phase takes time proportional to the minimum multicast time from r to U . It follows
that the multicast time is up to O(log k) times the optimal multicast time.

In the rest of the section we describe the procedure ComputeCore(U ′). Let OPT
be the minimum multicast time from r to U ′. Lemma 1 implies that there exists
a tree T ∗ spanning the set U ′ such that ∆T∗ + LT∗ ≤ 2 · OPT . The procedure
ComputeCore(U ′) has two main parts. In the first part, we find a set of |U ′| paths,
one for each terminal, where the ith path connects the terminal ui to another terminal
called Mate(ui). The paths have the following path properties:
Length property: The length of each path is at most 4 · (∆T∗ + LT∗).
Congestion property: The generalized degree of the nodes in the graph induced

by the paths is at most 6 · (∆T∗ + LT∗).
In the second part we design a dissemination scheme using the above paths. We do
it by transforming the paths into a set of disjoint spider graphs—graphs in which at
most one node has degree more than two. These spider graphs have the following
spider properties:

• Each spider contains at least two terminals from U ′.
• The set of spiders spans at least half the nodes in U ′.
• The diameter of each spider is at most 4 · (∆T∗ + LT∗).
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• The generalized degree of the center of a spider is at most 6 · (∆T∗ + LT∗),
where the center of a spider is the unique node with degree larger than two,
if such exists, or one of the endpoints of the spider otherwise.

Now, for each spider, we arbitrarily select one of the nodes from U ′ to the core of U ′.
Note that each such node can multicast the message to the rest of the terminals in its
spider in O(∆T∗+LT∗) time (linear in OPT ). We add all the terminals not contained
in any of the spiders to the core of U ′. We claim that the size of the core is at most
3
4 |U ′|. To see this, let x denote the number of spiders and let y be the number of the
terminals in all the spiders. It follows that the size of the core is |U ′| − y+ x. By the
first spider property we have that x ≤ y/2 and by the second spider property we get
that y ≥ |U ′|/2. Thus,

|core(U ′)| = |U ′| − y + x ≤ |U ′| − y

2
≤ |U ′| − 1

4
|U ′| = 3

4
|U ′| .

We now turn to describe each of the two parts of the procedure ComputeCore(U ′).

3.1. Finding a set of paths. We first claim the following lemma, which is
analogous to the “tree-pairing” lemma of Ravi [20].

Lemma 2. Let T be a tree that spans a set U ′ ⊆ V , and suppose that |U ′| is even.
There exists a way to pair the nodes of U ′ and to find paths (in the tree T ) connecting
each pair such that

(1) the paths are edge disjoint;
(2) the length of each path is bounded by 2LT ;
(3) the generalized degree of each node in the graph induced by the paths is at

most ∆T .
Proof. The tree-pairing lemma [20] states that there exists a pairing such that

the paths in T connecting each of the pairs are edge disjoint. Consider these paths.
Clearly the length of each of these paths is bounded by 2LT . The degree, and hence
the generalized degree, of every node in the graph induced by the paths is no more
than the (generalized) degree in T since we use only the edges of the tree T . Hence,
it is bounded by ∆T .

The following corollary handles the odd case as well.
Corollary 3. Let T be a tree that spans a set U ′ ⊆ V . There exists a way to

pair the nodes of U ′ and to find paths (in the tree T ) connecting each pair such that
(1) the length of each path is bounded by 2LT ;
(2) the generalized degree of each node in the graph induced by the paths is at

most 2∆T .
Proof. The corollary clearly holds if |U ′| is even. If |U ′| is odd, we pair |U ′| − 1

of the nodes as in Lemma 2 and pair the last node with any other node. The length
of the path connecting the last pair is still bounded by 2LT . However, the degree of
the subgraph may double up to 2∆T .

Recall that the tree T ∗ spans the nodes of U ′ and (∆T∗ + LT∗) ≤ 2 ·OPT . Our
objective is to find the set of paths as guaranteed by Corollary 3 with respect to
T ∗. However, we do not know T ∗. Thus, instead, we find a set of fractional paths
satisfying similar properties. To this end, we write a linear program for finding a set
of (fractional) paths that minimizes the sum of two quantities: (1) the maximum over
all pairs of the average length of the paths connecting a pair, and (2) the maximum
generalized degree of the subgraph induced by the paths connecting the pairs.

The linear program is a variant of multicommodity flow. For each edge (u, v), we
define the directed edges (u, v) and (v, u) both of length λuv. Let U ′ = {v1, . . . , vh}.
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With each node vj ∈ U ′ we associate commodity j. Node vj is the source of commodity
j and we create an artificial sink tj with rtj = stj = 0. We connect each of the nodes
v′ ∈ U ′, where vj �= v′, to tj by a directed edge (v

′, tj) of length 0. The objective is
to minimize (L +∆), where exactly one unit of flow has to be shipped from each vj
to tj , such that the average length of the flow paths from vj to tj is at most 2L, and
the maximum weighted congestion (generalized degree) of the induced subgraph is at
most 3∆.

More formally, let A denote the set of directed edges, and let f i(u, v) denote the
flow of commodity i on directed edge (u, v). The linear programming formulation is
as follows.

Minimize ∆ + L

subject to:
For all 1 ≤ i ≤ h

and v ∈ V − {vi, ti}:
∑

(u,v)∈A
f i(u, v)−

∑
(v,w)∈A

f i(v, w) = 0.

For all 1 ≤ i ≤ h:
∑

(u,ti)∈A
f i(u, ti) = 1.

For all 1 ≤ i ≤ h:
∑

(vi,u)∈A
f i(vi, u) = 1.

For all 1 ≤ i ≤ h:
∑

(u,v)∈A
f i(u, v)λuv ≤ 2L.

For all v ∈ V − {t1, . . . , th}: sv ·
∑
i

∑
u∈V

(
f i(u, v) + f i(v, u)

) ≤ 3∆.

For all 1 ≤ i ≤ h: f i(u, v) ≥ 0.

We now show that the set of paths guaranteed by Corollary 3 with respect to T ∗

can be modified so as to obtain an integral solution for the linear program as follows.
If |U ′| is even, the solution is obtained by using each path connecting a pair (ui, uj)
to ship one unit of flow from uj through ui to tj , and another unit of flow from ui
through uj to ti. The length of each path is bounded by 2LT∗ , and since we use each
path twice, the generalized degree is bounded by 2∆T∗ . If |U ′| is odd, the solution is
obtained by using each of the 1

2 (|U ′| − 1) paths connecting the first |U ′| − 1 nodes of
U ′ twice (once in each direction), and using the path connecting the last node in U ′

to its mate to ship flow out of this node. The length of each path is still bounded by
2LT∗ . However, because of the additional path, the degree is only bounded by 3∆T∗ .

It follows that the value of the objective function for this solution is ∆T∗ + LT∗ ,
and thus the linear program is guaranteed to find a solution whose value is upper
bounded by this value. Let LT and ∆T denote the values of the length and congestion
in the optimal solution of the above linear program.

The optimal solution is a “fractional” solution in the sense that the (unit) flow of
each commodity is split between several flow paths. We round the fractional solution
into an integral solution using an algorithm proposed by Srinivasan and Teo [23].
This algorithm builds on a theorem proved by Karp et al. [15]. For completeness, and
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since the details are slightly different, we now describe the rounding of the fractional
solution.

Theorem 4 (see [15]). Let A be a real valued r×s matrix, and y be a real valued
s-vector. Let b be a real valued vector such that Ay = b. Let t be a positive real number
such that in every column of A,

(1) the sum of all positive entries ≤ t; and
(2) the sum of all negative entries ≥ −t.

Then, we can compute (in polynomial time) an integral vector ȳ such that for every
i, either ȳi = �y� or ȳi = �y� and Aȳ = b̄, where b̄i − bi < t.

We now show how to find an integral flow of congestion at most 6∆T+4LT , where
each flow path (of each commodity) has length at most 4LT . We first decompose the
flow into (polynomially many) flow paths. If any path in this decomposition is longer
than 4LT , we discard it. We observe that since the average length is less than 2LT ,
discarding these long paths leaves at least half of a unit of flow between each pair
(vi, ti). We scale the flows appropriately such that the total flow to each ti is exactly
1. This can at most double the flow on an edge, and the total congestion is now at
most 6∆T .

Let P1, P2, . . . denote the length-bounded flow paths. Denote the set of nodes in
a path Pi by V (Pi) and the set of edges by E(Pi). Let f(Pi) denote the amount of
flow pushed on path Pi. Define the set Pj as the set of all paths that carry flow of the
jth commodity. Observe that each path belongs to exactly one Pj . The linear system
Ay = b needed for Theorem 4 is defined by the following linear equations, where the
ith equation corresponds to the ith row of A and the ith element of b.

For each v sv ·
∑

i: v∈V (Pi)

f(Pi) ≤ 6∆T ;

for all j −4LT ·
∑

i:Pi∈Pj

f(Pi) = −4LT .

The second set of inequalities captures the fact that the flow on all the paths
corresponding to commodity j is exactly 1. Now the sum of the positive entries in a
column is

∑
v∈V (Pi)

sv ≤
∑

(v,w)∈E(pi)

λvw + stj = (length of path Pj) ≤ 4LT .

The second part of the inequality follows since sv ≤ λvw for all v, w and stj = 0. The
sum of the negative entries in a column is at most 4LT ; this follows due to the fact
that each Pi belongs to exactly one Pj . Invoking Theorem 4 gives us a set of paths
such that

for each v sv ·
∑

i: v∈V (Pi)

f̄(Pi) < 6∆T + 4LT ;

for all j −4LT ·
∑

i:Pi∈Pj

f̄(Pi) < 0.

The second set of inequalities implies that each commodity has at least one flow
path. So we have a set of flow paths such that the congestion is at most 6∆T + 4LT
and their length is at most 4LT . Since ∆T +LT ≤ ∆T∗ +LT∗ these paths satisfy the
length and congestion properties as desired.
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3.2. Finding a spider decomposition. We now show how to obtain a spider
decomposition satisfying the spider properties previously defined. Recall that we are
now given a set of paths connecting each terminal uj with another terminalMate(uj),
and that this set of paths satisfies the length and congestion properties.

We find a set of at least |U ′|/2 trees that satisfy the following properties which
are similar to the spider properties.

• Each tree spans at least two terminals from U ′.
• The diameter of each tree is at most 4LT ≤ 4 · (∆T∗ + LT∗).
• The generalized degree of each node in each of the trees is at most 6∆T +
4LT ≤ 6(∆T∗ + LT∗).

Before showing how to find these trees, we show how to transform them into the
required spiders. Repeatedly, consider the tree edges, and remove a tree edge if it
separates the tree into two subtrees such that either both subtrees contain at least
two terminals or one of them contains no terminals. (In this case this subtree is
removed as well.) Repeat this process until no more edges can be removed. The
process terminates since the number of edges is finite. Observe that upon termination
if a connected component is not a spider, then another edge could be deleted. Thus,
we get the following claim.

Claim 5. When the process terminates, each connected component is a spider.
Clearly, all the terminals spanned by the trees are also spanned by the spiders.

The diameter of each of these spiders is at most 4LT , since the distance between
every pair of nodes in U ′ spanned by a tree is at most 4LT to begin with. Also, the
generalized degree of the “center” of the spider is at most the generalized degree of
its originating tree since we have not introduced any new edges in the process. We
conclude that the spiders satisfy the desired spider properties.

Now, we show how to find the required trees. Define Gp to be the undirected
graph induced by the paths from each terminal to its mate. Observe that a spanning
forest of this graph may not satisfy the required diameter property above, and hence
some extra refinement is necessary.

For each node u in Gp, find a unique terminal in U ′ that is closest to u (with
respect to the lengths λxy associated with each link (x, y)). Ties are broken arbitrarily.

We modify the paths starting at each terminal as follows. From each terminal u
begin tracing the path connecting u to Mate(u). At some node v along this path,
the closest terminal to v will not be u. We are guaranteed to encounter such a node
because the closest node to Mate(u) is Mate(u) itself. From this node v trace the
path to its closest terminal. This creates a path from u to another terminal denoted
NewMate(u). Note that NewMate(u) may be different from Mate(u). However, we
are guaranteed that the path from u to NewMate(u) is not longer than the path from
u to Mate(u) and thus bounded by 4LT .

Define an auxiliary directed graph H on the set of terminals U ′ with the set of
edges (u → NewMate(u)) for u ∈ U ′. By definition each node in H has outdegree
one. Thus, each connected component of (the undirected skeleton of) H contains
exactly one directed cycle. Discard one edge from each such connected component to
make it a rooted tree in which all edges are oriented towards the root. (The root is
unique since the outdegree of each node is one.) Note that every nontrivial strongly
connected component of H is a cycle. Thus, this can be done just by discarding an
arbitrary edge from each strongly connected component of H. Let H ′ be the resulting
forest.

Define the level of a node in H ′ to be the number of edges in the path to it from
the root of its component. (We flip the direction of the edges in H ′ for the purpose
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of measuring distances.) Distinguish between nodes of even level and nodes of odd
level. Each edge of H ′ goes either from an odd-level node to an even-level node or
vice-versa.

Consider two collections of stars in H ′. One collection consisting of edges from
odd-level nodes to even-level nodes, and the other consisting of edges from even-level
nodes to odd-level nodes. Every terminal with positive indegree and outdegree (in
H ′) is spanned by a star in each one of the two collections. Every terminal with
either indegree or outdegree zero (in H ′) is spanned by a star in only one of the two
collections. However, by a simple pigeonhole argument, at least one of the collections
spans at least half of the terminals.

Consider such a collection. First, note that each star in this collection induces an
undirected tree in the original graph when replacing each star edge by its originating
path. We now claim the following.

Lemma 6. The induced trees of any two stars belonging to the same collection
are node disjoint.

Proof. To obtain a contradiction assume they are not disjoint. Then there exist
two distinct terminals with the same even or odd parity, say, u and v, such that
NewMate(u) �= NewMate(v), but the paths traced from u to NewMate(u) and
from v to NewMate(v) have a common node x. Consider the terminal chosen by x
as its closest terminal. We distinguish between two cases.

Case 1. The terminal chosen by x is u. Then u must be NewMate(v), contra-
dicting the fact that u and v are of the same parity. The case where v is the chosen
terminal of x is symmetric.

Case 2. The terminal chosen by x is NewMate(u). Then NewMate(v) must
be the same as NewMate(u), a contradiction. The case where NewMate(v) is the
chosen terminal of x is symmetric.

It is easy to see that the trees induced by the stars in the collection satisfy the
required properties. This concludes the construction.

4. Hardness of approximations. In this section we show that the best possible
approximation factor of the minimum broadcast time in the heterogeneous postal
model is 3 − ε. We show this hardness result even for a restricted model in which
si ∈ {0, 1} and λuv ∈ {1, d} for some constant d. Note that when si = 0, node ui can
broadcast the message concurrently to all of its neighbors. The proof is by a reduction
to the set cover problem. In the unweighted version of the set cover problem we are
given a set U of elements and a collection S of subsets of U . The goal is to find the
smallest number of subsets from S whose union is the set U . Feige [9] proved the
following hardness result.

Lemma 7. Unless NP ⊆ DTIME(nlog log n), the set cover problem cannot be
approximated by a factor which is better than lnn, and hence it cannot be approximated
within any constant factor.

In our proof, we will only use the fact that it is NP-hard to approximate the
optimal set cover within any constant factor.

Theorem 8. It is NP-hard to approximate the minimum broadcast time of any
graph within a factor of 3− ε.

Proof. Assume to the contrary that there exists an algorithm that violates the
claim of the theorem for some ε. We show how to approximate the set cover problem
within a constant factor using this algorithm.

To approximate the set cover problem we “guess” the size of the optimal set cover
and use our approximate minimum broadcast time algorithm to check our guess. Since
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the size of the optimal set cover is polynomial, we need to check only a polynomial
number of guesses.

Consider an instance of set cover I = (U, S), where U is the set of elements, and
S a collection of subsets of U . Let |U | = n and |S| = m. Let the guess on the size of
the optimal set cover be k. We construct the following graph G (see Figure 1). The
graph G consists of 1 + n + m + k vertices: a distinguished root vertex r, vertices
e1, . . . , en corresponding to the elements of U , vertices u1, . . . , um corresponding to
the subsets, and k additional vertices a1, . . . , ak.

The root r has switching time s(r) = 0 and is connected to a1, . . . , ak by edges
with delay λra� = 1. Each vertex a� has switching time s(a�) = 1 and is connected
to all uj with delay λa�uj = 1. Each vertex uj has switching time s(uj) = 0 and is
connected to a vertex ei iff the jth set contains the ith element. The delay of such
an edge is λujei = d, where d > 4−2ε

ε is a constant. Each vertex ei has switching time
s(ei) = 1. Finally, to complete the instance of the multicasting problem, the target
multicast set consists of all vertices ei.

We first show that if there is a set cover of size k, then there is a multicast scheme
of length d + 2. After time 1, all the vertices a� receive the message. After time 2,
all the vertices uj corresponding to sets which are in this cover receive the message.
This is possible since all a� are connected to all uj . Finally, these vertices send the
message to all the elements that they cover. Since s(uj) = 0 and λujei = d, it follows
that the multicast time is d+ 2.

Suppose that the algorithm for the multicasting problem completes the multi-
casting at time t. By the contradiction assumption, its approximation factor is 3− ε.
Since by our guess on the size of the set cover the optimal multicast time no more
than d+2, we have t ≤ (3− ε)(d+2) = 3d+6−2ε− εd < 3d+6−2ε−4+2ε = 3d+2.
The strict inequality follows from the choice of d.

We first claim that all the vertices uj that participate in the multicast receive the
message from some a�. Otherwise there exists a vertex ei′ that received the message
via a path of a type (r, a�, uj , ei, uj′ , ei′). This means that ei′ received the message at
or after time 3d + 2 > t. Our second claim is that each vertex a� sends the message
to at most 2d vertices uj . This is because the (2d + 1)st vertex would receive the
message at time 2d + 2 and would not be able to help in the multicast effort that is
completed before time 3d+ 2.

Combining our two claims we get that the multicasting was completed with the
help of 2dk vertices uj . The corresponding 2dk sets cover all the elements ei. This
violates Lemma 7, which states that the set cover problem cannot be approximated
within any constant factor.
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Remark. In our proof we considered a restricted model in which the switching
time may get only two possible values and the delay may get only three possible values
(assuming that when an edge does not exist, then the delay is infinity). Observe that
this hardness result does not apply to the telephone model, in which the switching
time is always 1 and the delay is either 1 or infinity. We have similar hardness results
for other special cases. However, none of them is better than 3 and all use similar
techniques.
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Abstract. In this paper we consider the complexity of several problems involving finite algebraic
structures. Given finite algebras A and B, these problems ask the following. (1) Do A and B satisfy
precisely the same identities? (2) Do they satisfy the same quasi-identities? (3) Do A and B have
the same set of term operations?

In addition to the general case in which we allow arbitrary (finite) algebras, we consider each of
these problems under the restrictions that all operations are unary and that A and B have cardinality
two. We briefly discuss the relationship of these problems to algebraic specification theory.
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1. Introduction. There are several relationships between mathematical struc-
tures that might be considered “fundamental.” First and foremost is certainly the
isomorphism relation. Questions about isomorphic structures occur throughout math-
ematics and apply to universal algebras, topological spaces, graphs, partially ordered
sets, etc. Many other relationships are more specialized. For example, given two
graphs G and H, one may wish to know whether H is a subgraph of G or perhaps a
minor of G.

Properly formulated, questions about these relationships give rise to complexity
questions. Generally speaking, we must impose some sort of finiteness assumption on
the structures in question so that notions of computational complexity make sense.
The complexity of various isomorphism problems has received a great deal of attention.
The graph isomorphism problem has been intensively studied, partly because its exact
relationship to the classes P and NP is still unknown, and partly because it provides
a paradigm for other problems of unknown complexity status. In this case, both
graphs are assumed to have finitely many vertices and finitely many edges. With a
similar formulation, the isomorphism problem for algebras has the same complexity
as does graph isomorphism. More generally, Kozen [17] showed that the isomorphism
problem for finitely presented algebras has this same complexity. See [4, 16, 19] for
further discussion and references on the isomorphism problem.

In this paper we consider the complexity of three relationships that arise from
considerations in universal algebra. Any algebraic structure satisfies certain identities
and fails to satisfy others. Roughly speaking, an identity is an equality between two
expressions built from the operations of the algebra. Examples of identities are the
associative law (which involves one binary operation) and DeMorgan’s law (two binary
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operations and one unary operation). Identities are one of the primary organizing tools
in algebra.

Given two algebras A and B, we may ask whether they satisfy precisely the
same set of identities. Notice that this is a far weaker notion than isomorphism.
For example, any algebra satisfies the same identities as each of its direct powers.
Nevertheless, if A and B satisfy the same identities, then they will be constrained to
behave in a similar way. One of our problems, called Var-Equiv, is this: Given two
finite algebras of the same finite similarity type, determine whether they satisfy the
same identities.

This problem has implications for several areas of computer science. Formal
algebraic specifications are expressions in a language which describe the properties
and input-output behavior that a software system must exhibit, without putting any
restrictions on the way in which these properties are implemented. This abstraction
makes formal specifications extremely useful in the process of developing software
systems where it serves as a reference point for users, implementers, testers, and
writers of instruction manuals. Formal specifications have been applied successfully
in deployment of sophisticated software systems; see [33], especially the references
there.

Mathematically, formal algebraic specifications are firmly grounded on algebraic
concepts, especially ideas, notions, and methods from universal algebra [6]. The
relationship between implementation and equational specification corresponds, in al-
gebraic terms, to the relationship between an algebra and a set of identities satisfied
by the algebra. Thus, two algebras that satisfy the same identities correspond to a
pair of implementations with precisely the same specifications. The computational
complexity of these problems, in the universal algebraic framework, is thus quite rel-
evant to the body of research in formal specification theory, and to the construction
of supporting tools such as theorem provers and model checkers.

Generalizing the notion of identity, we arrive at a quasi-identity. We shall leave
a precise definition for section 2, but crudely speaking, a quasi-identity involves a
conjunction of identities and an implication. An example is the left-cancellation law
(for, say, a semigroup). In direct analogy with the previous problem we can ask for
the complexity of the following. Given two finite algebras of the same finite similarity
type, determine whether they satisfy exactly the same quasi-identities. This notion
too extends to algebraic specification theory, since “conditional specifications” take
the form of quasi-identities.

Our third problem involves the term operations of an algebra. Although an
algebra may be endowed with only finitely many basic operations, we can construct
many more by composing the basic ones in various combinations. These are called
the term operations of the algebra. Two algebras (presumably of different similarity
types) are called term-equivalent if they have the same universe and exactly the same
set of term operations. In universal algebra, term-equivalent algebras are considered
the same “for all practical purposes.” The problem we call Term-Equiv is that of
determining whether two finite algebras are term-equivalent. Returning once again
to the realm of specification theory, in this problem we are asking whether a pair
of implementations for two entirely different specifications has the property that it
exhibits the same input-output behavior. See [25], where this notion is called the
“behavioral equivalence of specifications.”

Each of these three problems makes sense for arbitrary finite algebras with an
arbitrary (but finite) set of basic operations. In addition to this most general formu-
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lation, we consider, for each of the three problems, two more restricted settings that,
experience tells us, may result in different complexities (see Table 4.1). The first is
to require that all basic operations on our algebras be unary. In the second, we only
consider algebras of cardinality two.

Unary algebras constitute, from the standpoint of similarity type, the simplest
sort of algebraic structure. The set of available term operations is quite small, and the
free algebras in the generated variety have a simple structure. Furthermore, (finite)
unary algebras capture the algebraic aspects of deterministic (finite-state) automata.
(Here, the universe of the algebra corresponds to the set of states, and the similarity
type corresponds to the input alphabet of the automata.)

Algebras of cardinality two are, of course, the smallest nontrivial algebras. These
are the “Boolean” algebras, and they play an important role in the study of Boolean
functions and circuits; see [23] and [32]. For us, the clue that the complexity of
our problems will be lower when restricted to two-element algebras comes from the
lattice of clones, called Post’s lattice [24, 23]. Over a set of cardinality two, the lattice
of clones is highly structured and quite manageable. Most of the nice properties
of the lattice seem to disappear over larger base sets. One can hope that a good
understanding of Post’s lattice will lead to the design of more efficient algorithms.
Algorithm 7.3 is an example of such an improvement over the “obvious” approach.

The first two sections of this paper are devoted to a development of the necessary
background in both universal algebra and complexity theory, for the benefit of those
unfamiliar with the basic notions in these fields. In section 3, we formally state the
problems we will discuss and outline the major results. Then one section is devoted
to each of the three main problems under consideration.

2. Universal algebraic preliminaries. Our primary reference for definitions
and basic facts of universal algebra is [20]. Other good references are [5], especially
for the material on quasi-varieties, and [10]. Although a bit dated, Taylor’s survey in
[31] is particularly readable. However, for the benefit of those readers unfamiliar with
this material, we give an informal summary of the most important concepts that we
will need in this paper.

Let A be a nonempty set and k a nonnegative integer. A k-ary operation on A is
a function from Ak to A. The integer k is called the rank of the operation. Note that
if k = 0, then Ak = {∅}, so that a nullary operation is effectively an element of A.

Let F be a set of symbols (called operation symbols), and let ρ be a function
from F to the nonnegative integers. An algebra of similarity type ρ is a structure
A = 〈A,FA〉 in which A is a nonempty set and FA = 〈fA : f ∈ F 〉, where each fA is
an operation on A of rank ρ(f). The members of FA are called the basic operations of
A, and the set A is called the universe, or underlying set of A. We will often leave off
the superscript A when no confusion will result. The notation “A ∼ B” will indicate
that A and B have the same similarity type.

Suppose that A = 〈A,FA〉 and B = 〈B,FB〉 are two algebras of similarity type ρ.
A function ψ : B → A is called a homomorphism if, for every f ∈ F and b1, . . . , bρ(f) ∈
B, we have ψfB(b1, . . . , bρ(f)) = fA(ψb1, . . . , ψbρ(f)). Injective homomorphisms are
often called embeddings. The algebras A and B are isomorphic, denoted A ∼= B, if
there is a homomorphism from A to B that is a bijection. B is called a subalgebra of
A if B ⊆ A and the inclusion map is a homomorphism. Thus B is isomorphic to a
subalgebra of A if and only if there is an embedding of B into A.

Let J be a set, and for each j ∈ J let Aj be a nonempty set. Then the Cartesian
product,

∏
j∈J Aj , is the set of all sequences a = 〈 aj : j ∈ J 〉 such that for every
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j ∈ J , aj ∈ Aj . For each i ∈ J , there is a surjective function πi :
∏
j∈J Aj → Ai

mapping the sequence a to its ith component, ai. We shall reserve the symbol “π”
for these mappings. Suppose now that 〈Aj : j ∈ J 〉 is a sequence of algebras, all of
similarity type ρ. Then

∏
j∈J Aj is the algebra (of type ρ) whose universe is the

Cartesian product of the sets Aj , with basic operations that act coordinatewise, using
the basic operations of each Aj . In other words, if f is a basic operation symbol of
rank n and x1, x2, . . . , xn ∈

∏
j∈J Aj , then

πif
∏

Aj (x1, . . . , xn) = fAi(πix1, . . . , πixn) ∀ i ∈ J.

In addition to the basic operations of an algebra, one can create new operations
by composing the basic ones. Specifically, let A be a set, f an n-ary operation on A,
and let g1, . . . , gn be k-ary operations on A. Then the generalized composition of f
with g1, . . . , gn, denoted f [g1, . . . , gn], is the k-ary operation that maps the k-tuple
a = (a1, . . . , ak) to f

(
g1(a), . . . , gn(a)

)
.

For each positive integer n and 1 ≤ j ≤ n we define the jth n-ary projection
operation by pnj (x1, . . . , xn) = xj . In particular, p1

1 is the identity operation. A
clone on a set A is a set of operations on A containing all projections and closed
under generalized composition. The set of all clones on A is obviously ordered by
set-theoretic inclusion. The smallest clone consists of nothing but the projection
operations, while the largest clone contains all operations on A. It is easy to see that
the intersection of a family of clones on A is again a clone. Therefore, if E is any set
of operations on A, we define the clone on A generated by E to be

CloA(E) =
⋂
{C : E ⊆ C and C a clone on A } .(2.1)

For an algebra A = 〈A,F 〉, the clone of term operations of A is simply CloA(F ),
the clone on A generated by F . This is typically denoted Clo(A). For any positive
integer m, the set of m-ary members of Clo(A) is denoted Clom(A).

While (2.1) serves as a definition of Clo(A), it does not provide any information
as to the contents of this clone. Intuitively, an operation on A is a member of Clo(A)
if and only if it can be built up by generalized composition, from the basic operations
of A and the projections. This is formalized in the following theorem. The proof is
straightforward; see [20, Theorem 4.3].

Theorem 2.1. Let F be a set of operations on a set A, and let m be a positive
integer. The set CloAm(F ) of m-ary members of CloA(F ) is the smallest set X of
m-ary operations on A such that

(i) pmi ∈ X for i = 1, 2, . . . ,m;
(ii) if f ∈ F and g1, g2, . . . , gρ(f) ∈ X, then f [g1, . . . , gρ(f)] ∈ X.

Just as the basic operations of an algebra A are instances of the operation sym-
bols, we would like to have syntactic objects that correspond to the term operations
of A. One way to do this is as follows.

Definition 2.2. Let X = {x1, x2, . . . } be a countably infinite set of variables
and ρ : F → {0, 1, . . . } a similarity type, with F disjoint from X. The set of terms of
type ρ is the smallest set T of strings such that

1. X ⊆ T ;
2. ρ−1(0) ⊆ T ;
3. if f ∈ F and t1, . . . , tρ(f) ∈ T , then f(t1, . . . , tρ(f)) ∈ T .

A term is n-ary if the only variables that appear in the string come from {x1, . . . , xn}.
If A is an algebra and t is an n-ary term, then we can assign an n-ary term

operation tA to t as follows. If t = xi, then tA = (pni )
A
. If t = f(t1, . . . , tk),
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then tA = fA[tA1 , . . . , tAk ]. Comparing the assertions in Theorem 2.1 to the above
definitions, we see that Clo(A) =

{
tA : t is a term

}
.

An identity of type ρ is simply a pair of terms, although we usually write it in
the form s ≈ t. An algebra A satisfies the identity s ≈ t if sA = tA. In the usual
terminology of first-order logic, this is the same as asserting that the model A satisfies
the sentence

(∀x1)(∀x2) · · · (∀xn)
(
s(x1, . . . , xn) ≈ t(x1, . . . , xn)

)
,

where s and t are n-ary terms.
For example, if our similarity type consists of two binary operation symbols,

+ and ∗, then both the commutative law x + y ≈ y + x and the distributive law
x ∗ (y+ z) ≈ (x ∗ y)+ (x ∗ z) are identities that may or may not hold in any particular
algebra. Notice that in this example we have adopted the usual custom of writing
binary operations in “infix” form and using variables x, y, z instead of x1, x2, x3.

A quasi-identity is a first-order sentence of the form

(∀x1) · · · (∀xn)
( m∧
j=1

sj(x1, . . . , xn) ≈ tj(x1, . . . , xn)

−→ u(x1, . . . , xn) ≈ v(x1, . . . , xn)
)
,

where each sj , tj , u, and v is an n-ary term, and “
∧
” denotes conjunction. Every

identity is a quasi-identity, by taking m = 0. In the context of algebraic structures,
quasi-identities are precisely the universal Horn sentences. An example of a quasi-
identity that is not an identity is the left-cancellation law x ∗ y ≈ x ∗ z → y ≈ z, which
holds, for example, in the positive integers under multiplication but not for all integers
under multiplication. By contrast, the formula

(x �= 0 ∧ x ∗ y ≈ x ∗ z)→ y ≈ z

is not a quasi-identity, since we do not permit negation symbols.
Now, fix a similarity type ρ, and let K be a class of algebras, all of type ρ. K is

called a variety, or equational class, if there is a set Σ of identities (not necessarily
finite) such that K is exactly the class of all algebras satisfying every identity in Σ.
Notice that many familiar classes of algebras are varieties. For example, the class
of all groups is a variety if we take our similarity type to consist of one binary, one
unary, and one nullary operation, and Σ to consist of the five identities

x · (y · z) ≈ (x · y) · z, x · e ≈ e · x ≈ x, x · x−1 ≈ x−1 · x ≈ e.

A classical theorem due to Birkhoff [3] asserts that a class K is a variety if and
only if K is closed under the formation of subalgebras, arbitrary products, and ho-
momorphic images. This remarkable fact connects the purely syntactic idea of an
equation to the familiar algebraic constructions we discussed earlier.

It is convenient to introduce the following notation. Let K be a class of algebras
of the same similarity type. Then H(K),S(K), and P(K) denote the class of all
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algebras isomorphic to a homomorphic image, subalgebra, and product of members
of K, respectively. Thus K is a variety if and only if K = H(K) = S(K) = P(K).

It is easy to see that the intersection of a family of varieties (all of similarity type
ρ) is again a variety. In fact, a defining set of identities will be the union of defining
sets for each of the component varieties. Thus we define, for any class K, the variety
generated by K to be

V(K) =
⋂
{V : V is a variety and K ⊆ V } .

It is not hard to show that for any class K,

V(K) = HSP(K) = Mod(Id(K)).(2.2)

In this equation, Id(K) denotes the set of all identities true in every member of K,
and Mod(Σ) denotes the class of all algebras in which every identity in Σ holds. For
a single algebra A, it is customary to write V(A) instead of V({A}).

Just as a variety is defined by identities, a quasi-variety is defined by quasi-
identities. Most of the assertions we have made about varieties have analogous for-
mulations for quasi-varieties. For example, there is a Birkhoff-type theorem that
states that a class K is a quasi-variety if and only if it is closed under the forma-
tion of subalgebras, products, and ultraproducts. (We will not need the notion of an
ultraproduct here. See [5, p. 210].) The quasi-variety generated by K is

Q(K) =
⋂
{Q : Q is a quasi-variety and K ⊆ Q} .

Since every variety is also a quasi-variety, we always have K ⊆ Q(K) ⊆ V(K), but the
reverse inclusions are usually false. For example, let Z denote the group of integers,
and K = {Z}. Then Q(K) is the class of torsion-free Abelian groups, while V(K)
consists of all Abelian groups. (A group is torsion-free if no element except the
identity has finite order.)

There is one feature of the quasi-variety notion that deserves special mention.
Since we will need it later, we state it formally.

Theorem 2.3. Let A be a finite algebra. Then Q(A) = SP(A).
Proof. Since A ∈ SP(A) ⊆ Q(A), it suffices to show that SP(A) is a quasi-

variety. Closure under S and P is easy. Closure under ultraproducts boils down to
the fact that, since A is finite, an ultraproduct of copies of A is simply isomorphic to
A again. See [5, Lemma 6.5 and Theorem 2.25].

An algebra B is called simple if it has more than one element and every homo-
morphism with domain B is either injective or trivial (i.e., has a one-element image).
For example, a group is simple in this sense if and only if it has exactly two normal
subgroups. We will need the following easy result.

Proposition 2.4. Let B be a simple algebra and A be any algebra of the same
similarity type. If B ∈ SP(A), then B ∈ S(A).

Proof. By assumption there is a set I and an embedding ψ : B → AI . Pick
distinct elements a, b from B. Then ψ(a) �= ψ(b), so for some i ∈ I, ψ(a) and ψ(b)
differ in the ith component. Let πi be the mapping from AI to A that assigns to
each I-tuple its ith coordinate. Then πi ◦ ψ is a homomorphism from B to A which
is nontrivial, since πiψ(a) �= πiψ(b). From the simplicity of B, it follows that πi ◦ ψ
is an embedding. Hence B ∈ S(A).
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Table 3.1
Some complexity classes.

L = DSPACE(logn), logarithmic space;

NL = NSPACE(logn), nondeterministic logarithmic space;

P =
⋃
k≥1

DTIME(nk), polynomial time;

NP =
⋃
k≥1

NTIME(nk), nondeterministic polynomial time;

PSPACE =
⋃
k≥1

DSPACE(nk), polynomial space;

EXPTIME =
⋃
k≥1

DTIME(2n
k
), exponential time;

2-EXPTIME =
⋃
k≥1

DTIME
(
22

nk )
, hyperexponential time.

3. Complexity preliminaries. Since this paper deals with the computational
complexity of problems in universal algebra, we will include a brief review of the
complexity classes used in this paper, mainly for the benefit of those readers unfamiliar
with the common notation and terminology used. Consult any of [27, 22, 13, 9] for
an in-depth treatment of computational complexity.

Languages (i.e., sets of finite strings over some fixed alphabet) are viewed as
encodings of problems. Given a function f : N → N, we denote by DTIME(f(n))
(respectively, DSPACE(f(n))) the set of all languages decidable by a deterministic
Turing machine in time (respectively, space) O(f(n)). In an analogous way, the
nondeterministic classes NTIME(f(n)) and NSPACE(f(n)) are defined in terms of
nondeterministic Turing machines. The complexity classes referred to in this paper
are defined in Table 3.1 (see [13]). The class P consists of those problems for which
it is considered to be feasible to use a computer to find a solution. By contrast, a
problem lies in NP if a proposed solution can be verified in polynomial time.

These classes form a chain of inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ 2-EXPTIME.(3.1)

Of these the following are known to be proper:

NL � PSPACE, P � EXPTIME � 2-EXPTIME.(3.2)

All of the other inclusions (except for the obvious ones that follow from (3.2)) represent
deep open problems in theoretical computer science, the most famous of which is the

seemingly unapproachable P
?
= NP problem.

In addition to the classes listed above, several others are worth noting briefly.
First, both EXPTIME and 2-EXPTIME have nondeterministic analogues which
could be added to our list. Surprisingly, the same is not true for PSPACE. In 1970,
Savitch [26] proved that for any function f with f(n) ≥ log n, NSPACE(f(n)) ⊆
DSPACE(f(n)2). In particular, PSPACE = NPSPACE.

Second, for any complexity class C, one can define the dual class co-C, consisting
of those languages (problems) whose complements lie in C. For example, since the
graph-isomorphism problem lies in NP, the graph-nonisomorphism problem lies in
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co-NP. It is not hard to see that every deterministic class C is closed under com-
plements, i.e., C = co-C. Furthermore, it was shown independently by Immerman
and Szelepcsényi [12, 29], that if f(n) ≥ log n, then NSPACE(f(n)) is closed under
complements. From this we obtain NL = co-NL.

Among the most useful tools in complexity theory are the concepts of resource-
bounded reducibility and completeness, both borrowed from recursive function theory.
Given two languages A and B, we say that A is polynomial-time, many-one reducible
to B, and we write A ≤pm B, if there is a polynomial-time computable function f such
that

x ∈ A ⇐⇒ f(x) ∈ B.(3.3)

It is not hard to verify that “≤pm” is both reflexive and transitive. A language (i.e.,
problem) A is ≤pm-hard (or just hard) for a class C of problems, if for every C ∈ C,
C ≤pm A. The language A is ≤pm-complete (or just complete) for C if A is hard for C
and A ∈ C.

Unfortunately, polynomial-time reductions are not useful within the class P, since
for any nontrivial A,B ∈ P we have A ≤pm B ≤pm A. Instead, we must resort to a
weaker notion called log-space reduction. This simply means that in (3.3), the function
f must be computable in logarithmic space.

Since it is generally believed that all of the inclusions in (3.1) are in fact proper,
a proof of completeness of a problem A in any of those classes is viewed as providing
overwhelming evidence that A does not belong to the immediately preceding class in
(3.1). It follows from (3.2) that any problem which is complete for EXPTIME (such
as our Term-Equiv) fails to lie in P. Such a problem is provably intractable.

In the problems we will be investigating, the input consists of pairs of finite alge-
bras of finite similarity type (i.e., algebras having only finitely many basic operation
symbols). Let us be more specific as to the form we assume the input will take. The
underlying set of an algebra can be assumed to be {0, 1, . . . , n− 1} for some positive
integer n. In fact, this set can be represented in the input by its cardinality, which
requires log n bits of storage. (All logarithms will be to the base 2.) A k-ary operation
on this set is represented as a table of values or, in other words, a k-dimensional array
with both the indices and entries coming from {0, 1, . . . , n− 1}. Notice that this can
be represented in the input stream using nk · log n bits.

Let us define the rank of an algebra to be the maximum rank of any of its basic
operations. Thus an algebra of cardinality n and rank k will require at least nk · log n
bits to specify.

There are certainly other ways of specifying operations, such as with circuits or
Turing machines, but we shall not pursue this idea here. Also, from now on we shall
assume that all algebras are finite and of finite similarity type.

4. Discussion of the problems. In this paper we shall consider three equiva-
lence relations on algebraic structures. First, given two algebras A and B of the same
similarity type, is V(A) = V(B)? In light of (2.2), this is equivalent to asking whether
A and B satisfy exactly the same identities. Note that this only makes sense if the
two algebras have the same similarity type. It was shown in [14] that this problem is
decidable. We shall denote this problem Var-Equiv. Thus

Var-Equiv = { (A,B) : A ∼ B & V(A) = V(B) }.

Recently, Z. Székely proved that Var-Equiv is NP-hard; see [28].



COMPLEXITY OF SOME PROBLEMS IN ALGEBRA 367

We have an analogous problem for quasi-varieties:

Qvar-Equiv = { (A,B) : A ∼ B & Q(A) = Q(B) }.
The assertion (A,B) ∈ Qvar-Equiv is equivalent to A and B satisfying exactly the
same quasi-identities. Surprisingly, even though the logical form of a quasi-identity
is much more complicated than that of an identity, Qvar-Equiv has a relatively
low computational complexity compared to Var-Equiv. Note that Qvar-Equiv ⊆
Var-Equiv as sets.

The third problem we shall consider is term-equivalence. Two algebras A and B
are term-equivalent if and only if they have the same underlying set and Clo(A) =
Clo(B). For this problem, we do not require that A and B have the same similarity
type, but we do require that they have the same universe:

Term-Equiv = { (A,B) : A = B & Clo(A) = Clo(B) } .
It was shown in [1] that Term-Equiv is complete for EXPTIME.

There are several restrictions of these problems which are of interest and which
turn out to have a lower complexity. In particular, we can bound either the cardinality
of the underlying sets or the ranks of the algebras. For example, it was shown in [18]
that Term-Equiv is complete for PSPACE when restricted to unary algebras, that
is, algebras in which every operation has rank 1. For each of our three problems, we
shall consider, in addition to the general case, the subcases obtained by considering
only unary algebras and only two-element algebras. We shall denote the subcase by
appending a superscript “1” or subscript “2” to the problem. To be precise, let us
define

U = {A : A is a unary algebra } ,
T = {A : A = {0, 1} } .

Then X1 = X ∩ (U × U) and X2 = X ∩ (T × T ) for X any one of Term-Equiv,
Var-Equiv, or Qvar-Equiv.

Our results for each of these nine problems are summarized in Table 4.1. In this

Table 4.1
Summary of results.

Qvar-Equiv Term-Equiv Var-Equiv
card2 L NL L
unary NP PSPACE∗ PSPACE
general NP∗ EXPTIME∗ 2-EXPTIME

table, the first row concerns the subcase consisting of two-element algebras, the second
concerns the subcase of unary algebras, and the third concerns the general case. Each
of the nine entries gives the smallest complexity class known to contain the problem,
and a superscript “∗” indicates that the result is sharp, i.e., the problem is complete
for the given complexity class.

5. The quasi-variety problems. We begin with the problems that ask whether
two algebras generate the same quasi-variety. It is sometimes convenient to work with
an asymmetric variant of this problem:

Qvar-Mem = { (A,B) : A ∼ B & B ∈ Q(A) } .
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Since the “Q” operator has the usual properties of closure, we obviously have

(A,B) ∈ Qvar-Equiv ⇐⇒ (A,B), (B,A) ∈ Qvar-Mem.(5.1)

It follows that for an instance of size s, membership in Qvar-Equiv can be tested
with two calls to an algorithm forQvar-Mem, both using inputs of size s. In a natural
way, we also have the restricted problems Qvar-Mem1 and Qvar-Mem2 consisting
of pairs of unary and two-element algebras, respectively.

Theorem 5.1. Qvar-Mem ∈ NP.
Proof. Let A and B be a pair of similar, finite algebras. We wish to determine

whether B ∈ Q(A). Here is a nondeterministic algorithm. For each unordered pair
{a, b} of distinct elements of B, guess a function ψ{a,b} : B → A such that ψ{a,b}(a) �=
ψ{a,b}(b). Test whether ψ{a,b} is a homomorphism. If it is not, then reject. But if
every ψ{a,b} passes the homomorphism test, then accept.

To see that our algorithm is correct, suppose that we accept the pair (A,B).
Enumerate the doubletons {ai, bi}, i = 1, 2, . . . , n, of elements of B. Define a function
ψ : B → An such that the ith coordinate of ψ(x) is ψ{ai,bi}(x). The fact that every
ψ{ai,bi} is a homomorphism ensures that ψ is a homomorphism. And ψ will be injective
since, if a �= b, then ψ(a) and ψ(b) differ in the ith coordinate, where {a, b} is the ith
pair in our enumeration. It follows that B is isomorphic to a subalgebra of a direct
power of A, and consequently B lies in the quasi-variety generated by A.

Conversely, suppose that B ∈ Q(A). By Theorem 2.3 there is a set J and an
embedding ψ : B → AJ . Using the notation of the previous paragraph, for each
i = 1, . . . , n, we have ψ(ai) �= ψ(bi), and hence there is some ji ∈ J such that ψ(ai)
and ψ(bi) differ in their jith coordinate. Let πji : AJ → A denote the coordinate
projection homomorphism. Then ψ{ai,bi} = πji ◦ ψ constitutes an appropriate guess.
Thus our algorithm will accept the pair (A,B).

Finally, we need to estimate the (nondeterministic) running time of the algorithm.
Let s denote the size of the input. A function ψ from B to A can be guessed in time on
the order of |B| · |A|, which is at most s2. The verification that ψ is a homomorphism
also takes time in O(s2). The total number of functions we need to construct is(|B|

2

) ≤ s2. Thus the total running time lies in O(s4).

Corollary 5.2. All of the following lie in NP: Qvar-Equiv, Qvar-Mem1,
Qvar-Mem2, Qvar-Equiv1, and Qvar-Equiv2.

Proof. That Qvar-Equiv ∈ NP follows from Theorem 5.1 and (5.1). The
class NP is closed under polynomial-time, many-one reductions. Since Qvar-Mem1

and Qvar-Equiv1 are reducible to (indeed special cases of) Qvar-Mem and Qvar-
Equiv, respectively, they too lie in NP. The same argument applies to the two-
element versions of the problems.

We shall improve the bounds on Qvar-Mem2 and Qvar-Equiv2 in Theorem 5.7
below. But first we consider the NP-completeness of the other problems discussed in
Corollary 5.2. To do this, we use a transformation from (directed) graphs to unary
algebras described in [11]. By a digraph we shall mean a structure G = 〈G, θ〉 in
which G is a nonempty set and θ ⊆ G×G. G is loopless if for no x in G do we have
(x, x) ∈ θ.

Let G = 〈G, θ〉 and H = 〈H, τ〉 be digraphs. A morphism from H to G is
a function ψ : H → G such that (x, y) ∈ τ =⇒ (

ψ(x), ψ(y)
) ∈ θ. H is a

subgraph of G if H ⊆ G and the inclusion map is a morphism. If Gi = 〈Gi, θi〉,
i ∈ I is a family of digraphs, then the product graph is 〈G, θ〉, where G =

∏
i∈I Gi

and θ = { (x, y) ∈ G×G : (∀i ∈ I) (xi, yi) ∈ θi }. Just as for algebras, we use the
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operators S and P to denote closure under the formation of subgraph and product
graph, respectively.

Given a digraph G = 〈G, θ〉, we now define an algebra G∗ as follows. The universe
of G∗ is the set G ∪ θ ∪ {u, v} where u and v are points not appearing in either G or
θ. G∗ = 〈G∗, f0, f1 〉, where f0 and f1 are unary operations defined by

∀x ∈ G f0(x) = u, f1(x) = v;

∀(x, y) ∈ θ f0((x, y)) = x, f1((x, y)) = y;

f0(u) = v, f1(u) = u,

f0(v) = v, f1(v) = u.

Furthermore, let ψ : H → G be a digraph morphism. We define a function ψ∗ : H∗ →
G∗ given by

∀x ∈ H ψ∗(x) = ψ(x);

∀(x, y) ∈ τ ψ∗((x, y)) = (ψ(x), ψ(y));

ψ∗(uH) = uG, ψ∗(vH) = vG.

Lemma 5.3 (see Hedrĺın and Pultr [11]). The assignments G �→ G∗ and ψ �→ ψ∗

constitute a full and faithful functor from the category of digraphs to that of algebras
with two unary operations. In other words, for each pair H, G of digraphs, and each
digraph morphism ψ, the function ψ∗ : H∗ → G∗ is a homomorphism, and further-
more, the mapping ψ �→ ψ∗ is a bijection between the morphisms from H to G and
the homomorphisms between H∗ and G∗. Also, ψ is an injective map if and only if
ψ∗ is injective.

We will show NP-completeness of Qvar-Mem1 by exhibiting a reduction from
the problem Clique, which is well known to be complete for NP; see [9, p. 194]. For
a positive integer n, let Kn denote the digraph with vertex set {1, 2, . . . , n} and edges
{ (x, y) : x �= y }. We define

Clique = { (G, n) : G a digraph, n ≥ 1 and Kn ∈ S(G) } .
A subset of G isomorphic to some Kn is called a clique.

Proposition 5.4. Let G be a loopless digraph and n a positive integer. The
following are equivalent.

(i) (G, n) ∈ Clique.
(ii) Kn ∈ SP(G).
(iii) K∗n ∈ SP(G∗).
Proof. That (i) implies (ii) is trivial. Now assume (ii), i.e., suppose that ψ is an

embedding of Kn into a power GI . By Lemma 5.3, we have an injective homomor-
phism ψ∗ from K∗n to (GI)∗. Moreover, it is easy to see that (GI)∗ is isomorphic to
a subalgebra of (G∗)I . Thus (iii) holds.

Finally, suppose that φ : K∗n → (G∗)I is an embedding for some set I. Choose any
i ∈ I. Then πi ◦ φ is a homomorphism from K∗n to G∗, which, by Lemma 5.3, must
be of the form ψ∗ for some digraph morphism ψ : Kn → G. Suppose that x and y
are distinct elements of Kn. By definition, there is an edge from x to y; consequently,
there must be an edge in G from ψ(x) to ψ(y). Since G is assumed to be loopless, it
must be the case that ψ(x) �= ψ(y). Therefore, ψ is injective, so (iii) implies (i).

It is convenient to introduce one more problem involving the relationship between
two algebras. Let

SubAlg = { (A,B) : A ∼ B & B ∈ S(A) } .
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As with our other problems, SubAlg1 will refer to the restriction of this problem to
the case that A and B are unary algebras. It is easy to see that SubAlg and SubAlg1

lie in NP (just guess an injective function and check to see if it is a homomorphism).
Theorem 5.5. The problems Qvar-Mem1, Qvar-Mem, SubAlg1, SubAlg,

and Qvar-Equiv are all complete for NP.
Proof. We showed in Theorem 5.1, Corollary 5.2, and the comments just above

that all of these problems lie in NP. The problem Clique is NP-complete, and the
transformation (G, n) �→ (G∗,K∗n) can be done in polynomial time. Therefore, we
deduce from Proposition 5.4 and Theorem 2.3 that Qvar-Mem1 is also NP-complete.
Clearly, Qvar-Mem1 ≤pm Qvar-Mem, so Qvar-Mem is NP-complete.

By Lemma 5.3, (G, n) ∈ Clique if and only if (G∗,K∗n) ∈ SubAlg1. Thus
SubAlg1 and also SubAlg are NP-complete. This fact is not new; it was first noted
in [21].

To complete the proof, we will reduce SubAlg1 to Qvar-Equiv. Given a finite
unary algebra B = 〈B,F 〉, let B+ =

〈
B∪{e}, F ∪{p, d} 〉, where e /∈ B and p, d /∈ F .

For each f ∈ F , f(e) = e. For all x, y, z ∈ B ∪ {e} we define
p(x) = e;

d(x, y, z) =

{
z if x = y,

x if x �= y.

The ternary operation d is called the discriminator operation. It is an easy exercise
to check that any algebra with a discriminator among its term operations is simple.

Now, given two finite unary algebras A and B, we have the following equivalences.

B ∈ S(A) ⇐⇒ B+ ∈ S(A+) ⇐⇒ Q(A+) = Q(A+ ×B+).(5.2)

Clearly, the equivalences in (5.2) imply that SubAlg1 ≤pm Qvar-Equiv. The first
equivalence is an easy verification. We check the second. First suppose that B+ ∈
S(A+). Then both A+ and B+ are members of Q(A+) which is closed under products.
Therefore, A+×B+ ∈ Q(A+), so Q(A+×B+) ⊆ Q(A+). On the other hand, there is
an embedding of A+ into A+×B+ given by x �→ (x, e). Hence Q(A+) ⊆ Q(A+×B+).

Conversely, suppose that Q(A+) = Q(A+ ×B+). There is an embedding of B+

into A+ ×B+ such that x �→ (e, x). Thus B+ ∈ Q(A+) = SP(A+). However, B+ is
a simple algebra, so by Proposition 2.4, B+ ∈ S(A+).

Remark. Referring back to the proof of Theorem 5.5, it is tempting to try to prove
the NP-hardness of Qvar-Equiv by using (5.1) together with the NP-completeness
of Qvar-Mem and Corollary 5.2. However, there are difficulties with this line of
argument. To take an analogous situation, the subgraph isomorphism problem is
NP-complete, but the graph isomorphism problem is in NP but most probably is
not NP-complete.

Unfortunately, the method used to reduce SubAlg1 to Qvar-Equiv does not
produce a unary algebra, so we are not able to show that Qvar-Equiv1 is complete
for NP. We leave it as an open problem.

Problem 5.6. Is Qvar-Equiv1 complete for NP? Is Qvar-Equiv1 ∈ P?
Now we turn to the problem Qvar-Equiv2. Suppose that A and B are two-

element algebras. We claim that B ∈ Q(A) if and only if B ∼= A. To see this, note
that every two-element algebra is simple. Therefore, by Proposition 2.4, Theorem 2.3,
and the fact that |B| = |A|, we obtain

B ∈ Q(A) = SP(A) =⇒ B ∈ S(A) =⇒ B ∼= A.
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The converse, that B ∼= A =⇒ B ∈ Q(A), is trivial.
Theorem 5.7. Qvar-Equiv2,Qvar-Mem2 ∈ L.
Proof. As we argued in the previous paragraph, (B,A) ∈ Qvar-Mem2 if and

only if B ∼= A. There are only two bijections from B to A, and each of these
can be tested to see if it is a homomorphism. The testing requires just a couple of
counters, each of which has a space bound that is logarithmic in the size of the input.
Thus Qvar-Mem2 ∈ L. Now apply assertion (5.1) to deduce that Qvar-Equiv2

∈ L.

6. The variety problems. The problem Var-Equiv asks: if A and B are two
algebras of the same similarity type, is V(A) = V(B)? As with quasi-varieties, it is
convenient to introduce an auxiliary problem, Var-Mem:

Var-Mem = { (A,B) : A ∼ B & B ∈ V(A) } .
Unlike the situation for quasi-varieties, the problems Var-Equiv and Var-Mem are
interchangeable from the perspective of complexity. We have

(A,B) ∈ Var-Equiv ⇐⇒ (A,B), (B,A) ∈ Var-Mem,

(A,B) ∈ Var-Mem ⇐⇒ (A,A×B) ∈ Var-Equiv.
(6.1)

The second equivalence follows from the fact that both A and B are homomorphic
images of A×B.

We begin with the two-element problem. The crucial point is the following theo-
rem.

Theorem 6.1. Let A and B be two-element algebras of the same similarity type.
Then V(A) = V(B) if and only if A ∼= B.

The proof of Theorem 6.1 requires considerably more universal algebra than does
the remainder of this paper. For this reason, we have relegated the proof to the
appendix.

Theorem 6.2. Var-Equiv2 ∈ L.
Proof. From Theorem 6.1, testing whether (A,B) ∈ Var-Equiv2 is equivalent to

testing A ∼= B. Arguing as we did at the end of section 5, there are only two possible
isomorphisms to test. This can be done deterministically in logarithmic space.

In order to proceed to the remaining two problems, we need some more detailed
information on the relationship between clones, terms, and varieties. Let A = 〈A,F 〉
be an algebra of cardinality n, and let m be a positive integer. An m-ary operation
on A, being a function from Am to A, can also be thought of as an element of the
direct power A(Am). Visualized this way, it is not hard to see that Clom(A) forms a
subalgebra of A(Am). In fact, Theorem 2.1 can be viewed as asserting that Clom(A)
is the subalgebra of A(Am) generated by the set {pm1 , . . . , pmm}. Notice that we follow
our usual typographic convention and print “Clo” in boldface when it is to be used
as an algebra. Since varieties are closed under the formation of both powers and
subalgebras, it follows that both A(Am) and Clom(A) lie in V(A).

Let us be more precise about how this subalgebra could be constructed. For each
natural number j, define a set Xj of m-ary operations on A recursively by

X0 = {pm1 , pm2 , . . . , pmm},
Xj+1 = Xj ∪

{
f [g1, . . . , gρ(f)] : f ∈ F, g1, . . . , gρ(f) ∈ Xj

}
.

(6.2)

It is easy to see that X0 ⊆ X1 ⊆ · · · ⊆ Clom(A). Since the total number of m-ary
operations on A is n(nm), there is some index q < n(nm) such that Xq = Xq+1. But
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the pair of conditions Xj ⊇ X0 and Xj = Xj+1 are precisely those of Theorem 2.1.
Therefore, Xq = Clom(A).

The case of a unary algebra deserves special consideration. Suppose that A is
unary (i.e., has rank 1). While it is true that, technically speaking, A has term
operations of arbitrarily large rank, these operations are trivial in the sense that they
only depend on one of their variables. For example, if f is a basic operation of A, then
the term operation f [p2

1] has rank 2. However, this operation maps any pair (x, y)
to f(x). Thus f [p2

1] is “essentially unary.” Since there are only nn possible unary
operations, one can easily show that for any m, we always have Xnn−1 = Clom(A).

Now one cannot help but notice the similarity between the definition of the sets
Xj in (6.2) and that of a term given in Definition 2.2. Of course, if t is an m-ary term,
then tA ∈ Clom(A), hence, for some j < n(nm), tA ∈ Xj . Conversely, if we view each
m-ary term as a tree, then every member of Xj is of the form tA for some term t
of height at most j. Let us write ht(t) to denote the height of the term t. Putting
these two observations together, for every m-ary term t, there is a term t′ such that
tA = (t′)A and ht(t′) < n(nm). Following up on our earlier observation, in the special
case that A is unary, the bound on the height of t′ can be reduced to nn no matter
what the value of m.

Theorem 6.3. Let A and B be finite algebras of the same similarity type. As-
sume that the cardinalities of A and B are n and m, respectively. Then the following
are equivalent.

(i) B ∈ V(A).
(ii) For every pair of terms s and t, each of height at most n(nm), if A satisfies

the identity s ≈ t, then so does B.
(iii) B is a homomorphic image of the algebra Clom(A).

If A and B are unary algebras, then the bound n(nm) in (ii) can be reduced to nn.
Proof. That (i) implies (ii) follows from (2.2). So assume (ii). Enumerate the

elements of B as b1, . . . , bm. Define a function ψ : Clom(A) → B as follows. For
each g ∈ Clom(A), choose a term u such that ht(u) < n(nm) and uA = g, and define
ψ(g) = uB(b1, . . . , bm). To see that this is well defined, suppose that s is another term
with the properties sA = g and ht(s) < n(nm). Then sA = g = uA, so A satisfies the
identity s ≈ u. Therefore, by (ii), B also satisfies the identity s ≈ u, hence sB = uB.

The function ψ is surjective since for every i ≤ m, bi = ψ(pmi ). In order to prove
(iii), it remains to show that ψ is a homomorphism. So let g1, . . . , gk ∈ Clom(A),
and let f be a basic k-ary operation symbol. There are terms s1, s2, . . . , sk and t, all
of height less than n(nm) such that gi = sAi for i = 1, 2, . . . , k, and fA[g1, . . . , gk] =
tA. Let r be the term f(s1, . . . , sk). We need to verify that ψ

(
fA[g1, . . . , gk]

)
=

fB
(
ψ(g1), . . . , ψ(gk)

)
. Note that ht(r) = 1 + maxi ht(si) ≤ n(nm). Also, rA = tA

since

rA = fA[sA1 , . . . , sAk ] = fA[g1, . . . , gk] = tA.

Therefore, the equation r ≈ t holds in A, hence in B, because of the bounds on the
heights. Thus rB = tB. Now, writing b = (b1, . . . , bm), we compute

ψ
(
fA[g1, . . . , gk]

)
= ψ(tA) = tB(b) = rB(b)

= fB
(
sB1 (b), . . . , s

B
k (b)

)
= fB

(
ψ(g1), . . . , ψ(gk)

)
.

Finally, assume (iii). Clom(A) is a subalgebra of AA
m

; consequently, it lies
in V(A). Since every variety is closed under homomorphic images, B ∈ V(A) as
well.
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1. sA ← tA ← fA
0 ; sB ← tB ← fB

0 .
2. for i = 1 to nn do
3. guess j, � ∈ {0, 1, . . . , k}
4. sA ← fA

j ◦ sA; sB ← fB
j ◦ sB ; tA ← fA

� ◦ tA; tB ← fB
� ◦ tB

5. if
(
(∀x, y ∈ A) (sA(x) = tA(y)) and (∃x, y ∈ B) (sB(x) �= tB(y))

)
or(

(∀x ∈ A) (sA(x) = tA(x)) and (∃x ∈ B) (sB(x) �= tB(x))
)

then accept.

Algorithm 6.1. Testing (A,B) �∈ Var-Mem1.

It is worthwhile to extract just a bit more information from the proof of The-
orem 6.3. Notice that in the proof of (ii) implies (iii), we began with an arbitrary
enumeration of the elements of B and constructed a homomorphism from Clom(A)
onto B. In the language of universal algebra, this is equivalent to the assertion that the
algebra Clom(A) is freely generated by X0 = { pmi : 1 ≤ i ≤ m }. For our purposes,
we can express this property as the following corollary.

Corollary 6.4. Let A and B be algebras as in Theorem 6.3. The following are
equivalent.

(i) B ∈ V(A).
(ii) For some bijection ψ0 of X0 with B, there exists a homomorphism ψ from

Clom(A) to B such that ψ�X0 = ψ0.
(iii) For every bijection ψ0 of X0 with B, there exists a homomorphism ψ from

Clom(A) to B such that ψ�X0 = ψ0.
Theorem 6.3 suggests an approach that can be used to test the condition B /∈

V(A): simply guess an identity ε and check to see whether A satisfies ε while B fails
to satisfy ε. This approach seems to be quite effective—at least for unary algebras.
For in this case, we have the improved bound nn in part (ii) of the theorem.

Let us fix a set F = {f1, . . . , fk} of operation symbols, each of rank 1. Also, let
us add an additional unary operation symbol f0 which will always be interpreted as
the identity operation. This has no effect on the algebras but will save us a subscript
in our analysis. A typical term over F is of the form fi�fi�−1

· · · fi2fi1(x), where
i1, i2, . . . , i� ∈ {0, 1, . . . , k}. The height of this term is .. Since each term involves
only one variable, every identity is of one of two possible forms:

s(x) ≈ t(x) or s(x) ≈ t(y).

Notice that the second of these is quite degenerate since it requires that the term
operations corresponding to s and t both be constant and, in fact, the same constant.
Nevertheless, it must be considered in the analysis.

Now suppose that A and B are algebras of type F and of cardinalities n and
m, respectively. Algorithm 6.1 is a nondeterministic algorithm that accepts the pair
(A,B) if and only if B /∈ V(A).

How much space is used by this algorithm? Let p = max(n,m). Each of the
four unary operations can be represented as a vector of length p. Each such vector
requires p log(p) ≤ p2 bits. We also need space for the counter i, which ranges from
0 to nn. Since log(nn) = n log(n) ≤ p2, i requires another p2 bits. It follows that the
total amount of space required is on the order of p2 bits.

What is the size of the input? The algebra A requires log(n)+kn log(n) > n bits.
Similarly B requires at least m bits. The total input size is at least n +m > p bits.
It follows that our algorithm’s space requirements are bounded above by the square
of the size of the input.
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1. Create empty table for ψ. Fill in ψ0.
2. for j = 0 to n(n

m) − 2 do
3. for f ∈ F do (let k = ρ(f))
4. for g1, . . . , gk ∈ Xj do
5. b← fB(ψ(g1), . . . , ψ(gk))
6. b′ ← ψ(fA[g1, . . . , gk])
7. if b′ = ∅ then insert b into the position for b′
8. else if b′ �= b then
9. reject
10. accept

Algorithm 6.2. Testing (A,B) ∈ Var-Mem.

Theorem 6.5. Var-Mem1 and Var-Equiv1 lie in PSPACE.
Proof. Algorithm 6.1 can be used to test whether (A,B) lies in the comple-

ment of Var-Mem1. Since the algorithm is nondeterministic, we get Var-Mem1 ∈
co-NPSPACE. But from Savitch’s theorem [26], NPSPACE = PSPACE. Fur-
thermore, every deterministic class is closed under complements, so co-PSPACE =
PSPACE. Thus Var-Mem1 ∈ PSPACE. Now it follows from the relationships in
(6.1) that Var-Equiv1 lies in PSPACE as well.

It is not clear whether this is the best possible bound for these two problems. We
leave it as an open question.

Problem 6.6. Are either Var-Mem1 or Var-Equiv1 PSPACE-complete?
One might hope to apply the same techniques used above to the unrestricted

problem, Var-Equiv. Unfortunately, the resources needed to evaluate an arbitrary
term in a given algebra jump dramatically as soon as we allow a binary operation. Our
approach instead is to try to construct the homomorphism guaranteed by Theorem 6.3
(iii). However, rather than use the construction given in the proof of that theorem,
we will construct a homomorphism ψ recursively, based on (6.2). The best we seem
to be able to do is the following hyperexponential bound.

Theorem 6.7. Var-Equiv,Var-Mem ∈ 2-EXPTIME.
Proof. Let |A| = n > 1 and |B| = m. Let F denote the set of basic operation

symbols of A and B, and let r be the maximum rank of the members of F . In light
of Theorem 6.5, we shall assume that r ≥ 2. It follows from Corollary 6.4 that we
can test B ∈ V(A) by choosing an arbitrary bijection ψ0 : X0 → B and extending it,
if possible, to a homomorphism ψ : Clom(A)→ B. So we fix any bijection ψ0.

Let us sketch an algorithm for extending (if possible) ψ0 to a homomorphism ψ.
Create a table with two columns. In the left-hand column, list every m-ary operation
of A. For each m-ary operation g, the right-hand column will contain ψ(g) if and
when it is defined. To begin with, leave every entry in the right-hand column blank,
except that, for each 1 ≤ i ≤ m, put ψ0(p

m
i ) in the row containing pmi .

Now let j be an integer, 0 ≤ j < n(nm) − 1, and suppose we have successfully
defined ψ on Xj . We attempt to extend ψ to Xj+1. For each f ∈ F and each
g1, . . . , gk ∈ Xj (with k = ρ(f)), we proceed as follows. Look up ψ(g1), . . . , ψ(gk)
in the table and compute b = fB(ψ(g1), . . . , ψ(gk)). Also, compute the operation
fA[g1, . . . , gk]. If the entry in the table corresponding to fA[g1, . . . , gk] is blank, then
insert b and continue. If the entry is already equal to b, continue. But if the table
contains some value b′ �= b, then we terminate the algorithm and reject. See the
pseudocode in Algorithm 6.2.

If the algorithm runs to completion without a rejection, then we have successfully
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found the extension of ψ0. A rejection means that ψ does not exist.
We must analyze the time requirements of Algorithm 6.2. As we noted earlier,

the algebra A will require at least nr log n bits to represent. Let S denote the size
of the input (A,B). Then S ≥ nr + mr > r. Notice also that S ≥ |F | since each
operation requires at least one bit.

To prove the theorem, we must show that the time required to run Algorithm 6.2

on the input (A,B) is bounded above by a function of the form 22p(S)

for some

polynomial p. Since O
(
22poly)

is closed under sums and products, it suffices to check
that we can bound the time required by each step of the algorithm by a member of

O
(
22poly)

. Observe first that

log(nm+1) = (m+ 1) logn ≤ (m+ 1)n ≤ S,

and hence nm+1 ≤ 2S . Similarly,

log n(nm) = nm log n ≤ nm+1 ≤ 2S ,

so

n(nm) ≤ 22S

.(6.3)

Let us go step-by-step through Algorithm 6.2. The initial setup (step 1) requires
time on the order of nm to fill in each entry. Since there are n(nm) entries, the total

time required for this step lies in O
(
22poly)

by inequality (6.3). Steps 2–7 constitute
a triply-nested loop. The total number of iterations is at most the product of the

upper bounds on the counters in steps 2, 3, and 4. Step 2 requires n(nm) ∈ O
(
22poly)

iterations. Step 3 runs from 1 to |F |, and we have already observed that |F | ≤ S.

For each value of j (in step 2), step 4 will loop |Xj |k times. We have k = ρ(f) ≤ r

and |Xj | ≤ |Clom(A)| ≤ n(nm), so an upper bound on the counter is (n(nm))r ≤ 22rS

.
Finally, the time required for each trip through the body of the triple-loop is the sum
of the times for steps 5–7. Step 7 is negligible. Step 5 requires r lookups in the table

for ψ and one lookup in the table for fB. The former takes time r · n(nm) ≤ S · 22S

which is clearly in O
(
22poly)

. The latter requires mr ≤ S program steps. Step 6 is the

reverse of step 5: one lookup in ψ (time ≤ n(nm)) and (r+1)nm lookups in operation

tables. Thus the running time for the entire algorithm lies in O
(
22poly)

.
Theorem 6.7 provides a rather disappointing bound for Var-Equiv. It is also

somewhat surprising that there seems to be such a dramatic (i.e., exponential) differ-
ence in the complexities of Qvar-Equiv and Var-Equiv (see Table 4.1). Perhaps
one can do better.

Problem 6.8. Is Var-Equiv complete for 2-EXPTIME? Is Var-Equiv in
EXPSPACE?

As we mentioned earlier, Székely proved in [28] that Var-Equiv is NP-hard.
This result can also be obtained using the construction in Theorem 5.5; see especially
the equivalences in (5.2).

7. Term-equivalence. Recall that the algebras A and B are term-equivalent if
A = B and Clo(A) = Clo(B). From a universal algebraic standpoint, term-equivalent
algebras are generally interchangeable. When considering the complexity of the prob-
lemTerm-Equiv, it is convenient, once again, to consider a slightly different problem.
Thus we define the problem Clo-Mem to consist of all pairs (F, g) in which F ∪ {g}
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is a set of operations on some finite set A and g ∈ CloA(F ). The problem Clo-Mem1

is similar, but we require all of the operations in F ∪{g} to be unary. For the problem
Clo-Mem2, the set A has cardinality two.

Historically, Clo-Mem was the first problem, of those discussed in this paper, to
be considered in the literature. Kozen proved in 1977 [18] that Clo-Mem1 is complete
for PSPACE. In 1982, Friedman proved that Clo-Mem is complete for EXPTIME
[8]. However, that manuscript was never published. A different proof of this result,
as well as a proof that Term-Equiv is complete for EXPTIME, appears in [1].

Let A = 〈A,F 〉 and B = 〈B,G〉. Then
(A,B) ∈ Term-Equiv��

A = B & (∀g ∈ G)(∀f ∈ F )
(
(F, g), (G, f) ∈ Clo-Mem

)
.

(7.1)

Conversely, if F ∪ {g} is a set of operations on A, then

(F, g) ∈ Clo-Mem ⇐⇒ (〈A,F 〉, 〈A,F ∪ {g}〉) ∈ Term-Equiv.(7.2)

Of course, similar relationships hold for the unary and two-element variants of these
problems.

Now it follows easily from (7.2) that Clo-Mem is log-space reducible to Term-
Equiv. This is true for the general, unary, and two-element variants of the problems.
However, a reduction in the other direction is a bit problematic. Let us first consider
the general case. Given a pair (A,B) of size S, equivalence (7.1) tells us that we can
test (A,B) ∈ Term-Equiv by making several calls to an algorithm for Clo-Mem.
The input to each such call will certainly have size at most S hence will run in time at
most 2p(S) for some polynomial p. Furthermore, there will clearly be at most S such
calls. Hence a bound on the running time for Term-Equiv will be S · 2p(S) which
is still exponential in S. Combining our observations, we conclude that the (general)
problem Term-Equiv is complete for EXPTIME (see Table 4.1).

For Clo-Mem1 and Clo-Mem2, we need to argue a bit differently, since we will
be interested in a space-bound. Let C denote one of these two problems, and let T
denote the corresponding term-equivalence problem. Suppose we have an algorithm
for C that runs in space f(x) on an input of size x. As is commonplace, we assume
that f is a monotonically increasing function. In applying (7.1) to test (A,B) ∈ T,
the first call to C will require space bounded above by O(f(S)). But subsequent calls
to C can reuse the same space. Hence the total space requirement for T is on the
order of logS + f(S). (The logS term accounts for some counters.)

For the specific case C = Clo-Mem1, Kozen’s result tells us that the function
f is a polynomial, so we conclude that Term-Equiv1 is complete for PSPACE, as
we assert in Table 4.1. When C = Clo-Mem2, we can certainly make the following
claim.

Lemma 7.1. If f(S) ∈ O(logS), then both Clo-Mem2 and Term-Equiv2 lie
in NL.

So our remaining task is to prove that f(S) is indeed on the order of logS. In
other words, we must find a nondeterministic algorithm for Clo-Mem2 that runs in
log-space. To do this, we will take advantage of the very detailed description of the
lattice of clones on {0, 1} that was discovered by Post in 1941 [24]. This will allow us
to check the condition (F, g) ∈ Clo-Mem2 using a finite number of nondeterministic
tests, each of which uses very little space. There have been several more recent
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treatments of Post’s results. The reader might wish to consult the first chapter of
Pippenger’s book [23]. All we really need here is a description of the completely meet-
irreducible members of the lattice of clones. For this we mostly follow the discussion
given in Szendrei [30, pp. 36ff].

Let A be any set, and let k be a positive integer. A subset θ of Ak is called a k-ary
relation on A. If f is an n-ary operation on A, we say that f preserves θ, (f : θ) if
for all arrays 〈 aij : 1 ≤ i ≤ n, 1 ≤ j ≤ k 〉 we have

(∀i ≤ n ai ∈ θ) =⇒ 〈f(a1), . . . , f(ak)〉 ∈ θ,

where aj = 〈a1j , . . . , anj〉 and ai = 〈ai1, . . . , aik〉. The relationship f : θ is equivalent
to asserting that θ is a subalgebra of the algebra 〈A, f〉k. One way to visualize this is
to think of the 〈aij〉 as forming an n×k matrix. If each row of the matrix constitutes
an element of θ, then the row obtained by applying f to each column is again a
member of θ. We extend this notation to multiple operations by defining F : θ if and
only if for every f ∈ F we have f : θ.

For a fixed relation θ we define

FA(θ) = { f : f is an operation on A and f : θ } .
More generally, if Θ is a set of relations on A (of various ranks), then

FA(Θ) =
⋂
θ∈Θ

FA(θ).

We usually omit the superscript “A” if no confusion will result. It is easy to check
that for any set A and family Θ, F(Θ) is always a clone on A. However, more to the
point for us, for every finite set A, every clone on A is of the form F(Θ) for some (not
necessarily finite) family Θ. See [30, Corollary 1.4].

We now restrict our attention to A = {0, 1}. We define the following relations
on A.

ν = { 〈0, 1〉, 〈1, 0〉 }, λ = { 〈0, 0〉, 〈0, 1〉, 〈1, 1〉 },
µ = { 〈x, y, z〉 : z = x ∧ y } , χ = { 〈x, y, z〉 : z = x ∨ y } ,
ε = { 〈x, y, z〉 : x = y or y = z } , σ = { 〈x, y, z, w〉 : x⊕ y = z ⊕ w } ,

κm = {0, 1}m − {〈1, 1, . . . , 1〉} for m ≥ 1,

κ̃m = {0, 1}m − {〈0, 0, . . . , 0〉} for m ≥ 1.

Let Σ0 = {ν, µ, χ, λ, ε, σ} and, for every m > 0, Σm = Σ0 ∪ {κj , κ̃j : j ≤ m }. Set
Σ =

⋃
m≥1 Σm. From Post’s analysis, we get the following theorem.

Theorem 7.2 (Post). Let C be a clone on {0, 1}. Then for some family Θ ⊆ Σ,
C = F(Θ).

Let θ be a fixed k-ary relation on {0, 1}. We first show that there is a simple
nondeterministic algorithm for the complement of the problem

Pres(θ) = { f : f an operation on {0, 1} and f : θ } .
Given an n-ary operation f , we guess an n× k matrix and accept if each row of the
matrix lies in θ but the result of applying f to the columns fails to lie in θ. A more
formal description is given in Algorithm 7.1.

Lemma 7.3. For any fixed relation θ on {0, 1}, Pres(θ) ∈ NL.
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1. Let n = ρ(f)
2. Guess aij ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ k
3. For i = 1 to n do
4. if ai /∈ θ then reject
5. if 〈f(a1), . . . , f(ak)〉 /∈ θ then accept

Algorithm 7.1. f �∈ Pres(θ).

1. Let n = ρ(f)
2. x← 〈1, 1, . . . , 1〉 ∈ {0, 1}n
3. for i = 1 to m do
4. guess a ∈ {0, 1}n
5. if f(a) = 1 then x← x ∧ a (coordinatewise conjunction)
6. else reject
7. if x = 〈0, 0, . . . , 0〉 then accept
8. else reject

Algorithm 7.2. (f,m) �∈ Kappa.

Proof. Algorithm 7.1 provides a test for the complement of Pres(θ). Since NL
is closed under complements (see [12, 29]), it suffices to show that this algorithm
requires only log-space. Since the size of the input (an n-ary operation) is 2n bits,
we must verify that the space requirement of the algorithm lies in O(n). However,
the algorithm only requires space for the counters i and j, the Boolean matrix 〈aij〉,
and k pointers into the table of values for f . Since k is a constant, the total space
required is indeed in O(n).

We will also need a variation of Algorithm 7.1 to handle the κm and κ̃m. Algo-
rithm 7.2 gives a procedure that takes as input an operation f and a positive integer
m and accepts (nondeterministically) if and only if f does not preserve κm. Using
the same argument as in Lemma 7.3, we can conclude that

Kappa = { (f,m) : f : κm } ∈ NL,

with an analogous result for κ̃m. Let us remark here that it is not hard to modify
Algorithm 7.1 to run in deterministic logarithmic space. However, that modification
does not seem to work for Kappa, so there does not appear to be anything to gain
by including the argument here.

Our next task is to put a bound on the size of the family Θ that we need to
consider in Theorem 7.2. Notice that, except for the six members of Σ0, the members
of Σ form two infinite sequences, and, furthermore, these two sequences are dual to
each other.

Lemma 7.4. Let g be an n-ary operation on {0, 1}.
(i) For every m > 1, if g preserves κm, then g preserves κm−1.
(ii) If g preserves κn, then g preserves κm for all m > n.

The same results hold with κ̃ in place of κ.
Proof. Suppose g : κm. Let 〈aij〉 be an n × (m − 1) matrix in which every

row is a member of κm−1. This simply means that no row consists of all 1s. We
wish to argue that 〈g(a1), . . . g(am−1)〉 ∈ κm−1, i.e., is not all 1s. Create an n ×m
matrix by repeating the last column of 〈aij〉. Then each row of this new matrix lies in
κm, so by assumption, the m-tuple 〈g(a1), . . . , g(am−1), g(am−1)〉 ∈ κm. Therefore,
〈g(a1), . . . , g(am−1)〉 is not equal to 〈1, 1, . . . , 1〉, as desired.

For the second claim, assume that g : κn and let m > n. Let 〈aij〉 be an n ×m
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1. n← ρ(g)
2. for θ ∈ Σn do
3. if F : θ then
4. if not(g : θ) then reject
5. accept

Algorithm 7.3. g ∈ Clo(F ).

matrix in which every row is a member of κm. In other words, each row contains a
“0.” Therefore we can find 1 ≤ j1 < j2 < · · · < jn ≤ m such that the n×n submatrix
〈aijk : 1 ≤ i ≤ n, 1 ≤ k ≤ n〉 retains the property that every row contains a “0.”
Since g : κn, we get 〈g(aj1), . . . , g(ajn)〉 ∈ κn, i.e., for some k, g(ajk) = 0. Therefore,
〈g(a1), . . . , g(an)〉 ∈ κm.

We can now combine Theorem 7.2 and Lemmas 7.3 and 7.4 to put a finite bound
on the work needed in order to test the relationship g ∈ Clo(F ).

Theorem 7.5. Let F be a set of operations on {0, 1}, and let g be an n-ary
operation on {0, 1}. Then g ∈ Clo(F ) if and only if for every θ ∈ Σn, F : θ =⇒ g :

θ.
Proof. Suppose first that g ∈ Clo(F ). Let θ be any relation such that F : θ. Since

F(θ) is a clone, F ⊆ F(θ), and Clo(F ) is, by definition, the smallest clone containing
F , we obtain Clo(F ) ⊆ F(θ); hence g : θ.

Conversely, suppose the condition holds. By Theorem 7.2, there is some subset
Θ of Σ such that Clo(F ) = F(Θ). We need to show that for every θ ∈ Θ, g : θ.
If θ ∈ Σn, then, since F ⊆ Clo(F ), we have F : θ, so g : θ by assumption. So
suppose that θ ∈ Σ − Σn. Then θ = κm or θ = κ̃m for some m > n. Without loss
of generality, assume the former. Again, since F ⊆ Clo(F ) = F(Θ), we get F : κm.
By Lemma 7.4(i), F : κn; hence g : κn by assumption. Therefore, by Lemma 7.4(ii),
g : κm.

Since the family Σn is finite, Theorem 7.5 provides an algorithm for testing g ∈
Clo(F ). Pseudocode is given in Algorithm 7.3. Let us analyze the space requirements
for this algorithm. The size of the input is at least 2n since that is the size of g,
and also at least |F | since each operation takes up at least 1 bit. Line 1 can be
implemented by setting θ first to each member of Σ0, followed by κ1, κ̃1, κ2, . . . , κ̃n
using a loop. The amount of space needed to manage the loop is in O(log n).

The notation “F : θ” is shorthand for the following code fragment.
x← True
for f ∈ F do
if not(f : θ) then x← False

return x
When θ ∈ Σ0, the test f : θ is implemented using an algorithm for Pres(θ). When
θ = κm or κ̃m, we use Kappa or its dual. Clearly, the entire algorithm requires only
a couple of counters besides the calls to Pres and Kappa and hence lies in NL.
Combining this with Lemma 7.1, we have proved the following theorem.

Theorem 7.6. Both Clo-Mem2 and Term-Equiv2 lie in NL.
Once again, it is not clear that these are optimal results, so we pose a problem.
Problem 7.7. Is Term-Equiv2 complete for NL? Does it lie in L?

Appendix. Proof of Theorem 6.1. This appendix provides a proof of Theo-
rem 6.1. In fact, we shall prove a slightly stronger theorem which allows us to conclude
that both Var-Equiv2 and Var-Mem2 are members of L. The line of argument we
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follow was suggested to us by J. Berman. An alternate proof can be obtained from
[15, Corollary 2.5], using the fact that every two-element algebra is both term-minimal
and strictly simple.

An algebra is called congruence distributive if its lattice of congruences is dis-
tributive. The algebra is congruence permutable if for every pair of congruences α
and β we have α ◦ β = β ◦ α. Here,

α ◦ β = { (x, z) : (∃y) (x, y) ∈ α & (y, z) ∈ β } .

A variety is called congruence distributive (respectively, permutable) if every member
is congruence distributive (permutable). See [5, Definition 5.8] for a discussion of
these two important properties. We also require the following result.

Lemma A.1 (see Berman [2, Lemma 1]). Let A be an algebra with universe
{0, 1}. Then at least one of the following hold.

(i) V(A) is congruence distributive.
(ii) V(A) is congruence permutable.
(iii) Every basic operation of A is one of the following: a conjunction of

variables, a disjunction of variables, negation of a variable, a projection
operation, or a constant operation.

An n-ary operation f is “a conjunction of variables” if f(x1, . . . , xn) = xi1 ∧ xi2
∧ · · · ∧ xik , where 2 ≤ k ≤ n, 1 ≤ i1 < i2 < · · · < ik ≤ n and “∧” denotes the usual
logical “and” operation on {0, 1}. A disjunction of variables is similar. We write
0′ = 1 and 1′ = 0. The function f(x1, . . . , xn) = x′i is the negation of the variable xi.

Let ∆ denote the equivalence relation on {0, 1}2 that identifies the pairs (0, 0)
and (1, 1) and the pairs (0, 1) and (1, 0). One way to think of ∆ is as the kernel of
the exclusive-or function {0, 1}2 → {0, 1}. For a fixed algebra A on {0, 1}, ∆ may or
may not be a congruence relation on A2. By using Lemma A.1, it is not hard to see
that ∆ is a congruence if and only if A is Abelian. (See [20, section 4.13], especially
Theorem 4.152.) In the case that ∆ is indeed a congruence on A2, we define A∇ to be
the algebra A2/∆. Note that it is possible for A and A∇ to be isomorphic. In fact,
A ∼= A∇ if and only if there is an element e ∈ {0, 1} such that {e} is a subalgebra
of A. (To see this, show that the function x �→ (x, e)/∆ is an isomorphism.) As we
shall see, in the case that A∇ exists and is not isomorphic to A, V(A∇) is the unique
proper, nontrivial subvariety of V(A).

Theorem A.2. Let A and B be algebras on {0, 1} of the same similarity type,
and suppose that B ∈ V(A). Then either B ∼= A or B ∼= A∇.

Proof. Since both A and B have cardinality two, they are strictly simple algebras,
i.e., they are simple and have no proper, nontrivial subalgebras. Suppose first that
V = V(A) is congruence distributive. Since B ∈ V(A) and B is simple, we obtain
B ∈ HS(A) from Jónsson’s lemma [5, Theorem 6.8]. From the strict simplicity of A
we get B ∼= A. Notice that we never obtain the conclusion B ∼= A∇ here. This is
not surprising since a congruence distributive variety contains no nontrivial Abelian
algebras.

For the remainder of the proof, we assume that V is not congruence distributive.
Suppose that V is congruence permutable. Then, in particular, V is congruence
modular [5, Theorem 5.10], so by [7, Theorem 12.1] and the strict simplicity of A, V
is an Abelian variety, and hence A is an Abelian algebra. Therefore, since B ∈ V(A),
from [7, Theorem 12.4] we deduce that either B ∼= A or B ∼= A∇.

So now we are reduced to the case that V is neither congruence distributive nor
congruence permutable. This forces us into case (iii) of Lemma A.1. Each of the
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Table A.1

A A∇
〈{0, 1}, ′〉 〈{0, 1}, p11〉
〈{0, 1}, ′, 0〉 〈{0, 1}, p11, 0〉
〈{0, 1}〉
〈{0, 1}, 0〉
〈{0, 1}, 1〉
〈{0, 1}, 0, 1〉 〈{0, 1}, 0, 0〉

basic operations of A and of B must be of one of the types described there. Suppose
that A contains a conjunction of variables among its basic operations. If A also
contains either a disjunction of variables or a negation operation, then A will have a
lattice reduct and consequently V will be congruence distributive, which contradicts
our assumption. Therefore, if A contains a conjunction of variables, then A is term-
equivalent to a semilattice, possibly with one or two constant operations. However, it
is well known that the variety generated by such an algebra has, up to isomorphism,
a unique two-element member. Thus we conclude that in this case too, B ∼= A.
Obviously, we arrive at the same conclusion if we assume at the outset that A has a
basic operation that is a disjunction of variables.

Now suppose that neither A nor B has a conjunction or a disjunction of variables
among its basic operations. By looking at the available operations in Lemma A.1 (iii),
we conclude that A is term-equivalent to one of the algebras listed in Table A.1. It is
easy to check that for each algebra A in the table, A∇ exists. Furthermore, in each
case, it is obvious that A and A∇ are the only two-element algebras in V(A). Using
these observations, we obtain the conclusion in the remaining cases.

Theorem 6.1 follows immediately from Theorem A.2. For if B and A generate
the same variety, then we certainly have B ∈ V(A), so by Theorem A.2, either B ∼= A
or B ∼= A∇. However, we claim that if A � A∇, then A∇ always generates a proper
subvariety of V(A), contrary to the assumption that V(B) = V(A). The easiest
way to see this is probably just to treat the various cases that arose in Theorem A.2
individually. The case that V(A) is congruence permutable is discussed in [7]. For the
algebras listed in Table A.1, it is a simple matter to find an identity satisfied by A∇
that fails in A. For example, consider the first line of the table. The similarity type
consists of a single unary operation symbol, f . Then the identity f(x) ≈ x separates
A from A∇.

Corollary A.3. Var-Mem2 ∈ L.
Proof. From Theorem A.2, (A,B) ∈ Var-Mem2 if and only if either B ∼= A

or B ∼= A∇. We have already observed that the former condition can be checked in
log-space. To check the latter, it is enough to check the following two maps to see if
either is a homomorphism.

A2 → B (x, y) �→ x⊕ y,

A2 → B (x, y) �→ x⊕ y ⊕ 1.

Here x⊕ y is the exclusive-or of x and y.
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AN ALGORITHM FOR HEILBRONN’S PROBLEM∗
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Abstract. Heilbronn conjectured that given arbitrary n points from the 2-dimensional unit
square, there must be three points which form a triangle of area at most O(1/n2). This conjecture
was disproved by a nonconstructive argument of Komlós, Pintz, and Szemerédi [J. London Math.
Soc., 25 (1982), pp. 13–24] who showed that for every n there is a configuration of n points in the unit
square where all triangles have area at least Ω(log n/n2). Considering a discretization of Heilbronn’s
problem, we give an alternative proof of the result from [J. London Math. Soc., 25 (1982), pp.
13–24]. Our approach has two advantages: First, it yields a polynomial-time algorithm which for
every n computes a configuration of n points where all triangles have area Ω(log n/n2). Second, it
allows us to consider a generalization of Heilbronn’s problem to convex hulls of k points where we
can show that an algorithmic solution is also available.

Key words. hypergraphs, independent sets, Heilbronn, triangles
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1. Introduction. Given a configuration of n points in the 2-dimensional unit
square, we can consider the minimum triangle area formed by any three of the n
points. Heilbronn’s problem consists in finding a configuration of n points which
maximizes this minimum area. Denote the maximal possible area by ∆(3)(n). Heil-
bronn conjectured that ∆(3)(n) = O(1/n2), and the earliest reference mentioning the
conjecture is a paper by Roth [12] from 1951; see also the 1976 survey paper [16].

In 1982, Komlós, Pintz, and Szemerédi [9] showed nonconstructively that Heil-
bronn’s conjecture is false. They proved the lower bound ∆(3)(n) = Ω(log n/n2).
The exact order of ∆(3)(n) is still unknown, but some upper bounds are known.
The best one is by Komlós, Pintz, and Szemerédi [8] who showed that ∆(3)(n) =

O(ec
√

logn/n8/7) for some constant c > 0, i.e., ∆(3)(n) = O(n−8/7+ε) for any fixed
ε > 0. This result improved upon earlier upper bounds due to Roth [12], [13], [14],
[15], [16] and Schmidt [17].

In this paper, we provide a constructive proof of the result by Komlós, Pintz, and
Szemerédi. We provide a polynomial-time algorithm which for every n computes a
configuration of n points in the unit square where the minimum triangle area is at
least Ω(log n/n2). This is done by first discretizing the problem and then transforming
it into an independent set problem on hypergraphs.

Designing an algorithm for Heilbronn’s problem is interesting because the exis-
tence proof of [9] applies a probabilistic argument which uses a continuous distribution
for choosing the points in the unit disc (or square) and it involves the evaluation of
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integrals. This makes a direct derandomization of the probabilistic argument diffi-
cult. To overcome this difficulty, we first discretize the problem. More precisely, we
will consider a T×T grid, where T is of the order of nα for some α > 1. One of
the problems introduced by this discretization is that now many triples of grid points
lie on a line and form a degenerated triangle (i.e., one of area zero), whereas in the
continuous case, the probability of this happening for randomly chosen points is zero.

For every n, our algorithm will find n points in the T×T grid where every triangle
has area at least Ω(T 2 log n/n2). This yields a solution for the problem in the unit
square by scaling with a factor of Θ(1/T 2).

Furthermore, we demonstrate that our approach can be used for a more general
problem, first investigated for the special case k = 4 by Schmidt [17]. Given a config-
uration of n points in the unit square, what is the minimum area of the convex hull
of k points? Choose n points to maximize this minimum area which we denote by
∆(k)(n).

It seems that the general case of fixed k ≥ 4 has not been investigated in the
existing literature. We remark that in [5, p. 861] (without proof) the lower bound
∆(k)(n) = Ω(n−1−1/k) is attributed to Schmidt. However, Schmidt considered in [17]
only the case k = 4 and proved by analytic arguments that ∆(4)(n) = Ω(1/n3/2).
Here we give a simpler proof of this lower bound. Moreover, our arguments yield
a polynomial-time algorithm which for arbitrary fixed k ≥ 4 computes n points
in the unit square where the minimum area of the convex hull of any k points is
Ω(1/n(k−1)/(k−2)), i.e., ∆(k)(n) = Ω(1/n(k−1)/(k−2)). It should be noted (see [17])
that for k ≥ 4 it is not known whether ∆(k)(n) = o(1/n).

A generalization of Heilbronn’s problem to d dimensions which considers the vol-
umes of (d + 1)-simplices has recently been investigated in [2] and [10].

2. Hypergraphs. Heilbronn’s problem can be transformed into a problem on
hypergraphs. We first recall some basic definitions.

Definition 1. A hypergraph G = (V, E) is given by a finite nonempty set V
of vertices and a set E = {E1, . . . , Er} of hyperedges Ei ⊆ V with |Ei| ≥ 2 for
i = 1, . . . , r. A hypergraph is called k-uniform if every hyperedge has cardinality k. A
subset V ′ ⊆ V is called independent if no hyperedge Ei is a subset of V

′. The average
degree of a k-uniform hypergraph is defined by davg = |E| · k/|V |.

2-uniform hypergraphs capture the usual concept of undirected simple graphs.
For certain types of graphs, e.g., graphs without cycles of small length, very often
better estimations on parameters and better algorithms are available than for arbi-
trary graphs. For hypergraphs, the same is sometimes true. We use the following
cycle definition in hypergraphs.

Definition 2. A 2-cycle in a hypergraph is a pair of hyperedges E1 �= E2 such
that |E1 ∩ E2| ≥ 2.

Such a pair E1, E2 can be seen as a cycle since if {v, w} ⊆ E1 ∩E2, then one can
reach w from v via E1 and return to v via E2.

We consider the points from the T×T grid as the vertices of a 3-uniform hyper-

graph H(3)
T,L whose hyperedges are determined by the parameters T and L as follows.

A triple {p, q, r} is a hyperedge of H(3)
T,L if the (possibly degenerated) triangle on p, q, r

in the T×T grid has area at most L. We will later choose some L = Θ(T 2 log n/n2).

If V ′ is an independent set in the hypergraph H(3)
T,L, then the corresponding points

in the T×T grid have the property that every triangle has an area bigger than L. It

remains to find an independent set V ′ in H(3)
T,L of size at least Ω(n).
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Computing maximum independent sets in graphs is NP-hard, and it is also hard
to find an approximate solution in polynomial time, unless P=NP; see H̊astad [6].
The same holds for hypergraphs; see, e.g., [7]. Nevertheless, polynomial-time algo-
rithms for computing independent sets of a guaranteed size are available. We apply
such an algorithm, which is based on derandomization through potential functions.
For this approach to work, it is crucial to determine the number of hyperedges, i.e.,
the number of triangles of area at most L in the T×T grid. Using nothing more but
such an upper bound on the number of hyperedges, this approach could be used for a
choice of L = O(T 2/n2). In order to make the approach work for L = O(T 2 log n/n2),
we have to work harder by counting the number of 2-cycles in the hypergraph. The
reason is that for hypergraphs with not too many 2-cycles, the existence of larger
independent sets can be shown, and algorithms for finding them are also known.

3. Counting polygons of bounded area. Let gcd(h, s) denote the greatest
common divisor of h and s. The following is a simple fact.

Lemma 3. For integers s ≥ 1, let F (s) :=
∑s
h=1 gcd(h, s). Then for every ε > 0

there is a constant cε > 0 such that F (s) ≤ cε · s1+ε.

Proof. For a given divisor d of s, there are at most s/d numbers h ∈ {1, . . . , s}
such that gcd(h, s) = d. Hence,

F (s) ≤
∑

d divisor of s

(s/d) · d = s ·#divisors of s.

The number of divisors of each s ≥ 4 is at most sc
′/(log log s) for some positive constant

c′ (see, for example, [11]). Thus, F (s) ≤ cε · s1+ε for some positive constant cε and
all s ≥ 1.

Given a point p from the T×T grid, we denote by px and py its x- and y- coor-
dinate. Define a lexicographic order on the points of the T×T grid by

p <lex q ⇔ (px < qx) or (px = qx and py < qy).

Lemma 4. Let ε > 0 be fixed. The number of degenerated triangles in the T×T
grid is at most O(T 4+ε).

Proof. Let p1 <lex p2 <lex p3 be the points of a degenerated triangle. Let s =
(p3)x − (p1)x and h = (p3)y − (p1)y. The number of degenerated triangles with s = 0
or h = 0 is at most O(T 4), since we can choose one of O(T ) lines and one of O(T 3)
point triples from that line.

By symmetry, neglecting constant factors, it is now enough to count degenerated
triangles with s ≥ h > 0. If we fix p1, s, and h (and therefore also p3), there are
exactly gcd(h, s)− 1 many grid points on the line segment between p1 and p3. Thus,
the number of degenerated triangles is bounded from above by

c · T 2 ·
T∑
s=1

s∑
h=1

gcd(h, s) = c · T 2 ·
T∑
s=1

F (s),

which, by Lemma 3, is at most c′ε · T 2 ·∑T
s=1 s1+ε = O(T 4+ε).
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Lemma 5. Let p <lex q be two points from the T×T grid. Define s := qx − px.
For every L > 0, the following hold.

(a) There are at most 4L grid points r such that the following three conditions
hold simultaneously:
(1) p <lex r <lex q.
(2) The triangle (p, q, r) is nondegenerated.
(3) The area of the triangle (p, q, r) is at most L.

(b) The number of grid points r which fulfill conditions (2) and (3) from (a) is at
most 12LT/s if s > 0 and at most 4LT if s = 0.

Proof. We first prove (a). By (1) and (2), we have s > 0. Assume without loss
of generality (w.l.o.g.) that h := qy − py ≥ 0, since the other case can be dealt with
analogously. The situation can be depicted as follows:

2 hd
d1

p

q

s

r

α

α

s

h

Since the area of the triangle (p, q, r) is at most L, and since p <lex r <lex q, we
know that the point r must lie in some bounded strip above or below the straight line
segment between p and q. (The strip is shaded in the above figure.)

Let the side lengths of the strip be d2 and
√

s2 + h2. The width of the strip is given
by d1 = 2L/

√
s2 + h2. By a simple geometric argument, we have d1/d2 = s/

√
s2 + h2,

hence d2 = 2L/s.

If h = 0, then the number of points r is trivially bounded by 2 · d2 · s = 4L.
Otherwise, we carefully count the number of grid points in the shaded strip. Assume
w.l.o.g. that p = (0, 0). Let s′ = s/ gcd(s, h) and h′ = h/ gcd(s, h). We count the
number of grid points in the shaded strip above the line segment for the x-coordinates
0, . . . , s′−1.

For x = 0, the integer points from the y-interval [0, d2] are in the shaded strip.
In general, for x = i, the integer points from the y-interval

[
ih′

s′
,
ih′

s′
+ d2

]
=

[
ih′

s′
,
ih′

s′
+

2L/ gcd(s, h)

s′

]

are in the shaded strip. For every i, this interval contains exactly D + 1 numbers of
the form m/s′, where D := �2L/ gcd(s, h)�.

Since h′ and s′ are relatively prime, the values ih′, i = 0, . . . , s′−1, run through
all elements modulo s′ exactly once. Hence, for every t ∈ {0, . . . , s′−1}, the numbers
of points of the form t∗/s′ in the shaded strip such that t∗ ≡ t mod s′ are equal.

In general, we have counted (D+1)s′ many points; hence there are (D+1)s′/s′ =
(D + 1) many points of the form t/s′ with t ≡ 0 mod s′ in the shaded strip. This is
equal to the number of grid points in that strip. We are allowed to subtract one since
the point p would lead to a degenerated triangle.
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Since we are interested in the number of grid points in the shaded strip for x = 0
to x = s − 1, we thus count D · s/s′ points. Finally, we have to multiply by two
since the strip below the line segment between p and q also needs to be considered.
There are some points at the x-coordinate of p which we have unnecessarily taken into
account, but this is compensated for by the same number of points which we have
not yet counted at the x-coordinate of q. Altogether, we have at most 2D · s/s′ =
2 · gcd(s, h) · �2L/ gcd(s, h)� ≤ 4L possibilities for the choice of r.

For statement (b) and s > 0, we extend the shaded strip over all x-coordinates.
Thus, we get a total number which is at most 4L · (T/s + 2) ≤ 12LT/s. For s = 0,
the bound 4LT is trivially obtained.

Lemma 6. Let ε > 0 and k ≥ 3 be fixed. For L ≥ T
k−3
k−2+ε, there are at most

O(Lk−2 · T 4) configurations of k points p1 <lex · · · <lex pk in the T×T grid with a
convex hull of area at most L.

Proof. We divide the configurations into two classes. The first class contains
the configurations where all triangles (p1, pi, pk), i = 2, . . . , k−1, are nondegenerated.
After p1 and pk are chosen, we know by Lemma 5 that there are at most 4L candidates
for each of p2, . . . , pk−1 to choose from; hence this class contains at most O(Lk−2 ·T 4)
configurations.

A configuration which has a degenerated triangle (p1, pi, pk) can be constructed
by first choosing some degenerated triangle (p1, pi, pk) and then choosing k − 3 more
points q with p1 <lex q <lex pk. For each of those points, we have at most 4L+T many
candidates. We obtain that there are at most O(T 4+ε·(L+T )k−3) many configurations
in this class.

If L ≥ T , the bound from the lemma follows easily. Otherwise, we have at most
O(T k+1+ε) many such configurations which meets the bound of the lemma since

L ≥ T
k−3
k−2+ε.

4. An algorithm for k = 3. By Lemma 6, we know that for L ≥ T ε, the

hypergraph H(3)
T,L contains at most O(L · T 4) many hyperedges and thus its average

degree satisfies davg = O(L · T 2). Just knowing this bound, one is able to provide

an algorithm which computes an independent set of size at least Ω(T/
√

L). We will
use such an approach for the case k ≥ 4 in section 5. For k = 3, we can exploit that

the number of 2-cycles in H(3)
T,L is not too large. For such hypergraphs, an algorithm

which computes larger independent sets is known (see Theorem 8).

Lemma 7. Let ε > 0. The number of 2-cycles in the hypergraph H(3)
T,L is at most

O(L2 · T 4 · log T + T 5+ε + L · T 5).

Proof. Consider a 2-cycle E1, E2 and let {v, w} = E1 ∩ E2. This corresponds to
two triangles which share two points v and w and which both have an area bounded
by L. Let s = wx − vx and h = wy − vy. By rotation symmetry (which we account
for by an extra constant factor), we can assume that s > 0 and 0 ≤ h ≤ s.

Let us first assume that the triangles corresponding to E1 and E2 both are non-
degenerated. Using Lemma 5(b), the number of such pairs of triangles with area at
most L can now be bounded from above by

C · T 2 ·
T∑
s=1

s∑
h=0

(
LT

s

)2

≤ C ′ · L2 · T 4 ·
T∑
s=1

1

s
= O(L2 · T 4 · log T ).
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If both triangles are degenerated, we have four points on a line. By Lemma 4 there
are at most O(T 5+ε) such configurations. If one of the triangles is nondegenerated
and one is degenerated, then we can construct this situation by choosing one of the
O(L · T 4) many nondegenerated triangles and choosing one out of at most O(T )
possible positions for the fourth point. This yields the bound of the lemma.

The next result is taken from [3] and describes an algorithm for and an extension
of a powerful result by Ajtai et al. [1]; compare also Fundia [4].

Theorem 8 (see [3]). Let G = (V, E) be a 3-uniform hypergraph on N vertices
with average degree davg = 3 · |E|/N, where davg →∞. Let t :=

√
davg . If the number

s2(G) of 2-cycles in G satisfies s2(G) ≤ N · t3−γ for some constant γ > 0, then one
can find in polynomial time an independent set of size at least Ω((N/t) · (log t)1/2).

We are now ready to prove our main theorem for the case k = 3.
Theorem 9. One can find in polynomial time n points in the unit square such

that all triangles have area at least Ω(log n/n2).
Proof. First, fix some 0 < γ < 1/4 and let α := 1/(1− 2γ); thus 1 < α < 2. Let

T := �nα� and L :=
log n

n2
· T 2.

From this choice, it follows that L ≥ T ε for some fixed ε > 0.

Our earlier considerations have shown that the hypergraph H(3)
T,L on N=T 2 ver-

tices has average degree davg=O(L ·T 2), i.e., t :=
√

davg = O(L1/2 ·T ). However, this
is only an upper bound for t. It is useful to distinguish two cases.

Case 1. t ≥ L1/2 · T/log n.
We show that the conditions of Theorem 8 are fulfilled for the chosen γ. Since

α < 2, we have L · log T/T = log n · log T · T/n2 = o(1), and thus the dominating

term in Lemma 7 for the number of 2-cycles in H(3)
T,L is O(L ·T 5). For the application

of Theorem 8, it is enough to show now that L · T 5/B = o(1), where B := T 2 ·
(L1/2 · T/log n)3−γ :

L · T 5

T 2 · (L1/2 · T/log n)3−γ
=

T γ

L1/2−γ/2 · (log n)3−γ

=
1

(log n)1/2−γ/2
· n1−γ

T 1−2γ
· (log n)3−γ

= o(1),

since T 1−2γ ≥ n. Hence, we can apply Theorem 8. We now use the upper bound

t = O(L1/2 · T ) and obtain in polynomial time an independent set in H(3)
T,L of size at

least

Ω

(
T 2

t
· log1/2 t

)
= Ω

(
T 2

L1/2 · T · log
1/2 n

)
= Ω

(
T

L1/2
· log1/2 n

)
= Ω(n).

Case 2. t < L1/2 · T/log n.
We apply the algorithm from Theorem 10 (see section 5) and obtain in polynomial

time an independent set in H(3)
T,L of size at least

Ω

(
T 2

L1/2 · T/log n

)
= Ω

(
T · log n

L1/2

)
= Ω

(
n · log n/(log n)1/2

)
= Ω(n).
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In both cases, the algorithm computes c · n points for some c > 0. If c < 1, we
can adapt the constants and apply the above arguments to some N = Θ(n) replacing
n such that the algorithm indeed finds at least n points where the condition on the
triangles also holds. To summarize, we obtain in polynomial time at least n points
in the T×T grid such that every triangle has area at least c′ · T 2 · log n/n2 for some
c′ > 0. By rescaling, i.e., considering the T×T grid as located in the unit square, we
have finished the proof.

5. An algorithm for k ≥ 4. For general k, one may consider the following
problem: Find n points in the unit square such that the convex hull of every choice
of k points among them has an area as large as possible.

Schmidt [17] investigated this problem for the case k = 4 and he proved the
existence of a configuration on n points which achieves the bound given in Theorem
11 below.

Theorem 10 (Turán’s theorem for hypergraphs) gives a lower bound for the in-
dependence number α(G) of a hypergraph G (cf. Spencer [18]), and a linear–time
algorithm for achieving this bound is also available. We show that this algorithm can
be exploited for Heilbronn’s problem if k ≥ 4.

Theorem 10 (see [18]). Let G = (V, E) be a k-uniform hypergraph, k ≥ 2, with
average degree davg and |V | = N . Let t := max{1, (davg)

1/(k−1)}. Then one can find
in G in time O(N + |E|) an independent set of size at least Ω(N/t).

We sketch the algorithm behind Theorem 10 for the sake of completeness.
Proof. Let V = {v1, . . . , vN}. Assign a weight pi ∈ [0, 1] to every vertex vi. Define

a potential function F by F (p1, . . . , pN ) =
∑N
i=1 pi −

∑
E∈E

∏
vi∈E pi .

We have F (p1 := 1/t, . . . , pN := 1/t) = N
t − |E|tk ≥ k−1

k · Nt . Since F is linear in
every pi, we can set each pi one after the other to either 0 or 1 without decreasing the
potential. Set V ′ = {vi ∈ V | pi = 1}. If there is still some hyperedge E contained in
V ′, then set pj = 0 for some vertex vj ∈ E in this hyperedge. The potential does not
decrease. Finally, we obtain an independent set of size at least k−1

k · Nt . The running
time is O(N + |E|).

Theorem 10 and the counting result from Lemma 6 are enough to obtain our
result for the generalization of Heilbronn’s problem to convex hulls of k points. For

the proof of the next theorem, we define a generalization of the hypergraph H(3)
T,L: let

the vertices of the k-uniform hypergraph H(k)
T,L be the grid points of the T×T grid

and let a hyperedge be in H(k)
T,L iff the area of the convex hull of the corresponding k

points is at most L.
Theorem 11. For every fixed k ≥ 3, there is a polynomial-time algorithm which

on input n computes a configuration of n points in the unit square such that the convex
hull of any k points has area at least Ω(1/n(k−1)/(k−2)).

Proof. Choose some 0 < α < α′ < 2α. Then for n large enough, there is some
integer T with n1+α ≤ T ≤ n1+α′

. Let L := T 2/n(k−1)/(k−2). It now holds that

L ≥ n2α+ k−3
k−2 and T

k−3
k−2+ε ≤ n(1+α′)( k−3

k−2+ε) < n
k−3
k−2+α′+ε+εα′

.

Thus, we can choose some small ε > 0 such that L ≥ T
k−3
k−2+ε; hence the conditions

of Lemma 6 are fulfilled. By choice of L we infer that the average degree of the

hypergraph H(k)
T,L satisfies davg = O(Lk−2 · T 2) = O((T 2/n)k−1).

Applying Theorem 10 with t = O(T 2/n), we obtain in polynomial time an inde-
pendent set of size at least Ω(n). For any k of these Ω(n) points from the T×T grid,
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the area of their convex hull is at least L = T 2/n(k−1)/(k−2). Rescaling yields the
desired result.

6. Open problems. Of course, one would like to know the exact growth rate
of ∆(k)(n) for fixed k ≥ 3. Hence, it would also be interesting to resolve whether for
k = 4 or in general for k ≥ 4 the lower bound on ∆(k)(n) can also be improved by
a logarithmic factor, e.g., by the factor (logn)1/(k−2). It is also an open problem to
determine whether ∆(k)(n) = o(1/n) holds for fixed k ≥ 4.
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[8] J. Komlós, J. Pintz, and E. Szemerédi, On Heilbronn’s triangle problem, J. London Math.
Soc., 24 (1981), pp. 385–396.
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Abstract. The notion of nonmalleable cryptography, an extension of semantically secure cryp-
tography, is defined. Informally, in the context of encryption the additional requirement is that given
the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are
related. The same concept makes sense in the contexts of string commitment and zero-knowledge
proofs of possession of knowledge. Nonmalleable schemes for each of these three problems are pre-
sented. The schemes do not assume a trusted center; a user need not know anything about the
number or identity of other system users.

Our cryptosystem is the first proven to be secure against a strong type of chosen ciphertext
attack proposed by Rackoff and Simon, in which the attacker knows the ciphertext she wishes to
break and can query the decryption oracle on any ciphertext other than the target.
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1. Introduction. The notion of nonmalleable cryptography is an extension of
semantically secure cryptography. Informally, in the context of encryption the addi-
tional requirement is that given the ciphertext it is impossible to generate a different
ciphertext so that the respective plaintexts are related. For example, consider the
problem of contract bidding: municipality M has voted to construct a new elementary
school, has chosen a design, and advertises in the appropriate trade journals, inviting
construction companies to bid for the contract. The advertisement contains a pub-
lic key E to be used for encrypting bids and a fax number to which encrypted bids
should be sent. Company A places its bid of $1, 500, 000 by faxing E(15, 000, 000) to
the published number over an insecure line. Intuitively, the public-key cryptosystem
is malleable if, having access to E(15, 000, 000), company B is more likely to generate a
bid E(β) such that β ≤ 15, 000, 000 than company B would be able to do without the
ciphertext. Note that company B need not be able to decrypt the bid of company A in
order to consistently just underbid. In this paper we describe a nonmalleable public-
key cryptosystem that prevents such underbidding. Our system does not even require
company A to know of the existence of company B. It also does not require the mu-
nicipality M to know of A or B before the companies bid, nor does it require A or B
to have any kind of public key. The system remains nonmalleable even under a very
strong type of chosen ciphertext attack, in which the attacker knows the ciphertext
she wishes to break (or maul) and can query the decryption oracle on any ciphertext
other than the target.

∗Received by the editors September 11, 1995; accepted for publication (in revised form) May 27,
1999; published electronically June 3, 2000. A preliminary version of this work appeared in STOC’91.

http://www.siam.org/journals/sicomp/30-2/29156.html
†Dept. of Computer Science, Hebrew University, Jerusalem 91904, Israel (dolev@cs.huji.ac.il).
‡IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, CA 95120

(dwork@almaden.ibm.com). The research of this author was supported by BSF grant 32-00032-1.
§Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot

76100, Israel (naor@wisdom.weizmann.ac.il). Most of this work of this author was performed while
at the IBM Almaden Research Center. The research of this author was supported by BSF grant
32-00032-1.

391



392 DANNY DOLEV, CYNTHIA DWORK, AND MONI NAOR

A well-established, albeit implicit, notion of nonmalleability is existential un-
forgeability of signature schemes [45]. Informally, a signature scheme is existentially
unforgeable if, given access to (m1, S(m1)), . . . , (mk, S(mk)), where S(mi) denotes a
signature on message mi, the adversary cannot construct a single valid (m,S(m))
pair for any new message m—even a nonsense message or a function of m1, . . . ,mk.
Thus, existential unforgeability for signature schemes is the “moral equivalent” of non-
malleability for cryptography. We do not construct signature schemes in this paper.
However, we introduce the related notion of public-key authentication and present a
simple method of constructing a provably secure public-key authentication scheme
based on any nonmalleable public-key cryptosystem.1

Nonmalleability is also important in private-key cryptography. Many common
protocols, such as Kerberos or the Andrew Secure Handshake, use private-key en-
cryption as a sort of authentication mechanism: parties A and B share a key KAB . A
sends to B the encryption of a nonce N under KAB , and the protocol requires B to re-
spond with the encryption under KAB of f(N), where f is some simple function such
as f(x) = x− 1. The unproved and unstated assumption (see, e.g., [16]) is that seeing
KAB(N) doesn’t help an imposter falsely claiming to be B to compute KAB(f(N)).
As we shall see, this is precisely the guarantee provided by nonmalleability.

Nonmalleability is a desirable property in many cryptographic primitives other
than encryption. For example, suppose researcher A has obtained a proof that P �=
NP and wishes to communicate this fact to professor B. Suppose that, to protect
herself, A proves her claim to B in a zero-knowledge fashion. Is zero-knowledge
sufficient protection? Professor B may try to steal credit for this result by calling
eminent professor E and acting as a transparent prover. Any questions posed by
professor E to professor B are relayed by the latter to A, and A’s answers to professor
B are then relayed in turn to professor E. We solve this problem with a nonmalleable
zero-knowledge proof of knowledge. Researcher A will get proper credit even without
knowing of the existence of professor E, and even if professor E is (initially) unaware
of researcher A.

Our work on nonmalleability was inspired by early attempts to solve the dis-
tributed coin flipping problem. Although t+1 rounds are necessary for solving Byzan-
tine agreement in the presence of t faulty processors [33], in the presence of a global
source of randomness the problem can be solved in constant expected time [62]. Thus,
in the mid 1980s several attempts were made to construct a global coin by combining
the individual sources of randomness available to each of the participants in the sys-
tem. At a very high level, the original attempts involved commitment to coins by all
processors, followed by a revelation of the committed values. The idea was that the
global coin would be the exclusive-or (or some other function) of the individual com-
mitted values. Disregarding the question of how to force faulty processors to reveal
their committed values, the original attempts erred because secrecy was confused with
independence. In other words, the issue was malleability: even though the faulty pro-
cessors could not know the committed values of the nonfaulty processors, they could
potentially force a desired outcome by arranging to commit to a specific function of
these (unknown) values.

As the examples show, secrecy does not imply independence. The goal of nonmal-
leable cryptography is to force this implication.

1For more on existentially unforgeable signature schemes, see [27, 45, 60].
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1.1. Description of principal results.
Nonmalleable public-key cryptography. Goldwasser and Micali define a

cryptosystem to be semantically secure if anything computable about the cleartext
from the ciphertext is computable without the ciphertext [43]. This powerful type
of security may be insufficient in the context of a distributed system, in which the
mutual independence of messages sent by distinct parties often plays a critical role.
For example, a semantically secure cryptosystem may not solve the contract bidding
problem. Informally, a cryptosystem is nonmalleable if the ciphertext doesn’t help:
given the ciphertext it is no easier to generate a different ciphertext so that the
respective plaintexts are related than it is to do so without access to the ciphertext.
In other words, a system is nonmalleable if, for every relation R, given a ciphertext
E(α), one cannot generate a different ciphertext E(β) such that R(α, β) holds any
more easily than can be done without access to E(α).2 We present a public-key
cryptosystem that is nonmalleable even against what we call a chosen ciphertext
attack in the postprocessing mode (CCA-post) (defined informally in section 2.1 and
formally in section 3). Since nonmalleability is an extension of semantic security, this
yields the first public-key cryptosystem that is semantically secure against this strong
type of chosen ciphertext attack.3

Our cryptosystem does not assume a trusted center, nor does it assume that any
given collection of users knows the identities of other users in the system. In contrast,
all other research touching on this problem of which we are aware requires at least
one of these assumptions (e.g., [20, 21, 63]).

Nonmalleable string commitment. A second important scenario for non-
malleability is string commitment. Let A and B run a string commitment protocol.
Assume that A is nonfaulty, and that A commits to the string α. Assume that, con-
currently, C and D are also running a commitment protocol in which C commits to
a string β. If B and C are both faulty, then even though neither of these players
knows α, it is conceivable that β may depend on α. The goal of a nonmalleable string
commitment scheme is to prevent this.

We present a nonmalleable string commitment scheme with the property that if
the players have names (from a possibly unbounded universe), then for all polynomial-
time computable relations R our scheme ensures that C is no more likely to be able to
arrange that R(α, β) holds than it could do without access to the (A,B) interaction.
Again, the scheme works even if A is unaware of the existence of C and D. If the
players are anonymous, or the names they claim cannot be verified, then again if
β �= α, then the two strings are no more likely to be related by R.

Intuitively, it is sufficient to require that C know the value to which it is commit-
ting in order to guarantee that α and β are unrelated. To see this, suppose C knows
β and C also knows that R(α, β) holds. Then C knows “something about” α, thus
violating the semantic security of the (A,B) string commitment. Proving possession
of knowledge requires specifying a knowledge extractor, which, given the internal state
of C, outputs β. In our case, the extractor has access to the (A,B) interaction, but
it cannot rewind A. Otherwise it would only be a proof that someone (perhaps A)
knows β, but not necessarily that C does.

2Clearly, there are certain kinds of relations R that we cannot rule out. For example, if R(α, β)
holds precisely when β ∈ E(α), then from E(α) it is trivial to compute β, and hence E(β), such that
R(α, β) is satisfied. For formal definitions and specifications see section 2.

3For this type of attack it turns out that semantic and nonmalleable security are equivalent,
which is not the case for weaker attacks. See section 3.4.2.
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Nonmalleable zero-knowledge protocols. Using nonmalleable string com-
mitment as a building block, we can convert any zero-knowledge interaction into a
nonmalleable one. In particular we obtain nonmalleable zero-knowledge proofs of pos-
session of knowledge, in the sense of Feige, Fiat, and Shamir [31]. Zero-knowledge
protocols [44, 40] may compose in an unexpectedly malleable fashion. A classic ex-
ample is the so-called “man-in-the-middle” attack (also known as the “intruder-in-
the-middle,” “Mafia scam,” and “chess-masters problem”) [24] on an identification
scheme, similar in spirit to the transparent intermediary problem described above.
Let A and D be nonfaulty parties, and let B and C be cooperating faulty parties
(they could even be the same party). Consider two zero-knowledge interactive proof
systems, in one A is proving to B knowledge of some string α and in the other C is
proving to D knowledge of some string β. The two proof systems may be operating
concurrently; since B and C are cooperating, the executions of the (A,B) and (C,D)
proof systems may not be independent. Intuitively, nonmalleability says that if C can
prove knowledge of β to D while A proves knowledge of α to B, then C could prove
knowledge of β without access to the (A,B) interaction. The construction in section 5
yields a nonmalleable scheme for zero-knowledge proof of possession of knowledge.

1.2. Some technical remarks.
Nonmalleability in context. In the scenarios we have been describing, there

are (at least) two protocol executions involved: the (A,B) interaction and the (C,D)
interaction. Even if both pairs of players are, say, running string commitment pro-
tocols, the protocols need not be the same. Similar observations apply to the cases
of nonmalleable public-key cryptosystems and nonmalleable zero-knowledge proofs of
knowledge. Thus nonmalleability of a protocol really only makes sense with respect
to another protocol. All our nonmalleable protocols are nonmalleable with respect to
themselves. A more general result is mentioned briefly in section 5.

Identities. One delicate issue is the question of identities. Let α and β be as
above. If the players have names, then our commitment and zero-knowledge interac-
tion protocols guarantee that β is independent of α. The names may come from an
unbounded universe. Note that there are many possibilities for names: timestamps,
locations, message histories, and so on. If the players are anonymous, or the names
they claim cannot be verified, then it is impossible to solve the transparent prover
problem described earlier. However, the faulty prover must be completely transpar-
ent: if β �= α then the two strings are unrelated by any relation R. In particular,
recall the scenario described above in which (relatively unknown) researcher A seeks
credit for the P �= NP result and at the same time needs protection against the
transparent prover attack. Instead of proving knowledge of a witness s that P �= NP ,
researcher A can prove knowledge of a statement α = A ◦ s. In this case the only
dependent statement provable by professor B is α, which contains the name A. Note
that we do not assume any type of authenticated channels.

Computational complexity assumptions. We assume the existence of trap-
door functions in constructing our public-key cryptosystems. The string commitment
protocols and the compiler for zero-knowledge interactions require only one-way func-
tions.

2. Definitions and system model. Since nonmalleability is a concept of in-
terest in at least the three contexts of encryption, bit/string commitment, and zero-
knowledge proofs, we give a single general definition that applies to all of these. Thus,
when we speak of a primitive P we can instantiate any of these three primitives. We
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start in section 2.1 by providing definitions for the primitives, as well as for some of
the tools we use. Our presentation of the notion of security is nonstandard and we
call it semantic security with respect to relations. In Theorem 2.4, we show that our
version is equivalent to the “traditional” definition. We prefer this version for several
reasons:

• It provides a uniform way of treating the security of all the primitives, i.e.,
the definition of zero-knowledge and semantic security do not seem different.

• It generalizes to the nonmalleable case in a natural way, whereas the usual
notion of semantic security (provably) does not.

In section 2.2 we provide the definition of nonmalleable security. In section 2.3 we
define the system model which is most relevant to those primitives which involve a
lot of interaction.

The following definitions and notation are common to all the sections. We use
X ∈R B to mean that X is chosen from B at random. If B is a set, then X is simply
chosen uniformly at random from the elements of B. If B is a distribution, then
X ∈R B means that X is chosen according to B from the support of B.

An interactive protocol (A,B)[c, a, b] is an ordered pair of polynomial-time prob-
abilistic algorithms A and B to be run on a pair of interactive Turing machines with
common input c and with private inputs a and b, respectively, where any of a, b, c
might be null.

We distinguish between the algorithm A and the agent ψ(A) that executes it. We
also use ψ(A) to denote a faulty agent that is “supposed” to be running A (that is,
that the nonfaulty participants expect to be running A) but has deviated from the
protocol. Thus A is the protocol, and ψ(A) is the player.

2.1. Definitions of primitives. In this section, we review the definitions from
the literature of probabilistic public-key cryptosystems, string commitment, zero-
knowledge interaction, and noninteractive zero-knowledge proof systems, all of which
are used as primitives in our constructions. As mentioned above, we provide a unifying
treatment of the security of all the primitives.

Probabilistic public-key encryption. A probabilistic public-key encryption
scheme (see [43]) consists of the following:

• GP , the key generator, a probabilistic machine that on unary input 1n, where
n is the security parameter, outputs a pair of strings (e, d) (e is the public key
and d is the secret key);

• E, the encryption function, gets three inputs: the public key e, b ∈ {0, 1},
and a random string r of length p(n), for some polynomial p; Ee(b, r) is
computable in polynomial time;

• D, the decryption function, gets two inputs: c which is a ciphertext and the
private key d which was produced by GP ; Dd(c) is computable in expected
polynomial time;

• if GP outputs (e, d), then

∀b ∈ {0, 1} ∀r ∈ {0, 1}p(n) Dd(Ee(b, r)) = b;

• The system has the property of indistinguishability: for all polynomial-time
machines M , for all c > 0 ∃nc such that (s.t.) for n > nc,

|Prob[M(e, Ee(0, r)) = 1] − Prob[M(e, Ee(1, r)) = 1]| < 1

nc
,
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where the probability is taken over the coin-flips of GP , M and the choice
of r.

This definition is for bit encryption and the existence of such a method suffices
for our constructions. To encrypt longer messages one can concatenate several bit
encryptions or use some other method. The definition of indistinguishability in this
case becomes that with overwhelming probability over choice of encryption keys e,
M cannot find two messages (m0,m1) for which it can distinguish with polynomial
advantage between encryptions of m0 and m1. Formally, we give the following defini-
tion.
Definition 2.1. Let (GP,E,D) be a probabilistic public-key cryptosystem. We

say that the system has the property of indistinguishability of encryptions if for all
pairs of probabilistic polynomial time machines (F , T ), for all c > 0 ∃nc s.t. for
n > nc,

Pr

[
|Pr[T (e,m0,m1, Ee(m0, r)) = 1] − Pr[T (e,m0,m1, Ee(m1, r)) = 1]| ≥ 1

nc

]
<

1

nc
,

where the external probability is over the choice of e and the coin-flips of F (which
gets e as input), and each internal probability is taken the coin-flips of T and the
choice of r.

For implementations of probabilistic encryption see [2, 14, 39, 52, 66]. In partic-
ular, such schemes can be constructed from any trapdoor permutation.

When describing the security of a cryptosystem, one must define what the attack
is and what it means to break the system. The traditional notion of breaking (since
[43]) has been a violation of semantic security or, equivalently, a violation of indistin-
guishability. This work introduces the notion of nonmalleable security, and a break
will be a violation of nonmalleability. We return to this in section 2.2. We consider
three types of attacks against a cryptosystem:

• Chosen plaintext. This is the weakest form of attack that makes any sense
against a public-key cryptosystem. The attacker can (trivially) see a cipher-
text of any plaintext message (because she can use the public encryption key
to encrypt).

• Chosen ciphertext in the sense of [61], sometimes called lunch-break or lunch-
time attacks in the literature; we prefer the term chosen ciphertext attack
in the preprocessing mode, abbreviated CCA-pre. Here, the adversary may
access a decryption oracle any polynomial (in the security parameter) number
of times. Then the oracle is removed and a “challenge” ciphertext is given to
the attacker.

• Chosen ciphertext in the sense of Rackoff and Simon [63]; we prefer the term
chosen ciphertext attack in the postprocessing mode, abbreviated CCA-post.
This is defined formally in section 3. The key point is that the attacker sees
the challenge ciphertext before the oracle is removed, and can ask the oracle
to decrypt any (possibly invalid) ciphertext except the challenge.

Our version of semantic security under chosen plaintext attack is the following:
Let R be a relation computable in probabilistic polynomial time. We define two
probabilities. Let A be an adversary that gets a key e and produces a distribution
M on messages of length "(n) by producing a description (including a specific time
bound) of a polynomial-time machine that generates M. A is then given a challenge
consisting of a ciphertext c ∈R Ee(m), where m ∈R M and Ee(m) denotes the set
{Ee(m, r) s.t. |r| = p(n)}. In addition, A receives a “hint” (or history) about m in the
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form of hist(m), where hist is a polynomially computable function. A then produces
a string β. We assume that the prefix of β is the description of M.

A is considered to have succeeded with respect to R if R(m,β). Since β contains
a description of M, R is aware of M and may decide to accept or reject based on
its description. This rules out achieving “success” by choosing a trivial distribution.
Let π(A, R) be the probability that A succeeds with respect to R. The probability is
over the choice of e, the coin-flips of A, and the choice of m, so in particular it is also
over the choice of M.

For the second probability, we have an adversary simulator A′ who will not have
access to the encryption. On input e, A′ chooses a distribution M′. Choose an
m ∈R M′ and give hist(m) to A′. A′ produces β. As above, A′ is considered to
have succeeded with respect to R if R(m,β). Let π′(A′, R) be the probability that
A′ succeeds.

Remark 2.2. 1. In their seminal paper on probabilistic encryption, Goldwasser
and Micali separate the power of the adversary into two parts: a message finder that,
intuitively, tries to find a pair of messages on which the cryptosystem is weak, and
the line tapper, that tries to guess which of the two chosen messages is encrypted by
a given ciphertext [43]. Accordingly, we have let A choose the message space M on
which it will be tested. By letting A′ choose M′ (rather than “inheriting” M from
A), we are letting the simulator completely simulate the behavior of the adversary, so
in this sense our definition is natural. A second reason for this choice is discussed in
section 3.4.3.

2. As noted above, the fact that the description of M or M′ is given explicitly to
R prevents A′ from choosing a trivial distribution, e.g., a singleton, since R can “rule
out” such M’s.

Definition 2.3. A scheme S for public-key cryptosystems is semantically se-
cure with respect to relations under chosen plaintext attack if for every probabilistic
polynomial time adversary A as above there exists a probabilistic polynomial time ad-
versary simulator A′ such that for every relation R(m,β) and function hist(m), both
computable in probabilistic polynomial time, |π(A, R) − π′(A′, R) | is subpolynomial.
In this definition, the chosen plaintext attack is implicit in the definition of A. This
is a convention that will be followed throughout the paper.

Note the differences between our definition of semantic security with respect to
relations and the original definition of semantic security [43]: in the original definition
the challenge was to compute f(x) given E(x), where the function f is not necessarily
even recursive. In contrast, here R is a relation and it is probabilistic polynomial
time computable. Nevertheless, the two definitions are equivalent, as we prove in
Theorem 2.4.4

We prove the following theorem for the case of chosen plaintext attacks; the proof
carries over to both CCA-preprocessing and CCA-postprocessing.

Theorem 2.4. A public-key cryptosystem is semantically secure with respect to
relations under chosen plaintext attack if and only if it has the indistinguishability
property.

4The literature shows for three versions of semantic security and three corresponding versions of
indistinguishability that each version of semantic security is equivalent to the corresponding version
of indistinguishability [54, 36]. We are using a fourth version of indistinguishability—a uniform
version of the nonuniform one-pass version in [54]. Equivalence of this definition to a corresponding
version of semantic security has not been proved in the literature, but we conjecture it holds.
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Proof. We first show that if the cryptosystem has the indistinguishability property,
then it is semantically secure with respect to relations. Consider the following three
experiments. Choose an encryption key e using GP . Given the public key e, A
produces a distribution M. Sample α1, α2 ∈R M.

In the first experiment, A is given hist(α1) and Ee(α1) and produces β1. By
definition, for any relation R,

Pr[R(α1, β1) holds] = π(A, R).

In the second experiment, A is given hist(α1) and Ee(α2) and produces β2. Let

χ = Pr[R(α1, β2) holds].

Note that ifR is probabilistic polynomial-time computable and Pr[R(α1, β1) holds]
differs polynomially from Pr[R(α1, β2) holds], where the probabilities are taken over
the coin-flips by R, and the random bits used in generating the encryptions (but not
over the choice of e, M, and α1 and α2), then we can create a distinguisher for encryp-
tions of α1 and α2 under encryption key e, so in particular, given e, we have found a
pair of messages whose encryptions are easy to distinguish. Thus, with overwhelming
probability over choice of e, M, and α1, α2, the individual probabilities (with fixed e)
are close. It follows that the probabilities π(A, R) and χ (which are aggregated over
choice of e) are also close.

For the third experiment, consider an A′ that, on input e, simulates A on e to get
a distribution M. It gives M as the distribution on which it should be tested. A′ is
then given hist(α) for an α ∈R M. A′ generates α′ ∈R M and gives to the simulated
A the hint hist(α) and the encryption Ee(α

′). The simulated A responds with some
β, which is then output by A′. Note that π′(A′, R) = χ. Thus, if the cryptosystem
has the indistinguishability property, then |π(A, R) − π′(A′, R) | is subpolynomial,
so the cryptosystem is semantically secure with respect to relations.

We now argue that if a cryptosystem does not have the indistinguishability prop-
erty, then it is not semantically secure with respect to relations. If a system does
not have the indistinguishability property, then there exists a polynomial time ma-
chine M that given the public key can find two messages (m0,m1) for which it can
distinguish encryptions of m0 from encryptions of m1. The specification of A is as
follows: given a key e, A runs M to obtain (m0,m1). Let M = {m0,m1}, where
m0 and m1 each has probability 1/2, be the message distribution on which A is to
be tested. The function hist is the trivial hist(x) = 1 for all x. Given an encryption
γ ∈R Ee(m), where m ∈R M, A uses M to guess the value of m and outputs β, the
resulting guess plus the description of M. The relation R that witnesses the fact that
the cryptosystem is not semantically secure with respect to relations is equality plus
a test of consistency with M. Recall that the description of M is provided explicitly,
and hence R can also check that M is of the right form.

Since M is by assumption a distinguisher, having access to the ciphertext γ gives
A a polynomial advantage at succeeding with respect to R over any A′ that does not
have access to the ciphertext (which has probability 1/2).

Thus, a scheme is semantically secure with respect to relations if and only if it
has the indistinguishability property. It follows from the results in [36, 43, 54] that
the notions of (traditional) semantic security, indistinguishability, and semantically
secure with respect to relations are all equivalent.

String commitment. The literature discusses two types of bit or string com-
mitment: computational and information theoretic. These terms describe the type of
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secrecy of the committed values offered by the scheme. In computational bit commit-
ment, there is only one possible way of opening the commitment. Such a scheme is
designed to be secure against a probabilistic polynomial-time receiver and an arbitrar-
ily powerful sender. In information theoretic commitment, it is possible to open the
commitment in two ways, but the assumed computational boundedness of the sender
prevents him from finding the second way. Such a scheme is designed to be secure
against an arbitrarily powerful receiver and a probabilistic polynomial-time prover.
We restrict our attention to computational string commitment.

A string commitment protocol between sender A and receiver B consists of two
stages:

• The commit stage. A has a string α to which she wishes to commit to B. She
and B exchange messages. At the end of this stage, B has some information
that represents α, but B should gain no information on the value of α from
the messages exchanged during this stage.

• The reveal stage. At the end of this stage, B knows α. There should be only
one string that A can reveal.

The two requirements of a string commitment protocol are binding and secrecy.
Binding means that, following the commit stage, A can reveal at most one string. In
our scenario we require the binding to be unconditional but probabilistic: with high
probability over B’s coin-flips, following the commit stage there is at most one string
that B accepts (as the value committed) in the reveal stage.

The type of secrecy we require is semantic security. We specify what this means
using the notions of security with respect to relations (however, as above, it is equiv-
alent to the “traditional” way of defining semantic security). Let A be an adversary
that produces a distribution M on strings of length "(n) computable in probabilistic
polynomial time. A string α ∈R M is chosen and A receives hist(α), where hist is a
probabilistic polynomial-time computable function. The commitment protocol is ex-
ecuted, where ψ(A) follows the protocol and ψ(B) is controlled by A. The adversary
A then produces a string β. We assume that the prefix of β is the description of M.

A is considered to have succeeded with respect to R if R(α, β). Let π(A, R) be the
probability that A succeeds with respect to R. The probability is over the coin-flips
of A, and the choice of α.

For the second probability, we have an adversary simulator A′ who will not have
access to the (ψ(A), ψ(B)) execution of the string commitment protocol. A′ chooses
a distribution M′. An α ∈R M′ and hist(α) is given to A′. A′ produces β. As above,
A′ is considered to have succeeded with respect to R if R(α, β).
Definition 2.5. A commitment scheme is semantically secure with respect to

relations if for every probabilistic polynomial-time adversary A as above there ex-
ists a probabilistic polynomial-time adversary simulator A′ s.t. for every probabilistic
polynomial-time computable relation R(α, β) and function hist(m) computable in prob-
abilistic polynomial time, |π(A, R) − π′(A′, R) | is subpolynomial.

Zero-knowledge interaction. We next present a generalization of a (uniform)
zero-knowledge interactive proof of language membership.

Let (A,B)[a, b] be an interactive protocol, where (a, b) belongs to a set Π of legal
input pairs to A and B. (In the special case of zero-knowledge proofs of language
membership, the valid pairs (a, b) have the property that the prefixes of a and b are
the common input x ∈ L.) Roughly speaking, we say that (A,B) is zero-knowledge
with respect to B if for every polynomial-time bounded B′, there exists a simulator
that can produce conversations between (A,B′) which are indistinguishable from the
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actual (A,B′) conversation. More accurately, and pursuing the terminology of this
section, let A be an adversary that controls ψ(B). A chooses a joint distribution D,
consistent with Π, on [a, b], and then a pair [a, b] is drawn according to D; ψ(A) gets
a, ψ(B) gets b, and the interaction proceeds by ψ(A) following the protocol (while
ψ(B)’s actions are controlled by A). The result is a transcript T of the conversation
between ψ(A) and ψ(B). A also produces a string σ which contains as a prefix the
description of D (and may contain such information as the state of ψ(B) at the end
of the protocol).

Let R be a ternary relation. A is considered to have succeeded with respect to R
if R([a, b], T, σ). Let π(A, R) be the probability that A succeeds with respect to R.
The probability is over the coin-flips of A, the coin-flips of ψ(A), and the choice of
[a, b].

On the other hand, we have A′ that selects D′ consistent with Π. A pair [a, b]
is then drawn according to D′, and A′ receives b. A′ produces a transcript T ′ and
a string σ′. A′ is considered to have succeeded with respect to R if R([a, b], T ′, σ′).
Let π(A′, R) be the probability that A succeeds with respect to R. The probability
is over the coin-flips of A′ and the choice of [a, b].
Definition 2.6. A protocol (A,B) is zero-knowledge with respect to B if for

all probabilistic polynomial-time adversaries A as above there exists a probabilistic
polynomial-time adversary simulator A′ such that for every relation R computable in
probabilistic polynomial time |π(A, R) − π′(A′, R) | is subpolynomial.

(If (a, b) /∈ Π, then zero-knowledge is not ensured, but other requirements may
hold, depending on the protocol.)

Two interesting examples of zero-knowledge interaction are proof of language
membership [44, 40] and proofs of knowledge [31]. Both of these can be based on the
existence of string commitment protocols.

Noninteractive zero-knowledge proof systems. An important tool in the
construction of our public-key cryptosystem are noninteractive zero-knowledge proof
systems (NIZKs). The following explanation is taken almost verbatim from [61]: A
(single-theorem) noninteractive proof system for a language L allows one party P to
prove membership in L to another party V for any x ∈ L. P and V initially share
a string U of length polynomial in the security parameter n. To prove membership
of a string x in Ln = L ∩ {0, 1}n, P sends a message p as a proof of membership.
V decides whether to accept or to reject the proof. Noninteractive zero-knowledge
proof systems were introduced in [12, 13]. A noninteractive zero-knowledge scheme
for proving membership in any language in NP which may be based on any trapdoor
permutation is described in [32]. Recently, Kilian and Petrank [49, 50] found more
efficient implementations of such schemes. Their scheme is for the circuit satisfiability
problem. Let k be a security parameter. Assuming a trapdoor permutation on k bits,
the length of a proof of a satisfiable circuit of size L (and the size of the shared random
string) is O(Lk2).

The shared string U is generated according to some distribution U(n) that can be
generated by a probabilistic polynomial-time machine. (In all the examples we know
of it is the uniform distribution on strings of length polynomial in n and k, where the
polynomial depends on the particular protocol, although this is not required for our
scheme.)

Let L be in NP. For any x ∈ L, let WL(x) = {z| z is a witness for x} be the set
of strings that witness the membership of x in L. For the proof system to be of any
use, P must be able to operate in polynomial time if it is given a witness z ∈WL(x).
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We call this the tractability assumption for P. In general, z is not available to V.

Let P(x, z, U) be the distribution of the proofs generated by P on input x, witness
z, and shared string U . Suppose that P sends V a proof p when the shared random
string is U . Then the pair (U, p) is called the conversation. Any x ∈ L and z ∈WL(x)
induces a probability distribution CONV(x, z) on conversations (U, p), where U ∈ U
is a shared string and p ∈ P(x, z, U) is a proof.

For the system to be zero-knowledge, there must exist a simulator Sim which,
on input x, generates a conversation (U, p). Let Sim(x) be the distribution on the
conversations that Sim generates on input x, let SimU (x) = SimU be the distribution
on the U part of the conversation, and let SimP (x) be the distribution on the proof
component. In the definitions of [13, 32] the simulator has two steps: it first outputs
SimU without knowing x, and then, given x, it outputs SimP (x). (This requirement,
that the simulator not know the theorem when producing U , is not essential for our
purposes; however, for convenience, our proof in section 3.3 does assume that the
simulator is of this nature.)

Let

ACCEPT (U, x) = {p|V accepts on input U, x, p},

and let

REJECT (U, x) = {p|V rejects on input U, x, p}.

The following is the definition of noninteractive proof systems of [12], modified
to incorporate the tractability of P. The uniformity conditions of the system are
adopted from Goldreich [35].

Definition 2.7. A triple (P,V,U), where P is a probabilistic polynomial-time
machine, V is a polynomial-time machine, and U is a polynomial-time sampleable
probability distribution, is a noninteractive zero-knowledge proof system for the lan-
guage L ∈ NP if the following are present:

1. Completeness (if x ∈ L, then P generates a proof that V accepts): For all
x ∈ Ln, for all z ∈WL(x), with overwhelming probability for U ∈R U(n) and
p ∈R P(x, z, U), p ∈ ACCEPT (U, x). The probability is over the choice of
the shared string U and the internal coin-flips of P.

2. Soundness (if y �∈ L, then no prover can generate a proof that V accepts): For
all y �∈ Ln with overwhelming probability over U ∈R U(n) for all p ∈ {0, 1}∗,
p ∈ REJECT (U, y). The probability is over the choices of the shared string
U .

3. Zero-knowledge: There is a probabilistic polynomial-time machine Sim which
is a simulator for the system: For all probabilistic polynomial-time machines
C, if C generates x ∈ L and z ∈WL(x), then

|Prob[C(w) = 1|w ∈R Sim(x)] − Prob[C(w) = 1|w ∈R CONV(x, z)]| < 1

p(n)

for all polynomials p and sufficiently large n.

In the construction of the nonmalleable cryptosystem in section 3, noninteractive
zero-knowledge proof systems are used to prove that encryptions generated under
independent keys correspond to the same plaintext. This is similar to their application
in [61].
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2.2. Definitions specific to nonmalleability. In any interactive protocol (A,B)
for primitive P, party A has an intended value. In the case of encryption it is the
value encrypted in ψ(B)’s public key; in string commitment it is the string to which
ψ(A) commits; in a zero-knowledge proof it is the theorem being proved interactively.
The intended value is a generalization of the notion of an input. Indeed, when ψ(A)
is nonfaulty we may refer to the intended value as an input to A. However, we do
not know how to define the input to a faulty processor that can, for example, refuse
to commit to it. In this case we may need to substitute in a default value. The term
intended value covers cases like this.

We sometimes refer to ψ(A) as the sender and to ψ(B) as the receiver. We use
the verb to send to mean, as appropriate, to send an encrypted message, to commit
to, and to prove knowledge of. Intuitively, in each of these cases information is being
transmitted, or sent, from the sender to the receiver.

Interactive protocols (A,B), including the simple sending of an encrypted mes-
sage, are executed in a context, and the participants have access to the history pre-
ceding the protocol execution. When ψ(A) has intended value α, we assume both
parties have access to hist(α), intuitively, information about the history that leads to
ψ(A) running the protocol with intended value α.

In some cases we also assume an underlying probability distribution D on intended
values, to which both parties have access (that is, from which they can sample in
polynomial time).

An adversarially coordinated system of interactive protocols

〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉

consists of two interactive protocols (A,B) and (C,D), an adversary A controlling
the agents ψ(B) and ψ(C), the communication between these agents, and the times
at which all agents take steps.

Generally, we are interested in the situation in which A = C and B = D, for
example, when both interactive protocols are the same bit commitment protocol.
Thus, for the remainder of the paper, unless otherwise specified, (A,B) = (C,D), but
ψ(A), ψ(B), ψ(C), and ψ(D) are all distinct.

Consider the adversarially coordinated system 〈(A,B), (C,D), A : ψ(B) ↔
ψ(C)〉. In an execution of this system, ψ(A) sends an intended value α ∈R D in
its conversation with ψ(B), and ψ(C) sends an intended value β in its conversation
with ψ(D). If ψ(C) fails to do so—e.g., fails to respond to a query, is caught cheating,
or produces invalid ciphertexts—we take β to be all zeros.

We treat “copying” slightly differently in the context of encryption, which is non-
interactive, and in the commitment and zero-knowledge settings, which are interactive.
In particular, our results are stronger for encryption, since our construction rules out
anything but exact copying of the ciphertext. Thus, seeing the ciphertext does not
help the adversary to construct a different encryption of the same message. In the
interactive setting we only ensure that if α �= β, then the two values are unrelated. We
use identities (chosen by the users and not enforced provided by any authentication
mechanism) to force α and β to be different. In particular, if the adversary wishes to
be a transparent intermediary, then we do not bother to rule out the case in which the
adversary commits to or proves exactly the same string as A does, even if it gives a
different commitment (to the same value) or a different proof (of the same theorem).

We now formally define the nonmalleability guarantee in the interactive setting.
A relation approximator R is a probabilistic polynomial-time Turing machine taking
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two inputs5 and producing as output either 0 or 1. The purpose of the relation
approximator is to measure the correlation between α and β. That is, R measures
how well the adversary manages to make β depend on α. In the interactive settings,
we restrict our attention to the special class of relation approximators which on input
pairs of the form (x, x) always output 0. The intuition here is that we cannot rule
out copying, but, intuitively, this is not the case in which the adversary “succeeds.”

When we discuss composition (or parallel execution) we will extend the definition
so that the first input is actually a vector V of length k. The intuition here is that C
may have access to several interactions with, and values sent by, nonfaulty players. In
that case, the approximator must output zero on inputs (V, y) in which y is either a
component of V , corresponding to the case in which ψ(C) sends the same value as one
of the nonfaulty players (in the case of encryption this is ruled out by the definition
of the adversary).

Given a probability distribution on the pair of inputs, there is an a priori prob-
ability, taken over the choice of intended values and the coin-flips of R, that R will
output 1. In order to measure the correlation between α and β, we must compare
R’s behavior on input pairs (α, β) generated as described above to its behavior on
pairs (α, γ), where γ is sent without access to the sending of α (although as always
we assume that ψ(C) has access to D and hist(α)).

An adversary simulator for a commitment (zero-knowledge proof of knowledge)
scheme S with input distribution D and polynomial-time computable function hist, is
a probabilistic polynomial-time algorithm that, given hist, hist(α), and D, produces
an intended value γ.

Consider an adversarially coordinated system of interactive protocols
〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉, where (A,B) and (C,D) are both instances of
S, and Π is the set of legal input pairs to the two parties executing S. A may choose
any probabilistic polynomial-time sampleable distribution D on the joint distribution
to all four players,

ψ(A), ψ(B), ψ(C), ψ(D),

respectively, where the inputs to ψ(A) and ψ(B) are consistent with Π. Let (α, x, y,
δ) ∈R D. For any relation approximator R, let π(A, R) denote the probability, taken
over all choices of ψ(A), ψ(D), A, and R, that A, given x, y, hist(α), and participation
in the (A,B) execution in which ψ(A) sends α, causes ψ(C) to send β in the (C,D)
execution, such that R(α, β) outputs 1, under some specified form of attack. (Since
ψ(C) is under control of the adversary, there is no reason that β should equal y.)

Similarly, for an adversary simulator A′ choosing a joint distribution D′ for all four
players where the inputs to ψ(A) and ψ(B) are consistent with Π, for (α, x, y, δ) ∈R D′,
let A′ have access to x, y, and hist(α), and let A′ send γ. Let π′(A′, R) denote the
probability, taken over the choices of A′, and the choices of R, that R(α, γ) = 1.
Definition 2.8. A scheme S for a primitive P is nonmalleable with respect

to itself under a given type of attack G, if for all adversarially coordinated systems
〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉, where (A,B) = (C,D) = S, where A mounts
an attack of type G, there exists an adversary simulator A′ such that for all relation
approximators R, |π(A, R) − π′(A′, R) | is subpolynomial.6

5Sometimes we will need R to take three inputs, the third being in plaintext.
6In the previous version of this paper the order of quantifiers was ∀R∀A∃A′, yielding a possibly

weaker definition. However, all the constructions in our work satisfy the stronger order of quantifiers
given here. Now all our definitions share a common order of quantifiers.



404 DANNY DOLEV, CYNTHIA DWORK, AND MONI NAOR

This definition is applicable to all three primitives. As stated above, the precise
attack against the system is crucial to the definition of A and hence of π(A, R). In
particular, when we discuss encryption in section 3, we will specify the nature of
the adversary precisely. The definition makes sense for all types of attack, with the
appropriate choices of π(A, R). Finally, we must specify the “unit” which we are
trying to protect; i.e., is it a single encryption or several?
Remark 2.9. There are three possible interpretations of Definition 2.8, according

to the running time of A′:
1. A′ runs in a fixed polynomial time; this is strict nonmalleability (we usually

drop the appellation “strict”).
2. A′ runs in expected polynomial time; in accordance with Goldreich’s taxon-

omy for zero-knowledge, we call this liberal [35] nonmalleability.
3. For every ε there exists A′ running in time polynomial in n and ε−1 such

that |π(A, R) − π′(A′, R)| < ε; this is the ε-malleability, this time in analogy
to ε-knowledge ([43]; see also [29]).

Our public-key cryptosystem is strictly nonmalleable. M. Fischlin and R. Fischlin have
pointed out that we do not prove strict nonmalleability in our commitment scheme;
however, we prove both liberal nonmalleability and ε-malleability.

2.3. System model. We assume a completely asynchronous model of comput-
ing. For simplicity, we assume FIFO communication links between processors (if the
links are not FIFO, then this can be simulated using sequence numbers). We do not
assume authenticated channels.

We do not assume the usual model of a fixed number of mutually aware proces-
sors. Rather, we assume a more general model in which a given party does not know
which other parties are currently using the system. For example, consider a number
of interconnected computers. A user (“agent”) can log into any machine and commu-
nicate with a user on an adjacent machine, without knowing whether a given third
machine is actually in use at all, or if the second and third machines are currently
in communication with each other. In addition, the user does not know the set of
potential other users, nor need it know anything about the network topology.

Thus, we do not assume a given user knows the identities of the other users of the
system. On the other hand, our protocols may make heavy use of user identities. One
difficulty is that in general, one user may be able to impersonate another. There are
several ways of avoiding this. For example, Rackoff and Simon [63] propose a model
in which each sender possesses a secret associated with a publicly known identifying
key issued by a trusted center.

In the scenario of interconnected computers described above, an identity could be
composed of the computer serial number and a timestamp, possibly with the addition
of the claimed name of the user. In the absence of some way of verifying claimed
identities, exact copying of the pair, claimed identity and text, cannot be avoided, but
we rule out essentially all other types of dependence between intended values.

We can therefore assume that the intended value α sent by ψ(A) contains as its
first component a user identity, which may or may not be verifiable. Fix a scheme S
and an adversarially coordinated system of interactive protocols 〈(A,B), (C,D), A :
ψ(B) ↔ ψ(C)〉, where (A,B) and (C,D) are both instances of S, and let α and β
be sent by ψ(A) and ψ(C), respectively. Then, whether or not the identities can be
checked, if S is nonmalleable and α �= β, then β’s dependence on α is limited to
dependence on hist(α). In addition, if the identities can be checked, then α �= β.

In order to avoid assumptions about the lengths of intended values sent, we assume
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the space of legal values is prefix-free.

3. Nonmalleable public-key cryptosystems. A public-key cryptosystem al-
lows one participant, the owner, to publish a public key, keeping secret a corresponding
private key. Any user that knows the public key can use it to send messages to the
owner; no one but the owner should be able to read them. In this section, we show how
to construct nonmalleable public-key cryptosystems. The definitions apply, mutatis
mutandi, to private-key cryptosystems. As was done by [45] in 1984 in the context of
digital signatures, when defining the security of a cryptosystem one must specify (a)
the type of attack considered and (b) what it means to break the cryptosystem.

The cryptosystem we construct is secure against chosen ciphertext attacks. In
fact it is secure against a more severe attack suggested by Rackoff and Simon [63] and
which we call CCA-post: The attacker knows the ciphertext she wishes to crack while
she is allowed to experiment with the decryption mechanism. She is allowed to feed
it with any ciphertext she wishes, except for the exact one she is interested in. Thus
the attacker is like a student who steals a test and can ask the professor any question,
except the ones on the test. This is the first public-key cryptosystem to be prov-
ably secure against such attacks. Indeed, (plain) RSA [64] and the implementation
of probabilistic encryption based on quadratic residuousity [43] are insecure against
CCA-post.

Malleability, as defined in section 2.2, specifies what it means to “break” the
cryptosystem. Informally, given a relation R and a ciphertext of a message α, the
attacker A is considered successful if it creates a ciphertext of β such that R(α, β) = 1.
The cryptosystem is nonmalleable under a given attack G if for every A mounting an
attack of type G, there is an A′ that, without access to the ciphertext of α, succeeds
with similar probability as A in creating a ciphertext of γ such that R(α, γ) = 1.
Given the notion of semantic security with respect to relations and Theorem 2.4,
nonmalleability is clearly an extension of semantic security. See section 3.4.2 for the
relationship between nonmalleability and the type of attack.

We now define precisely the power of the CCA-post adversary A. Let R be a
polynomial-time computable relation. Let n be the security parameter. A receives the
public key e ∈R GP (n) and can adaptively choose a sequence of ciphertexts c1, c2, . . ..
On each of them, A receives the corresponding plaintext. It then produces a distribu-
tion M on messages of length "(n), for some polynomial ", by giving the polynomial-
time machine that can generate this distribution. A then receives as a challenge a
ciphertext c ∈R Ee(m), wherem ∈R M, together with some “side-information” about
m in the form of hist(m), where hist is some polynomially computable function. A
then engages in a second sequence of adaptively choosing ciphertexts c′1, c

′
2, . . .. The

only restriction is that c �= c′1, c
′
2, . . . . At the end of the process, A produces a polyno-

mially bounded length vector of ciphertexts (f1, f2, . . .) not containing the challenge
ciphertext c, with each fi ∈ Ee(βi), and a cleartext string σ which we assume contains
a description of M.7 Let β = (β1, β2, . . .). A is considered to have succeeded with
respect to R if R(m,β, σ). (We separate β from σ because the goal of the adversary
is to produce encryptions of the elements in β.) Let π(A, R) be the probability that
A succeeds where the probability is over the coin-flips of the key generator, A,M and

7In the public key context, σ serves no purpose other than providing the description ofM as an
input to R, since in this situation from any plaintexts p ∈M that are part of σ it is always possible
to compute an encryption of σ, so we could always add an additional fi ∈ Ee(p) to our vector of
ciphertexts. However, we introduce the possibility of including plaintexts p in σ so that the definition
can apply to symmetric, or private-key, encryption.
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the encryption of m.
Let A′ be an adversary simulator that does not have access to the encryptions

or to the decryptions but can pick the distribution M′. On input e, A′ produces M′

and then m ∈R M′ is chosen. A′ receives hist(m) and without the benefit of the
chosen ciphertext attack should produce a vector of ciphertexts (f1, f2, . . .), where
each fi ∈ Ee(βi), and a string σ containing M′. Let β = (β1, β2, . . .). As above, A′
is considered to have succeeded with respect to R if R(m,β, σ). Let π′(A′, R) be the
probability that A′ succeeds where the probability is over the coin-flips of the key
generator, A′ and M′.

Note that A′ has a lot less power than A: not only does it not have access to
the ciphertext encrypting α, but it cannot perform any type of chosen ciphertext
attack, even in choosing the distribution M′. Note also that as in the definition of
semantically secure with respect to relations, the fact that M is given to R prevents
A′ from choosing trivial distributions.
Definition 3.1. A scheme S for public-key cryptosystems is nonmalleable with

respect to chosen ciphertext attacks in the postprocessing mode (CCA-post attacks), if
for all probabilistic polynomial-time adversaries A as above there exists a probabilistic
polynomial-time adversary simulator A′ s.t. for all relations R(α, β, σ) computable in
probabilistic polynomial time, |π(A, R) − π′(A′, R) | is subpolynomial.

Note that the definition does not require R to be restricted (to a relation approx-
imator) as described in section 2.2.

An illustration of the power of nonmalleability under CCA-post attacks is pre-
sented in section 3.5, where we discuss an extremely simple protocol for public-key
authentication, a relaxation of digital signatures that permits an authenticator A
to authenticate messages m, but in which the authentication needn’t (and perhaps
shouldn’t!) be verifiable by a third party. The protocol requires a nonmalleable
public-key cryptosystem and is simply incorrect if the cryptosystem is malleable.

Simple ideas that do not work. A number of simple candidates for nonmal-
leable cryptosystems come to mind. Let E be a cryptosystem semantically secure
against a chosen ciphertext attack. Assume for concreteness that A wishes to send
the message m and B wishes to send “1 + the value sent by A.” That is, B, without
knowing m, wishes to send m+ 1.

One “solution” would be to append to E(m) a noninteractive zero-knowledge
proof of knowledge of the encrypted value m. The problem with this approach is that
the proof of knowledge may itself be malleable: conceivably, given E(m) and a proof
of knowledge of m, it may be possible to generate E(m+ 1) and a proof of knowledge
of m+ 1.

Another frequently suggested approach is to sign each message. Thus, to send a
message m, party A sends (E(m), SA(E(m))), where SA is a private signing algorithm
for which a public verification key is known. There are two problems with this: first,
it assumes that senders as well as receivers have public keys; second, it misses the
point: if E is malleable, then B, seeing (E(m), SA(E(m))), simply ignores the second
component, generates E(m+1), say, based on E(m), and sends (E(m+1), SB(E(m+
1))).

Yet another suggestion is to put the signature inside the ciphertext: A sends
E(m ◦SA(m)). This still suffers from the assumption that A has a public verification
key corresponding to SA, and it again misses the point: B is not trying to produce
E(m+1, SA(m+1)), but only E(m+1◦SB(m+1)). The unforgeability properties of
SA say absolutely nothing about B’s ability to produce an encryption of SB(m+ 1).
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One more suggestion is to append an ID to each message and send, for example,
E(A ◦ m). Again, we do not know how to show that, based only on the semantic
security of E against chosen ciphertext attack, seeing E(A ◦m) does not help B to
produce E(B ◦m) or E(B ◦m+ 1).

Overview of the scheme. The public key consists of 3 parts: (1) a collection
of n pairs of keys {〈e0i , e1i 〉|1 ≤ i ≤ n}; (2) a random string U for providing zero-
knowledge proofs of consistency in a noninteractive proof system; (3) a universal
one-way hash function. U is uniformly distributed because it is to the advantage of
its creator (the verifier in the noninteractive zero-knowledge proof) that it should be
so.

The process of encryption consists of four parts.
1. An “identity” is chosen for the message by creating a public signature veri-

fication key; the corresponding signing key is kept private. The signing key
is only used to sign a single message, so a one-time signature scheme may be
used here.

2. The message is encrypted under several encryption keys chosen from {〈e0i ,
e1i 〉|1 ≤ i ≤ n} as a function of the public signature verification key chosen in
the first step. The selection is made by hashing the public signature verifica-
tion key using the universal one-way hash function that is part of the public
key for the cryptosystem.

3. A (noninteractive zero-knowledge) proof of consistency is provided, showing
that the value encrypted under all the selected keys is the same one.

4. The encryptions and the proof are signed using the private signing key chosen
in the first step.

When a message is decrypted, the signature verification key comprising the iden-
tity is used to verify that the signature is valid; the proof of consistency of encryptions
is also checked. Only then is the (now well-defined) plaintext extracted.

The hash function is used only for efficiency; without it we would have to increase
n, the number of encryption key pairs 〈e0i , e1i 〉 in the public key for the cryptosystem.
Thus, intuitively, the hash function plays a role analogous to the usual role of a hash
function in an implementation of a signature scheme; however, we use it to hash the
public verification key of the (freshly chosen) signature scheme, rather than the text of
a message to be signed. As we will see, the critical point is that every identity chosen
yields a distinct set of keys under which consistent encryptions must be created.

The idea of encrypting under several keys and proving consistency appeared
in [61]. However, in [61] every plaintext bit is encrypted under every public key
(there are only two), while here each identity for a message yields a distinct set of
keys. Thus, the main changes here to the scheme in [61] are

1. the addition of an “identity” for each message to select a distinct set of keys;
2. using a (hash of the) freshly chosen public signature verification key as the

identity;
3. signing the encryptions under the selected keys and the proof of consistency

with the (secret) signing key that corresponds to the identity.
To develop some intuition for how the identities are used, consider a hypothetical
situation in which all the keys in the pairs 〈e0i , e1i 〉, i = 1, . . . , n, are completely
malleable, and suppose further that given an NIZK that one set of encryptions is
consistent, it is easy to generate a proof of the true theorem that a set of related
encryptions is also consistent.

If (as is the case in [61], where only two keys are used) we were not to use
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signatures and we were not to select a new set of keys for each message (so that an
encryption E(m) would be a consistent set of encryptions under all the e0i and e1i ,
i = 1, . . . , n, and a proof of consistency), then given an encryption E(m), creating an
encryption, say of 2m, would be easy: use the assumed malleability of all the ebi (m)
to create encryptions ebi (2m), and use the assumed malleability of the NIZK to prove
(the true theorem) that the resulting set of encryptions is consistent. We combat
this hypothetical attack (which we cannot rule out!) using the identities, as we now
describe.

Consider an attacker that has an encryption α ∈R E(m) under our scheme and
that wishes to create from it an encryption β ∈ E(2m). Suppose, as above, that the
encryption functions ebi are completely malleable and that the NIZKs are malleable in
the sense previously described. In our case, the attacker must create an identity for
the message. Remember that an identity is the public verification key for a signature
scheme. The attacker can choose to use the same identity (signature verification key)
as in α or a different one. If the identity is preserved, this means that the attacker
is using the public signature verification key appearing in α, for which he does not
know the corresponding signature key. In this case, while the attacker can exploit
the malleability of the ebi and the NIZK, in the last step of the encryption process he
must forge a signature on the new encryptions and new proof of consistency—which
he cannot do because he does not know the private signing key. On the other hand,
if the attacker selects a new identity for β, different than the one used in α, then,
since the identity selects the keys ebi under which the message is encrypted, for some
i the attacker will have in α only ebi (m) (and he will not have e1−bi (m)), but he will
need to create e1−bi (2m), so there will be no way to exploit the malleability of the
encryption schemes e0i and e1i . To summarize, nonmalleability comes from the fact
that the choice of the subsets and the signature each authenticate the other.

As in [61], anyone can decide whether a ciphertext is legitimate, i.e., decrypts to
some meaningful message, by verifying the NIZK proof of consistency and checking,
using the signature verification key that comprises its identity, that the message is
correctly signed. Thus, no information is ever gained during an attack when the
decrypting mechanism rejects an invalid ciphertext.

Intuitively, given E(α), an attacker with access to a decryption mechanism can
generate a legal ciphertext E(β) and learn β, but nonmalleability implies that an
adversary simulator can generate E(γ) without access to E(α), where γ is distributed
essentially as β is distributed. Thus β is unrelated to α (nonmalleability), and learning
β yields no information about α (semantic security).

3.1. The tools. We require a probabilistic public-key cryptosystem that is se-
mantically secure (see section 2.1). Recall that GP denotes the key generator, e and
d denote the public and private keys, respectively, and E and D denote, respectively,
the encryption and decryption algorithms.

For public keys e1, e2, . . . , en a consistent encryption is a string w that is equal to

Ee1(b, r1), Ee2(b, r2), . . . , Een(b, rn)

for some b ∈ {0, 1} and r1, r2, . . . , rn ∈ {0, 1}p(n), for some polynomial p. The lan-
guage of consistent encryptions L = {e1, e2, . . . , en, w|w is a consistent encryption}
is in NP. For a given word w = Ee1(b, r1), Ee2(b, r2), . . . , Een(b, rn), the sequence
r1, r2, . . . , rn is a witness for its membership in L. In order to prove consistency we
need a noninteractive zero-knowledge proof system for L, as defined in section 2.1.
Recall that the system consists of a prover, a verifier, and a common random string
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U known to both the prover and the verifier and that such a scheme can be based on
any trapdoor permutation. Note that the length of U depends only on the security
parameter and not on the number of messages to be encrypted over the lifetime of
this public key.

The cryptosystem uses a universal family of one-way hash functions as defined
in [60]. This is a family of functions H such that for any x and a randomly chosen
h ∈R H the problem of finding y �= x s.t. h(y) = h(x) is intractable. The family we
need should compress from any polynomial in n bits to n bits. In [65] such families
are constructed from any one-way function.

Finally we need a one-time signature scheme, which consists of GS, the scheme
generator that outputs F , the public key of the signature scheme, and P the private
key. Using the private key P any message can be signed in such a way that anyone
knowing F can verify the signature and no one who does not know the private key
P can generate a valid signature on any message except the one signed. For exact
definition and history see [5, 45, 60].

3.2. The nonmalleable public-key encryption scheme. We are now ready
to present the scheme S.

Key generation.

1. Run GP (1n), the probabilistic encryption key generator, 2n times. Denote
the output by

(e01, d
0
1), (e

1
1, d

1
1), (e

0
2, d

0
2), (e

1
2, d

1
2), . . . , (e

0
n, d

0
n), (e1n, d

1
n).

2. Generate random reference string U .
3. Generate h ∈R H.

The public encryption key is

〈h, e01, e11, e02, e12, . . . , e0n, e1n, U〉,

and the corresponding private decryption key is 〈d01, d11, d02, d12, . . . , d0n, d1n〉.
Encryption. To encrypt a message m = b1b2 . . . bk:

1. Run GS(1n), the signature key generator. Let F be the public signature key
and P be the private signature key.

2. Compute h(F ). Denote the output by the n-bit string v1v2 . . . vn.
3. For each 1 ≤ i ≤ k:

(a) For 1 ≤ j ≤ n,
i. generate random rij ∈R {0, 1}p(n);
ii. generate cij = E

e
vj
j

(bi, rij), an encryption of bi using e
vj
j .

(b) Run P on ci = ev11 , e
v2
2 , . . . , e

vn
n , ci1, ci2, . . . , cin, with witness ri1, ri2, . . . , rin

and string U to get a proof pi that ci ∈ L.
4. Create a signature s of the sequence (c1, p1), (c2, p2), . . . , (ck, pk) using the

private signature key P .

The encrypted message is

〈F, s, (c1, p1), (c2, p2), . . . , (ck, pk)〉.
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Decryption. To decrypt a ciphertext 〈F, s, (c1, p1), (c2, p2),. . . , (ck, pk)〉:
1. Verify that s is a signature of (c1, p1),(c2, p2),. . . , (ck, pk) with public signature

key F .
2. For all 1 ≤ i ≤ k, verify that ci is consistent by running the verifier V on
ci, pi, U .

3. Compute h(F ). Denote the output by v1v2 . . . vn.
4. If V accepts in all k cases, then for all 1 ≤ i ≤ k, retrieve bi by decrypting

using any one of 〈dv11 , d
v2
2 , . . . , d

vn
n 〉. Otherwise the output is null.

Note that, by the proof of consistency, the decryptions according to the different keys
in step 4 are identical with overwhelming probability.

From this description it is clear that the generator and the encryption and de-
cryption mechanisms can be operated in polynomial time. Also if the decryption
mechanism is given a legitimate ciphertext and the right key, it produces the message
encrypted.

3.3. Nonmalleable security under CCA-post. We now prove the nonmal-
leability of the public-key encryption scheme S under a CCA-post. We define a related
scheme S ′ whose (malleable) semantic security with respect to relations under chosen
plaintext attack is straightforward. We then argue that the semantic security of S ′
under chosen plaintext attack implies the nonmalleability of S under CCA-post.

The cryptosystem S ′.
1. Run GP (1n), the probabilistic encryption key generator, n times. Denote the

output by

(e1, d1), (e2, d2), . . . , (en, dn).

The public key is the n-tuple 〈e1, . . . , en〉; the private key is the n-tuple
〈d1, . . . , dn〉.

2. Encrypt a message m = b1b2 . . . bk as follows.
3. For 1 ≤ j ≤ n:

• For 1 ≤ i ≤ k,
(a) generate random rij ∈R {0, 1}p(n), and
(b) generate cij = Eej (bi, rij), an encryption of bi under public key ej

using random string rij .
• Let cj = c1j , c2j , . . . , ckj (cj is the jth encryption of m).

4. The encryption is the n-tuple 〈c1, c2, . . . , cn〉.
5. To decrypt an encryption 〈α1, . . . , αn〉, compute mj = Ddj (αj) for 1 ≤ j ≤
n. If m1 = m2 = · · · = mn, then output m1; otherwise output “invalid
encryption.”

Lemma 3.2. The public-key encryption scheme S ′ is semantically secure with
respect to relations under chosen plaintext attack.

We will prove nonmalleability of S by reduction to the semantic security of S ′.
To this end, we define an adversary B that, on being given an encryption under S ′,
generates an encryption under S. As above, we abuse notation slightly: given a public
key E in S (respectively, E′ in S ′), we let E(m) (respectively, E′(m)) denote the set
of encryptions of m obtained using the encryption algorithm for S (respectively, for
S ′) with public key E (respectively, E′).

Notation. In what follows, adversaries A and A′ are adversaries against the
scheme S. Adversaries B and B′ are adversaries against the system S ′.
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Procedure for B: Given a public key E′ = 〈e1, . . . , en〉 in S ′:
Preprocessing phase.

1. Generate n new (e, d) pairs.
2. Run the simulator for the noninteractive zero-knowledge proof of consistency

to generate a random string U (the simulator should be able to produce a
proof of consistency of n encryptions that will be given to it later on).

3. Choose a random hash function h ∈R H.
4. Run GS(1n) to obtain a signature scheme (F, P ), where F is the public

verification key.
5. Compute h(F ). Arrange the original n keys and the n new keys so that the

keys “chosen” by h(F ) are the original n. Let E denote the resulting public
key (instance of S).

Simulation phase.

1. Run A on input E. A adaptively produces a polynomial length sequence of
encryptions x1, x2, . . .. For each xi produced by A, B verifies the signatures
and the proofs of consistency. If these verifications succeed, B decrypts xi by
using one of the new decryption keys generated in preprocessing step 1 and
returns the plaintext to A.

2. A produces a description of M, the distribution of messages it would like to
attack. B outputs M. We will show that the semantic security of S ′ with
respect to relations under chosen plaintext attack implies the nonmalleability
of S under CCA-post.

3. B is given c′ ∈R E′(m) and hist(m) for m ∈R M. It produces a ciphertext
c ∈ E(m) using the simulator of preprocessing step 2 to obtain a (simulated)
proof of consistency and the private key P generated at preprocessing step 5
to obtain the signature.

4. Give A the ciphertext c and hist(m). As in simulation step 1, A adaptively
produces a sequence of encryptions x′1, x

′
2, . . . and B verifies their validity,

decrypts, and returns the plaintexts to A.

Extraction phase.

A produces the vector of encryptions (E(β1), E(β2), . . .) and a string σ. B pro-
duces β = (β1, β2, . . .) by decrypting each E(βi) as in the simulation phase and outputs
β and σ. This concludes the description of B.

Lemma 3.3. Let A be an adversary attacking the original scheme S. On input
E′ and c′ ∈R E′(m), let E be generated by B as above, and let c be the encryption
of m under E created by B in simulation step 3. Let ζ �= c be any ciphertext under
E, generated by A. If the signatures in ζ are valid (can be verified with the public
signature verification key in ζ), then B can decrypt ζ.

Proof. Let F ′ be the public signature verification key in ζ. If F ′ �= F , then by the
security of the universal one-way hash functions, h(F ′) �= h(F ) (otherwise using A one
could break H). Thus, at least one of the encryption keys generated in preprocessing
step 1 of the procedure for B will be used in ζ. Since B generated this encryption key
and its corresponding decryption key, B can decrypt.

We now argue that F ′ �= F (that is, that we must be in the previous case). Since
A has not seen F or anything depending on F during its chosen ciphertext attack in
step 1 of the simulation phase, the probability that A uses F ′ = F in a ciphertext dur-
ing this step is negligible. Suppose for the sake of contradiction that after it has seen F
in the target ciphertext c, A uses F ′ = F in ζ. Then by the security of the signature
scheme, only the original ciphertexts and proofs of consistency (c1, p1), . . . , (cn, pn)
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from preprocessing step 2 and simulation step 3 can be signed; otherwise A could be
used to break the signature scheme. This forces ζ = c, contradicting the fact that
ζ �= c.

Note that in step 3 of the simulation phase, the vector c′ is a legitimate encryp-
tion under E′ and therefore is a vector of consistent encryptions, so the simulated
noninteractive proof of consistency is a proof of a true theorem. Note also that this
is the only place in which a proof is simulated by B. Thus, even though the shared
random string is used to generate many proofs of consistency during the lifetime of
the public key, the zero-knowledge property we will need for the proof is only for a
single theorem, since the only simulated proof will be on the target ciphertext.

The next lemma says that, as in the Naor–Yung scheme, A cannot distinguish
the “instance” of S concocted by B from a real instance of S, so A is just as likely to
break the concocted instance.

For any probabilistic polynomial-time relation R, let π(B, R) denote the probabil-
ity that B, using A as described in the simulation phase, generates a vector of plain-
texts (β1, β2, . . .) and a string σ such that R(m,β, σ) holds, where β = (β1, β2, . . .).
By choice of B, π(B, R) is exactly the probability that A breaks S with respect to R
in the simulation phase: A (interacting with B) generates σ and a vector of encryp-
tions (E(β1), E(β2), . . .); by Lemma 3.3, B can decrypt these values and so outputs
βi, i = 1, 2, . . ., together with σ.

Lemma 3.4. For any probabilistic polynomial-time relation R, let π(B, R) de-
note the probability that B, using A as described in the simulation phase, generates
a vector of plaintexts (β1, β2, . . .) and a string σ such that R(m,β, σ) holds, where
β = (β1, β2, . . .). Let π(A, R) denote the probability that A breaks a random instance
of S with respect to R. Then π(B, R) and π(A, R) are subpolynomially close.

Proof. As noted above, π(B, R) is exactly the probability with which A breaks S
with respect to R in the simulation phase. The only difference between the instance
of S generated by B and an instance of S generated at random is in the reference
string U and the proof of consistency for the target ciphertext: in the former case
these are produced by the simulator (steps 2 and 3 of the simulation phase) and in
the latter case they are authentic. The lemma therefore follows immediately from the
definition of noninteractive zero-knowledge (Definition 2.7): any difference between
the two probabilities can be translated into an ability to distinguish a simulated proof
from a true proof.

Theorem 3.5. The public-key encryption scheme S is nonmalleable against
CCA-post.

Proof. Let A be any polynomially bounded adversary, and assume for the sake
of contradiction that A and the probabilistic polynomial-time computable relation R
witness the malleability of S under a CCA-post. We will use the semantic security
of S ′ with respect to relations to derive a contradiction by exhibiting an adversary
simulator A′ that, without access to the target ciphertext and without mounting any
kind of chosen ciphertext attack against S, does (negligibly close to) as well as A at
breaking S (in the malleability sense).

Let E′ be an encryption key in S ′. Let B be as described above. B generates
an encryption key E in S, invokes A on E to obtain a message distribution M, and
outputs M. B is then given a ciphertext c′ = E′(m) for m ∈R M, generates a cipher-
text c = E(m), and presents E and c to A. If A produces valid encryptions E(βi)
s.t. E(βi) �= E(m), then by Lemma 3.3, B can extract the βi. Let β = (β1, β2, . . .).
Let R be any probabilistic polynomial-time computable relation. By Lemma 3.4, the
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probability that R(m,β, σ) holds is subpolynomially close to π(A, R).
Recall the definition of semantically secure with respect to relations: There exists

a procedure B′ that “does as well” as B at producing messages related to m, in the
following sense. On input (E′, 1n), B′ outputs a message distribution M′; m′ ∈R M′

is selected, but B′ is not given access to the ciphertext for m′, just the hint hist(m′).
B′ generates β′, σ′. The definition of semantic security with respect to relations guar-
antees that for every B there exists B′ such that |Pr[R(m,β, σ)]−Pr[R(m′, β′, σ′)]| ≤
ν(n), where the probabilities are over the choice of public key, the coin-flips of B and
B′, respectively, the choices of m and m′, and the coin-flips in creating the encryption
of m. Note that we are rerandomizing the public key: it is chosen afresh for each
probability.

We use B′ to define the adversary simulator A′ whose existence is mandated by
the definition of nonmalleability under chosen ciphertext postprocessing. On input
(E, 1n), A′ ignores E and selects a public key for an instance E′ of S ′ (with security
parameter n). It then runs B′ on (E′, 1n) to select a message space M′. A′ outputs
M′. A message m′ ∈R M′ is chosen, and A′ is given hist(m′), which it forwards to
B′. B′ outputs (β′, σ′), where β′ = (β′1, β

′
2, . . .) is a vector of plaintexts. A′ outputs

the vector of encryptions E(β) = (E(β′1), E(β′2), . . .), together with σ′.
Clearly π′(A′, R) = π′(B′, R), where the first term is the probability that A′

succeeds at producing E(β′, σ′) such that R(m′, β′, σ′) and the second term is the
probability that B′ succeeds at the same task.

By choice of B′ |π′(B′, R)−π(B, R)| is negligible. This, together with Lemma 3.4
and the fact that π′(A′, R) = π′(B′, R), implies that |π(A, R) − π′(A′, R)| ≤ ν(n).
Therefore (A, R) cannot witness the malleability of S.
Corollary 3.6. If there exists a public-key cryptosystem semantically secure

against chosen plaintext attack and if noninteractive zero-knowledge satisfying the
requirements of Definition 2.7 is possible, then there exists a nonmalleable public-key
cryptosystem secure against CCA-post. In particular, if trapdoor permutations exist,
then such cryptosystems exist.

An interesting open problem is whether one can rely on the existence of a public-
key cryptosystem semantically secure against chosen plaintext attacks alone to argue
that nonmalleable public-key cryptosystems secure against CCA-posts exist. Two
assumptions that are known to be sufficient for semantically secure public-key cryp-
tosystems secure against plaintext attacks but where the existence of the stronger kind
of cryptosystems is not clear are the hardness of the Diffie–Hellman (search) problem
and the unique shortest vector problem (used in the Ajtai–Dwork cryptosystem [1]).

3.4. Remarks.

3.4.1. On vectors of encryptions. 1. We have defined nonmalleable public-
key encryptions to cover the case in which A produces a vector of encryptions
(E(β1), . . . , E(βn)), having been given access to only a single E(α). It is natural to
ask, what happens if A is given access to encryptions of multiple α’s, (E(α1), . . . , E(αn)).
Security under this type of composition is, intuitively, a sine qua non of encryption.
A simple “hybrid” argument shows that any nonmalleable public key cryptosystem is
secure in this sense: seeing the encryptions of multiple α’s does not help the adversary
to generate an encryption of even one related β.

2. The computational difficulty of generating a single E(β) for a related β does not
imply the computational difficulty of generating a vector (E(β1), . . . , E(βn)) such that
R(α, β1, . . . , βn) holds. We next describe a counterexample in the case of a CCA-pre.
Let E′ be a nonmalleable cryptosystem under CCA-pre. Let E(m) be constructed
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as (E′0(m0), E
′
1(m1)), where m = m0 ⊕ m1. Given a ciphertext of this form, the

adversary can construct two ciphertexts: (E′0(m0), E
′
1(0)) and (E′0(0), E′1(m1)). The

parity of the two decrypted values is (m0 ⊕ 0) ⊕ (0 ⊕m1) = m0 ⊕m1 = m. On the
other hand, it can be shown from the nonmalleability of the E′i that seeing E(m) is
of no assistance in generating a single encryption E(m′) s.t. R(m,m′) .

3.4.2. Security taxonomy and comparisons. We have discussed two notions
of breaking a cryptosystem, semantic security and nonmalleability, and three types of
attacks:

• Chosen plaintext,
• chosen ciphertext attack in the preprocessing mode, and
• chosen ciphertext attack in the postprocessing mode.

This yields six types of security, and the question is whether they are all distinct and
which implications exist. Two immediate implications are (i) nonmalleable security
implies semantic security under the same type of attack, and (ii) security against
CCA-post implies security against CCA-pre which in turn implies security against
chosen plaintext attacks, using the same notion of breaking the cryptosystem. We
now explore other possibilities—the discussion is summarized in Figure 3.1.

The first observation is that if a cryptosystem is semantically secure against CCA-
post, then it is also nonmalleable against CCA-post, since the power of the adversary
allows it to decrypt whatever ciphertext it generated. On the other hand, it is not
difficult to start with a cryptosystem that is secure against CCA-pre and make it only
secure against a chosen plaintext attack (under any notion of breaking), as we now
explain. For the case of semantic security, simply add to the decryption mechanism
the instruction that on input all 0’s output the private key.

The case of nonmalleable security is more subtle. Choose a fixed random cipher-
text c0, and instruct the decryption mechanism to output the decryption key when
presented with input c0. In addition, instruct the decryption mechanism to output c0
on input all 0’s.

There is a simple method for “removing” nonmalleability without hurting seman-
tic security: starting with a cryptosystem that is nonmalleable against CCA-pre, one
can construct a cryptosystem that is only semantically secure against CCA-pre—add
to each ciphertext a cleartext bit whose value is Xor-ed with the first bit of the plain-
text. Thus, given a ciphertext of a message m it is easy to create a ciphertext of a
message where the last bit is flipped, so the scheme is malleable. However, the seman-
tic security remains, as long as the adversary does not have access to the challenge
ciphertext while it can access the decryption box.

We do not know whether a scheme that is nonmalleable against CCA-pre is also
nonmalleable against CCA-post. We conjecture that whenever deciding whether or
not a string represents a legitimate ciphertext (that could have been generated by any
user) is easy (to someone not holding the private key), nonmalleability implies seman-
tic security against CCA-post. From the above discussion (summarized in Figure 3.1),
we conclude that of the six possibilities for security of a cryptosystem (combinations
of the type of attack and notion of breaking), we have that either four or five are
distinct.8

Note that the type of combination to be used depends on the application. For
instance, for the bidding example given in the introduction, if the public key is not

8For a very recent discussion of the relationship between these notions, see Bellare et al. [3],
where they show that there are indeed five distinct possibilities.
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Fig. 3.1. Relationship between security notions.

going to be used for bidding on more than a single contract, and assuming the bids are
not secret after the bids are opened, then the type of security needed is nonmalleability
against chosen plaintext attacks. If the same public key is to be used for bidding
on several contracts successively but the secrecy of nonwinning bids need not be
preserved, then nonmalleability under chosen ciphertext in the preprocessing mode
is required. On the other hand, if the same public key is to be used for bidding on
several contracts, and the secrecy of nonwinning bids must be preserved, one should
use a nonmalleable cryptosystem secure against CCA-post.

Finally, one may wonder what is the “correct” description of the notion of breaking
a cryptosystem secure against CCA-post: semantic security or nonmalleable security,
given their equivalence under this attack. We think it is more helpful to think in
terms of nonmalleability, since the way to think about trying to break a candidate
system is to think of trying to maul the target ciphertext(s). This was done (without
the vocabulary of nonmalleability) in the recent work by Bleichenbacher [11] (see
section 6).
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3.4.3. On allowing A′ to choose M′. Having A′ choose M′, rather than
inheriting M′ = M from A, makes the adversary simulator weaker : the real adversary
A is allowed to mount a chosen ciphertext attack before choosing its target distribution
M, while the adversary simulator A′ must choose M′ without the benefit of such
an attack. Since the adversary simulator is weaker, ∀A∃A′ . . . becomes a stronger
requirement on the cryptosystem. Our cryptosystem satisfies this strong requirement.

3.5. Public-key authentication. In this section we informally describe a meth-
od for obtaining a public-key authentication scheme based on any nonmalleable public-
key cryptosystem. Our goal is to demonstrate a “real” protocol that allows cheating
in case the public-key cryptosystem used is malleable.

In a public-key authentication scheme, an authenticator A chooses a public key
E. The scheme permits A to authenticate a message m of her choice to a second party
B. Similar to a digital signature scheme, an authentication scheme can convince B
that A is willing to authenticate m. However, unlike the case with digital signatures,
an authentication scheme need not permit B to convince a third party that A has
authenticated m.

Our notion of security is analogous to that of existential unforgeability under an
adaptive chosen plaintext attack for signature schemes [45], where we must make sure
to take care of “man-in-the-middle” attacks. Let 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉
be an adversarially coordinated system in which (A,B) = (C,D) is a public-key au-
thentication protocol. We assume that A is willing to authenticate any number of
messages m1,m2, . . ., which may be chosen adaptively by A. We say that A suc-
cessfully attacks the scheme if ψ(C) (under control of A and pretending to have A’s
identity) succeeds in authenticating to D a message m �= mi, i = 1, 2, . . ..

Protocol P = (A,B) for A to authenticate message m to B. A’s pub-
lic key is E, chosen according to S, a nonmalleable public-key cryptosystem secure
against CCA-post (e.g., the one from section 3.2).

1. A sends to B: “A wishes to authenticate m.” (This step is unnecessary if m
has previously been determined.)

2. B chooses r ∈R {0, 1}n and computes and sends the “query” γ ∈R E(m ◦ r)
to A.

3. A decrypts γ and retrieves r and m. If the decryption is of the right format
(i.e., the first component of the decrypted pair corresponds to the message
that is to be authenticated), then A sends r to B.

Lemma 3.7. Given an adversary B that can break the authentication protocol
P with probability ρ, one can construct an adversary A for breaking the (presumed
nonmalleable) encryption scheme E with probability at least ρ/p(n) − 2−n for some
polynomial p.

Proof. The procedure for A to attack the cryptosystem is as follows. Assume
A’s public key is E and that the adversary A has access to a decryption box for
E. Therefore A can simulate the system 〈(A,B), (C,D), B : ψ(B) ↔ ψ(C)〉, where
(A,B) = (C,D) = P. Note that since this is a simulation, A can control the messages
sent by ψ(D) in the simulation. Run the system 〈(A,B), (C,D), B : ψ(B) ↔ ψ(C)〉
until ψ(C), under control of B, is about to authenticate to D a message m �= mi,
i = 1, 2 . . . not authenticated by A. (In case it is not clear whether D accepts or
not, then we just guess when this occurs, whence the polynomial degradation of ρ.)
The distribution M on messages that A will attempt to maul is Mm = {(m, r)|r ∈R
{0, 1}n}. Given γ as the challenge ciphertext, A lets ψ(D) send the query γ in the
simulation. Let r′ be ψ(C)’s reply. A outputs θ ∈R E(m ◦ r′).
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The distribution that B sees in the simulation of the adversarially coordinated
system 〈(A,B), (C,D), B : ψ(B) ↔ ψ(C)〉 is exactly as usual. Therefore by assump-
tion the probability of success in authenticating m is ρ, and with probability ρ the
value r′ is the correct one. The relation that is violated is equality: θ and γ encrypt
the same string, whereas given the distribution Mm the probability of producing the
correct r without access to E(m ◦ r) is 2−n.

This solution will be of practical use as soon as the current constructions of
nonmalleable cryptosystems are improved to be more practical [28]. The very recent
construction of Cramer and Shoup [23] (see section 6 of this paper) makes this scheme
very attractive.

Remark 3.8. If the cryptosystem S is malleable, and in particular if given
an encryption of a message λ ◦ r it is easy (possibly after mounting a CCA-post or
other type of attack) to generate an encryption of a message λ′ ◦ r, where λ′ �= λ
(many cryptosystems have this property), then there is a simple attack on the protocol
proposed: as before ψ(C) is pretending to be ψ(A). To forge an authentication of a
message m, when D sends challenge γ = m◦r, ψ(B) asks A to authenticate a message
m′ by sending the challenge γ′ = m′ ◦ r. When A replies with r, ψ(C) sends r to D,
who will accept.

Remark 3.9. As mentioned above, this protocol provides a weaker form of au-
thentication than digital signatures (no third party verification). However, this can
be viewed as a feature: there may be situations in which a user does not wish to
leave a trace of the messages the user authenticated (“plausible deniability”). We do
not know whether the protocol presented is indeed zero-knowledge in this sense, i.e.,
that the receiver could have simulated the conversation alone (although it is almost
surely not black-box zero-knowledge [38]). By adding a (malleable) proof of knowl-
edge to the string r this can be ensured in the sequential case. We do not know if
the resulting zero-knowledge authentication protocol remains zero-knowledge if many
executions with the same authenticator execute concurrently. The straightforward
simulation fails. (See [51] for impossibility results for 4-round black-box concurrent
zero-knowledge protocols.) Very recently, an approach for achieving deniable authen-
tication in the concurrent setting based on timing constraints was suggested by Dwork,
Naor, and Sahai [29], who also present several efficient protocols in the standard model
(no timing) for the sequential case.

3.6. Nonmalleable encryption in other settings. In this section we briefly
mention nonmalleable encryption in two additional settings: private-key cryptogra-
phy and interactive public-key cryptography. In both cases we begin with a known
semantically secure system and add authentication to achieve nonmalleability.

Private-key encryption. As mentioned in the beginning of section 3, the defi-
nition of nonmalleable security is applicable for private (or shared) key cryptography
as well. For example, in their celebrated paper on a logic of authentication [16], Bur-
rows, Abadi, and Needham give the following analysis of a scenario (the Needham–
Schroeder authentication protocol) in which A and B share a key KAB . Party B
chooses a nonce Nb and sends an encryption of Nb under KAB to A. A then responds
with an encryption of Nb − 1 under KAB in order for B

“. . . to be assured that A is present currently . . . Almost any function
of Nb would do as long as B can distinguish his message from A’s—
thus, subtraction is used to indicate that the message is from A,
rather than from B.”
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The unproved and unstated assumption here is that KAB provides nonmalleable en-
cryption; malleability completely destroys their reasoning and their proof of security,
even if the adversary’s access to the system is very limited (i.e., an attack weaker than
CCA-pre).

Achieving nonmalleability in the private-key setting is much simpler and more
efficient than in the public-key setting. Let KAB be a private key shared by A and B.
We first describe a system that is semantically secure against CCA-pre: Treat KAB
as (K1,K2) which will be used as seeds to a pseudorandom function f (see [37] for
definition of pseudorandom functions, [56, 57] for recent constructions, and [58] for
a recent discussion on using pseudorandom functions for encryption and authentica-
tion). In order to encrypt messages which are n bits long we need a pseudorandom
function fK : {0, 1}�  → {0, 1}n, i.e., it maps inputs of length " to outputs of length n,
where " should be large enough so as to prevent “birthdays,” i.e., collision of randomly
chosen elements. For A to send B a message m, A chooses a random string r ∈ {0, 1}�
and sends the pair (r,m ⊕ fK1(r)). Semantic security of the system against CCA-
pre follows from the fact that the pseudorandom function is secure against adaptive
attacks. However, this scheme is malleable and not secure against CCA-post: given
a ciphertext (r, c) one can create a ciphertext (r, c′), where c′ is obtained from c by
flipping the last bit. This implies that the corresponding plaintext also has its last bit
flipped. In order to thwart such an attack we employ another pseudorandom function
gk : {0, 1}n+�  → {0, 1}� and add a third component to the message:

gK2(r ◦ (m⊕ fK1(r))).

When decrypting a message (r, c, a), one should first verify that the third compo-
nent, a, is indeed proper, i.e., a = gK2

(r ◦ c). This acts as an authentication tag
for the original encryption and prevents an adversary from creating any other legit-
imate ciphertext, except the ones he was given explicitly. (Recall that by definition
of a pseudorandom function, seeing any number of pairs (r, fK2(r)) does not yield
any information about (r′, fKAB

(r′)) for any new r′ and in particular they are unpre-
dictable.)

Since it is known that the existence of one-way functions implies the existence of
pseudorandom functions [37, 48] we have the following theorem.
Theorem 3.10. If one-way functions exist, then there are nonmalleable private-

key encryption schemes secure against CCA-post.
Since it is known that in order to have private-key cryptography we must have

one-way functions [47], we conclude the following corollary.
Corollary 3.11. If any kind of private-key encryption is possible, then non-

malleable private-key encryption secure against CCA-post is possible.
Note that the property of “self-validation” enjoyed by the above construction

is stronger than needed for nonmalleability, i.e., there are nonmalleable cryptosys-
tems that do not have this property: one can start with a nonmalleable private-key
cryptosystem and add to it the possibility of encryption using a pseudorandom per-
mutation; this possibility is never (or rarely) used by the legitimate encrypter but
may be used by the adversary. The resulting cryptosystem is still nonmalleable but
not self-validating, since the adversary can create ciphertexts of random messages.

For a recent application of the above construction to the security of remotely
keyed encryption, see Blaze, Feigenbaum, and Naor [10].

Interactive encryption. The second setting resembles the one studied by Gold-
wasser, Micali, and Tong [46], in which they constructed an interactive public-key
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cryptosystem secure against chosen ciphertext attack (see also [34, 67]). An “inter-
active public-key cryptosystem” requires a public file storing information for each
message recipient, but this information alone is not sufficient for encrypting mes-
sages. The additional information needed is chosen interactively by the sender and
receiver. To the best of our knowledge, their paper was the first to try to cope with
an oracle for distinguishing valid from invalid ciphertexts in any setting (interactive
or not). An interactive system is clearly less desirable than what has now come to be
called “public-key cryptography,” in which the public key is sufficient for sending an
encrypted message, without other rounds of interaction.

The definitions of nonmalleable security can be easily adapted to this case, but
when discussing the attack there is more freedom for the adversary, due to the in-
teractive nature of the communication. In general, we assume that the adversary
has complete control over the communication lines and can intercept and insert any
message it wishes. A precise definition is outside the scope of this paper.

Our nonmalleable interactive public-key cryptosystem requires a digital signature
scheme that is existentially unforgeable against a chosen message attack (see the in-
troduction for an informal definition of existential unforgeability). Let (Si, Pi) denote
the private/public signature keys of player i (the model assumes that there is a public
directory containing Pi for each player i that is to receive messages, but the sender
is not required to have a key in the public directory). The system will also use a
public-key cryptosystem semantically secure against chosen plaintext attacks.

The idea for the system is straightforward: for each interaction the receiver
chooses a fresh public-key/private-key pair that is used only for one message. However,
this is not sufficient, since an active adversary may intercept the keys and substitute
its own keys. We prevent this behavior by using signatures. A sender j wishing to
send a message m to receiver i performs the following:

1. Sender j chooses a fresh private/public pair of signature keys (sj , pj) and
sends the public part, pj , to i (lower case is used to distinguish pj from what
is in the directory);

2. Receiver i chooses a fresh private/public pair of encryption and decryption
keys (Eij , Dij), where Eij is semantically secure against chosen plaintext at-
tack, and sends Eij together with Si(Eij ◦ pj) (i.e., a signature on the fresh
public key Eij concatenated with the public signature key j chose) to j; j
verifies the signature and that pj is indeed the public key it sent in step 1.

3. Sender j encrypts m using Eij and sends Eij(m) together with sj(Eij(m))
to i. Receiver i verifies that the message encrypted with Eij is indeed signed
with the corresponding pj .

Note that the sender may use a one-time signature scheme for (sj , pj), and if the
receiver uses a signature scheme such as in [27, 22], then the approach is relatively
efficient.

4. A nonmalleable scheme for string commitment. We present below a
scheme S for string commitment that is nonmalleable with respect to itself (Defini-
tion 2.8). We first present S and show some properties of S important in proving its
security. We then describe a knowledge extractor algorithm that works not on S but
on S ′ which is a (malleable) string commitment protocol with a very special relation
to S: knowledge extraction for S ′ implies nonmalleability of S. Thus, in this section,
the new S ′ plays a role analogous to the role of S ′ in section 3.

Our nonmalleable scheme for string commitment requires as a building block a
(possibly malleable) string commitment scheme. Such a scheme, based on pseudo-
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random generators, is presented in [55] (although any computational scheme will do).
The protocol described there is interactive and requires two phases: first the receiver
sends a string and then the sender actually commits. However, the first step of the
protocol can be shared by all subsequent commitments. Thus, following the first
commitment, we consider string commitment to be a one-phase procedure. In what
follows, when we refer to the string commitment in [55], we consider only the second
stage of that protocol.

We also require zero-knowledge proofs satisfying the security requirements in [35].
These can be constructed from any bit commitment protocol [40].

Before we continue it would be instructive to consider the protocol of Chor and
Rabin [21]. They considered the “usual” scenario, where all n parties know of one
another and the communication is synchronous and proceeds in rounds. Their goal
was for each party to prove to all other parties possession of knowledge of a decryption
key. Every participant engages in a sequence of proofs of possession of knowledge. In
some rounds the participant acts as a prover, proving the possession of knowledge of
the decryption key, and in others it acts as a verifier. The sequence is arranged so
that every pair of participants A,C is separated at least once, in the sense that there
exists a round in which C is proving while A is not. This ensures that C’s proof is
independent of A’s proof.

Running this protocol in our scenario is impossible; for example, (1) we make
no assumptions about synchrony of the different parties, and (2) in our scenario the
parties involved do not know of one another. However, we achieve a similar effect to
the technique of Chor and Rabin by designing a carefully ordered sequence of actions
a player must make, as a function of an identifier composed of its external identity, if
one exists, and some other information described below.

4.1. The nonmalleable string commitment scheme S. Protocol S consists
of two general stages. The first is a string commitment as in [55]. The second stage,
basic commit with knowledge, consists of the application of many instances of a new
protocol, called BCK, to the string committed to in the first stage.

Following the commit stage of two string commitment protocols, deciding whether
they encode the same string is in NP. Therefore there exists a zero-knowledge proof for
equality of two committed values. This will be used repeatedly during each execution
of BCK, which we now describe. In the following, n is a security parameter.

Protocol BCK(α) (assumes the committer has already committed to α). Con-
currently run n instances of the following three steps. All instances of each step are
performed at once.

• BCK1 (commit): Committer selects random x0, x1 ∈ {0, 1}k, where k =
|α | , and commits to both of them using the protocol in [55].

• BCK2 (challenge): Receiver sends committer a random bit r ∈ {0, 1}.
• BCK3 (response): Committer reveals xr and x1−r ⊕ α, and engages in a

proof of consistency of x1−r ⊕ α with the initial commitment to α and the
commitment to x1−r in BCK1. The proof of consistency with the initial
commitment is done for all n instances together as a single statement.

The interactive proof in BCK3 is a proof of consistency; it need not be proof of
knowledge in the sense of [31].
Remark 4.1. From α⊕x1−r, x1−r, and the proof of consistency, one can obtain

α. This is why we call the protocol Basic Commit with Knowledge (of α).
Note also that the interactive proof is of consistency; it is not a proof of knowledge

in the sense of [31].
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(A,B) interaction (C,D) interaction

BCK1(α)
BCK1(β)
BCK2(β)

BCK2(α)
BCK3(α)

BCK3(β)

Fig. 4.1. BCK(α) is useful to BCK(β).

In the rest of the section we consider each BCKi as single operation, thus it can
be viewed as an operation on an n-dimensional vector or array. Note that BCK1 and
BCK2 are indeed “instantaneous,” in that each requires a single send, while BCK3,
due to its interactive nature, requires more time to carry out. We frequently refer to
an instance of BCK as a triple.

In the BCK stage of S we apply BCK repeatedly for the same string, α.
However, BCK may itself be malleable. To see this, conceptually label the three
steps of BCK as commitment, challenge, and response, respectively. Consider an
〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉 in which (A,B) = (C,D) = BCK. Then ψ(C)
can make its commitment depend on the commitment of ψ(A), ψ(B) can make its
challenge to ψ(A) depend on the challenge that ψ(D) poses to ψ(C), and ψ(C) can
respond to the challenge with the “help” of ψ(A)’s response to ψ(B) (see Figure 4.1
for the timing of events). In this case the triple between ψ(A) and ψ(B) is, intuitively,
useful to ψ(C). The BCK stage of S interleaves executions of BCK so as to ensure
that in every execution there is some triple for which no other triple is useful. This is
analogous to Chor and Rabin ensuring that for every pair of participants A,C there
exists a round in which C is proving knowledge while A is not. We say such a triple
is exposed (defined precisely below). This is the key idea in the construction.

The next two sixplet protocols perform a pair of distinct instances of BCK(α) in
two different interleaved orders. To distinguish between the two instances of BCK
we will refer to the operation taking place at each stage and the associated variables.
Thus αi and αi+1 are two distinct applications of BCK. These sixplet protocols will
be used to ensure the existence of an exposed triple in the BCK. The intention of
the spacing of the presentation is to clarify the difference between the protocols. It
has no meaning with respect to the execution of the protocols.

0-sixplet 1-sixplet

BCK1(αi) BCK1(αi)
BCK2(αi)
BCK3(αi) BCK1(αi+1)

BCK2(αi+1)
BCK1(αi+1) BCK3(αi+1)
BCK2(αi+1)
BCK3(αi+1) BCK2(αi)

BCK3(αi)

The difference between the two protocols is the order in which we interleave the
stages of the two distinct instances of the BCK protocol.
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Using these sixplets, we can present the scheme S. The identifier I used in the
scheme is the concatenation of the original identity with the commitment for α at
stage 1 (by the “commitment” we mean a transcript of the conversation). Ij denotes
the jth bit of I. To force an exposed triple we will use the fact that every two
identifiers differ in at least one bit. This is exactly the same fact that was exploited
by Chor and Rabin in the synchronous “everyone-knows-everyone” model to enforce
the condition that for every pair of provers A �= C, there is a round in which C is
proving but A is not [21]. The same fact is used in both cases for the same purpose,
but we do it without any assumption of synchrony and without any assumption that
each processor knows of all other processors in the system.

S: Nonmalleable commitment to string α.

• Commit to α (e.g., using the protocol in [55]).
• For j = 1 to | I |

Execute an Ij-sixplet
Execute a (1 − Ij)-sixplet

End

For simplicity we will assume that all identifiers I are n bits long. Each Ij-
sixplet and each (1−Ij)-sixplet involves two executions of BCK, and each of these in
turn requires n concurrent executions of BCK1, followed by n concurrent executions
of BCK2 and then of BCK3. Thus, a nonmalleable string commitment requires
invoking each BCKi a total of 4n2 times.

4.2. Properties of S. We now show some properties of S that allow us to
prove its nonmalleability. Suppose that (A,B) = (C,D) = S, and suppose further
that adversary A controls ψ(B) and ψ(C). Let x be the identifier used by ψ(A) and
y that used by ψ(C). If the original identities of ψ(A) and ψ(C) are different or if
the strings to which they commit are different, then x �= y. (Thus the only case
not covered is copying.) Note also that, given the proofs of consistency, both sender
and receiver know at the end of the commitment protocol whether or not the sender
has succeeded in committing to a well-defined value. Thus, the event of successful
commitment to some value by ψ(C) is independent of the value committed to by
ψ(A).

Each run of the two interactions determines specific times at which the two pairs
of machines exchange messages. The adversary can influence these times, but the time
at which an interaction takes place is well defined. Let σx and σy be the respective
schedules. For 1 ≤ i ≤ 2n, let

• τ i1 be the time at which BCK1 begins in the ith instance of BCK in σx;
• τ i2 be the time at which BCK2 ends in the ith instance of BCK in σx.

In contradistinction, let

• δi1 be the time at which BCK1 ends in the ith instance of BCK in σy;
• δi2 be the time at which BCK2 begins in the ith instance of BCK2 in σy.

Finally, let

• τ i3 and δi3 denote the times at which BCK3 ends in the ith instances of BCK
in σx and σy, respectively.

These values are well defined because each BCKi involves sequential operations of
a single processor. We do not assume that these values are known to the parties
involved—there is no “common clock.”

We can now formalize the intuition, described above, of what it means for a triple
in σx to be useful to a triple in σy. Formally, the ith triple in σx is useful to the jth
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triple in σy if three conditions hold: (1) τ i1 < δ
i
1; (2) δj2 < τ

i
2; and (3) δj3 > τ

i
2 (see

Figure 4.1).

Let Γ(i) = {j | δj1 > τ i1 ∧ δj2 < τ i2 ∧ δj3 > τ i2}. Γ(i) is the set of indices of
triples between ψ(C) and ψ(D) for which the ith triple between ψ(A) and ψ(B) can
be useful. We say that a triple j is exposed if j /∈ Γ(i) for all i. Our goal is to show that
there is at least one exposed triple in any schedule. Intuitively, exposed triples are
important because the committer is forced to act on its own, without help from any
other concurrent interaction. Technically, exposed triples are important because they
allow the knowledge extractor to explore the adversary’s response to two different
queries, without the cooperation of ψ(A).

Claim 4.1. For all i |Γ(i) | ≤ 1.

Proof. By inspection of the possible interleavings, there exists at most one j for
which δj2 < τ

i
2 and δj3 > τ

i
2.

Claim 4.2. If j1 ∈ Γ(i1), j2 ∈ Γ(i2), and j1 < j2, then sixplet(i1) ≤ sixplet(i2),
where sixplet(i) denotes the index of the sixplet containing the ith triple.

Proof. Assume to the contrary that sixplet(i2) < sixplet(i1). This implies that
τ i22 < τ i11 . By definition, j1 ∈ Γ(i1) implies τ i11 < δj11 . Similarly, j2 ∈ Γ(i2) implies

δj21 < τ j22 . Thus, δj21 < δj11 . This contradicts the assumption that j1 < j2.

Claim 4.3. Let triples 2k − 1, 2k form a 0-sixplet in σx, and let triples 2"− 1, 2"
form a 1-sixplet in σy. Then there exists a j ∈ {2" − 1, 2"} such that neither 2k − 1
nor 2k is useful to triple j in σy.

Proof. Assume to the contrary that the claim does not hold. Thus, both triples
have a useful triple in {2k − 1, 2k}. By Claim 4.1 |Γ(2k−1) | ≤ 1, and |Γ(2k) | ≤ 1.
Therefore, each of the two triples should be useful. A simple look at the time scale
implies that for either matching between the pairs, it should be the case that τ2k

1 < δ2�1 .
Thus, τ2k−1

2 < δ2�2 and τ2k−1
2 < δ2�−1

2 . This implies that 2k− 1 is not useful to either
of the triples, which is a contradiction.

Notice that the reverse claim does not hold.

Lemma 4.2. For any x �= y and for any two sequences σx and σy, there exists
an exposed triple in σy.

Proof. From Claims 4.1 and 4.2, if none of triples 1 through j are exposed and
j ∈ Γ(i), then sixplet(i) ≥ sixplet(j). Since x �= y, there exists a bit, say the jth one,
at which their IDs differ. Since the scheme uses both an Ij-sixplet and 1− Ij-sixplet,
there exists some k such that the kth sixplet in σx is a 0-sixplet while the kth sixplet
in σy is a 1-sixplet. The lemma now follows from Claim 4.3.

4.3. The knowledge extractor. Consider an adversarially coordinated system
〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉, where (A,B) and (C,D) are both instances of S.
Intuitively, if ψ(C) succeeds in committing to a string β, then our goal is to extract
β. To achieve this we devise a somewhat different protocol, called S ′, on which
the extractor operates, and from which it extracts β. This new protocol is a string
commitment protocol that is not necessarily nonmalleable. In the next section we
prove that extraction of β from the S ′-adaptor-S system implies the nonmalleability
of S.

The string commitment scheme S ′ consists of a committer P and a receiver Q
and takes a parameter m. (As we will see, m = |I| 16

(ε2 log ε) , where ε is how close we

would like the extraction probability to be to the probability of successful completion
of the protocol by A.)
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Protocol S′: P Commits to a string α.

• Commit to α (e.g., using the protocol in [55]).
• Repeat m times:

1. Q chooses a bit b and requests a b-sixplet; according to additional inputs,
Q requests that the b-sixplet be augmented by an additional proof of
consistency in step BCK3 of either triple in the b-sixplet;

2. P and Q run a (possibly augmented) b-sixplet.

From the semantic security of the regular string commitment protocol and from
the zero-knowledge properties, a simulation argument yields the following lemma.

Lemma 4.3. For any strategy of choosing the sixplets and for any receiver Q′,
the string commitment protocol S ′ is semantically secure.

We provide an adaptor that allows us to emulate to A (and its controlled ma-
chines) a player A that executes S, whereas in reality ψ(B) (under control of A)
communicates with the sender P of S ′. S ′ has been designed so that it can actu-
ally tolerate communicating with many copies of A, with messages from the different
copies being “multiplexed” by the adaptor.

In more detail, suppose that player ψ(P ) is running the sender part of S ′ and
that player ψ(B) is supposed to run the receiver part of S. (ψ(B) might deviate from
the protocol as written, but the communication steps are as in S.) It is not hard to
construct an adaptor that operates between P and B: whenever (A,B) calls for a
b-sixplet the adaptor “pretends it is Q” and asks for a b-sixplet; then ψ(B) and ψ(P )
run the b-sixplet. It should be clear that the distribution of conversations that ψ(B)
sees when it participates in S and the distribution of conversations it sees when it
participates through the adaptor in S ′ are identical.

We are now ready to present the extractor. Suppose that in the adversarially
coordinated system the probability that ψ(C) completes its part successfully is ρ.
Following the commit stage (during which C may or may not have committed in any
meaningful way), we cannot in general hope to extract β with probability greater
than ρ. However we can get arbitrarily close: we will show that for any ε we can
successfully extract β with probability at least ρ− ε.9

Fix ε > 0. The knowledge extractor begins to run S ′ = (P,Q) and S = (C,D)
with the adaptor arranging that A cannot distinguish this from the adversarially
coordinated system 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉 (see Figure 4.2) in which
(A,B) = (C,D) = S.

Once ψ(C) completes the first (commitment) stage of S, the extractor freezes the
random tape of A.

A now defines a tree according to all possible messages sent by A and D. The
tree contains A-nodes and D-nodes, according to which of the two is the next one to
send a message. The root of the tree corresponds to the point at which the tape was
frozen. Thus, the branching at each node is all possible messages that either A or
D can send at that point. In order to exploit Remark 4.1, we will be interested in
D-nodes corresponding to a BCK2 step. The branches correspond to the different
possible challenge vectors that D can send in this step. In what follows, these are
the only types of D-node that we will consider. To enable us to follow more than a
single path (that is, to fork) in the tree, we keep at each such D-node a snapshot of

9The extraction procedure runs in a fixed polynomial time (in n and ε−1) and succeeds only with
probability p. This leads to an ε-malleable, which we suspect is sufficient “for all practical purposes.”
A modification of the procedure runs in expected polynomial time and succeeds with probability ρ
(the best possible), yielding liberal nonmalleability. See Remark 4.4.
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Fig. 4.2. The S′-adaptor-S system used in constructing the extractor.

the current state, i.e., a copy of A’s tapes and the states of A and D.

A node v is good if all the communication between C and D up to v is legal
(according to the nonmalleable protocol S) and C successfully opened and proved
whenever it was asked to do so. Our goal is to identify two nodes having the following
properties: (1) at each of the two, C has just completed a BCK3 step; (2) the paths
to the two nodes depart in a branching at a D-node. As noted in Remark 4.1, given
two such nodes we can extract β.

To identify such a pair of nodes, choose " = 16
(ε2 log ε) , and run the following

extraction procedure " times, each time starting again at the root of tree. (Recall
that the root of the tree corresponds to the point at which the tape was frozen; we
do not restart (C,D) each time the extraction procedure is repeated.)

By Lemma 4.2 every path to a good leaf contains an exposed triple. Run the
S ′-adaptor-S system until an exposed triple j in σy is reached (or we reach a bad
node). We partition the exposed triples into two types according to the interleavings
(the interleavings are shown pictorially after the types are formally defined):

• j is of the first type if for all i τ i1 > δ
j
1 (nothing happened yet in σx between

ψ(A) and ψ(B)) or for all i s.t. τ i1 < δ
j
1 we have τ i2 < δ

j
2 (the challenge in σx

ends before the challenge in σy begins).

• j is of the second type if it is not of the first type and for all i s.t. τ i1 < δ
j
1

and τ i2 ≥ δj2 we have τ i2 > δ
j
3 (the challenge in σx ends after the reply in σy

ends, so ψ(C) can’t use the answers from (A,B) to help it answer challenges
from ψ(D)).

In the first type of exposure, for each i there are two possible interleavings:

τ i1 τ i1
δj1 or τ i2

τ i2 δj1
.

δj2 δj2

Thus, in the first type of exposure, there exists a time t, δj1 ≤ t ≤ δj2 such that for

all i, τ i1 ≤ t ⇒ τ i2 ≤ t. The time t is the maximum of δj1 and the maximum over all

i such that τ i1 ≤ δj1, of τ i2. In this case, intuitively, for every i such that the values
committed to by ψ(C) in BCK(j) may depend on the values committed to by ψ(P )
in BCK(i), the queries made by ψ(Q) to ψ(P ) about these values are independent
of the queries made by ψ(D) to ψ(C). It follows that ψ(C) can’t get any help from
ψ(P ) in answering ψ(D)’s queries in BCK(j).
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At the point t defined above, P has no triples of which step BCK1 has completed
but BCK2 has not yet ended, and thus A doesn’t play a part in S right now. At
this point we fork: the extractor creates a new copy of A and D, and runs both this
copy and the original, with each copy of D making independent random challenges in
BCK2 of triple j. Note that with overwhelming probability any two such challenge
vectors differ in some position. Since at the point t defined above the challenges sent
to A in BCK2 of triple i are already fixed, the two copies of BCK3 of triple i will
differ only in the proofs of consistency. The adaptor multiplexes to P the two proofs
of consistency. This completes the treatment of the first type of exposed triple.

In the second type of exposed triple, the exposure does not become evident un-
til δj3. At any point in time there are at most two triples between A and B that are
open, in that step BCK1 has been executed but BCK2 has not. Say that at δj1 the
open triple is the ith triple; if there are two open triples then they are the ith and
(i + 1)st ones. We know that τ i1 < τ

i+1
1 < δj1 and τ i2 > τ

i+1
2 > δj1 and τ i2 > δ

j
3. We

distinguish between two cases: (a) τ i+1
2 < δj2 and (b) τ i+1

2 > δj3 (since j is exposed
it cannot be the case that δj2 < τ

i+1
2 < δj3). We show the interleavings and mark the

forking points with asterisks:

Case (a) Case (b)
τ i1 τ i1
τ i+1
1 τ i+1

1

δj1 δj1
τ i+1
2 ∗
∗ or δj2 .

τ i+1
3 δj3

δj2 τ i+1
2

δj2 τ i+1
3

τ i2 τ i2

In Case (a) we fork right after τ i+1
2 , running a copy of A until the conclusion of

triple j in the copy.

Although this means there will be two copies of BCK3(i + 1), they will differ
only in their interactive proofs of consistency: the challenges are fixed by time τ i+1

2 .

(Note that we can assume that τ i+1
3 < δj2 because the replies to the challenges and the

statements to be proved by P in BCK3(i+ 1) are completely determined by BCK1
and BCK2 and are therefore are completely determined by time τ i+1

2 . Moreover, the
challenges sent in BCK2(j) by D are independent of BCK2(i+1) because BCK2(i+
1) ends before BCK2(j) starts and D is nonfaulty.) D makes independent challenges
in the two runs. We will not run the original beyond δj3. The communication with A is
limited in the original execution to the replies to the challenges sent in BCK2(i+ 1)
and the zero-knowledge proof of consistency in BCK3(i + 1). However, since the
challenges in the two copies are the same, and since in S ′ the committer P is willing
to repeat this proof, when running the copy we simply ask for a repeated proof of
consistency and continue as before. We stop when the copy finishes BCK3 of the jth
triple. Note that in the copy the jth triple need not be exposed (this depends on τ i2).

Case (b) is simpler: we fork right after δj1. In the original ψ(B) does not commu-

nicate with P until δj3, so we simply continue with the copy until it finishes BCK3 of
the jth triple. Here again we have that j need not be exposed in the copy.
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In exploiting either type of exposure, if in both branches (the original and the
copy) the proof of consistency in BCK3(j) succeeds, then in triple j the extractor ob-
tains the answers to two different and independent queries; hence β can be extracted.
The significance of the zero-knowledge proof of consistency is that it allows the ex-
tractor to know whether any trial is successful. Therefore if any trial is successful the
extractor succeeds. This completes the description of the extractor.

Remark 4.4. To remove the dependency on ε, at the expense of running in ex-
pected polynomial time, i.e., to obtain liberal nonmalleability (see Remark 2.9), pursue
the following strategy. Choose a random path to a leaf in the tree defined above. If
the leaf is not good, then abort. Otherwise “extract at all costs.” That is, repeat until
done:

1. Choose a random path to a leaf. If this leaf is good, then add to a set of
previously chosen paths.

2. For all previously chosen paths (necessarily ending with a good leaf), attempt
once (again) to extract as described above.

We now show that its probability of success is high. At each node v of the tree we
can define the probability of success, ρ(v), i.e., the probability that the communication
between A and D leads to a good leaf. Let ρ0 be the probability of success at the
root. Notice that by definition, the expected value of ρ0 is ρ.

Lemma 4.5. In each run of the above experiment the value of β is successfully
extracted with probability ρ20/4 − 1/22n.

Proof. Consider a random root-leaf path w in the tree (the randomness is over
the coin-flips of A and D). At each node v let ρ(v) denote the probability, taken over
choices of A and of D, of successfully completing the execution from v. Let ρ(w) be
the minimum along the execution path w. Note that ρ(w) is a random variable.

Claim 4.4. With probability at least ρ0/2 we have ρ(w) > ρ0/2.

Proof. The probability of failure is 1 − ρ0. Let V be the set of nodes v s.t.
ρ(v) < ρ0/2 and for no parent u of v is ρ(u) < ρ0/2 (i.e., V consists of the “first”
nodes s.t. ρ(v) < ρ0/2, and hence no member of V is an ancestor of another). We know
that Pr[ρ(w) ≤ ρ0/2] ≤∑v∈V Pr[v is reached]. On the other hand, the probability of
failure, 1 − ρ0, is

∑
v∈V

Pr[v is reached](1 − ρ(v)) ≥ (1 − ρ0/2)
∑

v s.t. ρ(v)≤ρ0/2
Pr[v is reached].

Therefore Pr[ρ(w) ≤ ρ0/2] ≤ 1−ρ0
1−ρ0/2 = 1 − ρ0/2

1−ρ0/2 < 1 − ρ0/2.
Thus, with probability ρ0/2 the main path we take succeeds. The experiment

branches at a point with probability of success ρ0/2. The probability of success
of each branch is independent. Therefore, the new branch succeeds with probability
ρ0/2. Excluding a small probability 1/22n that both branches choose identical strings,
the experiment succeeds with probability ρ20/4 − 1/22n.

To obtain an analogous result for the liberal nonmalleability extraction procedure
outlined in Remark 4.4, consider a random path that yields a good leaf. By Claim
4.4, Pr[ρ(w) > ρ/2] ≥ 1/2, that is, with probability 1/2 a good leaf is also a good
investment for extraction. Thus the “extract at all costs” procedure runs in expected
time O(1/ρ0) and the probability this extraction is invoked is ρ0, yielding expected
polynomial time (taking the usual precautions against running forever).

Continuing with the proof of ε-malleability, with probability ρ− ε/2, the proba-
bility of success at the root, ρ0, is at least ε/2. The extractor makes " independent
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experiments. Because of the proof of consistency, extraction fails only if all experi-

ments fail. This occurs with probability at most (1 − ρ20
4 )�. The choice of " implies

that the probability that the extractor succeeds, given that ρ0 > ε/2, is at least

1 −
(

1 − ρ20
4

)�
≥ 1 −

(
1 − ε2

4

)�
≥ 1 − ε/2.

Therefore, with probability at least ρ− ε the string β is extracted in at least one
of the " experiments. Thus we can conclude the following lemma.
Lemma 4.6. For any adversarially coordinated system 〈(A,B), (C,D), A : ψ(B) ↔

ψ(C)〉 in which (A,B) = (C,D) = S, there is a knowledge extraction procedure that
succeeds in extracting from the S ′-adaptor-S system the value committed to by ψ(C)
with probability arbitrarily close to ρ.

We can therefore conclude that, in essence, the values β obtained by the extractor
are “correctly” distributed. We would like to say that when β is obtained by the ex-
tractor, then for every relation approximator R, the probability that R(α, β) outputs
1 is subpolynomially close to π(A, R) (the probability that it holds under a “normal”
execution). However, in the true execution ψ(C) might make moves that force R to
reject (for instance when the real player makes an illegal move or refuses to open with
certain probability). This doesn’t necessarily imply that the extraction would fail.
However, such cases only help us and we can conclude the following corollary.
Corollary 4.7. Let α ∈R D, and let β be obtained by the extractor. Then for

every relation approximator R, either (1) the probability that R(α, β) outputs 1, where
the probability space is over the choice of α and the internal coin-flips of the machines
involved, is larger than π(A, R) or (2) these two probabilities arbitrarily close.

4.4. Extraction implies nonmalleability. In this section we reduce the non-
malleability of S to the semantic security of S ′. Let R be a relation approximator and
let 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉 be an adversarially controlled system, where
(A,B) and (C,D) are both instances of S.

Recall that R(x, x) = 0 for all relation approximators. We view the goal of A
(respectively, A′) as trying to maximize π(A, R) (respectively, π′(A′, R)). Consider
the following procedure for an adversary simulator A′ with access to the probability
distribution D chosen by A, on inputs to ψ(A).

Procedure for A′ on input hist(α).
1. Set D′ = D.
2. Generate δ ∈R D′ = D.
3. Emulate the system 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉 where ψ(A) is run-

ning S ′ with private input δ and A has access to hist(α), and if ψ(C) succeeds
in committing to a value γ, extract γ.

4. Output γ (that is, give γ as input to ψ(C)).
The structure of the proof is as follows. Let α ∈R D. We define three random

variables:
1. Let β be the value, if any, committed to by C in an execution of 〈(A,B), (C,D),

A : ψ(B) ↔ ψ(C)〉 in which A has input α and A has input hist(α). By
definition, for any probabilistic polynomial-time relation approximator R,
Pr[R(α, β)] = π(A, R).

2. Let β′ be obtained by extraction from A′ in a run of the S ′-adaptor-S system
in which P has input α and A′ has input hist(α). Let π̃(A, R) = Pr[R(α, β′)]
Intuitively, this is the probability that ψ(C) commits to something related to
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α in an S ′-adaptor-S system in which all parties have the “right” inputs, and
this value is successfully extracted.

3. Let β′′ be obtained by extraction from A′ in a run of the S ′-adaptor-S system
in which ψ(P ) has input δ ∈R D but A′ has input hist(α). Then π′(A′, R) =
Pr[R(α, β′′)] since this is exactly the setting of the variables when A′ receives
as input hist(α) (see the definition of A′ above).

We will first show that if |Pr[R(α, β′)] − Pr[R(α, β′′)]| is polynomial, then there
is a distinguisher for S ′. By the semantic security of S ′, this means that π′(A′, R) =
Pr[R(α, β′′)] is very close to π̃(A, R) = Pr[R(α, β′)]. In other words, on seeing the
history hist(α), A′, interacting with P having input α, is essentially no more successful
at committing to a value related by R to α than A′ can be when it again has history
hist(α) but is actually interacting with P having input δ (unrelated to α). This
means that, for A′, having the interaction with P doesn’t help in committing to a
value related to P ’s input.

Let us say that A′ succeeds in an execution of the S ′-adaptor-S system, if ψ(C)
commits to a value related by R to P ’s input (the value to which P commits). Sim-
ilarly, we say that A succeeds in an execution of 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉
if ψ(C) commits to a value related by R to A’s input. Recall that, by Corollary 4.7,
either A is essentially equally likely to succeed as A′, or A is less likely to succeed
than A′ is. So π(A, R), the probability that A succeeds, is essentially less than or
equal to π̃(A, R), which we show in the first step of the proof to be close to π′(A′, R).
From this we conclude the nonmalleability of S.
Lemma 4.8. If |π̃(A, R) − π′(A′, R)| is polynomial, then there is a distinguisher

for S ′ that violates the indistinguishability of committed values.
Proof. Assume |π̃(A, R)−π′(A′, R)| is polynomial. The distinguisher is as follows.

Distinguisher for S′.
1. Create a random challenge (α1 ∈R D, α2 ∈R D).
2. Choose i ∈R {1, 2}. Emulate the system 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉,

where ψ(A) is running S ′ with private input αi and A has access to hist(α1),
and extract ζ, the value committed to by ψ(C) in the emulation.

3. Output R(α1, ζ).
If, in the emulation, i = 1, then the input to ψ(P ) is α1 and so the distinguisher

outputs 1 with probability π̃(A, R). Similarly, if in the emulation i = 2, then the
input to ψ(P ) is α2, and so the distinguisher outputs 1 with probability π′(A′, R).
Since by assumption these two quantities differ polynomially, we have a polynomial
distinguisher for commitments in S ′.
Corollary 4.9. |π̃(A, R) − π′(A′, R)| is subpolynomial.
Theorem 4.10. The string commitment scheme S is (1) ε-malleable and (2)

liberal nonmalleable.
Proof. (1) By Corollary 4.7, π(A, R) < π̃(A, R) or the two can be made arbitrarily

close. Thus A is at most ε more likely to successfully commit to a value related by
R to the value committed to by ψ(A) than A′ is able to commit to a value related
by R to the value committed to by ψ(P ). However, by Lemma 4.8, π′(A′, R) is
subpolynomially close to π̃(A, R); that is, interacting with P does not help A′ to
commit to a value related to the value committed to by ψ(P ).

For (2), note that the expected polynomial time extraction procedure described
in Remark 4.4 succeeds with probability ρ, so the ε difference disappears.
Remark 4.11. The number of rounds in the above protocol is proportional to

the length of I. However, the number of rounds may be reduced to log |I| using the
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following: Let n = |I|. To commit to string α, choose random α1, α2, . . . , αn sat-
isfying

⊕n
i=1 α1 = α. For each αi (in parallel) commit to αi with identity (i, Ii) (i

concatenated with the ith bit of the original identity). Let F (for fewer) denote this
string commitment protocol.

To see why F is secure, consider an adversary with identity I ′ �= I who commits
to α′. For I ′ �= I there must be at least one i such that I ′i �= Ii (we assume some prefix
free encoding). This i implies the nonmalleability of the resulting scheme: Make αj
for j �= i public. Since all the identities of the form (j, I ′j) are different than (i, Ii) we
can extract all the α′j’s and hence α′.

Using this approach, the result of Chor and Rabin [21] can be improved to require
log log n rounds of communication (down from log n rounds). Recall that their model
differs from ours in that they assume all n parties are aware of each other and that
the system is completely synchronous.

Remark 4.12. 1. As we have seen, the proofs of consistency aid in the extraction
procedure. Interestingly, they also ensure that if there are many concurrent invocations
of (A,B), call them (A1, B1), . . . , (Ak, Bk), such that the adversary controls all the
ψ(Bi) and ψ(C), then if C commits to a value β to D then β is essentially unrelated to
all the αi committed to by the Ai in their interactions with the Bi. As in section 3.4.1,
this is shown by a hybrid argument.

2. There is a lack of symmetry between our definitions of nonmalleable encryption
and nonmalleable string commitment: the first requires that it should be computation-
ally difficult, given E(α), to generate a vector of encryptions (E(β1), . . . , E(βn)) s.t.
R(α, β1, . . . , βn) holds, while the second requires only that access to a commitment to
a string α should not help in committing to a single related string β. It is possible
to modify the definition to yield this stronger property. Roughly speaking, we add a
fictitious step after the adversary attempts to commit to its values, in which the ad-
versary specifies which successfully committed values will be the inputs to the relation
approximator R. The extraction procedure is then modified by first running S ′ with
a simulation of A to see which commitments succeed. Then we argue that with high
probability the extraction procedure succeeds on all of these. This follows from the
high probability of success during any single extraction (Lemma 4.6). We chose not to
use the extended definition because it would complicate the proofs even beyond their
current high level of complexity.

3. The weaker definition does not imply the stronger one: the protocol F of Re-
mark 4.11 is a counterexample. Let (A,B) = F and let ψ(A), running F , commit to
α by splitting it into α1, . . . , αn. Let (C1, D1) = · · · = (Cn, Dn) = F . If the n+1 par-
ties ψ(C1), . . . , ψ(Cn) have identities such that for each i the ith bit of the identity of
ψ(Ci) equals the ith bit of the identity of ψ(A), then the parties ψ(B), ψ(C1), . . . ψ(Cn)
can collude as follows. Each ψ(Ci) commits to the string βi = αi by splitting it into
βi = βi1 ⊕ · · · ⊕ βin, where βii = αi and βij = 0|αi|. In this way the colluding parties
can arrange to commit to β1, . . . , βn such that the exclusive-or of the β’s equals α.

This counterexample also illustrates why the technique for reducing rounds de-
scribed in Remark 4.11 cannot be iterated to obtain a constant round protocol.

5. Zero-knowledge proofs and general nonmalleable zero-knowledge in-
teractions. For the results in this section we assume the players have unique iden-
tities. Let (A,B)[a, b] be a zero-knowledge interactive protocol with valid set Π of
input pairs. Recall from section 2.1 that (A,B) is zero-knowledge with respect to B if
for every ψ(B) under control of a polynomial-time bounded adversary A, there exists
a simulator Sim such that the following two ensembles of conversations are indistin-
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guishable. In the first ensemble, A chooses a distribution D consistent with Π, a pair
(α, β) is drawn according to D, ψ(A) gets α, ψ(B) gets β, and the interaction pro-
ceeds and produces a conversation. In the second ensemble, and adversary simulator
A′ with the same computational power as A chooses a distribution D′ consistent with
Π, (α, β) ∈R D′ is selected, A′ is given β, and produces a simulated conversation.

We construct a compiler C, which, given any zero-knowledge interaction (A,B),
produces a zero-knowledge protocol which is nonmalleable in the sense described next.

Let (A′, B′) be any zero-knowledge protocol and let (A,B) = C(A′, B′). Let
(C ′, D′) be any (not necessarily zero-knowledge) protocol, and let (C,D) = C(C ′, D′).
Consider the adversarially coordinated system 〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉.
Note that, if (A,B) were to be run in isolation, then given the inputs (α, β) and
the random tapes of ψ(A) and ψ(B), the conversation between these agents is com-
pletely determined. A similar statement applies to (C,D). For every polynomial-time
relation approximator R and for every adversarially coordinated system of the com-
piled versions with adversary A there exists an adversary simulator A′ satisfying the
following requirement.

Let D now denote a distribution for inputs to all four players chosen by A con-
sistent with the valid inputs for (A,B). Let (α, β, γ, δ) ∈R D, and run the compiled
versions of the two protocols. Let π(A, R) denote the probability that R(α, β, γ, δ,
D,K(C,D)) = 1, where K(C,D) denotes the conversation between ψ(C) and ψ(D).
The probability is over the coin-flips of A, ψ(A) and ψ(D) and the choice of (α, β, γ, δ)
in D. As above, R rejects if a conversation is syntactically incorrect.

Let D′ (consistent with the legal input pairs for (A,B)) be chosen by A′, and
let (α, β, γ, δ) ∈R D′. A′ gets inputs β, γ. Run an execution of (C,D) in which
A′ controls ψ(C), and let K′(C,D) denote the resulting conversation. Let π(A′, R)
denote the probability that R(α, β, γ, δ,D′,K′(C,D)) = 1. The probability is over the
coin-flips of A and ψ(D) and the choice of (α, β, γ, δ) in D′.

The nonmalleable zero-knowledge security requirement is that for every polynomial-
time bounded A, there exists a polynomial-time bounded A′ such that for every
polynomial-time computable relation approximator R |π(A, R) − π′(A′, R)| is sub-
polynomial.
Theorem 5.1. There exists a compiler C that takes as inputs a 2-party protocol

and outputs a compiled protocol. Let (A′, B′) be any zero-knowledge protocol and let
(A,B) = C(A′, B′). Let (C ′, D′) be any (not necessarily zero-knowledge) protocol, and
let (C,D) = C(C ′, D′). Then the adversarially coordinated system 〈(A,B), (C,D), A :
ψ(B) ↔ ψ(C)〉 is nonmalleable zero-knowledge secure.

Proof. Our compiler is conceptually extremely simple: A and B commit to their
inputs and random tapes and then execute the protocol (A′, B′), at each step proving
that the messages sent are consistent with the committed values. We have to make
sure that these zero-knowledge proofs of consistency do not interfere with the original
protocol. The goal of the preprocessing phases is to make all the players’ actions in
the rest of the protocol predetermined. We now describe the action of the compiler
on (A′, B′) in more detail.

Preprocessing phase I. Initially A and B choose a random string RA as fol-
lows. A nonmalleably commits to a string σA using a sequence of nonmalleable bit
commitments. B then sends a random string σB . The string RA, not yet known to
B, is the bitwise exclusive-or of σA and σB . A and B then choose a random string
RB in the same manner, but with the roles reversed, so that B knows RB while A
does not yet know it.
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Preprocessing phase II. Each player performs a sequence of pairs of nonmal-
leable bit commitments. Each pair contains a commitment to zero and a commitment
to one, in random order.

Preprocessing phase III. Each player commits to its input and to the seed of a
cryptographically strong pseudorandom bit generator, using the nonmalleable scheme
for string commitment described in section 4. The pseudorandom sequence is used
instead of a truly random sequence whenever the original protocol calls for a random
bit. Note in particular that A and B both begin with a nonmalleable commitment to
their inputs and random tapes—this is critical.

Executing the original protocol. The parties execute the original protocol
(with the pseudorandom bits), with each player proving at each step that the mes-
sage it sends at that step is the one it should have sent in the unique conversation
determined by its committed input and random tape, and the messages of the original
protocol received so far. The commitments performed as part of the proofs of consis-
tency are selected from the list of pairs of commitments generated in preprocessing
step II. Since proving the consistency of the new message with the conversation so far
can be done effectively (given the random tape and the input), this has a (malleable)
zero-knowledge proof [40] in which the verifier only sends random bits. These random
bits are taken from RA and RB . In particular, RA is used as the random bits when B
proves something to A: A, acting as verifier and knowing RA, reveals the bits of RA
to B as they are needed by opening the necessary commitments from preprocessing
phase I. The analogous steps are made when A proves consistency to B.

Before sketching the proof, we give some intuition for why we included prepro-
cessing phases I and II. (While it is possible that these extra preprocessing steps
are not needed, we do not see a complete proof without them.) First, note that
the compiler uses a specific nonmalleable string commitment scheme (the one from
section 4), rather than any such protocol. We used this protocol because of its ex-
traction properties (which we use for proving nonmalleability). However, as we saw
in section 4 in order to do the extraction in an adversarially coordinated system
〈(A,B), (C,D), A : ψ(B) ↔ ψ(C)〉 in which (A,B) = (C,D) = S, we needed to
define S ′, a relaxed version of S, and construct an S ′-adaptor-S system. We do not
know how to construct “relaxed versions” of arbitrary protocols (A′, B′). Since the
compiled protocol (A,B) has a very special form, the construction of its relaxation is
straightforward.

We now sketch the proof that the compiled protocol satisfies the requirements of
the theorem. A’s proofs of consistency are zero-knowledge since they use the random
bits in RB and in the simulation of this part of the interaction RB can be extracted.
A’s proofs are sound since its bit commitments performed in preprocessing phase II
are independent of RB (since all the commitments are nonmalleable, and in particular,
involve proofs of knowledge).

Since A and B commit in preprocessing phase III to their random tapes and val-
ues, the parts of the compiled communication that correspond to messages in (A′, B′)
are completely determined before the execution corresponding to the (A′, B′) inter-
action is carried out.

Note that the three stage protocol described above remains zero-knowledge. This
is true, since under the appropriate definition [41], the sequential composition of zero-
knowledge protocols is itself zero-knowledge. So in particular, the (A,B) interaction
is zero-knowledge.
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Nonmalleable zero-knowledge security is proved as follows. We first note that
the commitment of its input and random tape that A makes to B in preprocessing
phase III remains nonmalleable despite the proofs of consistency during the execution
of the original protocol. We then construct an extractor for the committed value
in (C,D) in a fashion similar to the one constructed in section 4. To do this, we
construct a “relaxed” zero-knowledge protocol analogous to S ′, based on (A,B). We
apply Lemma 4.6 to show that the probability of extraction is similar to the probability
that A succeeds (in the compiled (C,D) protocol). The key point is that an exposed
triple remains exposed despite the presence of the proofs of consistency because the
queries in the proofs of consistency have been predetermined in preprocessing phase I.

As in Lemma 4.8, extraction violates the zero-knowledge nature of (the relaxed)
(A,B).

6. Concluding remarks and future work. There are several interesting prob-
lems that remain to be addressed:

1. The issue of preserving the nonmalleability of compiled programs (as in sec-
tion 5) under concurrent composition is challenging, as, unlike the cases of
encryption and string commitment, in general zero-knowledge proofs are
not known to remain zero-knowledge under concurrent composition (see,
e.g., [35, 38]). On the other hand, there are various techniques for changing
zero-knowledge protocols so that they become parallelizable, such as witness
indistinguishability [30] and perfect commitments (see Chapter 6.9 in [35]).
These techniques do not necessarily yield protocols that can be executed con-
currently while preserving zero-knowledge.

2. All our nonmalleability results are for protocols that are in some sense zero-
knowledge. Extend the definition of nonmalleability to interactions that are
not necessarily zero-knowledge, such as general multiparty computation, and
construct nonmalleable protocols for these problems.

3. Simplify the constructions in this paper. Bellare and Rogaway present simpli-
fied constructions using a random oracle [6, 7]. A challenging open problem is
to (define and) construct a publicly computable pseudorandom function. Such
a construction is essential if [6, 7] are to be made complexity-based. For a
recent discussion on constructing such functions see [17, 18, 19]; note that
none of the proposals there is sufficient to yield nonmalleability.
Very recently Cramer and Shoup [23] suggested an efficient construction of
a nonmalleable cryptosystem secure against CCA-post. The scheme is based
on the decisional Diffie–Hellman assumption (see [57] for a discussion of the
assumption) and requires only a few modular exponentiations for encryption
and decryption.
Recently, Di Crescenzo, Ishai, and Ostrovsky [26] showed that in a model in
which there is a common random string shared by all parties, it is possible to
obtain a noninteractive weaker variant of nonmalleable commitments. Recall
that, informally, in our definition of nonmalleable commitment, the adversary
succeeds if it commits to a “related” value. Our definition therefore does not
require the adversary to actually open its commitment in order to succeed.
In the [26] scheme, an adversary that commits to a related value but never
opens the commitment is not considered to have succeeded.

4. Another recent development related to malleability in encryption is the work
of Bleichenbacher [11] who showed how the ability to maul ciphertexts in the
PKCS # 1 standard allows for a CCA-post. The interesting fact about this
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attack is that the only type of feedback the attacker requires is whether a
given string represents a valid ciphertext. This demonstrates yet again the
significance of using a provable nonmalleable cryptosystem.

5. A recent result that utilizes nonmalleability in an interesting way is [4] which
explores the issue of reducing an adversary’s success probability via parallel
repetition. The authors give an example of a protocol where the fact that
the upper bound on the adversary’s probability of success is 1/2 is due to the
nonmalleability of a cryptosystem used, while the repeated protocol fails to
reduce the error due to the malleability of the protocol itself.

6. The selective decryption problem: a type of chosen ciphertext attack not ad-
dressed in this paper is when the adversary is given the random bits used to
generate the ciphertext (in addition to the plaintext). The following problem,
phrased here in terms of a CD-ROM, is a concrete instance in which this kind
of attack is relevant (the version presented here is due to [59] and is a variant
of a problem posed by O. Goldreich): A CD-ROM is generated containing the
encryptions of 100 images (generally, n images). A user, having a copy of the
CD-ROM, chooses any subset, say of size 50, of the images, and purchases
the decryption information for the selected images. Suggest an encryption
scheme for this problem such that, assuming the decryption information is
significantly shorter than the combined plaintexts of the purchased images,
the remaining encryptions remain secure once the decryption information for
the purchased images is known. Suppose we start with a semantically secure
cryptosystem and encrypt each image with its own key. Then, if the decryp-
tion information is the collection of keys for the selected images, it is easy to
show that an adversary can’t, for any given undecrypted image Pi produce
an I related to Pi. The challenge is to show that no adversary can find an I
related to, say, all the remaining Pi’s. For example, show that the adversary
can’t find the bitwise logical-OR of the remaining pictures.
This type of problem is simply ignored in papers on generating session keys
(see, e.g., [8, 9]). If session keys are to be used for encryption, then the
selective decryption problem must be addressed.

7. Design a completely malleable cryptosystem in which, given E(x) and E(y)
it is possible to compute E(x + y), E(xy), and E(x̄), where x̄ denotes the
bitwise complement of x. Such a cryptosystem has application to secure two-
party computation. For example, to compute f(x, y) player A generates a
completely malleable E/D pair and sends (E(x), E) to player B. Player B,
knowing y and a circuit for f , can return E(f(x, y)).
Alternatively, prove the nonmalleability conjecture: if a cryptosystem is com-
pletely malleable, then it is insecure. A related statement holds for discrete
logarithms modulo p, and in general for the black-box field problem. See the
elegant papers of Maurer [53] and Boneh and Lipton [15].

Acknowledgments. Discussions with Moti Yung on achieving independence
started this research. Advice and criticism from Russell Impagliazzo, Charlie Rackoff,
and Dan Simon were critical in the formation of the paper. We thank Ran Canetti,
Uri Feige, Marc Fischlin, Roger Fischlin, Oded Goldreich, Omer Reingold, and Adi
Shamir for valuable discussions.



NONMALLEABLE CRYPTOGRAPHY 435

REFERENCES

[1] M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equivalence,
in Proceedings 29th Annual ACM Symposium on the Theory of Computing, El Paso, TX,
1997, pp. 284–293.

[2] W. Alexi, B. Chor, O. Goldreich, and C. Schnorr, RSA and Rabin functions: Certain
parts are as hard as the whole, SIAM J. Comput., 17 (1988), pp. 194–209.

[3] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, Relations among notions of se-
curity for public-key encryption schemes, in Advances in Cryptology—Crypto ’98, Lecture
Notes in Comput. Sci. 1462, Springer-Verlag, New York, 1998, pp. 26–45.

[4] M. Bellare, R. Impagliazzo, and M. Naor, Does parallel repetition lower the error in compu-
tationally sound protocols?, in Proceedings 38th Annual IEEE Symposium on Foundations
of Computer Science, Miami Beach, FL, 1997, pp. 374–383.

[5] M. Bellare and S. Micali, How to sign given any trapdoor function, J. ACM, 39 (1992),
pp. 214–233.

[6] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing ef-
ficient protocols, in Proceedings 1st ACM Conference on Computer and Communications
Security, Fairfax, VA, 1993, pp. 62–73.

[7] M. Bellare and P. Rogaway, Optimal asymmetric encryption—How to encrypt with RSA,
in Advances in Cryptology—Eurocrypt ’94, Lecture Notes in Comput. Sci. 950, Springer-
Verlag, New York, 1994, pp. 92–111.

[8] M. Bellare and P. Rogaway, Entity authentication and key distribution, in Advances in
Cryptology—Crypto ’93, Lecture Notes in Comput. Sci. 773, Springer-Verlag, New York,
1994, pp. 232–249.

[9] M. Bellare and P. Rogaway, Provably secure session key distribution: The three party case,
in Proceedings 27th Annual ACM Symposium on the Theory of Computing, Las Vegas,
NV, 1995, pp. 57–66.

[10] M. Blaze, J. Feigenbaum, and M. Naor, A formal treatment of remotely keyed encryption,
in Advances in Cryptology—Eurocrypt ’98, Lecture Notes in Comput. Sci. 1403, Springer-
Verlag, New York, 1998, pp. 251–265.

[11] D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1, in Advances in Cryptology—Crypto ’98, Lecture Notes in Comput.
Sci. 1462, Springer-Verlag, New York, 1998, pp. 1–12.

[12] M. Blum, P. Feldman, and S. Micali, Noninteractive zero-knowledge proof systems, in Pro-
ceedings 20th ACM Symposium on the Theory of Computing, Chicago, IL, 1988, pp. 103–
112.

[13] M. Blum, A. De Santis, S. Micali, and G. Persiano, Noninteractive zero-knowledge, SIAM
J. Comput., 20 (1991), pp. 1084–1118.

[14] M. Blum and S. Goldwasser, An efficient probabilistic public-key encryption that hides all
partial information, in Advances in Cryptology—Crypto ’84, Lecture Notes in Comput.
Sci. 196, Springer-Verlag, New York, 1985, pp. 289–299.

[15] D. Boneh and R. Lipton, Algorithms for black-box fields and their application to cryptography,
in Advances in Cryptology—Crypto ’96, Lecture Notes in Comput. Sci. 1109, Springer-
Verlag, New York, 1996, pp. 283–297.

[16] M. Burrows, M. Abadi, and R. Needham, A logic of authentication, ACM Trans. Comput.
Systems, 8 (1990), pp. 18–36.

[17] R. Canetti, Towards realizing random oracles: Hash functions that hide all partial infor-
mation, in Advances in Cryptology—Crypto ’97, Lecture Notes in Comput. Sci. 1294,
Springer-Verlag, New York, 1997, pp. 455–469.

[18] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, in Proceedings
30th Annual ACM Symposium on the Theory of Computing, Dallas, TX, 1998, pp. 209–
218.

[19] R. Canetti, D. Micciancio, and O. Reingold, Perfectly one-way probabilistic hashing, in
Proceedings 30th Annual ACM Symposium on the Theory of Computing, Dallas, TX, 1998,
pp. 131–140.

[20] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, Verifiable secret sharing in the
presence of faults, in Proceedings 26th IEEE Symposium on Foundations of Computer
Science, Portland, OR, 1985, pp. 383–395.

[21] B. Chor and M. Rabin, Achieving independence in logarithmic number of rounds, in Proceed-
ings 6th ACM Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, 1987, pp. 260–268.

[22] R. Cramer and I. Damgard, New generation of secure and practical RSA-based signatures, in



436 DANNY DOLEV, CYNTHIA DWORK, AND MONI NAOR

Advances in Cryptology—Crypto ’96, Lecture Notes in Comput. Sci. 1109, Springer-Verlag,
New York, 1996, pp. 137–185.

[23] R. Cramer and V. Shoup, A practical public key cryptosystem provable secure against adap-
tive chosen ciphertext attack, in Advances in Cryptology—Crypto ’98, Lecture Notes in
Comput. Sci. 1462, Springer-Verlag, New York, 1998, pp. 13–25.

[24] Y. Desmet, C. Goutier, and S. Bengio, Special uses and abuses of the Fiat–Shamir passport
protocol, in Advances in Cryptology—Crypto ’87, Lecture Notes in Comput. Sci. 293,
Springer-Verlag, New York, 1988, pp. 21–39.

[25] A. De Santis and G. Persiano, Noninteractive zero-knowledge proof of knowledge, in Pro-
ceedings 33rd IEEE Symposium on the Foundation of Computer Science, Pittsburgh, PA,
1992, pp. 427–436.

[26] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky, Noninteractive and nonmalleable commit-
ment, in Proceedings 30th Annual ACM Symposium on the Theory of Computing, Dallas,
TX, 1998, pp. 141–150.

[27] C. Dwork and M. Naor, An efficient existentially unforgeable signature scheme and its ap-
plications, J. Cryptology, 11 (1998), pp. 187–208.

[28] C. Dwork and M. Naor, Method for Message Authentication from Nonmalleable Crypto
Systems, US Patent 05539826, issued August 29, 1996.

[29] C. Dwork, M. Naor, and A. Sahai, Concurrent zero-knowledge, in Proceedings 30th Annual
ACM Symposium on the Theory of Computing, Dallas, TX, 1998, pp. 409–418.

[30] U. Feige and A. Shamir, Witness hiding and witness indistinguishability, in Proceedings 22nd
Annual ACM Symposium on the Theory of Computing, Baltimore, MD, 1990, pp. 416–426.

[31] U. Feige, A. Fiat, and A. Shamir, Zero knowledge proofs of identity, J. Cryptology, 1 (1988),
pp. 77–94.

[32] U. Feige, D. Lapidot, and A. Shamir, Multiple noninteractive zero-knowledge proofs based on
a single random string, in Proceedings 31st IEEE Symposium on Foundations of Computer
Science, St. Louis, MO, 1990, pp. 308–317.

[33] M. J. Fischer and N. A. Lynch, A lower bound for the time to assure interactive consistency,
Inform. Process Lett., 14 (1982), pp. 183–186.

[34] Z. Galil, S. Haber, and M. Yung, Interactive public-key cryptosystems, symmetric public-key
encryption, in Advances in Cryptology—Crypto ’85, Lecture Notes in Comput. Sci. 218,
Springer-Verlag, New York, 1986, pp. 128–137.

[35] O. Goldreich, Foundations of Cryptography, 1995, also available online from http://www.
eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html (Electronic Colloquium on
Computational Complexity).

[36] O. Goldreich, A Uniform Complexity Encryption of Zero-Knowledge, Technion CS-TR 570,
June 1989.

[37] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions, J. ACM,
33 (1986), pp. 792–807.

[38] O. Goldreich and H. Krawczyk, On the composition of zero-knowledge proof systems, SIAM
J. Comput., 25 (1996), pp. 169–192.

[39] O. Goldreich and L. Levin, A hard predicate for all one-way functions, in Proceedings 21st
Annual ACM Symposium on the Theory of Computing, Seattle, WA, 1989, pp. 25–32.

[40] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity,
and a methodology of cryptographic protocol design, J. ACM, 38 (1991), pp. 691–729.

[41] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems, J.
Cryptology, 6 (1993), pp. 1–32.

[42] O. Goldreich and E. Petrank, Quantifying knowledge complexity, in Proceedings 32nd IEEE
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1991, pp. 59–68.

[43] S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci., 28 (1984),
pp. 270–299.

[44] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof-
systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[45] S. Goldwasser, S. Micali, and R. Rivest, A digital signature scheme secure against adaptive
chosen-message attacks, SIAM J. Comput., 17 (1988), pp. 281–308.

[46] S. Goldwasser, S. Micali, and P. Tong, Why and how to establish a private code on a public
network, in Proceedings 23rd IEEE Symposium on the Foundation of Computer Science,
Chicago, IL, 1982, pp. 134–144.

[47] R. Impagliazzo and M. Luby, One-way functions are essential to computational based cryp-
tography, in Proceedings 30th IEEE Symposium on the Foundation of Computer Science,
Research Triangle Park, NC, 1989, pp. 230–235.

[48] R. Impagliazzo, L. Levin, and M. Luby, Pseudo-random generation from one-way functions,



NONMALLEABLE CRYPTOGRAPHY 437

in Proceedings 21st ACM Symposium on Theory of Computing, Seattle, WA, 1989, pp. 12–
24.

[49] J. Kilian, On the complexity of bounded-interaction and non-interactive zero-knowledge proofs,
in Proceedings 35th IEEE Symposium on the Foundation of Computer Science, Santa Fe,
NM, 1994, pp. 466–477.

[50] J. Kilian and E. Petrank, An efficient non-interactive zero-knowledge proof system for NP
with general assumptions, J. Cryptology, 11 (1998), pp. 1–27.

[51] J. Kilian, E. Petrank, and C. Rackoff, Lower bounds for zero knowledge on the Internet,
in Proceedings 39th IEEE Symposium on the Foundation of Computer Science, Palo Alto,
CA, 1998, pp. 484–492.

[52] M. Luby, Pseudo-Randomness and Applications, Princeton University Press, Princeton, NJ,
1996.

[53] U. Maurer, Towards the equivalence of breaking the Diffie-Hellman protocol and computing
discrete algorithms, in Advances in Cryptology—Crypto ’94, Lecture Notes in Comput.
Sci. 839, Springer-Verlag, New York, 1994, pp. 271–281.

[54] S. Micali, C. Rackoff, and R. Sloan, The notion of security for probabilistic cryptosystems,
SIAM J. Comput., 17 (1988), pp. 412–426.

[55] M. Naor, Bit commitment using pseudo-randomness, J. Cryptology, 4 (1991), pp. 151–158.
[56] M. Naor and O. Reingold, Synthesizers and their application to the parallel construction

of pseudo-random functions, in Proceedings 36th IEEE Symposium on Foundations of
Computer Science, Milwaukee, WI, 1995, pp. 170–181.

[57] M. Naor and O. Reingold, Number-theoretic constructions of efficient pseudo-random func-
tions, in Proceedings 38th IEEE Symposium on the Foundation of Computer Science,
Miami Beach, FL, 1997, pp. 458–467.

[58] M. Naor and O. Reingold, From unpredictability to indistinguishability: A simple construc-
tion of pseudo-random functions from MACs, in Advances in Cryptology—Crypto ’98,
Lecture Notes in Comput. Sci. 1462, Springer-Verlag, New York, 1998, pp. 267–282.

[59] M. Naor and A. Wool, Access control and signatures via quorum secret sharing, in Proceed-
ings 3rd ACM Conference on Computer and Communications Security, New Delhi, India,
1996, pp. 157–168.

[60] M. Naor and M. Yung, Universal one-way hash functions and their cryptographic applica-
tions, in Proceedings 21st Annual ACM Symposium on the Theory of Computing, Seattle,
WA, 1989, pp. 33–43.

[61] M. Naor and M. Yung, Public-key cryptosystems provably secure against chosen ciphertext
attacks in Proceedings 22nd Annual ACM Symposium on the Theory of Computing, Bal-
timore, MD, 1990, pp. 427–437.

[62] M. O. Rabin, Randomized Byzantine generals, in Proceedings 24th IEEE Symposium on the
Foundation of Computer Science, Tucson, AZ, 1983, pp. 403–409.

[63] C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen
ciphertext attack, in Advances in Cryptology—Crypto ’91, Lecture Notes in Comput. Sci.
576, Springer Verlag, New York, 1992, pp. 433–444.

[64] R. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signature and public
key cryptosystems, Comm. ACM, 21 (1978), pp. 120–126.

[65] J. Rompel, One-way functions are necessary and sufficient for signatures, in Proceedings 22nd
Annual ACM Symposium on the Theory of Computing, Baltimore, MD, 1990, pp. 387–394.

[66] A. C. Yao, Theory and applications of trapdoor functions, in Proceedings 23rd IEEE Sympo-
sium on the Foundation of Computer Science, Chicago, IL, 1982, pp. 80–91.

[67] M. Yung, Cryptoprotocols: Subscription to a public key, the secret blocking and the multi-
player mental poker game, in Advances in Cryptology—Crypto ’84, Lecture Notes in Com-
put. Sci. 196, Springer-Verlag, New York, 1985, pp. 439–453.



TIME AND SPACE LOWER BOUNDS FOR NONBLOCKING
IMPLEMENTATIONS∗

PRASAD JAYANTI† , KING TAN† , AND SAM TOUEG‡

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 438–456

Abstract. We show the following time and space complexity lower bounds. Let I be any
randomized nonblocking n-process implementation of any object in set A from any combination of
objects in set B, where A = {increment, fetch&add, modulo k counter (for any k ≥ 2n), LL/SC bit,
k-valued compare&swap (for any k ≥ n), single-writer snapshot}, and B = {resettable consensus}
∪ {historyless objects such as registers and swap registers}. The space complexity of I is at least
n− 1. Moreover, if I is deterministic, both its time and space complexity are at least n− 1. These
lower bounds hold even if objects used in the implementation are of unbounded size.

This improves on some of the Ω(
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n) space complexity lower bounds of Fich, Herlihy, and Shavit

[Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing, Ithaca,
NY, 1993, pp. 241–249; J. Assoc. Comput. Mach., 45 (1998), pp. 843–862]. It also shows the near
optimality of some known wait-free implementations in terms of space complexity.
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1. Introduction. Nonblocking and wait-free implementations of shared objects
have been the subject of much research. While there have been several results on when
such implementations are feasible and when they are not, results establishing their
intrinsic time and space requirements are relatively scarce, especially for randomized
implementations. In this paper, we present a technique by which one can obtain a
linear lower bound on the space complexity of several randomized nonblocking imple-
mentations. The technique also yields a linear lower bound on the time complexity of
several deterministic nonblocking implementations.

Specifically, our results are as follows. Let I be any randomized nonblocking
n-process implementation of any object in set A from any combination of objects
in set B, where A = {increment, fetch&add, modulo k counter (for any k ≥ 2n),
LL/SC bit, k-valued compare&swap (for any k ≥ n), single-writer snapshot}, and
B = {resettable consensus} ∪ {historyless objects}. (Roughly speaking, an object is
historyless if each of its operations either does not affect the state of the object or
overwrites the previously applied operations. Examples include registers, test and set
objects, and swap registers.) The space complexity of I is at least n− 1. Moreover, if
I is deterministic, both its time and space complexity are at least n− 1. These lower
bounds hold even if objects used in the implementation are of unbounded size.

Some of the results in this paper improve known lower bounds, while others
are completely new. In particular, Fich, Herlihy, and Shavit proved a Ω(

√
n) space

complexity lower bound for a randomized nonblocking n-process implementation of
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binary consensus from historyless objects [FHS93, FHS98]. Using this result, they
showed that any randomized nonblocking n-process implementation of compare&swap,
or fetch&add , or bounded-counter from historyless objects requires Ω(

√
n) instances

of such objects. Our results on compare&swap, fetch&add, and bounded-counter are
stronger in two ways: (i) we show that at least n−1 objects are necessary, and (ii) we
show that n−1 objects are needed even if the implementation is free to use resettable
consensus objects, besides the historyless objects allowed by [FHS93, FHS98]. On the
other hand, our lower bound technique applies only to implementations of “multiple-
use objects” in which each process can access the implemented object many times. In
contrast, the technique of Fich, Herlihy, and Shavit applies even to implementations
of “single-use objects” (that is, all decision problems). Thus, our proof technique does
not (and cannot) improve upon the main result of Fich, Herlihy, and Shavit, namely,
their Ω(

√
n) space complexity lower bound for a randomized nonblocking n-process

implementation of binary consensus.
The results presented in this paper also imply that the following deterministic

implementations in the literature are almost space-optimal.

1. Afek et al. give two wait-free implementations of a single-writer snapshot
object consisting of n segments, each one written by a different process: one
from unbounded registers and one from bounded registers [AAD+93]. The one
that uses unbounded registers is of space complexity n. We prove a lower
bound of n− 1.

2. Aspnes gives a wait-free implementation of an n-process bounded-counter from
a single instance of a single-writer snapshot object [Asp90]. Combined with
the above result of Afek et al., this implies that bounded-counter can be
implemented from n unbounded registers. We prove that at least n−1 registers
are necessary when the bounded-counter is a modulo k counter, where k ≥ 2n.

In both cases above, the lower bound of n− 1 is particularly appealing because it
applies to even randomized nonblocking implementations while the upper bound of n
holds for deterministic wait-free implementations.

In fact, the lower bounds proved in this paper (and the lower bounds in [FHS93,
FHS98]) apply not just to nonblocking implementations, but also to any implementa-
tion satisfying a weaker progress condition called solo-termination, defined in [FHS98].
Roughly speaking, a deterministic implementation is solo-terminating if at every con-
figuration C in a system execution the following holds for all processes p: if p runs
alone from C, p’s operation on the implemented object will eventually complete. For
a randomized implementation to be considered solo-terminating we require that for
all C and p, if p runs alone from C there is at least one sequence of outcomes for p’s
coin tosses that will enable p to complete its operation on the implemented object.

It is well known that a wait-free implementation is also nonblocking. It is clear
that a nonblocking implementation is also solo-terminating. Thus, the lower bounds
that we prove here for solo-terminating implementations apply also to nonblocking
and wait-free implementations.

There is a large body of research on algorithms for synchronous parallel computers
(such as the PRAM model, the mesh, perfect shuffle, and hypercube architectures)
that has resulted in many algorithms whose time complexity is polylogarithmic in the
number of processors. In contrast, for the asynchronous model of computing, wait-
free algorithms of polylog complexity are rare ([Cha96, Aum97, CJT98] are some
notable exceptions). In fact, our paper formally proves that for deterministic wait-
free implementations of many common objects from certain base objects, there are
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no algorithms of sublinear time complexity, let alone polylog complexity.

Our proof technique for the lower bounds is general in that we have successfully
applied it to implementations of a variety of objects. The technique is also interesting
because (i) it simultaneously yields a lower bound on time and space complexities
of implementations, (ii) the lower bound on space complexity holds even for ran-
domized implementations, and (iii) the lower bounds apply not just to nonblocking
or wait-free implementations, but also to any implementation satisfying the weaker
solo-termination progress condition.

The paper is organized as follows. We present an informal model in section 2.
In section 3, we define the class of perturbable types and prove the lower bound for
implementations of any perturbable type. In section 4, we show that many common
types of objects, such as counter, compare&swap, LL/SC bit, single-writer snapshot,
are perturbable. Section 5 elaborates on the consequences of the results in sections 3
and 4.

2. Informal model.

2.1. Definitions of type, historyless type, and resettable consensus. A
type is a tuple (OP,RES, Q, δ), where OP is a set of operations, RES is a set of
responses, Q is a set of states, and δ : Q × OP → Q × RES is a function, known as
the sequential specification of the type. Intuitively, if δ(σ, op) = (σ′, res), it means the
following: applying the operation op to an object of this type in state σ causes the
object to move to state σ′ and return the response res.

Let op(σ) denote the first component of the tuple δ(σ, op). The following defi-
nitions are from Fich, Herlihy, and Shavit [FHS98]. An operation op is trivial if its
application does not affect the state; that is, for all states σ, op(σ) = σ. Operation
op′ overwrites operation op if applying op and then op′ results in the same state as
simply applying op′; more precisely, for all states σ, op′(op(σ)) = op′(σ). A type is
historyless if all its nontrivial operations overwrite one another. The types register,
test and set, and swap register are examples of historyless types.

Proposition 2.1. For a historyless type, the following statements are true:

(1) For all states σ, nontrivial operations opk and finite sequences opk−1 · · · op1

of operations, opk(opk−1(· · · op1(σ) · · ·)) = opk(σ).
(2) For all states σ and finite sequences opkopk−1 · · · op1 of trivial operations,

opk(opk−1(· · · op1(σ) · · ·)) = σ.

Proof. The proposition is proved by a simple induction on the length of the
operation sequence.

We now define the type resettable consensus as (OP,RES, Q, δ), where

• OP = {read, reset} ∪ {propose v | v ∈ N}, where N is the set of natural
numbers;
• RES = N ∪ {ack};
• Q = N ∪ {⊥};
• δ, the transition function, is as follows:

– For all u ∈ Q, δ(u, read) = (u, u);
– For all u ∈ Q, δ(u, reset) = (⊥, ack);
– δ(⊥,propose v) = (v, v) and, for all u ∈ N , δ(u, propose v) = (u, u).

Resettable consensus was first defined by Herlihy [Her88, Her91], but included
only the propose and reset operations. We added the read operation to make our
lower bound result stronger. Our definition of resettable consensus is similar to the
sticky bit defined by Plotkin [Plo89].
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2.2. Implementation. A randomized implementation is specified by the follow-
ing elements:

• The type and the initial state of the implemented object O (the initial state
of O is a state of its type).
• A set of objects O1, . . . , Om from which O is implemented, their types, and
their initial states.
• A set of processes p1, . . . , pn that may access O.
• A set of randomized access procedures Apply(pi, op,O) for pi ∈ {p1, . . . , pn}
and op ∈ OP, where OP is the set of operations associated with the type of
O.

The access procedure Apply(pi, op,O) specifies how pi should execute the op-
eration op on O in terms of operations on O1, . . . , Om. The value returned by the
procedure is deemed to be the response from O. We call O1, . . . , Om the base objects
of the implementation. The space complexity of the implementation is m.

The definitions presented in the rest of this section are with respect to a system
that consists of processes p1, . . . , pn and an implemented object O that p1, . . . , pn may
access. We denote such a system by (p1, . . . , pn;O). Each pi has a set of states and
has a distinguished input variable op-list i. This variable is initialized (by the user of
the system) with any infinite sequence of operations op1, op2, . . ., where each opj is
an operation supported by O. The initial state of pi is determined uniquely by the
implementation as a function of the value assigned to op-list i. Each pi performs the
following actions repeatedly forever: obtain the next operation op from op-list i and
execute the access procedure Apply(pi, op,O) until it returns.1

A process pi executes an access procedure Apply(pi, op,O) in steps. Each step
consists of the following sequence of actions, all of which occur together atomically:

• pi tosses a coin. Let toss-outcome ∈ coinspace denote the outcome of this
toss.
We make the following assumptions: (i) coin tosses are independent, and (ii)
coinspace is a nonempty countable set of all possible outcomes of a coin
toss, and the probability of each outcome in the set is nonzero.
• toss-outcome, pi’s present state, and the operation op that pi wants to apply
to O uniquely determine an operation oper and a base object Oj that oper
should be applied to. Accordingly, pi applies oper to Oj .

• Oj changes state and returns a response. The new state of Oj and the response
are uniquely determined by the sequential specification of Oj .

• The response from Oj , together with toss-outcome and pi’s present state,
uniquely determine the new state of pi. It is possible for the procedure
Apply(pi, op,O) to terminate, returning some response. In this case, the new
state of pi reflects both the fact that the access procedure terminated and the
response returned by the access procedure. Further, pi’s step enabled from this
state corresponds to the first step of the access procedure Apply(pi, op

′,O),
where op′ is the earliest unconsumed operation in op-listi.

A configuration of (p1, . . . , pn;O) is a tuple (σ1, . . . , σn, rem1, . . . , remn, τ1, . . . , τm),
where σi is a state of pi, remi is a suffix of op-list i (and corresponds to the infinite
sequence of operations that pi is yet to initiate on O), and τj is a state of base object
Oj . Since the implementation specifies a unique initial state for each base object and

1Our model is more restrictive than a model in which the sequence of operations that each pi
applies on O is not fixed initially. Since our time and space lower bounds apply to the restrictive
model, they clearly apply to the more general model as well.
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a unique initial state for each process pi as a function of the value assigned to op-list i,
it follows that the initial configuration is uniquely determined by an assignment of
infinite sequences of operations to the input variables op-list i (1 ≤ i ≤ n). An execu-
tion fragment from configuration C0 of (p1, . . . , pn;O) is a finite or infinite sequence
C0, C1, C2, . . . of configurations such that, for all k ≥ 0, Ck+1 is the configuration that
results when some process performs a step in configuration Ck. An execution is an
execution fragment from an initial configuration.

A schedule is a finite or an infinite sequence [pi1 , t1], [pi2 , t2], . . ., where each pij
is from {p1, . . . , pn} and each tj is from coinspace. If C is a configuration and
α = [pi1 , t1], [pi2 , t2], . . . is a schedule, exec(C,α) denotes the execution fragment
C0, C1, C2, . . ., where C = C0 and each Ck results from Ck−1 when pik takes a step in
which the outcome of pik ’s toss is tk. A configuration C is reachable if there is some
initial configuration C0 and a finite schedule α such that the configuration at the end
of exec(C0, α) is C.

An implementation is correct if it has two properties—linearizability (safety prop-
erty) and solo-termination (liveness property), which are described next.

2.3. Linearizability. Let O be an implemented object shared by processes
p1, . . . , pn. Each completed operation on O in an execution of (p1, . . . , pn;O) can
be viewed as a pair of events—the invocation of the operation followed by the re-
sponse to the operation. Informally, an execution E of (p1, . . . , pn;O) is linearizable
if every operation in E appears to take effect at some instant between its invocation
and response (in other words, operations appear atomic). The implementation of O is
linearizable if every execution of (p1, . . . , pn;O) is linearizable. For a precise definition
of linearizability, we refer the reader to the work of Herlihy and Wing in which this
concept was first formally introduced [HW90].

2.4. Solo-termination: A progress property. An implementation whose ac-
cess procedures never terminate is trivially linearizable. Such an implementation,
however, is hardly useful. Thus, in addition to linearizability, implementations should
guarantee certain progress properties.Wait-freedom and nonblockingness are the prog-
ress conditions that received the most attention recently [HS93]. In this paper, we
consider a weaker progress property called solo-termination, first defined in [FHS98].
Informally, an implementation has the solo-termination property if, for each reachable
configuration C and each process p, the following holds: if p runs alone from configu-
ration C, then there is at least one sequence of outcomes for p’s coin tosses that will
enable p to complete an operation on the implemented object. More precisely, a ran-
domized implementation of O is solo-terminating if, for all reachable configurations
C and all processes pi, there is some finite schedule α = [pi, t1], [pi, t2], . . . , [pi, tk]
such that pi completes an operation on O during exec(C,α). (Since the probability
of each tj is nonzero by definition, there is a nonzero probability of pi completing an
operation on O when pi runs alone from C.)

The lower bounds proved in this paper apply to solo-terminating (and therefore
to nonblocking and wait-free) implementations.

2.5. Notation. For a schedule α, |α| denotes its length. We say α contains
process p if, for some t, [p, t] is in the sequence α. pset(α) denotes the set of all
processes contained in α. If α and β are any schedules, αβ denotes the schedule which
is the concatenation of α and β.



LOWER BOUNDS FOR NONBLOCKING IMPLEMENTATIONS 443

If Σ is a set, Σ∗ denotes the set of all finite sequences of elements from Σ (including
the empty sequence, denoted by ε). Notice that ({p1, . . . , pn} × coinspace)∗ is the
set of all finite schedules.

In our proofs, when we consider a system (p1, . . . , pn;O) (where O is an object
implemented for processes p1, . . . , pn), we fix the initial configuration of the system at
some value, say, C0, right at the beginning of the proof by specifying the initial values
of the input variables op-list i (1 ≤ i ≤ n). Since the initial configuration is fixed,
each schedule α ∈ ({p1, . . . , pn} × coinspace)∗ uniquely determines the execution
exec(C0, α). Therefore, for brevity, if α is a schedule, we will use the same symbol α
also to denote the execution exec(C0, α). From the context it will be clear whether
α refers to the schedule or to the execution. If α and β are schedules and S is a set
of processes or a set of base objects, then we write α ≈S β if, for all A ∈ S, A is in
the same state at the end of the executions α and β.

2.6. Definitions of “just completes” and deterministic time complexity.
Let E be any execution fragment of (p1, . . . , pn;O), where O is an object implemented
using a randomized implementation. We say process pi just completes an operation
on O in E if in its last step in E, pi returns from an access procedure completing an
operation on O.

A deterministic implementation is a special case of a randomized implementation
for which coinspace, the set of possible outcomes for a coin toss, is a singleton set.
The solo-termination time complexity of a deterministic implementation of O is the
maximum, over all reachable configurations C of (p1, . . . , pn;O) and all processes pi,
of |α| such that (i) α is a schedule that contains only pi, and (ii) in exec(C,α), pi
completes exactly one operation on O and, in fact, just completes it.

We note that, for any reasonable definition of the time complexity of a nonblock-
ing (or wait-free) implementation of O, if the solo-termination time complexity of
a deterministic implementation of O is at least k, then the time complexity of any
deterministic nonblocking (or wait-free) implementation of O is also at least k.

3. The lower bound. This section has three parts. Section 3.1 illustrates the
main ideas of our lower bound technique for the special case of implementing an incre-
ment object. Our lower bound applies not just to implementations of the increment
object, but to implementations of a large class of objects, which we call perturbable
objects. Section 3.2 defines the class of perturbable objects. Section 3.3 proves the
lower bound for any implementation of any perturbable object.

3.1. The intuition. To illustrate the main ideas of the lower bound proof, we
provide below a proof sketch for a simple case of the full result. Consider any deter-
ministic implementation of an increment object O,2 shared by p1, . . . , pn, from swap
objects.3 We will prove that the space and time complexity of the implementation are
at least n− 1. (The full result is more general in three ways: it applies to randomized
implementations; it applies to implementations of any perturbable object, not just
the increment object; and it applies even if base objects include resettable consensus
objects.)

2An increment object supports increment and read operations. The increment operation adds 1
to the state and returns ack . The read operation returns the state without affecting it.

3A swap object supports read and write operations. The write v operation changes the state to
v and returns the previous state. The read operation returns the state without modifying it.
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Consider Scenario 0 in which pn initiates a read operation on O and runs alone.
We claim that pn accesses some base object, before completing this read operation on
O. For a proof, suppose the claim is false. Then pn cannot distinguish Scenario 0 from
Scenario 0′ in which some process completes an increment operation on O before pn
starts taking steps. Yet, correctness requires pn’s read operation to return different
values in Scenarios 0 and 0′. This contradiction implies the claim. Let B1 denote the
first base object that pn accesses.

To force pn to access a second base object, the idea is to schedule other processes,
before scheduling pn, in such a way that they render the information in B1 not much
useful for pn. Consequently, later when pn runs and accesses B1, it will not learn
enough to determine the response to its read operation on O; thus, pn is forced to
access a second base object. The details are as follows. Let Scenario 1 depict an
execution in which processes other than pn take steps until some process, say, pi1 ,
writes B1.

4 If pn runs after Scenario 1, it accesses B1 because, until accessing B1,
this scenario is indistinguishable to pn from Scenario 0. More significantly, we show
below that, when running after Scenario 1, pn accesses some base object, besides B1,
before completing its first read operation on O. To see this, consider another scenario,
Scenario 1′, which is the same as Scenario 1 with the following exception: just before
pi1 writes B1, some process pl other than pi1 and pn completes many increment
operations on O, and after this pi1 takes a step and writes B1. Clearly, B1’s value is
the same at the end of Scenarios 1 and 1′. Now extend each of Scenarios 1 and 1′ by
letting pn take steps. If pn accesses only B1, it is clear that the two scenarios would be
indistinguishable to pn. Yet, since many more increments operations are completed in
Scenario 1′ than in Scenario 1, pn’s read operation on O must return different values
in the two scenarios. It follows that, in Scenario 1 (and in Scenario 1′), pn must access
a second base object before completing its read operation on O. Let B2 denote this
base object.

To force pn to access a third base object, we repeat the above trick and render the
information in B2 not much useful for pn. Specifically, consider Scenario 2 consisting
of the following three execution fragments, taking place in this order: (i) the prefix
of Scenario 1 (described above) up to, but excluding the write of B1 by pi1 , (ii) the
steps of processes other than pi1 and pn until some process, say, pi2 , writes B2, and
(iii) the write of B1 by pi1 . If pn were to run after Scenario 2, it accesses B1 and B2

because, until accessing B2, this scenario is indistinguishable to pn from Scenario 1.
We claim that pn accesses some base object, besides B1 and B2, before completing
its first read operation on O. The justification is as in the previous paragraph: if the
claim is false, pn cannot distinguish Scenario 2 from Scenario 2′, where Scenario 2′ is
similar to Scenario 2 except that some process pl other than pi1 , pi2 , and pn completes
many increment operations on O just before the write steps of pi2 and pi1 on B2 and
B1, respectively. This is a contradiction since pn’s read operation on O must return
different values in Scenarios 2 and 2′.

Repeating the above argument, we construct successively Scenarios 3, . . . , n − 2
with the property that, if pn runs alone after Scenario k, it accesses at least k +
1 distinct base objects before completing its first read operation on O. The lower
bound of n− 1 on the space and time complexity of the implementation is immediate
from the existence of Scenario n − 2. (We cannot proceed any further than Scenario
n − 2 because processes other than pn are all already used up: they play the roles

4It is possible that such an execution does not exist. In order not to obscure the basic intuition,
we address this possibility only in the formal proof, presented in section 3.3.
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of pi1 , . . . , pin−2
or as a process that does increment operations just before the write

steps of pi1 , . . . , pin−2 .)
In summary, the crux is to ensure that pn gets no useful information from

B1, B2, . . . , Bn−2; that is, B1, B2, . . . , Bn−2 are rendered useless to pn. This is ac-
complished by “using up” pij to render Bj useless. This technique of using up one
new process for each additional shared object to be rendered useless, in the context
of space complexity lower bounds, was used earlier by Burns and Lynch [BL93].

We turn the above ideas into a rigorous inductive proof in section 3.3. To under-
stand the correspondence between that proof and the above informal argument, note
that Scenario 2 described above has three parts: a schedule involving p1, . . . , pn−1, fol-
lowed by the write steps of pi2 and pi1 (on objects B2 and B1, respectively), followed
by the steps of only pn. More generally, if we extended the argument to Scenarios
3, 4, . . . , Scenario k would consist of three parts, where the first part is a schedule
involving p1, . . . , pn−1, the second part is the write steps of pik , pik−1

, . . . , pi1 on some
base objects Bk, Bk−1, . . . , B1, and the third part is the steps of only pn. Roughly
speaking, these three parts of Scenario k′ correspond to the schedules Λ, Σ, and Π,
respectively, in Definition 3.1 in section 3.2, and to the schedules Λk, Σk, and Πk, re-
spectively, of the proof in section 3.3. We caution the reader that this correspondence
is not exact but is close enough to help the reader understand how the formal proof
works.

3.2. Perturbable types. The key property of the increment object exploited in
the above proof is the following: it is possible to create a new scenario by scheduling
the steps of some process pl immediately before that of pik , pik−1

, . . . , pi1 in such a
way that pn is forced to distinguish the new scenario from the older one. Below we
state an abstract version of this property (which suffices for our proof technique to
work), and call any type that has this property a perturbable type.

Definition 3.1. Type T is perturbable for n processes, for initial state s if for
every linearizable and solo-terminating randomized implementation of an object O of
type T, initialized to s and shared by processes p1, . . . , pn, there exists an assignment
of operation sequences to input variables oplist1, . . . , oplistn such that the following
statement holds:

If Λ, Σ, and Π are any schedules that satisfy the following four conditions,
• pset(Λ) ⊆ {p1, . . . , pn−1};
• pset(Σ) is a proper subset of {p1, . . . , pn−1} and each process appears
at most once in Σ;
• pset(Π) = {pn};
• in ΛΣΠ, pn’s first operation on O just completes and returns some
response res;

then, for some pl ∈ {p1, . . . , pn−1} − pset(Σ), there is a schedule γ ∈ ({pl} ×
coinspace)∗ such that, in ΛγΣΠ, either pn’s first operation on O does not complete
or it returns a response different from res.

3.3. The main result. We prove that the space complexity of any randomized
solo-terminating implementation and the time complexity of any deterministic solo-
terminating implementation of any perturbable object, shared by n processes, are
both at least n− 1 if base objects are restricted to be (any combination of) resettable
consensus objects and historyless objects, such as registers, test and set objects, and
swap registers.

Theorem 3.2. Suppose that type T is perturbable for n processes for some initial
state s. Consider any randomized implementation of an object of type T, initialized to
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There are schedules Λk, Σk, Πk such that the following conditions hold:
(1) Λk, Σk ∈ ({p1, p2, . . . , pn−1}×coinspace)∗, and Πk ∈ ({pn}×coinspace)∗.

That is, Λk and Σk do not contain pn and Πk contains no process other than
pn.

(2) |Σk| = |pset(Σk)| = k. That is, k distinct processes take one step each in Σk.
(3) In ΛkΣkΠk, pn accesses exactly k distinct base objects and pn’s first operation

on O has either not completed or just completed.
(4) Let Sk be the set of base objects that pn accesses in ΛkΣkΠk. Let Pk =
{p1, p2, . . . , pn−1} − pset(Σk) and γ be any schedule in (Pk × coinspace)∗.
Then, ΛkΣk ≈Sk

ΛkγΣk.

Fig. 3.1. Statement Sk.

s and shared by processes p1, . . . , pn, from resettable consensus objects and historyless
objects. If the implementation is linearizable and solo-terminating, then

(1) its space complexity is at least n− 1;
(2) if the implementation is deterministic, its solo-termination time complexity

is at least n− 1.

Proof. Let O be the implemented object, and let C0 be the initial configuration of
(p1, . . . , pn;O) obtained by assigning to op-list1, . . . , op-listn the operation sequences
mentioned in Definition 3.1. The crux of the proof lies in the following claim: For all
k, 0 ≤ k ≤ n− 1, Statement Sk, presented in Figure 3.1, is true. We prove this claim
by induction. Below, we let Sk : j denote the jth part of Statement Sk.

Base case. Let Λ0 = Σ0 = Π0 = ε (ε is the empty sequence). It is easy to verify
that all of S0 : 1-4 are true. Hence, we have the base case.

Induction step. Suppose 0 ≤ k ≤ n − 2 and Sk is true. Let Λk,Σk,Πk be so
defined as to make Statement Sk true. Let Sk denote the set of base objects that pn
accesses in ΛkΣkΠk, and let Pk denote {p1, p2, . . . , pn−1} − pset(Σk). We show that
Sk+1 is true through the following steps.

(1) By Sk : 3, in ΛkΣkΠk, pn’s first operation on O has either not completed or
just completed. Let π ∈ ({pn} × coinspace)∗ be such that, in ΛkΣkΠkπ,
pn just completes its first operation on O, returning some value. Since the
implementation is solo-terminating, π exists.

(2) Claim 1. π �= ε and in ΛkΣkΠkπ, pn accesses a base object not in Sk.
Proof. Suppose the claim is false. Recall that Pk = {p1, p2, . . . , pn−1}−pset(Σk).

Since |pset(Σk)| = k and k ≤ n − 2, Pk is nonempty. For all pl ∈ Pk and γ ∈
({pl}×coinspace)∗, we assert that ΛkΣkΠkπ ≈pn ΛkγΣkΠkπ. This assertion follows
from the facts below: (i) ΛkΣk ≈pn ΛkγΣk (since the schedules ΛkΣk and ΛkγΣk do
not contain pn), (ii) ΛkΣk ≈Sk

ΛkγΣk (by Sk : 4), (iii) the schedule Πkπ contains only
pn, and (iv) the only base objects accessed by pn in ΛkΣkΠkπ are the ones in Sk (by
our assumption that Claim 1 is false).

The above assertion, together with the definition of π from step 1, implies that
pn’s first operation on O completes and returns the same response in ΛkγΣkΠkπ
as in ΛkΣkΠkπ. This contradicts Definition 3.1. (To see the contradiction, substi-
tute Λ,Σ,Π in the definition with Λk,Σk,Πkπ, respectively, and note that the con-
ditions in the definition hold because of the induction hypothesis.) Hence, we have
Claim 1.
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(3) Definition 3.3. Define πk+1, Bk+1, and Πk+1 as follows:
• πk+1 is the shortest prefix of π such that, in ΛkΣkΠkπk+1, pn accesses
a base object not in Sk (by Claim 1, πk+1 exists).

• Bk+1 is the unique base object not in Sk that pn accesses in ΛkΣkΠkπk+1.
• Πk+1 = Πkπk+1.

Claim 2. Πk+1 ∈ ({pn} × coinspace)∗.
Proof. Since Πk and πk+1 are both from ({pn} × coinspace)∗, we have Πk+1 ∈

({pn} × coinspace)∗.
(4) Claim 3. There exist λk+1 ∈ (Pk × coinspace)∗ and [pik+1

, tk+1] ∈ Pk ×
coinspace such that, for all γ ∈ ((Pk−{pik+1

})×coinspace)∗, Λkλk+1[pik+1
,

tk+1] ≈Bk+1
Λkλk+1γ[pik+1

, tk+1].

Proof. The following observation will be used many times in the proof:

Observation O1. For all γ ∈ ((Pk − {pik+1
}) × coinspace)∗, process pik+1

accesses the same base object and applies the same operation in the last step
of Λkλk+1[pik+1

, tk+1] as in the last step of Λkλk+1γ[pik+1
, tk+1].

This observation follows from the fact that γ does not contain pik+1
. In the

following, we pick λk+1 and [pik+1
, tk+1] based on the type of Bk+1, and in

each case prove that our choice of λk+1 and [pik+1
, tk+1] satisfies Claim 3. In

the rest of the proof, γ denotes an arbitrary schedule in ((Pk − {pik+1
}) ×

coinspace)∗.
Case 1. Bk+1 is a historyless object.

Subcase 1a. There is some nonempty schedule λ ∈ (Pk × coinspace)∗
such that the last step in Λkλ is a nontrivial operation on Bk+1. De-
fine λk+1 and [pik+1

, tk+1] so that λ = λk+1[pik+1
, tk+1]. By O1, pik+1

performs the same nontrivial operation on Bk+1 in the last step of
Λkλk+1γ[pik+1

, tk+1] as in the last step of Λkλk+1[pik+1
, tk+1]. This, to-

gether with Proposition 2.1, gives Claim 3.
Subcase 1b. There is no such λ.
Define λk+1 to be ε and [pik+1

, tk+1] to be any element of Pk×coinspace.
It follows from the subcase in consideration that no nontrivial
operation is performed on Bk+1 in the last |λk+1[pik+1

, tk+1]| steps
of Λkλk+1[pik+1

, tk+1] and in the last |λk+1γ[pik+1
, tk+1]| steps of

Λkλk+1γ[pik+1
, tk+1]. Therefore, by Proposition 2.1, Λkλk+1[pik+1

, tk+1]
≈Bk+1

Λk ≈Bk+1
Λkλk+1γ[pik+1

, tk+1]. Hence, we have Claim 3.
Case 2. Bk+1 is a resettable consensus object.

Subcase 2a. There is some nonempty schedule λ ∈ (Pk × coinspace)∗
such that the last step in Λkλ is a reset operation on Bk+1. Define λk+1

and [pik+1
, tk+1] so that λ = λk+1[pik+1

, tk+1]. By O1, pik+1
performs a

reset on Bk+1 in the last step of Λkλk+1γ[pik+1
, tk+1], just as it does in

the last step of Λkλk+1[pik+1
, tk+1]. Hence, we have Claim 3.

Subcase 2b. There is no such λ. However, there is some nonempty
schedule λ′ ∈ (Pk × coinspace)∗ such that the last step in Λkλ

′ is a
propose operation on Bk+1.
Define λk+1 to be λ

′ and [pik+1
, tk+1] to be any element of Pk×coinspace.

Let σ be the state of Bk+1 at the end of Λkλk+1. Since Subcase 2a is not
applicable, it follows that Bk+1 is not reset in the last |λk+1[pik+1

, tk+1]|
steps of Λkλk+1[pik+1

, tk+1] and in the last |λk+1γ[pik+1
, tk+1]| steps of

Λkλk+1γ[pik+1
, tk+1]. Thus, Bk+1’s state is σ at the end of Λkλk+1[pik+1

,
tk+1] and at the end of Λkλk+1γ[pik+1

, tk+1]. Hence, we have Claim 3.
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Subcase 2c. Neither λ nor λ′ exists.
Define λk+1 to be ε and [pik+1

, tk+1] to be any element of Pk×coinspace.
It follows from the subcase under consideration that no reset or
propose operation is performed on Bk+1 in the last |λk+1[pik+1

, tk+1]|
steps of Λkλk+1[pik+1

, tk+1] and in the last |λk+1γ[pik+1
, tk+1]|

steps of Λkλk+1γ[pik+1
, tk+1]. Therefore, Bk+1’s state at the end of

Λkλk+1[pik+1
, tk+1] is the same as its state at the end of Λkλk+1γ[pik+1

,
tk+1]. Hence, we have Claim 3.

This completes the proof of Claim 3.

(5) Definition 3.4. Let λk+1 and [pik+1
, tk+1] be as in Claim 3. Define Λk+1

and Σk+1 as follows:
• Λk+1 = Λkλk+1.
• Σk+1 = [pik+1

, tk+1]Σk.
Claim 4. Λk+1, Σk+1 ∈ ({p1, p2, . . . , pn−1} × coinspace)∗.

Proof. By definition, λk+1 ∈ (Pk×coinspace)∗ and [pik+1
, tk+1] ∈ Pk×coinspace,

where Pk = {p1, p2, . . . , pn−1} − pset(Σk). This, together with Sk : 1, implies the
claim.

Claim 5. |Σk+1| = |pset(Σk+1)| = k + 1.

Proof. This claim follows from the definition of Σk+1 as [pik+1
, tk+1]Σk and the

following two facts: (i) |Σk| = |pset(Σk)| = k (by Sk : 2), and (ii)[pik+1
, tk+1] ∈

Pk × coinspace and Pk does not include any process from pset(Σk).

(6) Claim 6. Let Pk+1 = {p1, p2, . . . , pn−1}−pset(Σk+1). Let γ be any schedule
from (Pk+1 × coinspace)∗. Then we have the following:
(a) Λk+1[pik+1

, tk+1] ≈Bk+1
Λk+1γ[pik+1

, tk+1].
(b) Λk+1Σk+1 ≈Bk+1

Λk+1γΣk+1.
(c) Λk+1Σk+1 ≈Sk

ΛkΣk ≈Sk
Λk+1γΣk+1.

Proof. Part (a) of this claim is a rephrasing of Claim 3. The proof of the other
two parts of this claim will use Observation O1, stated earlier in the proof of Claim
3.

By construction, pik+1
�∈ pset(Σk). By definition of γ, pset(γ)∩pset(Σk) = ∅. It

follows that Λk+1[pik+1
, tk+1] ≈pset(Σk) Λk+1γ[pik+1

, tk+1]. From this, the fact that
each process in pset(Σk) appears only once in Σk and |Σk| = k, we conclude that
the sequence of base objects accessed and the operations applied in the last k steps
of Λk+1[pik+1

, tk+1]Σk are identical to the sequence of base objects accessed and the
operations applied in the last k steps of Λk+1γ[pik+1

, tk+1]Σk. This, together with part
(a) of the claim, implies part (b).

It follows from the induction hypothesis Sk : 4 that Λkλk+1[pik+1
, tk+1]Σk ≈Sk

ΛkΣk ≈Sk Λkλk+1γ[pik+1
, tk+1]Σk. This, together with prior definitions of Λk+1 as

Λkλk+1 and Σk+1 as [pik+1
, tk+1]Σk, gives part (c) of the claim.

(7) Claim 7.
(a) Let Sk+1 be the set of base objects that pn accesses in Λk+1Σk+1Πk+1.

Then Sk+1 = Sk ∪ {Bk+1} and |Sk+1| = k + 1.
(b) In Λk+1Σk+1Πk+1, pn’s first operation on O has either not completed

or just completed.

Proof. We make the following observations: (1) ΛkΣk ≈pn Λk+1Σk+1 (since
neither ΛkΣk nor Λk+1Σk+1 contains pn); (2) ΛkΣk ≈Sk Λk+1Σk+1 (this is part (c) of
Claim 6); (3) by definition of Sk, Sk is exactly the set of base objects that pn accesses
in ΛkΣkΠk; and (4) by definition of πk+1, in ΛkΣkΠkπk+1, it is only in the last step
that pn accesses a base object not in Sk (this base object is Bk+1), and pn’s first
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operation on O has either not completed or just completed. These observations imply
part (b) of the claim and that Sk+1 = Sk ∪ {Bk+1}. This, together with |Sk| = k (by
induction hypothesis), implies |Sk+1| = k + 1.

We have proved all four parts of Statement Sk+1: part 1 in Claims 4 and 2, Part
2 in Claim 5, part 3 in Claim 7; part 4 follows from parts (b) and (c) of Claim 6 and
Claim 7(a). This completes the induction step and hence the proof of Statement Sk
for all 0 ≤ k ≤ n− 1.

We now proceed to prove Theorem 3.2. The first part of the theorem is immediate
from part 3 of Statement Sn−1. To obtain the second part of the theorem, observe
that a deterministic implementation can be viewed as a randomized implementation
for which coinspace is a singleton set. Since Statement Sk (0 ≤ k ≤ n− 1) is proved
for any nonempty countable coinspace, Statement Sn−1 is true for any deterministic
implementation. By part 3 of Statement Sn−1, in Λn−1Σn−1Πn−1, pn accesses n− 1
base objects and has either not completed or just completed its first operation on O.
This implies that the solo-termination time complexity is at least n − 1. Hence, we
have the theorem.

4. Examples of perturbable types. We show that the following common
types of objects are perturbable for n processes: modulo k counter for any k ≥ 2n,
increment object, fetch&add, k-valued compare&swap for any k ≥ n, LL/SC bit, and
single-writer snapshot. It follows from Theorem 3.2 that the space complexity of a
randomized implementation or the time complexity of a deterministic implementation
of any of these objects from resettable consensus objects and historyless objects is at
least n− 1.

4.1. Modulo counter and related objects. A modulo k counter supports
increment and read operations. The states are 0, 1, . . . , k−1. The increment operation
adds 1 to the state (modulo k) and returns ack . The read operation returns the state
without affecting it. The following proposition is immediate from the linearizability
requirement.

Proposition 4.1. Let O be a modulo k counter, initialized to 0. Let E be a finite
execution of (p1, . . . , pn;O) such that in the configuration C at the end of E, process
pn has no pending operation on O. Suppose pn runs alone from C and performs a read
operation on O. If the number of completed increments in E is at least v and the sum
in E of the number of completed increments and the number of pending increments is
at most v′, then the value returned by the read of pn is in the range [v, v′]mod k.

Lemma 4.2. For all k ≥ 2n, modulo k counter is perturbable for n processes, for
any initial state.

Proof. Without loss of generality, we prove the lemma for initial state 0. Con-
sider any linearizable and solo-terminating randomized implementation of a modulo
k counter O, initialized to 0 and shared by processes p1, . . . , pn. For 1 ≤ i ≤ n − 1,
let op-listi be an infinite sequence of increment operations, and op-listn be an infinite
sequence of read operations. Let Λ, Σ, and Π be any schedules that satisfy the four
conditions listed in Definition 3.1.

Let pl be any process in {p1, . . . , pn−1} − pset(Σ), and γ ∈ ({pl} × coinspace)∗
be the shortest schedule such that there are exactly n more completed increment
operations on O in Λγ than in Λ. Since the implementation is solo-terminating, γ
exists. We now make the following observations:

(1) If a process completes an increment on O in the last |Σ| steps of ΛΣ, then
it has no pending increment on O in ΛΣ. Furthermore, no process completes
more than one increment on O in the last |Σ| steps of ΛΣ.
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This follows from the fact that each process appears at most once in the
schedule Σ.

(2) For any execution E, let NP(E) denote the number of pending increment
operations on O in E. The sum of NP(ΛΣ) and the number of increments
that completed in the last |Σ| steps of ΛΣ is at most n− 1.
This follows from (1) and the fact that pset(ΛΣ) ⊆ {p1, . . . , pn−1}.

(3) The sum of NP(ΛγΣ) and the number of increments that completed in the
last |Σ| steps of ΛγΣ is at most n− 1.
This also follows from (1) and the fact that pset(ΛγΣ) ⊆ {p1, . . . , pn−1}.

(4) For any execution E, let NC(E) denote the number of completed increment
operations on O in E. Let NC(Λ) = v. In ΛΣΠ, the value res, which pn’s first
operation on O (which is a read) returns, is in the range [v, v+ n− 1]mod k.
This follows from Proposition 4.1 and the following two chains of inequalities:

NC(ΛΣ) ≥ NC(Λ) = v,

NC(ΛΣ) + NP(ΛΣ) = NC(Λ) + NP(ΛΣ)
+ number of increments that completed in

the last |Σ| steps of ΛΣ
≤ v + n− 1 (by (2)).

(5) In ΛγΣΠ, if pn’s first operation on O completes, it returns a value in the
range [v + n, v + 2n− 1]mod k.
This follows from Proposition 4.1 and the following two chains of inequalities:

NC(ΛγΣ) ≥ NC(Λγ) = v + n,

NC(ΛγΣ) + NP(ΛγΣ) = NC(Λγ) + NP(ΛγΣ)
+ number of increments that completed in

the last |Σ| steps of ΛγΣ
≤ (v + n) + (n− 1) (by (3)).

Since k ≥ 2n, the range [v, v+n−1]mod k and the range [v+n, v+2n−1]mod k
are disjoint. This, together with (4) and (5), implies Lemma 4.2.

An increment object is a special case of a modulo k counter for k =∞. Since the
finiteness of k is not used in the proofs of Proposition 4.1 or Lemma 4.2, we have the
following result.

Lemma 4.3. An increment object is perturbable for n processes, for any initial
state.

A fetch&add object supports the operation fetch&add(v), for any integer v. The
states are integers. The fetch&add(v) operation adds v to the state and returns the
previous state. Proceeding analogously as in the proof of Lemma 4.2, with k =∞ and
the operations increment , read replaced by fetch&add(1), fetch&add(0), we obtain the
following lemma.

Lemma 4.4. A fetch&add object is perturbable for n processes, for any initial
state.

4.2. Compare&swap. A k-valued compare&swap object supports the opera-
tions read and c&s(u, v) for all u, v ∈ {1, 2, . . . , k}. The states are 1, 2, . . . , k. The
effect of c&s(u, v) depends on whether or not the state is u: if the state is u, c&s(u, v)
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changes the state to v and returns true; otherwise it returns false without affecting
the state. We say a compare&swap operation is successful if it returns true.

Proposition 4.5. Let C be any reachable configuration of (p1, . . . , pn;O), where
O is a k-valued compare&swap object. Suppose that process pl has no pending oper-
ations on O in C. For any w ∈ {1, 2, . . . , k}, if pl runs alone from C, completing
the sequence of operations read, c&s(1, w), c&s(2, w), . . . , c&s(k,w), then one of the
following is true:

(1) One of the c&s operations of pl returns true.
(2) Some operation on O that was pending in C is linearized after the read and

before the last c&s operation of pl.
Proof. Let v be the value returned by the read operation of pl. Suppose that

statement (1) in the proposition is false. Since c&s(v, w), which is one of the n c&s
operations that pl performed following the read, did not return true, some pending
operation must have taken effect after the read and before the c&s(v, w).

Proposition 4.6. Let C be any reachable configuration of (p1, . . . , pn;O), where
O is a k-valued compare&swap object. Suppose that process pl has no pending op-
erations on O in C. Let w ∈ {1, 2, . . . , k} and suppose that pl runs alone from C,
completing the following sequence of operations n times: read, c&s(1, w), c&s(2, w),
. . . , c&s(k,w). Then, at least one of the c&s operations returns true.

Proof. The proposition follows by successive application of Proposition 4.5 and
the observation that there can be at most n− 1 pending operations on O in C.

Lemma 4.7. For all k ≥ n, k-valued compare&swap object is perturbable for n
processes for any initial state.

Proof. Consider any linearizable and solo-terminating randomized implementa-
tion of a k-valued compare&swap object O, initialized to any value and shared by
processes p1, . . . , pn. For any 1 ≤ j ≤ k, let αj denote the operation sequence read ,
c&s(1, j), c&s(2, j), . . . , c&s(k, j). Let β denote the operation sequence αn1α

n
2 · · ·αnk ,

where αmi denotes the sequence αi repeated m times. Thus, |αj | = k + 1 and |β| =
nk(k + 1). For all 1 ≤ i ≤ n − 1, initialize the input variable op-listi to the infinite
sequence βββ, . . . , and initialize op-listn to the infinite sequence of read operations.
Let Λ, Σ, and Π be any schedules that satisfy the four conditions listed in Definition
3.1.

Let pl be any process in {p1, . . . , pn−1}−pset(Σ). If pl has any pending operation
on O at the end of Λ, let γ′ ∈ ({pl} × coinspace)∗ be such that pl just completes
that operation in Λγ′. Otherwise let γ′ = ε. Thus, at the end of Λγ′, pl has no
pending operation on O, and any pending operations have to be from processes in
{p1, . . . , pn−1}−{pl}. Let P ⊆ {p1, . . . , pn−1}−{pl} be the set of processes that have
pending operations on O at the end of Λγ′.

Let Q be the set of processes that initiate a new operation on O in the last |Σ|
steps of Λγ′Σ. Since pl ∈ {p1, . . . , pn−1}−pset(Σ), we have Q ⊆ {p1, . . . , pn−1}−{pl}.
Furthermore, since each process appears at most once in Σ, if a process has a pending
operation in Λγ′, then that process cannot initiate a new operation on O in the
last |Σ| steps of Λγ′Σ. In other words, P ∩ Q = ∅. From this and the fact P,Q ⊆
{p1, . . . , pn−1} − {pl}, we have |P |+ |Q| ≤ n− 2. That is, the sum of the number of
pending operations onO in Λγ′ and the number of operations onO initiated in the last
|Σ| steps of Λγ′Σ is at most n − 2. Let V be the set of all v such that a c&s(v, ∗)
operation5 on O is either pending in Λγ′ or initiated in the last |Σ| steps of Λγ′Σ.
From the above, |V | ≤ n− 2.

5An asterisk in a field indicates that we do not care what the value of that field is.
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Recall from (the fourth condition in) Definition 3.1 that res is the value returned
by pn’s first operation on O in ΛΣΠ. Let w ∈ {1, 2, . . . , n} be such that w �∈ V and
w �= res. Let γ′′ ∈ ({pl}× coinspace)∗ be the shortest schedule such that, in Λγ′γ′′,
we have the following: (i) pl has no pending operations, (ii) there are at least n(k+1)
completed operations on O (by pl) in the last |γ′′| steps, and (iii) the sequence of
n(k+1) most recent completed operations of pl on O is αnw. The definition of op-listl
and the fact that the implementation is solo-terminating imply that γ′′ exists. We
now make the following observations:

(1) In Λγ′γ′′, the most recent n(k+1) operations of pl on O includes a successful
compare&swap operation of the form c and s(∗, w). (Let op denote any such
operation.)

Proof. In Λγ′γ′′, the most recent n(k+1) operations of pl on O are the operations
in αnw. All of the compare&swap operations in αnw are of the form c&s(∗, w) and, by
Proposition 4.6, at least one of these succeeds.

(2) Consider any linearization of Λγ′γ′′Σ. If op′ is a successful compare&swap
operation that is linearized after op, then op′ must be of the form c&s(∗, w).

Proof. We prove this assertion by contradiction. Let op′ be the first successful
compare&swap operation that is of the form c&s(∗, x), for some x �= w, to be linearized
after op. Since op is successful and each successful compare&swap operation that is
linearized after op and before op′ is of the form c&s(∗, w), the value of the object is
w immediately before op′.

There are three cases to consider: (i) op′ is an operation from pl that follows op,
(ii) op′ is an operation which is pending in Λγ′, or (iii) op′ is an operation which is
initiated in the last |Σ| steps of Λγ′γ′′Σ. In case (i), by definition of γ′′ and op, op′ is
of the form c&s(∗, w), a contradiction. In cases (ii) and (iii), by definitions of V and
w, op′ = c&s(v, ∗) for some v �= w. Since the value of the object is w immediately
before op′, the fact v �= w implies that op′ = c&s(v, ∗) cannot be successful, which is
a contradiction.

(3) In Λγ′γ′′ΣΠ, if pn’s first operation onO (which is a read operation) completes,
it returns a value different from res.

Proof. Since op is successful and is of the form c&s(∗, w), the value of O im-
mediately after op is w. By the previous observation, in Λγ′γ′′Σ, every successful
compare&swap linearized after op is also of the form c&s(∗, w).

Therefore, in Λγ′γ′′ΣΠ, if pn’s first operation on O (which is a read operation)
completes, it returns w. But w, by definition, is different from res. Hence, we have
the observation.

Lemma 4.7 is immediate from the last observation.

4.3. LL/SC bit. An n-process load-link store-conditional (LL/SC) bit supports
the operations LL and SC(b) for b = 0, 1. The states are pairs (v, S) for all v ∈ {0, 1}
and S ⊆ {1, 2, . . . , n}. The operation LL from process pi, when applied in state (v, S),
returns v and changes the state to (v, S′), where S′ = S ∪ {i}. The operation SC(b)
from process pi, when applied in state (v, S), has the following effect: if i ∈ S, the
state changes to (b, ∅) and true is returned; otherwise the state is not affected and
false is returned. We say an SC operation is successful if it returns true.

Proposition 4.8. Let C be any reachable configuration of (p1, . . . , pn;O), where
O is an n-process LL/SC bit. Suppose that process pl has no pending operations on
O in C. If pl runs alone from C, completing an LL operation and then an SC(b)
operation (for any b ∈ {0, 1}), then one of the following is true:

(1) The SC(b) operation of pl returns true.
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(2) Some SC operation on O that was pending in C is linearized after the LL and
before the SC(b) of pl.

Proof. The proposition follows from the specification of n-process LL/SC
bit.

Proposition 4.9. Let C be any reachable configuration of (p1, . . . , pn;O), where
O is an n-process LL/SC bit. Suppose that process pl has no pending operations on
O in C. For b ∈ {0, 1}, suppose further that pl runs alone from C, completing the
following sequence of operations n times: LL, SC(b). Then at least one of the SC(b)
operations returns true.

Proof. The proposition follows by repeated application of Proposition 4.8 and the
observation that there can be at most n− 1 pending operations on O in C.

Lemma 4.10. LL/SC bit is perturbable for n processes for any initial state.
Proof. Consider any linearizable and solo-terminating randomized implementa-

tion of an LL/SC bitO, initialized to any value and shared by processes p1, . . . , pn. For
j ∈ {0, 1}, let αj denote the sequence LL, SC(j), LL, SC(j), . . . , LL, SC(j) that has a
total of 2n operations (n LL operations and n SC(j) operations). For all 1 ≤ i ≤ n−1,
initialize the input variable op-listi to the infinite sequence α0, α1, α0, α1, α0, α1, . . .
and initialize op-listn to the infinite sequence of LL operations. Let Λ, Σ, and Π be
any schedules that satisfy the four conditions listed in Definition 3.1.

Let pl be any process in {p1, . . . , pn−1}−pset(Σ). If pl has any pending operation
on O at the end of Λ, let γ′ ∈ ({pl}×coinspace)∗ be such that pl just completes that
operation in Λγ′. Otherwise let γ′ = ε. Thus, at the end of Λγ′, pl has no pending
operation on O, but other processes may. Any such pending operations have to be
from processes in {p1, . . . , pn−1} − {pl}.

Recall from (the fourth condition in) Definition 3.1 that res is the value returned
by pn’s first operation on O in ΛΣΠ. Let w = 1− res. Let γ′′ ∈ ({pl}×coinspace)∗
be the shortest schedule such that, in Λγ′γ′′, we have the following: (i) pl has no
pending operations, (ii) there are at least 2n completed operations on O (by pl) in
the last |γ′′| steps, and (iii) the sequence of 2n most recent operations of pl on O is
αw. The definition of op-listl and the fact that the implementation is solo-terminating
imply that γ′′ exists. We now make the following observations:

(1) In Λγ′γ′′, the most recent 2n operations of pl on O include a successful SC (w)
operation. (Let op denote any such operation.)

Proof. Consider the sequence αw of the 2n most recent (alternating LL and
SC (w)) operations of pl on O. By Proposition 4.9, at least one of these SC (w)
operations succeeds.

(2) Consider any linearization of Λγ′γ′′Σ. Let op′ = SC (v) be any successful
operation that is linearized after op. Then v = w.

Proof. If op′ is linearized after op, there are three cases to consider: (i) op′ is an
operation from pl that follows op, (ii) op

′ is an operation which is pending in Λγ′,
or (iii) op′ is an operation which is initiated in the last |Σ| steps of Λγ′γ′′Σ. In the
following we show that the observation holds in all cases.

Case (i). op′ is an operation from pl that follows op.
Since pl ∈ {p1, . . . , pn−1} − pset(Σ), pl has no step in the last |Σ| steps of
Λγ′γ′′Σ. From this and the definition of γ′′, the 2n most recent operations
from pl in Λγ′γ′′Σ are LL, SC (w), LL, SC (w), . . . , LL, SC (w). By definition,
op is one of these 2n operations. Thus, if op′ = SC(v) is an SC operation
from pl that follows op, then v must equal w.
Cases (ii) and (iii). op′ is pending in Λγ′ or op′ is initiated in the last |Σ|
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steps of Λγ′γ′′Σ.
Let pi be the process that invoked op′ = SC (v). Consider the most recent
LL operation from pi that preceded op

′. Let op′′ denote this operation. We
assert that in both Case (ii) and Case (iii), op′′ completed in Λ. In the next
two paragraphs we prove this assertion for the two cases.
In Case (ii), since op′ is pending in Λγ′, op′′ must have completed in Λγ′.
Since pset(γ′γ′′) = {pl} and pl �= pi (because, unlike pi, pl has no pending
operation in Λγ′), it follows that pi completed op′′ in Λ.
In Case (iii), since each process appears at most once in Σ, if pi initiated op

′

in the last |Σ| steps of Λγ′γ′′Σ, then it follows that pi completed op′′ in Λγ′γ′′.
Further, since pset(γ′γ′′) = {pl} and pl �= pi (because pl ∈ {p1, . . . , pn−1} −
pset(Σ)), it follows that pi completed op′′ in Λ.
Since op did not even begin in Λ, it follows that op′′ is linearized before op.
Thus, we have the following situation: pi applied the LL operation op′′ and
then the SC operation op′; pl’s successful SC operation op is linearized after
op′′ and before op′. By the specification of LL/SC bit, op′ must return false.
This contradicts the premise that op′ is successful. Thus Cases (ii) and (iii)
cannot arise.

(3) In Λγ′γ′′ΣΠ, if pn’s first operation onO (which is an LL operation) completes,
it returns a response different from res.

Proof. Since op = SC (w) is successful, the value of O immediately after op is
w. By the previous observation, in Λγ′γ′′Σ, every successful SC linearized after op is
also of the form SC(w). Therefore, in Λγ′γ′′ΣΠ, pn’s first operation on O (which is
an LL operation) returns w. Since w = 1 − res, we have w �= res. Hence, we have
the observation.

Lemma 4.10 is immediate from the last observation.

4.4. Single-writer snapshot. An n-process single-writer binary snapshot ob-
ject [AAD+93, And93] supports the operations read and write v for v ∈ {0, 1}.
The states are [v1, v2, . . . , vn], where v1, v2, . . . , vn are from {0, 1}. A write x op-
eration from process pi, when applied in state [v1, v2, . . . , vn], changes the state to
[v1, . . . , vi−1, x, vi+1, . . . , vn] and returns ack . The read operation, when applied in
state [v1, v2, . . . , vn], returns [v1, v2, . . . , vn] without affecting the state.

Lemma 4.11. Single-writer binary snapshot object is perturbable for n processes
for any initial state.

Proof. Consider any linearizable and solo-terminating randomized implementa-
tion of an n-process single-writer binary snapshot object O, initialized to any value
and shared by processes p1, . . . , pn. For 1 ≤ i ≤ n − 1, let op-listi be an infinite
sequence of alternating write 0 and write 1 operations. Let op-listn be an infinite
sequence of read operations. Let Λ, Σ, and Π be any schedules that satisfy the four
conditions listed in Definition 3.1.

Recall from (the fourth condition in) Definition 3.1 that res is the value returned
by pn’s first operation on O in ΛΣΠ. Let res = [v1, v2, . . . , vn]. Let pl be any process
in {p1, . . . , pn−1} − pset(Σ). Let γ ∈ ({pl} × coinspace)∗ be the shortest schedule
such that, in Λγ, pl just completed writing 1− vl. Since the implementation is solo-
terminating, γ exists. Further, since pl ∈ {p1, . . . , pn−1} − pset(Σ), pl has no step in
the last |Σ| steps of ΛγΣ. Therefore, if pn’s first operation in ΛγΣΠ (which is a read
operation) completes and returns [w1, w2, . . . , wn], wl must equal 1 − vl. It follows
that res �= [w1, w2, . . . , wn]. Hence, we have Lemma 4.11.
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5. Applications. In section 4, we showed that every type in set A is perturbable
for n processes, for any initial state, where A = {modulo k counter (for any k ≥
2n), increment, fetch&add, k-valued compare&swap (for any k ≥ n), LL/SC bit,
single-writer snapshot} (see Lemmas 4.2, 4.3, 4.4, 4.7, 4.10, and 4.11). From this and
Theorem 3.2, we have the following.

Theorem 5.1. Let A be the set of types defined above. Consider any randomized
implementation of an object belonging to a type in A, initialized to any state and shared
by processes p1, . . . , pn, from resettable consensus objects and historyless objects. If the
implementation is linearizable and solo-terminating, then

(1) its space complexity is at least n− 1;
(2) if the implementation is deterministic, its solo-termination time complexity

is at least n− 1.
The above result does not address the complexity of implementing modulo k

counter when k < 2n, or of implementing k-valued compare&swap when k < n. We
discuss these cases below. The following corollary is a simple consequence of Lemma
4.2.

Corollary 5.2. For all k ≥ 1, modulo k counter is perturbable for �k/2� pro-
cesses for any initial state.

From Corollary 5.2 and Theorem 3.2, we have the following.
Corollary 5.3. For any positive integer k, consider any randomized implemen-

tation of modulo k counter, initialized to any state and shared by processes p1, . . . ,
p�k/2�, from resettable consensus objects and historyless objects. If the implementation
is linearizable and solo-terminating, then

(1) its space complexity is at least �k/2� − 1;
(2) if the implementation is deterministic, its solo-termination time complexity

is at least �k/2� − 1.
We observe that the time or space complexity grows monotonically with the num-

ber of processes sharing the implementation. This observation, together with Corol-
lary 5.3, gives the following.

Theorem 5.4. For any k ≤ 2n, consider any randomized implementation of
modulo k counter, initialized to any state and shared by processes p1, . . . , pn, from re-
settable consensus objects and historyless objects. If the implementation is linearizable
and solo-terminating, then

(1) its space complexity is at least �k/2� − 1;
(2) if the implementation is deterministic, its solo-termination time complexity

is at least �k/2� − 1.
Using Lemma 4.7 and reasoning as above, we have the following.
Theorem 5.5. For any k ≤ n, consider any randomized implementation of k-

valued compare&swap, initialized to any state and shared by processes p1, . . . , pn, from
resettable consensus objects and historyless objects. If the implementation is lineariz-
able and solo-terminating, then

(1) its space complexity is at least k − 1;
(2) if the implementation is deterministic, its solo-termination time complexity

is at least k − 1.
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Abstract. We address the problem of designing data structures that allow efficient search for
approximate nearest neighbors. More specifically, given a database consisting of a set of vectors
in some high dimensional Euclidean space, we want to construct a space-efficient data structure
that would allow us to search, given a query vector, for the closest or nearly closest vector in the
database. We also address this problem when distances are measured by the L1 norm and in the
Hamming cube. Significantly improving and extending recent results of Kleinberg, we construct data
structures whose size is polynomial in the size of the database and search algorithms that run in
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1. Introduction.
Motivation. Searching for a nearest neighbor among a specified database of points

is a fundamental computational task that arises in a variety of application areas, in-
cluding information retrieval [32, 33], data mining [20], pattern recognition [8, 14],
machine learning [7], computer vision [4], data compression [18], and statistical data
analysis [10]. In many of these applications the database points are represented as
vectors in some high dimensional space. For example, latent semantic indexing is a
recently proposed method for textual information retrieval [9]. The semantic contents
of documents, as well as the queries, are represented as vectors in R

d, and proxim-
ity is measured by some distance function. Despite the use of dimension reduction
techniques such as principal component analysis, vector spaces of several hundred
dimensions are typical. Multimedia database systems, such as IBM’s QBIC [16] or
MIT’s Photobook [31], represent features of images and queries similarly. In such ap-
plications, the mapping of attributes of objects to coordinates of vectors is heuristic,
and so is the choice of metric. Therefore, an approximate search is just as good as an
exact search and is often used in practice.

The problem. Let V be some (finite or infinite) vector space of dimension d,
and let ‖ · ‖ be some norm (Minkowsky distance function) for V. Given a database
consisting of n vectors in V, a slackness parameter ε > 0, and a query vector q, a
(1 + ε)-approximate nearest neighbor of q is a database vector a such that for any
other database vector b, ‖q− a‖ ≤ (1+ ε)‖q− b‖. We consider the following problem.
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Given such a database and ε > 0, design a data structure S and a (1+ε)-approximate
nearest neighbor search algorithm (using S).

We aim at efficient construction of S as well as quick lookup. Our performance
requirements are the following. (i) The algorithm for constructing S should run in
time polynomial in n and d (and thus the size of S is polynomial in n and d). (ii) The
search algorithm should improve significantly over the näıve (brute force) O(dn) time
exact algorithm. More precisely, we aim at search algorithms using (low) polynomial
in d and logn arithmetic operations.

Our results. We obtain results for the Hamming cube ({0, 1}d with the L1 norm)
for Euclidean spaces (Rd with the L2 norm) and for �d1 (Rd with the L1 norm). Our
results for the cube generalize to vector spaces over any finite field; thus we can handle
a database of documents (strings) over any finite alphabet. Our results for Euclidean
spaces imply similar bounds for distance functions used in latent semantic indexing
(these are not metrics, but their square root is Euclidean).

Our data structures are of size (dn)O(1). For the d-dimensional Hamming cube
as well as for �d1, our search algorithm runs in time O(dpoly log(dn)) (the logarithmic
factors are different in each case). For d-dimensional Euclidean spaces, our search
algorithm runs in time O(d2poly log(dn)). (The big-Oh notation hides factors poly-
nomial in 1/ε.)

Our algorithms are probabilistic. They succeed with any desired probability (at
the expense of time and space complexity). We have to make precise the claims
for success: The algorithm that constructs S succeeds with high probability, and if
successful, S is good for every possible query. If S has been constructed successfully,
then given any query, the search algorithm succeeds to find an approximate nearest
neighbor with high probability, and this probability can be increased as much as we
like without modifying S (just by running the search algorithm several times). An
alternative, weaker guarantee is to construct a data structure that is good for most
queries. Our algorithms provide the stronger guarantee. (This means that they can
work when the queries are generated by an adversary that has access to the random
bits used in the construction of the data structure.) Much of the difficulty arises from
this requirement.

Related work. In computational geometry, there is a vast amount of literature on
proximity problems in Euclidean spaces, including nearest neighbor search and the
more general problem of point location in an arrangement of hyperplanes. We dare
not attempt to survey but the most relevant papers to our work.

There are excellent solutions to nearest neighbor search in low (two or three)
dimensions. For more information see, e.g., [30]. In high dimensional space, the
problem was first considered by Dobkin and Lipton [11]. They showed an exponential
in d search algorithm using (roughly) a double-exponential in d (summing up time
and space) data structure. This was improved and extended in subsequent work of
Clarkson [5], Yao and Yao [35], Matoušek [28], Agarwal and Matoušek [1], and others,
all requiring query time exponential in d. Recently, Meiser [29] obtained a polynomial
in d search algorithm using an exponential in d size data structure.

For approximate nearest neighbor search, Arya et al. [3] gave an exponential in
d time search algorithm using a linear size data structure. Clarkson [6] gave a search
algorithm with improved dependence on ε. Recently, Kleinberg [24] gave two algo-
rithms that seem to be the best results for large d prior to this work. The first
algorithm searches in time O(d2 log2 d + d log2 d log n) but requires a data structure
of size O(n log d)2d. The second algorithm uses a small data structure (nearly linear
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in dn) and takes O(n+ d log3 n) time (so it beats the brute force search algorithm).
Independently of our work, Indyk and Motwani [21] obtained several results

on essentially the same problems as we discuss here. Their main result gives an
O(dpoly log(dn)) search algorithm using a data structure of size O

(
n(1/ε)O(d)

poly log(dn)) for Euclidean and other norms. They obtain this result using space
partitions induced by spheres, and bucketing. In comparison with our work, they use
exponential in d (but not in 1/ε) storage in contrast with our polynomial in d storage.
Their search time is better than ours for the Euclidean case and similar for the L1

norm. They also point out that dimension reduction techniques, such as those based
on random projections, can be used in conjunction with their other results to get
polynomial size data structures which are good for any single query with high proba-
bility. However, the data structure always fails on some queries (so an adversary with
access to the random bits used in the construction can present a bad query).

Also related to our work are constructions of hash functions that map “close” el-
ements to “close” images. In particular, nonexpansive hash functions guarantee that
the distance between images is at most the distance between the original elements.
However, such families are known only for one-dimensional points (Linial and Sas-
son [27]). For d-dimensional points, Indyk et al. [22] construct hash functions that
increase the distance by a bounded additive term (d or

√
d depending on the metric).

These results do not seem useful for approximate nearest neighbor search as they can
increase a very small distance δ to a distance which is much larger than (1+ε)δ. Dolev
et al. [13, 12] construct hash functions that map all elements at distance at most � to
“close” images. These constructions, too, do not seem useful for approximate nearest
neighbor search, because the construction time is exponential in �.

Our methods. Our data structure and search algorithm for the hypercube is based
on an inner product test. Similar ideas have been used in a cryptographic context
by [19] and as a matter of folklore to design equality tests (see, e.g., [25]). Here, we
refine the basic idea to be sensitive to distances. For Euclidean spaces, we reduce the
problem essentially to a search in several hypercubes (along with random sampling
to speed up the search). The reduction uses projections onto random lines through
the origin. Kleinberg’s algorithms are also based on a test using random projections.
His test relies on the relative positions of the projected points. In contrast, our test
is based on the property that the projection of any vector maintains, in expectation,
its (properly scaled) length. This property underlies methods of distance preserving
embeddings into low dimensional spaces, like the Johnson–Lindenstrauss lemma [23]
(see also Linial, London, and Rabinovich [26]). The problem with these techniques is
that when applied directly, they guarantee correct answers to most queries but not
to all possible queries. In order to overcome this difficulty, we resort to the theory of
Vapnik–Chervonenkis (or VC-) dimension [34] to show the existence of a small finite
sample of lines that closely imitate the entire distribution for any vector. A clustering
argument and another sampling argument allow us to use this sample to reduce our
problem to the cube. Similar ideas work for the L1 norm too (but we need to project
onto the axes rather than onto random lines).

Notation. We denote by n the number of database points, by q the query point,
and by ε the slackness (i.e., in reply to q we must return a database point whose
distance from q is within a factor of 1 + ε of the minimum distance from q to any
database point).

Metric spaces. We consider the following metric spaces. The d-dimensional Ham-
ming cube Qd is the set {0, 1}d of cardinality 2d, endowed with the Hamming distance
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H. For a, b ∈ Qd, H(a, b) =
∑
i |ai − bi|. For a finite set F, let x, y ∈ F d. (That is,

x, y are words of length d over the alphabet F .) The generalized Hamming distance
H(x, y) is the number of dimensions where x differs from y. The Euclidean space �d2
is R

d endowed with the standard L2 distance. The space �d1 is R
d endowed with the

L1 distance.

2. Approximate nearest neighbors in the hypercube. In this section we
present an approximate nearest neighbors algorithm for the d-dimensional cube. That
is, all database points and query points are in {0, 1}d and distances are measured
by Hamming distance. The first idea behind our algorithm for the hypercube is to
design a separate test for each distance �. Given a query q, such a test either returns
a database vector at distance at most (1 + ε)� from q, or informs that there is no
database vector at distance � or less from q. Given such a test, we can perform
approximate nearest neighbor search by using binary search over � ∈ {1, 2, . . . , d}
(and also checking distance 0—this can be done using any reasonable dictionary data
structure).

We begin by defining a test, which we later use in the construction of our data
structure. A β-test τ is defined as follows. We pick a subset C of coordinates of the
cube by choosing each element in {1, 2, . . . , d} independently at random with proba-
bility β. For each of the chosen coordinates i we pick independently and uniformly at
random ri ∈ {0, 1}. For v ∈ Qd, define the value of τ at v, denoted τ(v) as follows:

τ(v) =
∑
i∈C
ri · vi (mod 2).

Equivalently, the test can be viewed as picking a vector �R ∈ {0, 1}d in a way that
each entry gets the value 0 with “high” probability (i.e., 1− β

2 ) and the value 1 with
“low” probability (i.e., β/2). With this view, the value of the test on v ∈ Qd is just

its inner product with �R modulo 2.1

Let q be a query, and let a, b be two database points with H(q, a) ≤ � and
H(q, b) > (1 + ε)�. We claim that for β = 1

2� the above test distinguishes between
a and b with constant probability. More formally, let β = 1

2� , and let ∆(u, v) =
Pr�R[τ(u) = τ(v)]. Then we have the following lemma.

Lemma 2.1. There is an absolute constant δ1 > 0, such that for any ε > 0 there
is a constant δ2 > δ1 (depending on ε only), such that ∆(q, a) ≤ δ1 and ∆(q, b) ≥ δ2.
(In what follows we denote by δ the constant δ2 − δ1.)

Proof. For any u, v ∈ Qd with H(u, v) = k we have ∆(u, v) = 1
2 (1 − (1 − 1

2� )
k)

(if none of the k coordinates where ui = vi is chosen to be in C, then τ(u) = τ(v);
if at least one such coordinate, j, is in C, then, for every way of fixing all other
choices, exactly one of the two choices for rj will give τ(u) = τ(v)). Note that
∆(u, v) is monotonically increasing with k. We set δ1 = 1

2 (1 − (1 − 1
2� )

�) and δ2 =
1
2 (1− (1− 1

2� )
(1+ε)�). Thus δ2 −δ1= 1

2

[
(1− 1

2�)
�−(1− 1

2� )
(1+ε)�

]
= Θ(1− e−ε/2).

The above lemma implies that, for q, a, and b as above, a single test can get a
small (constant) bias towards making the correct decision as to which point is closer to
q. To amplify this bias we use several such tests as explained below (see Lemma 2.2).

The data structure. Our data structure S consists of d substructures S1, S2, . . . ,Sd
(one for each possible distance). Fix � ∈ {1, 2, . . . , d}. We now describe S�. Let

1It is common to use the inner product for “equality tests.” However, these tests just distinguish
the equal u, v from the nonequal u, v, but they lose all information on the distance between u and
v. In our test, by appropriately choosing the value β, we can obtain some distance information.
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M and T be positive integers which we specify later. S� consists of M structures
T1, . . . , TM . So fix i ∈ {1, 2, . . . ,M}. Structure Ti consists of a list of T 1

2� -tests
�R1, �R2, . . . , �RT ∈ {0, 1}d, and a table of 2T entries (one entry for each possible out-
come of the sequence of T tests). Each entry of the table either contains a database
point or is empty.

We construct the structure Ti as follows. We pick independently at random T
1
2� -tests t1, . . . , tT (defined by �R1, �R2, . . . , �RT ∈ {0, 1}d). For v ∈ Qd, let its trace be
the vector t(v) = (t1(v), . . . , tT (v)) ∈ {0, 1}T . Let δ1 and δ be the constants from
Lemma 2.1. An entry corresponding to z ∈ {0, 1}T contains a database point v with
H(t(v), z) ≤ (δ1 + 1

3δ)T, if such a point exists (any such point, if more than one
exists), and otherwise the entry is empty. This completes the specification of S (up
to the choice of T and M). Notice that in a straightforward implementation, the size
of S is O(d ·M · (dT + 2T log n)) (we also need to keep the original set of points, and
this takes dn space), and it takes O(d ·M · (dTn+ 2Tn)) time to construct S.

Lemma 2.2. Let q be a query, and let a, b be two database points with H(q, a) ≤ �
and H(q, b) > (1 + ε)�. Consider a structure Ti in S�, and let δ1, δ2, and δ be as in
Lemma 2.1. Then the following hold.

• Pr[H(t(q), t(a)) > (δ1 +
1
3δ)T ] ≤ e−

2
9 δ

2T .

• Pr[H(t(q), t(b)) < (δ2 − 1
3δ)T ] ≤ e−

2
9 δ

2T .
Proof. The proof follows immediately by plugging in the success probabilities

from Lemma 2.1 in the following Chernoff bounds. For a sequence of m indepen-
dently and identically distributed (i.i.d.) 0-1 random variables X1, X2, . . . , Xm,

Pr [
∑
Xi > (p+ γ)m] ≤ e−2mγ2

, and Pr [
∑
Xi < (p− γ)m] ≤ e−2mγ2

, where p =
Pr[Xi = 1] (see [2, Appendix A]).

Our goal is to show that we can answer every possible query “correctly.” This is
formalized by the following definition.

Definition 2.3. For q ∈ Qd, �, and Ti in S�, we say that Ti fails at q if there exists
a database point a with H(q, a) ≤ � (or a database point b with H(q, b) > (1 + ε)�),
such that H(t(q), t(a)) > (δ1 +

1
3δ)T (or H(t(q), t(b)) < (δ2 − 1

3δ)T, respectively). We
say that S fails at q if there exists �, such that more than µM/ log d structures Ti in
S� fail (where µ is a constant that affects the search algorithm). We say that S fails
if there exists q ∈ Qd such that S fails at q.

The following theorem bounds the probability that S fails at any given query q.
Theorem 2.4. For every γ > 0, if we set M = (d+ log d+ log γ−1) log d/µ and

T = 9
2δ
−2 ln(2en log d/µ), then, for any query q, the probability that S fails at q is at

most γ2−d.
Proof. For any �, Ti in S� and database point a, the probability that H(t(q), t(a))

is not within the desired range (i.e., ≤ (δ1 + 1
3δ)T if H(q, a) ≤ � or ≥ (δ2 − 1

3δ)T if

H(q, a) > (1+ε)� or anything otherwise) is at most e−
2
9 δ

2T = µ
2en log d , by Lemma 2.2.

Summing over the n database points, the probability that Ti fails is at most µ
2e log d .

Therefore, the expected number of Tis that fail is at most µM
2e log d . By standard Chernoff

bounds (see [2, Appendix A]), for independent 0-1 random variables X1, X2, . . . , Xm,
setting X =

∑
iXi and denoting by E the expectation of X, Pr[X > (1 + β)E] <(

eβ/(1 + β)(1+β)
)E

. Thus the probability that more than µM
log d of the Tis fail is

less than 2−µM/ log d = γ/d2d. Summing over all d possible values of � completes
the proof.

We conclude the following corollary.
Corollary 2.5. The probability that S fails is at most γ.
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Proof. Sum the bound from the above theorem over 2d possible queries q.
Notice that using the values from Theorem 2.4 for M and T and assuming that

γ and µ are absolute constants, we get that the size of S is O(ε−2d3 log d(log n +

log log d)+d2 log d(n log d)O(ε−2)), and the construction time is essentially this quantity
times n.

2.1. The search algorithm. Our search algorithm assumes that the construc-
tion of S is successful. By Corollary 2.5, this happens with probability 1− γ. Given a
query q, we do a binary search to determine (approximately) the minimum distance �
to a database point. A step in the binary search consists of picking one of the struc-
tures Ti in S� uniformly at random, computing the trace t(q) of the list of tests in
Ti, and checking the table entry labeled t(q). The binary search step succeeds if this
entry contains a database point, and otherwise it fails. If the step fails, we restrict
the search to larger �s, and otherwise we restrict the search to smaller �s. The search
algorithm returns the database point contained in the last nonempty entry visited
during the binary search.

Lemma 2.6. For any query q, the probability that the binary search uses a struc-
ture Ti that fails at q is at most µ.

Proof. The binary search consists of log d steps, each examining a different value
�. As we are assuming that S did not fail, the probability that for any given � the
random Ti in S� that we pick fails is at most µ/ log d. Summing over the log d steps
completes the proof.

Lemma 2.7. If all the structures used by the binary search do not fail at q, then
the distance from q to the database point a returned by the search algorithm is within
a (1 + ε)-factor of the minimum distance from q to any database point.

Proof. Denote the minimum distance from q to any database point by �min. If
� < �min/(1+ ε), then no database point is within distance (1+ ε)� of q, and therefore
all the binary search steps that visit � in this range fail. On the other hand, all the
binary search steps that visit � in the range � ≥ �min succeed. Therefore, the binary
search ends with � such that �min/(1+ε) ≤ � ≤ �min. At that point, the database point
a returned hasH(t(q), t(a)) ≤ (δ1+

1
3δ)T . Any database point b withH(q, b) > (1+ε)�

has H(t(q), t(b)) > (δ2 − 1
3δ)T > (δ1 +

1
3δ)T . Therefore, H(q, a) ≤ (1 + ε)� ≤ (1 + ε)

�min.
Lemmas 2.6 and 2.7 imply the main result of this section which is the following

theorem.
Theorem 2.8. If S does not fail, then for every query q the search algorithm

finds a (1 + ε)-approximate nearest neighbor with probability at least 1 − µ using
O(ε−2d(log n+ log log d+ log 1

µ ) log d) arithmetic operations.
Proof. The success probability claim is immediate from the above lemmas. The

number of operations follows from the fact that we perform log d binary search steps.
Each step requires computing the value of T β-tests. Each β-test requires computing
the sum of at most d products of two elements.

Remark. Some improvements of the above implementation are possible. For ex-
ample, note that the value of M was chosen so as to guarantee that with constant
probability no mistake is made throughout the binary search. Using results of [17], a
binary search can still be made in O(log d) steps even if there is a constant probability
of error at each step. This allows choosing M which is smaller by an O(log d) factor
and getting the corresponding improvement in the size of S and the time required to
construct it.
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3. Approximate nearest neighbors in Euclidean spaces. In this section we
present our algorithm for Euclidean spaces. The main idea underlying the solution
for Euclidean spaces is to reduce the problem to the problem on the cube solved in
the previous section. In fact, we produce several cubes, and the search involves several
cube searches.

Notation. Let x ∈ R
d, and let � > 0. Denote by B(x, �) the closed ball around

x with radius �; i.e., the set {y ∈ R
d | ‖x − y‖2 ≤ �}. Denote by D(x, �) the set of

database points contained in B(x, �).
The main tool in reducing the search problem in Euclidean space to search prob-

lems in the cube is the following embedding lemma. The proof of this lemma follows
standard arguments. We defer the proof to the appendix.

Lemma 3.1. There exists a constant λ > 0, such that for every δ > 0, β > 0,
� > 0, positive integer d, and x ∈ R

d, the following holds. There is an embedding
η = η(x, �, δ, β), η : R

d ↪→ Qk with the following properties.

1. k = poly
(
δ−1
) · (d log2 d+ d log d log δ−1 + log β−1

)
.

2. For every y ∈ B(x, �), and for every z ∈ R
d,

((1−O(δ))m−O(δ))k ≤ H(η(y), η(z)) ≤ ((1 +O(δ))m′ +O(δ))k,

where

m = κ ·max

{‖y − z‖2
�

, λ

}
,

m′ = κ ·min

{‖y − z‖2
�

, δ−1

}
,

κ = Θ
(
1/(1 + δ−1)

√
log(δ−1)

)
.

Furthermore, there is a probabilistic algorithm that computes in polynomial time, with
success probability at least 1 − β, an embedding η with the above properties. The al-
gorithm computes a representation of η as O(dk) rational numbers. Using this rep-
resentation, for every rational y ∈ R

d, we can compute η(y) using O(dk) arithmetic
operations.

The data structure. Our data structure S consists of a substructure Sa for every
point a in the database. Each Sa consists of a list of all the other database points,
sorted by increasing distance from a, and a structure Sa,b for each database point
b = a. Fix a and b, and let � = ‖a− b‖2 be the distance from a to b. (For simplicity,
we’ll assume that different bs have different distances from a.) The structure Sa,b
consists of (1) a representation of an embedding η (as in Lemma 3.1), (2) a Hamming
cube data structure, and (3) a positive integer.

We construct Sa,b as follows. Set δ = ε/O(1). Part (1) of Sa,b is a representation
of η(a, �, δ, β) (β to be determined below), which we compute by Lemma 3.1. Let k be
the dimension of the target of η. Part (2) of Sa,b is an approximate nearest neighbor
search structure for Qk, with the database consisting of the images under η of the
points in D(a, �), and the slackness parameter being δ. Part (3) of Sa,b is the number
of database points in D(a, �). This completes the specification of Sa,b (up to the choice
of β, and of the error probability γ allowed in the cube data structure construction).
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Definition 3.2. We say that Sa,b fails if the embedding η does not satisfy the
properties stipulated in Lemma 3.1, or if the construction of the cube data structure
fails. We say that S fails if there are a, b such that Sa,b fails.

Lemma 3.3. For every ζ > 0, setting β = ζ/n2 and γ = ζ/n2 (where β is the
parameter of Lemma A.3, and γ is the parameter of Corollary 2.5) the probability that
S fails is at most ζ.

Proof. Sum up the failure probabilities from Lemma 3.1 and Corollary 2.5 over
all the structures we construct.

Our data structure S requires O(n2 · poly(1/ε) · d2 · poly log(dn/ε) · (n log(d
log n/ε))O(ε−2)) space (we have O(n2) structures, and the dominant part of each is the
k-dimensional cube structure). The time to construct S is essentially its size times n
(again, the dominant part is constructing the cube structures).

3.1. The search algorithm. As with the cube, our search algorithm assumes
that the construction of S succeeds. This happens with probability at least 1 − ζ,
according to Lemma 3.3. Given a query q, we search some of the structures Sa,b as
follows. We begin with any structure Sa0,b0 , where a0 is a database point and b0 is
the farthest database point from a0. Let �0 = ‖a0 − b0‖2. Then D(a0, �0) contains
the entire database. We proceed by searching Sa1,b1 , Sa2,b2 , . . . , where aj+1, bj+1 are
determined by the results of the search in Saj ,bj .

So fix j. We describe the search in Saj ,bj . Let �j = ‖aj − bj‖2. Let η be the
embedding stored in Saj ,bj . We compute η(q), a node of the k-dimensional cube.
We now search for a (1 + δ)-approximate nearest neighbor for η(q) in the cube data
structure stored in Saj ,bj (allowing failure probability µ). Let the output of this search
be (the image of) the database point a′. If ‖q − a′‖2 > 1

10�j−1, we stop and output
a′. Otherwise, we pick T database points uniformly at random from D(aj , �j), where
T is a constant. Let a′′ be the closest among these points to q. Let aj+1 be the
closest to q between aj , a

′ and a′′, and let bj+1 be the farthest from aj+1 such that
‖aj+1− bj+1‖2 ≤ 2‖aj+1− q‖2. (We find bj+1 using binary search on the sorted list of
database points in Saj+1

.) If no such point exists, we abort the search and we output
aj+1.

Before going into the detailed analysis of the search algorithm, let us try to
motivate it. Our test gives a good approximation for the distance if � is “close” to
the true minimum distance between q and a database point. Thus, � can be viewed
as the scale with which we measure distances. If the scale is too large, we cannot
make the right decision. However, we are able to detect that � is too large, and in
such a case we reduce it. This guarantees that if we start with �0 and the nearest
neighbor is at distance �min, the search will terminate in O(log �0

�min
) iterations. This

quantity may be enormous compared with d and logn. To speed up the search (i.e.,
have the number of iterations independent of the ratio of distances), we add random
sampling from the points D(aj , �j). Using random sampling guarantees that not only
the distances reduce but also that the number of database points to consider decreases
quickly. This guarantees that the number of iterations is O(log n).

The following lemmas formulate the progress made by each step. For the analysis,
let amin be the closest point in the database to q and let �min be its distance.

Lemma 3.4. For every j ≥ 0, amin ∈ D(aj , �j).
Proof. D(aj , �j) contains all the database points whose distance from aj is at

most 2‖q − aj‖2. In particular (by triangle inequality), it contains all the database
points whose distance from q is at most ‖q − aj‖2 ≥ �min. Therefore, it contains
amin.
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Lemma 3.5. For every j ≥ 1, if �j is such that δ−1�j < �min, then for every
a ∈ D(aj , �j) we have ‖q − a‖2 ≤ �min(1 + δ).

Proof. By the assumptions (and since we have amin ∈ D(aj , �j)), the distance
from q to a is at most �min + �j < �min(1 + δ).

Lemma 3.6. For every j ≥ 1, ‖q−a′‖2 ≤ max{(1+ε)�min,
1
10�j−1} with probability

at least 1− µ.
Proof. As amin ∈ D(aj−1, �j−1), we claim that our search of Saj−1,bj−1 returns a′

whose distance from q is at most (1 + ε)max{�min, λ�j−1} with probability at least
1− µ (we set λ such that (1 + ε)λ ≤ 1/10). The reason is that, by Lemma 3.1,

H(η(q), η(a)) ≤ ((1 +O(δ))κmax{�min/�j−1, λ}+O(δ))k.
Therefore, the search algorithm returns a point bc such that

H(η(q), bc) ≤ (1 + δ)((1 +O(δ))κmax{�min/�j−1, λ}+O(δ))k.
Using Lemma 3.1 again, this point bc is the image of a point a′ whose distance from
q satisfies

‖q − a′‖2 ≤ (1 +O(δ))max{�min, λ�j−1}+O(δ)�j−1.

Lemma 3.7. For every j ≥ 1, B(q, ‖q − aj‖2) contains at most 1
2 |D(aj−1, �j−1)|

database points with probability at least 1− 2−T .
Proof. First notice that B(q, ‖q−aj‖2) contains database points fromD(aj−1, �j−1)

only. Let ξ be such that B(q, ξ) contains exactly half the points of D(aj−1, �j−1). (For
simplicity, we assume that the distances from q to the database points are all distinct.)
Each database point in the random sample we pick has probability 1

2 to be in B(q, ξ).
Therefore, the probability that a′′ ∈ B(q, ξ) is at most 2−T .

Lemma 3.8. For all j ≥ 1, D(aj , �j) ⊂ B(q, ‖q − aj−1‖2) with probability at least
1− µ.

Proof. Let a ∈ D(aj , �j). By the triangle inequality, ‖q − a‖2 ≤ �j + ‖q − aj‖2 ≤
3‖q − aj‖2. By Lemma 3.6, 3‖q − aj‖2 ≤ 3

10�j−1. Since �j−1 ≤ 2‖q − aj−1‖2, the
lemma follows.

Corollary 3.9. For every j ≥ 2, |D(aj , �j)| ≤ 1
2 |D(aj−2, �j−2)| with probability

at least 1− (µ+ 2−T ).
Theorem 3.10. If S does not fail, then for every query q the search algorithm

finds a (1+ ε)-approximate nearest neighbor using expected poly(1/ε)d2poly log(dn/ε)
arithmetic operations.2

Proof. Corollary 3.9 says that within two iterations of the algorithm, with con-
stant probability the number of database points in the current ball, D(aj , �j), is
reduced by a factor of 2. Hence, within expected O(log n) iterations the search ends.

If the search ends because ‖q−a′‖2 > 1
10�j−1, then by Lemma 3.6 it must be that

‖q − a′‖2 ≤ (1 + ε)�min. Otherwise, the search ends because no database point b = aj
satisfies: ‖aj − b‖2 ≤ 2‖aj − q‖2. In this case, aj = amin, because ‖aj − amin‖2 ≤
‖aj − q‖2 + ‖amin − q‖2 ≤ 2‖aj − q‖2. In either case, the search produces a (1 + ε)-
approximate nearest neighbor.

As for the search time, we have O(log n) iterations. In each iteration we perform
O(dk) = O(poly(1/ε)·d2 ·poly log(dn/ε)) operations to compute η(q); then, we execute
a search in the k-cube, which by Theorem 2.8 takes O(poly(1/ε) · d · poly log(dn/ε))
operations.

2Alternatively, we can demand a deterministic bound on the number of operations, if we are
willing to tolerate a vanishing probability error in the search.
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4. Extensions. In what follows we discuss some other metrics for which our
methods (with small variations) apply.

Generalized Hamming metric. Assume that we have a finite alphabet Σ and con-
sider the generalized cube Σd. For x, y ∈ Σd, the generalized Hamming distanceH(x, y)
is the number of dimensions where x differs from y. The case Σ = {0, 1} is the Ham-
ming cube discussed in section 2. Here we argue that the results in that section extend
to the case of arbitrary Σ. For convenience, assume that Σ = {0, 1, . . . , p − 1} for a
prime p. (We can always map the elements of Σ to such a set, perhaps somewhat
larger, without changing the distances.) It suffices to show that a generalization of
the basic test used in section 2 has the same properties. The generalized test works
as follows: pick each element in {1, 2, . . . , d} independently at random with prob-
ability 1/(2�). For each chosen coordinate i, pick independently and uniformly at
random ri ∈ Σ. (For every i which is not chosen put ri = 0.) The test is defined by

τ(x) =
∑d
i=1 rixi, where multiplication and summation are done in GF [p]. As before,

for any two vectors x, y ∈ Σd, let ∆(x, y)
�
= Pr[τ(x) = τ(y)]. If H(x, y) = k, then

∆(x, y) = p−1
p · (1− (1− 1

2� )
k). Therefore, the difference δ in the probabilities between

the case of vectors with Hamming distance at most � and the case of vectors with
Hamming distance at least (1+ε)� is p−1

p ·
[
(1− 1

2� )
� − (1− 1

2� )
(1+ε)�

]
. δ is minimized

at p = 2, so we do better with a larger alphabet. Notice that the number of possible
traces here is pT , so this construction gives a polynomial size data structure if and
only if p is a constant. In the next paragraph we mention how to handle nonconstant
p-s.
L1 norm for finite alphabet. Consider, again, the case Σ = {0, 1, . . . , p − 1} and

define the distance between x and y as d(x, y)
�
=
∑d
i=1 |xi − yi|. The first observation

is that this case is reducible to the case of the Hamming cube as follows. Map any
x ∈ Σd into x̂ ∈ {0, 1}d(p−1) by replacing every coordinate xi ∈ {0, 1, . . . , p− 1} of x
by p− 1 coordinates of x̂. These are xi ones followed by (p− 1− xi) zeros. Observe
that indeed d(x, y) = H(x̂, ŷ). Therefore, we can apply the cube construction and
algorithm to x̂. If p is not a constant, this solution is not satisfactory, because it
blows up not only the data structure size (by a factor polynomial in p), but also the
search time (by a factor of p at least). Our second observation is that we can restrict
the blowup in search time to a factor of O(log p). This is because we do not really
have to map x into x̂. The contribution of xi ∈ {0, 1, . . . , p − 1} to τ(x̂) is just the
sum modulo 2 of (at most p− 1) rj-s. As there are only p possible sums (and not 2p)
they can all be precomputed and stored in a dictionary using O(p) space. (Notice that
this needs to be done for each test and for each coordinate.) To compute the value
of the test on a query, we need to sum up the contributions of the coordinates. For
each coordinate, it takes at most O(log p) time to retrieve the desired value (because
operations on values in {0, 1, . . . , p− 1} take that much time). The same ideas can be
used to handle the generalized Hamming metric for nonconstant alphabets. Map each
coordinate xi into p binary coordinates, which are all 0s except for a 1 in position
xi + 1. The Hamming distance in the (dp)-cube is twice the original distance. For a
given test, there are only p different values to consider for each original coordinate,
so we can precompute them and retrieve them as before.

The space �d1. The construction and algorithm are similar to those for the Eu-
clidean case. The only difference is in the embedding η to the cube. Instead of pro-
jecting the points onto random unit vectors, we project them onto the original coor-
dinates. Let w, δ, λ, � be as in the Euclidean case. For the ith coordinate, we place
S = 2d(1+1/δ)/δλ equally spaced points between wi− (1+1/δ)� and wi+(1+1/δ)�.
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These partition the line into S + 1 (finite or infinite) segments. We number them 0
through S from left to right. Now for every x ∈ R

d we define η(x) to be the vector with
entries in {0, 1, . . . , S}, such that η(x)i is the number of the segment that contains xi.
Using Lemma A.4, we show the equivalent of Lemma A.5 for �d1.

Lemma 4.1. For every x such that ‖x− w‖1 ≤ �, for every y ∈ R
d,

(1− δ)m d
δλ
≤ ‖η(x)− η(y)‖1 ≤ (1 + δ)m′

d

δλ
,

where m = max
{
‖x−y‖1

� , λ
}
, and m′ = min

{
‖x−y‖1

� , δ−1
}
.

Proof. We show the case λ� ≤ ‖x − y‖1 ≤ �/δ. The other two cases are similar.
Notice that in this case, for every i, xi, yi ∈ [wi − (1 + δ−1)�, wi + (1 + δ−1)�]. By
Lemma A.4, for every i,

−1 + ‖xi − yi‖S/2(1 + δ−1)� ≤ ‖η(x)i − η(y)i‖ ≤ 1 + ‖xi − yi‖S/2(1 + δ−1)�.

Thus, summing over the d coordinates,

−d+ ‖x− y‖1S/2(1 + δ−1)� ≤ ‖η(x)− η(y)‖1 ≤ d+ ‖x− y‖1S/2(1 + δ−1)�.

As d = δλS/2(1 + δ−1) ≤ δ‖x− y‖1S/2(1 + δ−1)�, the lemma follows.
We use the construction for the finite alphabet L1 norm to handle the embedded

instance. The remainder of the argument is identical to the Euclidean case. Notice,
however, that given a query q, computing η(q) is more efficient than in the Euclidean
case: In each coordinate, we can use a binary search to determine the segment in
O(logS) = O(log(d/ε)) operations. Projecting is trivial and takes O(1) operations per
coordinate. In the Euclidean case, the search time is dominated by the calculation of
η(q). Thus, here it goes down to O(dpoly log(dn/ε)).

Further comments. The iterative search procedure described in section 3.1 is
quite general and can be used in any metric space; i.e., the problem of finding an
approximate nearest neighbor reduces to the following problem. Given a query q and
a distance estimate �, either return an approximate nearest neighbor of q, or return
a data point at distance at most �/10 from q. Of course, the latter problem might be
hard to solve in an arbitrary metric space.

Appendix. Proof of Lemma 3.1. The proof of the embedding lemma follows
two parts. First, we use a low distortion embedding of �d2 into �k1 (where, for fixed
ε, k = O(d log2 d + log n)). Second, we use an embedding of �k1 into QO(k). This
embedding maintains low distortion on certain distances, as stipulated by the lemma.

It is known (see, for example, [15] and references therein) that the projection �d2
onto O(d) random unit vectors, properly scaled, gives a low distortion embedding of

�d2 into �
O(d)
1 (the distortion 1 + ε drops to 1 as the constant hidden by the big-Oh

notation grows). Using the arguments in section 4 (which in turn use the second part
of the proof here), we could prove a version of the embedding lemma. The dimension
of the cube would have to grow by a factor of O(d/ log2 d). Thus the size of the data
structure would grow significantly (yet the search time would improve by a factor of
O(log d)).

To avoid this blowup in space, and because we require explicit bounds on the
dependency on ε and on the error probability, we give here another argument for the
low distortion of embedding �d2 into �k1 via random projections. The dimesion k of the
target space is somewhat worse than in [15]. However, the details of the analysis allow
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us to save significantly on the embedding into the cube. (In fact, it is likely that our
analysis of the dimension can be improved by a factor of O(log d), thus matching the
search time required using [15].)

It is also known (see, for example, [26]) that for a finite set P of points in �d1,
rounding each point to a grid point, and then representing each coordinate in unary
(padded by leading zeros), gives an embedding of P into a hypercube that approx-
imately preserves relative distances (the approximation depends on the fineness of
the grid). We argue here (a straightforward argument) that such a construction ap-
proximately preserves relative distances among an infinite number of point pairs (as
required by the embedding lemma). We also argue that for these pairs the grid need
not be too fine, so the dimension of the cube is small. (Notice that distances in Qk
vary by a factor of k at most. On the other hand, in an arbitrary finite set P of points
in �d1 the distances can vary by an arbitrarily large factor. Thus, it is impossible to
bound the dimension of the cube uniformly for all sets P .)

We now proceed with the proof. Fix x and �. Let D, S, and L be parameters
that we fix later (we will set k = DS). We map the points in D(x, �) into the (D · S)-
dimensional cube as follows: We pick a set of D i.i.d. unit vectors {z1, . . . , zD} from
the uniform (Haar) measure on the unit sphere and project the points in D(x, �) onto
each of these vectors; i.e., for every a ∈ D(x, �) and for every z ∈ {z1, . . . , zD} we
compute the dot product a · z. For every z ∈ {z1, . . . , zD} we place S equally spaced
points in the interval [x·z−L, x·z+L]. We call these points cutting points. Each vector
z and cutting point c determine a single coordinate of the cube. For any a ∈ D(x, �),
the value of this coordinate is 0 if a · z ≤ c, and it is 1 otherwise.3 Altogether, we get
a mapping of x into a point in the cube {0, 1}D·S .

The following lemma analyzes the distribution of length when projecting a fixed
(unit) vector on a random (unit) vector.

Lemma A.1. Let X be the length of the projection of a unit vector onto a random
unit vector drawn from the uniform measure on the unit sphere. Then, for every δ > 0
there exist α = Θ(δ) and α′ = Θ(δ3/2) such that the following hold.

1. α0
�
= Pr

[
X <

√
δ

d

]
< α;

2. α∞
�
= Pr

[
X >

√
log(1/δ)

d

]
< α;

3. For every j ≥ 1 such that (1 + δ)j
√
δ/d ≤√log(δ)−1/d,

αj
�
= Pr

[
(1 + δ)j−1

√
δ

d
≤ X ≤ (1 + δ)j

√
δ

d

]
≥ α′.

Proof. Let Sd(r) denote the sphere of radius r in R
d centered at the origin. Its

surface area, Ad(r), is given by Ad(r) = 2πd/2rd−1/Γ(d/2) = Ad(1)rd−1, where Γ is

3Note that if the cutting points are c1 ≤ c2 ≤ · · · cS , then the S coordinates obtained for a point
a by comparing a · z to the cutting points are always of the following form: j 0s followed by S − j
1s. In other words, only S+ 1 out of the 2S combinations of 0s and 1s are possible. This observation
can be used to get certain improvements in the efficiency of our algorithm. See section 4 for details.
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the so-called Gamma function.4 By “rotating” the space we can view the experiment
of projecting a fixed vector on a random vector as if we project a random vector on
the axis x1 = 1. Therefore, the probabilities that we need to estimate are just “slices”
of the sphere. In particular, consider the set of points {x ∈ Sd(1) | x1 ∈ (τ − ω, τ)}
(with ω, τ−ω > 0). The surface area of this set is lower bounded by ω ·Ad−1(r), where
r =
√
1− τ2. By symmetry, the same is true for {x ∈ Sd(1) | xi ∈ (−τ,−τ + ω)}.

To compute the probability of the desired event we compare the area of the slice
with the area of the whole sphere. Note that Ad−1(1)/Ad(1) = Θ(

√
d). Plug in

τ = τ(j) = (1 + δ)j
√
δ/d and ω = ω(j) = τ(j) − τ(j − 1) = δ(1 + δ)j−1

√
δ/d. Put

ξ = ξ(j) = δ(1 + δ)2j ; thus r2 = 1 − τ2 = 1 − ξ/d and ω = δ
√
ξ/d/(1 + δ). We get

that

Pr

[
(1 + δ)j−1

√
δ

d
≤ X ≤ (1 + δ)j

√
δ

d

]
≥ 2ωAd−1(

√
1− τ2)/Ad(1)

= 2ωAd−1(1) · (
√
1− τ2)d−2/Ad(1)

= Θ

(
δ

1 + δ

√
ξ

(
1− ξ
d

) d−2
2

)

= Ω(δ3/2),

where the last equality follows from the fact that in the range of j that interests us,
1 ≤ (1 + δ)j−1 < (1 + δ)j ≤ √δ−1 log(1/δ). This shows the third claim. Similar
arguments show the first two claims.

Corollary A.2. Using the above notation, there is an absolute constant b such
that

jmax∑
j=1

(
αj(1 + δ)

j−1

√
δ

d

)
≤ E[X] ≤ b

√
δ

d
+

jmax∑
j=0

(
αj(1 + δ)

j

√
δ

d

)
.

In what follows, we denote by b′ the constant b′ = E[X]
√
d.

The next lemma analyzes the lengths distribution with respect to a series of D
projections.

Lemma A.3. Let δ, α, α′ be as in Lemma A.1. Let ϕ, β > 0. Set

D =
c

ϕ2
(8(d+ 1) log(4(d+ 1))(log(8(d+ 1)) + log log(4(d+ 1)) + logϕ−1) + log β−1)

for some absolute constant c. Let z1, . . . , zD be i.i.d. unit vectors from the uniform
distribution on the unit sphere. Then, with probability at least 1 − β, the following
holds. For every x, y ∈ R

d define

I0 =

{
i; |(x− y) · zi| <

√
δ

d
‖x− y‖2

}
,

I∞ =

{
i; |(x− y) · zi| >

√
log(1/δ)

d
‖x− y‖2

}
,

4For integer d the Gamma function is given by

Γ(d/2)
�
=

{
( d−2

2
)! d even,

(d−2)(d−4)···1
2(d−1)/2

√
π d odd.
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Ij =

{
i; (1 + δ)j−1

√
δ

d
‖x− y‖2 ≤ |(x− y) · zi| ≤ (1 + δ)j

√
δ

d
‖x− y‖2

}
,

where j = 1, 2, . . . , jmax, with jmax the largest possible such that Ijmax
∩I∞ = ∅.5 Then

1. |I0|, |I∞| < (α+ ϕ)D; and
2. for j = 1, 2, . . . , jmax, (αj − ϕ)D ≤ |Ij | ≤ (αj + ϕ)D.

Proof. Consider the following range space over the set of vectors in the unit
sphere. Every pair of points x, y ∈ R

d defines several ranges: a range of vectors z such
that |(x−y)·z| <√δ/d‖x−y‖2, a range such that |(x−y)·zi| >

√
log(1/δ)/d‖x−y‖2,

and ranges such that (1+ δ)j−1
√
δ/d‖x− y‖2 ≤ |(x− y) · zi| ≤ (1+ δ)j

√
δ/d‖x− y‖2

for j = 1, 2, . . . , jmax. Each of these ranges is a Boolean combination of at most four
(closed or open) half-spaces. Therefore, the VC-dimension of this range space is at
most 8(d+ 1) log(4(d+ 1)) (see [2]). The lemma follows from the fact that a random
subset of the unit sphere of size D is a ϕ-sample with probability at least 1−β.

Lemma A.4. Let L,ψ > 0. Let σ = [−L,L] be a segment of the real line. Set
S = � 1

ψ �. Let −L = p1 < p2 < · · · < pS = L be equally spaced points in σ (i.e.,

pj = −L + 2L(j − 1)/(S − 1)). Then, every segment [σ1, σ2) ⊂ σ contains at least
(−ψ + (σ2 − σ1)/2L)S such points and at most (ψ + (σ2 − σ1)/2L)S such points.

Proof. The number of points in [σ1, σ2) is approximately proportional to the
measure of this segment (under the uniform measure on σ). It might be at worst one
point below or one point above the exact proportion.

Let w ∈ R
d and let � > 0. Fix L,ϕ, β, ψ. (Thus D and S are fixed.) Consider

the following (random) embedding η : R
d ↪→ QDS : Let z1, . . . , zD be the random

vectors in Lemma A.3, and Let p1, . . . , pS be the points in Lemma A.4. For x ∈ R
d,

η(x) = η(x)11η(x)12 · · · η(x)ij · · · η(x)DS , where η(x)ij = 0 if (x − w) · zj ≤ pi, and
η(x)ij = 1 otherwise. We are now ready to restate and prove the embedding lemma.

Lemma A.5. Let λ > 0 be a sufficiently small constant. Set

L = (1 + δ−1) �
√
log(1/δ)/d.

Set ϕ = δα′ and ψ = δ2λ/2(1 + δ−1).
Then, for η the following holds with probability at least 1 − β. For every x ∈

B(w, �) ⊆ R
d and y ∈ R

d

((1−O(δ))m−O(δ))DS ≤ H(η(x), η(y)) ≤ ((1 +O(δ))m′ +O(δ))DS,

where

m = κ ·max

{‖x− y‖2
�

, λ

}
,

m′ = κ ·min

{‖x− y‖2
�

, δ−1

}
,

and κ = b′/2(1 + δ−1)
√
log(1/δ).

Proof. We prove the lemma for the case λ� ≤ ‖x− y‖2 ≤ �/δ. The proofs of the
two extreme cases are similar. To analyze the distance in the cube, H(η(x), η(y)),
we notice that this distance is influenced by the distribution of the projection lengths

5For simplicity we assume that these sets form a partition of the space; otherwise, there are
minor changes in the constants.
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|(x − y) · z1|, . . . , |(x − y) · zD| among the sets Ij (Lemma A.3 guarantees that this
distribution is “nice”); the error in estimating |(x−y) ·zi| for each set Ij , and, for each
zi, the error caused by discretizing the projection length with the S cutting points
(i.e., the value ψ of Lemma A.4). In what follows we assume that everything went
well. That is, we avoided the probability β that Lemma A.3 fails.

First we prove the lower bound. Consider Ij for 1 ≤ j ≤ jmax. By Lemma A.3, at
least (αj − ϕ)D of the projections |(x− y) · zi| are in the set Ij . For each such zi, by

the definition of Ij , we have that |(x− y) · zi| ≥ (1 + δ)j−1
√

δ
d‖x− y‖2. Every point

pk (1 ≤ k ≤ S) such that pk is between (x − w) · zi and (y − w) · zi contributes 1 to
the Hamming distance. Lemma A.4 shows that the number of such points is at least

(−ψ+ ((1 + δ)j−1
√

δ
d‖x− y‖2)/2L)S, provided that both (x−w) · zi and (y−w) · zi

are contained in the segment [−L,L]. As x ∈ B(w, �) and by the triangle inequality
y ∈ B(w, (1+ δ−1)�), the corresponding projections are not contained in the segment
[−L,L] only if they fall in the set I∞. For each vector this happens with probability
at most α, by Lemma A.1. Thus the probability that both vectors fall in this segment
is at least 1− 2α.

For the lower bound we can ignore the bad events: the is for which |(x−y)·zi| falls
in I0 and I∞, as well as the is for which (x−w) · zi or (y−w) · zi fall outside [−L,L].
These contribute nonnegative terms to the distance. We get that H(η(x), η(y)) is at
least

jmax∑
j=1


−ψ +

(1 + δ)j−1
√

δ
d‖x− y‖2

2L


 · (αj − ϕ)DS − 2αDS.

As ϕ = δα′ and αj > α′ we get that ϕ < δαj and so (αj − ϕ) > (1 − δ)αj . Also,
note that ψ is at most δ times the other term: This term is minimized at j = 1 and
‖x− y‖2 = λ�, and in this case

(1 + δ)j−1
√

δ
d‖x− y‖2

2L
=

λ�
√

δ
d

2(1 + δ−1)�
√
log(1/δ)/d

≥ δλ/2(1 + δ−1).

By Corollary A.2,

jmax∑
j=1

(
αj(1 + δ)

j−1

√
δ

d

)
=

1

1 + δ

jmax∑
j=1

(
αj(1 + δ)

j

√
δ

d

)

≥ 1

1 + δ

(
E[X]− (1 + o(1))b

√
δ

d

)

= (1−O(δ))b′
√

1

d
.

Combining everything we get that the lower bound is at least
(
(1−O(δ))b′√1/d‖x− y‖2

2L
− 2α

)
DS

=

(
(1−O(δ)) b′

2(1 + δ−1)
√
log(1/δ)

· ‖x− y‖2
�

−O(δ)
)
DS.
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Now we show the upper bound. By Lemma A.4, at most (αj + ϕ)D of the
projections |(x − y) · zi| are in the set Ij for 1 ≤ j ≤ jmax, and at most (α + ϕ)D
for I0 and I∞. If |(x − y) · zi| is in Ij for 0 ≤ j ≤ jmax, then |(x − y) · zi| ≤
(1+ δ)j

√
δ
d‖x− y‖2. By Lemma A.4, the contribution of zi to the Hamming distance

is at most (ψ+((1+ δ)j
√

δ
d‖x− y‖2)/2L)S, provided (as before) that (x−w) · zi and

(y−w) · zi are contained in the segment [−L,L]. The latter happens with probability
at least 1−2α. With the remaining probability, the contribution of zi is no more than
S.

If zi is in I∞, we have no bound on the distance between x · zi and y · zi, but the
contribution of zi to the Hamming distance is no more than S. Summing this up, we
get an upper bound of at most

jmax∑
j=0


ψ +

(1 + δ)j
√

δ
d‖x− y‖2

2L


 · (αj + ϕ)DS + 2αDS + (α∞ + ϕ)DS.

As before, the choice of parameters implies that (αj + ϕ) ≤ (1 + δ)αj and ψ ≤
δ · (1+δ)j

√
δ
d‖x−y‖2

2L . Using the lower bound in Corollary A.2,

jmax∑
j=0

(
αj(1 + δ)

j

√
δ

d

)
= α0

√
δ

d
+

jmax∑
j=1

(
αj(1 + δ)

j

√
δ

d

)

≤ O(δ)
√
δ

d
+ E[X]

= (1 +O(δ3/2))b′
√

1

d
.

We get that the Hamming distance is at most
(
(1 +O(δ))

√
1/d‖x− y‖2

2L
+ (3 + δ)α

)
DS =

(
(1 +O(δ))

b′

2(1 + δ−1)
√
log δ−1

· ‖x− y‖2
�

+O(δ)

)
DS.
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Abstract. We prove that the traveling salesman problem (Min TSP) is Max SNP-hard (and
thus NP-hard to approximate within some constant r > 1) even if all cities lie in a Euclidean space of
dimension log n (n is the number of cities) and distances are computed with respect to any lp norm.
The running time of recent approximation schemes for geometric Min TSP is doubly exponential
in the number of dimensions. Our result implies that this dependence is necessary unless NP has
subexponential algorithms. As an intermediate step, we also prove the hardness of approximating
Min TSP in Hamming spaces.

Finally, we prove a similar, but weaker, inapproximability result for the Steiner minimal tree
problem (Min ST).

The reduction for Min TSP uses error-correcting codes; the reduction for Min ST uses the inte-
grality property of Min-Cut linear programming relaxations. The only previous inapproximability
results for metric Min TSP involved metrics where all distances are 1 or 2.

Key words. computational complexity, combinatorial optimization, hardness of approximation,
traveling salesman problem, Steiner tree problem
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PII. S0097539799352735

1. Introduction. Given a metric space and a set U of points into it, the metric
traveling salesman problem (Min TSP) is to find a closed tour of shortest total length
visiting each point exactly once, while the metric Steiner minimum tree problem (Min
ST) is to find the minimum length tree connecting all the points of U ; the tree can
possibly contain points not in U, which are called “Steiner points.”

Both are classical and well-studied problems. Important special cases arise when
the metric space is Rk and the distance is computed according to the �1 norm (the
rectilinear case) or the �2 norm (the Euclidean case).

We establish the first nonapproximability results for this class of problems. As an
intermediate step, we use the fact that they are also hard to approximate in Hamming
spaces. The approximability of the Hamming versions of Min TSP seems to have
never been considered before. The hardness of approximating this problem is one of
the main technical results of this paper. The hardness of approximating Min ST in
Hamming spaces has been studied for its application to problems in computational
biology (specifically, reconstructing evolutionary trees), but it has not been linked to
the hardness of the problem in geometric norms.

We now state and discuss our results for Min TSP and Min ST.

1.1. The traveling salesman problem. Interest in theMin TSP started dur-
ing the 1930s. A book by Lawler et al. [28] contains an extensive survey of results on
Min TSP. Here we will review only the results that are relevant to the present paper.
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The Min TSP is NP-hard even if the cities are restricted to lie in R2 and the dis-
tances are computed according to the �2 norm [15, 31]. Due to such a negative result,
research concentrated on developing good heuristics. Recall that an r-approximate
algorithm (r > 1) is a polynomial-time heuristic that is guaranteed to deliver a tour
whose cost is at most r times the optimum cost. A 3/2-approximate algorithm that
works for any metric space is due to Christofides [9]. For more than twenty years, no
improvement of this bound had been found, even in the restricted case of geometric
metrics.

In the late 1980s, the discovery of the theory of Max SNP-hardness [35] gave a
tool for understanding this lack of results. Indeed, Papadimitriou and Yannakakis [34]
proved that the Min TSP is Max SNP-hard even when restricted to metric spaces
(as we shall see later, the result also holds for a particularly restricted class of metric
spaces). As later shown by Arora et al. [6], this implies that there exists a constant
ε > 0 such that metric Min TSP cannot be approximated to within a factor (1 + ε)
in polynomial time, unless P = NP. The complexity of approximating Min TSP in
the case of geometric metrics remained a major open question. In his Ph.D. thesis,
Arora noted that proving the Max SNP-hardness of Euclidean Min TSP in R2 should
be very difficult but that this could perhaps be done in Rk(n) for sufficiently large
k(n) [2, Chapter 9]. In [18], Grigni, Koutsoupias, and Papadimitriou proved that the
restriction of the Min TSP to shortest paths metrics of planar graphs can be approx-
imated to within (1 + ε) in time nO(1/ε). Such an approximation algorithm is called
a polynomial time approximation scheme (PTAS) (the result was later generalized to
the case of shortest paths metrics of planar weighted graphs in [5]). This result led
Grigni, Koutsoupias, and Papadimitriou [18] to conjecture that Euclidean Min TSP
has a PTAS in R2. They again posed the question of determining the approximability
of the problem for higher dimensions. In a recent breakthrough, Arora [3] developed
a PTAS for the Min TSP in R2 under any �p metric. Such an algorithm also works

in higher dimensional spaces and, in particular, it runs in time nÕ((logd−2 n)/εd−1) in
Rd. A similar approximation scheme (but only for spaces of dimension 2) was also
found later by Mitchell [29]. Arora has subsequently improved the running time of
his approximation scheme [4]; his new scheme runs in nearly-linear time for any fixed
number of dimensions. Specifically, the algorithm of [4] finds a (1 + ε)-approximate

solution in Rd in time n(log n)O((
√
d/ε)d)). An additional improvement is due to Rao

and Smith [36]. Their algorithm runs in time (
√
d/ε)O(d(

√
d/s)d−1)n+O(dn log n). The

dependence of the running time on the number of dimensions is, however, still doubly
exponential.

This is a typical occurrence of the “curse of dimensionality,” a phenomenon em-
pirically observed in several cases in computational geometry, that is, the fact that the
complexity of a geometric problem grows exponentially or more in the number of di-
mensions of the space. In some cases (e.g., nearest neighbor search [26, 27, 21]) clever
algorithmic solutions can be developed to avoid this exponential growth. In a pre-
liminary version of [3], Arora asked whether an approximation scheme for geometric
Min TSP exists for any arbitrary number of dimensions.

Our results. In this paper we essentially answer negatively to these questions.
We prove that Min TSP in Rlogn is Max SNP-hard for any �p metric. It follows from
our results that there cannot be a PTAS for these problems (unless P= NP) and that
there cannot be (1 + ε)-approximate algorithms in Rd running in time nO(poly(d,1/ε))

for any ε > 0, unless NP ⊆ DTIME(nO(poly log n)).

The Max SNP-hardness is proved by means of a reduction from the version of the



THE APPROXIMABILITY OF GEOMETRIC TSP 477

metric Min TSP that was shown to be Max SNP-hard in [34]. In such metric spaces,
any pair of points is either at distance 1 or 2, and an additional technical condition
holds. The reduction uses a mapping (see Lemma 3.5) of the metric spaces of [34] into
Hamming spaces and the observation (see Proposition 2.3) that for elements of {0, 1}n
a “gap” in the Hamming distance is preserved if distances are computed according
to an �p metric. Our mapping of the metric spaces of [35] into Hamming spaces does
not preserve distances up to negligible distortion. (In fact we suspect that such kind
of mapping would be provably impossible.) Instead, our mapping introduces a fairly
high (yet constant) distortion but satisfies an additional condition: cities at distance
1 are mapped into cities at distance ≈ D1; cities at distance 2 are mapped into
cities at distance ≈ D2, and D2 is larger than D1 by a multiplicative constant factor.
This is sufficient to make the mapping be an approximation preserving reduction. Our
mapping uses error-correcting codes, a tool that is very seldom used in order to design
approximation-preserving reductions.

The minimum k-cities traveling salesman problem (Min k-TSP) and the mini-
mum degree-restricted Steiner tree problem (two problems mentioned in Arora’s pa-
pers on approximation schemes for geometric problems [3, 4]) are generalizations of
the Min TSP. The hardness results that we prove for Min TSP clearly extend to
them.

1.2. The minimum Steiner tree problem. TheMin ST problem has an even
longer history than theMin TSP. Special cases were studied by Torricelli (in the 17th
century) and by Gauss (see [20] for more details on the history of this problem). Recent
results about this problem are similar to the ones for Min TSP: exact optimization
is NP-hard in R2 both in the rectilinear (�1) case [17] and in the Euclidean (�2)
case [16]. Constant-factor approximation is achievable in any metric space (the best
factor is 1.644 due to Karpinski and Zelikovsky [24]); in general metric spaces the
problem is Max SNP-hard [7]. Arora [3, 4], Mitchell [29], and Rao and Smith [36]
show how to extend their geometric TSP approximation schemes to geometric Min
ST. The running time of these approximation schemes are the same as reported in the
previous section for TSP. See also the books by Hwang, Richards, and Winters [20]
and Ivanov and Tuzhilin [22] and the web page maintained by Ganley [14] for extended
surveys on the Steiner tree literature. No nonapproximability result was known for
geometric versions of the Steiner tree problem. Steiner tree in Hamming spaces is
known to be Max SNP-hard, though this result is usually expressed in terms of an
equivalent problem in computational biology (see Wareham’s Master’s thesis [39] and
also [23, 40]).

Our results. We prove the Max SNP-hardness of Min ST in Rn under the �1
norm. We establish this result by means of a reduction from the Min ST problem
in Hamming spaces. The reduction is based on the following combinatorial result
(Theorem 4.2): for an instance where all the points are in {0, 1}n ⊂ Rn, there exists
an optimum solution where all the Steiner points lie in {0, 1}n. We prove this fact
using the integrality property of Min-Cut linear programming relaxations.

1.3. Discussion. For Euclidean Min TSP, there is still a slight slack between
recent approximation schemes and our hardness result. Specifically, a running time

2(2
d)/εpoly(n) would be compatible with our results, but if we believe that NP does

not admit subexponential algorithms (i.e., NP �⊆ DTIME(2n
o(1)

)), then even a running

time 22o(d)/εpoly(n) is infeasible. For a fixed ε, the approximation scheme of Rao

and Smith [36] runs in time (
√
d/ε)O(d(

√
d/s)d−1)n+ O(dn log n) which, for fixed ε, is
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roughly 22(d log d)/2+log log n

.

There is much more room for improvement for the Min ST problem; however our
results at least imply that the number of dimensions does matter in the running time
of an approximation scheme for this geometric problem.

We feel that one important contribution of this paper is the recognition of Ham-
ming spaces as a class of metric spaces that are somewhat “close” both to arbitrary
metrics and to geometric metrics, while they also have a nice combinatorial structure.
This combination of characteristics makes problems on Hamming metrics a useful
“intermediate” step in reducing a combinatorial problem to a geometric problem.

Our mapping of bounded-degree graphs into Hamming spaces has been used by
Crescenzi et al. [10] in order to prove the NP-hardness of the protein folding problem.

2. Preliminaries. We denote by R the set of real numbers. For an integer n
we denote by [n] the set {1, . . . , n}. For a vector a ∈ Rn and an index i ∈ [n], we
denote by a[i] the ith coordinate of a. The weight of a Boolean vector a ∈ {0, 1}n is
the number of nonzero entries.

Given an instance x of an optimization problem A, we will denote by optA(x)
the cost of an optimum solution for x, and we will also typically omit the subscript.
For a feasible solution y (usually a tour or a tree) of an instance x of an optimization
problem A, we denote its cost by costA(x, y) or, more often, as cost(y). See, e.g.,
[8, 32] for formal definitions about optimization problems. In this paper we will use
the notions of L-reduction and Max SNP-hardness. Max SNP is a class of constant-
factor approximable optimization problems that includes Max 3SAT; we refer the
reader to [35] for the formal definition.

Definition 2.1 (L-reduction). An optimization problem A us said to be L-
reducible to an optimization problem B if two constants α and β and two polynomial-
time computable functions f and g exist such that

1. for an instance x of A, x′ = f(x) is an instance of B, and it holds optB(x
′) ≤

αoptA(x);
2. for an instance x of A, and a solution y′ feasible for x′ = f(x), y = g(x, y′)
is a feasible solution for x and it holds |optA(x)− costA(x, y)| ≤ β|optB(x

′)−
costB(x

′, y′)|.
We say that an optimization problem A is Max SNP-hard if all Max SNP-problems
are L-reducible to A. From [6] it follows that if a problem A is Max SNP-hard, then
there exists a constant ε > 0 such that (1 + ε)-approximating A is NP-hard.

A function d : U × U → R is a metric if the following properties hold:

1. d(u, v) ≥ 0 for all u, v ∈ U ;
2. d(u, v) = 0 if and only if u = v;
3. d(u, v) = d(v, u) for any u, v ∈ U (symmetry);
4. d(u, v) ≤ d(u, z) + d(z, v) for any u, v, z ∈ U (triangle inequality).

If all properties but (2) hold, then d is said to be a semimetric. Abusing notation, we
will usually adopt the term “metric” for both metrics and semimetrics.

Definition 2.2 ((1, 2) − B metrics). For a positive integer B, a metric d :
U × U → R is a (1, 2)−B metric if it satisfies the following properties:

1. for any u, v ∈ U, u �= v, d(u, v) ∈ {1, 2};
2. for any u ∈ U, at most B elements of U are at distance 1 from u.

Papadimitriou and Yannakakis [34] have shown that a constant B0 > 0 exists
such that the Min TSP is Max SNP-hard even when restricted to (1, 2)−B0 metrics.
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For an integer p ≥ 1, the �p norm in Rn is defined as

‖(u1, . . . , un)‖p =
(

n∑
i=1

|ui|p
)(1/p)

.

The distance induced by the �p norm is defined as dp(u, v) = ‖u− v‖p. For a positive
integer n, we denote by dnH the Hamming metric in {0, 1}n (we will usually omit the
superscripts). We will make use of the following fact.

Proposition 2.3. Let u, v ∈ {0, 1}n ⊆ Rn. Then dp(u, v) = dH(u, v)1/p.

Before starting with the presentation of our results, we make the following im-
portant caveat.

Remark 2.1. In some of the proofs of this paper we implicitly make the (unre-
alistic) assumption that arbitrary real numbers can appear in an instance and that
arithmetic operations (including squared roots) can be computed over them in con-
stant time. However, our results still hold if we instead assume that numbers are
rounded and stored in a floating point notation using O(log n) bits. This fact follows
from a modification of the argument used in [3] to reduce a general instance of Eu-
clidean TSP or Steiner tree into an instance where coordinates are positive integers
whose value is O(n2).

3. The Min TSP. Our hardness result is based on a “distance preserving”
embeddings of (1, 2)−B metric spaces into Hamming spaces. We first define the kind
of embedding we are looking for.

Definition 3.1. For an integer B, a (1, 2)−B metric space (U, d), an integer k
and positive reals D1, D2 > 0 and 0 < ε < 1/2, we say that a mapping f : U → {0, 1}k
is (k,D1, D2, ε)-good if for any u, v ∈ U

1. if d(u, v) = 1, then D1(1− ε) ≤ dH(f(u), f(v)) ≤ D1(1 + ε);
2. if d(u, v) = 2, then D2(1− ε) ≤ dH(f(u), f(v)) ≤ D2(1 + ε).

In particular, if f is a (k,D2, D1, 0)-good embedding, then pairs at distance 2 are
mapped into pairs at distance D2 and pairs at distance 1 are mapped into pairs at
distance D1.

Recall that, for any integer h, if we let n = 2h, then the first-order Reed–Muller
code (which is also an Hadamard code) Hn ⊂ {0, 1}n is a set of n binary strings of
length n whose pairwise Hamming distance is n/2. The elements of Hn can be seen
as the set of linear functions l : {0, 1}h → {0, 1}. See, e.g., [38, Chapter 18] and the
references therein for more details. The set Hn is computable in time polynomial in
n.

Lemma 3.2. There exists a polynomial time algorithm that on input a (1, 2)−B
metric with n points, where n is a power of 2, finds a ((B+1)n,Bn/2, (B+1)n/2, 0)-
good embedding.

Proof. Let U = {u1, . . . , un}. Recall that a (1, 2)−B metric (U, d) can be repre-
sented as an undirected graph G = (U,E), where {u, v} ∈ E if and only if d(u, v) = 1
(see [34]). Note that G has maximum degree B.

We claim that we can find in polynomial time a partition of E into B+1 match-
ings E1, . . . , EB+1. To prove this claim, it suffices to observe that the problem of
partitioning the set of edges of a graph into disjoint matchings is a restatement of the
edge coloring problem. In a graph of maximum degree B, an edge coloring with B+1
colors can be found in polynomial time [19].

We now describe the embedding. Each node u ∈ U is mapped into a string f(u)
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that is the concatenation of B + 1 strings a1u, . . . , a
B+1
u ∈ Hn:

f(u) = a1u ◦ · · · ◦ aB+1
u .

For a fixed i ∈ {1, . . . , B + 1}, the strings {aiu}u∈U are chosen arbitrarily in Hn such
that aiu = aiv if and only if {u, v} ∈ Ei. Since Hn can be generated in polynomial
time in n, the overall construction can be carried out in poly(n) time.

Let us now compute the distance between two strings f(u) and f(v). There are
two cases to be considered.

1. If {u, v} �∈ E, then aiu �= aiv for all i = 1, . . . , B + 1, and so dH(f(u), f(v)) =
(B + 1) · n/2.

2. If {u, v} ∈ E, then {u, v} ∈ Ej for some j, and we have aju = ajv and aiu �= aiv
for i �= j. It follows that dH(f(u), f(v)) = B · n/2.

We also observe the following simpler result.
Lemma 3.3. There exists a polynomial time algorithm that on input a (1, 2)−B

metric with n points finds a ((B+1)n, 2B, 2(B+1), 0)-good embedding. Furthermore,
any vector in the embedding has weight precisely B + 1.

Proof. Use the same construction of the proof of Lemma 3.2, but using the code
In ⊂ {0, 1}n composed of all the n vectors of length n having exactly one nonzero
entry. Any two elements of such a code have distance precisely 2.

Our next goal is to describe a good embedding that maps into Hamming spaces
having a logarithmic number of dimensions. We will need error-correcting codes whose
existence (and explicit construction) is guaranteed by the following result of Naor and
Naor.

Lemma 3.4 (see [30]). For every ε > 0 and positive integer n there is a collection
Cn,ε ⊆ {0, 1}k(n,ε) such that |Cn,ε| = n, k(n, ε) = O((log n)/poly(ε)), and for any
two elements u, v ∈ Cn,ε we have k(n, ε)(1/2 − ε) ≤ dH(u, v) ≤ k(n, ε)(1/2 + ε).
Furthermore, there is a procedure that on input n and ε outputs Cn,ε in poly(n, 1/ε)
time.

The connection between the results of [30] and the explicit construction of error
correcting codes is made explicit in section 7 of [1]. The precise dependency of k on ε
in [30] is of the form k(n, ε) = O(n/ε4+γ), where γ > 0 can be an arbitrary positive
constant. Some improvements are possible, but the actual dependency on ε is not
important for our application.

Lemma 3.5. There exists a polynomial time algorithm that, for any B and γ > 0,
on input a (1, 2) − B metric (U, d) with n points finds a (k,DB/(B + 1), D, γ)-good
embedding of U, where k = O((logBn)/poly(γ)) and D = k/2.

Proof. Use the argument in the proof of Lemma 3.2, but with the codes of
Lemma 3.4 instead of the Hadamard code.

Theorem 3.6. For any p there exists a constant εp > 0 such that Min TSP is
NP-hard to approximate within a factor (1 + εp) even when restricted to �p spaces of
logarithmic dimension.

Proof. From [34] and [6] we have the following result: constants B0 > 0 and
r0 > 1 exist such that, given an instance (U, d) of Min TSP with a (1, 2)−B0 metric
and n cities, and given the promise that either opt(U, d) = n or opt(U, d) ≥ r0n, it is
NP-hard to decide which of the two cases holds.

Fix a constant γ such that

1− γ
1 + γ

(
1 +

(r0 − 1)

B0

)
> 1 +

(r0 − 1)

2B0

def
= 1 + ε1.
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Such a constant γ must exist since for γ → 0 the left-hand side tends to a value
strictly greater than the right-hand side.

Given an instance (U, d) of (1, 2)−B0 Min TSP with n cities, we use Lemma 3.5
to map it into a Hamming space of dimension k = O(log n) using a (k,DB0/(B0 +
1), D, γ)-good embedding with D = k/2. Let f : U → {0, 1}k denote such embedding.
We consider two cases.

• If opt(U, d) = n, then an optimum solution for U will have cost at most
n ·D(B0/(B0 + 1)) · (1 + γ) for U ′.
• If opt(U, d) ≥ nr0, then there can be no solution for U ′ of cost less than
nD(B0/(B0 + 1))(1 − γ) + (r0 − 1)n(1/(B0 + 1))D(1 − γ). Otherwise, the
same solution would have cost less than nr0 for U .

Distinguishing between the two cases is NP-hard; therefore it is NP-hard to approxi-
mate the target instance to within a factor

1− γ
1 + γ

· (B0 + r0 − 1)/(B0 + 1)

B0/(B0 + 1)
≥ 1 + ε1.

It follows that it is NP-hard to approximate Min TSP to within a factor 1 + ε1 even
in the special case of Hamming instances having a logarithmic number of dimensions.
The same nonapproximability result holds for the case �1 metric space (since Hamming
TSP is just a special case of TSP in �1 spaces). The result for general �p spaces follows
by using Proposition 2.3.

Remark 3.1. The claim of Theorem 3.6 asks for the cities to be in Rlogn, rather
than in Rc logn as in the previous construction. However, we can add (nc − n) new
cities, all at distance 1/nc+1 from a given one. This perturbs the optimum in a negli-
gible way, and gives an instance with N = nc cities in RlogN .

Using techniques of Khanna et al. [25], the nonapproximability result of Theo-
rem 3.6 implies that geometric Min TSP in Rlogn under any �p norm is APX PB-
hard (in particular, Max SNP-hard) under E-reductions and APX-complete under
AP-reductions [11].

3.1. Additional remarks. Using the embedding of Lemma 3.3 in the proof of
Theorem 3.6, one can prove the Max SNP-hardness of Min TSP when restricted to
Hamming instances with a constant bound on the weight of the points. Reducing from
TSP(1,2) in graphs with maximum degree 3 (an NP-hard problem), it is possible to
prove the NP-hardness of the Hamming TSP problem in instances where all points
have weight precisely 4. This problem was not known to be NP-hard before. It is rea-
sonable to conjecture that Hamming TSP is solvable in polynomial time for instances
where all points have weight at most 2 and is NP-hard for instances where all points
have weight 3. We do not know how to prove this conjecture.

4. The Min ST problem. The hardness of approximating Min ST will be
established by means of a reduction from the Hamming version of the problem.

The following result appears in [39, Theorem 45, part 3]. It is based on the
observation that the NP-hardness proof of Hamming Min TSP that appears in [12]
yields an L-reduction from vertex cover in bounded degree graphs (a problem proved
to be Max SNP-hard in [35]) to Hamming Min ST.

Theorem 4.1 (see [39]). Min ST is Max SNP-hard even when restricted to
Hamming spaces.

Our goal is to reduce the Steiner tree problem in Hamming spaces to the Steiner
tree problem under the �1 distance. We note that for points in {0, 1}n the �1 distance
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equals the Hamming distance. However, the reduction is nontrivial since Rn contains
many points that are not in {0, 1}n and we have to argue that having much more
choice for the Steiner nodes does not make the problem easier. The rectilinear Min
ST problem looks very much like a relaxation of the Hamming Min ST problem;
our reduction makes use of a rounding scheme proving that the relaxation does not
change the optimum.

Theorem 4.2. Let U ⊆ {0, 1}n ⊂ Rn be an instance of rectilinear Min ST all
of whose points are in the Boolean cube. Let T be a feasible solution for U . Then it
is possible to find in polynomial time (in the size of T ) another solution T ′ such that
cost(T ′) ≤ cost(T ) and all the Steiner nodes of T ′ are in {0, 1}n.

Before proving the theorem, we note the following interesting consequence.
Corollary 4.3. For any instance U ⊆ {0, 1}n of rectilinear Min ST, an opti-

mum solution exists all of whose Steiner points are in {0, 1}n.
We now prove Theorem 4.2.
Proof of Theorem 4.2. Let S = {s1, . . . , sm} be the set of Steiner points of T, and

let E be the set of edges of T . For any sj ∈ S we will find a new point s′j ∈ {0, 1}n,
so that if we let T ′ be the tree obtained from T by substituting the s points with the
corresponding s′ points, the cost of T ′ is not greater than the cost of T . The latter
statement is equivalent to

∑
(sj ,u)∈E,u∈U

||sj − u||1 +
∑

(sj ,sh)∈E
||sj − sh||1

≥
∑

(s′
j
,u)∈E,u∈U

||s′j − u||1 +
∑

(s′
j
,s′

h
)∈E
||s′j − s′h||1.

We will indeed prove something stronger, namely, that for any i ∈ [n] it holds

∑
(sj ,u)∈E,u∈U

|sj [i]− u[i]|+
∑

(sj ,sh)∈E
|sj [i]− sh[i]|

≥
∑

(s′
j
,u)∈E,u∈U

|s′j [i]− u[i]|+
∑

(s′
j
,s′

h
)∈E
|s′j [i]− s′h[i]|.

(4.1)

Let i ∈ [n] be fixed; we must now find values of s′1[i], . . . , s
′
m[i] ∈ {0, 1} such

that (4.1) holds. We express as a linear program the problem of finding values of
s′1[i], . . . , s

′
m[i] that minimize the right-hand side of (4.1). For any j ∈ [m] we have a

variable xj (representing the value to be given to s′j [i]) and for any edge e = (a, b)
such that at least one endpoint is in S, we have a variable ye representing the length
|a[i]− b[i]|. The linear program is as follows:

min
∑
e ye(LP)

subject to
ye ≥ xj − xh ∀e = (sj , sh) ∈ E,
ye ≥ xh − xj ∀e = (sj , sh) ∈ E,
ye ≥ xj ∀e = (sj , uh) ∈ E.uh[i] = 0,
ye ≥ 1− xj ∀e = (sj , uh) ∈ E.uh[i] = 1,
xj ≥ 0,
ye ≥ 0.

Setting xj = sj [i] and y(a,b) = |a[i] − b[i]| yields a feasible solution, and its cost is
the left-hand side of (4.1). Let (x∗, y∗) be an optimum solution for (LP). From the
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previous observation we have that by setting s′j [i] = x∗j we satisfy (4.1). It remains
to be seen that (LP) has an optimum solution where all variables take value from
{0, 1}. This follows from the fact that (LP) is the linear programming relaxation of
an undirected Min-Cut problem, where all the u such that u[i] = 0 (respectively,
u[i] = 1) are identified with the source (respectively, the sink), each sj is a node,
and the edges are like in T . It is well known (see, e.g., [33]) that a Min-Cut linear
programming relaxation has optimum 0/1 solutions, and that such a solution can be
found in polynomial time.

Remark 4.1. There seems to be no natural analog of Theorem 4.2 in other norms.
Even in R2, using the Euclidean metric, we have that the optimum solution of the
instance {(0, 0), (1, 0), (0, 1)} must use a Steiner point not in {0, 1}2.

Theorem 4.4. Rectilinear Min ST is Max SNP-hard.
Proof. We reduce from Hamming Min ST. The reduction leaves the instance

unchanged. For an instance U ⊆ {0, 1}n, we let optH(U) (respectively, optR(U)) be
the cost of an optimum solution for U, when seen as an instance of Hamming Min
ST (respectively, of rectilinear Min ST). Clearly, we have that optR(U) ≤ optH(U).
Given a solution T for U, we find a solution T ′ as in Theorem 4.2. Since in {0, 1}n
the distance induced by the �1 norm equals the Hamming distance, we have that
costH(T ′) = costR(T

′) ≤ costR(T ). We have an L-reduction with α = β = 1.

5. Conclusions and open questions. We do not know how to extend our
nonapproximability result for Min ST to the Euclidean case. Arora [3] notes that, by
inspecting the way his algorithm works, it is possible to claim that, for any instance
of Euclidean Min ST, there exists a near-optimal solution where the Steiner points
lie in some well-specified positions (either at “portals” or in positions chosen at the
bottom of the recursion). This observation could perhaps be a starting point.

We do not have explicit estimations of the constants into which it is hard to
approximate geometricMin TSP and rectilinearMin ST. The constant forMin TSP
should be only slightly smaller than the corresponding constant for the (1, 2) − B
case. An explicit nonapproximability factor has been estimated by Engebresten [13]
for the latter problem, and it is very close to 1. The constant for Min ST should be
slightly better. Finding much stronger estimations (comparable to the 3/2 bound of
Christofides [9] and the 1.644 bound of Karpinski and Zelikovsky [24]) is an open and
challenging question.
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Babai, and Janos Körner for very interesting and helpful discussions. I thank Ray
Greenlaw for having read a preliminary version of this paper and given several useful
remarks. I wish to thank Jens Lagergren, Tao Jiang, and Todd Wareham for provid-
ing me references and reprints about their work in computational biology, and for
explaining to me the relation with the Hamming–Steiner tree problem.

REFERENCES
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Abstract. A useful way to design simple and robust protocols is to make them self-stabilizing.
A protocol is said to be self-stabilizing if it begins to exhibit correct behavior even after starting in
an arbitrary state. We describe a simple technique for self-stabilization called counter flushing. We
show how counter flushing helps us to understand and improve some existing distributed algorithms
for tasks such as mutual exclusion and request-response protocols. We also use counter flushing to
create new self-stabilizing protocols for propagation of information with feedback and resets. The
resulting protocols are simple, require few changes from the nonstabilizing equivalents, and have fast
stabilization times.
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1. Introduction. As the world moves from an industrial economy to an infor-
mation-based economy, we are dependent on networks and will become even more so.
Thus it is important to design network protocols that are resilient to faults.

In the traditional approach to network fault-tolerance, the protocol designer enu-
merates the faults that the network will deal with—e.g., node and link crashes, bit
errors on links—and adds recovery mechanisms for each such fault. This adds com-
plexity as the mechanisms are not orthogonal and have subtle interactions. Also, there
are a number of more obscure errors (e.g., memory corruption) that occur in real net-
works and are hard to anticipate and enumerate. Even if such faults occur rarely (say,
once a month), it makes economic sense to have networks automatically recover from
such faults.

These issues are illustrated by the crash of the original ARPANET protocol
[Ros81, Per83]. The protocol was designed never to enter a state that contained three
conflicting updates. Unfortunately, a malfunctioning node injected three such updates
into the network and crashed. After this the network cycled continuously between the
three updates until the problem was diagnosed a day later.

Self-stabilization. Ideally networks should recover by themselves, even from ob-
scure faults. This paper describes a paradigm for designing what are known as self-
stabilizing network protocols. We do so to make network protocols simpler and more
robust.

We model a computer network as a set of nodes interconnected by communication
links. A network protocol consists of a program for each network node. Each program
consists of code and inputs as well as local state. The global state of the network
consists of the local state of each node as well as the messages on network links. A
network protocol is self-stabilizing if when started from an arbitrary state it exhibits
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“correct” behavior after finite time. This definition allows arbitrary corruption of
messages and node state variables in the initial state.

Note that we allow network state to be corrupted but not the code executing the
protocol. This is reasonable because program code can be protected against arbitrary
corruption of memory by redundancy techniques (e.g., checksumming) since code is
rarely modified. However, it is not clear how one can detect corruption of network
state by using redundancy techniques. The definition also seems to imply that faults
can occur only once (i.e., when the network “starts”). However, the real assumption is,
The average period between faults is larger than the time the protocol takes to stabilize.

The distributed algorithm literature also describes Byzantine fault models
([LSP82]) in which arbitrary faults can continuously occur. However, in Byzantine
models, only a fraction of nodes are allowed to exhibit arbitrary behavior. In the
self-stabilization model, all nodes are permitted to start with arbitrary initial states.
Thus, the two models are orthogonal. In a practical setting the crucial difference is
that the cost of stabilization is quite cheap while Byzantine solutions are expensive.
For example, the self-stabilizing routing protocol in [Per83] is much cheaper than the
Byzantine routing protocol of [Per88].

General techniques for self-stabilization. Self-stabilizing protocols were introduced
by Dijkstra in [Dij74a]. [Sch93] contains a review of research in this area. While many
ad hoc self-stabilizing protocols have been designed, there are few general techniques
for self-stabilization. Katz and Perry [KP93] showed how to compile an arbitrary
asynchronous protocol into a stabilizing equivalent. Their general transformation is
expensive; hence more efficient (and possibly less general) techniques are needed.
Techniques that transform any locally checkable protocol into a stabilizing equivalent
are given in [AGV94, Var93]. However, local checking applies only to a subset of
protocols that have a special property called local checkability.

Our paper describes a new general technique called counter flushing that is appli-
cable to protocols that are not locally checkable. The abstract setting is that of a leader
who periodically delivers a message to every network node (and sometimes to every
link). By attaching a counter to the state of every node and to every message, and by
using simple checks, we ensure that the protocol begins to work correctly regardless of
initial messages and node states. Counter flushing can be applied to total algorithms.
Total algorithms [Tel89] require the cooperation of all network nodes. Specifically,
we apply counter flushing to token passing [Dij74a], propagation of information with
feedback [Seg83], and network resets [AG94].

The rest of the paper is organized as follows. Section 2 describes our model. Section
3 describes how counter flushing works on ring topologies and shows how counter
flushing can be used for token passing, request-response, and data link protocols.
Section 4 describes how counter flushing works on trees by describing a stabilizing
broadcast protocol called propagation of information with feedback. In section 5, we
extend counter flushing to a general graph. We illustrate this by designing a stabilizing
network reset protocol. In section 6, we present a uniform proof of stabilization and
correctness of our three main protocols. The uniformity of proof emphasizes the unity
behind the diversity of applications. We conclude in section 7.

2. Model. We restrict ourselves to message passing protocols. The network
topology is modeled by a directed graph G = (V,E), where n = |V | denotes the
number of network nodes and D the network diameter. Except for the case when we
consider a ring (section 3), we assume the graph is symmetric—i.e., if (i, j) ∈ E, then
(j, i) ∈ E. We assume a distinguished leader node 0 ∈ V that we often refer to as the
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Fig. 1. The rectangles represent node automata for nodes i and j with interfaces to send packets
from i to j. The circle represents the link automaton from i to j whose state is captured by a queue,
Qi,j .

root. Note that there are stabilizing protocols [AKM+93, Dol94, AK93] to construct a
leader in O(D) time. We model network nodes and links using input/output automata
(IOA) [LT89].

An IOA is a state machine whose state transitions are given labels called actions.
There are three kinds of actions. The environment affects the automaton through
input actions which must be responded to in any state. The automaton affects the
environment through output actions; these actions can be controlled by the automaton
to occur only in certain states. Internal actions change the state of the automaton
without affecting the environment.

Formally, an IOA is defined by a state set S, a action set A, an action signature
Z (that classifies the action set into input, output, and internal actions), a transition
relation R ⊆ S × A × S, and a set of initial states I ⊆ S. We mostly deal with
uninitialized IOA for which I = S. An action a is said to be enabled in state s if there
exist s′ ∈ S such that (s, a, s′) ∈ R. Input actions are always enabled.

Nodes communicate with each other by sending to and receiving packets along
links. Fix a packet alphabet P . Nodes and links are modeled by IOA called node and
link automata, respectively. A node automaton (see Figure 1) for node i in graph G
has output actions (Sendi,j(p), p ∈ P ) to send a packet to every j such that (i, j) ∈ E;
it also has input actions to receive packets (Receivej,i(p), p ∈ P ) for every j such
that (j, i) ∈ E. Similarly, the link automaton for link (i, j) ∈ E has input action
Sendi,j(p) to receive packets1 from i, and output action Receivei,j(p) to deliver
packets to node j (Figure 1).

Node automata are arbitrary but have finite state sets and have the appropriate
interface actions to send and receive packets. Each link is modeled as a FIFO queue
with bounded storage. Formally, the state of the link automaton for link (i, j) is a
queue of packets Qi,j that is restricted to store no more than Lmax packets. A formal
specification of a bounded data link is in Figure 2. We use a bounded model because
not much can be done with unbounded links in a stabilizing setting [DIM91], and real
links are bounded anyway. We justify this model further at the end of this section.

A network automaton for graph G = (E, V ) is the composition of node automata
for each i ∈ V and link automata for each edge (i, j) ∈ E. Composition [LT89]
produces a composite state machine; input and output actions of the same name are
performed simultaneously. Thus when node i performs a Sendi,j(p) output action,
the link between i and j performs a simultaneous input action (also Sendi,j(p)) to
store packet p. The state of the composition is the cross product of the states of every
node and link automaton in the network automaton.

1The convention for action subscripts is that the first subscript always represents the sending
node and the second the receiving node.
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State of link Ci,j is a queue of packets Qi,j .
In all states, |Qi,j | ≤ Lmax.

Sendi,j(p) (* node i sends a packet *)
Effects: Add p to the end of Qi,j

Receivei,j(p) (* node j receives a packet*)
Preconditions: p is the head of Qi,j

Effects: Remove p from Qi,j

For time complexity, assume that any packet p
placed in Qi,j is delivered in 1 time unit.

Fig. 2. Formal model of a bounded data link using a finite queue. Note the unusual time
complexity assumption that is justified in the text.

When an IOA “runs” it produces an execution. An execution fragment is an
alternating sequence of states and actions (s0, a1, s1, . . .), such that (si, ai, si+1) ∈ R
for all i ≥ 0. An execution fragment E is fair if any internal or output action that is
continuously enabled eventually occurs. An execution is an execution fragment that
begins with a start state and is fair.

We express the correctness of an automaton using a set of legal executions (LE)
as in [DIM93]. Let LE be a set of executions of some automaton A. We say that
automaton A stabilizes to LE if every execution of A has some suffix that is contained
in LE. The legal states are the states that occur in legal executions. All the automata
we will design in this paper will be uninitialized IOA whose set of initial states I is
identical to its state set S. We do so by not specifying initial node or channel states.
Note that the intuitive concept of self-stabilization is captured by the stabilization of
an uninitialized automaton to a set of legal executions.

For time complexity, assume that every internal or output action that is contin-
uously enabled at a node occurs in 1 unit of time. Thus node processing takes 1 time
unit. However, we assume any packet stored on a link is delivered in 1 time unit.
We say that A stabilizes to LE in time t if every execution of A has a suffix that
occurs within time t and is contained in LE. The stabilization time from A to B is
the infimum across all t such that A stabilizes to B in time t.

Our time complexity assumption for messages is reasonable for links, such as
fiber links, in which packets are not queued on links. The assumption is completely
unrealistic for channels that act like queues; a simple example is a link that is really
a “network” which consists of internal switching nodes. However, since we expect our
protocols (token ring, tree broadcast, and reset) to be used over networks with the
former type of link, we believe this assumption is reasonable.

The time complexity assumption also seems to imply (see the description of al-
gorithms in Figures 4, 5, and 8) that each node has to send a stabilization message
at every step. In particular, this seems to follow because we have made the time com-
plexity for nodes to send messages the same as the time complexity for a message to
travel on a link. We choose this for simplicity in order to avoid having two parameters
for the two times. A similar (but slightly more messy) analysis of the algorithms can
be carried out in which the time to perform an internal node action is bounded by
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some parameter tn. The general model would allow stabilization messages to be sent
at any reasonable interval, and would provide the usual tradeoff between message
overhead and stabilization time.

There are several other methods of calculating time complexities for stabilizing
protocols. These include methods in which time complexity is measured in terms of
rounds in which every processor takes a step. Our time complexity measure is not
directly comparable to these other measures.

Bounded links. In a stabilizing setting, if a link can store an unbounded number
of packets, it is impossible to produce solutions (with bounded stabilization time) for
most nontrivial tasks [DIM91]. Moreover, real links are bounded.

In other work, we have modeled bounded links as unit capacity data links (UDLs)
that can store at most one packet at any instant. A UDL [Var93] is a model of a
reliable data link protocol that delivers one packet at a time. The UDL model is
appropriate for routing (and other) protocols that use an underlying reliable link
protocol. However, many real protocols that work over very low error rate links (e.g.,
FDDI, ATM, Frame Relay [Tan93]) do not use an underlying data link protocol.
Such links store a bounded number of packets because the link sender and receiver
are synchronous. The receiver removes packets as fast as the sender inputs packets.
However, there is no common clock for the entire network; node processing is still
asynchronous.

We can model this using an asynchronous model like IOA if we only consider
executions in which there are no more than Lmax packets on each link in each state.
In our bounded model we assume that any stored packet is delivered in constant
time. For example, suppose the minimum packet size is 20 bytes, nodes transmit at
100 Mbit/sec and links are up to 10 miles long. Then Lmax = 30 and (assuming
speed of light limitations) any stored packet is delivered in 50 usec. Both numbers are
constants that depend only on the maximum length of a link.

3. Counter flushing on rings. We start by showing how counter flushing can
be used in rings. Our protocol is a message passing version of a shared memory
protocol presented in [Dij74a]. Nodes 0, . . . , n−1 are arranged in a ring topology with
a directed link (i, i + 1) for i = 0, . . . , n − 1. Addition on process indices is always
implicitly modn so that n− 1 + 1 = 0. Node 0 is called the root.

In a ring, without the need for stabilization, mutual exclusion can easily be
achieved by sending a special Token packet round the ring. Each node i would have
a flag which would be set to true when a token arrives at i, and be set to false when
node i sends its token to node i + 1. As long as the protocol starts in a state where
there is exactly one token, this protocol will maintain a mutual exclusion property:
no more than one node can have its token flag set to true in any state.

However, in a stabilizing setting, the token protocol can deadlock. We can start
the token protocol in a state that does not contain a token. A simple way to avoid
deadlock is to have nodes periodically retransmit tokens. But this introduces the
possibility of a node receiving duplicate tokens. Thus we change the state of each
node i (and each token) to have a counter instead of a flag. A node with counter value
c can identify a token numbered c as being a duplicate. This is analogous to the use
of sequence numbers in network protocols [Tan93].

However, counters cause new complications. In the initial state, the counter values
may be arbitrary. Let cmax be the maximum number of counters that can be stored
in the network in the initial state. Because of the initially bounded model, cmax =
|E|Lmax+ |V |. We will show that if the size of the counter space is greater than cmax,
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Fig. 3. Progress to stabilization in a token ring with counters. Starting with an arbitrary state
(A) we reach a state in which the root has a fresh value (B). The fresh value (i.e., 8) moves round
the ring (C) until we reach a legal state (D).

then the protocol stabilizes in time proportional to the network diameter.

In Figure 3 the lower-left-hand corner (configuration D) describes a good global
state of our protocol. There are four nodes—north, east, south, and west—and packets
travel clockwise around the ring. North is the root. Each node other than north has
a counter value of 8, and there is a token carrying the value 8 in transit from west to
north.

Each node periodically retransmits its counter value in a token packet down-
stream. Thus mere receipt of a token packet is not enough for a node to assume it
has the token. Instead, when any node i receives a token from its upstream neighbor,
node i does the following. If i is not the root and the counter value in the token (say,
c) is different from the counter stored at node i (i.e., ci), then node i assumes it has
received a valid token and sets ci equal to c; if c = ci and i is not the root, i ignores
the received token. If i is the root, however, a different rule is used: if the counter c in
the token is equal to the root’s local counter, then the root assumes it has received a
valid token, and increments its counter value mod Max; if c �= ci, then the root ignores
the received token.

Consider legal configuration D of Figure 3. In this state all token packets on links
have a counter value 8, and the counter values at all nodes except north are also 8.
The counter value at north is 9 �= 8. In that case, we say that north has the token.
Eventually north will transmit a token packet containing 9. When this packet reaches
east, east sets its counter value to 9. This process continues with the token moving
clockwise until west receives the token and transmits it to north. North chooses a new
value (10) and the cycle continues.

In legal states the ring can be partitioned into two bands. The first band starts
with the root and continues up to (but not including) the first counter value (either
in a token packet or at a node) whose counter value is different from that of north.
The remainder of the ring (including links and nodes) is a second band containing a
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counter value different from north. The valid token is at the end of the first band.
The protocol stabilizes to legal states regardless of initial values of node and packet

counters. Assume cmax (the number of distinct counter values stored in nodes and
links in the initial state) is less than the counter size Max. For example, with a 1000
node ring transmitting at 100 Mbp/s and assuming 10 mile links, cmax = 31, 000. If we
use a 32-bit counter, then Max = 232 > cmax for even the largest size rings that occur
in practice. The stabilization argument is illustrated in Figure 3. We provide a formal
argument in section 6. For now we sketch an informal argument that illustrates three
essential features of the counter flushing argument (increment liveness, freshness, and
flushing).

1. Increment liveness. In any execution, north will eventually increment its
counter. Suppose not; then north’s value will move around the ring until north gets a
token with a counter value equal to its own.

2. Freshness. In any execution, north will reach a “fresh” counter value not equal
to the counter values of any other process (see Figure 3, configuration B). In the
initial state there are at most (say) cmax distinct counter values. Thus there is some
counter value, say, f , not present in the initial state. Since (by increment liveness)
north keeps incrementing its counter, north will eventually reach f ; in the interim
no other process can set their counter value to f since only north “produces” new
counter values.

3. Flushing. Any state in which north has a fresh counter value f is eventually
followed by a state in which all processes have counter value f (see Figure 3, config-
urations C, D). The value f moves clockwise around the ring “flushing” any other
counter values, while north remains at f .

Define a round trip delay to be equal to 2N time units (i.e., the time it takes
a packet to travel around the ring with a unit delay at each node and link). The
worst-case stabilization time of this protocol is equal to three round trip delays.

First consider a modification to the protocol in which the root chooses a new
counter value randomly instead of incrementing the old value. Assume that Max �
cmax (i.e., counter size is much greater than the maximum number of stored packets).
With very high probability (i.e., 1− cmax/Max, roughly 2−16 for our ring example),
the root picks a “fresh” value after its first opportunity to change its counter. Thus
a randomized counter flushing ring protocol stabilizes within two round trip delays
with high probability.

However, simple deterministic incrementing also guarantees a worst case stabiliza-
tion time of three ring round trip delays. Here is the intuition. Consider an execution
with initial state sI and some state sF that occurs one round trip delay later. Let the
counter value of the root in sI and sF be c(I) and c(F ), respectively. In one round
trip delay, there is enough time for information from the root to “flow” through the
entire ring. Thus all node counters in state sF must have been “produced” by the
root since the execution began. More precisely, in sF , all counter values are in the
range [c(I), . . . , c(F )]. If c(F ) is fresh, we are done one round trip delay later (see the
stabilization argument above). Otherwise, the next root increment will cause a fresh
value because c(F ) + 1 /∈ [c(I), . . . , c(F )]. (This last fact follows because the root will
increment at most once for every packet received, and can receive at most cmax < Max
packets in the interval [sI , sF ].) But the next increment will happen after at most
one round trip delay.2

2A more careful accounting shows that two round trip delays suffice for stabilization. We prefer
to use three round trip delays because of the simplicity of the proofs.
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A token packet is encoded as a tuple (Token, c) where c is an integer in the range 0..Max.
The state of each node i consists of an integer counti in the range 0..Max.
The root has an additional flag token expected0.
Assume there are n nodes numbered from 0 to n− 1.
All addition and subtraction of process indices is mod n.
All addition and subtraction of counters is mod Max.

Finished(i) (* boolean function used by action routines below *)
Always true for all nodes other than node 0
Finished(0) is true if and only if token expected0 = false

Root Start (* Node 0 is considered the root or leader of ring *)
Preconditions:

Finished(0) = true
Effects:

count0 = count0 + 1 (* increment root counter *)
token expected0 = true

Receiven−1,0(Token, c) (* node 0 receives token from node n− 1 *)
Effects:
If c = count0 then (* token counter matches node counter *)

token expected0 = false (* node 0 treats this packet like an ack*)

Receivei−1,i(Token, c), i �= 0 (* node i receives token from clockwise neighbor node i-1*)
Effects:
If c �= counti then (* token counter differs from node counter *)

counti = c (*set value to counter in token packet*)

Sendi,i+1(Token, c), (* node i sends token to clockwise neighbor node i + 1*)
Preconditions:

c = counti (* counter of token matches node counter *)

For any node, a Sendi,i+1 action will occur in 1 unit of time starting from any state.

Fig. 4. Code for node processes in a token ring. The code is explained in more detail in the
main text of the paper.

The formal code for our stabilizing token passing protocol is in Figure 4. Our
protocol is a message passing version of a shared memory protocol in [Dij74a]. One of
our contributions is to prove that the stabilization time is equal to three ring delays,
using our model of time complexity,3 which we believe is realistic. But our main
contribution is abstracting the mechanism and applying it to other examples, as we
show below. A formal proof of correctness and stabilization is deferred to section 6.

Token passing protocols are widely used in local area networks to regulate access
to the network. Existing token passing protocols recover from lost tokens using global
timers that are refreshed whenever a token is seen. In the IBM token ring [Tan93], the
monitor (i.e., root) uses a timer initialized to the longest possible delay for a token to
traverse the ring. When this timer expires, the monitor restarts the protocol. Thus

3There are no time complexity results in [Dij74a].
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the recovery time of the IBM protocol is proportional to the worst-case ring delay.
The recovery time of a token passing protocol based on counter flushing (see [CV98]
for details) is proportional to the actual delay around the ring, which can be an order
of magnitude faster than the worst-case delay.

3.1. Further applications on rings. Counter flushing on rings can be applied
to two more interesting settings: request-response protocols and data link protocols.

Request-response protocols. Suppose a leader node wishes to periodically send a
Request packet to a set of network nodes. The responders must each send back a
Response packet before the sender sends its next request. In order to match responses
to requests, the sender numbers [Var93] each request with a counter. Responders only
accept Request packets with a number different from the last Request accepted. After
accepting a Request the responder sends back a Response with the same number as
the Request. The sender retransmits the current Request till it receives each matching
Response with the same number. After all matching Response packets arrive, the
sender increments its counter and starts a new phase. The protocol will work correctly
if Max > cmax and the links are FIFO (or guarantee the “flushing” property in some
other way.)

Data link protocols. The token passing protocol in Figure 4 can be adapted to
send packets reliably between a sender and receiver by having each token packet
carry a piggybacked data packet. By comparison, the elegant stabilizing data link
protocol of Afek and Brown [AB93] uses bounded length counters of size greater than
2, but such that the sequence of counter values used is aperiodic. A trivial corollary is
that for a pair of nodes connected by a pair of unidirectional links, it suffices to use a
counter whose size is larger than 1 plus the maximum number of outstanding packets.
Afek and Brown also suggest the use of a random sequence instead of an aperiodic
sequence. However, Afek and Brown’s result is confined to data link protocols between
a pair of nodes and to rings and has not been extended to trees or general networks
as we do below. Also, the expected stabilization time of the randomized equivalent of
Afek–Brown’s protocol is shown to be O(cmax) round trip delays for large values of
Max, while our stabilization time is only two round trip delays.

4. Counter flushing on trees. In the last section, we describe counter flushing
on a ring using a mutual exclusion protocol that is essentially sequential. By contrast,
in this section we describe a broadcast protocol on a tree which exhibits considerable
parallelism. In this problem, we have a root node 0 that wishes to broadcast a sequence
of values to every node in the network. Correct executions of the protocol can be
partitioned into an infinite number of cycles: in cycle M the root must send the
packet corresponding to M exactly once to all network nodes. Cycle M begins after
cycle M −1 ends. In order to detect when the current broadcast cycle has terminated
the root needs to obtain feedback from the other nodes. Thus the problem is often
called propagation of information with feedback (PIF).

We model the sequence of values that the root wishes to broadcast by having the
root have access to a function f that computes the next value to be sent as a function
of the previous value sent. In a more general setting, the values could be supplied by
some external application.

We assume a root node 0 and a spanning tree rooted at node 0, such that each
node i has a parent variable parent(i) that points to its parent in the tree. With-
out stabilization, it is easy to solve this problem using protocols due to Segall and
Chang [Seg83, Cha82]. When the root finishes broadcasting a previous value, it chooses
a new value using the function f . It then sends a token packet containing the new
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value to all its children; other nodes accept new values only from their parents, upon
which they send the value to their children. When a leaf of the tree gets a new value,
it sends an ack up to its parent. Nodes other than the root send an ack up to their
parents when they have received acks from all children. When the root receives an ack
from all children, the root starts a new cycle by choosing a new value. Clearly this
protocol can deadlock if initialized in a state where the root is expecting acks from
its children, but the children do not send any further acks.

To make the protocol stabilizing, we tag each packet sent (and each value stored)
with a counter. When sending a new value, the root chooses a new counter value.
Node i accepts a new value only when it is tagged with a different counter value from
the counter stored at node i. Node i accepts an ack only when the counter in the ack is
identical to node i’s counter. Adding counters and checks also allows us to periodically
retransmit Token packets to avoid deadlock.

The code is given in Figure 5. For simplicity, we do not encode “acks” separately
but just have children send (Token, c, v) packets to their parents as acks, where c and
v are the counter and value, respectively, at the sending node at the instant the packet
was sent.

Figure 6 shows a legal state of the protocol where a new value x is being broadcast
to replace the previous value v. The new counter tag for x is 13 while the counter tag
for v was 12. The new value x has reached the right child of the root and is in transit
to the rightmost leaf node. When this leaf node gets a packet containing (x, 13) it will
accept the new value because 12 �= 13. It will then send an ack containing the counter
13 to its parent; the parent will accept this as a valid ack.

Suppose the counter size is greater than Max = nLmax, the maximum number of
outstanding counters in the initial state. Then the counter flushing argument guar-
antees that this protocol will enter a legal state in 4h + 2 time (h is the tree height),
regardless of the initial state. Once it stabilizes, the protocol correctly broadcasts sub-
sequent values generated at the root. We defer a formal correctness proof to section 6.

It may appear that counters can be completely avoided because the PIF protocol
works on a tree. However, there are counterexample executions where, if a counter
is not used (or its size is less than Max), then the system stays in an incorrect state
forever.

Another general method for constructing stabilizing protocols is local check-
ing [APV91, Var93]. However, the PIF protocol of Figure 5 is not locally checkable.
In a good state of the PIF protocol it is possible to have a parent have counter c and
the child have counter c′ �= c (if the value is still propagating from the parent to the
child). Thus we can construct a bad global state in which each child of the root has a
different counter value but each pair of neighbors appears to be in a good state locally.
Independently, Gouda [Gou94] used the concept of observers to unify tree and ring
stabilizing systems. His paper, however, uses a different proof from ours.

Further applications on trees. Propagation of information with feedback is an
example of a centralized total algorithm [Tel89]. A centralized total algorithm is an
algorithm where each process in the network must take some decision before the
initiator takes a decision event. Tel [Tel89] shows that many protocols such as PIF,
Finn’s resynch protocol [Fin79], and distributed infimum4 are all examples of total
algorithms. Tel also shows that PIF can be used to replace any total algorithm. Thus

4Distributed infimum can be described as calculating a bound on the minimum of a set of values
stored at network nodes and links. The global virtual time calculation used in optimistic distributed
simulation is a special case of calculating the distributed infimum.
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We assume all counters are integers in the range 0..Max and all values are drawn from
some domain V .

A token packet is encoded as a tuple (Token, c, v) where c is a counter and v is a value.
The state of each node i consists of:
a counter counti, a boolean flag token expectedi[j] for each neighbor j of i and a value
field vi.

We assume that each node i has a function parent(i) that points to i’s parent in the tree.
We assume the root is node 0 and all addition of counters are done mod Max.

Finished(i) (* boolean function used by action routines below *)
(* set to true when not expecting tokens from any children *)
Return true if i is a leaf, or if i is not a leaf and for all children k of i: token expectedi[k]
= false

Root Start (* Root starts a new cycle of broadcasting values *)
Preconditions:

Finished(0) = true
Effects:

v0 = f(vr) (* compute new value to be broadcast*)
count0 = count0 + 1 (*choose new counter value mod Max*)
For all children k of root

token expected0[k] = true (* set to true when expecting a correctly numbered
token*)

Sendi,j(Token, c, v), (* node i sends token to node j *)
Preconditions:

c = counti (* counter of token matches node counter *)
v = vi (* value equal to store value *)
j �= parent(i) or (j = parent(i) and Finished(i)) (* send to children, and to parent if
finished *)

Receivej,i(Token, c, v) (* node i receives token from node j *)
Effects:
If j = parent(i) and c �= counti then (* new counter from parent *)

vi = v (* set stored value equal to value in token packet*)
counti = c (*set local counter to counter in token packet*)
For all children k of i

token expectedi[k] = true (* set to true when expecting a token *)
Else if c = counti

token expectedi[j] = false (* treat as a valid ack from child j*)

Any action that is continuously enabled for 1 unit of time occurs in 1 unit of time.

Fig. 5. Code for stabilizing propagation of information with feedback. The code is explained in
more detail in the main text of the paper.

the stabilizing PIF protocol described in Figure 5 offers a stabilizing solution to any
problem that requires a total algorithm. An interesting application of the stabilizing
PIF protocol is for topology update. For example, in the Autonet network [MAM+90],
topology distribution is done over a tree.
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Fig. 6. Using counter flushing to make broadcast on a tree stabilizing. A new value x is being
broadcast to replace the previous value v. A black dot indicates that a node is waiting for an ack on
that link.
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Fig. 7. The reason for delaying responses to token packets received on cross links (like the one
from i to j) is to prevent j from responding to the old (prereset) protocol message after i has locally
reset.

5. Counter flushing in general graphs. We broaden the scope of counter
flushing to consider general graphs. However, we continue to assume a root node
0 that is the root of a breadth first search (BFS) spanning tree. Besides links from
parents to children we now also have cross links that are not part of the tree. We have
seen how to use counter flushing to flush tree links; we now extend the paradigm to
flush both tree and cross links.

As before, a node i only accepts a new counter value c from its parent and waits
until it gets tokens from its children (numbered with c) before it sends a token up to
its parent. However, in addition, i sends a token packet on any cross links it is part
of and waits to get a token (numbered with c) on every link before it sends a token
to its parent.

The only difficulty is deciding how to reply to token packets received on cross links.
Before we see the problems, we introduce an application (global reset) for general
counter flushing. We have an underlying protocol P ; the root may get requests to
reset protocol P . We stipulate that at the point the reset procedure terminates, the
state of the underlying protocol P is reset to some successor of a legal initial state of
P . To do so, at some point during the reset procedure, (i) each node i must locally
reset its protocol P state, (ii) define the reset interval of a node to be the interval from
the time a node is locally reset until the reset procedure terminates. Then for any
pair of neighbors i, j, the sequence of packets received by node j in j’s reset interval
must be a prefix of the sequence of packets sent by node i during i’s reset interval.

In Figure 7, node i has received the counter value (5) corresponding to the current
reset and has sent a token packet containing 5 to j. Node j has not received information
on the current reset and has an “old” protocol packet in transit from its parent.
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Suppose node i’s token packet reaches node j first and node j sends back a token
immediately (but without changing its counter value or initializing protocol P ). Then
node j can subsequently receive the “old” protocol packet and send another “old”
protocol packet to node i. Thus, we could have a packet sent before node j was reset
being received by node i after node i has reset, an error.

A seemingly simple solution is for node j to reset itself locally when it receives
the token packet on the cross link from node i. However, if a node accepts counters
on cross links to its neighbors, then in the initial configuration we could have a cycle
of nodes with different counter values which can result in livelock, where the counters
move around in the cycle. This problem can be resolved [KP93] by having each token
packet carry a counter and a list of visited nodes; a token packet is dropped when it
revisits a node in the visited list. However, this solution increases message and time
complexity.

The livelock problem disappears if nodes only accept counter values from their
parents. To solve the problem referred to in Figure 7, we do two things. First, we tag
all protocol P packets with the counter at the sending node; we discard a protocol
P packet with a counter that does not match the receiver’s counter. This solution
eliminates the problem in Figure 7 because the “old” packet will have a different
counter value from that of node i. But it introduces another problem. Suppose node i
sends a protocol P packet to j after node i resets, but the packet is received before j
resets. Then if we simply check the packet tag, the packet will be dropped at j. One
might consider buffering the packet at j if the counter tag in the packet is “greater”
than the counter at j; however, defining one counter to be greater than another is
fraught with complications when using bounded size counters.

Instead we have each node j delay responding until the local counter at node j is
equal to the counter of the token packet received. Thus in Figure 7 when j receives
the token packet from i numbered 5, node j does not send a token numbered 5 back
to node i until node j has also received a token packet numbered 5 from its parent. In
the meantime, node i will keep retransmitting a token packet numbered 5 to j. Node
j will ignore these packets until it, too, has the same counter value of 5. It will then
send a token packet back to i with number 5.

We also do not allow protocol P to send packets at node i if node i is waiting for
a token packet on one of its links. This implies that (in good executions) any packet
sent by i after i has locally reset is sent after j is at the same counter value as i; thus
this packet will be accepted by j.

The formal code for this protocol is described in Figure 8. Once again, we defer
the proof of correctness and stabilization to section 6. We will show there that the
reset protocol stabilizes in three round trip delays.

5.1. Comparison with other reset protocols. We augment the protocol de-
scribed so far to allow any node to make a reset request as follows. Each node has
a reset request bit that is set when the node gets a reset request, or when it has
received a Request packet from its children. When a node’s request bit is on, it peri-
odically sends a Request packet to its parent. When the root gets a Request packet,
the root treats it like a Request Reset action. On doing a local reset a node clears
its request bit; each node i also ignores reset requests and Request packets while
Finished(i) = false.

The resulting reset protocol is similar to a stabilizing reset protocol due to Arora
and Gouda [AG94] but has some important differences. First, the protocol [AG94] is
based on a shared memory model and thus only requires node counters of size 2. In a
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A token packet is encoded as a tuple (Token, c) where c is an integer in the range 0..Max
The state of each node i consists of:
an integer counti in the range 0..Max, and a flag token expectedi[j] for each neighbor

j of i:
token expectedi[j] is always false if j = parenti

We assume parent(i) points to i’s parent, the root is node 0, and addition of counters is
mod Max.

Finished(i) (* boolean function used by action routines below *)
(*set to true when not expecting tokens from any nonparent links *)
Return true if for all neighbors token expectedi[k] = false

Root Start (* root receives request to reset Protocol P *)
Effects:
if Finished(0) then (* ignore request if finishing current reset *)

count0 = count0 + 1 (*choose new counter value mod Max*)
Local Reset(0) (* locally reset Protocol P *)
For all neighbors k of root, token expected0[k] = true (* expect an ack from all
neighbors*)

Sendi,j(Token, c), (* node i sends token to node j *)
Preconditions: (* retransmit periodically regardless of ack bit *)

c = counti (* counter of token matches node counter *)
j �= parent(i) or (j = parent(i) and Finished(i)) (* send to children, and to parent if
finished *)

Receivej,i(Token, c) (* node i receives token from node j *)
Effects:
If j = parenti and c �= counti then (* new counter from parent*)

counti = c (* set value to counter in token packet*)
Local Reset(i) (* locally reset Protocol P *)
For all neighbors k �= j of i (* don’t expect ack from parent *)

token expectedi[k] = true (* set to true when expecting a token packet *)
Else if counti = c then

token expectedi[j] = false (* treat as a valid ack from neighbor j*)

Reset Finished0 (* root reports finishing of reset *)
Preconditions:

Finished(0)

Protocol P packets are only sent at node i when Finished(i) is true and are tagged with
counti.

A protocol P packet M received at node i is relayed to the application iff the tag of M is
equal to counti.

Any action that is continuously enabled for 1 unit of time occurs in 1 unit of time.

Fig. 8. Simple reset protocol using counter flushing. The code is explained in more detail in
the main text of the paper.

message passing model, where each link can store Lmax counter values, we believe that
larger counter values, as in our protocol, are necessary. A second difference between
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our protocol and the one in Arora–Gouda is the use of “delayed acks” and flushing of
cross links. This is unnecessary in [AG94], because protocol P is modified so that a
node does not read the state of its neighbors unless they have the same counter value.
This is possible in a shared memory model but not in a message passing model.

There is also the stabilizing reset protocol of [APV91] which is in turn based
on the nonstabilizing reset protocol of [AAG87]. However, this protocol takes O(n)
time to stabilize which is slower than our reset protocol or the Arora–Gouda protocol.
[AKM+93] suggests making this protocol faster by running it over a spanning tree,
but in that case much of the complexity of that protocol is not needed. The fast and
lean reset protocol of [IL94] does a reset in constant space. We believe that a 32-bit
counter is adequate for most networks, and hence the requirement for logarithmic
space in our protocol is not a problem for practical protocols. Our reset protocol is
also much simpler.

6. General proofs. In this section, we present proofs of stabilization and cor-
rectness for the three protocols (token ring, PIF, and reset) described in Figures 4, 5,
and 8, respectively. The three protocols seem different, work on different topologies,
and have different objectives. Despite this, we will describe a uniform stabilization
proof for all three protocols. In a few places, we distinguish between the ring system
(Figure 4) and the tree systems (the PIF and reset protocols, Figures 5 and 8). Note
that we added an extra Root Start action to the ring system (strictly not needed)
and also used the Root Start action name in the reset protocol (instead of a more
appropriate name) for uniformity of proof.

The proof is structured in four subsections: section 6.1 defines useful terminology;
section 6.2 describes legal states; section 6.3 contains a proof that all three protocols
stabilize quickly to legal executions; finally, section 6.4 shows that all three protocols
exhibit the desired properties in legal executions.

6.1. Definitions. We have already defined the parent of a node for tree systems.
For a ring, define the parent of node i to be node i−1. Define the parent path of a node
i to be the sequence of nodes i0, i1, i2, . . . , il such that i0 = 0, il = i, and the parent
of im is equal to im−1 for m = 1, . . . , l. Define the links in a parent path i0, i1, . . . , il
to be the links (i0, i1), . . . , (il−1, il). Notice that the links in the parent path are the
links directed “downwards” from the root and do not include any “upward” or “cross”
links.

Define the counter at a node i to be counti. We use root counter to denote count0,
the counter at the root node 0. We say that the counter in packet m is c if m is
of the form (Token, c, ∗). We say that packet m′ is behind packet m in link (i, j) in
some state s if m and m′ are both stored in s.Qi,j and m is closer to the head of Qi,j .
Recall from Figure 2 that Qi,j models the queue of packets that represent undelivered
packets on link (i, j).

To describe the legal states we will define the notion of counters upstream from a
node or packet m. Intuitively, these are counters stored on the parent path that leads
to m.

Let s be any state of the tree or ring systems. Formally, define the counters
upstream from node m in state s to be the set of counters in all nodes (including m)
and links in the parent path of m in state s. If packet m is stored on link (i, j) in state
s, then the counters upstream from packet m is the union of the set of counters in
packets behind m in link (i, j), together with the set of counters upstream from node
i in state s. We will often refer to the counters upstream from m without reference
to state s if it is clear from context what state s is.
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Fig. 9. Examples of parent paths and upstream counters in a ring and tree. The numbers
at nodes represent node counters and the numbers attached to a link represent the counter in a
(Token, ∗) packet stored on that link.

Figure 9 gives examples of these definitions for a ring system (left) and a tree
system (right). Notice first that the ring system has a sequence of unidirectional links
oriented clockwise in the picture. However, the tree system has a pair of unidirectional
links between every pair of neighbors. In the case of the reset protocol, the tree
system may include cross links (shown dashed) between neighbors such that neither
is the parent of the other. The numbers at nodes and links represent node and packet
counters. Thus in both states, link (0, 1) has two stored packets, the first with counter
2 and a second behind the first with counter 4. In both states, node 2 has node
counter 8.

The parent path of node 2 is the sequence 0, 1, 2 in both pictures. The links in
the parent path of node 2 are (0, 1) and (1, 2) in both pictures. In the state on the left
of Figure 9, the counters upstream from node 2 is the set {8, 3, 2, 4, 7}. In the state
on the right, the counters upstream from node 2 is the set {8, 6, 3, 2, 4, 7}. Notice that
the set does not contain 11 as the packet containing 11 is not in the parent path of
node 2. In both states the counters upstream from the packet containing counter 2 is
the set {4, 7}.

6.2. Legal state definitions. We first describe a one-band property that holds
in legal states; this property is illustrated in state C of Figure 3 for a ring system.
Notice that there is a band of counters starting from the root extending to east and
a token packet on the link from east to south, all of which have counter equal to 8.
Notice that the remaining counters in the ring are not equal to 7, which is what we
would expect in a legal state. Thus, state C satisfies the one-band predicate but not
the legal state predicate, both of which are defined below. Figure 6 illustrates a legal
state for the PIF protocol. Notice a single band of values equal to 13 starting from
the root and extending to the right child of the root. Even if the other node counters
were arbitrary, this would suffice to satisfy the one-band predicate.

Definition 6.1. We say that a state satisfies the one-band property if the fol-
lowing five predicates hold in that state:

• O1: If there is a packet or node m with counter equal to the root counter,
then all counters upstream of m are equal to the root counter.
• O2: If Finished(0) is true, then all counters are equal to the root counter.
• O3: (tree systems only) If a packet m is on link (i, j) with counter equal

to the root counter and j is the parent of i, then Finished(i) is true and
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counti = count0.
• O4: (tree systems only) If token expectedi[j] = false and counti = count0 and

i is the parent of j, then Finished(j) = true.
• O5: (tree systems only) If token expectedi[j] = false and counti = count0,

then all counters in link (j, i) and countj are equal to the root counter.

The following lemma states that once the one-band property begins to hold in
any execution of any system, it continues to hold. It can be verified easily by checking
all possible transitions from such a state.

Lemma 6.2. For all three systems, if the one band predicate holds in some state si
of any execution E, then the one band predicate holds in all subsequent states sj , j > i
of E.

We now define legal states to to be those in which the one-band property holds
and all counters not equal to the root counter are one less than the root counter. For
tree systems, we also require that if a node counter is not equal to the root counter,
then it is not expecting any acknowledgements. For PIF systems, we also require a
value correspondence property. Recall that addition and subtraction of all counters is
always implicitly modMax.

Definition 6.3. We say that a state s of any of our three systems is a legal state
if

• L1: s satisfies the one band property;
• L2: any counter that is not equal to the root counter c is equal to c− 1;
• L3: (tree systems only) if counti is not equal to count0, then Finished(i) =

true;
• L4: (PIF systems only) for all j, k where j and k can either be packets or

nodes, if the counter associated with j is equal to the counter associated with
k, then the two associated values are the same.

We will refer to L4 as the value correspondence property. The ring and reset
systems trivially satisfy value correspondence in all states. The following lemma is
easily checked by examining all possible transitions from a legal state.

Lemma 6.4. For all three systems, if the legal state predicate holds in some state
si of any execution E, then the legal state predicate holds in all subsequent states
sj , j > i of E.

6.3. Stabilization proof. Define a home state for all systems to be a state in
which all counters in nodes and packets are equal and Finished(i) = true for all nodes
i. The following lemmas are easy to check using the definitions.

Lemma 6.5. Any home state that satisfies value correspondence is a legal state.

Lemma 6.6. Any state that satisfies the one band property and has Finished(0) =
true is a home state.

Formally, define a fresh state for all systems to be a state in which all counters
in packets and nodes other than the root are not equal to the root counter and
Finished(0) = false. The following lemma is easy to check from the definitions.

Lemma 6.7. Any fresh state satisfies the one band property.

Let the height h of the system be the maximum length of a parent path. Clearly
h = n − 1 for the ring. Let R, the round trip delay of a system, be 2h + 2 for the
ring and 4h+ 2 for the tree systems. Intuitively, R represents the maximum time for
information sent by the root to causally flow to all nodes in the system and then flow
back to the root.

The following and subsequent lemmas are stated in terms of time complexity
results. They can be translated to liveness results (which do not require the time
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complexity assumptions we made in our model, and only require standard fairness
assumptions) by replacing “within time X” by “eventually.”

Lemma 6.8. Within R time of any state sI , either the root counter will change
or the protocol will enter a home state.

Proof. Let sF be a state after sI such that R units of time have elapsed from
sI to sF and such that count0 has not changed in the interval [sI , sF ]. We will show
that sF is a home state. Let hi be the length of the parent path of node i in all three
systems. It is easy to show by induction that within time 2hi of sI each node with
height hi will set counti = c and counti will remain unchanged till state sF . Intuitively
this is because any packet on a link is delivered within 1 time unit, each node accepts
any value sent to it by its parent, and each node retransmits a new counter value to
its children in 1 unit of time.

Thus in time 2h, all nodes will have their counter values equal to c and will remain
with this value to the end of the interval. For the ring system, in time 2h+2, the root
will receive a packet with counter equal to c and the system will enter a home state.

For a tree system, the argument is slightly longer. In time 2h + 2, each node
will receive a token packet numbered c on all its “cross” links and thus will set
the token expected flag to false for such links. Thus by time 2h + 2, all leaves l will
have Finished(l) = true, all nodes and token packets will have counter value c, and
token expectedi[j] = false for all “cross” links (i, j). Let h′i be the maximum length of
a path from a leaf in the subtree rooted at node i to node i. Then it is easy to see,
by a similar induction on the height, that within time 2h + 2 + 2h′i all nodes i will
have Finished(i) = true and this will remain true till sF . Thus within time 4h + 2,
Finished(0) = true. Thus sF must be a home state.

Lemma 6.9. A home state will occur within R time of a fresh state.

Proof. Consider an execution fragment beginning with a fresh state sI . Now
within R time either the root counter will not increment (Case 1) or it will (Case
2). Consider Case 1. In that case the root counter does not increment within R time
and so we must reach a home state by Lemma 6.8. So consider Case 2. Suppose the
root counter increments for the first time in some state sF that occurs within R
time after sI . We know from Lemma 6.7 that sI satisfies the one band property as
a fresh state. We know from Lemma 6.2 that all states after sI satisfy the one band
property. Thus we know that states sF and sF−1 satisfy the one band property. We
see from the code of all three systems that we cannot increment the root counter
unless Finished(0) = true. Thus Finished0 = true in sF−1. But by Lemma 6.6, state
sF−1 must be a home state because sF−1 is fresh and has Finished(0) = true. Thus
sF−1 is a home state that occurs within R time of sI and we are done.

We say that the root counter wraps around in an execution fragment sI , . . . , sF
if we have sJ .count0 = sI .count0 − 1 for some J in [I, F ].

Lemma 6.10. Any execution fragment in which the root counter wraps around
must contain a fresh state.

Proof. In state sI there are at most cmax counters. Since Max, the modulus of the
counter space, is strictly greater than cmax, there must be some counter value f that
is not present in any node or packet in the first state sI . Since the root counter wraps
around in the interval [sI , sF ] and the root counter only changes by incrementing
(mod Max), there must be some intermediate state in the interval [sI , sF ] in which
the root counter is equal to f . Let sJ be the first such state. It is easy to see that since
the value f was not present in state sI it is not present in any state in the interval
[sI , sJ−1]. This is because, in all our systems, only the root produces new counters.
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Thus in state sJ only the root changes its counter value to f and sets Finished(0) to
false (because the action that takes us to state sJ must be a RootStart action). Thus
sJ is a fresh state.

Recall that we defined the parent of a node i for the ring system to be node i−1.
We define the parent link of a node i to be a link (j, i) such that j is the parent of i.
We define a node or packet m to be causally connected (to the root) in an execution
fragment E that ends with state s if either

• m is the root;
• m is a node and there is some state that occurs before s in which node m

receives a causally connected packet on its parent link;
• m is a packet which was sent by some node i in some some state that occurs

before s in which node i was causally connected.

Lemma 6.11. Consider any execution fragment sI , . . . , sF . Suppose node or
packet i is causally connected at the end of this execution fragment. Then the counter
associated with i is contained in the sequence sI .count0, sI+1.count0, . . . , sF .count0.

Proof. We use induction on execution fragment length. The lemma is obviously
true in the initial state of an execution fragment because only the root is causally
connected and the lemma is clearly true for root. So consider any action that extends
the last state of the fragment from say sJ to sJ+1.

If this action is the receipt of a packet m by node i, and m is not received on a
parent link, then the counter of i will not change and so the lemma remains true if it
was true in state sJ . If, however, it is received on a parent link, and the packet was
causally connected, then after the receipt, node i is causally connected and changes
its counter to the counter c associated with m. But since m was causally connected,
by inductive hypothesis c ∈ sI .count, sI+1.count, . . . , sJ .count. Thus sJ+1.counti =
c ∈ sI .count, sI+1.count, . . . , sJ+1.count. A similar argument holds for the sending of
a packet i by a causally connected node. The only other event is Root Start after
which the lemma clearly holds for the root and trivially holds for all other nodes
whose counters remain unchanged.

Lemma 6.12. In any execution fragment, every node and packet will be causally
connected within R time of the start of the fragment.

Proof. Let hi be the length of the parent path of node i in all three systems. It
is easy to show by induction that within time 2hi each node with height hi will be
causally connected. This follows because once a node becomes causally connected, it
sends a message to each child which arrives at most 2 time units later, causing the
child to be causally connected. Thus all nodes will be causally connected by time 2h
in, say, state sJ . Let sF be first state after sJ in which all packets stored in links in
sJ are delivered. Also, since all packets in links in sF must have been sent after sJ ,
all packets in sF are also causally connected. The lemma follows because 2h < R− 1
for all three systems, and because packet delivery takes at most 1 time unit.

Lemma 6.13. If an execution fragment contains a state s which is causally con-
nected, then state s and all subsequent states satisfy value correspondence.

Proof. We use induction on execution length using the following inductive hy-
pothesis. For all causally connected j, k where j and k can either be packets or nodes,
if the counter associated with j is equal to the counter associated with k, then the two
associated values are the same. Once all nodes and packets are causally connected the
lemma follows from the hypothesis. The basis is true in the initial state as the root is
causally connected. For the inductive step, if the action that extends the last state is
the sending of a packet k by causally connected node i, if the counter of k is equal to
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some other j then the counter of i is equal to k, and thus the value of k is equal to
the value of i which is equal to the value of k. A similar argument can be made for
the reception of a causally connected message by a node i.

Lemma 6.14. Within 2R time of the start sI of any execution fragment E, we
will reach a fresh state or a home state that satisfies value correspondence.

Proof. Let sF be first state after sJ in which all packets and nodes are causally
connected. From Lemma 6.12, sF occurs within R time of sI . By Lemma 6.13, state
sF and all subsequent states in the execution fragment satisfy value correspondence.
If the root counter has wrapped around in [sI , sF ] we are done by Lemma 6.10. So
assume the root counter has not wrapped around. Let c = sF .count0. Thus c+1 is not
in the sequence sI .count, sI+1.count, . . . , sF .count. But by Lemma 6.11 all nodes and
packets in states after sJ have counters in the sequence sI .count, sI+1.count, . . . , sF .count.
Thus we know that as soon as the root counter first increments to c + 1 we are in
a fresh state. But we know that such a state must occur within R time of sF by
Lemma 6.8 or we will reach a home state. Since sF occurs within R time of sI the
lemma follows.

Lemma 6.15. A home state that satisfies value correspondence occurs within 3R
time of any state.

Proof. By Lemma 6.14, within 2R time we reach a home state or a fresh state
that satisfies value correspondence. By Lemma 6.9, within R time of a fresh state we
reach a home state. Thus within 3R time we reach a home state that satisfies value
correspondence.

So far we have not defined the legal executions of any of the three systems. By
Theorem 6.16, we know that all three systems stabilize to a home state in 3R time,
and by Lemma 6.5, we know that such a home state is a legal state. Thus it makes
sense to define the legal executions of all three systems as the executions that begin
with a home state that satisfies value correspondence. An immediate corollary to this
definition and Lemma 6.15 is the following.

Theorem 6.16. The token ring, PIF, and reset systems all stabilize in 3R time.

6.4. Correctness after stabilization. We see from Theorem 6.16 that all three
systems stabilize to legal executions in 3R time. We now show that each legal execu-
tion results in correct behavior. Notice that by Lemma 6.15 we can partition a legal
execution into fragments that start and end with a home state that satisfies value
correspondence. We start by understanding the structure of such fragments.

Define a fresh counter interval to be an execution fragment5 E such that

• The first state in E is a home state that satisfies value correspondence.
• The first action in E is a Root Start event.
• The second state (i.e., the state following the Root Start event) is fresh.
• The last state in E is the first state in E (other than the first state) in which

Finished(0) = true.

The value of interval E is defined to be the value of count0 in the second (fresh)
state in E. For any execution s0, a1, s1, . . . we can denote an execution fragment by
its first and last state indices [I, F ] where sI is the initial state and sF is the final
state.

For a fresh counter interval [I, F ] with value c we make the following definitions:

• Let I(j) be the index of the first state in [I, F ] such that countj = c.

5An execution fragment is a portion of an execution that begins and ends with a state.
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• Let L(j, k) be the index of the first state after I(j) which follows the sending
of a packet from j to k.
• For tree systems, let F (j, k) be the index of the first state such that countj = c

and token expectedj [k] = false.
• Let F (j) be the index of the first state such that countj = c and Finished(j) =

true.

We now prove some simple facts relating these definitions that are key to correct-
ness.

Lemma 6.17. For any fresh counter interval [I, F ], every node j, and every
neighbor k of j, we have the following.

• The states I(j), L(j, k), F (j, k), and F (j) exist.
• L(j, k) < I(k) if j is the parent of k (i.e., a node’s counter value cannot

change until its parent sends it the new counter value).
• In the interval [I(j), F ], countj = c (i.e., the value of a node’s counter remains

unchanged from the time it is initiated till the end of the interval.)
• I(k) < F (j, k) ≤ F (j) (i.e., a node cannot finish until each of its neighbors

is initiated).
• F = F (0) is a home state.

Proof. We use the fact that any home state that satisfies value correspondence
is a legal state. Since legal states are stable (Lemma 6.4), every state in the interval
[sI , sF ] is a legal state and satisfies the predicates O1, O2, O3, O4, and O5.

• We know that Finished(0) = true in sI and sF . Thus we know (from O2 and
O4 applied repeatedly in sF ) that all node counters must be equal to the
root counter and Finished(j) = true for all nodes j. We also know that the
first action causes the root counter to increment to c. Thus I(j) = I + 1 if
j is the root. Also for all nodes j other than the root, countj is not equal
to c. But in sF , countj is equal to c. Thus there must be some first state
I(j) in the interval [sI , sF ] in which j first changes to c. It is easy to see that
L(j, k) must exist because j will eventually send a packet to neighbor k after
I(j) in any execution. Also in state I(j), since j changes its counter value,
it is easy to see from the code that token expectedi[j] is true. But in state
sF , token expectedi[j] is false. Thus there must be some intermediate state
F (j, k) in which token expectedi[j] first becomes false. Similarly, there must
be a first state F (j) in which F (j, k) first becomes true for all neighbors k of
j.
• In the state preceding I(j), we conclude from O1 that countk is not equal to

c, and there are no counters equal to c in link (j, k). Since L(j, k) is the first
state after I(j) in which j sends a packet numbered c on link (j, k), there can
be no packets numbered c in the interval [I(j), L(j, k)]. Since countk was not
equal to c in I(j) and can only change its counter value by receiving a packet
numbered c from its parent j, it follows that L(j, k) < I(k).
• It is easy to see that the root cannot change its counter after sI+1 because

the root (see code in Figure 8) cannot increment unless Finished(0) = true
and sF is the first state after sI+1 in which Finished(0) = true. If a node j
other than the root changes its counter value after I(j) to some value other
than c, it means it received a counter not equal to c on its parent link. By
O1, this implies that the root counter is not equal to c, a contradiction.

• The state s that precedes F (j, k) must be (see code in Figure 8) the receipt
of a packet with counter equal to countj = c on link (k, j). Thus by O1,
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countk = c in state s. Thus I(k) < F (j, k). Also F (j) = Max F (j, k) over all
neighbors k of j. So F (j, k) ≤ F (j).
• This follows immediately from O2 in state sF .

Armed with this lemma, we now show correctness separately for all three systems.
Recall that any legal execution can be partitioned into fresh counter intervals. Thus
to show correctness, we need only show correctness for a fresh counter interval.

Theorem 6.18 (token ring correctness). In any legal execution of the token ring
system, at most one node has the token in any state and every node will receive the
token infinitely often.

Proof. We say that a node j has the token starting from any state s in which
node j changes its counter value up to the first state after s in which node j sends a
packet to j + 1. Since it is sufficient to show correctness for a fresh counter interval
within a legal execution, consider one such interval. It follows from Lemma 6.17 that
I(j) < L(j, j + 1) < I(j + 1) for j = 0, . . . , n − 1. Thus, [I(j), L(j, j + 1)] is disjoint
for all j. Thus, at most one node has the token in any state. Similarly, we know from
Lemma 6.17 that I(j) exists for all j and so every node j receives the token during a
fresh counter interval. It follows from Lemma 6.15 and the fact that the Root Start
event is always enabled in a home state that the token system has an infinite number
of fresh counter intervals. Thus every node receives the token infinitely often.

Theorem 6.19 (PIF correctness) In any legal execution of the PIF system,

• In any state s, vj is equal to either v0 or the previous value of v0.
• If the value of some node is not equal to v0 in state s, there is a later state

in which all node values are equal to v0.
• Once a node j’s value is equal to v0, its value cannot change until we reach a

state in which all node values are equal to v0.

Proof. First, it is easy to see that the Root Start event is enabled in a home
state and will cause the value of the root counter to change. Thus every legal execution
will have an infinite number of home states.

The first part follows from L2 in the definition of a legal state and the fact that
the counter associated with the previous value of v0 must be count0 − 1. The second
part of the theorem follows because we know from Lemma 6.15 that a home state will
occur in 3R time after state s; in this home state countj = count0 for all nodes j.
Thus by value correspondence (L4), vj = v0 for all j. The third part of the theorem
follows from value correspondence and the third statement in Lemma 6.17 which says
that a node counter cannot change again until after the next home state. Thus by the
code, its value will also remain unchanged in this interval.

Theorem 6.20 (reset protocol correctness) In any legal execution of the reset
system,

• Once the protocol is in a home state, it remains in a home state until the next
reset request, and no node will perform a local reset in this interval.
• Consider any reset request that occurs when the reset protocol is in a home

state. Then the reset protocol will enter a home state in O(R) time after this
reset request and in this home state, the underlying protocol P is in a legal
state.

Proof. The first part follows easily from the code and the definitions of a home
state and a fresh counter interval. Notice that when the reset protocol is in a home
state, it is impossible for a node j to receive a (Token, c) packet with c �= countj ; thus
(from the code) j will never perform a local reset. We now turn to the second part of
the theorem.
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We know that any reset request that begins in a home state will result in the root
picking a fresh counter value, say c, which begins a fresh counter interval. We know
from Lemma 6.15 that within O(R) time, this fresh counter interval will end. Thus
from Lemma 6.17 if this interval is denoted by [I, F ], then there is a state I(j) for
each node j at which the node is initiated into the current reset computation. From
the code it is easy to see that in this state protocol P is locally reset, and since countj
remains at c this means that there are no further local resets of protocol P at node j.

To show that protocol P is properly reset at the end of the fresh counter interval,
we have to show that for any two neighbors j, k the sequence of packets received by
k from j during the interval [I(k), F ] is a prefix of the sequence of packets sent by j
during [I(j), F ]. Let us call the interval [I(j), F ] the reset interval at node j.

So consider any packet m sent by j during the interval [I(j), F ]. From the protocol
code, we know that j does not send any packet during the interval [I(j), F (j)]. So we
can assume that m is sent after F (j). Thus m will be tagged with c, the value of this
fresh counter interval. Now by state F, we know from the properties of link automata
that m either will be delivered by state sF or is stored on link (j, k) in state sF . If
m is delivered, m must have been delivered after F (j) (since it was sent after F (j))
and hence by Lemma 6.17 it is delivered in the interval [I(k), F ]; but in this interval,
countk = c and so m is accepted. On the other hand, if (in state F ) m is stored on
link (j, k), we know (because the link is FIFO) that all packets sent after m are not
delivered. Thus, applying this argument to all packets sent by j to k during [I(j), F ],
we see that if m is received and accepted, then all packets sent before m in [I(j), F ]
are received and accepted by k; but if m is not received, then all packets sent after m
in [I(j), F ] are not received.

All that remains is to show that any protocol P packet m received and accepted
by k in [I(k), F ] was sent by j in [I(j), F ]. But if m was accepted it must have tag c.
Thus m must have been sent in [I(j), F ]; this is because, by definition, any protocol
P packets sent by j in [I, I(j)− 1] must have a counter value c′ �= c. Recall that I(j)
is the first state in [I, F ] that has countj = c.

7. Conclusions. Counter flushing is a simple paradigm that has a range of
applications and can be used over different topologies. Besides the examples discussed
in this paper (token passing, broadcast, and reset), counter flushing can be used to
design stabilizing protocols for deadlock detection and snapshot protocols as described
in a preliminary version of this paper [Var94]. Our paper exploits a connection between
seemingly different protocols such as Dijkstra’s token ring protocol [Dij74a], Afek and
Brown’s data link protocol [AB93], Segall’s propagation of information with feedback
protocol [Seg83], and Arora and Gouda’s global reset protocol [AG94]. At one level,
they can all be regarded as repeated versions of a centralized total algorithm [Tel89];
at another level, the data link and reset problems can be regarded as synchronization
problems whose correctness can be formalized in terms of a mating relation [AE83,
Spi88, Var93]. The unified approach allowed us to provide a single unified proof.

Counter flushing has three aspects. First, we establish the presence of a nonex-
istent counter based on bounding the space of counters; second, we argue a liveness
property that guarantees that deterministic incrementing (randomized choosing also
works trivially) will lead quickly to a unique counter; third, we show a flushing condi-
tion to show that a nonexistent counter flushes out all bad values. While other papers
(e.g., [Dol94, AK93]) do use randomization to choose a nonexistent counter, they do
not need or use the other two aspects of counter flushing.

Local checking and correction is another general paradigm [APV91, Var93, AGV94]
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for designing stabilizing protocols. On a theoretical level, there are problems for which
counter flushing is applicable but local checking is not (e.g., token passing on a ring),
problems for which local checking is applicable but counter flushing is not (e.g., syn-
chronizers), and problems where they are both applicable (e.g., resets). We believe
that while both techniques are practical, counter flushing is simpler to implement.
Local checking [APV91, Var93] requires enumeration of predicates and the addition
of periodic local snapshots and resets.

We have generalized counter flushing to apply to sliding window protocols [CV96]
in order to allow more than one packet in transit between the root node and the
receivers. We have also applied counter flushing to design a real token passing protocol
in [CV98]. Our modified FDDI protocol [CV98] recovers from multiple tokens in less
than 5.7 ms, while the existing FDDI protocol may never recover from multiple tokens;
also, the modified FDDI recovers from lost tokens more quickly than FDDI (0–0.36 ms
versus 2.5–4.1 ms). This fits in with our overall goal which is to design theoretical
techniques that can help design robust practical protocols.
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Abstract. In this paper we study the performance of off-line multiprocessor real-time schedules
that allow task migration compared to those that forbid migration. We consider an off-line scheduling
problem in which a given collection of tasks, each with a release time, computation time, and deadline,
are to be run on a multiprocessor system. A preemptive schedule allows the execution of a task to be
temporarily suspended and resumed at a later time. A migrative schedule allows the task to resume
on any processor whereas a nonmigrative schedule allows the task to resume only on the processor
in which it was initially started. A schedule value is the summation of all the values of all the tasks
that were completed by their deadlines. In this paper we assume that a task’s value is proportional
to its computation time.

We present lower and upper bound results. For a system with n processors, we construct a
nonmigrative schedule that is guaranteed to achieve at least 1− (1− 1

2n
)n of the optimal migrative

schedule value.
In addition, we show task sets for which even an optimal nonmigrative schedule achieves at most

n / (2n−1) of the optimal migrative value. Asymptotically (as n→∞) our upper bound approaches
1/2 and the lower bound approaches 1− 1√

e
∼ 0.3935.

Key words. real-time, off-line scheduling, multiprocessor migration, deadline

AMS subject classifications. 68M20, 68N25, 68Q25, 93C83

PII. S0097539797326241

1. Introduction. Real-time systems can be most generally described as systems
that need to complete certain tasks within a specified time limit. Traditionally, these
are systems that handle critical processes such as power stations, nuclear reactors, or
space vehicles. In many such applications, failure of the task to complete in time may
have disastrous results. Such systems are called hard real-time systems.
A less stringent type of real-time system is one where every task still has to be

completed by a given deadline—it is then said to succeed; otherwise it fails. However,
such a failure merely means that a certain stimulus has not been responded to; it does
not have catastrophic connotations. An example may be a case where the stimuli arrive
at a quick rate. Failure to respond to a number of them is still tolerable, as long as a
certain ratio succeeds. In this paper we are concerned with the latter type of real-time
systems, the soft real-time systems. Even within the realm of soft real-time systems,
several models appear in the literature. We concern ourselves with the firm real-time
systems. In this model each task has a value which is obtained by the system only if
the task completes by its deadline.
A scheduling algorithm for a real-time system is presented with tasks, each of

which has a release time from which it can start working, a deadline by which it must
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complete working if it is to be successful, and a computation time, the time it actually
needs in order to run in its entirety. Each task has a value obtained if completed
successfully. The special case where the value of a task is proportional to its running
time is called the uniform value density case [3, 10].

The aim of the system is to maximize the sum of the values obtained from all
successfully completed tasks. It is the duty of the scheduler to schedule the tasks that
maximize this total value.

A number of issues are raised at this point. A scheduler that knows in advance
all the tasks and their parameters is called an off-line or clairvoyant scheduler. If it
is presented with a task only upon its release, then the scheduler is called an on-
line scheduler. The model is said to allow preemption if the scheduler may interrupt
a working task. Various different types of preemption exist. A preempted task may
proceed later from the point it was preempted, be forced to start from the beginning,
or not be allowed to run again. In this paper we are concerned with real-time systems
that allow preemption. A preempted task may later resume its execution where it left
off.

A significant amount of work has appeared about the various possible models of
real-time systems [5, 4]. In a single processor environment, it has been shown that
in underloaded systems, i.e., where there exists a (possibly clairvoyant) schedule that
allows all tasks to successfully complete, there exist on-line schedulers with 100%
guarantee [6]. In the overloaded case such an optimal schedule is impossible [11].
Scheduling algorithms such as Dover give a competitive guarantee for overloaded firm
real-time systems [10].

In this paper we are concerned with multiprocessor real-time systems with pre-
emption. Dertouzos and Mok [7] showed that even in an underloaded system, no
on-line algorithm can guarantee 100% success. A task is said to migrate if it contin-
ues running on a different processor from the one it was preempted in. Koren and
Shasha [9] give a multiprocessor on-line competitive algorithm (MOCA) with a com-
petitive guarantee for a multiprocessor real-time system with no migration. MOCA
does not use migration but its guarantee holds even when migration is allowed. There
is a number of differences between the case of MOCA and our problem. (1) MOCA is
an on-line algorithm, while we study the off-line case. (2) MOCA does not offer any
guarantees in the uniform value density case—where the value of a task is proportional
to its running time. This is precisely the case we handle.

Bar-Noy et al. [1] study the the case of uniform value density, but in their model
tasks have no slack time. (They must be scheduled upon release, if at all.) They give
an upper bound of 0.66 on the best possible competitive factor. Bar-Noy, Mansour,
and Schieber [2] devised on-line scheduling algorithms for this case with competitive
factors of 1

2 − 1
4n for an even number of processors n and

1
2 for an odd number of

processors.

To our knowledge, there is no on-line scheduler for a real-time multiprocessor sys-
tem with migration that has any nontrivial competitiveness guarantees for the uniform
value density case of tasks with slack time.

We would like to investigate the power of migration. There are both practical and
theoretical reasons for such an investigation. From a practical perspective, systems
without migration are less centralized and less complicated. However, migration gives
more power in processor utilization, in versatility, and in fault handling. It may also
be easier to prove bounds on systems with migration.

This paper is a first step in the direction of understanding the power of migration
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in real-time systems. Specifically, we would like to answer the following question: In
the uniform value density case, does a clairvoyant scheduler without migration have
the same power as a clairvoyant scheduler with migration? If we can pinpoint the
performance ratio (as defined below) between off-line schedulers with migration and
without, we will have gone a step forward in obtaining on-line schedulers as well.
We will be able to limit ourselves to either the case of migration or nonmigration.
Any competitive on-line scheduling algorithm that will be obtained will guarantee a
competitive on-line scheduling algorithm for both cases.

Definition 1.1. A set of tasks S, in a system with n processors, has a perfor-
mance ratio of ωn(S) = ωn if

ωn =
{value obtained by an optimal nonmigrative schedule for S}
{value obtained by an optimal migrative schedule for S} .

An off-line nonmigrative scheduling algorithm A, in a system with n processors,
has a performance ratio of ωn(A) = ωn if for all S

ωn ≤ {value obtained when A schedules S}
{value obtained by an optimal migrative schedule for S} .

1.1. Main results. The contribution of this paper is two-fold. In the “grand
view” of computer science we add our voice to the impressive body of work dealing
with theoretical complexity analysis of operating systems. The operating systems area
is at the heart of computer science and understanding the power and limitations of its
various concepts is of fundamental importance to our field. It is not surprising that
much work has historically been done in this area, particularly in job scheduling (see,
e.g., [12, 8]).
However, the area of real-time systems, albeit important in practice, has been

relatively neglected in the theory literature. Real-time systems grapple with different
issues; thus, the scheduling literature does not generally provide answers to such
problems. This paper is a modest addition to a growing number of works that deal
with theoretical issues in real-time systems.
The more specific contribution of this paper is in providing both an upper and a

lower bound on the performance ratio of off-line schedulers without migration versus
with migration in a multiprocessor real-time system with n processors.

• We show an example where an off-line scheduler without migration cannot
schedule more than n

2n−1 the value of the optimal schedule with migration.• We describe a scheduler that without using migration obtains a value of at
least 1− (1− 1

2n

)n
of the optimal value using migration.

Asymptotically (as n→∞) our upper bound approaches 1/2 and the lower bound
approaches 1− 1√

e
∼ 0.3935.

This paper is constructed as follows: We start with some notations and definitions
in section 2. In section 4 we show the upper bound on the performance ratio. Section
5 is an overview of the scheduler’s main ideas and proof of the lower bound on the
performance ratio. Section 6 presents the algorithm that, inputting the system tasks’
parameters, constructs a nonmigrative schedule with the necessary guarantees for
section 5. We conclude with some open problems.

Note on terminology. We have defined an off-line scheduling problem. Therefore
all tasks and their parameters are known from the start although the tasks are not
ready to run until some specified time in the future which we denote here as release
time. In describing our schedulers, the reader will notice occasional use of on-line-like



514 GILAD KOREN, EMANUEL DAR, AND AMIHOOD AMIR

Processor 1

Processor 2

T1

T2

0 1/3 2/3 1

Fig. 1. A nonmigrative schedule.

0 1/3 2/3 1

Processor 1

Processor 2

T1

T2

T3

T3

Fig. 2. A migrative schedule.

language: “the task just released,” “the new task,” etc. The reader should understand
that these are just forms of expressions that we consider natural to describing a
possible future situation considered by the scheduler. In reality the entire computation
is done off-line.

2. Preliminaries: Notation and an example. We view time as the set of
real nonnegative numbers R+; however, the results are equally valid for Q+ or N+.

Definition 2.1. Let T be a task. We denote its parameters by T (r (T ) , c (T ) ,
d (T )) , where r (T ) is the release time, c (T ) is the computation time, and d (T ) is
the deadline.

A legal schedule of a task set S on n processors is a schedule where each task T
is scheduled for execution only between r(T ) and d(T ) for a total length that does not
exceed c(T ). In addition, a task may execute on at most one processor at any given
moment. Note that a schedule is legal even if some tasks fail. In a legal nonmigrative
schedule there is the additional constraint that a task may not run on more than one
processor.

3. Example: Performance ratio. Consider a system with two processors (n =
2) and the following task set S of size three:

S =

{
T1

(
0,
2

3
, 1

)
, T2

(
0,
2

3
, 1

)
, T2

(
0,
2

3
, 1

)}
.

An optimal nonmigrative schedule will schedule {T1, T2} to obtain a value of
c(T1) + c(T2) =

2
3 +

2
3 = 1

1
3 (see Figure 1). An optimal migrative schedule will

schedule all three tasks obtaining a value of c(T1) + c(T2) + c(T3) =
2
3 +

2
3 +

2
3 = 2

(see Figure 2). Hence, ω2 (S) =
1 1

3

2 =
2
3 .

4. The upper bound. We begin by demonstrating an upper bound on the
performance ratio. The example below shows that for every number of processors
n there are task sets that can be completely scheduled when migration is allowed;
however, some tasks must fail when migration is not allowed.
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Processor 1

Processor 3

Processor 2

Processor n-2

Processor n-1

Processor n

11/(2n-1) (n-1)/(2n-1)0
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T2 T3 T4

T4 T5 T6

T2n-6 T2n-5 T2n-4

T2n-4 T2n-3

T2n-2 T2n-1

T2n-2

. . ..
.
.

Fig. 3. Upper bound example.

Theorem 4.1. For any number of processors n, n ≥ 2, there exists a task set,
Sn, such that ωn (S

n) = n
2n−1 .

Proof. Let S
n

be a set of 2n − 1 identical tasks: Ti(0, n
2n−1 , 1) (all with release

time 0, deadline at 1, and computation time of n
2n−1 ).

An optimal off-line migrative schedule can successfully complete all those tasks
(see Figure 3) and therefore obtains a value of

2n−1∑
i=1

Ti = (2n− 1) n

2n− 1 = n.

An optimal nonmigrative schedule completes at most one task on each processor for
a total of n tasks obtaining a value of

n
n

2n− 1 =
n2

2n− 1 .

The performance ratio is therefore

ωn (S
n) =

n2

2n−1
n
=

n

2n− 1 .

Corollary 4.2. There is no off-line nonmigrative scheduling algorithm for n
processors with performance ratio above

n2

2n−1
n
=

n

2n− 1 .
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5. The lower bound. To prove the lower bound we will present the No-
Migration algorithm—a scheduling algorithm that does not use migration.
Denote 1−(1− 1

2n

)n
by ρ(n). The scheduler No-Migration receives as its input

a task set and constructs a schedule that achieves at least ρ(n) the value of the optimal
migrative schedule. We will assume the existence of such a migrative schedule in order
to prove that No-Migration indeed satisfies the ratio ρ(n). However, a construction
of such an optimal scheduler is not needed and it is not used by No-Migration.
Before describing Algorithm No-Migration we need one more definition.
Definition 5.1. Given a schedule σ on n processors, define Proj (σ) ⊆ R+, the

projection of σ, as follows: t ∈ Proj (σ) iff there exists a task T that, by schedule σ,
executes at time t on some processor.
The idea of No-Migration is the following. Start with the set of tasks S and

construct a subset R1 that is schedulable on a single processor. The sum of the com-
putation times of the tasks in R1 is at least half the projection of an optimal migrative
schedule of S. Delete the tasks of R1 from S and repeat the process, constructing a
set R2 with the same properties (relative to the reduced S). Repeat this n times, to
produce a nonmigrative schedule on n processors.
For clarity of exposition and proof, we assume the existence of two building blocks,

edf* and edf-lst, that construct the sets Ri, i = 1, . . . , n, with the desired proper-
ties. The details of these algorithms are described in the next section.

5.1. The NO-MIGRATION algorithm.
Algorithm Outline

INPUT: A set of tasks S.
1. TASK SET ← S
2. for i = 1 to n do
(a) construct a subset Ri ⊆TASK SET (using the edf-lst algorithm and

the construction in section 7.2).
/* We will see in section 6 that Ri satisfies
• Ri is schedulable on one processor; and
• The sum of Ri tasks’ computation times is at least half of Pi, the
projection of an optimal migrative schedule of TASK SET .

*/
(b) TASK SET ← TASK SET \Ri.

3. End For
End Algorithm
For each i = 1, . . . , n, the tasks in Ri can run on a single processor. Thus the tasks

in ∪ni=1Ri constitute a nonmigrative schedule on n processors. For each i = 1, . . . , n,
the computation time of all the tasks in Ri is at least half the projection of an optimal
schedule on the tasks in TASK SET during the ith iteration. Theorem 5.3 proves
that the total computation time of the tasks in ∪ni=1Ri is at least ρ(n) of the total
computation time in an optimal migrative schedule.

Notation. Denote by V the value of a migrative schedule of task set S on n
processors. Denote by Pi, i = 1, . . . , n, the projection of an optimal migrative schedule
on n processors of TASK SET in iteration i of the No-Migration algorithm.

Lemma 5.2. For all 1 ≤ i ≤ n,

i∑
j=1

Ri ≥ 1
2n

i∑
j=1

(
2n− 1
2n

)j−1
V.

Proof. We prove this claim by induction.
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For i = 1, R1 ≥ 1
2n

(
2n−1
2n

)0
V = 1

2nV . This is true since, by definition of the
projection of a schedule, the length of the first projection, P1, is not smaller than the
busy time of any single processor. Hence nP1 ≥ V and R1’s value is at least half of
P1’s length. Therefore,

R1 ≥ P1
2
≥ 1
2n

V.

Assume the correctness of the claim for i; we have to prove it for i+ 1.
In step i + 1, the total length of tasks that still remain to be scheduled is V −∑i

j=1Rj . The length of the (i + 1)st projection, Pi+1, is greater than the busy time

of any single processor. Hence, nPi+1 ≥ (V −
∑i
j=1Rj). The value of Ri+1 is at least

half of Pi+1’s length. Therefore,

Ri+1 ≥ Pi+1
2
≥ 1
2n


V −

i∑
j=1

Rj


(5.1)

and

i+1∑
j=1

Rj =

i∑
j=1

Rj +Ri+1

≥
i∑

j=1

Rj +
V −∑i

j=1Rj

2n
(by inequality 5.1 above)

=
2n
(∑i

j=1Rj

)
+ V −∑i

j=1Rj

2n

=
V + (2n− 1)∑i

j=1Rj

2n

=
V

2n
+
(2n− 1)
2n

i∑
j=1

1

2n

(
2n− 1
2n

)j−1
V (by the induction hypothesis)

=
V

2n
+

i+1∑
j=2

1

2n

(
2n− 1
2n

)j−1
V

=

i+1∑
j=1

1

2n

(
2n− 1
2n

)j−1
V,

which concludes the induction.
Theorem 5.3. Given a set of tasks S there exists a nonmigrative schedule for n

processors obtaining a value of at least

ρ(n)V,

where V denotes the value of an optimal nonmigrative schedule. Furthermore, such a
schedule is produced by No-Migration.

Proof. The schedule created by No-Migration assigns the tasks of Ri to proces-
sor i. Since each of the Ri’s is schedulable on one processor we obtain a legal schedule
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Table 5.1
Lower and upper bounds for different processor numbers.

n 2 3 4 7 10 40 70 100 400 700 1000
Lower .4375 .4213 .4138 .4047 .4013 .3954 .3946 .3942 .3937 .3936 .3935
Upper .6667 .6000 .5714 .5385 .5263 .5063 .5036 .5042 .5006 .5004 .5003
Ratio between .656 .702 .724 .752 .762 .781 .784 .782 .786 .787 .787
bounds

on n processors that use no migration. Its total value is
∑n
i=1Ri, which according to

Lemma 5.2 satisfies

n∑
i=1

Ri ≥
n∑
i=1

1

2n

(
2n− 1
2n

)j−1
V

=
1

2n

((
1− 1

2n

)n − 1(
1− 1

2n

)− 1
)

V

=

(
1−

(
1− 1
2n

)n)
V.

The following lemma presents the asymptotic behavior (as the number of proces-
sors n grows) of the above guarantee.

Lemma 5.4. ρ(n) is a monotonic decreasing function and

for all n ρ(n) ≥ lim
n→∞ ρ(n) = 1− 1√

e
.

Proof. ρ(n) is a monotonic decreasing function; therefore its infimum is reached
at the limit.

lim ρ(n) = lim 1−
(
1− 1
2n

)n
= 1− lim

(
1 +
− 1

2

n

)n
= 1− e−

1
2 = 1− 1√

e
.

(We have made use of the equality limn→∞
(
1 + x

n

)n
= ex.)

We conclude that for each n the lower bound is greater than 1− 1√
e
∼ 0.3935.

Recall that the upper bound we constructed is n
2n−1 which converges to 0.5 as

n → ∞. In fact, both upper and lower bound sequences converge quite rapidly, as
can be observed in Table 5.1 and the graph in Figure 4.

Theorem 5.5. For any number of processors n ≥ 1. Given a set of tasks S there
exists a nonmigrative schedule for n processors obtaining a value of at least

(
1− 1√

e

)
V ∼ 0.3935 V,

where V denotes the value of an optimal nonmigrative schedule for n processors.
Furthermore, such a schedule is produced by No-Migration.

Proof. We use Theorem 5.3 and Lemma 5.4 above.

6. Building uniprocessor schedulable subsets (the Ris). In this section
we show how to build the Ri subsets, i.e., subsets of the scheduled tasks whose value
is at least half of the projection of any n processor schedule.
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Fig. 4. Graph of convergence speed.

Theorem 6.1. Given Schedn(S), a schedule of S on n processors, there exists a
R′ ⊆ S schedulable (on a single processor) with a total value of at least

1

2
Proj (Schedn(S)) .

The theorem will be proven in three steps as follows:

(1) First, we introduce a preemptive uniprocessor scheduling algorithm—edf*.
Note that this is essentially an on-line algorithm, but we use it here as part
of an off-line scheduler.

(2) edf-lst is a uniprocessor scheduling algorithm that uses edf* as a sub-
routine. It schedules S on one processor. (Of course some tasks may not
successfully complete.)
Using the schedule created above by edf-lst we partition the projection

of S into disjoint intervals. For each interval we have a (possibly overloaded)
task subset scheduled in this interval.

(3) For each such subset of tasks, we construct a subsubset with the property that
the sum of its tasks’ values is at least half the length of the corresponding
interval and it is schedulable on a uniprocessor system. The collection of all
these subsubsets is schedulable on a single processor and achieves a value not
less than half of the projection of Schedn(S).

6.1. The EDF* algorithm. We introduce edf*—a uniprocessor preemptive
scheduling algorithm. edf* is used as a subroutine in edf-lst.

The edf* algorithm works as follows: edf* maintains a set of accepted tasks
and schedules these tasks according to the earliest deadline first (EDF) strategy [6].
Initially the set of accepted tasks is empty. Upon their release, “new” tasks may
be added to the accepted set, provided that this set remains underloaded (that is,
schedulable by EDF [6]).
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Algorithm Outline
INPUT: A set of tasks S.
1. At the release time of some task T, if T has the minimum deadline among
all currently accepted tasks we check whether the acceptance of T would not
cause any of the currently accepted tasks to miss its deadline. (A similar
strategy is employed by Dover[10].) If there is no such danger, then the new
task T is accepted, the currently executing task is preempted, and T starts
to execute. Else T is not accepted, and the current task continues executing.

2. Schedule the accepted tasks according to EDF.
3. If (at task completion) accepted becomes empty, then the ready task with
an earliest deadline becomes “accepted” and scheduled for execution.

End Algorithm.

7. Example: Run through EDF*. We will illustrate the scheduling of edf*
by the set of tasks presented in Table 7.1. Initially, accepted is empty. At time 0,
the first two tasks are released. Since T1 has earlier deadline, accepted becomes {T1}
and T1 is scheduled. At time 1, T3 is released, its deadline is earlier then T1’s deadline,
and both tasks can be scheduled to completion. Hence T3 preempts T1 and it is added
to accepted. At time 2, T4 is released, it has a deadline which is smaller than all
the tasks in accepted but cannot be scheduled without preventing any of the other
tasks in accepted from completion. Hence, T3 continues until its completion at time
3, then T2 resumes and completes at time 5, leaving accepted empty. At time 5, T2
is added to the empty accepted set, it is scheduled until it completes at time 7. Note
that T4 was not scheduled at all.

7.1. The EDF-LST algorithm. In cases of underloaded task sets, edf* would
have been enough for our needs. In fact, an underloaded case would mean that all tasks
can be scheduled on one processor. Consequently, we can certainly expect that a task
set schedulable on n processors will be unschedulable (overloaded) when scheduled on
one processor. For this reason, we introduce a scheduling algorithm called EDF-LST
that is an “extension” of edf* for overloaded cases.

7.1.1. LST: Latest start time. We define latest start time (LST) as a critical
point in a task’s existence: If a task reaches its LST it means that it has no more slack
time. Hence, it must be scheduled immediately and executed continuously until its
completion on its deadline; otherwise it will miss its deadline. This is given formally
in the following.

Definition 7.1. At any given moment t for a task T,

LST (t, T ) = deadline (T )− remaining computation time (T ) .

LST-exception: When (and if) a task that is not currently executing reaches an LST
point it raises the LST-exception.
The edf-lst scheduling algorithm schedules according to the edf* algorithm as

long as no LST-exception is raised. At some point an LST-exception may be raised,
either by previously preempted tasks, some task that edf* did not “accept,” or at
the release time of tasks with no slack time. As soon as an LST-exception is raised
edf-lst might diverge from edf* by scheduling tasks at their LST points. These
tasks are called LST tasks while the tasks scheduled according to edf* are called
EDF tasks.
When there are no more LST tasks to schedule, edf-lst returns to schedule

according to edf*. This cycle continues until there are no more tasks to schedule. The



MIGRATION IN MULTIPROCESSOR REAL-TIME SYSTEMS 521

Table 7.1
Set of tasks for section 7.

r c d
T1 0 3 6
T2 0 2 8
T3 1 2 5
T4 2 2 4

precise conditions for LST tasks or EDF tasks will be seen in the next subsection.
This schedule creates alternating sets of EDF tasks and LST tasks covering some

contiguous time interval bordered by idle periods. A time period is said to be idle if
at all its points all tasks either completed, missed their deadlines, or were not released
yet.
We will select from the tasks in a time interval bordered by idle periods, an

underloaded (i.e., schedulable) subset of tasks whose cumulative value is at least half
the length of that time interval. Combining this for all intervals, we build the desired
schedule.

7.1.2. EDF-LST. The pseudo code of the algorithm is built from one main
function and two exception handlers. (The subroutine that implements edf* is not
shown here.)
At each moment, the algorithm can be in one of two phases: edf phase or

lst phase. In the first, tasks are scheduled according to edf*. In the latter, schedul-
ing decisions are made by the LST-exception handler as a result of raising such an
exception.
The algorithm has cycles. Each cycle starts with an edf phase followed by an

optional lst phase. While in the edf phase the algorithm maintains a collection of
“accepted” tasks (exactly in the same manner as it is done by edf*). If a task T
raises an LST-exception it will be scheduled only if its deadline is far enough1 in the
future. Otherwise, T is aborted. Scheduling T means switching to the lst phase. Task
T will schedule to completion unless another LST-exception will be raised by another
task with an even “further” deadline2 and so on.
This chain of exceptions/abortions ends when some task is able to complete its

execution. This marks the end of a cycle. The algorithm now switches back to the
edf phase. (The “accepted” set is the ready task with earliest deadline.)
Let us briefly explore the intuition for choosing the above criteria for the “far

enough” deadline. The main idea is identifying in each cycle a collection of “executing
units” that covers an interval. The set of all the accepted tasks is the first unit. Each
task scheduled by its LST-exception is a subsequent unit of its own.
Two adjacent units may interfere with each other (in the sense that scheduling

one may prevent the scheduling of the other) but removing any one unit will enable its
(one or) two adjacent units to complete. This mean that eliminating the collection of

1The meaning of “far enough” here is as follows. We consider the time interval in which the
currently accepted tasks will execute to completion (if not interrupted). We look at all the tasks that
will raise an LST-exception during that interval and whose deadlines are beyond the end of that
interval. T ’s deadline must not be smaller than all these deadlines.

2The meaning of “further” here is as follows. We consider the time interval in which the currently
scheduled task will execute to completion (if not interrupted). We look at all the tasks that will raise
an LST-exception during that interval and whose deadlines are beyond the end of that interval. T ’s
deadline must not be smaller than all these deadlines.
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all odd numbered units enables the collection of all even numbered units to complete
and vice-versa. These two collections cover the entire interval; hence the bigger of the
two covers at least half of the interval. This is the condition we were seeking.

EDF-LST Algorithm.

INPUT: A set of tasks S.

In the following algorithm, accepted denotes the set of accepted tasks as defined
in the definition of edf*.

• main body /* main body of the algorithm */
1. if S is empty, end of execution. /* strange, no tasks were presented */
2. /* otherwise, there are tasks to execute */
/* in the beginning, starting in edf phase */
phase← edf phase

3. /* main loop of the algorithm */
loop (forever) {
– as long as phase equals edf phase, schedule according to edf*.
/* tasks scheduled in this phase are called EDF tasks */

– otherwise, phase equals lst phase in which case scheduling decisions
are made in the LST exception handler (see below).

}
• End of main body
• LST Exception handler
/* a task T raises an LST-exception, say at time t */

– if (phase = edf phase) then
/* scheduling is currently done according to edf* */
1. Let endof (accepted) be the time that tasks of accepted are ex-
pected to complete if scheduled without any interruption.
Consider the set of all tasks that will raise an LST-exception in the
time interval [t, endof (accepted)] provided the current tasks of
accepted would continue without interruption, and whose deadline
is later than endof (accepted) .
From this set of tasks, choose the task with the latest deadline.
Denote its deadline by dmax.

2. if d(T ) ≥ dmax then
/* d(T ) is indeed far enough */
/* switch from edf phase to lst phase */
/* end of scheduling according to edf* start to schedule according
to LST-exceptions */
phase← lst phase
• i← 1 /* index of LSTi */
• label T as LST1

• /* Let raised (LST1) = t
(the time that task LST1 raised its LST-exception) */
• /* Let endof (LST1) = d(LST1) (the time that LST1 is expected
to complete if scheduled without any interruption) */
• start to execute LST1

else
/* d(T ) is not far enough */
• abort T (continue in edf phase, scheduling according to edf*)

– else
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/* some T raised an LST-exception, while some LSTi is executing */
1. Consider the set of all tasks that will raise an LST-exception in the
time interval
[raised (LSTi) , endof (LSTi)] , provided that LSTi would continue
without interruption, (T will be aborted), and whose deadline is
later than endof(LSTi) .
From this set of tasks, choose the task with the latest deadline.
Denote its deadline by dmax.

2. if d(T ) ≥ dmax then
/* d(T ) is far enough */
/* switch from the current LST task to T */
• i← i+ 1
• label T as LSTi+1

• /* Let raised (LSTi+1) = t
(the time that task LSTi+1 raised its LST-exception) */
• /* Let endof (LSTi+1) = d(LSTi+1) (the time that LSTi+1 is
expected to complete if scheduled without any interruption) */
• start to execute LSTi+1

else
/* d(T ) is not far enough */
• abort T (continue with LSTi)

– End if
End LST Exception handler

• Task Completion handler
/* The currently executing task T completes, say at time t */
if (phase = edf phase) then
/* T was scheduled by edf* */
task completion is handled according to edf* (schedule the next accepted task
or if empty the next ready task with earliest deadline)
else
/* T is LSTj for some j */
/* switch phases, return to edf* scheduling */
phase← edf phase
start scheduling according to edf*
(accepted is set to the next ready task with earliest deadline)

End Task Completion handler

End Algorithm.

Note that the collection of tasks scheduled by edf-lst may be an overloaded
task set, that is, some of tasks do not execute to completion. This can happen if tasks
that where scheduled by edf* are preempted and never resumed, or tasks that raise
LST-exception are not selected to execute or, even if selected, may be aborted when
the next LST task is scheduled.

See Figure 5 for a schematic example of an edf-lst schedule.

In the next section we show how to select an underloaded subset of tasks with a
“big enough” value, i.e., the sum of its tasks’ values is no less than the projection of
an optimal migrative schedule.

7.2. Selecting an underloaded subset from the EDF-LST schedule. This
section completes the last necessary step to prove our lower bound. We study the
schedule created by edf-lst. First we suitably partition the tasks in this schedule.
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LST1
LST2   . . . 

LSTn1

LST1
LST2   . . .

EDFIDLEEDF

Fig. 5. A schematic of an edf-lst schedule.

Then, we use this partition to construct an underloaded subset with a “big enough”
value.

7.2.1. Partitioning EDF-LST’s schedule. The schedule of edf-lst naturally
splits the tasks of S into two collections. The first is composed of tasks that appear
in the schedule. These are tasks that were scheduled for execution for at least one
time interval and eventually either completed or aborted. The second includes the
rest of the tasks—those that were never scheduled for execution. These are tasks that
were not scheduled by edf* and when their lst was raised they were aborted. In the
following analysis we partition the first collection into subsets; the second collection
is ignored.
The result of the edf-lst algorithm is a schedule of tasks that have the following

structure:

EDF 1, LST 1, EDF 2, LST 2, . . . , EDF i, LST i, . . . ,

where EDF i is a set of tasks scheduled according to edf* and LST i is a set of tasks
scheduled following an LST-exception. The individual tasks of EDF i and LST i are
denoted by EDF i1, EDF i2, EDF i3, . . . , and LST

i
1, LST

i
2, LST

i
3, . . . , respectively.

For every i define the following subsets of S:
• αi : Tasks that last appear

3 as one of LST i tasks but with odd indexes, i.e.,
LST i1, LST

i
3, LST

i
5, . . . .

• βi : Tasks that last appear as part of EDF i and did not complete and
tasks that last appear as one of LST i tasks but with even indexes, i.e.,
LST i2, LST

i
4, LST

i
6, . . . .

In addition define
• γ : Tasks that last appear as any of EDF is and completed successfully.

7.2.2. Building an underloaded task set.
Lemma 7.2. Each of the sets γ, αi, βi (for all i) is an underloaded task set (i.e.,

can be scheduled successfully on one processor).
Proof. γ is obviously underloaded since all its tasks were successfully completed

by edf-lst.
We will show that for all i, αi and βi are underloaded. If αi is empty, so is

βi (because empty αi implies that LST
i is empty; if this is the case then all tasks

of EDF i were scheduled to completion and hence βi is empty) and we are done.
Otherwise, suppose we eliminate the tasks of αi from the schedule created by edf-
lst. We will show how all the tasks of βi can now successfully complete by using only
the time intervals thus vacated.
• Eliminating LST i1 will enable all the tasks of EDF i to complete.
This can be seen by the following argument:

3“Last appear” means the last time it appeared, i.e., the last time it was executed. Note that a
task may be preempted and rescheduled many times. However, since each task may “last appear” at
most once we obtain a partitioning into disjoint task.
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(1) If there is no LST i2, then LST
i
1 completes running by its deadline, according

to the edf-lst schedule. edf-lst schedules LST i1 only if its deadline occurs
after endof(EDF i).

(2) If LST i2 exists, then the LST-exception of LST
i
2 occurred after endof(EDF i).

(Otherwise, LST i1 would not have been scheduled.)
Conclude that in both cases the time freed by LST i1 is enough for all EDF i tasks.
• Eliminating LST i3 will enable LST i2 to complete.
The reasoning is similar. If there is no LST i4, then LST

i
3 completed by edf-lst.

edf-lst schedules LST i3 only if its deadline is later than d(LST
i
2).

If there exists LST i4, then the LST-exception of LST
i
4 occurred after d(LST

i
2).

(Otherwise, LST i3 would not have been scheduled.)
Conclude that in both cases the time freed by LST i3 is enough for LST

i
2.

• In general, eliminating αi enables all the tasks of βi to complete.
This can be easily verified by induction in a similar manner to the above two

cases.
Conclusion: βi is underloaded.
A similar argument, though somewhat simpler since the tasks of EDF i do not

matter here, shows that eliminating βi enables all the tasks of αi to complete.
Conclusion: αi is underloaded.

7.3. Notation.
• Let σ be any schedule (migrative or nonmigrative) of S on n processors.
Denote the projection of σ by PROJ .

• Denote the union of the nonidle periods of edf-lst (for S) by BUSY.
For all i define
• maxi: the set with higher total value among αi and βi (if equal value, choose
arbitrarily);
• mini: the set with lower total value among αi and βi.
For ease of notation we will henceforth denote the values of γ, αi, βi, and maxi

also by γ, αi, βi, and maxi, respectively. Similarly we will use PROJ and BUSY to
also denote their total lengths.

Lemma 7.3. γ
⋃ {∪imaxi} is an underloaded task set.

Proof. From the proof of Lemma 7.2 above, we see that expanding the tasks of
maxi to the time vacated by eliminating mini (and only this time) suffices for the
completion of all the tasks of maxi. Hence, eliminating ∪imini enables ∪imaxi to
complete without disturbing any of the γ tasks.

Lemma 7.4. γ + 2
∑
imaxi ≥ BUSY .

Proof. Only tasks from γ, αi, and βi appear in the schedule of edf-lst. Hence,

γ
⋃
∪i {αi ∪ βi} ≥ BUSY .

Since 2maxi ≥ (αi + βi) we get the desired result.
Lemma 7.5. BUSY + γ ≥ PROJ.
(Recall that BUSY refers to a uniprocessor schedule created by edf-lst while

PROJ refers to an n processors schedule.)
Proof. It is obvious that BUSY + (PROJ \BUSY ) ≥ PROJ . Consider a point

t in PROJ \ BUSY (i.e., an idle point according to edf-lst). Let T be a task that
executes at time t ≤ d(T ) (according to σ).
If T was aborted by edf-lst, then edf-lst has no idle time between r(T ) and

d(T ); otherwise T would occupy the idle periods, making them busy.
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Hence, T completed by edf-lst. Moreover, it completed before t (otherwise t
won’t be an idle point) meaning it completed as an EDF task,4 that is, T ∈ γ.
We conclude that all the tasks Ti which executed (even partially) at idle periods

of edf-lst are tasks of γ, i.e., PROJ −BUSY ≤ γ, which proves the lemma.
Corollary 7.6. γ +

∑
imaxi ≥ PROJ

2 .
Proof. Lemma 7.4 shows that

γ + 2
∑
i

maxi + γ ≥ BUSY + γ.

Using Lemma 7.5 we get

2

(
γ +

∑
i

maxi

)
≥ PROJ.

This concludes the proof of Theorem 6.1 and assures us that there is indeed a
nonmigrative schedule on n processors whose value is no less than 1 − (1 − 1

2n )
n of

the optimal migrative schedule.

7.4. A run-through of the NO-MIGRATION algorithm. Let us run through
No-Migration executed on the set of tasks presented in the performance ratio ex-
ample (section 3). This set of tasks has three identical tasks, T1, T2, and T3. They all
have the same parameters: start time 0, deadline 1, and computation time 2

3 .
In the first iteration we utilize edf-lst which starts by utilizing edf*. Since all

tasks have the same start time, edf* chooses any one to start with, say T1. Therefore,
EDF 1

1 = T1. At time t =
1
3 , there is an LST-exception for both T2 and T3. Suppose

the exception of T2 is treated first. Since its deadline is greater than the time that
EDF 1

1 is expected to complete, we preempt T1 and schedule T2. Hence, LST
1
1 = T2.

Immediately, edf-lst treats the exception generated by T3 leading to its abortion.
At time 2/3, T1 raises an LST-exception which leads to its abortion.
In this example, α1 is {T2}, β1 is {T1}, and γ is empty (so far). Note that T3 is

missing from all these sets. In this case α and β are of equal size so R1 can be either
of them; suppose the latter is chosen.
Now to the second iteration in No-Migration. T1 is removed from the initial

task collection and we proceed as above with the remaining tasks (T2 and T3). Suppose
T2 is scheduled initially. At time 1/3 it will be preempted by an exception of T3 which
will complete. Hence α2 is {T2} and β2 is {T3} (γ is empty). Since these are equal
R2 could be any of them. Assume the latter is chosen. This concludes the second and
last iteration of No-Migration.
Thus, the schedule generated by No-Migration, T1, gets scheduled on the first

processor and T3 gets scheduled on the second processor. T2 is not scheduled at all.
In this example the No-Migration algorithm, in fact, chose an optimal nonmi-

grative schedule.

8. Conclusion and open problems. We gave an upper and a lower bound on
the performance ratio between nonmigrative and migrative clairvoyant schedulers in
real-time systems. While the bounds are close there is still a gap between them. We
believe that the upper bound is the real bound.
An important open problem is finding a competitive on-line scheduler for n pro-

cessors in a real-time system with the uniform density value measure. The results

4Recall that an LST task completes exactly on its deadline.
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in this paper guarantee that whether such a competitive on-line scheduler is migra-
tive or nonmigrative, they nevertheless imply the existence of both a migrative and a
nonmigrative competitive scheduler.
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Abstract. An efficient heuristic is presented for the problem of finding a minimum-size k-
connected spanning subgraph of an (undirected or directed) simple graph G = (V,E). There are
four versions of the problem, and the approximation guarantees are as follows:

• minimum-size k-node connected spanning subgraph of an undirected graph 1 + [1/k],
• minimum-size k-node connected spanning subgraph of a directed graph 1 + [1/k],
• minimum-size k-edge connected spanning subgraph of an undirected graph 1 + [2/(k + 1)],

and
• minimum-size k-edge connected spanning subgraph of a directed graph 1 + [4/

√
k].

The heuristic is based on a subroutine for the degree-constrained subgraph (b-matching) problem. It
is simple and deterministic and runs in time O(k|E|2).

The following result on simple undirected graphs is used in the analysis: The number of edges
required for augmenting a graph of minimum degree k to be k-edge connected is at most k |V |/(k+1).

For undirected graphs and k = 2, a (deterministic) parallel NC version of the heuristic finds a
2-node connected (or 2-edge connected) spanning subgraph whose size is within a factor of (1.5 + ε)
of minimum, where ε > 0 is a constant.

Key words. graphs, directed graphs, graph connectivity, edge connectivity, node connectiv-
ity, matchings, degree constrained subgraphs, NP-complete problems, approximation algorithms,
network design
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1. Introduction. Given an undirected or directed simple graph G = (V,E),
an efficient approximation algorithm1 is presented for the problem of finding a k-
connected spanning subgraph G′ = (V,E′) that has the minimum number of edges
(k ≥ 1 is an integer). Let n and m denote |V | and |E|, respectively. There are
four versions of the problem, depending on whether G is a graph (i.e., an undirected
graph) or a digraph (i.e., a directed graph) and on whether the spanning subgraph
G′ is required to be k-node connected or k-edge connected. All four versions of the
problem are NP-hard: the two problems on graphs are NP-hard for k ≥ 2, and the
two problems on digraphs are NP-hard for k ≥ 1, [GJ 79].

Previous work. Results of Mader [Ma 71, Ma 72] (also see [Bo 78]) imply that
every minimal2 k-edge connected graph has at most kn edges, and every minimal
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1An α-approximation algorithm for a combinatorial optimization problem runs in polynomial
time and delivers a solution whose value is always within the factor α of the optimum value. The
quantity α is called the approximation guarantee of the algorithm.

2A graph H is called minimal with respect to a property P if H possesses P, but for every edge
e in H, H\e does not possess P.
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k-node connected graph has at most kn edges. Clearly, a k-connected (i.e., k-node
connected or k-edge connected) graph has at least kn/2 edges, since each node has
degree ≥ k. Similarly, every k-connected digraph has at least kn arcs (directed edges)
since each node has outdegree ≥ k, and results of Edmonds [Ed 72] and Mader [Ma 85]
imply that every minimal k-connected digraph has at most 2kn arcs. These facts im-
mediately imply a 2-approximation algorithm for all four versions of the problem, since
there is an easy polynomial-time algorithm to find a minimal k-edge connected (or
k-node connected) spanning subgraph of a given graph or digraph. For graphs, recent
algorithmic work gives another easy and efficient method for finding a k-connected
spanning subgraph whose size (i.e., number of edges) is at most kn. A k-edge con-
nected spanning subgraph (V,E′) is obtained by taking E′ = F1∪F2∪· · ·∪Fk, where
Fi (1 ≤ i ≤ k) is the edge set of a maximal (but otherwise arbitrary) spanning forest
of (V,E\(F1 ∪ · · · ∪ Fi−1)) (see [Th 89, NI 92]), and a k-node connected spanning
subgraph (V,E′) is obtained similarly, but now each Fi is a maximal scan-first-search
spanning forest; see [NI 92, FIN 93, CKT 93].

In the approximate solution of NP-hard combinatorial optimization problems, it
often turns out that finding a solution within a factor of 2 of optimum is almost triv-
ial, but achieving (asymptotically) better approximation guarantees needs a deeper
understanding of the problem. For example, consider the metric TSP, i.e., the trav-
eling salesman problem, with edge weights satisfying the triangle inequality. Finding
a solution whose value is within a factor of 2 of optimum is trivial. The Christofides
heuristic [Ch 76] broke the 2-approximation barrier by employing a powerful idea:
matching.

Given a graph, consider the problem of finding a minimum-size 2-edge connected
spanning subgraph (2-ECSS), or a minimum-size 2-node connected spanning subgraph
(2-NCSS). Several recent papers have focused on these two problems. Khuller and
Vishkin [KV 94] achieved the first significant advance by obtaining approximation
guarantees of 1.5 and 1.66 for the minimum-size 2-ECSS problem and the minimum-
size 2-NCSS problem. Garg, Santosh, and Singla [GSS 93] improved the approxima-
tion guarantee of the latter problem to 1.5. These algorithms are based on depth-first
search (DFS), and they do not imply efficient parallel algorithms for the PRAMmodel.
Subsequently, Chong and Lam [CL 95, CL 96] gave (deterministic) NC algorithms
on the PRAM model with approximation guarantees of (1.5 + ε) and (1.66 + ε) for
the minimum-size 2-ECSS problem and the minimum-size 2-NCSS problem.

For graphs and the general minimum-size k-ECSS problem, first Karger [Ka 94]
used randomized rounding to improve the approximation guarantee (for k large with
respect to log n) to 1 +

√
[O(log n)/k]; Karger’s algorithm is not deterministic but

Las Vegas. Then Khuller and Raghavachari [KR 96] improved the approximation
guarantee (for all k) from 2 to (roughly) 1.85. They left open the problem of improving
on the approximation guarantee of 2 for the minimum-size k-NCSS problem.

For digraphs and the problem of finding a minimum-size 1-connected (i.e., strongly
connected) spanning subgraph, Khuller, Raghavachari, and Young [KRY 96, KRY 95]
gave a 1.61-approximation algorithm. For digraphs and k ≥ 2, there appears to have
been no previous work on achieving approximation guarantees better than 2.

An illustrative example. Here is an example illustrating the difficulty in im-
proving on the 2-approximation guarantee for the minimum-size k-connected spanning
subgraph problem. Let the given graph G have n nodes, where n is even. Suppose
that the edge set of G, E(G), is the union of the edge set of the complete bipartite
graph Kk,(n−k) and the edge set Eopt of an n-node, k-regular, k-edge connected (or k-
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Table 1
A summary of previous and new approximation guarantees for minimum-size k-edge connected

spanning subgraphs (k-ECSS), and minimum-size k-node connected spanning subgraphs (k-NCSS).

Previous results

Undirected Graphs Digraphs

k-ECSS 2− [1/k] for k ≥ 2 [K 96] 1.61 for k = 1 [KRY 96]
1.85 for k ≥ 2 [KR 96] 2 for k ≥ 2

1+
√

O(logn)/k [Ka 94]

k-NCSS 1.5 for k = 2 [GSS 93] 1.61 for k = 1 [KRY 96]
2 for k ≥ 3 2 for k ≥ 2

Results in this paper

Undirected Graphs Digraphs

k-ECSS 1 + [2/(k + 1)] 1 + [4/
√

k]
improves for k ≥ 3 improves for k ≥ 17

k-NCSS 1 + [1/k] 1 + [1/k]
improves for k ≥ 3 improves for k ≥ 2

node connected) graph. For example, for k = 2, E(G) is the union of E(K2,(n−2)) and
the edge set of a Hamiltonian cycle. A naive heuristic may return E(Kk,(n−k)) which
has size k(n− k), roughly two times |Eopt|. A heuristic that significantly improves on
the 2-approximation guarantee must somehow return many edges of Eopt.

Results in this paper.

Heuristics and approximation guarantees. This paper first presents a simple
heuristic for finding an approximately minimum-size k-NCSS of a given graph or
digraph. An approximation guarantee of 1+[1/k] is proved. A variant of the heuristic
finds a small-size k-ECSS of a given graph or digraph. For graphs and the minimum-
size k-ECSS problem, the approximation guarantee is 1 + [2/(k + 1)]. For digraphs
and the minimum-size k-ECSS problem, the approximation guarantee is 1 + [4/

√
k].

Let G = (V,E) be the given graph. The heuristic has two steps. The first step finds
a minimum-size subgraph (V,M) of minimum-degree k (or k − 1) via a subroutine
for the degree-constrained subgraph (b-matching) problem. The second step adds an
(inclusionwise) minimal edge set F ⊆ E\M such that the resulting graph (V,M ∪F )
is either k-node connected or k-edge connected, as required. Heuristics of this type
have been considered by other researchers, but we were not aware of this when the
preliminary version of this paper (Proceedings of the IEEE Symposium on Foundations
of Computer Science, 1996, pp. 292–301) appeared. Subsequently, Khuller (private
communication, October 1996) and Watanabe (private communication, October 1996)
informed us that they had examined or implemented heuristics of this type. One of
the contributions of this paper is to refine the general heuristic to the four minimum-
size k-CSS problems discussed above, and to give nearly tight analyses of the four
approximation guarantees. The running time of the heuristic is O(k|E|2), and for
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vn−1

vn−2

v1

v2

v3 v4 v5 v6 v7

e∗ vn
(a)

(b)

(c)

Fig. 1. Illustrating the 2-NCSS heuristic on a 2-node connected graph G = (V,E); n = |V | is
even, and k = 2. Adapted from Garg, Santosh, and Singla [GSS 93, Figure 7]. (a) A minimum-
size 2-node connected spanning subgraph has n + 1 edges and is indicated by thick lines (the path
v1, v2, . . . , vn and edges v1v7 and e∗ = v5vn). (b) The first step of the heuristic in section 3.1 finds
a minimum-size M ⊆ E such that every node is incident to ≥ (k − 1) = 1 edges of M . The thick
lines indicate M ; it is a perfect matching. The second step of the heuristic finds an (inclusionwise)
minimal edge set F ⊆ E such that (V,M ∪F ) is 2-node connected. F is indicated by dashed lines—
the “key edge” e∗ is not chosen in F . |M ∪ F | = 1.5n − 5. (c) Another variant of the heuristic
first finds a minimum-size M ⊆ E such that every node is incident to ≥ k = 2 edges of M . The
thick lines indicate M (M is the path v1, v2, . . . , vn and edges v1v3, vn−2vn). The second step of
the heuristic finds the edge set F ⊆ E indicated by dashed lines—the “key edge” e∗ is not chosen
in F . (V,M ∪ F ) is 2-node connected, and for every edge vw in F , (V,M ∪ F )\vw is not 2-node
connected. |M ∪ F | = 1.5n− 3.

graphs the running time improves to O(k3|V |2 + |E|1.5(log |V |)2). The analyses on
graphs/digraphs of the minimum-size k-NCSS heuristic are based on theorems of
Mader [Ma 72, Ma 85]. In the context of augmenting the node connectivity of graphs
and digraphs, the first application of Mader’s theorems is due to Jordán [Jo 95, Jo 93].
Two key lemmas in our analyses, namely, Lemmas 3.3 and 3.18, are inspired by
similar results of Jordán, namely, [Jo 95, Lemma 3.3] and the following paragraph in
[Jo 95] and Lemma 2.6 and Corollary 2.7 in [Jo 93]. In the context of approximation
algorithms for minimum-size k-connected spanning subgraph problems, Chong and
Lam [CL 95] appear to be the first to use matching.

For graphs, the heuristic finds a 2-node connected or 2-edge connected spanning
subgraph whose size is within a factor of 1.5 of the minimum size. A parallel (deter-
ministic) version gives a (1.5+ε)-approximationNC algorithm. Similarly, a sequential
linear-time version gives an approximation guarantee of (1.5 + ε).

Table 1 summarizes the approximation guarantees obtained in this paper for the
four versions of the problem and compares these with the previous best approximation
guarantees. Figure 1 illustrates the working of the heuristic on an example.

Here is a summary of developments since September 1996. Fernandes [Fe 97, The-
orem 5.1] showed that the minimum-size 2-ECSS problem on graphs is MAX SNP-
hard; also see Czumaj and Lingas [CL 99, Theorem 5.3]. Independently of this paper,
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(a) (V,M ∪ F ) is 2-node connected, |F | = |V | − 4

(V,M ∪ F ) is 2-edge connected, |F | ≥ 2(|V | − 6)/3(b)

(c) A laminar family F covering F

Fig. 2. An illustration of Lemma 3.3 (a corollary of Mader’s theorem, Theorem 3.2) and of
Theorem 4.3. An n-node graph of minimum degree k = 2, (V,M), is indicated by solid lines. (a)
The dotted lines indicate an (inclusionwise) minimal edge set F such that (V,M ∪ F ) is 2-node
connected. F has size n− 4, for n ≥ 4. By Lemma 3.3, the maximum size of F over all possible M
is ≤ n−1. (b) The dotted lines indicate an (inclusionwise) minimal edge set F such that (V,M ∪F )
is 2-edge connected. F has size ≥ 2(n− 6)/3, for n ≥ 6. By Theorem 4.3, the maximum size of F
over all possible M is ≤ 2(n − 1)/3. (c) The dashed lines indicate a laminar family of tight node
sets F covering the F -edges of the 2-edge connected graph in (b). The proof of Theorem 4.3 is based
on examining M , F , and F .

and using different methods, Chong and Lam [CL 96b] have also obtained a parallel
(deterministic) (1.5 + ε)-approximation NC algorithm for the minimum-size 2-NCSS
problem on graphs. The approximation guarantee for the minimum-size 2-ECSS prob-
lem has been improved from 1.5 to 17/12 by [CSS 98] and then to 4/3 by [VV 99].

Contributions to approximation algorithms for “uniform” network de-
sign. As discussed above, the subarea of network design with uniform edge costs and
uniform connectivity requirements has attracted a fair amount of recent interest in
theoretical computer science, e.g., the references cite 10 papers from this subarea.
This paper takes up four central questions from this subarea and settles them in the
sense that reasonably good approximation guarantees are derived based on a simple
heuristic. To achieve the approximation guarantees, the paper has to rely on some
deep areas of graph theory and combinatorial optimization.
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Combinatorial contributions. The paper has two combinatorial results that
may be of independent interest. The first is Theorem 3.5 which gives a new lower
bound on the size of a k-edge connected spanning subgraph. The proof relies on the
Gallai–Edmonds decomposition theorem of matching theory. Theorem 3.5 is related
to a result of Gupta: a bipartite graph of minimum degree k has k edge-disjoint edge
covers. The second combinatorial result of independent interest is Theorem 4.3. This
theorem gives an asymptotically tight upper bound of k|V |/(k + 1) on the size of an
(inclusionwise) minimal edge set F such that (V,M ∪ F ) is a k-edge connected (sim-
ple) graph, where (V,M) is a graph of minimum degree ≥ k. The (long) proof makes
use of a laminar family of tight node sets that covers F . Theorem 4.3 is related to a
theorem of Mader on “critical cycles” in a k-node connected graph; see Theorem 3.2.
Apparently, Mader’s theorem has no analogue for k-edge connected graphs; for k = 2,
this can be seen from the example in Figure 5 in section 4.1; the example generalizes
to all k ≥ 2. However, there is one implication of Mader’s theorem that is an analogue
of Theorem 4.3: If (V,M) is as above, and F is an (inclusionwise) minimal edge set
such that (V,M∪F ) is a k-node connected graph, then |F | ≤ |V |−1 (see Lemma 3.3).
Both the bounds (k|V |/(k + 1) in Theorem 4.3, and |V | − 1 in Lemma 3.3) are tight
up to an additive term of (k + 1), for all k ≥ 2. Figure 2 has relevant examples
for k = 2, and these examples generalize for all k ≥ 2. Although Theorem 4.3 and
Lemma 3.3 are analogous, the two results seem to be focusing on two essentially
different combinatorial structures, and neither result implies the other one.

Organization of the paper. The rest of the paper is organized as follows.
Section 2 has definitions and notation. Section 3 presents the heuristic for approxi-
mating a minimum-size k-node connected spanning subgraph of a graph or a digraph
and separately analyzes the approximation guarantees on graphs and digraphs. Sec-
tion 4 describes and analyzes the heuristic for approximating a minimum-size k-edge
connected spanning subgraph of a graph or a digraph. Section 5 has conclusions,
including a discussion of the relationship to graph theory.

2. Definitions and notation. For a subset S′ of a set S, S\S′ denotes the set
{x ∈ S : x ∈ S′}.

This paper considers finite simple graphs and digraphs, i.e., the graphs/digraphs
have no loops nor multiedges. (But, Propositions 3.9 and 3.10 do allow multiedges.)
Let G = (V,E) be a graph or a digraph. V (G) and E(G) stand for the node set and
the edge set of G. By the size of G we mean |E(G)|. First, suppose that G is a graph.
An edge incident to nodes v and w is denoted by vw. For a subsetM of E and a node
v, we use degM (v) to denote the number of edges of M incident to v; deg(v) denotes
degE(v).

A node is said to be covered by an edge set M if the node is incident to at least
one edge ofM ; otherwise, the node is uncovered byM . An edge cover is a set of edges
that covers all the nodes. A matching of a graph G = (V,E) is an edge set M ⊆ E
such that degM (v) ≤ 1, ∀v ∈ V ; furthermore, if every node v ∈ V has degM (v) = 1,
then M is called a perfect matching. A graph G is called factor-critical if for every
node v ∈ V , there is a perfect matching in G\v; see [LP 86].

An x↔y path refers to a path whose end nodes are x and y. We call two paths
openly disjoint if every node common to both paths is an end node of both paths.
Hence, two (distinct) openly disjoint paths have no edges in common and possibly
have no nodes in common. A set of k ≥ 2 paths is called openly disjoint if the paths
are pairwise openly disjoint. For a node set S ⊆ V (G), δG(S) denotes the set of all
edges in E(G) that have one end node in S and the other end node in V (G)\S (when
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there is no danger of confusion, the notation is abbreviated to δ(S)); δ(S) is called a
cut, and by a k-cut we mean a cut that has exactly k edges.

A graph G = (V,E) is said to be k-edge connected if |V | ≥ k + 1 and the deletion
of any set of < k edges leaves a connected graph. A graph G = (V,E) is said to be
k-node connected if |V | ≥ k + 1 and the deletion of any set of < k nodes leaves a
connected graph.

Let G = (V,E) be a digraph. An arc (directed edge) with start node v and end
node w is denoted (v, w). ForM ⊆ E and a node v, degM,out(v) (degM,in(v)) denotes
the number of arcs of M with start node v (end node v). For a node set S ⊆ V ,
δout(S) (δin(S)) denotes the set of arcs with start nodes in S and end nodes in V \S
(end nodes in S and start nodes in V \S). The digraph is called strongly connected
(1-connected) if for every (ordered) pair of nodes v,w there exists a directed path
from v to w. The digraph is called k-edge connected if |V | ≥ k + 1 and the deletion
of any set of < k arcs leaves a strongly-connected digraph. The digraph is called
k-node connected if |V | ≥ k + 1 and the deletion of any set of < k nodes leaves a
strongly-connected digraph.

An edge vw (arc (v, w)) of a k-node connected graph G (digraph G) is called
critical with respect to k-node connectivity if G\vw (G\(v, w)) is not k-node con-
nected. Similarly, we have the notion of critical edges (arcs) with respect to k-edge
connectivity.

Let G = (V,E) be a graph, and let b : V → Z+ assign a nonnegative integer bv to
each node v ∈ V . The perfect b-matching (or perfect degree-constrained subgraph)
problem is to find an edge set M ⊆ E such that each node v has degM (v) = bv.
The maximum b-matching (or maximum degree-constrained subgraph) problem is
to find a maximum-cardinality M ⊆ E such that each node v has degM (v) ≤ bv.
The b-matching problem can be solved in time O(|E|1.5(log |V |)1.5√α(|E|, |E|)); see
[GaTa 91, section 11]. (For our version of the problem, note that each edge has unit
cost and unit capacity, and each node v may be assumed to have 0 ≤ bv ≤ deg(v).)
Also see [Ge 95, section 7.3] and [Ga 85].

3. A (1 + 1
k
)-approximation algorithm for minimum-size k-node con-

nected spanning subgraphs. This section presents the heuristic for finding an
approximately minimum-size k-node connected spanning subgraph (abbreviated k-
NCSS) and proves an approximation guarantee of 1+[1/k]. First, we focus on graphs,
and then we turn to digraphs. The analysis of the heuristic for graphs hinges on a
deep theorem of Mader [Ma 72, Theorem 1]. Given a graph G = (V,E), a straightfor-
ward application of Mader’s theorem shows that the number of edges in the k-NCSS
returned by the heuristic is at most

(|V | − 1) + min{|M | : M ⊆ E and degM (v) ≥ (k − 1) ∀v ∈ V };
see Lemma 3.3 below. An approximation guarantee of 1+[2/k] on the heuristic fol-
lows, since the number of edges in a k-node connected graph is at least k|V |/2, by
the “degree lower bound”; see Proposition 3.4. Often, the key to proving improved
approximation guarantees for (minimizing) heuristics is a nontrivial lower bound on
the value of every solution. We improve the approximation guarantee from 1+[2/k] to
1+ [1/k] by exploiting a new lower bound on the size of a k-edge connected spanning
subgraph; see Theorem 3.5 which states the following.

The number of edges in a k-edge connected spanning subgraph of a
graphG = (V,E) is at least �|V |/2�+min{|M | :M ⊆ E and degM (v)
≥ (k − 1) ∀v ∈ V }.
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The analysis of the heuristic for digraphs is similar and hinges on another theo-
rem of Mader [Ma 85, Theorem 1], which may be regarded as the generalization of
[Ma 72, Theorem 1] to digraphs. An approximation guarantee of 1 + [1/k] is proved
on the digraph heuristic by employing a simpler version of Theorem 3.5, namely
Proposition 3.8, to give a lower bound on the number of edges in a solution.

Assume that the given graph or digraph G = (V,E) is k-node connected; other-
wise, the heuristic will detect this and report failure.

3.1. Undirected graphs. Let E∗ ⊆ E denote a minimum-cardinality edge set
such that the spanning subgraph (V,E∗) is k-edge connected. Note that every k-node
connected spanning subgraph (V,E′) (such as the optimal solution) is necessarily
k-edge connected and so has |E′| ≥ |E∗|.

The heuristic has two steps. The first finds a minimum-size spanning subgraph
(V,M), M ⊆ E, whose minimum degree is (k − 1), i.e., each node is incident to
≥ (k − 1) edges of M . Clearly, |M | ≤ |E∗|, because (V,E∗) has minimum degree
k, i.e., every node is incident to ≥ k edges of E∗. To find M efficiently, we use the
algorithm for the maximum degree-constrained subgraph (b-matching) problem. Our
problem is

min{|M | : degM (v) ≥ (k − 1) ∀v ∈ V, and M ⊆ E}.
To see that this is a b-matching problem, consider the equivalent problem of finding
the complement M of M with respect to E, where M = E\M :

max{|M | : degM (v) ≤ deg(v) + 1− k ∀v ∈ V, and M ⊆ E}.
The b-matching problem can be solved in time O(|E|1.5(log |V |)2) (see [GaTa 91]),
hence this running time suffices to find M .

The second step is equally simple. We find an (inclusionwise) minimal edge
set F ⊆ E\M such that M ∪ F gives a k-node connected spanning subgraph, i.e.,
(V,M ∪ F ) is k-node connected and for each edge vw ∈ F , (V,M ∪ F )\vw is not
k-node connected. Recall that an edge vw of a k-node connected graph H is critical
(with respect to k-node connectivity) if H\vw is not k-node connected. The next
result characterizes critical edges.

Proposition 3.1. An edge vw of a k-node connected graph H is not critical iff
there are at least k + 1 openly disjoint v↔w paths in H (including the path vw).

To find F efficiently, we start with F = ∅ and take the current subgraph to
be G = (V,E) (which is k-node connected). We examine the edges of E\M in an
arbitrary order, say, e1, e2, . . . , e� (� = |E\M |). For each edge ei = viwi, we attempt
to find (k+1) openly disjoint vi↔wi paths in the current subgraph. If we succeed, then
we remove the edge ei from the current subgraph (since ei is not critical); otherwise, we
retain ei in the current subgraph and add ei to F (since ei is critical). At termination,
the current subgraph with edge setM∪F is k-node connected, and every edge vw ∈ F
is critical. The running time for the second step is O(k|E|2).

The proof of the next lemma hinges on a theorem of Mader [Ma 72, Theorem 1].
For an English translation of the proof of Mader’s theorem see Lemma I.4.4 and
Theorem I.4.5 in [Bo 78].

Theorem 3.2 (Mader [Ma 72, Theorem 1]). In a k-node connected graph, a
cycle consisting of critical edges must be incident to at least one node of degree k.

Lemma 3.3. |F | ≤ |V | − 1.
Proof. Consider the k-node connected subgraph returned by the heuristic G′ =

(V,E′), where E′ = M ∪ F . Suppose that F contains a cycle C. Note that every
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edge in the cycle is critical, since every edge in F is critical. Moreover, every node v
incident to the cycle C has degree ≥ (k+ 1) in G′, because v is incident to two edges
of C, as well as to at least (k − 1) edges of M = E′\F . But this contradicts Mader’s
theorem. We conclude that F is acyclic and so has ≤ |V | − 1 edges. The proof is
done.

Proposition 3.4. Let G = (V,E) be a graph of node connectivity ≥ k. The
heuristic above finds a k-node connected spanning subgraph (V,E′) such that |E′| ≤
(1 + [2/k])|Eopt|, where |Eopt| denotes the cardinality of an optimal solution. The
running time is O(k3|V |2 + |E|1.5(log |V |)2).

Proof. The approximation guarantee follows because |Eopt| ≥ (k|V |/2), so
|M |+ |F |
|Eopt| =

|M |
|Eopt| +

|F |
|Eopt| ≤ 1 +

|V |
(k|V |/2) = 1 + [2/k].

We have already seen that M can be found in time O(|E|1.5(log |V |)2), and F can
be found in time O(k|E|2). The running time of the second step can be improved
to O(k3|V |2) as follows: we run a linear-time preprocessing step to compute a sparse

certificate Ẽ of G for k-node connectivity, i.e., Ẽ ⊆ E, |Ẽ| ≤ k|V |, and for all nodes

v, w, (V, Ẽ) has k openly disjoint v↔w paths iff G has k openly disjoint v↔w paths;
see [NI 92, FIN 93, CKT 93]. We compute M as before, by running the first step

on G. To find the set F ⊆ E\M , we run the second step on Ẽ ∪M rather than

on E, and for each edge viwi ∈ Ẽ\M , we attempt to find (k + 1) openly disjoint

vi↔wi paths in the current subgraph of (V, Ẽ ∪M). The second step runs in time

O(k|Ẽ ∪M |2) = O(k3|V |2), since |Ẽ ∪M | = O(k|V |).
To improve the approximation guarantee to 1 + [1/k], we present an improved

lower bound on |E∗|, where E∗ denotes a minimum-cardinality edge set such that
G∗ = (V,E∗) is k-edge connected. Suppose that E∗ contains a perfect matching P0 (so
|P0| = n/2). Then |E∗| ≥ (n/2)+min{|M∗| : M∗ ⊆ E, degM∗(v) ≥ (k − 1)∀v ∈ V }.
To see this, focus on the edge set M ′ = E∗\P0. Clearly, every node v ∈ V is
incident to at least (k − 1) edges of M ′, because degE∗(v) ≥ k and degP0

(v) = 1.
Since M∗ is a minimum-size edge set with degM∗(v) ≥ (k − 1) ∀v ∈ V , we have
|M∗| ≤ |M ′| = |E∗| − (n/2). The next theorem generalizes this lower bound to the
case when E∗ has no perfect matching. The proof is given in the next subsection
(section 3.2), after developing some preliminaries.

Theorem 3.5. Let G∗ = (V,E∗) be a graph of edge connectivity ≥ k ≥ 1, and let
n denote |V |. Let M∗ ⊆ E∗ be a minimum-size edge set such that every node v ∈ V
is incident to ≥ (k − 1) edges of M∗. Then |E∗| ≥ |M∗|+ �n/2�.

Theorem 3.6. Let G = (V,E) be a graph of node connectivity ≥ k. The heuristic
described above finds a k-node connected spanning subgraph (V,E′) such that |E′| ≤
(1 + [1/k])|Eopt|, where |Eopt| denotes the cardinality of an optimal solution. The
running time is O(k3|V |2 + |E|1.5(log |V |)2).

Proof. The approximation guarantee of 1+[1/k] follows easily from Theorem 3.5,
using an argument similar to Proposition 3.4. We have E′ = M ∪ F , where |F | ≤
(n−1). Moreover, sinceM is a minimum-size edge set with degM (v) ≥ (k−1), ∀v ∈ V ,
Theorem 3.5 implies that |M | ≤ |Eopt| − �n/2� ≤ |Eopt| − (n− 1)/2. Hence,

|M |+ |F |
|Eopt| ≤ |Eopt| − (n− 1)/2 + (n− 1)

|Eopt| ≤ 1 +
n/2

|Eopt| ≤ 1 + [1/k],

where the last inequality uses the “degree lower bound,” |Eopt| ≥ kn/2.
The running time analysis is the same as that in Proposition 3.4.
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3.2. A lower bound for the size of a k-connected spanning subgraph
and Gupta’s theorem on bipartite graphs. This subsection gives a proof of The-
orem 3.5. This theorem is used in the previous subsection to prove an approximation
guarantee of 1 + [1/k] for a minimum-size k-NCSS. Theorem 3.5 gives the following
new lower bound on the size of a k-ECSS:

Let G∗ = (V,E∗) be a k-edge connected graph (k ≥ 1), and let n
denote |V |. Let M∗ ⊆ E∗ be a minimum-size edge set such that
every node v ∈ V is incident to ≥ (k − 1) edges of M∗. Then |E∗| ≥
|M∗|+ �n/2�.

First, a theorem of Gupta on bipartite graphs is recalled. For the special case of
bipartite graphs, (a stronger form of) the lower bound in Theorem 3.5 follows easily
from Gupta’s theorem; see Proposition 3.8. This proposition is used in section 3.4 to
prove an approximation guarantee of 1+[1/k] for a minimum-size k-NCSS of a digraph.
Gupta’s theorem does not apply to nonbipartite graphs. The proof of Theorem 3.5 (for
arbitrary graphs) relies on the Gallai–Edmonds decomposition theorem of matching
theory. When the Gallai–Edmonds decomposition of the graph is “nontrivial,” one can
define a bipartite graph B that partially represents the decomposition. The proof of
Theorem 3.5 is completed by examining B. One way is to prove a variant of Gupta’s
theorem (see Proposition 3.9), and then apply it to B. This is described below.
Readers interested in a detailed study of the proofs in this subsection may find it useful
to review two results in matching theory, namely, the Gallai–Edmonds decomposition
theorem [LP 86, Theorem 3.2.1] and the Hungarian method for bipartite matching
[LP 86, Lemma 1.2.2].

Theorem 3.7 (see Gupta [Gu 67]). Let B = (X ∪ Y ,E) be a bipartite graph
with minimum degree k. Then there exists a partition of the edge set of B, namely E,
into k sets E1, E2, . . . , Ek such that each node v ∈ X ∪ Y is incident to at least one
edge from each set Ei, 1 ≤ i ≤ k.

For an elegant proof, see the solutions to Problems 10–12 in [L 93, Chapter 7].
Also, see [BM 76, Problem 6.1.6]. The next result strengthens Theorem 3.5 for bi-
partite graphs. The proof is via Gupta’s theorem. Another brief proof follows from
Proposition 3.10.

Proposition 3.8. Let B∗ = (X ∪ Y ,E∗) be a bipartite graph with minimum
degree ≥ k. Let M∗ ⊆ E∗ be a minimum-size edge set such that every node v ∈ X ∪ Y
is incident to ≥ k − 1 edges of M∗. Then |E∗| ≥ |M∗|+ (|X ∪ Y |/2).

Proof. Apply Gupta’s theorem to E∗, and let E1, E2, . . . , Ek be the partition of
E∗. Focus on the set, say Ek, that has the maximum cardinality. Clearly, |Ek| ≥
|E∗|/k ≥ |X ∪ Y |/2. Now, consider M ′ = E∗\Ek, and observe that each node v ∈
X ∪ Y is incident to ≥ (k − 1) edges of M ′, because Gupta’s result shows that v is
incident to some edge from each of the remaining (k − 1) sets E1, E2, . . . , Ek−1. The
proof is done since |E∗| − (|X ∪ Y |/2) ≥ |M ′| and |M ′| ≥ |M∗|.

Proposition 3.8 does not generalize to nonbipartite graphsB∗, even if we strengthen
the condition “B∗ has minimum degree ≥ k” to “B∗ is k-edge connected.” For ex-
ample, let k = 2, and let B∗ = K3, the complete graph on three nodes. Then M∗ is a
minimum edge cover of K3 and has size 2. But then |E∗| = |M∗|+1 < |M∗|+(|V |/2).
The generalization of Proposition 3.8 fails because B∗ is a 2-edge connected, 2-
regular graph such that for every edge cover M∗, the edge-complement of M∗ in
B∗, (V,E∗ −M∗), has an isolated node, so it does not have an edge cover. For every
even integer k ≥ 2, there is an infinite family of nonbipartite graphs such that the
generalization of Proposition 3.8 fails. Take B∗ to be a k-edge connected, k-regular
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graph with an odd number of nodes n. Then M∗ has size at least (1 + (k − 1)n)/2,
so (V,E∗ −M∗) has an isolated node, and hence has size < n/2. It can be seen that
the examples in this paragraph are factor-critical graphs.

The next proposition may be regarded as a variant of Gupta’s theorem. Note
that the bipartite graph B in the next proposition may have minimum degree 1, and
B may have multiple copies of an edge.

Proposition 3.9. Let B = (X ∪ Y ,E) be a bipartite (loopless) multigraph with
node bipartition X ∪ Y . Let each node y ∈ Y have deg(y) ≥ k,and let B have a
matching of size |X|. Then B has an edge cover J such that each node y ∈ Y is
incident to exactly one edge of J , and each node x ∈ X is incident to either exactly
one edge of J or at least (k − 1) edges of E\J .

Proof. See Figure 3(b) for an illustration. Let J0 be a matching of size |X|. The
edge cover J is constructed iteratively, starting with J ′ = J0 and J

′′ = ∅. Throughout,
J ′ is a matching of the current B, and at the end of the construction, J ′ ∪ J ′′ is an
edge cover of the original B that satisfies the proposition.

If J ′ ∪ J ′′ is an edge cover, i.e., if J ′ is a perfect matching, then the proof is
completed by taking J = J ′ ∪J ′′. Clearly, the degree requirements in the proposition
hold. Otherwise, if J ′∪J ′′ is not an edge cover, the size of J ′∪J ′′ is increased by one
such that one more Y -node is covered and the degree requirements in the proposition
are maintained. Let v ∈ Y be a node that is not covered by J ′ ∪ J ′′. Let T be the
node set of the maximal J ′-alternating tree that contains v. That is, a node w is in T
iff there exists a J ′-alternating path between v and w. (For a matching J ′, recall that
a J ′-alternating path means a path whose edges are alternately in J ′ and not in J ′.)

Claim 1. There is a node x ∈ T ∩X with deg(x) ≥ k + 1.
To prove this claim, note that (i) |T ∩Y | = |T ∩X|+1 (since each node y ∈ T ∩Y

except v is incident to an edge of J ′), and (ii) for every node y ∈ T ∩Y , every incident
edge wy has the other end node w in T ∩ X (otherwise, w can be added to T , and
so T is not maximal). By assumption, each node y ∈ T ∩ Y has deg(y) ≥ k, hence,
(i), (ii), and the pigeonhole principle guarantee that there is a node x ∈ T ∩X with
deg(x) > k. This proves the claim.

Let xz be the J ′-edge incident to x, i.e., x is matched to z by J ′. This edge is
(permanently) added to the edge cover J by taking J ′′ = J ′′ ∪ {xz}. The node z
is deleted from B. Since x ∈ T , there exists a J ′-alternating path between v and x
(by definition of T ). Let this path be P ′. The matching J ′ is updated by switching
alternate edges along P ′, i.e., J ′ is replaced by the symmetric difference of J ′ and
E(P ′). Note that the current B (with node z deleted) has a matching of size |X|,
namely J ′, and has deg(y) ≥ k, for all nodes y ∈ V (B)\X. Therefore, the hypothesis
of the proposition continues to hold.

The above step is repeated until J ′ ∪J ′′ covers all nodes of B. Finally, J is taken
to be J ′ ∪ J ′′. The construction guarantees that J satisfies the degree requirements
in the proposition.

Recall the Gallai–Edmonds decomposition theorem of matching theory [LP 86,
Theorem 3.2.1]. For every graph H, there is a partition of V (H) into a set of (match-
ing) noncritical nodes D(H) and a set of (matching) critical nodes V \D(H) (i.e.,
D(H) consists of all nodes that are left uncovered by some maximum matching of
H). The partition is “trivial” either if H has a perfect matching, or if H is factor-
critical: in the first case, D(H) = ∅, and in the second case, D(H) = V (H). Let
A(H) be the set of critical nodes of H that are adjacent to one or more noncritical
nodes of H. Possibly, A(H) is the empty set. When there is no danger of confu-
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Fig. 3. An illustration of the proofs of Theorem 3.5 and Propositions 3.9 and 3.10. (a) G =
(V,E) is a 2-edge connected graph (k = 2), and the Gallai–Edmonds decomposition is given by
A = A(G) = {a1, a2, a3, a4} and D = D(G) = V (D1) ∪ V (D2) ∪ V (D3) ∪ V (D4) ∪ V (D5) ∪ V (D6).
The odd (factor-critical) components of G\A are D1, . . . , D6. (b) The bipartite multigraph B in the
proofs of Propositions 3.9 and 3.10. In Proposition 3.10, B is obtained from G by deleting the nodes
in V \(A ∪D) and the edges in E(A), and shrinking D1, . . . , D6 into single nodes. In B, note that
deg(D1), . . . , deg(D6) ≥ k = 2, and there is a matching J ′ of size |A| = 4. J ′ is indicated by dashed
lines, J ′ = {a1D1, a2D2, a3D4, a4D5}. In the construction of Proposition 3.9, the first iteration
chooses, say, v = D3. Then T = {D3, a2, D2, a1, D1} and x = a2 ∈ T ∩ A has degree ≥ k + 1 = 3.
The edge a2D2 is added to J ′′, the node D2 is deleted, and in J ′, a2D2 is replaced by a2D3. Finally,
J ′ = {a1D1, a2D3, a3D6, a4D5}, J ′′ = {a2D2, a3D4}, and J = J ′ ∪ J ′′ is the required edge cover.

(c) In G, J maps to an edge set J̃. J̃ is extended to the required edge cover P of G by adding a

perfect matching on the nodes of G not incident to J̃. P is indicated by dashed lines.

sion, we use A and D instead of A(H) and D(H). Let def(H) denote the deficiency
of H, i.e., the number of nodes that are not covered by a maximum matching of
H. (So, def(H) = |V (H)| − 2|P0|, where P0 is a maximum matching of H.) The
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Gallai–Edmonds decomposition theorem shows that in the graph H\A, the noncrit-
ical nodes D form q = |A(H)| + def(H) odd components D1, D2, . . . , Dq, i.e., each
Di (i = 1, . . . , q) is a connected component of H\A with V (Di) ⊆ D(H) and |V (Di)|
odd. Moreover, every one of these odd components Di is factor-critical.

The next result is a generalization of Proposition 3.9.
Proposition 3.10. Let G be a graph, and let D = D(G) and A = A(G) be the

node sets in the Gallai–Edmonds decomposition. Let q = |A(G)| + def(G), and let
D1, D2, . . . , Dq be the odd components of G\A. If every Di gives a cut containing at
least k edges, i.e., if δ(V (Di)) has size ≥ k for i = 1, . . . , q, then G has an edge cover
P such that each node in V (G)\A is incident to exactly one edge of P , and each node
in A is incident to either exactly one edge of P or at least (k− 1) edges of E(G)\P .

Proof. See Figure 3 for an illustration. The proof follows easily by applying
Proposition 3.9 to a bipartite graph associated with the Gallai–Edmonds decomposi-
tion.

If def(G) = 0, then the proof is done: take P to be a perfect matching of G.
Otherwise, def(G) > 0, and so D = ∅. Suppose that A = ∅. Then every component
Di of G is factor-critical, but this violates the condition on |δ(V (Di))|. Hence, A is
nonempty. Clearly, every edge in δ(V (Di)) (i = 1, . . . , q) has one end node in A and
the other in Di. Let G[A ∪ D] be the subgraph of G induced by A ∪ D. Let B =
(X ∪ Y ,E′), X = A, be the bipartite (loopless) multigraph obtained from G[A ∪D]
by deleting all edges with both end nodes in A and by shrinking the components
D1, D2, . . . , Dq of G[A ∪ D]\A to single nodes. The shrunken nodes are also called
D1, D2, . . . , Dq, and so Y = {D1, D2, . . . , Dq}. B has ≥ k edges incident to each of
the shrunken nodes D1, D2, . . . , Dq, since in G each of the cuts δ(V (Di)) (i = 1, . . . , q)
has ≥ k edges. Moreover, B has a matching of size |X| = |A|, by the Gallai–Edmonds
decomposition theorem. Therefore, B satisfies the conditions in Proposition 3.9. By
the proposition, B has an edge cover J satisfying the degree requirements in the
proposition; note that each node Di ∈ Y is incident to exactly one edge of J . Let J̃
denote a set of edges of G that corresponds to J , i.e., for each edge ahDi ∈ J with
ah ∈ X = A, Di ∈ Y , there is an edge ahwi ∈ J̃ such that (in G) wi is a node in Di
and wi is adjacent to ah. Let V (J̃) be the set of nodes of G incident to edges in J̃ ,

i.e., V (J̃) = A ∪ {wi ∈ V (Di) : i = 1, . . . , q}. By the Gallai–Edmonds decomposition

theorem, G\V (J̃) has a perfect matching P̃ . To see this, note that each component

of G\V (J̃) is either an even component of G\A or is obtained by deleting one node
from an odd (factor-critical) component of G\A; in either case, the component has a
perfect matching.

Take P = J̃ ∪ P̃ . Clearly, P is an edge cover of G such that each node v ∈ V \A
is incident to exactly one edge of P . Moreover, by Proposition 3.9, every node in A
is incident to either exactly one edge of P or to ≥ (k − 1) edges of E\P .

Proof of Theorem 3.5. See Figure 3 for an illustration. We construct an appropri-
ate edge set P ∗ such that |P ∗| ≥ �n/2� and every node v ∈ V is incident to ≥ (k− 1)
edges of E∗\P ∗. In the statement of Theorem 3.5, note that M∗ is a minimum-size
edge set such that (V,M∗) has minimum degree (k − 1). Hence, |E∗\P ∗| ≥ |M∗|.
The theorem follows immediately from the existence of the edge set P ∗, because
|E∗| = |E∗\P ∗|+ |P ∗| ≥ |E∗\P ∗|+ �n/2� ≥ |M∗|+ �n/2�.

If the size of a maximum matching of G∗ is ≥ (n−1)/2, i.e., if G∗ has a matching
that leaves at most one node uncovered, then we take P ∗ to be a maximum matching.
(This handles the case when G∗ is a factor-critical graph.)
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To handle the case when def(G∗) ≥ 2, we apply Proposition 3.10 to G∗, noting
that G∗ satisfies the conditions in the proposition. (Since G∗ is k-edge connected,
deg(v) ≥ k ∀v ∈ V , and every node set S ⊆ V , ∅ = S = V , has |δ(S)| ≥ k.)
We take P ∗ to be the edge cover P guaranteed by the proposition. Since P ∗ is an
edge cover of G∗, |P ∗| ≥ n/2. Moreover, (V,E∗\P ∗) has minimum degree ≥ k − 1
by the proposition and the fact that G∗ has minimum degree ≥ k. The theorem
follows.

We mention a corollary of Theorem 3.5, though this is not relevant to the main
theme of the paper.

Corollary 3.11 (Petersen’s theorem). A 3-regular graph without cut edges has
a perfect matching.

Proof. Let G∗ = (V,E∗) be the graph, and let n = |V |. Clearly, n is even, and
|E∗| = 3n/2. The key point is that every node set S of odd cardinality (i.e., S ⊂ V
and |S| odd) has |δ(S)| ≥ 3 since |δ(S)| is odd (since 3|S|−2|E(S)| is odd) and is ≥ 2.
Suppose that G∗ has no perfect matching. Then def(G∗) > 0, and so in the Gallai–
Edmonds decomposition we have D(G∗) = ∅; moreover, G∗ is not factor-critical (n
is even) so A(G∗) = ∅. Applying Proposition 3.10 with k = 3 shows that G∗ has an
edge cover P such that every node is incident to ≥ (k − 1) = 2 edges of M = E∗\P .
Clearly, |P | ≥ n/2, since P is an edge cover, and |M | = |E∗\P | ≥ n, since (V,M) has
minimum degree 2. Since |E∗| = |P |+ |M | = 3n/2, we have |P | = n/2 and |M | = n.
Therefore, P is a perfect matching of G∗.

3.3. Minimum-size 2-connected spanning subgraphs of undirected
graphs: A parallel (1.5 + ε)-approximation algorithm. This subsection fo-
cuses on the design of an efficient parallel algorithm and a linear-time sequential
algorithm for the problem of finding a minimum-size 2-node connected (2-edge con-
nected) spanning subgraph of a graph. Let ε > 0 be a constant, independent of |V (G)|.
A deterministic parallel version of the main heuristic runs in NC and achieves an
approximation guarantee of (1.5 + ε), whereas a randomized NC version achieves an
approximation guarantee of 1.5. A sequential linear-time version of the main heuristic
achieves an approximation guarantee of (1.5+ ε). The proof of the 1.5 approximation
guarantee in this subsection again hinges on Mader’s theorem (Theorem 3.2), but
instead of employing the lower bound in Theorem 3.5, we employ a nice lower bound
result due to Chong and Lam (Proposition 3.13).

The heuristic for a minimum-size 2-NCSS described below can be used to find a
1.5-approximation of a minimum-size 2-ECSS. For this, we run a preprocessing step
on the given graph G = (V,E), which is assumed to be 2-edge connected, to partition
the edge set into blocks (maximal 2-node connected subgraphs). Then separately for
each block, we run our heuristic for a minimum-size 2-NCSS. For a block, the optimal
2-ECSS may not be 2-node connected; nevertheless, the lower bound used by the
2-NCSS heuristic applies to 2-ECSS too, so the edge set found by our algorithm will
have size within 1.5 times the minimum size of a 2-ECSS.

Consider the problem of approximating a minimum-size 2-NCSS. Assume that
the given graph G = (V,E) is 2-node connected. The heuristic consists of two steps.
The first finds a minimum edge cover M ⊆ E of G, i.e., a minimum-cardinality edge
set such that every node is incident to at least one edge of M . One way of finding M
is to start with a maximum matching M̃ of G, and then to add one edge incident to
each node that is not matched by M̃ . Recall that def(G) denotes the number of nodes

not matched by a maximum matching of G, i.e., def(G) = |V | − 2|M̃ |. Then we have

|M | = |M̃ |+def(G). (It is easily seen that no edge cover of G has smaller cardinality
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than |M̃ |+def(G).) The second step of the heuristic finds an (inclusionwise) minimal
edge set F ⊆ E\M such that M ∪ F gives a 2-NCSS. In other words, (V,M ∪ F ) is
2-node connected, but for each edge vw ∈ F , (V,M ∪F )\vw is not 2-node connected.
Let E′ denote M ∪ F , and let Eopt ⊆ E denote a minimum-cardinality edge set such
that (V,Eopt) is 2-edge connected.

Lemma 3.12. |E′| = |M |+ |F | ≤ 1.5|V |+ def(G)− 1.
Proof. By Mader’s theorem (Theorem 3.2), F is acyclic, so |F | ≤ |V | − 1. A

minimum edge cover M of G has size |M | = |M̃ | + def(G), where M̃ is a maximum

matching of G. Obviously, |M̃ | ≤ |V |/2. The result follows.
The next result, due to Chong and Lam, gives a lower bound on the size of a 2-

ECSS. Proposition 3.14 generalizes Chong and Lam’s lower bound to k-edge connected
spanning subgraphs, k ≥ 1.

Proposition 3.13 (see Chong and Lam [CL 95, Lemma 3]). Let G = (V,E) be
a graph of edge connectivity ≥ 2, and let |Eopt| denote the minimum size of a 2-edge
connected spanning subgraph. Then |Eopt| ≥max(|V |+ def(G)− 1, |V |).

Proposition 3.14. Let G = (V,E) be a graph of edge connectivity ≥ k ≥ 1, and
let |Eopt| denote the minimum size of a k-edge connected spanning subgraph. If G is
not factor-critical, then |Eopt| ≥ k

2 (|V | + def(G)). In general, |Eopt| ≥ k
2 max(|V | +

def(G)− 1, |V |).
Proof. Suppose that G is not factor-critical and def(G) is ≥ 1. Then, by the

Gallai–Edmonds decomposition theorem of matching theory [LP 86, Theorem 3.2.1],
there is a nonempty node set A such that G\A has |A| + def(G) odd components
(G\A may have some even components too). Focus on a (odd or even) component
Di of G\A. The number of edges of Eopt such that either one or both end nodes are
in Di is at least (|V (Di)| + 1)k/2, because every node v ∈ V (Di) is incident to ≥ k
edges of Eopt, and moreover, δ(V (Di)) has at least k edges of Eopt. Summing over all
components Di of G\A proves the proposition.

Theorem 3.15. Let G = (V,E) be a graph of node (edge) connectivity ≥ 2. Let
ε > 0 be a constant. The heuristic described above finds a 2-node connected (2-edge
connected) spanning subgraph (V,E′) such that |E′| ≤ 1.5|Eopt|, where |Eopt| denotes
the minimum size of a 2-ECSS.

A randomized parallel version of the heuristic runs in RNC and achieves an
approximation guarantee of 1.5. A deterministic parallel version of the heuristic runs
in NC and achieves an approximation guarantee of (1.5 + ε).

The sequential running time is O(
√|V ||E|). A sequential linear-time version of

the heuristic achieves an approximation guarantee of (1.5 + ε).
Proof. The approximation guarantee follows from Lemma 3.12 and Proposi-

tion 3.13, since

|E′|
|Eopt| ≤

1.5|V |+ def(G)− 1

max(|V |+ def(G)− 1, |V |) ≤ 1 +
0.5|V |
|V | ≤ 1.5.

Consider the deterministic parallel version of the heuristic. Let M̃ denote a maximum
matching of G. For step 1, we find an approximately maximum matching in NC
using the algorithm of [FGHP 93]: for a constant ε, 0 < ε < 0.5, the algorithm

finds a matching M ′ with |M ′| ≥ (1− 2ε)|M̃ | in parallel time O(ε−4(log |V |)3) using
O(ε−1|V |2+(2/ε)) processors. We obtain an (inclusionwise) minimal edge cover M

of size ≤ (1 + 2ε)|M̃ | + def(G) by adding to M ′ one edge incident to every node
that is not matched by M ′. For step 2, we use a variant of the NC algorithm of
[HKe+ 95, KeR 95], see Algorithm 2 and Lemma 2 in Kelsen and Ramachandran
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[KeR 95]. Let G′ be a 2-node connected spanning subgraph of G such that E(G′)
contains the minimal edge cover M . Call an edge vw of G′ essential if either vw is in
M or G′\vw is not 2-node connected (i.e., an edge of G′ is nonessential if it is not in
M and it is not critical with respect to the 2-node connectivity of G′). Algorithm 2
of [KeR 95] starts by taking the current subgraph G′ to be G and repeatedly finds a
spanning tree T of G′ that has the minimum number of nonessential edges, minimally
augments T to obtain a 2-node connected spanning subgraph G′′ of G′, and then
replaces the current subgraph G′ by G′′. Finding the spanning tree T is easy: we
compute a minimum spanning tree of G′ where the cost of each edge in M is taken
to be (−1), the cost of each remaining essential edge of G′ is 0, and the cost of each
nonessential edge of G′ is 1. The parallel complexity of the whole algorithm is in NC;
see [HKe+ 95, KeR 95]. Now, the approximation guarantee is (1.5 + ε).

For the sequential linear-time version of the heuristic, note that a matching
M ′ with |M ′| ≥ (1 − 2ε)|M̃ | can be found in time O((|V | + |E|)/ε). Moreover,
in linear time, we can find a minimal 2-node connected spanning subgraph whose
edge set contains the minimal edge cover M ⊆ E obtained by adding edges to M ′;
see [HKe+ 95].

3.4. Directed graphs. The main heuristic extends to digraphs. The key tool
in the analysis of the approximation guarantee is another theorem of Mader [Ma 85,
Theorem 1]. Given a digraph G = (V,E) that is assumed to have node connectivity at
least k, the first step of the heuristic finds an arc set M ⊆ E of minimum cardinality
such that for every node v, there are ≥ (k − 1) arcs ofM going out of v and ≥ (k − 1)
arcs of M coming into v. Clearly, |M | ≤ |Eopt|, where Eopt ⊆ E denotes a minimum-
cardinality arc set such that (V,Eopt) is k-node connected. The second step of the
heuristic is as in section 3.1: we find an (inclusionwise) minimal arc set F ⊆ E\M
such that M ∪ F is the arc set of a k-node connected spanning subgraph. The key
point is that |F | ≤ 2|V | − 1, by Mader’s digraph theorem (Theorem 3.16).

Consider the first step in more detail. To find the arc setM , we transform the di-
graph problem to a b-matching problem on the bipartite graph B(G) associated with
G. For each node v ∈ V (G), there is a pair of nodes v−, v+ in the bipartite graph
B(G), and for each arc (v, w) of G there is one edge v+w− in the bipartite graph.
Our problem of finding a minimum-cardinality M ⊆ E with degM,in(v) ≥ (k − 1),
degM,out(v) ≥ (k − 1) ∀v ∈ V corresponds to the problem of finding a minimum-
cardinality edge set M ′ of the bipartite graph such that each node of the bipartite
graph is incident to ≥ (k − 1) edges of M ′. As in section 3.1, this is a b-matching
problem.

An alternating cycle of a digraph is a nonempty, even-length sequence of distinct
arcs C = e1, e2, . . . , e2�−1, e2�, � ≥ 1, such that (using indices modulo 2�) for each
i = 0, 1, . . ., the arcs e2i and e2i+1 have the same start node, and the arcs e2i+1

and e2i+2 have the same end node. In other words, the set of undirected edges
corresponding to an alternating cycle C is a union of cycles, and moreover, alternate
occurrences of nodes have two C-arcs coming out or two C-arcs going in. See Figure 4
for an illustration. For an alternating cycle C, a C-out node is a node having two
outgoing arcs of C, and a C-in node is a node having two incoming arcs of C. Recall
that an arc e of a k-node connected digraph H is called critical if H\e is not k-node
connected. Here is Mader’s theorem on the critical arcs of a k-node connected digraph;
see Figure 4 for an illustration.

Theorem 3.16 (see Mader [Ma 85, Theorem 1]). In a k-node connected digraph,
if there is an alternating cycle C each of whose arcs is critical, then there is either a
C-out node of outdegree k or a C-in node of indegree k.
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(a) Alternating cycle C1

Bipartite graph B(C1)

Alternating cycle C2

Bipartite graph B(C2)

(b)

v6 v4

v1 v3

v2

v5

(c) An alternating cycle in a strongly connected digraph

Fig. 4. An illustration of an alternating cycle in a digraph and of Mader’s theorem
on critical alternating cycles in a k-node connected digraph; see Theorem 3.16. (a) An al-
ternating cycle C1 and its bipartite graph B(C1). (b) Another alternating cycle C2 =
(v1, v2), (v3, v2), (v3, v4), (v5, v4), (v5, v6), (v1, v6) and its bipartite graph B(C2). For an alternat-
ing cycle, the undirected version may not be a cycle, but the bipartite graph has at least one cycle.
(c) An alternating cycle C of a 1-connected (strongly connected) digraph is indicated by dashed lines.
Every C-out node has outdegree > k = 1, and every C-in node has indegree > k = 1. None of the
arcs in the alternating cycle is critical for 1-connectivity. This example is modified from an example
of Mader [Ma 85].

Fact 3.17 (see Mader [Ma 85, Lemma 2]). Let H be a digraph, and let B(H)
be the associated bipartite graph. There is a cycle in B(H) iff there is an alternating
cycle in H.

Remarks. Mader [Ma 85] states the theorem for minimal k-node connected di-
graphs, but in fact, his proof needs only the fact that every arc in the alternating cycle
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is critical. Now, consider a digraph H0 that is obtained from an arbitrary strongly
connected digraph by subdividing every arc at least once (i.e., an arc is replaced by
≥ 1 new nodes and a directed path of ≥ 2 arcs). Note that H0 contains no alternating
cycle. Mader [Ma 85, p. 104] shows that there exists a minimal k-node connected di-
graph G such that H0 is contained in the subgraph of G induced by arcs whose start
nodes have outdegrees > k and whose end nodes have indegrees > k.

Lemma 3.18. Let F ⊆ E\M be the set of critical arcs found by the second step
of the heuristic. Then |F | ≤ 2|V | − 1.

Proof. Let G′ = (V,E′), where E′ = M ∪ F . We claim that F contains no
alternating cycle. By way of contradiction, suppose that C ⊆ F is an alternating
cycle. Observe that every C-out node v has ≥ (k+1) outgoing arcs of E′, since there
are ≥ (k−1) arcs ofM outgoing from v, and there are two arcs of C outgoing from v.
Similarly, every C-in node has ≥ (k+1) incoming arcs of E′. This contradicts Mader’s
digraph theorem. Hence, F contains no alternating cycle. Then |F | ≤ 2|V | − 1,
because the bipartite graph associated with (V, F ) is acyclic.

The previous lemma immediately gives an approximation guarantee of 1 + [2/k]
for a minimum-size k-NCSS of a digraph, because the “degree lower bound” implies
that a digraph k-NCSS has ≥ k|V | arcs. The approximation guarantee can be im-
proved to 1 + [1/k] via the lower bound on the size of a digraph k-NCSS implied by
Proposition 3.8.

Proposition 3.19. Let G = (V,E) be a digraph of node connectivity ≥ k.
The heuristic above finds a k-node connected spanning subgraph (V,E′) such that
|E′| ≤ (1 + [2/k])|Eopt|, where |Eopt| denotes the cardinality of an optimal solution.

Theorem 3.20. Let G = (V,E) be a digraph of node connectivity ≥ k. The
heuristic described above finds a k-node connected spanning subgraph (V,E′) such
that |E′| ≤(1 + [1/k])|Eopt|, where Eopt ⊆ E denotes a minimum-cardinality arc set
such that (V,Eopt) is k-node connected. The running time is O(k|E|2).

Proof. The proof of the approximation guarantee is similar to the proof for
undirected graphs in Theorem 3.6. Let Gopt = (V,Eopt) be a k-node connected
spanning subgraph of minimum size. Apply Proposition 3.8 to the bipartite graph
B(Gopt) of Gopt to deduce that |M∗| ≤ |E(B(Gopt))| − |V (B(Gopt))|/2, where M∗ ⊆
E(B(Gopt)) is a minimum-size edge set such that every node of B(Gopt) is incident
to ≥ k − 1 edges of M∗. Since the arc set M ⊆ E(G) found by the heuristic has
|M | ≤ |M∗| (since M comes from a supergraph of Eopt), it follows that |M | ≤
|E(B(Gopt))|−|V (B(Gopt))|/2 = |Eopt|−|V (G)|. Consequently, since |E′| = |M |+|F |
and |F | ≤ 2|V (G)| − 1,

|E′|
|Eopt| ≤

|Eopt| − |V (G)|+ (2|V (G)| − 1)

|Eopt| ≤ 1 +
1

k
,

where the last inequality uses the “degree lower bound,” |Eopt| ≥ k|V (G)|. The
running time analysis is similar to that for the heuristic for graphs; see
section 3.1.

4. Approximating minimum-size k-edge connected spanning subgraphs.
The heuristic can be modified to find an approximately minimum-size k-edge con-
nected spanning subgraph (abbreviated k-ECSS) of a graph or a digraph. First, we
focus on graphs, and we prove a (1+ [2/(k+1)])-approximation guarantee for finding
a minimum-size k-ECSS. The analysis hinges on Theorem 4.3 which may be regarded
as an analogue of Mader’s theorem [Ma 72, Theorem 1] for k-edge connected graphs.
Then we turn to digraphs, and prove an approximation guarantee of 1 + [4/

√
k] for

the k-ECSS heuristic.
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In this section, an edge e (arc e) of a k-edge connected graph (digraph) H is
called critical if H\e is not k-edge connected. Assume that the given graph or digraph
G = (V,E) is k-edge connected; otherwise, the heuristic will detect this and report
failure.

4.1. Undirected graphs. In this subsection, G = (V,E) is a graph. The first
step of the heuristic finds an edge set M ⊆ E of minimum cardinality such that every
node in V is incident to ≥ k edges of M . Clearly, |M | ≤ |Eopt|, where Eopt ⊆ E
denotes a minimum-cardinality edge set such that (V,Eopt) is k-edge connected. The
second step of the heuristic finds an (inclusionwise) minimal edge set F ⊆ E\M such
that M ∪ F is the edge set of a k-edge connected spanning subgraph. In detail, the
second step starts with F = ∅ and E′ = E. Note that G′ = (V,E′) is k-edge connected
at the start. We examine the edges of E\M in an arbitrary order e1, e2, . . .. For each
edge ei = viwi (where 1 ≤ i ≤ |E\M |), we determine whether or not viwi is critical
for the current graph by finding the maximum number of edge-disjoint vi↔wi paths
in G′.

Proposition 4.1. An edge viwi of a k-edge connected graph is not critical iff
there exist at least k + 1 edge-disjoint vi↔wi paths (including the path viwi).

If viwi is noncritical, then we delete it from E′ and G′; otherwise, we retain it in
E′ and G′, and also we add it to F . At termination of the heuristic, G′ = (V,E′),
E′ =M ∪F , G′ is k-edge connected, and every edge vw ∈ F is critical, i.e., G′\vw is
not k-edge connected. Theorem 4.3 below shows that |F | ≤ k|V |/(k + 1) for k ≥ 1.
Since |Eopt| ≥ k|V |/2, the minimum-size k-ECSS heuristic achieves an approximation
guarantee of 1 + [2/(k + 1)] for k ≥ 1.

The next lemma turns out to be quite useful. A straightforward counting argu-
ment gives the proof; see Mader [Ma 71, Lemma 1] or Cai [Ca 93, Claim 3].

Lemma 4.2. Let G = (V,M) be a simple graph of minimum degree k ≥ 1.
(i) Then for every node set S ⊆ V with 1 ≤ |S| ≤ k, the number of edges with

exactly one end node in S, |δ(S)|, is at least k.
(ii) If a node set S ⊆ V with 1 ≤ |S| ≤ k contains at least one node of degree

≥ (k + 1), then |δ(S)| is at least k + 1.
The goal of Theorem 4.3 below is to give an upper bound on the number of

critical edges in the edge-complement of a spanning subgraph of minimum degree k
in an arbitrary k-edge connected graph H. Clearly, every critical edge e ∈ E(H) is
in some k-cut δ(Ae), Ae ⊆ V (H). By a tight node set S of a k-edge connected graph
H we mean a set S ⊂ V (H) with |δH(S)| = k, i.e., a node set S such that δH(S) is a
k-cut. As usual, a family of sets {Si} is called laminar if for any two sets in the family,
either the two sets are disjoint, or one set is contained in the other. For an arbitrary
subset F ′ of the critical edges of H, it is well known that there exists a laminar
family F of tight node sets covering F ′, i.e., there exists F = {A1, A2, . . . , A�}, where
Ai ⊆ V (H) and δ(Ai) is a k-cut, for 1 ≤ i ≤ �, such that each edge e ∈ F ′ is in
some δ(Ai), 1 ≤ i ≤ �. (For details, see [Fr 93, section 5] or [Ca 93, Lemma 3].)
It is convenient to define a tree T corresponding to F ∪ {V (H)}: there is a T -node
corresponding to each set Ai ∈ F and to V (H), and there is a T -edge AiAj (or
V (H)Aj) iff Aj ⊂ Ai and no other node set in F contains Aj and is contained in
Ai. Note that the T -node corresponding to the node set Ai of the laminar family F
is denoted by Ai, and the T -node corresponding to the node set V (H) is denoted by
V (H). Each T -edge corresponds to a k-cut of H. Suppose that the tree T is rooted
at the T -node V (H). We associate another node set φi ⊆ V (H) with each node set
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Ai of F :

φi = Ai\
⋃
{A ∈ F : A ⊂ Ai, A = Ai}.

In other words, a T -node Ai ∈ F that is a leaf node of T has φi = Ai; otherwise,
φi consists of those H-nodes of Ai that are not in the node sets A′, A′′, . . ., where
A′, A′′, . . . ∈ F correspond to the children of Ai in the tree T . For distinct T -nodes
Ai and Aj , note that φi and φj are disjoint. See Figure 5 for an illustration of
F = {Ai}, the family of node sets {φi}, and the tree T for a particular graph.

The proof of Theorem 4.3 is long and nontrivial. Readers interested in a detailed
study of the proof may be helped by an examination of the examples in Figure 2(c)
and Figure 5, the illustration of the proof in Figure 6(a)–(d), and a study of the
proof of Theorem 4.8, which is an analogous but weaker result for k-edge connected
digraphs.

Theorem 4.3. Let H = (V,E) be a k-edge connected, n-node graph (k ≥ 1). Let
M ⊆ E be an edge set such that the spanning subgraph (V,M) has minimum degree
≥ k. Let F be the set consisting of edges of E\M that are in some k-cut of H. Let
F = {A1, . . . , A�} be a laminar family of tight node sets that covers F , i.e., for each
e ∈ F , there is an Ai ∈ F such that e ∈ δ(Ai). Then

|F | ≤ k

k + 1

∣∣∣∣∣
�⋃
i=1

Ai

∣∣∣∣∣ ≤
k

k + 1
(n− 1).(4.1)

Some key preliminaries are discussed before delving into the proof. The upper
bound on |F | is asymptotically tight. Consider the k-edge connected graph G obtained
as follows: take � + 1 copies of the (k + 1)-clique, C0, C1, . . . , C�, and for each i =
1, . . . , �, choose an arbitrary node vi in Ci and add k (nonparallel) edges between vi
and C0. Take M =

⋃�
i=0E(Ci) and F = E(G)\M . Observe that |F | = k(n − (k +

1))/(k + 1).
Fact 4.4. For a laminar family of tight node sets F = {A1, . . . , A�}, ∪�i=1δ(Ai) =

∪�i=1δ(φi).
Proof. For each i = 1, . . . , �, an edge in δ(φi) is either in δ(Ai) or in δ(A

′), δ(A′′), . . .,
where A′, A′′, . . . ∈ F correspond to the children of Ai in the tree T . Hence, the set
on the left side contains the set on the right side.

To see that the set on the left side is contained in the set on the right side,
note that for every edge e in the left side set, there is an (inclusionwise) minimal
tight node set Ai(e) such that e ∈ δ(Ai(e)), and the associated node set φi(e) has e ∈
δ(φi(e)).

Fact 4.5. Let H,M,F and F = {A1, . . . , A�} be as in Theorem 4.3. The in-
equality in the theorem

|F | ≤ k

k + 1

∣∣∣∣∣
�⋃
i=1

Ai

∣∣∣∣∣
is implied by the inequality

∣∣∣∣∣
�⋃
i=1

δ(Ai)

∣∣∣∣∣ ≤
k

k + 1

�∑
i=1

|φi|+ 1

2

�∑
i=1

|M ∩ δ(φi)|.
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A3

A6

A2

A3

φ6

A1 A4 A5

A7 A8φ3

A1

A2

A4

A5

Tree T of F

φ2

V (H)

Laminar family F of tight node sets

A6

(a)

V (H)

A1

A2

φ2

Tree T ′ of F ′Laminar family F ′ of tight node sets

A2

A1

(b)

A7

A8

Fig. 5. Two laminar families of tight node sets for a 2-edge connected graph H (k = 2). (a)
The laminar family F covers all critical edges of H. F consists of the node sets A1, . . . , A8, where
each Ai is tight since |δ(Ai)| = 2 = k. For a node set Ai, φi is the node set Ai\ ∪ {Aj ∈ F : Aj ⊂
Ai, Aj �= Ai}. Note that φi = Ai for the inclusionwise minimal Ai, i.e., for i = 1, 4, 5, 7, 8. Also,
the tree T corresponding to F ∪ {V (H)} is illustrated. (b) The laminar family F ′ covers all critical
edges of E(H)\M , where M ⊂ E(H) is such that every node is incident to at least k = 2 edges
of M . M is indicated by dotted lines. All edges of E(H)\M are critical. F ′ consists of the tight
node sets A1, A2. Also, the node sets φ1, φ2 are indicated (φ1 = A1), and the tree T ′ representing
F ′ ∪ {V (H)} is illustrated.

Proof. Let Mc ⊆ M denote the set of M -edges that are covered by the laminar
family F , i.e.,

Mc =

�⋃
i=1

[M ∩ δ(Ai)] =M ∩
[

�⋃
i=1

δ(Ai)

]
=M ∩

[
�⋃
i=1

δ(φi)

]
=

�⋃
i=1

[M ∩ δ(φi)] .

Consider an arbitrary edge e = vw that is in Mc. If e ∈ δ(φi) (i = 1, . . . , �), then
either v ∈ φi, w ∈ φi or w ∈ φi, v ∈ φi. Since the node sets φi (i = 1, . . . , �) are
mutually disjoint, there are at most two tight node sets Ai ∈ F such that e ∈ δ(φi).
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Ai

Aj

δ(Aj) ∩ δ(Ai\[Aj ∪ φi])

Ai

1

1
2

Ai

Aj

w

Aq

x

φi φi

1
2

δ(Aj\φj) ∩ δ(φi)

φj

Ai

Aj

x

M

F

w
φj

y
φj

v∗ v∗φi φi

δ(φj) ∩ δ(φi)

(a) (b)

(c) (d)

φj Aj

δ(Ai) ∩ δ(φi)

δ(Ai)\δ(φi)

1

Aq

Fig. 6. An illustration of the proof of Theorem 4.3. (a) Every edge in δ(Ai)∩ δ(φi) contributes
≥ 1 to the left-hand side of inequality (σ), and every edge in δ(Ai)\δ(φi) contributes ≥ 1

2
. (b) The

tight node set Ai is shown, together with two tight node sets Aj , Aq contained in Ai. The node
sets φi and φj are also shown. The three kinds of edges arising in the proof are illustrated. (c) In
Claim 3, φi = {v∗} and |φj | ≥ (k + 1). An edge wv∗ with w ∈ Aj\φj is replaced by a pair of new
edges wx and yv∗, where x ∈ φj , y ∈ φj . (d) In Claim 3, φi = {v∗}. If an edge v∗x with x �∈ Ai

is in F (so v∗x �∈ M), then there is an edge v∗w in M with w ∈ φj , where φj ⊆ Aj ⊂ Ai and
|φj | ≥ (k + 1). Edges v∗x and v∗w are swapped between M and F .

(For example, if there are tight node sets Ag, Ah ∈ F , g = h, with v ∈ φg, w ∈ φh,
then e ∈ δ(φg), e ∈ δ(φh), and e ∈ δ(φi) for i = 1, . . . , �, i = g, i = h.) Then

|Mc| =
∣∣∣∣∣
�⋃
i=1

[M ∩ δ(φi)]
∣∣∣∣∣ ≥

1

2

�∑
i=1

|M ∩ δ(φi)|,(4.2)

since we are counting the cardinality of a union of sets such that each element occurs
in at most two of these sets.
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Now note that ∪�i=1δ(Ai) = F ∪Mc, hence∣∣∣∣∣
�⋃
i=1

δ(Ai)

∣∣∣∣∣ = |F |+ |Mc|.(4.3)

Also, ∪�i=1Ai = ∪�i=1φi, hence

k

k + 1

∣∣∣∣∣
�⋃
i=1

Ai

∣∣∣∣∣ =
k

k + 1

∣∣∣∣∣
�⋃
i=1

φi

∣∣∣∣∣ =
k

k + 1

�∑
i=1

|φi|.(4.4)

Substituting inequalities (4.2), (4.3), and (4.4) into the second inequality in the
fact gives

|F |+ |Mc| ≤ k

k + 1

∣∣∣∣∣
�⋃
i=1

Ai

∣∣∣∣∣+ |Mc|,

which is the inequality in Theorem 4.3.
Most of the complications in the proof of Theorem 4.3 seem to be caused by the

presence of tight node sets Ai ∈ F such that |φi| = 1. To illustrate the main ideas in
the proof, we first prove a weaker version of Theorem 4.3. In the weaker version, the
required upper bound of k(n−1)/(k+1) is relaxed to (n−1), and the laminar family
of tight node sets F = {A1, . . . , A�} is restricted such that every Ai ∈ F has |φi| ≥ 2.
(The motivation for putting the restriction on F is expository. Such restricted laminar
families F do not seem to be of mathematical interest.)

Proposition 4.6. Let H,M,F, and F be as in Theorem 4.3, and moreover,
suppose that each tight node set Ai ∈ F has |φi| ≥ 2. Then

|F | ≤
∣∣∣∣∣
�⋃
i=1

Ai

∣∣∣∣∣ ≤ n− 1.

Proof. For an arbitrary i = 1, . . . , �, consider Ai, φi, and let p denote |φi|. By
assumption, p ≥ 2. Suppose that p ≤ k (the other case p ≥ k + 1 turns out to be
easy). Then

|M ∩ δ(φi)| ≥ p(k − (p− 1)),(4.5)

since for every node v ∈ φi, there are at most (p− 1) incident edges vw ∈ E(H) with
w ∈ φi. Adding 2|φi| to both sides of inequality (4.5) gives

2|φi|+ |M ∩ δ(φi)| ≥ 2p+ p(k − (p− 1)) ≥ −p2 + (k + 2)p.(4.6)

Subtracting 2k from both sides of inequality (4.6) gives

2|φi|+ |M ∩ δ(φi)| − 2k ≥ −p2 + (k + 2)p− 2k = −(p− k)(p− 2) ≥ 0,(4.7)

where the last inequality −(p−k)(p−2) ≥ 0 holds because 2 ≤ p ≤ k. Inequality (4.7)
implies

|φi|+ 1

2
|M ∩ δ(φi)| ≥ k = |δ(Ai)|.(4.8)

If |φi| ≥ (k + 1), then obviously inequality (4.8) holds.
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Summing up inequality (4.8) over i = 1, . . . , � gives
∣∣∣∣∣
�⋃
i=1

δ(Ai)

∣∣∣∣∣ ≤
�∑
i=1

|δ(Ai)| = k · � ≤
�∑
i=1

|φi|+ 1

2

�∑
i=1

|M ∩ δ(φi)|.(4.9)

The proof of Fact 4.5 shows that inequality (4.9) implies the inequality in the propo-
sition,

|F | ≤
∣∣∣∣∣
�⋃
i=1

Ai

∣∣∣∣∣ ≤ n− 1.

Proof of Theorem 4.3. Without loss of generality (w.l.o.g.) assume that F is
minimal, i.e., for every Ai ∈ F there is an edge ei ∈ F such that ei ∈ δ(Ai) and
ei ∈ δ(A) ∀A ∈ F , A = Ai. Since F is minimal, every Ai ∈ F has |φi| ≥ 1. Let T be
the tree representing F ∪{V (H)}. The proof examines the node sets Ai ∈ F , φi, but
the node set V (H)\⋃{Ai : Ai ∈ F} is not relevant for the proof. Every inclusionwise
minimal Ai ∈ F has |Ai| ≥ (k + 1), since δ(Ai) ∩ F = ∅ implies that Ai contains a
node v with degH(v) ≥ (k + 1), so Lemma 4.2 implies this bound on |Ai|. Hence,
every Ai ∈ F with |φi| = 1 has at least one child in the tree T .

Two key assumptions are needed to complete the proof.
Assumption 1. For 1 ≤ i ≤ �, every φi induces a complete subgraph of H,

and moreover, every edge of this complete subgraph is in M , i.e., for i = 1, . . . , �
∀v, w ∈ φi, vw ∈ E(H) and vw ∈M .

Assumption 2. For every Ai ∈ F with |φi| = 1, there is an Aj ∈ F such that
|φj | ≤ k and Aj is a child of Ai in the tree T .

Claim 2. Assumption 1 causes no loss of generality.
Here is the proof of Claim 2. For an arbitrary i = 1, . . . , �, consider φi and E(φi),

the set of edges of H with both end nodes in φi. Clearly, an edge vw ∈ E(φi) is not
in F , since vw is in none of the k-cuts δ(Aj) (j = 1, . . . , �). Therefore, all the missing
edges vw with v ∈ φi, w ∈ φi can be added to H (say, vw is first added to E\(M ∪F ))
such that φi induces a clique and this will keep M,F , and F unchanged. Moreover,
every edge vw ∈ E(φi) can be placed in M , and the minimum degree requirement
on (V,M) will continue to hold. By repeating this for each i = 1, . . . , �, we obtain
H ′,M ′, F ′ = F and F ′ = F that satisfy Assumption 1 and the conditions in the
theorem. Clearly, if the inequality in the theorem holds for H ′,M ′, F ′,F ′, then it
also holds for H,M,F,F .

Claim 3. Assumption 2 causes no loss of generality.
Proof of Claim 3. Consider an Ai ∈ F (i = 1, . . . , �) such that |φi| = 1 and

in the tree T every child Aj ∈ F of Ai has |φj | ≥ (k + 1). Let φi = {v∗}. Let
Aj ∈ F be an arbitrary T -child of Ai with |φj | ≥ (k + 1). Clearly, by Assumption 1,
the subgraph of H induced by φj is a clique, and every edge in the clique is in M .
Suppose that H has an edge wv∗ such that w ∈ Aj\φj , i.e., wv∗ ∈ δ(Aj)\δ(φj).
(Figure 6(c) illustrates this.) Then we replace wv∗ by a pair of new edges wx, yv∗

with x ∈ φj , y ∈ φj (possibly, x = y) such that the resulting graph H ′ is simple (i.e.,
H ′ has no multiedges); this can be done always, since |φj | ≥ (k + 1) and both δ(Aj)
and δ(Aq) are k-cuts, where Aq ∈ F is the T -child of Aj containing node w. The
resulting graph H ′ is k-edge connected. To see this, note that H is k-edge connected,
and H ′ is obtained from H by replacing one edge wv∗ by two edges wx, yv∗, where
the nodes x and y are contained in the (k + 1)-clique induced by φj . The formal
proof of the k-edge connectivity of H ′ is easy and is left to the reader. If wv∗ ∈ M ,
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then we take M ′ = (M\{wv∗}) ∪ {wx, yv∗}, F ′ = F ; otherwise, we take M ′ = M ,
F ′ = (F\{wv∗})∪{wx, yv∗}. In either case F covers F ′. By repeating this maneuver
for all relevant i = 1, . . . , �, we obtain H ′,M ′, F ′, and F ′ = F with |F ′| ≥ |F |
that satisfy the conditions in the theorem. Clearly, if the inequality in the theorem
holds for H ′,M ′, F ′,F ′, then it also holds for H,M,F,F . Moreover, the following
condition (∗) holds:

(∗) For every Ai ∈ F with |φi| = 1, for every T -child Aj ∈ F of Ai
with |φj | ≥ (k + 1), every edge in δ(Aj) ∩ δ(φi) is in δ(φj).

Now w.l.o.g. suppose that H, M , F , and F satisfy condition (∗). Call an Ai ∈ F
bad if |φi| = 1 and every T -child Aj ∈ F of Ai has |φj | ≥ (k+ 1). Suppose that there
is a bad Ai ∈ F with φi = {v∗} such that one of the edges v∗x ∈ δ(Ai) ∩ δ(φi) is
not in M . (Figure 6(d) illustrates this.) Then since |δ(Ai)| = k, |δ(Ai) ∩ F | ≥ 1, and
|M ∩ δ(φi)| ≥ k, there must be an M -edge wv∗ in δ(φi)\δ(Ai). Let Aj ∈ F be the
T -child of Ai such that w ∈ Aj . Since Ai is bad, |φj | ≥ (k+1), therefore condition (∗)
applies and ensures that the node w is in φj . Moreover, by Assumption 1, w is incident
to ≥ k edges of M that have both end nodes in φj . Take M

′ = (M\{wv∗}) ∪ {v∗x},
F ′ = (F\{v∗x}) ∪ {wv∗}, and observe that |M | = |M ′|, |F | = |F ′|, every node
v ∈ V (H) is incident to ≥ k edges of M ′, F ′ consists of critical edges in E(H)\M ′,
and F covers F ′. By repeating this maneuver for all relevant i = 1, . . . , �, we obtain
H,M ′, F ′ and F that satisfy the conditions in the theorem such that |F ′| = |F |, and
for every bad Ai ∈ F , no edge in δ(Ai)∩δ(φi) is in F ′. Then we can start with F and
remove each bad Ai from F to obtain another laminar family F ′ covering F ′ such that
|∪A∈F ′A| ≤ |∪A∈F A|, and F ′ satisfies Assumption 2. Clearly, if the inequality in the
theorem holds for H ′,M ′, F ′,F ′, then it also holds for H,M,F,F . This completes
the proof of Claim 3.

Instead of proving that F,F satisfy inequality (4.1), we prove that under As-
sumption 2, M , F , and F = {A1, . . . , A�} satisfy the following sharper inequality (see
Fact 4.5):

∣∣∣∣∣
�⋃
i=1

δ(Ai)

∣∣∣∣∣ ≤
k

k + 1

�∑
i=1

|φi|+ 1

2

�∑
i=1

|M ∩ δ(φi)|.(4.10)

Clearly, every Ai ∈ F with |φi| ≥ (k + 1) satisfies the inequality

|δ(Ai)| ≤ k

k + 1
|φi|.(4.11)

From the proof of Proposition 4.6 (see inequalities (4.5), (4.6), (4.7), (4.8)), it follows
that every Ai ∈ F with 2 ≤ |φi| ≤ k satisfies the inequality

|δ(Ai)|+ k − 1

2(k + 1)
|φi| ≤ k

k + 1
|φi|+ 1

2
|M ∩ δ(φi)|,(4.12)

where the surplus term on the left-hand side (l.h.s.) is the difference between k|φi|/
(k + 1) and |φi|/2. Every Ai ∈ F with |φi| = 1 satisfies the inequality

|δ(Ai) ∩ δ(φi)|+ 1

2
|δ(Ai)\δ(φi)|+ k

k + 1
− 1

2
|δ(Ai) ∩ δ(φi)|(4.13)

≤ k

k + 1
|φi|+ 1

2
|M ∩ δ(φi)|,

because |δ(Ai) ∩ δ(φi)|+ |δ(Ai)\δ(φi)| = |δ(Ai)| = k ≤ |M ∩ δ(φi)|.
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Claim 4. Under Assumption 2, the inequality (σ) obtained by summing up over
all Ai ∈ F the appropriate one of inequalities (4.11), (4.12), (4.13) implies inequal-
ity (4.10), i.e., the l.h.s. of inequality (σ) is ≥ the l.h.s. of inequality (4.10), and the
right-hand side (r.h.s.) of inequality (σ) is ≤ the r.h.s. of inequality (4.10).

Proof of Claim 4. Clearly, inequality (σ) will imply inequality (4.10) if for every
Ai ∈ F , every edge in δ(Ai)∩δ(φi) contributes ≥ 1 to the l.h.s. of inequality (σ). This
property holds for Ai ∈ F with |φi| ≥ 2 by inequalities (4.11), (4.12), but for Ai ∈ F
with |φi| = 1 the property fails to hold (see inequality (4.13)). Fortunately, there is a
way around this difficulty. For Ai ∈ F with |φi| = 1, we allow Ai, φi to contribute a
deficit of 1

2 |δ(Ai)∩δ(φi)| on the l.h.s. of inequality (σ); using this deficit, we can ensure
that every edge in δ(Ai)∩ δ(φi) (in δ(Ai)\δ(φi)) contributes ≥ 1 (≥ 1/2) to the l.h.s.
of inequality (σ); see inequality (4.13). (Figure 6(a) illustrates the general scheme.)
For each Ai ∈ F with |φi| = 1, let Ac(i) ∈ F be an arbitrary T -child of Ai such that
1 ≤ |φc(i)| ≤ k; Ac(i) exists by Assumption 2. Inequality (σ) implies inequality (4.10)
because the deficit contributed by each Ai ∈ F with |φi| = 1 is compensated by the
surplus contributed by Ac(i), φc(i). To see this, focus on an arbitrary Ai ∈ F with
|φi| = 1 and let j = c(i). First observe that if an edge vw ∈ δ(Aj) with v ∈ Aj is not
in δ(Ai), then there are three possibilities: (i) v ∈ φj , w ∈ φi, (ii) v ∈ φj , w ∈ φi,
i.e., v ∈ Ag, where Ag ∈ F corresponds to a child of Aj in the tree T , and (iii)
v ∈ Aj , w ∈ Ai\[Aj ∪ φi], i.e., w ∈ Aq, where Aq ∈ F corresponds to a sibling of Aj
in the tree T . (Figure 6(b) illustrates the three possibilities.) Second, observe that

|δ(Ai) ∩ δ(φi)| ≤ |δ(Aj)\δ(Ai)|
= |δ(Aj\φj) ∩ δ(φi)|+ |δ(Aj) ∩ δ(Ai\[Aj ∪ φi])|+ |δ(φj) ∩ δ(φi)|.

For each of the first two terms t on the r.h.s., Aj , φj contributes a surplus of at least
t/2 to the l.h.s. of inequality (σ), because (i) every edge in two distinct k-cuts δ(Ag)
and δ(Aj), Ag ∈ F , Aj ∈ F , Ag ⊂ Aj , contributes a surplus of 1/2 or more, since
Ah ∈ F such that δ(φh) ∩ δ(Ah) contains the edge contributes one for the edge, and
every other A ∈ F such that δ(A) contains the edge contributes ≥ 1/2 for the edge;
(ii) every edge in two distinct k-cuts δ(Aq) and δ(Aj), Aq ∈ F disjoint from Aj ∈ F ,
contributes a surplus of one or more.

Focus on the third term |δ(φj) ∩ δ(φi)|, and note that its value is ≤ |φj |, since
|φi| = 1 and the graph is simple. If |φj | = 1, then the deficit contributed by Ai, φi (to
the l.h.s. of inequality (σ)) is compensated, because the surplus of k

k+1 (on the l.h.s.

of Ai’s inequality) is ≥ 1
2 (for k ≥ 1), hence

1

2
|δ(Ai) ∩ δ(φi)| ≤ 1

2
|δ(Aj\φj) ∩ δ(φi)|+ 1

2
|δ(Aj) ∩ δ(Ai\[Aj ∪ φi])|+ k

k + 1
.

If 2 ≤ |φj | ≤ k, then the deficit contributed by Ai, φi (to the l.h.s. of inequality (σ))
is compensated, because the surplus of k−1

2(k+1) |φj |+ k
k+1 (on the l.h.s. of Aj ’s and Ai’s

inequalities) is ≥ |φj |/2 (for k ≥ |φj | ≥ 1), hence

1

2
|δ(Ai) ∩ δ(φi)| ≤ 1

2
|δ(Aj\φj) ∩ δ(φi)|

+
1

2
|δ(Aj) ∩ δ(Ai\[Aj ∪ φi])|+ k − 1

2(k + 1)
|φj |+ k

k + 1
.

This completes the proof of Claim 4 and the proof of the theorem.
Theorem 4.7. Let G = (V,E) be a graph of edge connectivity ≥ k ≥ 1. The

heuristic described above finds a k-edge connected spanning subgraph (V,E′) such that
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|E′| ≤ (1 + [2/(k + 1)])|Eopt|, where |Eopt| denotes the cardinality of an optimal solu-
tion. The running time is O(k3|V |2 + |E|1.5(log |V |)2).

4.2. Directed graphs. The heuristic for finding an approximately minimum-
size k-edge connected spanning subgraph of a digraph has two steps. Similarly to
section 3.4, the first step finds a minimum-cardinality arc set M ⊆ E such that for
every node v, there are ≥ k arcs of M going out of v and ≥ k arcs of M coming
into v. Clearly, |M | ≤ |Eopt|, where Eopt ⊆ E denotes a minimum-cardinality arc
set such that (V,Eopt) is k-edge connected. The second step of the heuristic finds an
(inclusionwise) minimal arc set F ⊆ E\M such that E′ = M ∪ F is the arc set of
a k-edge connected spanning subgraph. To prove the approximation guarantee, we
need to estimate |F |. We use the notion of special arcs to estimate |F |. Call an arc
(v, w) of a k-edge connected digraph special if the arc is critical, and in addition, if
degout(v) ≥ (k+1) and degin(w) ≥ (k+1). Clearly, every arc in F is a special arc of
the digraph G′ = (V,E′), E′ = M ∪ F , returned by the heuristic. We can deduce a
bound of O(

√
k|V |) on the number of special arcs in G′ by examining chains of tight

node sets S1 ⊂ S2 ⊂ · · · ⊂ Sq, where a node set Si is called tight if G′ has exactly k
arcs in δout(Si).

Theorem 4.8. Let k ≥ 1 be an integer, and let H be a k-edge connected, n-node
digraph. The number of special arcs in H is at most 4

√
k · n.

Proof. Let V denote V (H) for this proof. Each special arc e is in a k-dicut
δout(Ae) = δin(V \Ae), where 2 ≤ |Ae| ≤ n − 2. As in section 4.1, we obtain two
laminar families of tight node sets Fout and Fin that cover all the special arcs: that
is, for each Ai ∈ Fout (Ai ∈ Fin), Ai is a set of H-nodes, δout(Ai) (δin(Ai)) has k arcs
including at least one special arc, and each special arc is in some δout(Ai), Ai ∈ Fout,
or is in some δin(Ai), Ai ∈ Fin. Focus on Fout; the analysis is symmetric for Fin. Let
Fout = {A1, A2, . . . , A�}. To estimate the number of special arcs, we need to examine
the tree T corresponding to Fout ∪ {V (H)}. For i = 1, . . . , �, recall that the T -node
corresponding to a node set Ai ∈ Fout is also denoted Ai (the T -node corresponding to
V (H) is denoted by V ), and recall that φi denotes Ai\∪{A ∈ Fout : A ⊂ Ai, A = Ai}.
Partition the set {A1, . . . , A�} of T -nodes into two sets R1 and R2, where R2 consists
of the T -nodes incident to precisely two T -edges and R1 = {A1, . . . , A�}\R2. Note
that V ∈ R1 and V ∈ R2.

Claim 5. |R1| ≤ 2|V1|/(k+1), where V1 denotes the set of H-nodes in
⋃{φi : Ai ∈

R1}.
Here is the proof of Claim 5. Let T1 be the tree obtained from the tree T

by “unsubdividing” all the T -nodes in R2, i.e., by repeatedly replacing a degree-2
T -node in R2 and its two incident edges by an edge between the two neighbors. Then
T1 is a tree whose nonleaf T -nodes in R1 have T1-degree ≥ 3, whereas the T -node
V may have T1-degree 1, 2, or ≥ 3. Let �1 be the number of leaf nodes (degree-1
nodes) of T1 in R1. Then, |R1| ≤ �1 + (�1 + 1) − 2 ≤ 2�1. Now, Claim 5 follows
because �1 ≤ |V1|/(k + 1), because for each (inclusionwise) minimal Ai ∈ Fout, the
set φi = Ai of H-nodes has cardinality at least (k + 1) by the digraph version of
Lemma 4.2(ii). (Ai contains a node v with degout(v) ≥ (k+1) since δout(Ai) contains
a special arc.)

Now focus on a maximal path P = A0, A1, . . . , Aq+1 of T such that every T -
node Ai with 1 ≤ i ≤ q is in R2. In H, the node sets A0, A1, . . . , Aq+1 satisfy
A0 ⊂ A1 ⊂ · · · ⊂ Aq+1, and for i = 1, . . . , q, if A′ ∈ Fout is contained in Ai, then
either A′ = Ai−1 or A′ ⊂ Ai−1. Let VP denote the set of H-nodes φ1 ∪ φ2 ∪ · · · ∪ φq.
Also, note that for i = 1, 2, . . . , q, Ai = A0 ∪ φ1 ∪ φ2 ∪ · · · ∪ φi.
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Fig. 7. An illustration of Claim 6 in the proof of Theorem 4.8. (a) A subfamily of the laminar
family of tight node sets Fout that covers (some of) the special arcs. (b) The subtree corresponding
to the subfamily of Fout in (a). Each of the T -nodes A1, A2, . . . , Aq is incident to exactly two edges
of T , where T is the tree corresponding to Fout.

Claim 6. The number of arcs (v, w) such that v ∈ VP and (v, w) ∈ ⋃{δout(Ai) :
1 ≤ i ≤ q} is at most k + 2

√
k · |VP |.

Here is the proof of the Claim 6; see Figure 7 for an illustration. The additional
term of k in the upper bound accounts for the arcs with start nodes in Aq and end
nodes in V \Aq; there are at most k such arcs, since each such arc is in δout(Aq).
Now ignore the arcs in δout(Aq). Linearly order the H-nodes in VP such that for
each i, 1 ≤ i < q, the H-nodes in φi precede the H-nodes in φi+1. Let v be an
arbitrary node in VP . Let Γv ⊆ VP denote the set of end nodes wj of the arcs (v, wj)
outgoing from v such that wj ∈ VP and (v, wj) ∈

⋃{δout(Ai) : 1 ≤ i ≤ q}. Let the
linear ordering of the nodes in Γv be w1, w2, . . . , w|Γv|. Call an arc (v, wj) short if

j ≤ √k, otherwise, call the arc long. We “charge” each long arc (v, wj) to the first√
k nodes w1, w2, . . . , w√k in Γv, i.e., each of these nodes is charged 1/

√
k for each

arc (v, wj), wj ∈ Γv, and j >
√
k. Now consider the total charge on an arbitrary

node wa ∈ VP due to all long arcs (x, y) ∈ ⋃{δout(Ai) : 1 ≤ i ≤ q} with x ∈ VP
and y ∈ VP . The key fact is this: the total charge on wa is at most

√
k. To see

this suppose that wa ∈ φi, where 1 ≤ i ≤ q. Then for every arc (v, wj) charged to
wa, (v, wj) ∈ δout(Ai−1), because v ∈ Ai\φi (if v ∈ V \Ai or v ∈ φi, then clearly Γv
does not contain a node of φi such as wa). Furthermore, by the linear ordering of Γv,
wj ∈ φi∪φi+1∪· · ·∪φq, i.e., wj ∈ Ai−1. Since δout(Ai−1) has k arcs, the total charge

to wa is at most k · (1/√k) = √k. Finally, consider the total number, mP , of short
arcs (x, y) ∈ ⋃{δout(Ai) : 1 ≤ i ≤ q} with x ∈ VP and y ∈ VP . Obviously, mP is at
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most
√
k|VP |. Claim 6 is completed by summing up the three terms: k (for arcs in

δout(Aq)),
√
k|VP | (for the total charge on nodes w ∈ VP ), and

√
k|VP | (for mP ).

We account for the special arcs in δout(Aq) by “charging” the additional term of
k to the “unsubdivided edge” A0Aq+1 of the tree T1 in the proof of Claim 5. Thus
each edge AiAi+q+1, Ai ⊂ Ai+q+1, of T1 is “charged” for ≤ 2k special arcs (these
are the special arcs in δout(Ai) ∪ δout(Ai+q)). Since the number of edges in T1 is
≤ |R1|, the number of special arcs contributed by the T -nodes in R1 is ≤ 2k|R1|. We
“charge” 2

√
k to each H-node v such that v ∈ φi for a T -node Ai ∈ R2. Combining

the contributions of special arcs from the T -nodes in R1 and R2 and applying Claim 5,
we see that the number of special arcs is at most

2k|R1|+ 2
√
k · n2 ≤ 4kn1

(k + 1)
+ 2
√
k · n2,

where n1 and n2 denote the cardinalities of V1 =
⋃{φi : Ai ∈ R1} and V2 =

⋃{φi : Ai ∈
R2}, respectively. For k ≥ 1, the number of special arcs is maximized when n2 is the
maximum possible and n1 is the minimum possible. Since the tree T has at least two
leaves, n2 is at most n− (2k + 2). Hence, the number of special arcs contributed by
Fout is at most 4k(2k + 2)/(k + 1) + 2

√
k(n− (2k + 2)). The total number of special

arcs in H is at most 16k + 4
√
k(n− (2k + 2)) ≤ 4

√
kn.

The heuristic clearly runs in time O(k|E|2). This can be improved by implement-
ing the second step to run in time O(k3|V |2). We run Gabow’s algorithm [Ga 95] as

a preprocessing step to compute a sparse certificate Ẽ of G for k-edge connectivity,
i.e., Ẽ ⊆ E, |Ẽ| ≤ 2k|V |, and for all nodes v, w, (V, Ẽ) has k arc-disjoint v→w di-
rected paths iff G has k arc-disjoint v→w directed paths. In detail, we fix a node
a ∈ V (G) and take Ẽ = Ẽout ∪ Ẽin, where Ẽout (Ẽin) is the union of k arc-disjoint
out-branchings (in-branchings) rooted at a. Gabow’s algorithm [Ga 95] runs in time

O(k|V |2), and the second step runs in time O(k|Ẽ ∪M |2) = O(k3|V |2).
Theorem 4.9. Let G = (V,E) be a digraph of edge connectivity ≥ k. The

heuristic described above finds a k-edge connected spanning subgraph (V,E′) such that
|E′| ≤ (1 + [4/

√
k])|Eopt|, where |Eopt| denotes the cardinality of an optimal solution.

The running time is O(k3|V |2 + |E|1.5(log |V |)2).
The upper bound on the number of special arcs in Theorem 4.8 is not tight but

is within a factor of (roughly) 3 of the tight bound for n � k. To see this, take
n ≥ 3k + 2 and consider the following k-edge connected, n-node digraph Ĝ with at
least βn − 2β(k + 1) + k special arcs, where β is the maximum integer such that
β(β +1)/2 ≤ k, i.e., β = �√2k + 0.25− 0.5�. See Figure 8 for an illustration of Ĝ. Ĝ
has a “left” (k + 1)-directed clique KL and a “right” (k + 1)-directed clique KR. Let
v1, v2, . . . , v� be a linear ordering of the remaining nodes, where � = n− 2(k+1) ≥ k.
There is one arc from vi (1 ≤ i ≤ �) to each of the next β nodes vi+1, . . . , vi+β ; hence,
each node vi has one arc coming in from each of the previous β nodes vi−1, . . . , vi−β .
(Take v0, v−1, v−2, . . . , v−β+1 to mean nodes in KL, and take v�+1, v�+2, . . . , v�+β to
mean nodes in KR.) These β left-to-right arcs starting from vi will turn out to be
special arcs. Additionally, there are (k + 1 − β) arcs from KR to each of the nodes
v1, v2, . . . , v�, and there are (k + 1 − β) arcs from each of the nodes v1, v2, . . . , v� to
KL. Finally, there are (k − β(β + 1)/2) arcs from KL to KR. This completes the
construction of Ĝ. It can be checked that Ĝ is k-edge connected. (Note that besides
the (k − β(β + 1)/2) arcs from KL to KR, there are β(β + 1)/2 arc-disjoint directed
paths from KL to KR, such that there is one “one-hop” directed path, two “two-hop”
directed paths, . . . , β “β-hop” directed paths.) For each node set A in the laminar
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Fig. 8. The digraph Ĝ described in the last paragraph of section 4.2. Ĝ has n ≥ 3k + 2 nodes
and has ≥ β(n − 2(k + 1)) + k special arcs,

√
k ≤ β <

√
2k, showing that the upper bound on the

number of special arcs in Theorem 4.8 is within a small constant factor of being tight for n� k.

family of node sets {KL, (KL ∪ {v1}), . . . , (KL ∪ {v1, v2, . . . , v�})}, the out-directed
cut δout(A) has cardinality k, and every arc in δout(A) is a special arc.

5. Conclusions. Our analyses of the heuristics exploit results from graph the-
ory, such as Mader’s theorem [Ma 72, Theorem 1], and raise new problems in the
areas of approximation algorithms and graph theory.

For a graph G and an integer k ≥ 1, let µ(k,G) denote the minimum number of
edges in a spanning subgraph of minimum degree k. For a digraphG and integer k ≥ 1,
define µ(k,G) similarly. For a graph (or digraph) G and integer k ≥ 1, let µ′(k,G)
denote the minimum number of edges (arcs) in a k-ECSS, and let µ′′(k,G) denote
the minimum number of edges (arcs) in a k-NCSS. While µ(k,G) can be computed
efficiently via b-matchings, computing either µ′(k,G) or µ′′(k,G) is NP-hard. This
paper shows that (i) by computing µ(k−1, G), we can efficiently approximate µ′′(k,G)
to within a factor of 1 + [1/k] for both graphs and digraphs, and (ii) by computing
µ(k,G), we can efficiently approximate µ′(k,G) to within a factor of 1 + [2/(k + 1)]
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s

Kk−1 Kk−1

t

Kk−1Kk−1

Fig. 9. A k-node connected graph G = (V,E) (with k ≥ 2) such that the minimum size µ′′ of
a k-node connected spanning subgraph decreases by (|V (G)| − 3k + 1)/(2k − 2) on adding one edge.

G consists of nodes s, t, and ) copies of the (k − 1)-clique, and has k − 1 openly disjoint s↔t
paths such that each path uses exactly one node from each (k−1)-clique; also, G has ()−1)/2 dashed
edges. Every edge in G is critical with respect to k-node connectivity. Adding the edge st to G, and
then removing all the dashed edges leaves a k-node connected graph, so µ′′ decreases from |E| to
|E|+ 1− ()− 1)/2.

A k-edge connected (and k-node connected) graph G̃ such that the minimum size µ′ of a k-

edge connected spanning subgraph decreases by
|V (G̃)|−4k+2

3k−3 on adding one edge can be obtained

by modifying G as follows: “split” every (k − 1)-clique incident with a dashed edge into a pair of
(k − 1)-cliques connected by a matching of size (k − 1).

for graphs, and a factor of 1 + [4/
√
k] for digraphs. Theorem 3.6 shows that for a

k-node connected graph G,
µ′′(k,G)
µ′(k,G) ≤ k+1

k , and Theorem 3.20 shows that for a k-

node connected digraph G,
µ′′(k,G)
µ(k,G) ≤ k+1

k . Propositions 3.4 and 3.19 show that for a

k-node connected graph or digraph G,
µ′′(k,G)
µ(k−1,G) ≤ k+1

k−1 . Theorem 4.7 shows that for

a k-edge connected graph G,
µ′(k,G)
µ(k,G) ≤ k+3

k+1 .

For minimum-size k-ECSS (k-NCSS) problems, there appears to be a difficulty

in achieving approximation guarantees of 1 + ω(1)
k2 . A graph theoretic function g is

said to satisfy the edge Lipschitz condition if whenever graphs H and H ′ differ in
only one edge, then |g(H) − g(H ′)| ≤ 1; see [AS 92, p. 86]. Observe that µ(k,G)
satisfies the edge Lipschitz condition. In contrast, both µ′(k,G) and µ′′(k,G) violate
this condition. First, focus on µ′(k,G) for graphs G and k ≥ 2. Let G be the minimal
k-edge connected graph obtained by “stringing” � copies of the (k+1)-clique, i.e., take
� copies of the (k+1)-clique, and for each copy i, 1 ≤ i ≤ �, designate a pair of distinct
nodes as si and ti, and then identify ti and si+1 for i = 1, 2, . . . , �−1. Adding the edge
s1t� decreases µ

′ by � = (|V (G)| − 1)/k, since removing all the edges siti, 1 ≤ i ≤ �,
leaves a k-edge connected graph. Now consider µ′′(k,G) for graphs G and k ≥ 2. For
each k ≥ 2, there exists a k-node connected graph G such that adding a particular new

edge decreases µ′′ by |V (G)|−3k+1
2k−2 ; see Figure 9 for an illustration. For k = 2 and the

graph in Figure 1(a), observe that µ′′ decreases from 1.5|V |−5 to |V |+1 upon adding

the edge e∗. A k-edge connected (and k-node connected) graph G̃ such that adding

a particular new edge decreases µ′ by |V (G̃)|−4k+2
3k−3 can be obtained by modifying

the graph in Figure 9 as indicated in the figure caption. Garg, Santosh, and Singla
[GSS 93] discuss similar issues for the minimum-size 2-NCSS problem on graphs.

Another drawback of the analysis of the k-NCSS heuristic for graphs in section 3.1
is that the size of the edge set E′ = M ∪ F returned by the heuristic is compared
against µ′(k,G), the minimum size of a k-ECSS. Given an integer k ≥ 2, for each
integer n = 2k(i + k) + k, where i = 0, 1, 2, . . ., there exists a k-node connected,
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n-node graph Ĝ such that

µ′′(k, Ĝ)
µ′(k, Ĝ)

= 1 +
(k − 2)

(2k2 + k)
.

In view of this, for large k, a sharper lower bound will have to be employed for proving
approximation guarantees substantially better than 1 + [1/2k] for the minimum-size
k-NCSS problem. For k = 2 or k = 3, larger values of µ′′(k,G)/µ′(k,G) are given by
the graph G in Figure 9 with the parameter k fixed at 2 or 3 and with |V (G)| � k:
for k = 2, the ratio approaches 6/5, and for k = 3, the ratio approaches 14/13.

Here is another consequence of Gupta’s result (see the proof of Proposition 3.8):
for a bipartite graph G with minimum degree ≥ k,

µ(k − 1, G)

µ(k,G)
≤ (k − 1)

k
.

This inequality does not hold for nonbipartite graphs, since for G = K(k+1), µ(k −
1, G)/µ(k,G) equals (k−1)/k for k odd and equals k/(k+1) for k even. Another result
of Gupta (see [BM 76, problem 6.2.8]) shows that µ(k−2, G)/µ(k,G) ≤ (k−2)/(k−1)
for all graphs G of minimum degree ≥ k.

Acknowledgments. Thanks to W. H. Cunningham, H. R. Hind, A. V. Kotlov,
U. S. R. Murty, and A. Sebő for helpful discussions. U. S. R. Murty suggested the
use of Gupta’s result for proving Proposition 3.8. This paper was posted on the Web
sites of the authors in November 1996.
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Abstract. Given n points in three dimensions, we show how to answer halfspace range reporting
queries in O(logn+ k) expected time for an output size k. Our data structure can be preprocessed
in optimal O(n logn) expected time. We apply this result to obtain the first optimal randomized
algorithm for the construction of the (≤ k)-level in an arrangement of n planes in three dimensions.
The algorithm runs in O(n logn+nk2) expected time. Our techniques are based on random sampling.
Applications in two dimensions include an improved data structure for “k nearest neighbors” queries
and an algorithm that constructs the order-k Voronoi diagram in O(n logn+nk log k) expected time.

Key words. computational geometry, range searching, levels in arrangements, nearest neighbor
searching, Voronoi diagrams, randomized data structures, randomized algorithms
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1. Introduction.

1.1. Halfspace range reporting. Let P be a set of n points in d-dimensional
space R

d. We consider the problem of preprocessing P so that given any query half-
space γ, one can quickly report all points in P ∩γ. A vast literature in computational
geometry has been devoted to this fundamental problem called halfspace range report-
ing , a special case of range searching [4, 37, 49, 53, 55]. Here are some of the major
known results.

First, halfspace range reporting in the planar case (d = 2) was solved optimally
by Chazelle, Guibas, and Lee [28]. Their data structure takes linear space and answers
a query in O(log n+ k) time, where k is the number of reported points. The prepro-
cessing can be accomplished in O(n log n) time using Chazelle’s algorithm for convex
layers [22]. Unfortunately, the approach does not generalize to higher dimensions.

In the d = 3 case, Chazelle and Preparata [29] gave a method for answering
halfspace range reporting queries in optimal time O(log n + k). The space complex-
ity is O(n log2 n log log n), as noted by Clarkson and Shor [32]. The preprocessing
is O(n logc n) for a small constant c and uses shallow levels in arrangements (see
section 1.2). Aggarwal, Hansen, and Leighton [10] subsequently improved the space
bound to O(n log n) while maintaining optimal query time. However, the preprocess-
ing is more complex, exploiting advanced techniques such as planar separators; a
deterministic version requires near-cubic time, while a Monte Carlo version needs
O(n log2 n log log n) time. In particular, it remained open whether O(n log n) prepro-
cessing time is attainable. If one is willing to sacrifice optimality in the query bound,
then a simple method [25] involving a tree of planar point location structures solves
the problem with O(k log2 n) query time and O(n log n) preprocessing time and space.
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24, 1999; published electronically June 3, 2000. A preliminary version of this paper appeared in
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For a larger fixed dimension d ≥ 4, Clarkson and Shor [32] used shallow cut-
tings to achieve O(log n + k) query time with O(n�d/2�+ε) preprocessing time and
space, where ε is an arbitrarily small positive constant. Matoušek [48] obtained a
certain partition theorem that implies a data structure with O(n log n) preprocess-

ing time, O(n log log n) space, and O(n1−1/�d/2� logO(1) n + k) query time. (This
method can be specialized to handle the d = 3 case; the query time appears to
be O((log n)O(log log n) + k).) Tradeoffs between preprocessing and query time were
also described by Matoušek. These higher-dimensional results were conjectured to be
optimal up to nε or polylogarithmic factors.

The first result of this paper is to close the existing gap for halfspace range report-
ing for the case d = 3. In section 2, we give a relatively simple, randomized (Las Vegas)
method that can answer queries in O(log n + k) expected time. This data structure
requires O(n log n) space and can be preprocessed in O(n log n) expected time. The
expectation here is with respect to the random choices made by the preprocessing;
it is assumed that the given query halfspaces are independent of these choices. Both
time bounds on preprocessing and querying are optimal.

Our approach is to consider random samples of various sizes of the dual planes and
examine the canonical triangulations of their (≤ 0)-levels. With good chances, it turns
out that the answer to a query with output size k can be found within some conflict list
of the triangulation for a sample of size approximating n/k; the expected size of this
list is O(k). The preprocessing of all such conflict lists is done by imitating a known
algorithm for the (≤ 0)-level (i.e., convex hull in primal space). We should remark that
ideas like random sampling, canonical triangulations, and conflict lists are hardly new
in this area; what is not apparent is how they can be put together to derive the optimal
result. For instance, Clarkson and Shor’s halfspace range reporting structure [32] uses
already a top-down form of random sampling, which seems inherently suboptimal; we
avoid such difficulties by adopting a bottom-up approach instead.

Our result has several important applications. For example, we can now prepro-
cess n points in the Euclidean plane in O(n log n) expected time, such that “k nearest
neighbors” queries can be answered in O(log n + k) expected time; this and the re-
lated circular range reporting problem are two of the most basic proximity problems,
dating back to the beginning of computational geometry. For another application, we
can enumerate the k bichromatic closest pairs of n planar points in O(n log n+k) ex-
pected time. See section 2.3. One less obvious application—the construction of levels
in arrangements—is the second main topic of this paper.

1.2. Levels in arrangements. Given a setH of n hyperplanes in d-dimensional
space R

d and 0 ≤ k ≤ n, define the region

levk(H) = {q ∈ R
d : at most k hyperplanes of H pass strictly below q}.

The (≤ k)-level in the arrangement of H is the collection of faces in the arrangement
that are contained in levk(H). The related notion of the k-level can be defined as the
collection of faces contained in the boundary of levk(H). Levels in arrangements are
among the most well-studied, yet most puzzling, geometric structures in both their
combinatorial and computational aspects [8, 37, 43, 53].

Our initial focus is on (≤ k)-levels. The main combinatorial question here was
answered by Clarkson and Shor [32], who showed via a beautiful random sampling
argument that the (≤ k)-level in a fixed dimension d can have at most O(n�d/2�k�d/2�)
faces. This bound is tight in the worst case. The computational complexity of (≤ k)-
levels was also essentially resolved for d = 2 and d ≥ 4. Everett, Robert, and Van
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Kreveld [42] gave an O(n log n + nk)-time algorithm in the plane (see also [12]).
Mulmuley [52] gave a randomized algorithm for dimensions four and higher with
expected running time O(n�d/2�k�d/2�). These two results are optimal in view of
Clarkson and Shor’s bound and the trivial Ω(n log n) lower bound.

The important case d = 3, however, remains an open problem, even though a
number of algorithms have been developed. A randomized algorithm of Mulmuley [52],
for instance, runs in expected time O(nk2 log(n/k)), which is just a logarithmic factor
away from optimal. Agarwal et al. [2] proposed a different randomized algorithm with
expected running time O(n log3 n+ nk2), which is optimal for sufficiently large k. In
section 3, we settle the complexity of the three-dimensional case completely by giving
a randomized algorithm with an O(n log n+nk2) expected time bound; this is optimal
for all values of k. Before, this time bound was known only for the special case where
the input planes are nonredundant, i.e., they all bound the (≤ 0)-level [9, 52].

Our approach deviates from the previous algorithms of Mulmuley and Agarwal
et al. [2] in that it does not follow the randomized incremental paradigm [32, 53].
Instead, the idea (at a high level) is to choose a random sample of size n/k and
use the canonical triangulation of its arrangement to divide the problem into roughly
O(n/k) subproblems of average size O(k). These subproblems are created from conflict
lists—computable by halfspace range reporting—and are then solved by brute force
in O(k3) average time. The analysis of our algorithm is based on a shallow cutting
lemma of Matoušek.

A similar approach can be taken to compute the k-level, although optimality is
not yet attained for this problem. First, the combinatorial problem of determining
the worst-case size of the k-level is wide open (the dual is related to the famous k-
set problem [8, 11, 37]). Significant development occurred recently in the planar case
d = 2 when Dey [34] improved the long-standing upper bound of (roughly) O(n

√
k)

to O(nk1/3), but the current best lower bound remains Ω(n log k) [41]. For d = 3,
the most recent upper bound is O(nk5/3) [1, 35]. For higher dimensions, the current
upper bound is only slightly better than the O(n�d/2�k�d/2�) bound for the larger
(≤ k)-level. There is a case where the exact complexity of the k-level is known: if
d = 3 and all input planes are nonredundant, then the k-level has size Θ(nk) for
k ≤ n/2 [32, 46]. The k-level in this case is related to the order-k Voronoi diagram of
n points in the Euclidean plane—a natural extension to one of the most fundamental
and useful geometric structures, the Voronoi diagram.

Some of the algorithmic results obtained by Agarwal et al. [2] on the k-level
can be improved by our techniques. Specifically, their expected time bound of
O(n log2 n+nk1/3 log2/3 n) for the construction of k-levels in the plane can be reduced

to O(n log n+ nk1/3 log2/3 k). Furthermore, their O(n log3 n+ nk log n) algorithm for
order-k Voronoi diagrams in the plane can be sped up to run in O(n log n+ nk log k)
expected time. These results are described in section 3.3.

2. Halfspace range reporting in R
3.

2.1. Preliminaries. Let H be a given set of n (nonvertical) hyperplanes in R
d.

For simplicity, we assume that they are in general position; standard perturbation
techniques [38, 17] can be applied to remove this assumption. The halfspace range
reporting problem by duality [37, 53] is equivalent to the following: preprocess H
so that given a query point q, one can quickly report all hyperplanes of H below q.
We will actually solve a slightly harder problem: preprocess H so that given a query
vertical line � and a number k, one can quickly report the k lowest hyperplanes along �
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(i.e., hyperplanes defining the k lowest intersections with �). The connection between
halfspace range reporting queries and such “k lowest hyperplanes” queries will be
explained later.

Given a subset R ⊂ H, the (≤ 0)-level in the arrangement of R (also called the
lower envelope of R) is a convex polyhedron. Computing this polyhedron is equivalent
to constructing the convex hull [37, 53, 55] by duality. For d = 3, severalO(|R| log |R|)-
time algorithms are known [32, 54], among the simplest of which are based on the
randomized incremental paradigm.

Let CT0(R) denote the collection of (closed) full-dimensional simplices in the
canonical triangulation of the (≤ 0)-level, as defined for instance by Clarkson [31] (also
called the bottom-vertex triangulation). The precise definition of this triangulation is
not important to us except in the proof of the sampling lemma below. The only facts
we need is that the triangulation is linear-time constructible and that the simplices
in CT0(R) are all vertical cylinders containing the point (0, . . . , 0,−∞).

Thus, a vertical line � hits precisely one simplex ∆ in CT0(R), if one ignores
degenerate cases. For d = 3, this simplex ∆ can be identified in O(log |R|) time after
an O(|R| log |R|)-time preprocessing, as the problem projects down to planar point
location [37, 55].

Given a simplex ∆, the conflict list H∆ is defined as the set of all hyperplanes ofH
intersecting ∆. The following two sampling results are needed in the analysis of our
data structure. Both follow from the general probabilistic technique by Clarkson and
Shor [32]. (The first is often used in analyses of randomized convex hull algorithms.)

Lemma 2.1. Let 1 ≤ r ≤ n and consider a random sample R ⊂ H of size r.
(i) The expected value of the sum

∑
∆ |H∆| over all simplices ∆ ∈ CT0(R) is

O(r�d/2� · n/r).
(ii) For any fixed vertical line �, the expected value of |H∆| for the simplex ∆ ∈

CT0(R) hit by � is O(n/r).

2.2. The data structure for d = 3. We take a common approach called
bottom-up sampling by Mulmuley [53]. Choose a random permutation h1, . . . , hn of
the set H. Define Ri = {h1, . . . , h2i} for i = 0, 1, . . . , log n (without loss of generality,
say n is a power of 2; logarithms are in base 2). The result is a sequence (“hierarchy”)
of random samples

R0 ⊂ R1 ⊂ · · · ⊂ Rlogn = H,

where |Ri| = 2i. Our basic data structure is simple: it consists of location structures
for CT0(Ri), along with the conflict list H∆ for all the simplices ∆ ∈ CT0(Ri). For
each Ri, the space needed is O(

∑
∆∈CT0(Ri)

|H∆|), which has expected value O(n) by

Lemma 2.1(i). The total expected space is therefore O(n log n). We can guarantee that
space is within a constant factor of this bound by repeating for an expected constant
number of trials.

We now describe how to build this data structure efficiently. First the location
structures can all be constructed in time O(

∑logn
i=1 |Ri| log |Ri|) = O(n log n). The

nontrivial part is the computation of the conflict lists. It turns out that this can
be done by just modifying a known randomized algorithm for convex hulls in R

3.
We consider here Clarkson and Shor’s original method [32], which maintains global
conflict information incrementally. (Note that online methods based on history [53]
are not suitable for our purposes.)

Specifically, at the 2ith step of Clarkson and Shor’s method (in the version de-
scribed by Mulmuley’s or Motwani and Raghavan’s text [53, 50]), we not only have
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all vertices of the (≤ 0)-level in the arrangement of Ri, but in addition have for each
plane h ∈ H a pointer to some vertex lying above h (if one exists). By a graph search,
we can generate all vertices lying above each h. As a result, we have for each vertex v
a list of all planes of H below v. Given a simplex ∆ ∈ CT0(Ri) with vertices v1, v2, v3,
the conflict list H∆ is just the union of the list of planes of H below the vj ’s.

Clarkson and Shor’s method runs in O(n log n) expected time. The extra work
done at the 2ith step to produce the conflict lists is O(

∑
∆∈CT0(Ri)

|H∆|), which has

expected value O(n) by Lemma 2.1(i). Hence, the whole preprocessing of our data
structure can be performed in O(n log n) expected time.

We now describe the basic query algorithm. Given vertical line � and number k as
input parameters, the algorithm is usually able to find the k lowest planes of H along �
but occasionally may report failure instead. The probability of failure is controlled by
a third input parameter δ > 0.

Algorithm answer-query(�, k, δ)

1. let i = log nδ/k��
2. identify the simplex ∆ ∈ CT0(Ri) cut by �
3. if |H∆| > k/δ2 then return “failed”
4. if fewer than k planes of H∆ intersect � ∩∆ then return “failed”
5. return the k lowest planes of H∆ along �

The algorithm is correct: what is returned in line 5 is precisely the k lowest planes of
H along � if failure is not reported in line 4. The running time of answer-query()
is O(log n+ k/δ2), since line 2 takes O(log n) time by planar point location, and lines
4 and 5 take O(k/δ2) time if failure is not reported in line 3. (Line 5 is an instance
of what Chazelle referred to as filtering search [23].)

We now bound the failure probability for any fixed choice of �, k, and δ. By
Lemma 2.1(ii), the expected value of |H∆| is O(n/|Ri|) = O(k/δ), and so by Markov’s
inequality, the probability that H∆ exceeds k/δ2 is O(δ). Thus line 3 reports failure
with probability O(δ). On the other hand, letting q denote the kth lowest intersection
of H along �, we see that line 4 reports failure only if q �∈ ∆, or equivalently, q �∈
lev0(Ri). This is true only if one of the k planes below q is chosen to be in the
sample Ri. As q is independent of Ri, this can happen with probability at most
k|Ri|/n = O(δ).

We can summarize our result as follows.
Theorem 2.2. In O(n log n) expected time, one can preprocess n planes in R

3

into a randomized data structure of O(n log n) size, such that there is a procedure
with the following behavior. Given any fixed vertical line �, number k, and δ > 0, the
procedure either reports the k lowest planes along � or reports failure. The probability
of failure is O(δ), but the procedure always runs within O(log n+ k/δ2) time.

2.3. Consequences. It is desirable to modify the data structure to have a query
algorithm that never fails. This modification can be done in two stages. First we
observe that having three independent versions of the basic data structure can reduce
the failure probability to O(δ3) in Theorem 2.2.

Corollary 2.3. In O(n log n) expected time, one can preprocess n planes in R
3

into a randomized data structure of O(n log n) size, such that there is a procedure
satisfying the criteria stated in Theorem 2.2 but with failure probability O(δ3).

Next we apply the basic query algorithm on a sequence of choices for the param-
eter δ in order to guarantee success.

Corollary 2.4. In O(n log n) expected time, one can preprocess n planes in R
3

into a randomized data structure of O(n log n) size, such that any “k lowest planes”
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query can be answered in O(log n+ k) expected time.
Proof. Let δi = 2−i. Run the procedure of Corollary 2.3 for δ = δ1, δ2, . . . until

it succeeds. Let Xi denote the 0-1 random variable with value 1 when the procedure
fails for δ = δi. The total running time is bounded asymptotically by

(log n+ k/δ21) +
∑
i>1

(log n+ k/δ2i )Xi−1,

which has expected value O(
∑
i>1(log n+ k/δ2i ) δ

3
i−1) = O(log n+ k).

We still have to explain how halfspace range reporting queries reduces to “k
lowest planes” queries. This can be done by a standard technique of “guessing” the
parameter k.

Corollary 2.5. In O(n log n) expected time, one can preprocess n points in
R

3 into a randomized data structure of O(n log n) size, such that a halfspace range
reporting query can be answered in O(log n+ k) expected time, where k is the number
of points reported.

Proof. Recall that a halfspace range reporting query in dual space corresponds
to finding all k planes below a given point q; the value of k is not known in advance.
Let ki = 2i log n, and let � be the vertical line at q. This task can be accomplished
by searching for the kith lowest plane along � for i = 1, 2, . . . until such a plane lies
above q; then we simply examine the ki lowest planes along � and report those that
are actually below q. The expected running time is asymptotically bounded by

(log n+ k1) +
∑

ki−1<k

(log n+ ki) = O(log n+ k),

because of Corollary 2.4.
Remarks.
1. While the preprocessing and query time are optimal, they are only expected

bounds; furthermore, the space complexity can be improved. Using advanced tools
and a larger preprocessing time, Appendix C gives a modification of our data structure
that is deterministic and uses only O(n log log n) space.

2. It is worthwhile to compare Chazelle, Guibas, and Lee’s optimal method [28]
with the specialization of our method in two dimensions. Ours seems easier to imple-
ment as convex layers are not involved.

3. Higher-dimensional extensions are possible, although we do not see any sig-
nificant improvements.

By a standard lifting map, Corollaries 2.4 and 2.5 imply a new method for “k
nearest neighbors” and circular range reporting queries [10, 16, 25, 37, 53, 55, 57] in
the Euclidean plane.

Corollary 2.6. In O(n log n) expected time, one can preprocess n point sites
in R

2 into a randomized data structure of O(n log n) size, such that the k closest (or
farthest) sites of a given point can be found in O(log n+ k) expected time.

Corollary 2.7. In O(n log n) expected time, one can preprocess n point sites in
R

2 into a randomized data structure of O(n log n) size, such that all sites inside (or
outside) a given circle can be reported in O(log n + k) expected time, where k is the
output size.

Another proximity application in the Euclidean plane is an optimal randomized
algorithm for enumerating the k bichromatic closest pairs [45]. The author [19] gave a
randomized reduction of this problem to a reporting problem, which in turn reduces
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to answering n offline halfspace range reporting queries in R
3, where the total output

size is k.
Corollary 2.8. Given n-point sets P and Q in R

2, one can enumerate the k
closest (or farthest) pairs from P × Q (not necessarily in sorted order) in expected
time O(n log n+ k).

3. (≤ k)-levels in R
3.

3.1. Preliminaries. Let H be a given set of n hyperplanes in R
d in general

position. Our goal in this section is to construct the facial structure of the (≤ k)-level
in the arrangement of H. As before, the key concept is the canonical triangulation.
Given a subset R ⊂ H, define CT(R) to be the collection of full-dimensional simplices
in the canonical triangulation of the faces in the arrangement of R. Define CTk(R)
similarly for the faces of the (≤ k)-level in the arrangement of R.

It is somewhat more involved to compute conflict lists for simplices arising from
the construction of (≤ k)-levels, e.g., the simplices are not necessarily vertical cylinders
now. For this reason, we define ∆∗ = conv(∆∪{(0, . . . , 0,−∞)}), the vertical extension
of a simplex ∆. For d = 3, the extended conflict listH∆∗ can be computed in O(log n+
|H∆∗ |) expected time after O(n log n)-time preprocessing by Corollary 2.5: listing all
planes of H below a given point reduces to halfspace range reporting, and if v1, . . . , v4
denote the vertices of ∆, then H∆∗ is just the union of the lists of planes of H below
the vj ’s.

One other important definition is the following: a simplex ∆ is relevant if it
intersects the region levk(H). The sampling lemma below is stated implicitly in the
proof of Matoušek’s shallow cutting lemma [48] (see Appendix B) and is needed in the
analysis of our algorithm. Matoušek’s proof uses probabilistic arguments of Chazelle
and Friedman [27]; see Appendix A for more details.

Lemma 3.1. Let 1 ≤ r ≤ n and q = kr/n + 1. Let f(n) be a regular function,
i.e., a nondecreasing function satisfying f(2n) = O(f(n)). Consider a random sample
R ⊂ H of size r. The expected value of the sum

∑
∆ f(|H∆|) over all relevant simplices

∆ ∈ CT(R) is bounded by O(r�d/2�q�d/2�f(n/r)).

3.2. The algorithm for d = 3. The basic outline of our (≤ k)-level algorithm
is quite simple: we pick a random sample R ⊂ H of size n/k, generate all relevant
simplices of CT(R), compute the (≤ k)-level within each such simplex ∆, and then
combine the solutions.

The (≤ k)-level in the arrangement of H within a relevant simplex ∆ can be
constructed by the following procedure:

Algorithm solve-subproblem(∆), where ∆ is a relevant simplex

1. compute conflict list H∆∗

2. construct the (≤ k)-level in the arrangement of H∆∗ by brute force
3. clip the resulting faces to ∆

The correctness of the procedure is easy to see (as levk(H) ∩∆ = levk(H∆∗) ∩∆).
Line 1 takes O(log n+|H∆∗ |) expected time, whereas lines 2 and 3 take O(|H∆∗ |3) time
by a brute force method: construct the entire arrangement ofH∆∗ [39] and extract the
desired substructure. Since ∆ is relevant, we can bound |H∆∗ | by k+ |H∆|. Therefore,
solve-subproblem(∆) runs in expected time O(log n+ (k + |H∆|)3).

We now describe how to generate all relevant simplices of CT(R). Observe that
any relevant simplex of CT(R) must belong to CTk(R) (since levk(H) ⊆ levk(R)).
Assume that CTk(R) is available. To generate all relevant simplices of CTk(R), we
perform a graph search. Say that two simplices of CTk(R) are adjacent if they share a
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common facet. Notice that a simplex can be adjacent to at most four other simplices
in CTk(R). Consider the following procedure.

Algorithm generate-subproblems(∆), where ∆ ∈ CTk(R)

1. mark ∆
2. solve-subproblem(∆)
3. for each unmarked simplex ∆′ adjacent to ∆ do
4. let ξ be the facet shared by ∆ and ∆′

5. if ξ intersects levk(H) then generate-subproblems(∆′)
The test in line 5 can be easily accomplished from the information obtained from line 2.
An initial relevant simplex ∆0 ∈ CTk(R) is easy to find (e.g., pick any simplex from
CT0(R)). If all simplices are initially unmarked and generate-subproblems(∆0)
is called, then all relevant simplices of CTk(R) (and thus of CT(R)) will be marked
because the region levk(H) is connected.

Combining the solutions is straightforward. We just take all the output from
line 2 of generate-subproblems() in this process and “stitch” these substructures
together to get the complete (≤ k)-level in the arrangement of H. (The implemen-
tation details of stitching are not entirely trivial though; for example, one needs to
match features along common facets between simplices. This can be done in linear
time, for instance, by labeling planes as integers and faces as tuples and then applying
a radix sort.)

Excluding the O(n log n) preprocessing time, the expected time bound for the
calls to generate-subproblems() is

O

(∑
∆

(log n+ (k + |H∆|)3)
)
,

where the sum is taken over all relevant simplices ∆ of CT(R). Lemma 3.1 tells
us that the expectation of the above expression with respect to R for a sample size
r = n/k is

O((n/k)(log n+ k3)) = O(n log n+ nk2).

For the final piece of the algorithm, we still have to explain how CTk(R) is
obtained in the first place. This can be done by recursively constructing the (≤ k)-
level in the arrangement of R. The total expected running time of our algorithm is
then given by the recurrence

Tk(n) = Tk(n/k) + O(n log n+ nk2),

which solves to Tk(n) = O(n log n+ nk2), assuming (without loss of generality) that
k ≥ 2.

Theorem 3.2. The (≤ k)-level in an arrangement of n planes in R
3 can be

constructed in O(n log n+ nk2) expected time.
Remarks.
1. Although our algorithm is optimal for worst-case output, the running time is

not the best possible if the (≤ k)-level has size smaller than Θ(nk2). It remains open
to devise an optimal output-sensitive algorithm [6, 18, 51].

2. Derandomization seems to require modification to our algorithm because the
sample size is quite large. Appendix B sketches an optimal deterministic method for
(≤ k)-levels for large k (specifically, log k = Ω(log n)). This method works in any fixed
dimension but uses advanced tools.
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3. Specialization to d = 2 yields a new algorithm for (≤ k)-levels in the plane
with expected running time O(n log n+ nk).

3.3. Application to k-levels. The algorithm can be modified to construct the
k-level in the arrangement of H for d = 3. To get good results, we need to have
available an algorithm for constructing the k-level in subcubic time, say O(f(n)) time
(randomized or deterministic).

We will make solve-subproblem(∆) output the faces of the k-level clipped to ∆.
This can be done by changing line 2 to construct just the k-level in the arrangement
of H∆∗ in O(f(|H∆∗ |)) time. In generate-subproblems(∆), the test in line 5 can
also be performed in O(f(|H∆∗ |)) time, since it is equivalent to deciding whether ξ
intersects the region beneath the k-level in the arrangement of H∆∗ .

Thus, ignoring the O(n log n) preprocessing, the expected time to construct the
entire k-level is

O

(∑
∆

(log n+ f(k + |H∆|))
)
,

where the sum is taken over all relevant simplices ∆ of CT(R). By Lemma 3.1, the
expectation with respect to R for a sample size r = n/k and a regular function f is
O((n/k)(log n+ f(k))).

Note that the recursive call to compute CTk(R) is not needed now: by Theo-
rem 3.2, the (≤ k)-level in the arrangement of R can be constructed in expected
time O((n/k) log(n/k) + (n/k)k2). Since f(k) = Ω(k2), the overall complexity is
O(n log n+ (n/k)f(k)).

The same strategy applies to k-levels in dimension d = 2. We therefore have
shown the following.

Theorem 3.3. Let H be a class of lines in R
2 or planes in R

3. Suppose that the
k-level in the arrangement of any set H ⊂ H of size n can be computed in O(f(n))
expected time, where f(n) is a regular function. Then the k-level can be constructed
in O(n log n+ (n/k)f(k)) expected time.

Specifically, Agarwal et al. [2] have obtained the following bounds via randomized

incremental construction: for lines in R
2, f(n) = n4/3 log2/3 n; and for planes in

R
3 that are tangent to the unit paraboloid, f(n) = n2 log n. The first case takes

into account Dey’s recent combinatorial bound on the k-level (or more precisely, on
the O(log n) consecutive levels below the k-level). The second case occurs in the
construction of order-k Voronoi diagrams [13, 37, 53, 55, 57] in the Euclidean plane
by the standard lifting map; see Table 3.1 for some previous algorithms. For arbitrary
planes in R

3, we have f(n) = n8/3+ε by an algorithm of Agarwal and Matoušek [6]
(with the known combinatorial bound [35]). Hence, Theorem 3.3 implies the following
corollary.

Corollary 3.4. The k-level in an arrangement of n lines in R
2 can be con-

structed in expected time O(n log n+ nk1/3 log2/3 k).

Corollary 3.5. The order-k Voronoi diagram of n point sites in R
2—i.e., the

planar subdivision where two points belong to the same region iff they have the same
set of k closest (or farthest) sites—can be constructed in expected time O(n log n +
nk log k).

Corollary 3.6. The k-level in an arrangement of n planes in R
3 can be con-

structed in expected time O(n log n+ nk5/3+ε).
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Table 3.1
History of algorithms for the order-k Voronoi diagram in R

2 (k ≤ n/2). Year refers to date of
journal publication. (Bounds marked ∗ actually apply to all diagrams of order 1 to k.)

Year Time bound References

1982 O(nk2 logn)∗ Lee [46]
1986 O(n3)∗ Edelsbrunner, O’Rourke, and Seidel [39]
1986 O(nk

√
n logn) Edelsbrunner [36]

1987 O(n2 + nk log2 n) Chazelle and Edelsbrunner [26]
1987 O(n1+εk) rand. Clarkson [30]
1989 O(n logn+ nk2)∗ Aggarwal, Guibas, Saxe, and Shor [9]
1991 O(n logn+ nk2)∗ rand. Mulmuley [52]
1992 O(nk log2 n+ nk2) rand. online Aurenhammer and Schwarzkopf [14]
1993 O(n logn+ nk3)∗ rand. online Boissonnat, Devillers, and Teillaud [15]
1995 O(n1+εk) Agarwal and Matoušek [6]
1998 O(n log3 n+ nk logn) rand. Agarwal, de Berg, Matoušek, and Schwarzkopf [2]
now O(n logn+ nk log k) rand. this paper

O(nk log2 k (logn/ log k)O(1)) appendix

Remarks.
1. Theorem 3.3 can be viewed as an algorithmic version of a combinatorial

result of Agarwal et al. [1], who showed basically that if the k-level in R
2 or R

3 has
worst-case complexity O(f(n)), then the k-level has complexity O((n/k)f(k)).

2. Corollary 3.4 compares favorably with an output-sensitive algorithm of Edels-
brunner and Welzl [40], which runs in time O(n log n+ f log2 n) for an f -face output.
Only slight improvements of this algorithm were known: Cole, Sharir, and Yap [33]
discussed how to reduce the second term to O((n + f) log2 k) and the author [18]
showed how to reduce the first term to O(n log f).

3. Corollary 3.5 is currently the best result for the construction of a single order-
k Voronoi diagram in the plane. It is optimal for k = O(log n/ log log n). If f(n) can be
improved to O(n2), then Theorem 3.3 would imply a randomized algorithm running
in optimal O(n log n+ nk) expected time for any k ≤ n/2.

4. It is interesting to note that while in the past, levels in arrangements have
been used to solve the halfspace range reporting problem, we have taken just the
reverse approach, using halfspace range reporting to construct levels. Is there a more
direct way to construct levels with the same efficiency?

Update. After the conference version of this paper, Ramos [56] has recently im-
proved Agarwal et al.’s algorithm [2] for the planar order-k Voronoi diagram and has
obtained f(n) = n22O(log∗ n), thereby reducing the expected time bound in Corol-
lary 3.5 to O(n log n+ nk2O(log∗ k)). For k-levels of lines in the plane, the author [21]
has noted an improved bound f(n) = n4/3, which reduces the expected time bound
in Corollary 3.4 to O(n log n + nk1/3). There are also some new breakthroughs in
output-sensitive algorithms for two-dimensional levels by Har-Peled [44] and the au-
thor [20, 21].

Appendix A. Proof sketch of Lemma 3.1. As Lemma 3.1 is the key in
proving the optimality of our randomized (≤ k)-level algorithm, a proof sketch of the
lemma may be appropriate to give the reader an idea why the probabilistic bound
holds. As mentioned earlier, the details of the proof are essentially embedded in the
paper by Matoušek [48]. We highlight the main points here in somewhat different
notation.

First the following definition is helpful: we say that a simplex ∆ is j-good if it is
contained inside the region levj(H). An immediate observation is that any relevant
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simplex ∆ is (k + |H∆|)-good. It turns out that bounding the number of j-good
simplices is easier than bounding the number of relevant simplices:

The expected number of j-good simplices ∆ ∈ CT(R) is bounded by
O((r/n)dn�d/2�j�d/2�).

The reason is this: as can be seen from the definition of canonical triangulations, the
number of j-good simplices of CT(R) is linear in the number of vertices of CT(R) that
are contained in levj(H). We know that levj(H) has O(n�d/2�j�d/2�) vertices, and the
probability that a fixed vertex in the arrangement of H appears in the arrangement
of R is O((r/n)d).

The second step is to observe that the conflict size |H∆| is usually of the order
of n/r. For instance, arguments by Clarkson and Shor [32] show that the average
conflict size is expected to be O(n/r). We will actually need a stronger result by
Chazelle and Friedman [27] (see also [7]), stating that the number of conflict sizes
of the order of tn/r decreases exponentially with t. Specifically, one can prove the
following statement from our earlier bound on j-good simplices:

The expected number of j-good simplices ∆ ∈ CT(R) with |H∆| ≥
(t− 1)n/r is O(2−t(r/n)dn�d/2�j�d/2�).

As a consequence, we can then bound a similar quantity for relevant simplices if
we just substitute k + tn/r for j:

The expected number of relevant simplices ∆ ∈ CT(R) with
(t− 1)n/r ≤ |H∆| ≤ tn/r is O(2−t(r/n)dn�d/2�(k + tn/r)�d/2�).

Finally, we can bound the expectation of the sum
∑

∆ f(|H∆|) over all relevant
simplices ∆ ∈ CT(R) asymptotically by

∞∑
t=1

2−t(r/n)dn�d/2�(k + tn/r)�d/2�f(tn/r) = O((r/n)dn�d/2�(k + n/r)�d/2�f(n/r)),

since f is regular. Notice the above expression is identical to O(r�d/2�q�d/2�f(n/r)).

Appendix B. A deterministic algorithm for (≤ k)-levels in R
d. In the

second appendix, we briefly consider derandomization of our (≤ k)-level algorithm
in an arbitrary fixed dimension. An optimal bound is obtained only when k is suf-
ficiently large. The approach employs a deterministic version of Lemma 3.1, derived
by Matoušek [48] using tools such as the method of conditional probabilities and ε-
approximations.

Lemma B.1 (Matoušek’s shallow cutting lemma). Let 1 ≤ r ≤ n and q =
kr/n+1. One can cover levk(H) by a collection of O(r�d/2�q�d/2�) simplices such that
|H∆| ≤ n/r for each simplex ∆. Furthermore, the simplices have disjoint interiors.
They can be constructed in O(n log r) time, provided that r ≤ nα for a sufficiently
small constant α > 0 depending on d.

Worst-case efficiency demands us to use small values of r, so we will construct the
(≤ k)-level by divide-and-conquer: (i) pick r = min{n/k, nα} and find the collection
of simplices by the above lemma; (ii) for each simplex ∆, compute conflict list H∆∗ ;
(iii) construct the (≤ k)-level in the arrangement of H∆∗ by recursion; and (iv) finally
combine the solutions by stitching.

Step (ii) requires some explanation. From the discussion of our three-dimensional
algorithm, we see that a conflict list can be computed by answering a constant number
of halfspace range reporting queries. With known results [48], this requires O(nβ +
|H∆∗ |) time after O(n log n)-time preprocessing, for a constant β ≈ 1−1/�d/2�. Notice
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that if |H∆∗ | exceeds k+|H∆|, the simplex ∆ is not relevant and need not be considered
in step (iii). So, we can ensure that a query runs within time O(nβ + k + n/r).

Accounting all the costs, we derive this recurrence for the total running time:

Tk(n) = O(n log n) + O(r�d/2�q�d/2�) (nβ + Tk(k + n/r)).

Assuming that α < (1−β)/�d/2� without loss of generality, we can simplify the above
to

Tk(n) = O(n log n) + O(r�d/2�)Tk(k + n/r).

Our base case is when n1−α ≤ k. Here, r = n/k, and we solve the subproblems
directly by constructing entire arrangements in Tk(2k) = O(kd) time [39]; the overall
time bound is

Tk(n) = O(n log n+ (n/k)�d/2�kd) = O(n log n+ n�d/2�k�d/2�).

If n1−α > k, then r = nα, and the recurrence becomes

Tk(n) = O(n log n) + O(nα�d/2�)Tk(2n1−α),

which solves to

Tk(n) = O

(
(n log n+ n�d/2�k�d/2�)

(
log n

log k

)O(1)
)

= O

(
n�d/2�k�d/2�

(
log n

log k

)O(1)
)
.

Theorem B.2.The (≤ k)-level in an arrangement of n hyperplanes in R
d can be

constructed deterministically in time O(n�d/2�k�d/2�(log n/ log k)O(1)).
A similar approach works for k-levels and order-k Voronoi diagrams. We mention

that for the latter problem in two dimensions, the best deterministic result can be
achieved with Chazelle and Edelsbrunner’s O(n2 log2 n) bound [26] for the base cases.

Theorem B.3. The order-k Voronoi diagram of n point sites in R
2 can be con-

structed deterministically in time O(nk log2 k (log n/ log k)O(1)).
Remarks.
1. The use of the shallow cutting lemma to construct levels deterministically

has been noted before in a paper by Agarwal, Efrat, and Sharir [3]; however, our
deterministic bounds appear new.

2. Theorem B.2 is worst-case optimal if k = Ω(nε) for some constant ε > 0. For
small k, optimal derandomization for arbitrary dimensions appears difficult, as can
be seen from Chazelle’s work on convex hulls [24].

Update. The author [20, 21] has recently improved the bound in Theorem B.3
slightly to O(nk log1+ε n (log n/ log k)O(1)).

Appendix C. A deterministic data structure for halfspace range report-
ing in R

3. In this final appendix, we revisit the halfspace range reporting problem in
R

3 and give a deterministic data structure with space O(n log log n) and worst-case
query time O(log n + k). The space bound improves the one by Aggarwal, Hansen,
and Leighton [10].

The approach is based on our randomized method, but to obtain a successful de-
randomization, we need to replace the (≤ 0)-levels of the samples (and their canonical
triangulations) with suitable structures. Shallow cuttings serve exactly this purpose,
but first a slight variant is stated for convenience.
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Lemma C.1. Let d = 3. One can cover levk(H) by a collection Tk of O(n/k)
simplices such that |H∆| = O(k) for each ∆ ∈ Tk. Furthermore, the simplices have
disjoint interiors, each containing (0, 0,−∞).

Proof. Let Ξ be a collection of simplices satisfying Lemma B.1 with r = n/k.
Without loss of generality, we may assume that each simplex ∆ ∈ Ξ is relevant; thus,
each vertex has at most |H∆| + k ≤ 2k planes of H below it. Now, let U be the
union of Ξ and define Tk to be a triangulation of U into vertical cylinders. Because
a plane in H∆ must lie below one of the vertices of ∆, we have |H∆| ≤ 6k for each
∆ ∈ Tk.

The chief ingredient to reduce space from O(n log n) to O(n log log n) is boot-
strapping with an O(n)-space structure that has query time O(nβ + k) for a constant
β < 1. Known results on the simplex range searching [47] imply that β ≈ 2/3 is
possible in R

3; the time bound applies to “k lowest planes” queries as well [5].

Define a sequence k1, k2, . . . by the formula ki =
⌊
k

1/β
i−1

⌋
, starting with a constant

and ending when the term reaches n. Evidently, there are O(log log n) terms. Our
data structure consists of a hierarchy of triangulations constructed by Lemma C.1:
Tk1 , Tk2 , . . . . In addition, we build a location structure for Tki and store the linear-
space range searching structure for each conflict list H∆ (∆ ∈ Tki). The storage
requirement is O((n/k)k) = O(n) for each Tki , and O(n log log n) overall.

To find the k lowest planes of H along a vertical line �, let index i satisfy ki−1 ≤
k < ki, and determine the simplex ∆ ∈ Tki hit by �; by projection, this is a planar
point location problem and takes O(log n) time. As the answer is a subset of the
conflict list H∆ (since Tki covers levk(H)), we can use the range searching structure
for H∆ to answer the query. The total query time is

O(log n+ |H∆|β + k) = O(log n+ kβi + k) = O(log n+ k).

Theorem C.2. Given n planes in R
3, there exists a data structure of O(n log

log n) size, such that any “k lowest planes” query can be answered in O(log n + k)
time deterministically.

Consequences on halfspace range reporting, k nearest neighbors, and circular
range reporting can be immediately derived, as in Corollaries 2.5, 2.6, and 2.7.

Remarks.
1. The preprocessing time is prohibitively large (though polynomial), so our

randomized method is still more practical.
2. It remains an open problem to bring down the space complexity to linear

while maintaining optimal query time. (Note that if the same k is used in all queries
and is given in advance, then our approach achieves linear space.)

Update. Theorem C.2 has also been independently shown by Ramos [56] using
ideas from the conference version of this paper, with a better expected preprocessing
time of O(n log n). His proof is more complicated, though, and appears to be only of
theoretical interest.
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[6] P. K. Agarwal and J. Matoušek, Dynamic half-space range reporting and its applications,
Algorithmica, 13 (1995), pp. 325–345.
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Abstract. We introduce resource-bounded betting games and propose a generalization of Lutz’s
resource-bounded measure in which the choice of the next string to bet on is fully adaptive. Lutz’s
martingales are equivalent to betting games constrained to bet on strings in lexicographic order. We
show that if strong pseudorandom number generators exist, then betting games are equivalent to
martingales for measure on E and EXP. However, we construct betting games that succeed on certain
classes whose Lutz measures are important open problems: the class of polynomial-time Turing-
complete languages in EXP and its superclass of polynomial-time Turing-autoreducible languages.
If an EXP-martingale succeeds on either of these classes, or if betting games have the “finite union
property” possessed by Lutz’s measure, one obtains the nonrelativizable consequence BPP �= EXP.
We also show that if EXP �= MA, then the polynomial-time truth-table-autoreducible languages have
Lutz measure zero, whereas if EXP = BPP, they have measure one.
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1. Introduction. Lutz’s theory of measure on complexity classes is now usually
defined in terms of resource-bounded martingales. A martingale can be regarded as
a gambling game played on unseen languages A. Let s1, s2, s3, . . . be the standard
lexicographic ordering of strings. The gambler G starts with capital C0 = $1 and
places a bet B1 ∈ [0, C0] on either “s1 ∈ A” or “s1 /∈ A.” Given a fixed particular
language A, the bet’s outcome depends only on whether s1 ∈ A. If the bet wins, then
the new capital C1 equals C0 +B1, while if the bet loses, C1 = C0 −B1. The gambler
then places a bet B2 ∈ [0, C1] on (or against) membership of the string s2, then on
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s3, and so forth. The gambler succeeds if G’s capital Ci grows toward +∞. The class
C of languages A on which G succeeds (and any subclass) is said to have measure
zero. One also says G covers C. Lutz and others (see [Lutz97]) have developed a rich
and extensive theory around this measure-zero notion and have shown interesting
connections to many other important problems in complexity theory.

We propose the generalization obtained by lifting the requirement that G must
bet on strings in lexicographic order. That is, G may begin by choosing any string x1

on which to place its first bet and, after the oracle tells the result, may choose any
other string x2 for its second bet, and so forth. Note that the sequences x1, x2, x3, . . .
(as well as B1, B2, B3, . . .) may be radically different for different oracle languages
A—in complexity-theory parlance, G’s queries are adaptive. The lone restriction is
that G may not query (or bet on) the same string twice. We call G a betting game.

Our betting games remedy a possible lack in the martingale theory, one best
explained in the context of languages that are “random” for classes D such as E
or EXP. In this paper, E stands for deterministic time 2O(n), and EXP stands for

deterministic time 2n
O(1)

. A language L is D-random if L cannot be covered by a
D-martingale. Based on one’s intuition about random 0-1 sequences, the language
L′ = {flip(x) : x ∈ L } should likewise be D-random, where flip(x) changes every
0 in x to a 1 and vice-versa. However, this closure property is not known for E-
random or EXP-random languages, because of the way martingales are tied to the
fixed lexicographic ordering of Σ∗. Betting games can adapt to easy permutations
of Σ∗ such as that induced by flip. Similarly, a class C that is small in the sense
of being covered by a (D-) betting game remains small if the languages L ∈ C are
so permuted. In the r.e./recursive theory of random languages, our generalization is
similar to “Kolmogorov–Loveland place-selection rules” (see [Lov69]). We make this
theory work for complexity classes via a novel definition of “running in time t(n)” for
an infinite process.

Our new angle on measure theory may be useful for attacking the problem of
separating BPP from EXP, which has recently gained prominence in [ImWi98]. In
Lutz’s theory it is open whether the class of EXP-complete sets—under polynomial-
time Turing reductions—has EXP-measure zero. If so (in fact if this set does not
have measure one), then by results of Allender and Strauss [AlSt94], BPP �= EXP.
Since there are oracles A such that BPPA = EXPA [Hel86], this kind of absolute
separation would be a major breakthrough. We show that the EXP-complete sets
can be covered by an EXP-betting game—in fact, by an E-betting game. The one
technical lack in our theory as a notion of measure is also interesting here: If the
“finite unions” property holds for betting games (viz., C1 small ∧ C2 small =⇒
C1 ∪ C2 small), then EXP �= BPP. Likewise, if Lutz’s martingales do enjoy the
permutation-invariance of betting games, then BPP �= EXP. Finally, we show that

if a pseudorandom number generator of security 2n
Ω(1)

exists, then for every EXP-
betting game G one can find an EXP-martingale that succeeds on all sets covered by
G. Pseudorandom generators of higher security 2Ω(n) likewise imply the equivalence
of E-betting games and E-measure. Ambos-Spies, Lempp, and Mainhardt [ALM98]
proved that the EXP-complete sets have E-measure zero under a different hypothesis,
namely P = PSPACE.

Measure theory and betting games help us to dig further into questions about
pseudorandom generators and complexity-class separations. Our tool is the notion
of an autoreducible set, whose importance in complexity theory was argued by
Buhrman, Fortnow, van Melkebeek, and Torenvliet [BFvMT98] (after [BFT95]). A
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language L is ≤p
T -autoreducible if there is a polynomial-time oracle Turing machine

Q such that for all inputs x, QL correctly decides whether x ∈ L without ever sub-
mitting x itself as a query to L. If Q is nonadaptive (i.e., computes a polynomial-time
truth-table reduction), we say L is ≤p

tt -autoreducible. We show that the class of
≤p

T -autoreducible sets is covered by an E-betting game. Since every EXP-complete
set is ≤p

T -autoreducible [BFvMT98], this implies results given above. The subclass
of ≤p

tt -autoreducible sets provides the following tighter connection between measure
statements and open problems about EXP.

• If the ≤p
tt -autoreducible sets do not have E-measure zero, then EXP = MA.

• If the ≤p
tt -autoreducible sets do not have E-measure one in EXP, then EXP �=

BPP.
Here MA is Babai’s “Merlin-Arthur” class, which contains BPP and NP and is con-
tained in the level Σp

2 ∩ Πp
2 of the polynomial hierarchy [Bab85, BaMo88]. Since

EXP �= MA is strongly believed, one would expect the class of ≤p
tt -autoreducible sets

to have E-measure zero, but proving this—or proving any of the dozen other measure
statements in Corollaries 6.2 and 6.5—would yield a proof of EXP �= BPP.

In sum, the whole theory of resource-bounded measure has progressed far enough
to wind the issues of (pseudo)randomness and stochasticity within exponential time
very tightly. We turn the wheels a few more notches and seek greater understanding
of complexity classes in the places where the boundary between “measure one” and
“measure zero” seems tightest.

Section 2 reviews the formal definitions of Lutz’s measure and martingales. Sec-
tion 3 introduces betting games and shows that they are a generalization of martin-
gales. Section 4 shows how to simulate a betting game by a martingale of perhaps
unavoidably higher time complexity. Section 5, however, demonstrates that strong
pseudorandom generators (if there are any) allow one to compute the martingale
in the same order of time. Section 6 presents our main results pertaining to au-
toreducible sets, including our main motivating example of a concrete betting game.
The concluding section 7 summarizes open problems and gives prospects for future
research.

2. Martingales. A martingale is abstractly defined as a function d from { 0, 1 }∗
into the nonnegative reals that satisfies the following “average law”: for all w ∈
{ 0, 1 }∗,

d(w) =
d(w0) + d(w1)

2
.(1)

The interpretation in Lutz’s theory is that a string w ∈ { 0, 1 }∗ stands for an
initial segment of a language over an arbitrary alphabet Σ as follows: Let s1, s2, s3, . . .
be the standard lexicographic ordering of Σ∗. Then for any language A ⊆ Σ∗, write
w � A if for all i, 1 ≤ i ≤ |w|, si ∈ A iff the ith bit of w is a 1. We also regard w as
a function with domain dom(w) = { s1, . . . , s|w| } and range { 0, 1 }, writing w(si) for
the ith bit of w. A martingale d succeeds on a language A if the sequence of values
d(w) for w � A is unbounded.

Let S∞[d] stand for the (possibly empty, often uncountable) class of languages
on which d succeeds. Lutz originally defined the complexity of a martingale d in
terms of computing fast-converging rational approximations to d. Subsequently he
showed that for certain classes of time bounds one loses no generality by requiring
that martingales themselves have rational values a/b such that all digits of the integers
a and b (not necessarily in lowest terms) are output within the time bound. That
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is, given any martingale d meeting the original definition of computability within
the time bound, one can obtain a rational-valued d′ computable within that bound
such that S∞[d] ⊆ S∞[d′] [May94t, JuLu95]. We adopt this requirement throughout
the paper and specify that integers are represented in standard binary notation and
rationals as pairs of integers, not necessarily in lowest terms. We use the fact that a
sum a1/b1 + · · · am/bm can be computed and written down in �O(1) time, where � is
the sum of the lengths of the integers ai and bi.

Definition 2.1 (cf. [Lutz92, May94t]). Let ∆ be a complexity class of functions.
A class C of languages has ∆-measure zero, written µ∆(C) = 0, if there is a martingale
d computable in ∆ such that C ⊆ S∞[d]. One also says that d covers C.

Lutz measured the time to compute d(w) in terms of the length N of w, but one
can also work in terms of the largest length n of a string in the domain of w. For
N > 0, n equals �log2N�; all we care about is that n = Θ(logN) and N = 2Θ(n).
Because complexity bounds on languages we want to analyze will naturally be stated
in terms of n, we prefer to use n for martingale complexity bounds. The following
correspondence is helpful:

Lutz’s “p” ∼ NO(1) = 2O(n) ∼ measure on E,

Lutz’s “p2” ∼ 2(logN)O(1)

= 2n
O(1) ∼ measure on EXP.

Since we measure the time to compute d(w) in terms of n, we write “µE” for
E-measure, “µEXP” for EXP-measure, and generally µ∆ for any ∆ that names both
a language and function class. Abusing notation similarly, we define the following.

Definition 2.2 (see [Lutz92]). A class C has ∆-measure one, written µ∆(C) = 1,
if µ∆(∆ \ C) = 0.

The concept of resource-bounded measure is known to be robust under several
changes [May94t]. The following lemma has appeared in various forms [May94t,
BuLo00]. It essentially says that we can assume a martingale grows almost monoton-
ically (sure winnings) and not too fast (slow winnings).

Lemma 2.3 (“slow-but-sure-winnings” lemma for martingales). Let d be a mar-
tingale. Then there is a martingale d′ with S∞[d] ⊆ S∞[d′] such that

(∀w)(∀u) : d′(wu) > d′(w)− 2d(λ), and(2)

(∀w) : d′(w) < 2(|w|+ 1)d(λ).(3)

If d is computable in time t(n), then d′ is computable in time (2nt(n))O(1).
The idea is to play the strategy of d but in a more conservative way. Say we start

with an initial capital of $1. We will deposit a part c of our capital in a bank and only
play the strategy underlying d on the remaining liquid part e of our capital. We start
with no savings and a liquid capital of $1. If our liquid capital reaches or exceeds $2,
we deposit an additional $1 or $2 to our savings account c so as to keep the liquid
capital in the range $[1, 2) at all times. If d succeeds, it will push the liquid capital
infinitely often to $2 or above, so c grows to infinity, and d′ succeeds too. Since we
never take money out of our savings account c and the liquid capital e is bounded by
$2, once our total capital d′ = c+ e has reached a certain level, it will never go more
than $2 below that level anymore, no matter how bad the strategy underlying d is.
On the other hand, since we add at most $2 to c in each step, d′(w) cannot exceed
2(|w|+ 1) either.

We now give the formal proof.
Proof of Lemma 2.3. Define d′ : Σ∗ → [0,∞) by

d′(w) = (c(w) + e(w))d(λ),
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where c(λ) = 0 and e(λ) = 1, and

c(wb) = c(w) and e(wb) = e(w) if d(w) = 0; else:

c(wb) = c(w) + 2 and e(wb) = d(wb)
d(w) e(w)− 2 if d(wb)

d(w) e(w) ≥ 3;

c(wb) = c(w) + 1 and e(wb) = d(wb)
d(w) e(w)− 1 if 2 ≤ d(wb)

d(w) e(w) < 3;

c(wb) = c(w) and e(wb) = d(wb)
d(w) e(w) if d(wb)

d(w) e(w) < 2.

To see that the recursion does not excessively blow up the time complexity or size
of the answer, note that owing to cancellation of values of d, every value e(w) where
d(w) �= 0 is given by a sum of the form

N∑
k=0

ak
d(w)

d(w[1 . . . k])
,

where each ak is in {−2,−1, 0, 1 }, N = |w|, and w[1 . . . k] stands for the first k bits of
w. Each term in the sum is computable in time O(t(n)2N) (using the naive quadratic
algorithms for multiplication and integer division). Then by the property noted just
before Definition 2.1, these terms can be summed in time (Nt(n))O(1).

By induction on |w| we observe that

0 ≤ e(w) < 2,(4)

and that

d′(wb) =

{ [
c(w) + d(wb)

d(w) e(w)
]
d(λ) if d(w) �= 0,

d′(w) otherwise,

from which it follows that d′ is a martingale.
Now let ω be an infinite 0-1 sequence denoting a language on which d succeeds.

Then e(w) will always remain positive for w � ω, and d(wb)
d(w) e(w) will become 2 or more

infinitely often. Consequently, limw�ω,|w|→∞ c(w) = ∞. Since d′(w) ≥ c(w)d(λ), it
follows that S∞[d] ⊆ S∞[d′]. Moreover, by (4) and the fact that c does not decrease
along any sequence, we have that

d′(wu) ≥ c(wu)d(λ) ≥ c(w)d(λ) = d′(w)− e(w)d(λ) > d′(w)− 2d(λ).

Since c can increase by at most 2 in every step, c(w) ≤ 2|w|. Together with (4),
this yields that

d′(w) = (c(w) + e(w))d(λ) < 2(|w|+ 1)d(λ).

One can also show that S∞[d′] ⊆ S∞[d] in Lemma 2.3, so the success set actually
remains intact under the above transformation.

As with Lebesgue measure, the property of having resource-bounded measure zero
is monotone and closed under union (“finite unions property”). A resource-bounded
version of closure under countable unions also holds. The property that becomes
crucial in resource-bounded measure is that the whole space ∆ does not have measure
zero, which Lutz calls the “measure conservation” property. With a slight abuse of
meaning for “�=,” this property is written µ∆(∆) �= 0. In particular, µE(E) �= 0 and
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µEXP(EXP) �= 0. Subclasses of ∆ that require substantially fewer resources do have
∆-measure zero. For example, P has E-measure zero. Indeed, for any fixed c > 0,
DTIME[2cn] has E-measure zero and DTIME[2n

c

] has EXP-measure zero [Lutz92].
Apart from formalizing rareness and abundance in computational complexity the-

ory, resource-bounded martingales are also used to define the concept of a random set
in a resource-bounded setting.

Definition 2.4. A set A is ∆-random if µ∆({A}) �= 0.
In other words, A is ∆-random if no ∆-martingale succeeds on A.

3. Betting games. To capture intuitions that have been expressed not only for
Lutz measure but also in many earlier papers on random sequences, we formalize a
betting game as an infinite process, rather than as a Turing machine that has finite
computations on string inputs.

Definition 3.1. A betting game G is an oracle Turing machine that maintains a
“capital tape” and a “bet tape,” in addition to its standard query tape and worktapes,
and works in stages i = 1, 2, 3 . . . as follows. Beginning each stage i, the capital tape
holds a nonnegative rational number Ci−1. The initial capital C0 is some positive
rational number. G computes a query string xi to bet on, a bet amount Bi, 0 ≤ Bi ≤
Ci−1, and a bet sign bi ∈ {−1,+1 }. The computation is legal so long as xi does not
belong to the set {x1, . . . , xi−1 } of strings queried in earlier stages. G ends stage i by
entering a special query state. For a given oracle language A, if xi ∈ A and bi =+1,
or if xi /∈ A and bi = −1, then the new capital is given by Ci := Ci−1 + Bi, else by
Ci := Ci−1 − Bi. We charge M for the time required to write the numerator and
denominator of the new capital Ci down. The query and bet tapes are blanked, and G
proceeds to stage i+ 1.

In this paper, we lose no generality by not allowing G to “crash” or to loop
without writing a next bet and query. Note that every oracle set A determines a
unique infinite computation of G, which we denote by GA. This includes a unique
infinite sequence x1, x2, . . . of query strings, and a unique sequence C0, C1, C2, . . .
telling how the gambler fares against A .

Definition 3.2. A betting machine G runs in time t(n) if for all oracles A, every
query of length n made by GA is made in the first t(n) steps of the computation.

Definition 3.3. A betting game G succeeds on a language A, written A ∈
S∞[G], if the sequence of values Ci in the computation GA is unbounded. If A ∈
S∞[G], then we also say G covers A.

Our main motivating example where one may wish not to bet in lexicographic
order, or according to any fixed ordering of strings, is deferred to section 6. There
we will construct an E-betting game that succeeds on the class of ≤p

T -autoreducible
languages, which is not known to have Lutz measure zero in E or EXP.

We now want to argue that the more liberal requirement of being covered by a
time t(n) betting game still defines a smallness concept for subclasses of DTIME[t(n)]
in the intuitive sense Lutz established for his measure-zero notion. The following
result is a good beginning.

Theorem 3.4. For every time-t(n) betting game G, we can construct a language
in DTIME[t(n)] that is not covered by G.

Proof. Let Q be a nonoracle Turing machine that runs as follows on any input x.
The machine Q simulates up to t(|x|) steps of the single computation of G on empty
input. Whenever G bets on and queries a string y, Q gives the answer that causes G
to lose money, rejecting in the case of a zero bet. If and when G queries x, Q does
likewise. If t(|x|) steps go by without x being queried, then Q rejects x.
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The important point is that Q’s answer to a query y �= x is the same as the
answer when Q is run on input y. The condition that G cannot query a string x of
length n after t(n) steps have elapsed ensures that the decision made by Q when x
is not queried does not affect anything else. Hence Q defines a language on which G
never does better than its initial capital C0 and so does not succeed.

In particular, the class E cannot be covered by an E-betting game, nor EXP by
an EXP-betting game. Put another way, the “measure conservation axiom” [Lutz92]
of Lutz’s measure carries over to betting games.

To really satisfy the intuition of “small,” however, it should hold that the union of
two small classes is small. (Moreover, “easy” countable unions of small classes should
be small, as in [Lutz92].) Our lack of meeting this “finite union axiom” will later be
excused insofar as it has the nonrelativizing consequence BPP �= EXP. Theorem 3.4
is still good enough for the “measure-like” results in this paper.

We note also that several robustness properties of Lutz’s measure treated in sec-
tion 2 carry over to betting games. This is because we can apply the underlying
transformations to the capital function cG of G, which is defined as follows.

Definition 3.5. Let G be a betting game, and let i ≥ 0 be an integer.
(a) A play α of length i is a sequence of i-many oracle answers. Note that α

determines the first i-many stages of G, together with the query and bet for
the next stage.

(b) cG(α) is the capital Ci that G has at the end of the play α (before the next
query).

Note that the function cG is a martingale over plays α. The proof of Lemma 2.3
works for cG. We obtain the following lemma.

Lemma 3.6 (“slow-but-sure winnings” lemma for betting games). Let G be a
betting game that runs in time t(n). Then we can construct a betting game G′ that
runs in time (2nt(n))O(1) such that S∞[G] ⊆ S∞[G′], G′ always makes the same
queries in the same order as G, and

∀β,∀ γ : cG′(βγ) > cG′(β)− 2cG(λ),(5)

∀α : cG′(α) < 2(|α|+ 1)cG(λ).(6)

Proof. The proof of Lemma 2.3 carries over.
To begin comparing betting games and martingales, we note first that the latter

can be considered a direct special case of betting games. Say a betting game G is
lex-limited if for all oracles A, the sequence x1, x2, x3 . . . of queries made by GA is in
lexicographic order. (It need not equal the lexicographic enumeration s1, s2, s3, . . . of
Σ∗.)

Theorem 3.7. Let T (n) be a collection of time bounds that is closed under

squaring and under multiplication by 2n, such as 2O(n) or 2n
O(1)

. Then a class C has
time-T (n) measure zero iff C is covered by a time-T (n) lex-limited betting game.

Proof. From a martingale d to a betting game G, each stage i of GA bets on si
an amount Bi with sign bi ∈ {−1,+1 } given by biBi = d(w1)− d(w), where w is the
first i− 1 bits of the characteristic sequence of A. This takes O(2n) evaluations of d
to run G up through queries of length n, hence the hypothesis on the time bounds
T (n). In the other direction, when G is lex-limited, one can simulate G on a finite
initial segment w of its oracle up to a stage where all queries have been answered by
w and G will make no further queries in the domain of w. One can then define d(w)
to be the capital entering this stage. That this is a martingale and fulfills the success
and run-time requirements is left to the reader.
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Hence in particular for measure on E and EXP, martingales are equivalent to
betting games constrained to bet in lexicographic order. Now we will see how we can
transform a general betting game into an equivalent martingale.

4. From betting games to martingales. This section associates to every
betting game G a martingale dG such that S∞[G] ⊆ S∞[dG], and begins examining
the complexity of dG. Before defining dG, however, we pause to discuss some tricky
subtleties of betting games and their computations.

Given a finite initial segment w of an oracle language A, one can define the partial
computation Gw of the betting game up to the stage i at which it first makes a query
xi that is not in the domain of w. Define d(w) to be the capital Ci−1 that G had
entering this stage. It is tempting to think that d is a martingale and succeeds on all A
for which G succeeds—but neither statement is true in general. The most important
reason is that d may fail to be a martingale.

To see this, suppose xi itself is the lexicographically least string not in the domain
of w. That is, xi is indexed by the bit b of wb, and w1 � A iff xi ∈ A. It is possible
that GA makes a small (or even zero) bet on xi, and then goes back to make more bets
in the domain of w, winning lots of money on them. The definitions of both d(w0)
and d(w1) will then reflect these added winnings, and both values will be greater
than d(w). For example, suppose GA first puts a zero bet on xi = sj , then bets all
of its money on xi+1 = sj−1 not being in A, and then proceeds with xi+2 = sj+1. If
w(sj−1) = 0, then d(w0) = d(w1) = 2d(w).

Put another way, a finite initial segment w may carry much more “winnings po-
tential” than the above definition of d(w) reflects. To capture this potential, one needs
to consider potential plays of the betting game outside the domain of w. Happily, one
can bound the length of the considered plays via the running time function t of G. Let
n be the maximum length of a string indexed by w; i.e., n = �log2(|w|)�. Then after
t(n) steps, G cannot query any more strings in the domain of w, so w’s potential is
exhausted. We will define dG(w) as an average value of those plays that can happen,
given the query answers fixed by w. We use the following definitions and notation.

Definition 4.1. For any t(n) time-bounded betting game G and string w ∈ Σ∗,
define the following.

(a) A play α is t-maximal if G completes the first |α| stages, but not the query
and bet of the next stage, within t steps.

(b) A play α is G-consistent with w, written α ∼G w, if for all stages j such that
the queried string xj is in the domain of w, αj = w(xj). That is, α is a play
that could possibly happen given the information in w. Also let m(α,w) stand
for the number of such stages j whose query is answered by w.

(c) Finally, put dG(λ) = cG(λ), and for nonempty w, with n = �log2(|w|)� as
above, let

dG(w) =
∑

α t(n)−maximal,α∼Gw

cG(α) 2
m(α,w)−|α| .(7)

The weight 2m(α,w)−|α| in (7) has the following meaning. Suppose we extend
the simulation of Gw by flipping a coin for every query outside the domain of w for
exactly i stages. Then the number of coin-flips in the resulting play α of length i is
i−m(α,w), so 2m(α,w)−i is its probability. Thus dG(w) returns the suitably-weighted
average of t(n)-step computations of G with w fixed. The interested reader may verify
that this is the same as averaging d(wv) over all v of length 2t(n) (or any fixed longer
length), where d is the nonmartingale defined at the beginning of this section.
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Lemma 4.2. The function dG(w) is a martingale.
Proof. First we argue that

dG(w) =
∑

|α′|=t(n),α′∼Gw

cG(α
′) 2m(α′,w)−t(n).(8)

Observe that when α′ = αβ and α is t(n)-maximal, α ∼G w ⇐⇒ α′ ∼G w. This is
because none of the queries answered by β can be in the domain of w, else the definition
of G running in time t(n) would be violated. Likewise if α ∼G w, then m(α′, w) =
m(α,w). Finally, since cG is a martingale, cG(α) =

∑
|β|=t(n)−|α| cG(αβ) 2

|α|−t(n).

These facts combine to show the equality of (7) and (8).
By the same argument, the right-hand side of (8) is unchanged on replacing “t(n)”

by any t′ > t(n).
Now consider w such that |w| + 1 is not a power of 2. Then the “n” for w0 and

w1 is the same as the “n” for dG(w). Let P0 stand for the set of α of length t(n)
that are G-consistent with w0 but not with w1, P1 for those that are G-consistent
with w1 but not w0, and P for those that are consistent with both. Then the set
{α : |α| = t(n), α ∼G w } equals the disjoint union of P , P0, and P1. Furthermore,
for α ∈ P0 we have m(α,w0) = m(α,w) + 1, and similarly for P1, while for α ∈ P we
have m(α,w0) = m(α,w1) = m(α,w). Hence dG(w0) + dG(w1) is given by

∑
α∈P∪P0

cG(α)2
m(α,w0)−t(n) +

∑
α∈P∪P1

cG(α)2
m(α,w1)−t(n)

=
∑
α∈P0

cG(α)2
m(α,w0)−t(n) +

∑
α∈P1

cG(α)2
m(α,w1)−t(n) + 2

∑
α∈P

cG(α)2
m(α,w)−t(n)

= 2
∑
α∈P0

cG(α)2
m(α,w)−t(n) + 2

∑
α∈P1

cG(α)2
m(α,w)−t(n) + 2

∑
α∈P

cG(α)2
m(α,w)−t(n)

= 2dG(w).

Finally, if |w| + 1 is a power of 2, then dG(w0) and dG(w1) use t
′ := t(n+ 1) for

their length of α. However, by the first part of this proof, we can replace t(n) by t′

in the definition of dG(w) without changing its value, and then the second part goes
through the same way for t′. Hence dG is a martingale.

It is still the case, however, that dG may not succeed on the languages on which
the betting game G succeeds. To ensure this, we first use Lemma 3.6 to place betting
games G into a suitable “normal form” satisfying the sure-winnings condition (5).

Lemma 4.3. If G is a betting game satisfying the sure-winnings condition (5),
then S∞[G] ⊆ S∞[dG].

Proof. First, let A ∈ S∞[G], and fix k > 0. Find a finite initial segment w � A
long enough to answer every query made in a play α of G such that α ∼G w and
cG(α) ≥ k+2 and long enough to make t(n) in the definition of dG(w) (see (7)) greater
than |α|. Then every α′ of length t(n) such that α′ ∼G w has the form α′ = αβ. The
sure-winnings condition (5) implies that the right-hand side of (7) defining dG(w) is
an average over terms that all have size at least k. Hence dG(w) ≥ k. Letting k grow
to infinity gives A ∈ S∞[dG].
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Now we turn our attention to the complexity of dG. If G is a time-t(n) betting
game, it is clear that dG can be computed deterministically in O(t(n)) space, because
we need only cycle through all α of length t(n), and all the items in (7) are com-
putable in space O(t(n)). In particular, every E-betting game can be simulated by a
martingale whose values are computable in deterministic space 2O(n) (even counting
the output against the space bound), and every EXP-betting game can be simulated

by a martingale similarly computed in space 2n
O(1)

. However, we show in the next
section that one can estimate dG(w) well without having to cycle through all the α,
using a pseudorandom generator to “sample” only a very small fraction of them.

5. Sampling results. First we determine the accuracy to which we need to
estimate the values d(w) of a hard-to-compute martingale. We state a stronger version
of the result than we need in this section. In the next section, we will apply it to
martingales whose “activity” is restricted to subsets J of { 0, 1 }∗ in the following
sense: for all strings x /∈ J , and all w such that s|w|+1 = x, d(w0) = d(w1) = d(w).
Intuitively, a martingale d is inactive on a string x if there is no possible “past history”
w that causes a nonzero bet to be made on x. For short we say that such a d is inactive
outside J . Recall that N = Θ(2n).

Lemma 5.1. Let d be a martingale that is inactive outside J ⊆ { 0, 1 }∗, and
let [ε(i)]∞i=0 be a nonnegative sequence such that

∑
si∈J ε(i) converges to a number K.

Suppose we can compute in time t(n) a function g(w) such that |g(w)− d(w)| ≤ ε(N)
for all w of length N . Then there is a martingale d′ computable in time (2nt(n))O(1)

such that for all w, |d′(w)− d(w)| ≤ 4K + 2ε(0).
In this section, we will apply Lemma 5.1 with J = { 0, 1 }∗ and ε(N) = 1/N2 =

1/22n. In section 6.3 we will apply Lemma 5.1 in cases where J is finite.
Proof. First note that for any w (with N = |w|),
∣∣∣∣g(w)− g(w0)+g(w1)

2

∣∣∣∣ ≤ |g(w)−d(w)|+
∣∣∣∣d(w0)−g(w0)2

∣∣∣∣+
∣∣∣∣d(w1)−g(w1)2

∣∣∣∣
≤ ε(N) + ε(N + 1).(9)

In case J = { 0, 1 }∗, we inductively define

{
d′(λ) = g(λ) + 2K + ε(0),

d′(wb) = d′(w) + g(wb)− g(w0)+g(w1)
2 .

Note that d′ satisfies the average law (1), and that we can compute d′(w) in time
O(2nt(n)).

By induction on |w|, we can show using the estimate provided by (9) that

g(w) + ε(N) + 2
∞∑

i=N+1

ε(i) ≤ d′(w) ≤ g(w) + 2

N−1∑
i=0

ε(i) + ε(N) + 2K.

It follows that

d′(w) ≥ g(w) + ε(N)

= d(w) + (g(w)− d(w)) + ε(N) ≥ d(w),

and that

d′(w) = d(w) + (g(w)− d(w)) + (d′(w)− g(w))
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≤ d(w) + ε(N) + 2

N−1∑
i=0

ε(i) + ε(N) + 2K

≤ d(w) + 4K + 2ε(0).

This establishes the lemma in case J = { 0, 1 }∗. The generalization to other
subsets J of { 0, 1 }∗ is left to the reader.

Next, we specify precisely which function fG we will sample in order to estimate
dG and how we will do it.

Let G be a t(n) time-bounded betting game. Consider a prefix w, and let n denote
the largest length of a string in the domain of w. With any string ρ of length t(n),
we can associate a unique “play of the game” G defined by using w to answer queries
in the domain of w and the successive bits of ρ to answer queries outside it. We can
stop this play after t(n) steps—so that the stopped play is a t(n)-maximal α—and
then define fG(w, ρ) to be the capital cG(α). Note that we can compute fG(w, ρ) in
linear time, i.e., in time O(|w|+ t(n)). The proportion of strings ρ of length t(n) that
map to the same play α is exactly the weight 2m(α,w)−|α| in (7) for dG(w). Letting E
stand for mathematical expectation, this gives us

dG(w) = E|ρ|=t(n)[fG(w, ρ)].

To obtain good and efficient approximations to the right-hand side, we employ
pseudorandom generators. The following supplies all relevant definitional background.

Definition 5.2 (see [NiWi94]).
(a) The hardness HA(n) of a set A at length n is the largest integer s such that

for any circuit C of size at most s with n inputs,
∣∣∣∣Prx[C(x) = A(x)]− 1

2

∣∣∣∣ ≤ 1

s
,

where x is uniformly distributed over Σn.
(b) A pseudorandom generator is a function D that, for each n, maps Σn into

Σr(n), where r(n) ≥ n+ 1. The function r is called the stretching of D.
(c) The security SD(n) of D at length n is the largest integer s such that, for any

circuit C of size at most s with r(n) inputs,

∣∣∣ Prx[C(x) = 1]− Pry[C(D(y)) = 1]
∣∣∣ ≤ 1

s
,

where x is uniformly distributed over Σr(n) and y over Σn.
We will use pseudorandom generators with the following characteristics:
(1) an E-computable pseudorandom generator D1 that stretches seeds super-

polynomially and has super-polynomial security at infinitely many lengths;

(2) an EXP-computable pseudorandom generator D2 of security 2n
Ω(1)

; and
(3) an E-computable pseudorandom generator D3 of security 2Ω(n).

D1 will be applied in the next section; in this section we will use D2 and D3. None
of these generators is known to exist unconditionally. However, a highly plausible
hypothesis suffices for the weakest generator D1, as follows simply by combining the
work of [BFNW93] and [NiWi94] with some padding.

Theorem 5.3. If MA �= EXP, then there is an E-computable pseudorandom
generator D1 with stretching nΘ(log n) such that for any integer k, there are infinitely
many n with SD1

(n) > nk.
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Proof. From the proof of Lemma 4.1 of [BFNW93], it follows that if MA �= EXP,
then there is a set A ∈ EXP such that for any integer j, there are infinitely many m
such that HA(m) > mj . From the proof of the main Theorem 1 in [NiWi94], it follows
that for any set A ∈ EXP, there is an EXP-computable pseudorandom generator D
with stretching nΘ(log n) such that SD(n) = Ω(HA(

√
n)/n). Say that D is computable

in time 2n
c

for some integer constant c > 0. For any k > 0, the infinitely many m
promised above with j = 2(ck+1) yield infinitely many n of the form m2/c such that
SD(n

1/c) > nk. Defining D1(x) = D(x′), where x′ denotes the prefix of x of length
|x|1/c, yields the required pseudorandom generator.

Exponential-time computable pseudorandom generators with exponential security
have the interesting property that we can blow up the stretching exponentially without
significantly reducing the security. As with Theorem 5.3, credit for this observation
should be distributed among the references cited in the proof.

Theorem 5.4.
(a) Given an EXP-computable pseudorandom generator D0 of security 2n

Ω(1)

, we
can construct an EXP-computable pseudorandom generator D2 of security

2n
Ω(1)

and stretching 2n
Ω(1)

.
(b) Given an E-computable pseudorandom generator D0 of security 2Ω(n), we can

construct an E-computable pseudorandom generator D3 of security 2Ω(n) and
stretching 2Ω(n).

Proof. For (a), Nisan and Wigderson [NiWi94] showed that the existence of an E-
computable pseudorandom generator with stretching n+1 (a “quick extender” in their

terminology) with security 2n
Ω(1)

is equivalent to the existence of an E-computable

pseudorandom generator with stretching and security 2n
Ω(1)

. See statements (3) and
(4) of their main theorem (Theorem 1) instantiated with s(�) = 2!. As used in
[BFNW93], their main result carries through if we replace “E-computable” by “EXP-
computable” in both statements, owing to padding. Since the existence of D0 implies

the existence of an EXP-computable extender with security 2n
Ω(1)

, the existence of
D2 follows.

For (b), first define D′(x) to be the first |x| + 1 bits of D0(x). Then D′ is an
extender with security 2Ω(n), and this implies that the range of D′ is a language
in E requiring circuits of size 2Ω(n). Impagliazzo and Wigderson, in their proof of
Theorem 2 in [ImWi97], showed how to transform such a language into a language
A ∈ E such that HA(n) = 2Ω(n). Using this A in part (3) of Theorem 2 of [NiWi94]
yields an E-computable pseudorandom generator D3 of security and stretching 2Ω(n).
(It is also possible to argue that the range of D′ is sufficiently hard to employ the
technique of [NiWi94], without going through [ImWi97].)

Pseudorandom generators of security 2n
Ω(1)

(even polynomial-time computable
ones) are fairly widely believed to exist (see [BlMi84, RaRu97, Bon99]), and while
those of security 2Ω(n) are more controversial even for EXP-computability, their ex-
istence was made more plausible by the result of [ImWi97] used in the proof of (b)
above. Polynomial-time computable pseudorandom generators of security 2Ω(n) exist
relative to a random oracle [Zim95, Imp99pc], and E-computable ones also exist if
P = NP. (The latter observation follows by combining the techniques of Kannan
[Kan82] with padding and the above-mentioned result of [ImWi97]; it is noted by the
second author as “Corollary 2.2.19” in his dissertation [Mel99].)

The following general result shows how pseudorandom generators can be used to
approximate averages. It provides the accuracy and time bounds needed for applying
Lemma 5.1 to get the desired martingale.
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Theorem 5.5. Let D be a pseudorandom generator computable in time δ(n) and
with stretching r(n). Let f : Σ∗ × Σ∗ → (−∞,∞) be a function that is computed in
linear time on a Turing machine, and let s,R,m : N → N be fully time-constructible
functions such that s(N) ≥ N and the following relations hold for any integer N ≥ 0,
w ∈ ΣN , and ρ ∈ Σs(N):

|f(w, ρ)| ≤ R(N),

r(m(N)) ≥ s(N),

SD(m(N)) ≥ (s(N) +R(N))6.(10)

Then we can approximate

h(w) = E|ρ|=s(N)[f(w, ρ)](11)

to within N−2 in time O(2m(N) · (s(N) +R(N))4 · δ(m(N))).
Proof. For any N ≥ 0, let IN be a partition of the interval [−R(N), R(N)] into

subintervals of length 1
2N2 . Note that |IN | = 4N2R(N). Define for any I ∈ IN and

any string w of length N

π(I, w) = Pr|ρ|=s(N)[f(w, ρ) ∈ I].

The predicate in [. . .] can be computed by circuits of size O(s(N) log s(N)), using
the t-to-O(t log t) Turing-machine-time-to-circuit-size construction of Pippenger and
Fischer [PiFi79]. Since SD(m(N)) = ω(s(N) log s(N)), it follows that

π̃(I, w) = Pr|σ|=m(N)[f(w,D(σ)[1 . . . s(N)]) ∈ I]

approximates π(I, w) to within an additive error of (SD(m(N)))−1, and we can com-
pute it in time O(2m(N) ·s(N) ·δ(m(N))). We define the approximation h̃(w) for h(w)
as

h̃(w) =
∑
I∈IN

π̃(I, w)min(I).

Since we can write h(w) as

h(w) =
∑
I∈IN

π(I, w)E|ρ|=s(N)[f(w, ρ) | f(w, ρ) ∈ I],

we can bound the approximation error as follows:

|h(w)− h̃(w)|
≤
∑
I∈IN

π(I, w)
∣∣∣E|ρ|=s(N)[f(w, ρ) | f(w, ρ) ∈ I]−min(I)

∣∣∣
+
∑
I∈IN

∣∣∣π(I, w)− π̃(I, w)
∣∣∣min(I)

≤ max
I∈IN

(|I|) + |IN | · (SD(m(N)))−1 ·R(N)

≤ 1

2N2
+ 4N2 ·R2(N) · (SD(m(N)))−1 ≤ 1

N2
.
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Computing h̃(w) requires |IN | = 4N2R(N) evaluations of π̃, which results in the
claimed upper bound for the time complexity of h̃.

Now we would like to apply Theorem 5.5 to approximate h = dG given by (7)
to within N−2, by setting f = fG and s(N) = t(logN). However, for a general
betting game G running in time t(n), we can only guarantee an upper bound of
R(N) = 2t(logN) · cG(λ) on |f(w, ρ)|. Since SD can be at most exponential, condition
(10) would force m(N) to be Ω(t(logN)). In that case, Theorem 5.5 can only yield an
approximation computable in time 2O(t(logN)). However , we can assume without loss
of generality that G satisfies the slow-winnings condition (6) of Lemma 3.6, in which
case an upper bound of R(N) ∈ O(N) holds. Then the term s(N) in the right-hand
side of (10) dominates, provided t(n) = 2Ω(n).

Taking everything together, we obtain the following result about transforming E-
and EXP-betting games into equivalent E-, respectively, EXP-martingales.

Theorem 5.6. If there is a pseudorandom generator computable in E with se-
curity 2Ω(n), then for every E-betting game G, there exists an E-martingale d such
that S∞[G] ⊆ S∞[d]. If there is a pseudorandom generator computable in EXP with

security 2n
Ω(1)

, then for every EXP-betting game G, there exists an EXP-martingale
d such that S∞[G] ⊆ S∞[d].

Proof. By Lemma 3.6, we can assume that cG satisfies both the sure-winnings
condition (5) as well as the slow-winnings condition (6). Because of Lemmas 4.3 and
5.1 (since the series

∑∞
i=1

1
i2 converges), it suffices to approximate the function dG(w)

given by (7) to within N−2 in time 2O(n), respectively, 2n
O(1)

, where N = |w| and
n = logN .

Under the given hypothesis about the existence of an E-computable pseudo-
random generator D0, we can take D to be the pseudorandom generator D3 pro-
vided by Theorem 5.4(b). Thus we meet the conditions for applying Theorem 5.5
to h = dG with s(N) = NO(1), R(N) = O(N), and m(N) = O(logN), and we
obtain the approximation of dG that we need. In the case of an EXP-betting
game G, to obtain an EXP-martingale we can take D to be the pseudorandom gen-

erator D2 of weaker security guarantee 2n
Ω(1)

provided by Theorem 5.4(a). Then we

meet the requirements of Theorem 5.5 with s(N) = 2(logN)O(1)

, R(N) = O(N), and
m(N) = (logN)O(1).

6. Autoreducible sets. An oracle Turing machine M is said to autoreduce a
language A if L(MA) = A, and for all strings x,MA on input x does not query x. That
is, one can learn the membership of x by querying strings other than x itself. If M
runs in polynomial time, then A is P-autoreducible—we also write ≤p

T -autoreducible.
If M is also nonadaptive, then A is ≤p

tt -autoreducible.
One can always code M so that for all oracles, it never queries its own input—

then we call M an autoreduction. Hence we can define an effective enumeration
[Mi]

∞
i=1 of polynomial-time autoreductions, such that a language A is autoreducible

iff there exists an i such that L(MA
i ) = A. (For a technical aside: the same Mi may

autoreduce different languages A, and some Mi may autoreduce no languages at all.)
The same goes for ≤p

tt -autoreductions.
Autoreducible sets were brought to the polynomial-time context by Ambos-Spies

[Amb84]. Their importance was further argued by Buhrman, Fortnow, Van Melke-
beek, and Torenvliet [BFvMT98], who showed that all ≤p

T -complete sets for EXP
are ≤p

T -autoreducible (while some complete sets for other classes are not). Here we
demonstrate that autoreducible sets are important for testing the power of resource-
bounded measure.
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6.1. Adaptively autoreducible sets. As stated in the introduction, if the ≤p
T -

autoreducible sets in EXP (or sufficiently the ≤p
T -complete sets for EXP) are covered

by an EXP-martingale, then EXP �= BPP, a nonrelativizing consequence. However, it
is easy to cover them by an E-betting game. Indeed, the betting game uses its adaptive
freedom only to “look ahead” at the membership of lexicographically greater strings,
betting nothing on them.

Theorem 6.1. There is an E-betting game G that covers all ≤p
T -autoreducible

languages.
Proof. Let M1,M2, . . . be an enumeration of ≤p

T -autoreductions such that each
Mi runs in time ni + i on inputs of length n. Our betting game G regards its capital
as composed of infinitely many “shares” ci, one for each Mi. Initially, ci = 1/2i.
Letting 〈·, ·〉 be a standard pairing function, inductively define n0 = 0 and n〈i,j〉+1 =
(n〈i,j〉)i + i.

During a stage s = 〈i, j〉, G simulates Mi on input 0ns−1 . Whenever Mi makes a
query of length less than ns−1, G looks up the answer from its table of past queries.
Whenever Mi makes a query of length ns−1 or more, G places a bet of zero on that
string and makes the same query. Then G bets all of the share ci on 0ns−1 according
to the answer of the simulation of Mi. Finally, G “cleans up” by putting zero bets on
all strings with length in [ns−1, ns) that were not queries in the previous steps.

If Mi autoreduces A, then share ci doubles in value at each stage 〈i, j〉 and
makes the total capital grow to infinity. And G runs in time 2O(n)—indeed, only the
“cleanup” phase needs this much time.

Corollary 6.2. Each of the following statements implies BPP �= EXP.
1. The class of ≤p

T -autoreducible sets has E-measure zero.
2. The class of ≤p

T -complete sets for EXP has E-measure zero.
3. E-betting games and E-martingales are equivalent.
4. E-betting games have the finite union property.

The same holds if we replace E by EXP in these statements.
Proof. Let C stand for the class of languages that are not ≤p

T -hard for BPP.
Allender and Strauss [AlSt94] showed that C has E-measure zero, so trivially it is also
covered by an E-betting game. Now let D stand for the class of ≤p

T -complete sets for
EXP. By Theorem 6.1 and the result of [BFvMT98] cited above, D is covered by an
E-betting game.

If EXP = BPP, the union C ∪ D contains all of EXP, and
• if D would have E-measure zero, so would C∪D and hence EXP, contradicting
the measure conservation property of Lutz measure;

• if E-betting games would have the finite-union property, then C ∪D and EXP
would be covered by an E-betting game, contradicting Theorem 3.4.

Since statement 1 implies statement 2, and statement 3 implies statement 4, then
these observations suffice to establish the corollary for E. The proof for EXP is
similar.

Since there is an oracle A giving EXPA = BPPA [Hel86], this shows that rela-
tivizable techniques cannot establish the equivalence of E-martingales and E-betting
games, nor of EXP-martingales and EXP-betting games. They cannot refute it either,
since there are oracles relative to which strong pseudorandom generators exist—all
“random” oracles, in fact [Zim95].

6.2. Nonadaptively autoreducible sets. It is tempting to think that the
nonadaptively P-autoreducible sets should have E-measure zero, or at least EXP-
measure zero, insofar as betting games are the adaptive cousins of martingales. How-
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ever, it is not just adaptiveness but also the freedom to bet out of the fixed lexi-
cographic order that adds power to betting games. If one carries out the proof of
Theorem 6.1 to cover the class of ≤p

tt -autoreducible sets, using an enumeration [Mi]
of ≤p

tt -autoreductions, one obtains a nonadaptive E-betting game (defined formally
below) that (independent of its oracle) bets on all strings in an order given by a single
permutation of Σ∗. The permutation itself is E-computable. It might seem that an
E-martingale should be able to “untwist” the permutation and succeed on all these
sets. However, our next results, which strengthen the above corollary, close the same
“nonrelativizing” door on proving this with current techniques.

Theorem 6.3. For any k ≥ 1, the ≤p
tt -complete languages for ∆p

k are ≤p
tt -

autoreducible.
Here is the proof idea, which follows techniques of [BFvMT98] for the theorem

that all EXP-complete sets are ≤p
T -autoreducible. Call a closed propositional formula

that has at most k blocks of like quantifiers (i.e., at most k−1 quantifier alternations)
a “QBFk formula,” and let TQBF k stand for the set of true QBF formulas. Let A be
a ≤p

tt -complete set for ∆p
k+1 = PΣp

k . Since TQBF k is Σp
k-hard, there is a deterministic

polynomial-time oracle Turing machine M that accepts A with oracle TQBF k. Let
q(x, i) stand for the ith oracle query made by M on input x. Whether q(x, i) belongs
to TQBF k forms a ∆p

k+1-question, so we can ≤p
tt -reduce it to A. It is possible that

this latter reduction will include x itself among its queries. Let b+i denote the answer
it gives to the question provided that any query to x is answered “yes,” and similarly
define b−i in case x is answered “no.”

If b+i = b−i , which holds in particular if x is not queried, then we know the correct
answer bi to the ith query. If this situation occurs for all queries, we are finished: We
just have to run M on input x using the bi’s as answers to the oracle queries. The bi’s
themselves are obtained without submitting the (possibly adaptive) queries made by
M , but rather by applying the latter ≤p

tt -reduction to A to the pair 〈x, i〉, and without
submitting any query on x itself. Hence this process satisfies the requirements of a
≤p

tt -autoreduction of A for the particular input x.
Now suppose that b+i �= b−i for some i, and let i be minimal. Then we will have

two players play the k-round game underlying the QBFk-formula that constitutes
the ith oracle query. One player claims that b+i is the correct value for bi, which
is equivalent to claiming that x ∈ A, while his opponent claims that b−i is correct
and that x /∈ A. Write χA(x) = 1 if x ∈ A, and χA(x) = 0 if x /∈ A. The players’
strategies will consist of computing the game history so far, determining their optimal
next move, ≤p

tt -reducing this computation to A, and finally producing the result of
this reduction under their respective assumption about χA(x). This approach will
allow us to recover the game history in polynomial time with nonadaptive queries to
A different from x. Moreover, it will guarantee that the player making the correct
assumption about χA(x) plays optimally. Since this player is also the one claiming
the correct value for bi, he will win the game. So, we output the winner’s value for bi.

It remains to show that we can compute the above strategies in deterministic
polynomial time with a Σp

k oracle, i.e., in FPΣp
k . It seems crucial that the number k

of alternations be constant here.
Proof of Theorem 6.3. Let A be a ≤p

tt -complete set for ∆p
k+1 accepted by the

polynomial-time oracle Turing machine M with oracle TQBF k. Let q(x, i) denote
the ith oracle query of MTQBFk on input x. Then q(x, i) can be written in the
form (∃y1)(∀y2) . . . (Qkyk) φx,i(y1, y2, . . . , yk), where y1, . . . , yk stand for the vectors
of variables quantified in each block, or in the opposite form beginning with the
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block (∀y1). By reasonable abuse of notation, we also let yr stand for a string of
0-1 assignments to the variables in the rth block. Without loss of generality, we may
suppose every oracle query made byM has this form where each yj is a string of length
|x|c, and M makes exactly |x|c queries, taking the constant c from the polynomial

time bound on M . Note that the function q belongs to FPΣp
k . Hence the language

L0 = { 〈x, y〉 : q(x, i) ∈ TQBF k }

belongs to ∆p
k+1. Since A is ≤p

tt -complete for ∆p
k+1, there is a polynomial-time non-

adaptive oracle Turing machine N0 that accepts L0 with oracle A. Now define b+i (x) =

N
A∪{x}
0 (〈x, i〉) and b−i (x) = N

A\{x}
0 (〈x, i〉). We define languages L1, L2, . . . , Lk ∈

∆p
k+1 and ≤p

tt -reductions N1, N2, . . . , Nk inductively as follows.
Let 1 ≤ � ≤ k. The set L! consists of all pairs 〈x, j〉 with 1 ≤ j ≤ |x|c, such

that there is a smallest i, 1 ≤ i ≤ |x|c, for which b+i (x) �= b−i (x), and the following

condition holds. For 1 ≤ r ≤ � − 1, let the sth bit of yr equal N
A∪{x}
r (〈x, s〉) if

r ≡ b+i (x) mod 2, and N
A\{x}
r (〈x, s〉) otherwise. We put 〈x, j〉 into L! iff there is a

lexicographically least y! such that

χ[(Q!+1y!+1)(Q!+2y!+2) . . . (Qkyk) φx,i(y1, y2, . . . , yk)] ≡ � mod 2,

and the jth bit of y! is set to 1. The form of this definition shows that L! belongs
to ∆p

k+1. Hence we can take N! to be a polynomial-time nonadaptive oracle Turing
machine that accepts L! with oracle A.

Now, we construct a ≤p
tt -autoreduction for A. On input x, we compute b+i (x) and

b−i (x) for 1 ≤ i ≤ |x|c, as well as y(b)
r for b ∈ {0, 1} and 1 ≤ r ≤ |x|c. The latter quan-

tity y
(b)
r is defined as follows: for 1 ≤ s ≤ |x|c, the sth bit of y

(b)
r equals N

A∪{x}
r (〈x, s〉)

if r ≡ b mod 2, and N
A\{x}
r (〈x, s〉) otherwise. Note that we can compute all these

values in polynomial time by making nonadaptive queries to A, none of which equals
x.

If b+i (x) = b−i (x) for every 1 ≤ i ≤ |x|c, we runM on input x using b+i (x) = b−i (x)
as the answer to the ith oracle query. Since it always holds that at least one of b+i (x)
and b−i (x) equals the correct oracle answer bi(x), we faithfully simulate M on input
x and hence compute χA(x) correctly.

Otherwise, let i be the first index for which b+i (x) �= b−i (x). Since bj(x) = b+j (x) =

b−j (x) for j < i, we can determine q(x, i) by simulating M on input x until it asks the
ith query. We then output 1 if

b+i (x) = φx,i(y
(b+

i
(x))

1 , y
(b+

i
(x))

2 , . . . , y
(b+

i
(x))

k )

and output 0 otherwise. We claim that this gives the correct answer to whether x ∈ A.

In order to prove the claim, consider the game history y
(b+

i
(x))

1 , y
(b+

i
(x))

2 , . . . ,

y
(b+

i
(x))

k . The player claiming the correct value for bi(x) gets to play the rounds that
allow him to win the game no matter what his opponent does. Since this player
is also the one making the correct assumption about χA(x), an inductive argument
shows that he plays optimally: At his stages �, the string y! in the above construc-
tion of L! exists, and he plays it. The key for the induction is that at later stages
�′ > �, the value of y! at stage �′ remains the same as what it was at stage �.
Thus the player with the correct assumption about χA(x) wins the game—that is,
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φx,i(y
(b+

i
(x))

1 , y
(b+

i
(x))

2 , . . . , y
(b+

i
(x))

k ) equals his guess for bi(x) (and not the other player’s
guess).

In order to formalize the strengthening of Corollary 6.2 that results from Theo-
rem 6.3, we call a betting game G nonadaptive if the infinite sequence x1, x2, x3, . . .
of queries GA makes is the same for all oracles A. If G runs in 2O(n) time, and
this sequence hits all strings in Σ∗, then the permutation π of the standard ordering
s1, s2, s3, . . . defined by π(si) = xi is both computable and invertible in 2O(n) time.
It is computable in this amount of time because in order to hit all strings, G must
bet on all strings in { 0, 1 }n within the first 2O(n) steps. Hence its ith bet must be
made in a number of steps that is singly-exponential in the length of si. And to
compute π−1(xi), G need only be run for 2O(|xi|) steps, since it cannot query xi after
this time. Since π and its inverse are both E-computable, π is a reasonable candidate
to replace lexicographic ordering in the definition of E-martingales, and likewise for
EXP-martingales. We say a class C has π-E-measure zero if C can be covered by
an E-martingale that interprets its input as a characteristic string in the order given
by π.

Theorem 6.4. The class of ≤p
tt -autoreducible languages can be covered by a non-

adaptive E-betting game. Hence there is an E-computable and invertible permutation
π of Σ∗ such that this class has π-E-measure zero.

Proof. With reference to the proof of Theorem 6.1, we can let M1,M2, . . . be
an enumeration of ≤p

tt -autoreductions such that each Mi runs in time ni + i. The
machine G in that proof automatically becomes nonadaptive, and since it queries all
strings, it defines a permutation π of Σ∗ as above with the required properties.

Corollary 6.5. Each of the following statements implies BPP �= EXP, as do
the statements obtained on replacing “E” by “EXP.”

1. The class of ≤p
tt -autoreducible sets has E-measure zero.

2. The class of ≤p
tt -complete sets for EXP has E-measure zero.

3. Nonadaptive E-betting games and E-martingales are equivalent.
4. If two classes can be covered by nonadaptive E-betting games, then their union

can be covered by an E-betting game.
5. For all classes C and all E-computable and invertible orderings π, if C has

π-E-measure zero, then C has E-measure zero.
Proof. It suffices to make the following two observations to argue that the proof

of Corollary 6.2 carries over to the truth-table cases.
• The construction of Allender and Strauss [AlSt94] actually shows that the
class of sets that are not ≤p

tt -hard for BPP has E-measure zero.
• If EXP = BPP, Theorem 6.3 implies that all ≤p

tt -complete sets for EXP are
≤p

tt -autoreducible, because BPP ⊆ Σp
2 ⊆ ∆p

3 ⊆ EXP.
Theorem 6.4 and the finite-unions property of Lutz’s measures on E and EXP do the
rest.

The last point of Corollary 6.5 asserts that Lutz’s definition of measure on E is
invariant under all E-computable and invertible permutations. These permutations
include flip from the introduction and (crucially) π from Theorem 6.4. Hence this
robustness assertion for Lutz’s measure implies BPP �= EXP. Our “betting-game
measure” (both adaptive and nonadaptive) does enjoy this permutation invariance,
but asserting the finite-unions property for it also implies BPP �= EXP. The rest
of this paper explores conditions under which Lutz’s martingales can cover classes
of autoreducible sets, thus attempting to narrow the gap between them and betting
games.
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6.3. Covering autoreducible sets by martingales. This puts the spotlight
on the question: Under what hypotheses can we show that the ≤p

tt -autoreducible
sets have E-measure zero? Any such hypothesis must be strong enough to imply
EXP �= BPP, but we hope to find hypotheses weaker than assuming the equivalence
of (E- or EXP-) betting games and martingales, or assuming the finite-union property
for betting games. Do we need strong pseudorandom generators to cover the ≤p

tt -
autoreducible sets? How close can we come to covering the ≤p

T -autoreducible sets by
an E-martingale?

Our final results show that the hypothesis MA �= EXP suffices. This assumption
is only known to yield pseudorandom generators of super-polynomial security (at in-
finitely many lengths) rather than exponential security (at almost all lengths). Recall
that MA contains both BPP and NP; in fact it is sandwiched between NPBPP and
BPPNP.

Theorem 6.6. If MA �= EXP, then the class of ≤p
tt -autoreducible sets has E-

measure zero.
We actually obtain a stronger conclusion.
Theorem 6.7. If MA �= EXP, then the class of languages A autoreducible by

polynomial-time oracle Turing machines that always make their queries in lexico-
graphic order has E-measure zero.

To better convey the essential sampling idea, we prove the weaker Theorem 6.6
before the stronger Theorem 6.7. The extra wrinkle in the latter theorem is to use
the pseudorandom generator twice, both to construct the set of “critical strings” to
bet on and to compute the martingale.

Proof of Theorem 6.6. Let [Mi]
∞
i=1 enumerate the ≤p

tt -autoreductions, with each
Mi running in time ni. Divide the initial capital into shares si,m for i,m ≥ 1, with
each si,m valued initially at (1/m2)(1/2i). For each share si,m, we will describe a
martingale that is active only on a finite number of strings x. The martingale will be
active only if i ≤ m/2#log2m$ and m ≤ |x| ≤ mi, and further only if x belongs to a
set J = Ji,m constructed below. Hence the martingale will be inactive outside J , and
we will be able to apply Lemma 5.1. We will arrange that whenever Mi autoreduces
A, there are infinitely many m such that share si,m attains a value above 1 (in fact,
close to m) along A. Hence the martingale defined by all the shares succeeds on A.
We will also ensure that each active share’s bets on strings of length n are computable
in time 2an, where the constant a is independent of i. This is enough to make the
whole martingale E-computable and complete the proof.

To describe the betting strategy for si,m, first construct a set I = Ii,m starting
with I = { 0m } and iterating as follows: Let y be the lexicographically least string of
length m that does not appear among queries made by Mi on inputs x ∈ I. Then
add y to I. Do this until I has 3#log2m$ strings in it. This is possible because the
bound 3#log2m$mi on the number of queries Mi could possibly make on inputs in I
is less than 2m. Moreover, 2m bounds the time needed to construct I. Thus we have
arranged that

for all x, y ∈ I with x < y, Mi(x) does not query y.(12)

Now let J stand for I together with all the queriesMi makes on inputs in I. Adapting
ideas from Definition 4.1 to this context, let us define a finite Boolean function β :
J → { 0, 1 } to be consistent with Mi on I, written β ∼I Mi, if for all x ∈ I, Mi

run on input x with oracle answers given by β agrees with the value β(x). Given a
characteristic prefix w, also write β ∼ w if β(x) and w(x) agree on all x in J and
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the domain of w. Since I and J depend only on i and m, we obtain a “probability
density” function for each share si,m via

πi,m(w) = Prβ∼w[β ∼I Mi].(13)

The martingale di,m standardly associated to this density (as in [Lutz92]) is definable
inductively by di,m(λ) = 1 and

di,m(w1) = di,m(w)
πi,m(w1)

πi,m(w)
, di,m(w0) = di,m(w)

πi,m(w0)

πi,m(w)
.(14)

(In case πi,m = 0, we already have di,m(w) = 0, and so both di,m(w1) and di,m(w0)
are set to 0.)

Note that the values πi,m(wb) for b = 0, 1 can only differ from πi,m(w) if the
string x indexed by b belongs to J , i.e., di,m is inactive outside J .

Claim 6.8. If Mi autoreduces A, then for all sufficiently large m, if share si,m
could play the strategy di,m, then on A its value would rise to (at least) m/2i. That
is, si,m would multiply its initial value by (at least) m3.

To see this, first note that for any w � A long enough to contain J in its domain,
πi,m(w) = 1. We want to show that for any v short enough to have domain disjoint
from I, πi,m(v) = 1/2|I|. To do this, consider any fixed 0-1 assignment β0 to strings
in J \ I that agrees with v. This assignment determines the computation of Mi on
the lexicographically first string x ∈ I, using β0 to answer queries, and hence forces
the value of β(x) in order to maintain consistency on I. This in turn forces the
value β(x′) on the next string x′ in I, and so on. Hence only one out of 2|I| possible
completions of β0 to β is consistent with Mi on I. Thus πi,m(v) = 1/2|I|. Since
di,m(w) = di,m(v)·(πi,m(w)/πi,m(v)) by (14), and 2|I| = 23�log2 m� ≥ m3, Claim 6.8 is
proved.

The main obstacle now is that πi,m in (13), and hence di,m(w), may not be com-
putable in time 2an with a independent of i. The number of assignments β to count
is on the order of 2|J| ≈ 2m

i ≈ 2n
i

. Here is where we use the E-computable pseudo-
random generator D1, with super-polynomial stretching and with super-polynomial
security at infinitely many lengths, obtained via Theorem 5.3 from the hypothesis
MA �= EXP. For all i and sufficiently large m, D1 stretches a seed s of length m into
at least 3#log2m$mi bits, which are enough to define an assignment βs to J (agreeing
with any given w). We estimate πi,m(w) by

π̂i,m(w) = Pr|s|=m[βs ∼I Mi].(15)

Take ε = 1/mi+4. By Theorem 5.3 there are infinitely many “good” m such that
SD1(m) > mi+4.

Claim 6.9. For all large enough good m, every estimate π̂i,m(w) gives |π̂i,m(w)−
πi,m(w)| ≤ ε.

Suppose not. First note that (13) and (15) do not depend on all of w, just on the
up-to-3#log2m$mi < mi+1 bits in w that index strings in J , and these can be hard-
wired into circuits. The tests [β ∼I Mi] can also be done by circuits of size o(mi+1),
because a Turing machine computation of time r can be simulated by circuits of
size O(r log r) [PiFi79]. Hence we get circuits of size less than SD1

(m) achieving a
discrepancy greater than 1/SD1(m), which is a contradiction. This proves Claim 6.9.

Finally, observe that the proof of Claim 6.8 gives us not only di,m(w) ≥ πi,m(w) ·
m3, but also di,m(w) = Θ(πi,m(w) ·m3), when w � A. For w � A and good m, we
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thus obtain estimates g(w) for di,m(w) within error bounds ε′ = Θ(ε) = Θ(1/mi+1).
Now applying Lemma 5.1 for this g(w) and J = Ji,m yields a martingale d′i,m(w)
computable in time 2an, where the constant a is independent of i. This d′i,m(w) is
the martingale computed by the actions of share si,m. Since K =

∑
si∈J ε

′ = |J |ε′ ≤
(1/m) ·3#log2m$ = o(1), we actually obtain |d′i,m(w) − di,m(w)| = o(1), which is
stronger than what we needed to conclude that share si,m returns enough profit. This
completes the proof of Theorem 6.6.

To prove Theorem 6.7, we need to construct sets I = Ii,m with properties similar
to (12), in the case where Mi is no longer a ≤p

tt -autoreduction but makes its queries
in lexicographic order. To carry out the construction of I, we use the pseudorandom
generator D1 a second time and actually need only that Mi on input 0m makes
all queries of length < m before making any query of length ≥ m. To play the
modified strategy for share si,m, however, appears to require that all queries observe
lexicographic order.

Proof of Theorem 6.7. Recall that the hypothesis EXP �= MA yields a pseudo-
random generator D1 computable in time 2O(m) and stretching m bits to r(m) bits
such that for all i, all sufficiently large m give r(m) > mi, and infinitely many m give
hardness SD1(m) > mi. Let [Mi]

∞
i=1 be a standard enumeration of ≤p

T -autoreductions
that are constrained to make their queries in lexicographic order, with each Mi run-
ning in time O(ni). We need to define strategies for “shares” si,m such that whenever
Mi autoreduces A, there are infinitely many m such that share si,m grows its initial
capital from 1/m22i to 1/2i or more. The strategy for si,m must still be computable
in time 2am where a is independent of i.

To compute the strategy for si,m, we note first that si,m can be left inactive
on strings of length < m. The overall running time allowance 2O(m) permits us to
suppose that by the time si,m becomes active and needs to be considered, the initial
segment w0 of A (where A is the language on which the share happens to be playing)
that indexes strings of length up to m−1 is known. Hence we may regard w0 as fixed.
For any α ∈ { 0, 1 }mi

let Mα
i (x) stand for the computation in which w0 is used to

answer any queries of length < m and α is used to answer all other queries. Because
of the order in which Mi makes its queries, those queries y answered by w0 are the
same for all α, so that those answers can be coded by a string u0 of length at most
mi. Now for any string y of length equal to m, define

P (x, y) = Prα[M
α
i (x) queries y].

Note that given u0 and α, the test “Mα
i (x) queries y” can be computed by circuits of

size O(mi+1). Hence by using the pseudorandom generator D1 at length m, we can
compute uniformly in E an approximation P1(x, y) for P (x, y) such that for infinitely
many m, said to be “good” m, all pairs x, y give |P1(x, y)− P (x, y)| ≤ εm, where we
choose εm = 1/m4.

Here is the algorithm for constructing I = Ii,m. Start with I := ∅, and while
|I| < 3 log2m, do the following: Take the lexicographically least string y ∈ Σm \ I
such that for all x ∈ I, P1(x, y) ≤ εm. The search for such a y will succeed within
|I| ·mi+4 trials, since for any particular x, there are fewer than mi+4 strings y overall
that will fail the test. (This is so even if m is not good, because it only involves P1,

and because P1 involves simulating M
D1(s)
i over all seeds s.) There is enough room

to find such a y provided |I|mi+4 ≤ 2m, which holds for all sufficiently large m. The
whole construction of I can be completed within time 22am. It follows that for any
sufficiently large good m and x, y ∈ I with x < y, Prα[M

α
i (x) queries y] < 2εm =
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2/m4.
At this point we would like to define J to be “I together with the set of strings

queried by Mi on inputs in I” as before, but unlike the previous case where Mi was
nonadaptive, this is not a valid definition. We acknowledge the dependence of the
strings queried by Mi on the oracle A by defining

JA := I ∪ { y : (∃x ∈ I)MA
i (x) queries y }.

Let r = mi · #3 logm$. Then |JA| ≤ r; that is, JA has the same size as J in the
previous proof. This latter definition will be OK because Mi makes its queries in
lexicographic order. Hence the share si,m, having already computed I without any
reference to A, can determine the strings in JA on which it should be active on the fly,
in lexicographic order. Thus we can well-define a mapping β from { 0, 1 }r to { 0, 1 }
so that for any k ≤ r, β(k) = 1 means that the query string y that happens to be kth
in order in the on-the-fly construction of JA is answered “yes” by the oracle. Then we
may write Jβ for JA, and then write β(y) = 1 in place of β(k) = 1. Most important,

given any x ∈ I, every such β well-defines a computation Mβ
i (x). This entitles us to

carry over the two “consistency” definitions from the proof of Theorem 6.6:
• β ∼ w if β(y) = w(y) for all y ∈ Jβ ;

• β ∼I Mi if for all x ∈ I, Mβ
i (x) equals (i.e., “agrees with”) β(x).

Finally, we may apply the latter notion to initial subsets of I and define for 1 ≤ � ≤
3 logm the predicate

R!(β) = (β ∼x1,...,x	
Mi) ∧

(∀j, k : 1 ≤ j ≤ k ≤ �)Mβ
i (xj) does not query xk.

Claim 6.10. For all �, Prβ [R!(β)] ≤ 1/2!.
For the base case � = 1, Prβ [R1(β)] = 1/2, because Mi(x) does not query x1,

Mi being an autoreduction, and because whether β ∼x1 Mi depends only on the bit
of β corresponding to x1. Working by induction, suppose Prβ [R!−1(β)] ≤ 1/2!−1.
If R!−1(β) holds, then taking β′ to be β with the bit corresponding to x! flipped,
R!−1(β

′) also holds. However, at most one of R!(β) and R!(β
′) holds, again because

Mi(x!) does not query x!. Hence Prβ [R!(β)] ≤ (1/2)Prβ [R!−1(β)], and this proves
Claim 6.10. (It is possible that neither R!(β) nor R!(β

′) holds, as happens when

Mβ
i (xj) queries x! for some j, but this does not hurt the claim.)
Now we can rejoin the proof of Theorem 6.6 at (13), defining the probability

density function πi,m(w) = Prβ∼w[β ∼I Mi]. We get a martingale di,m from πi,m as
before, and this represents an “ideal” strategy for share si,m to play. The statement
corresponding to Claim 6.8 is the following.

Claim 6.11. If Mi autoreduces A and m is good and sufficiently large, then the
ideal strategy for share si,m multiplies its value by at least m3/2 along A.

To see this, note that we constructed I = {x1, . . . , x3 logm } above so that for all
j < k, Prα[M

α
i (xj) queries xk] ≤ 2/m4. It follows that

Pr[(∃j, k : 1 ≤ j ≤ k ≤ 3 logm)Mi(xj) queries xk] ≤
(#3 logm$

2

)
· 2

m4
≤ 1

m3
,

provided m ≥ #3 logm$2. Hence, using Claim 6.10 with � = 3 logm, we get

Prβ [β ∼I Mi] ≤ 1

23 logm
+

1

m3
=

2

m3
.
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Since the β defined by A satisfies β ∼I Mi, it follows by the same reasoning as
in Claim 6.8 that di,m profits by at least a fraction of m3/2 along A. This proves
Claim 6.11.

Finally, we (re)use the pseudorandom generator D1 as before to expand a seed
s of length m into a string βs of (at least) r = 3#log2m$mi bits. Given any w, βs
well-defines a β and a set Jβ of size at most r as constructed above by using w to
answer queries in the domain of w and βs for everything else. We again obtain the
estimate π̂i,m(w) = Pr|s|=m[βs ∼I Mi] from (15), with the same time complexity as
before. Now we repeat Claim 6.9 in this new context as follows.

Claim 6.12. For all large enough good m, every estimate π̂i,m(w) gives |π̂i,m(w)−
πi,m(w)|≤ε.

If not, then for some fixed w the estimate fails. The final key point is that because
Mi always makes its queries in lexicographic order, the queries in the domain of w
that need to be covered are the same for every βs. Hence the corresponding bits of w
can be hard-wired by circuitry of size at most r. The test [βs ∼I Mi] can thus still
be carried out by circuits of size less than mi+1, and we reach the same contradiction
of the hardness value SD1 .

Finally, we want to apply Lemma 5.1 to replace di,m(w) by a martingale d′i,m(w)

that yields virtually the same degree of success and is computable in time 2O(n).
Unlike the truth-table case, we cannot apply Lemma 5.1 verbatim because we no
longer have a single small set J that d′ is active on. However, along any set A, the
values d′i,m(w) and d′i,m(wb) (b = 0 or 1) can differ only for cases where b indexes
a string in the small set J corresponding to A, and the reader may check that the
argument and bounds of Lemma 5.1 go through unscathed in this case. This finishes
the proof of Theorem 6.7.

7. Conclusions. The initial impetus for this work was a simple question about
measure: is the pseudorandomness of a characteristic sequence invariant under simple
permutations such as that induced by flip in the introduction? The question for flip
is tantalizingly still open. However, in section 6.2 we showed that establishing a “yes”
answer for any permutation that intuitively should preserve the same complexity-
theoretic degree of pseudorandomness, or even for a single specific such permutation
as that in the simple proof of the nonadaptive version of Theorem 6.1, would have
the major consequence that EXP �= BPP.

Our “betting games” in themselves are a natural extension of Lutz’s measures
for deterministic time classes. They preserve Lutz’s original idea of “betting” as a
means of “predicting” membership in a language, without being tied to a fixed order of
instances that one tries to predict, or to a fixed order of how one goes about gathering
information on the language. We have shown some aspects in which betting games
are robust and well-behaved. We also contend that some current defects in the theory
of betting games, notably the lack of a finite-unions theorem pending the status
of pseudorandom generators, trade off with lacks in the resource-bounded measure
theory, such as being tied to the lexicographic ordering of strings.

The main open problems in this paper are interesting in connection with recent
work by Impagliazzo and Wigderson [ImWi98] on the BPP vs. EXP problem. First we
remark that the main result of [ImWi98] implies that either BPP = EXP or BPP has
E-measure zero [Mel98]. Among the many measure statements in the last section that
imply BPP �= EXP, the most constrained and easiest to attack seems to be item 4
in Corollary 6.5. Indeed, in the specific relevant case starting with the assumption
BPP = EXP, one is given a nonadaptive E-betting game G and an E-martingale
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d, and to obtain the desired contradiction that proves BPP �= EXP, one needs only
construct an EXP-betting game G′ that covers S∞[G] ∪ S∞[d]. What we can obtain
is a “randomized” betting game G′′ that flips one coin at successive intervals of input
lengths to decide whether to simulate G or d on that interval. (The intervals come
from the proof of Theorem 6.4.) Any hypothesis that can derandomize this G′′ implies
BPP �= EXP. We do not know whether the weak hypotheses considered in [ImWi98],
some of them shown to follow from BPP �= EXP itself, are sufficient to do this.

Stepping back from trying to prove BPP �= EXP outright or trying to prove that
these measure statements are equivalent to BPP �= EXP, we also have the problem of
narrowing the gap between BPP �= EXP and the sufficient condition EXP �= MA used
in our results. Moreover, does EXP �= MA suffice to make the ≤p

T -autoreducible sets
have E-measure zero? Does that suffice to simulate every betting game by a martingale
of equivalent complexity? We also inquire whether there exist oracles relative to which
EXP = MA, but strong pseudorandom generators still exist. Our work seems to open
many opportunities to tighten the connections among pseudorandom generators, the
structure of classes within EXP, and resource-bounded measure.

The kind of statistical sampling used to obtain martingales in Theorems 5.5
and 5.6 was originally applied to construct martingales from “natural proofs” in
[RSC95]. The derandomization technique from [BFNW93] based on EXP �= MA
that is used here is also applied in [BuMe98, KoLi98, LSW98]. “Probabilistic mar-
tingales” that can use this sampling to simulate betting games are formalized and
studied in [ReSi98]. This paper also starts the task of determining how well the bet-
ting game and random-sampling ideas work for measures on classes below E. Even
straightforward attempts to carry over Lutz’s definitions to classes below E run into
difficulties, as described in [May94t] and [AlSt94, AlSt95]. We look toward further
applications of our ideas in lower-level complexity classes.
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Abstract. We present an algorithm for computing a maximum agreement subtree of two un-
rooted evolutionary trees. It takes O(n1.5 logn) time for trees with unbounded degrees, matching the
best known time complexity for the rooted case. Our algorithm allows the input trees to be mixed
trees, i.e., trees that may contain directed and undirected edges at the same time. Our algorithm
adopts a recursive strategy exploiting a technique called label compression. The backbone of this
technique is an algorithm that computes the maximum weight matchings over many subgraphs of a
bipartite graph as fast as it takes to compute a single matching.
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1. Introduction. An evolutionary tree is one whose leaves are labeled with
distinct symbols representing species. Evolutionary trees are useful for modeling the
evolutionary relationship of species [1, 4, 6, 16, 17, 25]. An agreement subtree of two
evolutionary trees is an evolutionary tree that is also a topological subtree of the two
given trees. A maximum agreement subtree is one with the largest possible number
of leaves. Different models about the evolutionary relationship of the same species
may result in different evolutionary trees. A fundamental problem in computational
biology is to determine how much two models of evolution have in common. To
a certain extent, this problem can be solved by computing a maximum agreement
subtree of two given evolutionary trees [12].

Algorithms for computing a maximum agreement subtree of two unrooted evo-
lutionary trees as well as two rooted trees have been studied intensively in the past
few years. The unrooted case is more difficult than the rooted case. There is indeed
a linear-time reduction from the rooted case to the unrooted one, but the reverse is
not known. Steel and Warnow [24] gave the first polynomial-time algorithm for un-
rooted trees, which runs in O(n4.5 log n) time. Farach and Thorup reduced the time
to O(n2+o(1)) for unrooted trees [10] and O(n1.5 log n) for rooted trees [11]. For the
unrooted case, the time was improved by Lam, Sung, and Ting [22] to O(n1.75+o(1)).
Algorithms that work well for rooted trees with degrees bounded by a constant have
also been revealed recently. The algorithm of Farach, Przytycka, and Thorup [9] takes
O(n log3 n) time, and that of Kao [20] takes O(n log2 n) time. Cole and Hariharan [7]
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gave an O(n log n)-time algorithm for the case where the input is further restricted
to binary rooted trees.

This paper presents an algorithm for computing a maximum agreement subtree
of two unrooted trees. It takes O(n1.5 log n) time for trees with unbounded degrees,
matching the best known time complexity for the rooted case [11]. If the degrees are
bounded by a constant, the running time is only O(n log4 n). We omit the details of
this reduction since Przytycka [23] recently devised an O(n log n)-time algorithm for
the same case.

Our algorithm allows the input trees to be mixed trees, i.e., trees that may con-
tain directed and undirected edges at the same time [15, 18]. Such trees can handle a
broader range of information than rooted and unrooted trees. To simplify the discus-
sion, this paper focuses on unrooted trees. Our subtree algorithm adopts a concep-
tually simple recursive strategy exploiting a novel technique called label compression.
This technique enables our algorithm to process overlapping subtrees iteratively while
keeping the total tree size very close to the original input size. Label compression
builds on an unexpectedly fast algorithm for the all-cavity maximum weight matching
problem [21], which asks for the weight of a maximum weight matching in G − {u}
for each node u of a bipartite graph G with integer edge weights. If G has n nodes,
m edges and maximum edge weight N , the algorithm takes O(

√
nm log(nN)) time,

which matches the best known time bound for computing a single maximum weight
matching of G, due to Gabow and Tarjan [13].

In section 2, we solve the all-cavity matching problem. In section 3, we formally
define maximum agreement subtrees and outline our recursive strategy for computing
them. We describe label compression in section 4, detail our subtree algorithm in
section 5, and discuss how to compute auxiliary information for label compression in
sections 6 and 7. We conclude by extending the subtree algorithm to mixed trees in
section 8.

2. All-cavity maximum weight matching. Let G = (X,Y,E) be a bipartite
graph with n nodes and m edges where each edge (u, v) has a positive integer weight
w(u, v) ≤ N . Let mwm(G) denote the weight of a maximum weight matching in G.
The all-cavity matching problem asks for mwm(G− {u}) for all u ∈ X ∪ Y . A naive
approach to solve this problem is to compute mwm(G − {u}) separately for each u
using the fastest algorithm for computing a single maximum weight matching [13],
thus taking O(n1.5m log(nN)) total time. A main finding of this paper is that the
matchings in different subgraphs G− {u} are closely related and can be represented
succinctly. From this representation, we can solve the problem in O(

√
nm log(nN))

time. By symmetry, we detail only how to compute mwm(G − {u}) for all u ∈ X.
Below we assume m ≥ n/2; otherwise, we remove the degree-zero nodes and work on
the smaller resultant graph.

A node v of G is matched by a matching of G if v is an endpoint of an edge in
the matching. In the remainder of this section, let M be a fixed maximum weight
matching of G; also let w(H) be the total weight of a set H of edges. An alternating
path is a simple path P in G such that (1) P starts with an edge in M ; (2) the edges
of P alternate between M and E −M ; and (3) if P ends at an edge (u, v) 	∈M , then
v is not matched by M . An alternating cycle is a simple cycle C in G whose edges
alternate between M and E −M . P (respectively, C) can transform M to another
matching M ′ = P ∪M − P ∩M (respectively, C ∪M − C ∩M). The net change
induced by P , denoted by ∆(P ), is w(M ′)−w(M), i.e., the total weight of the edges
of P in E −M minus that of the edges of P in M . The net change induced by C is



604 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

(b)

2

1

2

u5

u4

u3

u2

u1 v1

v2

v3

v4

v5

−3

−7

−3

0

3

−5
2

t

0

0

0

0

2

1

7

2

3

5

2

u5

u4

u3

u2

u1 v1

v2

v3

v4

v5

3

3

X Y

(a)

Fig. 1. (a) a bipartite graph G; (b) the corresponding directed graph D.

defined similarly.
The next lemma divides the computation of mwm(G− {u}) into two cases.
Lemma 2.1. Let u ∈ X.
1. If u is not matched by M , then M is also a maximum weight matching in

G− {u} and mwm(G− {u}) = mwm(G).
2. If u is matched by M , then G contains an alternating path P starting from

u, which can transform M to a maximum weight matching in G− {u}.
Proof. Statement 1 is straightforward. To prove statement 2, let M ′ be a maxi-

mum weight matching in G − {u}. Consider the edges in M ∪M ′ −M ∩M ′. They
form a set S of alternating paths and cycles. Since u is matched by M but not by
M ′, u is of degree 1 in M ∪M ′−M ∩M ′. Let P be the alternating path in S with u
as an endpoint. Let M ′′ be the matching obtained by transforming M only with P .
Since u is not matched by M ′′, M ′′ is a matching in G − {u}. M ′ can be obtained
by further transforming M ′′ with the remaining alternating paths and cycles in S.
The net change induced by each of these alternating paths and cycles is nonpositive;
otherwise, such a path or cycle can improve M and we obtain a contradiction.
Therefore, w(M ′′) ≥ w(M ′), i.e., both M ′ and M ′′ are maximum weight matchings
in G− {u}.

By Lemma 2.1(2), we can compute mwm(G−{u}) for any u ∈ X matched by M
by finding the alternating path starting from u with the largest net change. Below we
construct a directed graph D, which enables us to identify such an alternating path
for every node easily. The node set of D is X ∪ Y ∪ {t}, where t is a new node. The
edge set of D is defined as follows; see Figure 1 for an example.

• If x ∈ X is not matched by M , D has an edge from x to t with weight zero.
• If y ∈ Y is matched by M , D has an edge from y to t with weight zero.
• If M has an edge (x, y) where x ∈ X and y ∈ Y , D has an edge from x to y
with weight −w(x, y).

• If E −M has an edge (x, y) where x ∈ X and y ∈ Y , D has an edge from y
to x with weight w(x, y).

Note that D has n+ 1 nodes and at most n+m edges. The weight of each edge
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in D is an integer in [−N,N ].
Lemma 2.2.
1. D contains no positive-weight cycle.
2. Each alternating path P in G that starts from u ∈ X corresponds to a simple
path Q in D from u to t, and vice versa. Also, ∆(P ) = w(Q).

3. For each u ∈ X matched by M , mwm(G − {u}) is the sum of mwm(G) and
the weight of the longest path in D from u to t.

Proof. Statement 1. Consider a simple cycle C = u1, u2, . . . , uk, u1 in D. Since t
has no outgoing edges, no ui equals t. By the definition of D, C is also an alternating
cycle in G. Therefore, w(C) is the net change induced by transforming M with C.
Since M is a maximum weight matching in G, this net change is nonpositive.

Statement 2. Consider an alternating path P = u, u1, u2, . . . , uk in G starting
from u. In D, P is also a simple path. If uk ∈ X, then uk is not matched by M , and
D contains the edge (uk, t). If uk ∈ Y , then uk is matched by M , and D again contains
the edge (uk, t). Therefore, D contains the simple path Q = u, u1, u2, . . . , uk, t. The
weight of Q is ∆(P ). The reverse direction of the statement is straightforward.

Statement 3. This statement follows from Lemma 2.1(2) and Statement 2.
Theorem 2.3. Given G, we can compute mwm(G− {u}) for all nodes u ∈ G in

O(
√
nm log(nN)) time.
Proof. By symmetry and Lemmas 2.1(1) and 2.2(3), we compute mwm(G−{u})

for all u ∈ X as follows.
1. Compute a maximum weight matching M of G.
2. Construct D as above and find the weights of its longest paths to t.
3. For each u ∈ X, if u is matched by M , then mwm(G − {u}) is the sum of

mwm(G) and the weight of the longest path from u to t in D; otherwise,
mwm(G− {u}) = mwm(G).

Step 1 takes O(
√
nm log(nN)) time. At step 2, constructing D takes O(n+m) time,

and the single-destination longest paths problem takes O(
√
nm logN) time [14]. Step

3 takes O(n) time. Thus, the total time is O(
√
nm log(nN)).

3. The main result. This section gives a formal definition of maximum agree-
ment subtrees and an overview of our new subtree algorithm.

3.1. Basics. Throughout the remainder of this paper, unrooted trees are de-
noted by U or X, and rooted trees by T , W , or R. A node of degree 0 or 1 is a
leaf ; otherwise, it is internal. Adopted to avoid technical trivialities, this definition
is somewhat nonstandard in that if the root of a rooted tree is of degree 1, it is also
a leaf.

For an unrooted tree U and a node u ∈ U , let Uu denote the rooted tree con-
structed by rooting U at u. For a rooted tree T and a node v ∈ T , let T v denote the
rooted subtree of T that comprises v and its descendents. Similarly, for a node v ∈ Uu,
Uuv is the rooted subtree of Uu rooted at v, which is also called a rooted subtree of
U .

An evolutionary tree is a tree whose leaves are labeled with distinct symbols.
Let T be a rooted evolutionary tree with leaves labeled over a set L. A label subset
L′ ⊆ L induces a subtree of T , denoted by T |L′, whose nodes are the leaves of
T labeled over L′ as well as the least common ancestors of such leaves in T , and
whose edges preserve the ancestor-descendent relationship of T . Consider two rooted
evolutionary trees T1 and T2 labeled over L. Let T ′1 be a subtree of T1 induced by
some subset of L. We similarly define T ′2 for T2. If there exists an isomorphism
between T ′1 and T ′2 mapping each leaf in T ′1 to one in T ′2 with the same label, then T ′1
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and T ′2 are each called agreement subtrees of T1 and T2. Note that this isomorphism
is unique. Consider any nodes u ∈ T1 and v ∈ T2. We say that u is mapped to v in
T ′1 and T ′2 if this isomorphism maps u to v. A maximum agreement subtree of T1 and
T2 is one containing the largest possible number of labels. Let mast(T1, T2) denote
the number of labels in such a tree. A maximum agreement subtree of two unrooted
evolutionary trees U1 and U2 is one with the largest number of labels among the
maximum agreement subtrees of Uu

1 and Uv
2 over all nodes u ∈ U1 and v ∈ U2. Let

mast(U1, U2) = max{mast(Uu
1 , Uv

2 ) | u ∈ U1, v ∈ U2}.(3.1)

Remark. The nodes u (or v) can be restricted to internal nodes when the trees
have at least three nodes. We can also generalize the above definition to handle a
pair of rooted tree and unrooted tree (T,U). That is, mast(T,U) is defined to be
max{mast(T,Uv) | v ∈ U}.

3.2. Our subtree algorithm. The next theorem is our main result. The size
|U | (or |T |) of an unrooted tree U (or a rooted tree T ) is its node count.

Theorem 3.1. Let U1 and U2 be two unrooted evolutionary trees. We can com-
pute mast(U1, U2) in O(N1.5 logN) time, where N = max{|U1|, |U2|}.

We prove Theorem 3.1 by presenting our algorithm in a top-down manner with
an outline here. As in previous work, our algorithm only computes mast(U1, U2) and
can be augmented to report a corresponding subtree. It uses graph separators. A
separator of a tree is an internal node whose removal divides the tree into connected
components each containing at most half of the tree’s nodes. Every tree that contains
at least three nodes has a separator, which can be found in linear time.

If U1 or U2 has at most two nodes, mast(U1, U2) as defined in (3.1) can easily be
computed in O(N) time. Otherwise, both trees have at least three nodes each, and
we can find a separator x of U1. We then consider three cases.

Case 1. In some maximum agreement subtree of U1 and U2, the node x is
mapped to a node y ∈ U2. In this case, mast(U1, U2) = mast(Ux

1 , U2). To com-
pute mast(Ux

1 , U2), we might simply evaluate mast(Ux
1 , Uy

2 ) for different y in U2. This
approach involves solving the mast problem for Θ(N) different pairs of rooted trees
and introduces much redundant computation. For example, consider a rooted subtree
R of U2. For all y ∈ U2 − R, R is a common subtree of Uy

2 . Hence, R is exam-
ined repeatedly in the computation of mast(Ux

1 , Uy
2 ) for these y. To speed up the

computation, we devise the technique of label compression in section 4 to elicit suf-
ficient information between Ux

1 and R so that we can compute mast(Ux
1 , Uy

2 ) for all
y ∈ U2 − R without examining R. This leads to an efficient algorithm for handling
Case 1; the time complexity is stated in the following lemma.

Lemma 3.2. Assume that U1 and U2 have at least three nodes each. Given an
internal node x ∈ U1, we can compute mast(Ux

1 , U2) in O(N1.5 logN) time.
Proof. See section 4 to section 7.
Case 2. In some maximum agreement subtree of U1 and U2, two certain nodes

v1 and v2 of U1 are mapped to nodes in U2, and x is on the path in U1 between v1

and v2. This case is similar to Case 1. Let Ũ2 be the tree constructed by adding a
dummy node in the middle of every edge in U2. Then, mast(U1, U2) = mast(Ux

1 , Ũy
2 )

for some dummy node y in Ũ2. Thus, mast(U1, U2) = mast(Ux
1 , Ũ2). As in Case 1,

mast(Ux
1 , Ũ2) can be computed in O(N1.5 logN) time.

Case 3. Neither Case 1 nor Case 2 holds. Let U1,1, U1,2, . . . , U1,b be the evolution-
ary trees formed by the connected components of U1−{x}. Let J1, . . . , Jb be the sets
of labels in these components, respectively. Then, a maximum agreement subtree of



UNROOTED EVOLUTIONARY TREES 607

/* U1 and U2 are unrooted trees. */
mast(U1, U2)
find a separator x of U1;
construct Ũ2 by adding a dummy node w at the middle of each edge (u, v) in
U2;
val = mast(Ux

1 , U2);
val′ = mast(Ux

1 , Ũ2);
let U1,1, U1,2, . . . , U1,b be the connected components of U1 − {x};
for all i ∈ [1, b], let Ji be the set of labels of U1,i;
for all i ∈ [1, b], set vali = mast(U1,i, U2|Ji)};
return max{val, val′,max1≤i≤b vali};

Fig. 2. Algorithm for computing mast(U1, U2).

U1 and U2 is labeled over some Ji. Therefore, mast(U1, U2) = max{mast(U1,i, U2|Ji) |
i ∈ [1, b]}, and we compute each mast(U1,i, U2|Ji) recursively.

Figure 2 summarizes the steps for computing mast(U1, U2). Here we analyze the
time complexity T (N) based on Lemma 3.2. Cases 1 and 2 each take O(N1.5 logN)
time. Let Ni = |U1,i|. Then Case 3 takes

∑
i∈[1,b] T (Ni) time. By recursion,

T (N) = O(N1.5 logN) +
∑
i∈[1,b]

T (Ni).

Since x is a separator of U1, Ni ≤ N
2 . Then, since

∑
i∈[1,b] Ni ≤ N , T (N) =

O(N1.5 logN) [5, 19] and the time bound in Theorem 3.1 follows. To complete the
proof of Theorem 3.1, we devote section 4 through section 7 to proving Lemma 3.2.

4. Label compressions. To compute a maximum agreement subtree, our algo-
rithm recursively processes overlapping subtrees of the input trees. The technique of
label compression compresses overlapping parts of such subtrees to reduce their total
size. We define label compressions with respect to a rooted subtree in section 4.1 and
with respect to two label-disjoint rooted subtrees in section 4.2. We do not use label
compression with respect to three or more trees.

As a warm-up, let us define a concept called subtree shrinking, which is a primitive
form of label compression. Let T be a rooted tree. Let R be a rooted subtree of T .
Let T�R denote the rooted tree obtained by replacing R with a leaf γ. We say that
γ is a shrunk leaf. The other leaves are atomic leaves. Similarly, for two label-disjoint
rooted subtrees R1 and R2 of T , let T�(R1, R2) denote the rooted tree obtained by
replacing R1 and R2 with shrunk leaves γ1 and γ2, respectively. We extend these
notions to an unrooted tree U and define U�R and U�(R1, R2) similarly.

4.1. Label compression with respect to one rooted subtree. Let T be a
rooted tree. Let v be a node in T and u an ancestor of v. Let P be the path of T
from u to v. A node lies between u and v if it is in P but differs from u and v. A
subtree of T is attached to u if it is some Tw where w is a child of u. A subtree of T
hangs between u and v if it is attached to some node lying between u and v, but its
root is not in P and is not v.

We are now ready to define the concept of label compression. Let T and R be
rooted evolutionary trees labeled over L and K, respectively. The compression of T
with respect to R, denoted by T⊗R, is a tree constructed by affixing extra nodes to
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T |(L−K) with the following steps; see Figure 3 for an example. Consider each node
y in T |(L−K), let x be its parent in T |(L−K).

• Let A(T,K, y) denote the set of subtrees of T that are attached to y and
whose leaves are all labeled over K. If A(T,K, y) is nonempty, compress all
the trees in A(T,K, y) into a single node z1 and attach it to y.

• Let H(T,K, y) denote the set of subtrees of T that hang between x and y (by
definition of T |(L−K), these subtrees are all labeled over K). If H(T,K, y)
is nonempty, compress the parents p1, . . . , pm of the roots of the trees in
H(T,K, y) into a single node p1, and insert it between x and y; also compress
all the trees in H(T,K, y) into a single node z2 and attach it to p1.

The nodes z1, z2, and p1 are called compressed nodes, and the leaves in T⊗R that
are not compressed are atomic leaves.

We further store in T⊗R some auxiliary information about the relationship be-
tween T and R. For an internal node v in T⊗R, let α(v) = mast(T v, R). For a
compressed leaf v in T⊗R, if it is compressed from a set of subtrees T v1 , . . . , T vs , let
α(v) = max{mast(T v1 , R), . . . ,mast(T vs , R)}.

Let T1 and T2 be two rooted evolutionary trees. Assume T2 contains a rooted
subtree R. Given T1⊗R, we can compute mast(T1, T2) without examining R. We
first construct T1�R by replacing R of T2 with a shrunk leaf and then compute
mast(T1, T2) from T1⊗R and T2�R. To further our discussion, we next generalize the
definition of maximum agreement subtree for a pair of trees that contain compressed
leaves and a shrunk leaf, respectively.

Let W1 = T1⊗R and W2 = T2�R. Let γ be the shrunk leaf in W2. We define an
agreement subtree of W1 and W2 similar to that of ordinary evolutionary trees. An
atomic leaf must still be mapped to an atomic leaf with the same label. However, the
shrunk leaf γ of W2 can be mapped to any internal node or compressed leaf v of W1

as long as α(v) > 0. The size of an agreement subtree is the number of its atomic
leaves, plus α(v) if γ is mapped to a node v ∈W1. A maximum agreement subtree of
W1 and W2 is one with the largest size. Let mast(W1,W2) denote the size of such a
subtree. The following lemma is the cornerstone of label compression.

Lemma 4.1. mast(T1, T2) = mast(W1,W2).
Proof. It follows directly from the definition.
We can compute mast(W1,W2) as if W1 and W2 were ordinary rooted evolu-

tionary trees [9, 11, 20] with a special procedure on handling the shrunk leaf. The
time complexity is stated in the following lemma. Let n = max{|W1|, |W2|} and
N = max{|T1|, |T2|}.

Lemma 4.2. Suppose that all the auxiliary information of W1 has been given.
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Then mast(W1,W2) can be computed in O(n1.5 logN) time, and afterwards we can
retrieve mast(W v

1 ,W2) for any node v ∈W1 in O(1) time.
Proof. We adapt Farach and Thorup’s rooted subtree algorithm [11] to compute

mast(W1,W2). Details are given in Appendix A.
We demonstrate a scenario where label compression speeds up the computation

of mast(Ux
1 , U2) for Lemma 3.2. Suppose that we can identify a rooted subtree R of

U2 such that x is mapped to a node outside R, i.e., we can reduce (3.1) to

mast(Ux
1 , U2) = max{mast(Ux

1 , Uy
2 ) | y is an internal node not in R}.(4.1)

Note that every Uy
2 contains R as a common subtree. To avoid overlapping compu-

tation on R, we construct W = Ux
1⊗R and X = U2�R. Then Xy = Uy

2�R and from
Lemma 4.1, mast(Ux

1 , Uy
2 ) = mast(W,Xy). We rewrite (4.1) as

mast(Ux
1 , U2) = max{mast(W,Xy) | y is an internal node of X}.(4.2)

If R is large, then W and X are much smaller than Ux
1 and U2. Consequently, it is

beneficial to compress Ux
1 and compute mast(Ux

1 , U2) according to (4.2).

4.2. Label compression with respect to two rooted subtrees. Let T ,
R1, R2 be rooted evolutionary trees labeled over L, K1, K2, respectively, where
K1 ∩K2 = φ. Let K = K1 ∪K2. The compression of T with respect to R1 and R2,
denoted by T⊗(R1, R2), is a tree constructed from T |(L − K) by the following two
steps. For each node y and its parent x in T |(L−K),

1. if A(T,K, y) is nonempty, compress all the trees in A(T,K, y) into a single
leaf z and attach it to y; create and attach an auxiliary node z̄ to y;

2. if H(T,K, y) is nonempty, compress the parents p1, . . . , pm of the roots of
the subtrees in H(T,K, y) into a single node p1 and insert it between x and
y; compress the subtrees in H(T,K, y) into a single node z and attach it to
p1; create and insert an auxiliary node p̄1 between p1 and y; create auxiliary
nodes z̄ and ¯̄z and attach them to p1 and p̄1, respectively.

The nodes p1 and z are compressed nodes of T⊗(R1, R2). The nodes p̄1, z̄, and ¯̄z
are auxiliary nodes. These nodes are added to capture the topology of T that is
isomorphic with the subtrees R1 and R2 of T ′.

We also store auxiliary information in T⊗(R1, R2). Let R+ be the tree obtained
by connecting R1 and R2 together with a node, which becomes the root of R+.

Consider the internal nodes of T⊗(R1, R2). If v is an internal node inherited
from T |(L − K), then let α1(v) = mast(T v, R1) and α2(v) = mast(T v, R2). If p1

and p̄1 are internal nodes compressed from some path p1, . . . , pm of T , then only p1

stores the values α1(p1) = mast(T p1 , R1), α2(p1) = mast(T p1 , R2), and α+(p1) =
mast(T p1 , R+).

We do not store any auxiliary information at the atomic leaves in T⊗(R1, R2).
Consider the other leaves in T⊗(R1, R2) based on how they are created.

Case 1. Nodes z, z̄ are leaves created with respect to A(T,K, y) for some node y
in T |(L−K). Let A(T,K, y) = {T v1 , . . . , T vk}. We store the following values at z.

• α1(z) = max{mast(T vi , R1) | i ∈ [1, k]}, α2(z) = max{mast(T vi , R2) | i ∈
[1, k]}, α+(z) = max{mast(T vi , R+) | i ∈ [1, k]};
• β(z) = max{mast(T vi , R1) + mast(T vi′ , R2) | T vi and T vi′ are distinct sub-
trees in A(T,K, y)}.

Case 2. Nodes z, z̄, and ¯̄z are leaves created with respect to the subtrees in
H(T,K, y) = {T v1 , . . . , T vk} for some node y in T |(L −K). We store the following
values at z:
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• α1(z), α2(z), and α+(z) as in Case 1;
• β(z) = max{mast(T vi , R1)+mast(T vj , R2) | T vi and T vj are distinct subtrees

in H(T,K, y) that are attached to the same node in T};
• β1�2(z) = max{mast(T vj , R1) + mast(T vj′ , R2) | (j, j′) ∈ Z} and

β2�1(z) = max{mast(T vj , R2) + mast(T vj′ , R1) | (j, j′) ∈ Z},
where Z = {(j, j′) | T vj , T vj′ ∈ H(T,K, y) and the parent of vj in T is a
proper ancestor of the parent of vj′}.

Let T1 and T2 be rooted evolutionary trees. Let R1 and R2 be label-disjoint
rooted subtrees of T2. Let W1 = T⊗(R1, R2) and W2 = T ′�(R1, R2). Below, we give
the definition of a maximum agreement subtree of W1 and W2.

Let γ1 and γ2 be the two shrunk leaves in W2 representing R1 and R2, respectively.
Let yc be the least common ancestor of γ1 and γ2 in W2. Intuitively, in a pair of
agreement subtrees (W ′1,W

′
2) of W1 and W2, atomic leaves are mapped to atomic

leaves, and shrunk leaves are mapped to internal nodes or leaves. Moreover, we allow
W ′2 to contain yc as a leaf, which can be mapped to an internal node or leaf of W ′1.
More formally, we require that there is an isomorphism between W ′1 and W ′2 satisfying
the following conditions:

1. Every atomic leaf is mapped to an atomic leaf with the same label.
2. If W ′2 contains yc as a leaf and thus neither γ1 nor γ2 is found in W ′2, then yc

is mapped to a node v with α+(v) > 0.
3. If only one of γ1 and γ2 exists in W ′2, say γ1, then it is mapped to a node v

with α1(v) > 0.
4. If both γ1 and γ2 exist in W ′2, then any of the following cases is permitted:

• γ1 and γ2, respectively, are mapped to a compressed leaf z and its sibling
z̄ in W ′1 with β(z) > 0.
• γ1 and γ2, respectively, are mapped to a compressed leaf z and the
accompanying auxiliary leaf ¯̄z in W ′1 with β1�2(z) > 0, or the leaves ¯̄z
and z in W ′1 with β2�1(z) > 0.
• γ1 and γ2, respectively, are mapped to two leaves or internal nodes v
and w with α1(v), α2(w) > 0.

The way we measure the size of W ′1 and W ′2 depends on their isomorphism. For
example, if yc is mapped to some node v in W ′1, then the size is the total number
of atomic leaves in W ′1 plus α+(v). More precisely, the size of W ′1 and W ′2 is defined
to be the total number of atomic leaves in W ′1 plus the corresponding α or β values
depending on the isomorphism between W ′1 and W ′2. A maximum agreement subtree
of W1 and W2 is one with the largest possible size. Let mast(W1,W2) denote the size
of such a subtree. The following lemma, like Lemma 4.1, is also the cornerstone of
label compression.

Lemma 4.3. mast(T1, T2) = mast(W1,W2).
Proof. It follows directly from the definition of mast(W1,W2).
Again, mast(W1,W2) can be computed by adapting Farach and Thorup’s rooted

subtree algorithm [11]. The time complexity is stated in the following lemma. Let n
= max{|W1|,|W2|} and N = max{|T1|, |T2|}.

Lemma 4.4. Suppose that all the auxiliary information of W1 has been given.
Then we can compute mast(W1,W2) in O(n1.5 logN) time. Afterwards we can retrieve
mast(W v

1 ,W2) for any v ∈W in O(1) time.
Proof. See Appendix A.

5. Computing mast(Ux
1 , U2)—proof of Lemma 3.2. At a high level, we first

apply label compression to the input instance (Ux
1 , U2). We then reduce the problem
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/* W is a rooted tree with compressed leaves. X is unrooted with shrunk leaves. */

mast(W,X)

let y be a separator of X;
val = mast(W,Xy);
if (X has at most one shrunk leaf) or (y lies between the two shrunk leaves)
then

new subproblem(W,X, y);
for each (Wi, Xi), vali = mast(Wi, Xi);

else
let y′ be the node on the path between the two shrunk leaves that is the closest to
y;
val = mast(W,Xy′

);
new subproblem(W,X, y′);
for each (Wi, Xi), set vali = mast(Wi, Xi);

return max{val,maxb
i=1 vali};

/* Generate new subproblems {(W1, X1), . . . , (Wb, Xb)}. */

new subproblem(W,X, y)

let v1, . . . , vb be the neighbors of y in X;
for all i ∈ [1, b]

let Xi be the unrooted tree formed by shrinking the subtree Xviy into a shrunk leaf;
let Wi be the rooted tree formed by compressing W with respect to Xviy;

compute and store the auxiliary information in Wi for all i ∈ [1, b];

Fig. 4. Algorithm for computing mast(W,X).

to a number of smaller subproblems (W,X), each of which is similar to (Ux
1 , U2) and

is solved recursively. For each (W,X) generated, X is a subtree of U2 with at most
two shrunk leaves, and W is a label compression of Ux

1 with respect to some rooted
subtrees of U2 that are represented by the shrunk leaves of X. Also, W and X contain
the same number of atomic leaves.

5.1. Recursive computation of mast(W,X). Our subtree algorithm initially
sets W = Ux

1 and X = U2. In general, W = Ux
1⊗R and X = U2�R, or W =

Ux
1⊗(R,R′) and X = U2�(R,R′) for some rooted subtrees R and R′ of U2. If W or

X has at most two nodes, then mast(W,X) can easily be computed in linear time.
Otherwise, both W and X each have at least three nodes. Let N = max{|U1|, |U2|}
and n = max{|W |, |X|}. Our algorithm first finds a separator y of X and computes
mast(W,X) for the following two cases. The output is the larger of the two cases.
Figure 4 outlines our algorithm.

Case 1. mast(W,X) = mast(W,Xy). We root X at y and evaluate mast(W,Xy).
By Lemma 4.4, this takes O(n1.5 logN) time.

Case 2. mast(W,X) = mast(W,Xz) for some internal node z 	= y. We compute
max{mast(W,Xz) | z is an internal node and z 	= y} by solving a set of subproblems
{mast(W1, X1), . . . ,mast(Wb, Xb)} such that their total size is n and max{mast(W,Xz) |
z is an internal node and z 	= y} = max{mast(Wi, Xi) | i ∈ [1, b]}. Moreover, our al-
gorithm enforces the following properties:

• If X contains at most one shrunk leaf, every subproblem generated has size
at most half that of X.
• If X has two shrunk leaves, at most one subproblem (Wio , Xio) has size
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greater than half that of X, but Xio contains only one shrunk leaf. Thus, in
the next recursion level, every subproblem spawned by (Wio , Xio) has size at
most half that of X.

To summarize, whenever the recursion goes down by two levels, the size of a subprob-
lem reduces by half.

The subproblems mast(W1, X1), . . . ,mast(Wb, Xb) are formally defined as follows.
Assume that the separator y has b neighbors in X, namely, v1, . . . , vb. For each
i ∈ [1, b], let Ci be the connected component in X − {y} that contains vi. The size
of Ci is at most half that of X. Intuitively, we would like to shrink the subtree Xviy

into a leaf, producing a smaller unrooted tree Xi. We first consider the simple case
where X has at most one shrunk leaf. Then no Ci contains more than one shrunk
leaf.

If Ci contains no shrunk leaf, then Xi contains only one shrunk leaf representing
the subtree Xviy. Note that Xviy corresponds to the subtree Uviy

2 in U2 and Xi =
U2�Uviy

2 . Let Wi = Ux
1⊗Uviy

2 .
If Ci contains one shrunk leaf γ1, then Xi contains γ1 as well as a new shrunk

leaf representing the subtrees Xviy. The two subtrees are label-disjoint. Again, Xviy

corresponds to the subtree Uviy
2 in U2. Assume that γ1 corresponds to a subtree Uv′y′

2

in U2. Then Xi = U2�(Uv′y′
2 , Uviy

2 ). Let Wi = Ux
1⊗(Uv′y′

2 , Uviy
2 ).

We now consider the case where X itself already has two shrunk leaves γ1 and γ2.
If y lies on the path between γ1 and γ2, then no Ci contains more than one shrunk
leaf and we define the smaller problem instances (Wi, Xi) as above. Otherwise, there
is a Ci containing both γ1 and γ2. Xi as defined contains three compressed leaves,
violating our requirement. In this case, we replace y with the node y′ on the path
between γ1 and γ2, which is the closest to y. Now, to compute mast(W,X), we
consider the two cases depending on whether the root of W is mapped to y′ or not.
Again, we first compute mast(W,Xy′). Then, we define the connected components
Ci and the smaller problem instances (Wi, Xi) with respect to y′. Every Xi has at
most two compressed leaves, but y′ may not be a separator and we cannot guarantee
that the size of every subproblem is reduced by half. However, there can exist only
one connected component Cio with size larger than half that of X. Indeed, Cio is the
component containing y. In this case, both γ1 and γ2 are not inside Cio , and Xio as
defined contains only one compressed leaf. Thus, the subproblems that mast(Wi0 , Xi0)
spawns in the next recursion level each have size of at most half that of (W,X).

With respect to y or y′, computing the topology of all Xi and Wi from X and
W is straightforward; see section 5.2. Computing the auxiliary information in all Wi

efficiently requires some intricate techniques, which are detailed in sections 6 and 7.

5.2. Computing the topology of compressed trees. The topology of Xi can
be constructed from X by replacing the subtree Xviy of X with a shrunk leaf. Let J
and Ji be the sets of labels in X and Xi, respectively. For the trees Wi, recall that
the definitions of W and the trees Wi are based on affixing some nodes to the trees
Ux

1 |J and Ux
1 |Ji, respectively. Observe that W |J and Ux

1 |J have the same topology.
Moreover, W |Ji = (W |J)|Ji and Ux

1 |Ji = (Ux
1 |J)|Ji. Thus, W |Ji and Ux

1 |Ji have the
same topology. We can obtain Ux

1 |Ji by constructing W |Ji. Note that J =
⋃

1≤i≤b Ji
and all the label sets Ji are disjoint. We can construct all the trees W |Ji from W in
O(n) time [7, 10]. Next, we show how to construct Wi from W |Ji in time linear in
the size of W |Ji. We only detail the case where Xi consists of two shrunk leaves. The
case for one shrunk leaf is similar. The following procedure is derived directly from
the definition of the compression of Ux

1 with respect to two subtrees.
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yy

vbv1 v2 vbv1 vi−1 vi+1

R1 R2 Rb Ri−1R1 Ri+1 Rb

RiXy

Fig. 5. The structures of Xy and Ri.

Let v be any node of W |Ji. If v is not the root, let u be the parent of v in W |Ji.
• IfA(Ux

1 , L−Ji, v) is nonempty or equivalently the degree of v in Ux
1 is different

from its degree in W |Ji, then attach auxiliary leaves z and z̄ to v.
• If H(Ux

1 , L−Ji, v) is nonempty or equivalently u is not the parent of v in Ux
1 ,

then create a path between u and v consisting of two nodes p and p̄, attach
auxiliary leaves z and z̄ to p, and attach ¯̄z to p̄.

5.3. Time complexity of computing mast(W,X).

Lemma 5.1. We can compute mast(W,X) in O(n1.5 logN) time.

Proof. Let T (n) be the computation time of mast(W,X). The computation is
divided into two cases. Case 1 of section 5.1 takes O(n1.5 logN) time. For Case
2, a set of subproblems {mast(Wi, Xi) | i ∈ [1, b]} is generated. As to be shown in
sections 6 and 7, the time to prepare all these subproblems is also O(n1.5 logN). These
subproblems, except possibly one, are each of size less than n/2. For the exceptional
subproblem, say, mast(Wl, Xl), its computation is again divided into two cases. One
case takes O(n1.5 logN) time. For the other case, another set of subproblems is
generated in O(n1.5 logN) time. This time every such subproblem has size less than
n/2. Let Σ be the set of all the subproblems generated in both steps. The total size
of the subproblems in Σ is at most n, and

T (n) = O(n1.5 logN) +
∑

mast(W ′,X′)∈Σ

T (|X ′|).

It follows that T (n) = O(n1.5 logN).

By letting W = Ux
1 and X = U2, we have proved Lemma 3.2. What remains is

to show how to compute the auxiliary information stored in all Wi from (W,X) in
O(n1.5 logN) time. Note that X contains at most two shrunk leaves. Depending on
the number of shrunk leaves in X, we divide our discussion into sections 6 and 7.

6. Auxiliary information for X with no shrunk leaf. The case of X con-
taining no shrunk leaf occurs only when the algorithm starts, i.e., W = Ux

1 , X = U2,
and N = n. The subproblems mast(W1, X1), . . . ,mast(Wb, Xb) spawned from (W,X)
are defined by an internal node y in X, which is adjacent to the nodes v1, . . . , vb.
Let Ri and Ri denote the rooted subtrees Xviy and Xyvi , respectively. Note that
the rooted tree Xy is composed of the subtrees R1, . . . , Rb. Also, Wi = W⊗Ri and
Xi = W�Ri. The total size of all Ri is at most n. Furthermore, each Ri is Xy

with Ri removed; see Figure 5. This section discusses how to compute the auxiliary
information required by each Wi in O(n1.5 logN) time.
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6.1. Auxiliary information in the compressed leaves of Wi. Consider any
compressed leaf v in Wi. Let Sv denote the set of subtrees from which v is compressed.
Then, the auxiliary information to be stored in v is

α(v) = max{mast(W z, Ri) |W z ∈ Sv}.(6.1)

Observe that for anyW z ∈ Sv, W
z contains no labels outsideRi. Thus, mast(W z, Ri) =

mast(W z, Xy) and we can rewrite (6.1) as

α(v) = max{mast(W z, Xy) |W z ∈ Sv}.
We use the rooted subtree algorithm of [11] to compute mast(W,Xy) in O(n1.5 logN)
time. Then, we can retrieve the value of mast(W z, Xy) for any node z ∈ W in O(1)
time. To compute max{mast(W z, Xy) |W z ∈ Sv} efficiently, we assume that for any
node u ∈W , the subtrees attached to u are numbered consecutively, starting from 1.
We consider a preprocessing for efficient retrieval of the following types of values:

• for some node u ∈ W and some interval [a, b], max{mast(W z, Xy) | W z is a
subtree attached to u and its number falls in [a, b]};
• for some path P of W , max{mast(W z, Xy) | W z is a subtree attached to
some node in P}.

Lemma 6.1. Assume that we can retrieve mast(W z, Xy) for any z ∈W in O(1)
time. Then we can preprocess W and X and construct additional data structures in
O(n log∗ n) time so that any value of the above types can be retrieved in O(1) time.

Proof. We adapt preprocessing techniques for on-line product queries in [3].
With the preprocessing stated in Lemma 6.1, we can determine α(v) as follows.

Note that Sv is either a subset of the subtrees attached to a node u in W or the set
of subtrees attached to nodes on a particular path in W . In the former case, u is
also a parent of v and Sv is partitioned into at most du + 1 intervals where du is the
degree of u in Wi. From Lemma 6.1, α(v) can be found in O(du +1) time. Similarly,
for the latter case, α(v) can be found in O(1) time. Thus, the compressed leaves
in Wi are processed in O(|Wi|) time. Summing over all Wi, the time complexity is
O(n). Therefore, the overall computation time for preprocessing and finding auxiliary
information in the leaves of all Wi is O(n1.5 logN).

6.2. Auxiliary information in the internal nodes of Wi. Consider any
internal node v in Wi with i ∈ [1, b]. Our goal is to compute the auxiliary information
α(v) = mast(W v, Ri). Note that Ri may be of size Θ(n), and even computing one
particular mast(W v, Ri) already takes O(n1.5 logN) time. Fortunately, these Ri are
very similar. Each Ri is Xy with Ri removed. Exploiting this similarity and using the
algorithm in section 2 for all-cavity matchings, we can perform an O(n1.5 logN)-time
preprocessing so that we can retrieve mast(W v, Ri) for any internal node v in W and
i ∈ [1, b] in O(log2 n) time. Therefore, it takes O(|Wi| log2 n) time to compute α(v)
for all internal nodes v of one particular Wi, and O(n log2 n) time for all Wi. The
O(n1.5 logN)-time preprocessing is detailed as follows.

First, note that if we remove y from Xy, the tree would decompose into the
subtrees R1, . . . , Rb. Thus, the total size of all Ri is at most n. The next lemma
suggests a way to retrieve efficiently mast(W v, Ri) and max{mast(W v, Rj) | j ∈ I}
for any v ∈W and and I ⊆ [1, b].

Lemma 6.2. We can compute mast(W,Ri) for all i ∈ [1, b] in O(n1.5 logN) time.
Then, we can retrieve mast(W v, Ri) for any node v in W and i ∈ [1, b] in O(log n)
time. Furthermore, we can build a data structure to retrieve max{mast(W v, Rj) | j ∈
I} for any v ∈W and I ⊆ [1, b] in O(log2 n) time.
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Proof. This lemma follows from the rooted subtree algorithm and related data
structures in [11].

Below, we give a formula to compute mast(W v, Ri) efficiently. For any z ∈ W
and i ∈ [1, b], let r-mast(W z, Ri) denote the maximum size among all the agreement
subtrees of W z and Ri in which z is mapped to the root of Ri.

Lemma 6.3.

mast(W v, Ri) = max

{
max{mast(W v, Rj) | j ∈ [1, b], j 	= i};
max{r-mast(W z, Ri) | z ∈W v}.

Proof. Observe that mast(W v, Ri) = mast(W z, Ri) = r-mast(W z, Ri) if in some
maximum agreement subtree of W v and Ri, the root of Ri is mapped to some node z
in W v. On the other hand, mast(W v, Ri) = mast(W v, Rj) for some j 	= i if in some
maximum agreement subtree of W v and Ri, the root of Ri is not mapped to any node
z in W v.

By Lemma 6.3, we decompose the computation of mast(W v, Ri) into two parts.
The value max{mast(W v, Rj) | j ∈ [1, b], j 	= i} is determined by answering two
queries max{mast(W v, Rj) | j ∈ [1, i− 1]} and max{mast(W v, Rj) | j ∈ [i+ 1, b]} in
O(log2 n) time by Lemma 6.2. The computation of max{r-mast(W z, Ri) | z ∈ W v}
makes use of a maximum weight matching of some bipartite graph as follows.

Let Ch(z) denote the set of children of a node z in a tree. Let Gz,i ⊆ Ch(z) ×
{R1, . . . , Ri−1, Ri+1, . . . , Rb} be a bipartite graph where w ∈ Ch(z) is connected to
Rj if and only if mast(Ww, Rj) > 0. Such an edge has weight mast(Ww, Rj) ≤ N .

Fact 6.4 (see [11]). If the root of Ri is mapped to z in some maximum agreement
subtree of W z and Ri, then a maximum weight matching of Gz,i consists of at least
two edges, and mwm(Gz,i) = r-mast(W z, Ri).

Note that if a maximum weight matching of Gz,i consists of one edge, it corre-
sponds to an agreement subtree of W z and Ri in which the root of Ri is not mapped
to any node in W z. Thus, it is possible that mwm(Gz,i) > r-mast(W z, Ri). Never-
theless, in this case we are no longer interested in the exact value of r-mast(W z, Ri)
since in a maximum agreement subtree of W z and Ri, the root of Ri is not mapped
to any node in W z. In fact, Lemma 6.3 can be rewritten with the r-mast(W z, Ri)
replaced by mwm(Gz,i). Furthermore, since Gz,1, Gz,2, . . . , Gz,b are very similar, the
weights of a maximum weight matching cannot be all distinct.

Lemma 6.5. At least b−dz of mwm(Gz,1), mwm(Gz,2), . . . ,mwm(Gz,b) have the
same value, where dz denotes the degree of z in W .

Proof. Consider the bipartite graph K ⊆ Ch(z) × {R1, . . . , Rb} in which a node
w ∈ Ch(z) is connected to Ri if and only if mast(Ww, Ri) > 0. This edge is given a
weight of mast(Ww, Ri). Then, every Gz,i is a subgraph of K. Let M be a maximum
weight matching of K. Observe that if an Ri is not adjacent to any edge in M , then
M is also a maximum weight matching of Gz,i. Since M contains at most dz edges,
there are at least b−dz trees Ri not adjacent to any edge in M and the corresponding
mwm(Gz,i) have the same value.

We next use O(n1.5 logN) time to find for all z inW , mwm(Gz,1), . . . ,mwm(Gz,b).
The results are to be stored in an array Az of dimension b for each node z, i.e.,
Az[i] = mwm(Gz,i). Note that if we represent each Az as an ordinary array, then
filling these arrays entry by entry for all z ∈W would cost Ω(bn) time. Nevertheless,
by Lemma 6.5, most of the weights mwm(Gz,i) have the same value. Thus, we store
these values in sparse arrays. Like an ordinary array, any entry in a sparse array A
can be read and modified in O(1) time. In addition, we require that all the entries



616 M.-Y. KAO, T.-W. LAM, W.-K. SUNG, AND H.-F. TING

in A can be initialized to a fixed value in O(1) time and that all the distinct values
stored in A can be retrieved in O(m) time, where m denotes the number of distinct
values in A. For an implementation of sparse array, see Exercise 2.12, page 71 of [2].

Before showing how to build these sparse arrays, we illustrate how they support
the computation of

max{mwm(Gz,i) | z ∈W v} = max{Az[i] | z ∈W v}.(6.2)

An efficient data structure for answering such a query is given in Appendix B. Let mz

be the number of distinct values in Az, and m =
∑
z∈W (mz+1). Let α(n) denote the

inverse Ackermann function. Appendix B shows how to construct a data structure
on top of the sparse arrays Az in O(mα(|W |)) time such that we can retrieve for any
v ∈ W and i ∈ [1, b] the value of max{Az[i] | z ∈ W v} in O(log |W |) time. From
Lemma 6.5, mz ≤ dz + 1 for all z ∈ W ; thus, m = O(|W |). Therefore, the data
structure can be built in time O(mα(|W |)) = O(|W |α(|W |)) = O(n log n) and the
retrieval time of (6.2) is O(log |W |) = O(log n).

To summarize, after building all the necessary data structures, we can retrieve
max{mast(W v, Rj) | j ∈ [1, b], j 	= i} in O(log2 n) time and max{r-mast(W z, Ri) |
z ∈W v} in O(log n) time. Hence, for any v ∈W and i ∈ [1, b], mast(W v, Ri) can be
computed in O(log2 n) time.

To complete our discussion, we show below how to construct a sparse array Az
or equivalently compute the weights {mwm(Gz,i) | i ∈ [1, b]} efficiently. We cannot
afford to examine every Gz,i and compute mwm(Gz,i) separately. Instead we build
only one weighted graph Gz ⊆ Ch(z)× {R1, . . . , Rb} as follows.

For a node z in W , the max-child z′ of z is a child of z such that the subtree
rooted at z′ contains the maximum number of atomic leaves among all the subtrees
attached to z. Let κ(z) denote the total number of atomic leaves that are in W z but
not in W z′ . The edges of Gz are specified as follows.

• For any non-max-child u of z, Gz contains an edge between u and some Ri if
and only if mast(Wu, Ri) > 0. There are at most κ(z) such edges.
• Regarding the max-child z′ of z, we put into Gz only a limited number of
edges between z′ and {R1, . . . , Rb}. For each Ri already connected to some
non-max-child of z, Gz has an edge between z′ and Ri if mast(W z′ , Ri) >
0. Among all other Ri, we pick Ri′ and Ri′′ such that mast(W z′ , Ri′) and
mast(W z′ , Ri′′) are the first and second largest.

• Every edge (u,Ri) in Gz is given a weight of mast(Wu, Ri).
Lemma 6.6. For all i ∈ [1, b], mwm(Gz−{Ri}) = mwm(Gz,i). Furthermore, Gz

can be built in O((κ(z) + 1) log2 n) time.
Proof. The fact that mwm(Gz−{Ri}) = mwm(Gz,i) follows from the construction

of Gz. Note that Gz contains O(κ(z)+1) edges. All edges in Gz, except (z
′, Ri′) and

(z′, Ri′′), can be found using O(κ(z)) time. The weight of these edges can be found
in O(κ(z) log n) time using Lemma 6.2. To identify (z′, Ri′) and (z′, Ri′′), note that
at most κ(z) instances of Ri are connected to some non-max-child of z. All other Ri
are partitioned into at most κ(z) + 1 intervals. For each interval, say I ⊆ [1, b], by
Lemma 6.2, the corresponding mast(W z′ , Ri) which attains the maximum in the set
{mast(W z′ , Rj) | j ∈ I} can be found in O(log2 n) time. Thus, by scanning all the
κ(z) + 1 intervals, Ri′ can be found in O((κ(z) + 1) log2 n) time. Ri′′ can be found
similarly.

Since Gz contains O(κ(z) + 1) edges, and each edge has weight at most N , we
use the Gabow–Tarjan algorithm [13] to compute mwm(Gz) in O(

√
κ(z) + 1(κ(z) +
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1) logN) time. Then, using our algorithm for all-cavity maximum weight matching,
we can compute mwm(Gz−{Ri}) for all i ∈ [1, b], and store the results in a sparse
array Az in the same amount of time.

Thus, all Gz with z ∈W can be constructed in time
∑
z∈W O((κ(z) + 1) log2 n),

which is O(n1.5 logN) as
∑
z∈W κ(z) = O(n log n) [9]. Given all Gz, the time for

computing Az for all z ∈W is O(
∑
z∈W (κ(z) + 1)1.5 logN).

Lemma 6.7.
∑
z∈W (κ(z) + 1)1.5 logN = O(n1.5 logN).

Proof. Let T (W ) =
∑
z∈W (κ(z) + 1)1.5 logN . Let P be a path starting from

the root of W such that every next node is the max-child of its predecessor. Then∑
z∈P κ(z) ≤ |W | ≤ n. Let χ(P ) denote the set of subtrees attached to some node

on P . The subtrees in χ(P ) are label-disjoint and each has size at most n/2. Thus,

T (W ) ≤
∑
z∈P

(κ(z) + 1)1.5 logN +
∑

W ′∈χ(P )

T (W ′)

≤ n1.5 logN +
∑

W ′∈χ(P )

T (W ′)

= O(n1.5 logN).

7. Auxiliary information for X with one or two shrunk leaves.

7.1. X has one shrunk leaf. Consider the computation of mast(W,X). Ac-
cording to the algorithm, mast(W,X) will spawn b subproblems mast(W1, X1), . . . ,
mast(Wb, Xb), which are defined by an internal node y in X adjacent to the nodes
v1, . . . , vb. Also, for every i ∈ [1, b], Ri and Ri denote the subtrees Xviy and Xyvi , re-
spectively. Suppose that X has one shrunk leaf and without loss of generality, assume
that the shrunk leaf of X is in Rb, i.e., Xb has two shrunk leaves and all the other Xi

have one shrunk leaf each. This section shows how to find the auxiliary information
required by W1, . . . ,Wb in O(n1.5 logN) time.

Lemma 7.1. The auxiliary information required byW1, . . . ,Wb−1 can be computed
in O(n1.5 logN) time.

Proof. Note that mast(W1, X1), . . . ,mast(Wb−1, Xb−1) are almost identical to the
subproblems considered in section 6 in that all the Xi have exactly one shrunk leaf
each. Using exactly the same approach, we can compute the auxiliary information in
W1, . . . ,Wb−1.

The remaining section focuses on computing the auxiliary information in Wb. Let
γ1 and γ2 be the two shrunk leaves of Xb. Assume that γ1 is also a shrunk leaf in
X, and γ2 represents Rb. Let Q+ be the subtree obtained by connecting γ1 and Rb
together with a node. To compute the auxiliary information in Wb, we require the
values mast(W v, γ1), mast(W v, Rb), and mast(W v, Q+) for all nodes v ∈ W . These
values are computed based on the following lemma.

Lemma 7.2. mast(W v, γ1), mast(W v, Rb), and mast(W v, Q+) for all nodes v ∈
W can be computed in O(n1.5 logN) time.

Proof. By Lemma 4.2, mast(W,Rb) and mast(W,Q+) can be computed in time
O(n1.5 logN) and afterwards, for each node v ∈W , mast(W v, Rb) and mast(W v, Q+)
can be retrieved in O(1) time. For each node v ∈ W , mast(W v, γ1) is the auxiliary
information stored at v in W and can be retrieved in O(1) time.

Now, we are ready to compute the auxiliary information stored at each node v ∈
Wb. No auxiliary information is required for atomic leaves. Below, Lemmas 7.3 and
7.4 show that using O(n) additional time, we can compute the auxiliary information
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in internal nodes and in compressed leaves, respectively. In summary, the auxiliary
information in W1, . . . ,Wb can be computed in O(n1.5 logN) time.

Lemma 7.3. Given mast(W v, γ1), mast(W v, Rb), and mast(W v, Q+) for all
nodes v ∈ W , the auxiliary information stored at the internal nodes in Wb can be
found in O(n) time.

Proof. Let Jb be the set of labels of the atomic leaves of Wb. An internal node v
can be either an auxiliary node, a compressed node, or a node of W |Jb. If v∈ W |Jb,
then v ∈W . Thus, α1(v) = mast(W v, γ1) and α2(v) = mast(W v, Rb).

If v is a compressed node, then we need to compute α1(v), α2(v) and α+(v).
Recall that v represents some tree path σ = v1, . . . , vk of W , where v1 is the closest
to the root, i.e., v = v1. Thus, α1(v) = mast(W v1 , γ1), α2(v) = mast(W v1 , Rb), and
α+(v) = mast(W v1 , Q+).

Thus, O(n) time is sufficient for finding the auxiliary information stored at every
internal node of Wb.

Lemma 7.4. Given mast(W v, γ1), mast(W v, Rb), and mast(W v, Q+) for all
nodes v ∈ W , the auxiliary information stored at the compressed leaves in Wb can
be found in O(n) time.

Proof. If v is a compressed leaf in W , v’s parent u must not be an auxiliary node.
Depending on whether u is a compressed node, we have two cases.

CaseA. u is not a compressed node. We need to compute α1(v), α2(v), α+(v), β(v).
Note that u is also in W . When Wb is constructed from W , some of the subtrees of W
attached to u are replaced by v and no longer exist in Wb. Let W p1 , . . . ,W pk be these
subtrees. Observe that both v and W p1 , . . . ,W pk represent the same set of subtrees
in T1. Thus,

• α1(v) = max{mast(W pi , γ1) | 1 ≤ i ≤ k};
• α2(v) = max{mast(W pi , Rb) | 1 ≤ i ≤ k};
• α+(v) = max{mast(W pi , Q+) | 1 ≤ i ≤ k};
• β(v) = max{mast(W pi , γ1) + mast(W pj , Rb) | 1 ≤ i 	= j ≤ k}.

These four values can be found in O(k) time. Since W p1 , . . . ,W pk are subtrees at-
tached to u in W , k is at most the degree of u in W . Moreover, the sum of the
degrees of all internal nodes of W is O(n). Therefore, O(n) time suffices to compute
the auxiliary information for all the compressed leaves in Wb whose parents are not
compressed node.

Case B. u is a compressed node. We need to compute α1(v), α2(v), α+(v), β(v),
β1�2(v), and β1�2(v). Note that u is compressed from a tree path p1, . . . , pk in W ,
where p1 is the closest to the root. Moreover, v is compressed from the subtrees
hanging between p1 and pk. For every i ∈ [1, k], let Ti be the set of subtrees of
W attached to pi that are compressed into v. Both v and the subtrees in ∪1≤i≤kTi
represent the same set of subtrees in T1. The auxiliary information stored at v can
be expressed as follows.

• α1(v) = max{mast(W q, γ1) |W q ∈ Ti for some i ∈ [1, k]}.
• α2(v) = max{mast(W q, Rb) |W q ∈ Ti for some i ∈ [1, k]}.
• α+(v) = max{mast(W q, Q+) |W q ∈ Ti for some i ∈ [1, k]}.
• β(v) = max1≤i≤k[max{mast(W q, γ1) + mast(W q′ , Rb) |W q,W q′ ∈ Ti}].
• β1�2(v) = max1≤j<i≤k[max{mast(W q, γ1) |W q ∈ Ti}+max{mast(W q′ , Rb) |

W q′ ∈ Tj}].
• β2�1(v) = max1≤j<i≤k[max{mast(W q, Rb) |W q ∈ Ti}+max{mast(W q′ , γ1) |

W q′ ∈ Tj}].
These values can be found in O(

∑
1≤i≤k dpi) time, where dpi is the degree of pi in W .
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Thus, the auxiliary information for every compressed leaf of Wb, whose parents are
compressed nodes, can be computed in O(n) time.

7.2. X has two shrunk leaves. Recall that the subproblems mast(W1, X1),
. . . ,mast(Wb, Xb) are spawned from mast(W,X). This section considers the case
where X has two shrunk leaves. Without loss of generality, assume that the two
shrunk leaves are in Rb−1 and Rb, respectively. Then, X1, . . . , Xb−2 each have one
shrunk leaf. Xb−1 and Xb each have two shrunk leaves. Below, we show how to
compute the auxiliary informations of W1, . . . ,Wb in O(n1.5 logN) time.

Lemma 7.5. The auxiliary information required byW1, . . . ,Wb−2 can be computed
in O(n1.5 logN) time.

Proof. The proof of this lemma is the same as that of Lemma 7.1.
For the remaining subproblems mast(Wb−1, Xb−1) and mast(Wb, Xb), both Xb−1

and Xb have two shrunk leaves. By symmetry, it suffices to discuss the computation
of mast(Wb, Xb) only. Lemma 7.6 shows that the auxiliary information in Wb can be
computed in O(n1.5 logN) time. Therefore, the auxiliary information in W1, . . . ,Wb

can be computed in O(n1.5 logN) time.
Lemma 7.6. The auxiliary information in Wb can be computed in O(n1.5 logN)

time.
Proof. Let γ1 and γ2 be the two shrunk leaves of Xb. Assume that γ1 is also

a shrunk leaf in X and γ2 represents Rb, i.e., γ2 represents the subtree Uvby
2 of T1.

Let Q+ be the subtree obtained by connecting γ1 and Rb. By the same argument
as in Lemmas 7.3 and 7.4, the auxiliary information in Wb can be computed based
on the values mast(W v, γ1), mast(W v, Rb), and mast(W v, Q+) for all v ∈ W . The
value mast(W v, γ1) can be found in W . The values mast(W v, Rb) and mast(W v, Q+)
for all v ∈ W can be retrieved in O(1) time after mast(W,Rb) and mast(W,Q+) are
computed in O(n1.5 logN) time based on Lemma 4.4. Then the auxiliary information
in Wb can be computed in O(n) time.

8. Extension. We have presented an O(N1.5 logN)-time algorithm for comput-
ing a maximum agreement subtree of two unrooted evolutionary trees of at most N
nodes each. This algorithm can be modified slightly to compute a maximum agree-
ment subtree for two mixed trees M1 and M2.

For a mixed tree M , a node 3 is consistent with a node u if the directed edges on
the path between u and 3 all point away from u. LetMu be the rooted tree constructed
by assigning u in M as the root and removing the nodes of M inconsistent with u.
Given two mixed tree M1 and M2, we define a maximum agreement subtree of M1 and
M2 to be the one with the largest number of labels among the maximum agreement
subtree of Mu

1 and Mv
2 over all nodes u ∈M1 and v ∈M2. That is,

mast(M1,M2) = max{mast(Mu
1 ,Mv

2 ) | u ∈M1, v ∈M2}.
As in the unrooted case, to compute mast(M1,M2), we find a separator y of

M1 and compute mast(My
1 ,M2). However, we need to delete the nodes of M1 not

in My
1 . When computing mast(My

1 ,M2), we construct some rooted subtrees of M2.
Again, we delete the nodes of M2 not in these rooted subtrees. Such deletions are
straightforward and do not increase the time complexity of computing mast(M1,M2).
Thus, mast(M1,M2) can be computed in O(N1.5 logN) time.

Appendix A. Computing mast(W1,W2). Let T1 and T2 be rooted evo-
lutionary trees. Let R1 and R2 be two label-disjoint rooted subtrees of T2. Let
W1 = T1⊗(R1, R2) and W2 = T2�(R1, R2). This section shows that mast(W1,W2)
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can be computed as if W1 and W2 were ordinary rooted evolutionary trees [9, 11, 20]
with some special procedures on handling compressed and shrunk leaves. Note that
the case where W1 and W2 are compressed and shrunk with respect to a subtree can
be treated as the special case where R1 is empty.

Lemma A.1. We can compute mast(W1,W2) in O(n1.5 logN) time, where n =
max{|W1|, |W2|} and N = max{|T1|, |T2|}. Afterwards, we can retrieve mast(Wu

1 ,W2)
for any node u of W1 in O(1) time.

Proof. We adopt the framework of Farach and Thorup’s algorithm [11], which
is essentially a sparsified dynamic programming based on the following formula. For
any internal nodes u of W1 and v of W2,

mast(Wu
1 ,W v

2 ) = max




max{mast(W x
1 ,W v

2 ) | x is a child of u};
max{mast(Wu

1 ,W y
2 ) | y is a child of v};

r-mast(Wu
1 ,W v

2 ),
(A.1)

where r-mast(Wu
1 ,W v

2 ) denotes the maximum size of all the agreement subtrees of
Wu

1 and W v
2 in which u is mapped to v.

Our algorithm differs from Farach and Thorup’s algorithm in the way how each
individual mast(Wu

1 ,W v
2 ) is computed. When W1 and W2 are ordinary evolutionary

trees, each mast(Wu
1 ,W v

2 ) is found by computing a maximum weight matching of some
bipartite graph, and it takes O(n1.5 log n) time to compute mast(W1,W2). Below, we
show that when W1 and W2 have compressed and shrunk leaves, each mast(Wu

1 ,W v
2 )

can be found either in constant time or by computing at most two maximum weight
bipartite matchings of similar graphs but with edge weights bounded by N instead of
n. Thus, we can compute mast(W1,W2) using the same sparsified dynamic program-
ming in [11]; as a by-product, we can afterwards retrieve mast(Wu

1 ,W2) for any node
u of W1 in O(1) time. The enlarged upper bound of edge weights increases the time
complexity to O(n1.5 logN), though.

In the rest of this section, we show how each mast(Wu
1 ,W v

2 ) is computed. First,
we consider the case when u is a leaf. The following case analysis shows that O(1)
time suffices to compute mast(Wu

1 ,W v
2 ).

Case 1. u is an atomic leaf. If W v
2 contains a leaf with the same label as that of

u, then mast(Wu
1 ,W v

2 ) = 1; otherwise it equals zero.
Case 2. u is an auxiliary leaf. Then, mast(Wu

1 ,W v
2 ) = 0.

Case 3. u is a compressed leaf. By definition, u can only be mapped to γ1, γ2,
or the least common ancestor yc of γ1 and γ2. If W v

2 has no shrunk leaves, then
mast(Wu

1 ,W v
2 ) = 0. If W v

2 has only one shrunk leaf, say γ1, then mast(Wu
1 ,W v

2 ) =
α1(u). If W

v
2 has two shrunk leaves, then W v

2 must also contain yc and mast(Wu
1 ,W v

2 )
= max{α1(u), α2(u), α+(u)}.

Next, we consider the case when u is an internal node. Assume that v is an atomic
leaf. Then mast(Wu

1 ,W v
2 ) = 1 if Wu

1 contains a leaf with the same label as that of
v, and zero otherwise. If v is a shrunk leaf, say γ1, then mast(Wu

1 ,W v
2 ) = α1(u). It

remains to consider the case when v is an internal node. Due to the nature of dynamic
programming, we only need to compute r-mast(Wu

1 ,W v
2 ), then we can apply (A.1)

to compute mast(Wu
1 ,W v

2 ). We further divide our discussion into the following three
cases.

Case 1. u is an auxiliary internal node. In such case, u has only two children;
one of them is an auxiliary leaf. By definition, an auxiliary leaf will not be mapped
to any node in any agreement subtree of Wu

1 and W v
2 ; thus, there is no agreement

subtree in which u is mapped to v and r-mast(Wu
1 ,W v

2 ) = 0.
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z z̄

¯̄z
w

u

ū

Fig. 6. Structure of Wu
1 .

Case 2. u is an ordinary internal node. As in [11], we first construct the bipartite
graph defined as follows: Let A and B be the set of children of u and v, respectively;
define G[A,B] to be the bipartite graph formed by the edges (x, y) ∈ A × B with
mast(W x

1 ,W y
2 ) > 0, and (x, y) is given a weight mast(W x

1 ,W y
2 ).

If none of u’s children is an auxiliary leaf, then r-mast(Wu
1 ,W v

2 ) = mwm(G[A,B]).
Otherwise, let z̄ be the child of u which is an auxiliary. In this case, u also has a
compressed child z. Other than z and z̄, no other child of u is a compressed and
auxiliary leaf. On the other hand, consider the rooted subtrees W x

2 rooted at the
children x of v. If the shrunk leaves appear together in one of such subtrees, then by
definition, z̄ cannot be mapped to any shrunk leaf in any agreement subtree of Wu

1

and W v
2 , and r-mast(Wu

1 ,W v
2 ) = mwm(G[A,B] − {z̄}). If the shrunk leaves appear

in two different subtrees rooted at two children y1 and y2 of v, then

r-mast(Wu
1 ,W v

2 ) = max
{
mwm(G[A,B]−{z̄}),mwm(G[A,B]−{z, z̄, y1, y2})+β(z)

}
.

Case 3. u is a compressed internal node. By definition of a compressed node, the
structure of Wu

1 is very restrictive—u has exactly three children z, z̄, and an auxiliary
internal node ū; ū has two children, an auxiliary leaf ¯̄z and an uncompressed internal
node w; see Figure 6. To find r-mast(Wu

1 ,W v
2 ), we note that there are only six

possible ways for how z, z̄, ¯̄z are mapped to γ1 and γ2. We consider each of these
cases and r-mast(Wu

1 ,W v
2 ) is the maximum of the values found. We discuss only the

case where γ1 and γ2 are mapped to z and ¯̄z, respectively. The other cases can be
handled similarly. Let P be the path between γ2 and yc. Let S(P ) denote the set of
subtrees hanged on P . The size of the largest agreement subtrees of Wu

1 and W v
2 in

which γ1 and γ2 are mapped to z and z̄, respectively, equals

β1�2(z) + max{mast(Ww
1 , τ) | τ ∈ S(P )}.(A.2)

Note that using the technique in [11], we can precompute max{mast(W x
1 , τ) | τ ∈

S(P )} for all x ∈ W1 in O(n1.5 logN) time. Afterwards, (A.2) can be found in
constant time.

Appendix B. Preprocessing for finding max{Az[i]|z ∈ W v}.
Let h be the number of nodes inW . Consider the h arrays Az of dimension b where

z ∈W . Recall that mz is the number of distinct values in Az, and m =
∑
z∈W (mz +

1). This section describes an O(mα(h))-time preprocessing, which supports finding
max{Az[i] | z ∈W v}, for any i ∈ [1, b] and any node v of W , in O(log h) time.

By definition, each Az has at least b−mz entries storing some common value cz.
For every i ∈ [1, b], let Γi be the set of nodes z where Az[i] stores a value different
from cz. Note that

∑
mz =

∑
1≤i≤b |Γi|. We assume that each node of W is identified
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uniquely by an integer in [1, h] assigned by a preorder tree traversal [8]. For any node
v ∈W , let β(v) be the number of proper descendents of v in W .

Based on Lemma B.1, max{Az[i] | z ∈ W v} = max{Az[i] | z ∈ [v, v + β(v)]}
for any v ∈ W , i ∈ [1, b]. Therefore, to solve our problem, it is sufficient to give an
O(mα(h))-time preprocessing to support finding max{Az[i] | z ∈ H} for any i ∈ [1, b]
and any interval H ⊆ [1, h] in O(log h) time.

Lemma B.1. For any v ∈ W and i ∈ [1, b], max{Az[i] | z ∈ W v} = max{Az[i] |
z ∈ [v, v + β(v)]}.

Proof. It is straightforward.

Our preprocessing does not work on each sequence A1[i], A2[i], . . . , Ah[i] directly.
Instead, it first draws out useful information about the common values cz stored in
the sequences and applies a contraction technique to shorten each sequence. Then, it
executes Fact B.2 on these shortened sequences.

Fact B.2 (see [3]). Given any sequence a1, . . . , ah of real numbers, we can
preprocess these h numbers in O(h) time so that we can find the maximum of any
subsequence ax, ax+1, . . . , ay in O(α(h)) time.

Our preprocessing is detailed as follows. Its time complexity is O(mα(h)) as
shown in Lemma B.3.

1. For each i ∈ [1, b], find Γi and arrange the integers in Γi in ascending order.
2. Apply Fact B.2 to the sequence c1, . . . , ch.
3. For every nonempty Γi = {x1 < · · · < xd}, compute β� = max{Ax[i] | x ∈

(x�, x�+1)} for every 3 ∈ [1, d − 1], and then apply Fact B.2 to the sequence
Ax1

[i], β1, Ax2 [i], . . . , βd−1, Axd
[i].

Lemma B.3. The preprocessing requires O(mα(h)) time.

Proof. We can examine all the entries of Az whose values differ from cz in O(mz)
time. By examining all such entries of A1, . . . , Ah, we can construct Γi and arrange
the integers in Γi in ascending order. Thus, step 1 takes O(m) time. Step 2 takes
O(h) = O(m) time. For step 3, we first analyze the time required to process one
nonempty Γi = {x1 < · · · < xd}. Note that (x�, x�+1) ∩ Γi = φ for every 3 ∈
[1, d − 1]. Thus, β� = max{cx | x ∈ (x�, x�+1)} can be computed in O(α(n)) time
using the result of step 2. Summing over all 3 ∈ [1, d − 1], computing all β� takes
O(|Γi|α(h)) time. Applying Fact B.2 to the sequenceAx1 [i], β1, Ax2 [i], . . . , βd−1, Axd

[i]
takes O(|Γi|) time. In total, it takes O(|Γi|α(h)) time to process one Γi, and step 3
takes O(

∑ |Γi|α(h)) = O(mα(h)) time. Thus, the total time of our preprocessing is
O(mα(h)).

After the preprocessing, each query can be answered in O(log h) time as stated
in the following lemma.

Lemma B.4. After the preprocessing, max{Az[i] | z ∈ H} can be found in
O(log n) time for any i ∈ [1, b] and any interval H ⊆ [1, h].

Proof. Let H = [p, q]. A crucial step is to find [p, q] ∩ Γi. Without loss of
generality, assume Γi 	= φ. To find [p, q] ∩ Γi, we first find the smallest integer xs in
Γi that is greater than p, and the largest integer xt in Γi that is smaller than q. Since
Γi is sorted, we can find xs and xt in O(log |Γi|) = O(log h) time. If xs > xt, then
[p, q] ∩ Γi = φ; otherwise, [p, q] ∩ Γi is the set of integers between xs and xt in Γj .

If [p, q] ∩ Γi = φ, then max{Ax[i] | x ∈ [p, q]} = max{cx | x ∈ [p, q]}. Because of
step 1 of our preprocessing, we can find max{cx | x ∈ [p, q]} in O(α(h)) time.

If [p, q] ∩ Γi = {xs < xs+1 < · · · < xt}, then [p, q] = [p, xs − 1] ∪ {xs} ∪ (xs, xs+1)
∪ · · · ∪ {xt} ∪ [xt + 1, q] and max{Az[i] | z ∈ [p, q]} equals the maximum of

1. max{Ax[i] | x ∈ [p, xs − 1]},
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2. max{Ax[i] | x ∈ {xs} ∪ (xs, xs+1) ∪ · · · ∪ (xt−1, xt) ∪ {xt}},
3. max{Ax[i] | x ∈ [xt + 1, q]}.

Note that item 2 equals the maximum of Axs [i], βs, . . . , βt−1, Axt [i], which can be
computed in O(α(h)) time after step 3 of our preprocessing. Since Γi ∩ [p, xs− 1] = φ
and Γi ∩ [xt + 1, q] = φ, step 2 enables us to compute items 1 and 3 in O(α(h)) time.
As a result, max{Az[i] | z ∈ [p, q]} can be answered in O(log h) time.

Acknowledgments. The authors thank the referees for helpful comments.
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Abstract. This paper describes a scheme to implement a shared address space of sizem on an n-
node mesh, with m polynomial in n, where each mesh node hosts a processor and a memory module.
At the core of the simulation is a hierarchical memory organization scheme (HMOS), which governs
the distribution of the shared variables, each replicated into multiple copies, among the memory
modules, through a cascade of bipartite graphs. Based on the expansion properties of such graphs,
we devise a protocol that accesses any n-tuple of shared variables in worst-case time O(n1/2+η),
for any constant η > 0, using O(1/η1.59) copies per variable, or in worst-case time O(n1/2 logn),
using O(log1.59 n) copies per variable. In both cases the access time is close to the natural O(

√
n)

lower bound imposed by the network diameter. A key feature of the scheme is that it can be made
fully constructive when m is not too large, thus providing in this case the first efficient, constructive,
deterministic scheme in the literature for bounded-degree processor networks. For larger memory
sizes, the scheme relies solely on a nonconstructive graph of weak expansion. Finally, the scheme
can be efficiently ported to other architectures, as long as they exhibit certain structural properties.
In the paper we discuss the porting to multidimensional meshes and to the pruned butterfly, an
area-universal network which is a variant of the fat-tree.

Key words. PRAM simulation, parallel computation, shared memory machines, networks of
processors, meshes, expander graphs
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1. Introduction. A desirable feature of a parallel computer is the provision
of a shared address space that can be accessed concurrently by all the processors
of the machine. Indeed, the manipulation of shared data provides a powerful and
uniform mechanism for interprocessor communication and constitutes a valuable tool
for the development of simple and portable parallel software. Unfortunately, when
the number of processors exceeds a certain (modest) threshold, any efficient hardware
realization of shared memory is either prohibitively expensive or out of reach of current
technology. Therefore, a shared address space must be provided virtually on hardware
platforms consisting of a set of processor/memory module pairs which are connected
through a network of point-to-point communication links.
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This problem has received considerable attention over the past two decades and
has been the target of a large number of investigations, both theoretical and applied.
In the theoretical community, the problem is best known as the PRAM simulation
problem. An (n,m)-PRAM is an abstraction of a shared-memory machine consisting
of n synchronous RAM processors that have direct access to m shared variables. In
a PRAM step, executed in unit time, any set of n variables can be read or written in
parallel by the processors. A solution to the PRAM simulation problem is a scheme
to perform any computation of an (n,m)-PRAM on a target machine consisting of a
network of n processor/memory pairs. A typical PRAM simulation scheme distributes
the PRAM shared variables among the n modules local to the machine processors and
recasts a parallel access to the shared memory into the routing of messages from the
processors requesting the variables to the processors storing such variables.

Several randomized PRAM simulation schemes have been proposed in the liter-
ature. In all these schemes, the shared variables are distributed among the memory
modules via one (or more) hash functions randomly drawn from a suitable universal
class. Among the most relevant results, we recall that a PRAM step can be simu-
lated, with high probability, in O(log log logn log∗ n) time on the complete network
[CMS95], in O(log n) time on the butterfly [Ran91], and in O(

√
n) time on the mesh

[LMRR94].

In contrast, the development of efficient deterministic schemes, that is, schemes
that guarantee a fast worst-case simulation time for any PRAM step, appears to be
much harder. A simple argument shows that in order to avoid trivial worst-case
scenarios, where all the variables requested in the PRAM step are stored in a small
region of the network, one has to use several copies for each variable, so that only a
subset of “convenient” copies needs to be reached by each operation. The number of
copies used for each variable is called the redundancy of the scheme.

The idea of replicating each variable into multiple copies dates back to the pio-
neering work of Mehlhorn and Vishkin [MV84]. In their approach, a read operation
need access only one (the most convenient) copy. For m = O(nR), the authors obtain
a scheme for the complete interconnection which uses R copies per variable and allows
any set of n reads to be satisfied in time O(n1−1/R). However, the execution of n
write operations, where all copies of the variables must be accessed, is penalized and
requires O(Rn) time in the worst case.

Later, Upfal and Wigderson [UW87] proposed a more balanced protocol requiring
that, in order to read or write a variable, only a majority of its copies be accessed.
They also represent the allocation of the copies to the modules by means of a memory
organization scheme (MOS). An MOS is a bipartite graph G = (V,U), where V is the
set of shared variables, U is the set of memory modules of the underlying machine,
and R edges connect each variable to the modules storing its copies. For m polyno-
mial in n and R = Θ(logn), the authors show that there exist suitable expanding

graphs that guarantee a worst-case O(log n (log log n)
2
) time to access any n vari-

ables on the complete interconnection. This bound was later improved to O(log n)
in [AHMP87]. Several authors pursued the ideas in [UW87] to develop simulation
schemes for bounded-degree networks of various topologies. In particular, schemes
have been devised to simulate an arbitrary step of an (n,m)-PRAM, with m poly-
nomial in n, in time O(log2 n/ log log n) on a mesh of trees (MoT) with n processors
and Θ(n2) switching elements [LPP90], or in time O(log n logm/ log log n) on an n-
processor expander-based network [HB94], or in time O(log n log log n log log(m/n))
on a suitably augmented MoT [Her96].
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All of the aforementioned deterministic schemes (except for the one in [MV84]
which, however, is not general since write accesses are heavily penalized) suffer from
two major limitations.

1. The MOS graphs must exhibit maximum expansion relatively to the m/n
ratio. Although the existence of such graphs can be proved through standard counting
arguments, no efficient constructions are yet available. In addition, it is unlikely that
the (few) constructions known for expanders may be of use when m is much larger
than n.

2. The expansion properties of the MOS are exclusively used to curb memory
contention. Network congestion issues are either ignored, as in the case of simulations
on the complete network, or solved by means of separate mechanisms tailored to the
specific network’s topology.1

Recently, constructive deterministic schemes exhibiting nontrivial performance
have been developed for the complete interconnection. In [PP97] three schemes are
presented for m = O(n3/2), m = O(n2), and m = O(n3) variables, which attain
O(n1/3), O(n1/2), and O(n2/3) access time, respectively, for any n-tuple of variables
using constant redundancy. These schemes rely on MOS graphs that admit efficient
explicit constructions but exhibit weak expansion. In this paper we will exploit the
same constructions in a more complex framework to achieve efficient implementations
of shared data on realistic, low-bandwidth machines. Specifically, we will develop a
novel approach where the inefficiencies caused by the weak expansion of the memory
map are absorbed into the inherent bandwidth limitations of the interconnection, and
where both memory contention and network congestion are controlled through a single
mechanism.

1.1. Overview of results. This paper presents a deterministic scheme for im-
plementing a shared address space of size m on an n-node square mesh, with m
polynomial in n, where each node consists of a processor with direct access to a local
memory module. The scheme provides a protocol to access an arbitrary set of n shared
variables in nearly optimal time for all values of m. The scheme is fully constructive
for m = O(n3/2), whereas for larger values of m it embodies only a nonconstructive
component graph of constant degree whose expansion properties, however, are much
weaker than those required of the graphs used in previous works. Full constructive-
ness can also be attained for memory sizes up to m = O(n9/2), at the expense of a
progressive degradation in performance when m gets closer to the upper bound.

The scheme adopts a novel redundant representation of the shared variables and
is centered around the hierarchical memory organization scheme (HMOS), which pro-
vides a structured distribution of the copies of the variables among the memory mod-
ules. The HMOS consists of k+1 levels of logical modules built upon the set of shared
variables. The modules of the first level (level 0) store copies of variables, whereas
modules of level i > 0 store replicas of modules of level i − 1. The HMOS is repre-
sented by a cascade of bipartite graphs, where the first graph governs the distribution
of the copies of the variables to the modules of level 0, and the other graphs govern
the distribution of the replicas of modules at higher levels. Each level of the HMOS
corresponds to a tessellation of the mesh into submeshes of appropriate size, with
each module of that level assigned to a distinct submesh.

1In fact, in [HB94], an MOS with slightly less than maximum expansion is employed in order
to reduce the redundancy and, consequently, network congestion, at the expense of an increase in
memory contention. However, such an MOS does not embody any specific mechanism to explicitly
control network congestion.
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Table 1.1
Results in this paper.

m = nτ Access time Constructive Redundancy

τ > 3
2

O(n
1
2
+η) ∀ constant η > 0 no O(1/η1.59)

τ > 3
2

O(
√
n logn) no O(log1.59 n)

1 ≤ τ ≤ 3
2

O(n
1
2
+η) ∀ constant η > 0 yes O(1/η1.59)

1 ≤ τ ≤ 3
2

O(
√
n logn) yes O(log1.59 n)

3
2
< τ ≤ 13

6
O(n

2τ+1
8 ) yes Θ(1)

13
6
≤ τ ≤ 5

2
O(n

2
3 ) yes Θ(1)

5
2
≤ τ ≤ 9

2
O(n

2τ+3
12 ) yes Θ(1)

We devise an access protocol to satisfy n arbitrary read/write requests issued by
the n processors, which takes advantage of the hierarchical structure of the HMOS. As
customary in any multicopy approach, an access to a variable is executed on a selected
subset of its copies. A suitable copy selection mechanism is developed to limit the
number of copies to be accessed in each submesh, and, ultimately, in each individual
module. In this sense, the HMOS provides a single mechanism to cope with both
memory contention and network congestion, which represents a novelty with respect
to previous works, where the two issues were dealt with separately.

In order to guarantee low memory contention and network congestion, the HMOS
component graphs must exhibit certain expansion properties. Compared to those
employed in previous schemes, our graphs have much weaker expansion, attainable
using only constant (rather than logarithmic) input degree. This makes the HMOS
more amenable to explicit construction. Indeed, all HMOS graphs but the first one
are taken as subgraphs of a well-known combinatorial structure, the BIBD, for which
an explicit and simple construction is known. As for the first graph, an explicit
construction can be provided when m is not too large, thus making the HMOS fully
constructive, while for large values of m, the graph can be shown to exist through a
standard counting argument. Our results are reported in detail below and summarized
in Table 1.1.

Theorem 1.1. For any constant τ ≥ 1, there exists a scheme to distribute
m = nτ shared variables among the local memory modules of an n-node mesh with
redundancy R so that any n variables can be read/written in time

T = O(n
1
2+η)

for any constant η > 0, with R = O(1/η1.59), or in time

T = O(n
1
2 log n)

with R = O(log1.59 n).
As mentioned before, for arbitrary values of m, the HMOS embodies one noncon-

structive graph. Full constructiveness can be achieved whenm = O(n9/2), as reported
below.

Theorem 1.2. For any constant τ , with 1 ≤ τ < 9/2, there exists a fully
constructive scheme to distribute m = nτ shared variables among the local memory
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modules of an n-node mesh, which, for τ ≤ 3/2, achieves the same performances as
those stated in Theorem 1.1 while, for τ > 3/2, achieves the following access times:

T = O(n
2τ+1

8 ) for 3
2 < τ ≤ 13

6 ,

T = O(n
2
3 ) for 13

6 ≤ τ ≤ 5
2 ,

T = O(n
2τ+3
12 ) for 5

2 ≤ τ ≤ 9/2,

with redundancy R = Θ(1).
Compared to the natural Ω(

√
n) lower bound imposed by the network diameter,

our fastest access time is only a logarithmic factor away from optimal.
Prior to the present work, no efficient deterministic schemes for implementing

shared memory explicitly designed for the mesh topology were known in the literature.
However, the schemes designed for the complete interconnection can be implemented
on the mesh through sorting and routing. In particular, O(

√
n log n) access time

can be obtained by implementing the nonconstructive scheme in [AHMP87], and
O(n1/2+t) access time can be obtained by porting the constructive schemes of [PP97]
to the mesh, with t = 1/6 for m = O(n3/2), t = 1/4 for m = O(n2), and t = 1/3 for
m = O(n3).

Our results improve upon previously published ones in the following ways. First,
we attain O(

√
n log n) access time, as in [AHMP87], with a memory organization

which is fully constructive when m = O(n3/2), while, for all other values of m poly-
nomial in n, it embodies a nonconstructive graph exhibiting much weaker expansion
than that required in [AHMP87]. The recent results of [PP97] suggest that our mem-
ory map is more amenable to explicit construction. Note also that our constructive
results outperform the ones obtainable by the straightforward porting to the mesh of
the schemes in [PP97] discussed above.

Finally, it is important to observe that our scheme is not specifically tailored to
the mesh topology but can be ported, with minor adjustments, to other topologies.
In particular, the same access times reported in Theorems 1.1 and 1.2 can be attained
on an n-leaf pruned butterfly, an area-universal network which is a variant of the
fat-tree, and Theorem 1.1 can be generalized to hold for d-dimensional meshes, with
constant d, by substituting n1/d for n1/2 in the formulas.

The rest of this paper is organized as follows. Section 2 defines the machine
model and introduces the routing and sorting primitives used by the access protocol.
Section 3 describes the HMOS (section 3.1) and its implementation on the mesh
(section 3.2). A suitable construction for the BIBDs used in the HMOS is given in an
appendix to the paper. Section 4 presents the protocol for accessing an arbitrary n-
tuple of shared variables. This section is subdivided into two subsections that describe
the selection of the copies and the routing protocol, respectively. In section 5, suitable
values for the design parameters of the HMOS are selected, and Theorems 1.1 and 1.2
are proved. Section 6 shows how the scheme can be generalized to other architectures,
such as the pruned butterfly and multidimensional meshes. Section 7 closes with some
final remarks.

2. Machine model. We present our shared memory implementation on a mesh,
consisting of an array of

√
n×√n processor-memory pairs, connected through a two-

dimensional grid of communication links. The machine operates in lock-step, where in
each step a processor can perform a constant amount of local computation (including
accesses to its local memory) and can exchange a constant number of words with
one of its direct neighbors. Our objective is to devise a distributed representation of
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m ≥ n shared variables on the mesh so that any n-tuple of read/write accesses to
these variables can be served efficiently. The approach will be generalized to other
architectures in section 6.

The access protocol will make use of the following primitives, for which optimal
algorithms are known in the literature. We call �-sorting a sorting instance in which
at most � keys are initially assigned to each processor and are to be redistributed so
that the � smallest keys will be held by the first processor, the next � smallest ones by
the second processor, and so on, with the processors numbered in row major order.
We have the following fact.

Fact 2.1 (see [Kun93]). Any �-sorting can be performed on an n-node mesh in
O(�
√

n) time.
We call (�1, �2)-routing a routing problem in which each mesh processor is the

source of at most �1 packets and the destination of at most �2 packets. We have the
following fact.

Fact 2.2 (see [SK94]). Any (�1, �2)-routing can be performed on an n-node mesh
in O(

√
�1�2n) time.

A simple bisection-based argument shows that this result is optimal in the general
case. However, for a special class of (�1, �2)-routings, a better performance can be
achieved as follows. Fix a tessellation of the mesh into n/s submeshes of s nodes
each, and consider an (�1, �2)-routing where at most δs packets are destined for each
submesh. We first use �1-sorting and (�1, δ)-routing to spread the packets evenly
among the nodes of their destination submeshes, and then complete the routing by
running n/s independent instances of (δ, �2)-routing within each submesh. The overall
routing time becomes

O(�1
√

n+
√

�1δn+
√

δ�2s).

Comparing the O(
√

�1�2n) complexity of the general (�1, �2)-routing algorithm with
the above routing time, we see that the new algorithm is profitable when δ, �1 = o(�2)
and δs = o(�1n). This fact will be exploited in our access protocol, where packet
routing is used to access selected copies of the variables. In particular, we will employ
several nested tessellations of the mesh and provide strong bounds on the congestion
within the submeshes of each tessellation, so that the above strategy can be applied.
The packets will then be routed gradually to their destinations through a sequence of
smaller and smaller submeshes.

3. The HMOS. This section introduces the HMOS, a mechanism through which
m shared variables are distributed among the n memory modules of a processor net-
work. The section is organized in two subsections: section 3.1 presents the logical
structure of HMOS, while section 3.2 describes its actual implementation on the mesh.

3.1. Logical structure of the HMOS. The HMOS is structured as k+1 lev-
els of logical modules built upon the shared variables, where k = O(log log n) is a
nonnegative integer function of n to be specified by the analysis. More specifically,
starting from m = nτ shared variables, for a fixed constant τ > 1, the HMOS com-
prises mi modules at level i, called i-modules for 0 ≤ i ≤ k, where the mi’s are strictly
decreasing values that will be specified later. Modules are nested collections of vari-
ables, obtained as follows. First, each variable is replicated into r = Θ(1) copies,
which are assigned to distinct 0-modules. The contents of each 0-module, viewed as
an indivisible unit, are in turn replicated into 3 copies, which are assigned to distinct
1-modules. In general, the contents of each (i − 1)-module, viewed as an indivisi-
ble unit, are replicated into 3 copies, which are assigned to distinct i-modules, for
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0 < i ≤ k. It is easy to see that the above process will eventually create 3k−i replicas
of each i-module and r3k copies per variable. In the rest of this paper, we will reserve
the term copy to denote the replica of a variable, and i-block to denote the replica of
an i-module.

The difference between an i-module and one of its i-blocks is akin to the differ-
ence between a variable and one of its copies. Namely, an i-module represents an
abstract entity, of which several physical replicas, its i-blocks, exist. Since the con-
tents of k-modules are not replicated, the terms k-module and k-block will be used
interchangeably. Note that a k-block is made of (k − 1)-blocks, which in turn are
made of (k−2)-blocks, and so on until 0-blocks are reached. The latter contain copies
of variables.

Let V denote the set of shared variables, and Ui the set of i-modules for 0 ≤ i ≤ k.
The HMOS is represented as a leveled direct acyclic graph (dag) H, which is defined
by a cascade of k + 1 bipartite graphs, namely (V,U0) and (Ui−1, Ui), 0 < i ≤ k,
whose edges are directed left to right. In (V,U0), each variable v ∈ V is adjacent
to r 0-modules, denoted by γ0(v, j), 1 ≤ j ≤ r. For 0 < i ≤ k in (Ui−1, Ui), each
(i − 1)-module u is adjacent to three i-modules denoted by γi(u, j), 1 ≤ j ≤ 3. For
notational convenience, we will number the levels in the HMOS starting from -1, the
level of the variables. As a consequence, nodes at level i, 0 ≤ i ≤ k, are i-modules.

In the HMOS, each variable v uniquely identifies a single-source subdag Hv in-
duced by all nodes reachable from v ∈ V . A straightforward property of Hv is that it
contains r3k distinct source-sink paths which are in one-to-one correspondence with
the r3k copies of v. Each source-sink path in Hv (hence, each copy of v) is uniquely
identified by the string of nodes traversed by the path. Moreover, for 0 ≤ i ≤ k, the
suffix of any such string starting with a node u at level i of Hv, identifies a specific
i-block storing a copy of v. Note that several source-sink paths in Hv may correspond
to strings with a common suffix starting from level i. In this case, the i-block corre-
sponding to the common suffix will store several distinct copies of v. A small HMOS
for 8 shared variables is shown in Figure 3.1.

The component bipartite graphs of the HMOS must be carefully chosen in order
to guarantee a good distribution of the copies of the variables, once the HMOS is
mapped onto the processors’ memory modules. More specifically, we require that the
graphs exhibit good expansion, according to the following definition.

Definition 3.1. Let G = (X,Y ) be a bipartite graph, where each input node
in X has degree d. For 0 < α ≤ 1, 0 < ε < 1, and 1 ≤ µ ≤ d, G is said to have
(α, ε, µ)-expansion if for any subset S ⊆ X, |S| ≤ α|X|, and for any set E of µ|S|
edges, µ outgoing edges for each node in S, the set ΓE(S) ⊆ Y reached by the chosen
edges has size

|ΓE(S)| = Ω(|S|1−ε).
We let |U0| = nρ, where 0 < ρ < 3/2 is a parameter to be fixed by the analysis. We

require that (V,U0) has input degree r, for a fixed odd constant r > 0, output degree
|V |r/|U0|, and exhibits (α, ε, µ)-expansion, where α = n/m, ε is a positive constant
less than 1, and µ = (r + 1)/2. Clearly, a necessary condition for the existence of
such a graph is (α|V |)1−ε = n1−ε ≤ nρ, which implies ρ + ε − 1 ≥ 0. The analysis
will determine suitable values for r, ε, and ρ that guarantee the existence of (V,U0).
Moreover, an explicit construction for such graph will be available whenm = O(n9/2).

The graphs (Ui−1, Ui) for 0 < i ≤ k are derived from instances of varying size
of the same combinatorial structure, the balanced incomplete block design (BIBD),
defined below.
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Fig. 3.1. An HMOS H built upon 8 shared variables, with r = 5 and k = 1. There are 8 0-
modules and 4 1-modules/1-blocks. Each 1-block contains 6 0-blocks (physical copies of 0-modules),
each of which in turn contains 5 copies of the variables. The edges shown in the figure are those of the
subdag Hv4 . Note that there are 15 edge-disjoint, source-sink paths in Hv4 , each path corresponding
to one of the 15 copies of v4.

Definition 3.2 (see [Hal86]). A BIBD with parameters w and q, or (w, q)-BIBD,
is a bipartite graph (X,Y ) such that

• |Y | = w;
• the degree of each node in X is q;
• for any two nodes y1, y2 ∈ Y there is exactly one node x ∈ X adjacent to
both.

From the definition, it immediately follows that |X| = w(w − 1)/(q(q − 1)) and
that the degree of each node in Y is (w − 1)/(q − 1). One important property of the
BIBD, which we will heavily exploit, is stated in the following lemma.

Lemma 3.3. Let G = (X,Y ) be a (w, q)-BIBD. Consider a node y ∈ Y and a
subset S ⊆ X such that any node in S is adjacent to y. Let E be a set of µ|S| edges,
with µ ≤ q, containing µ outgoing edges from each x in S, and let ΓE(S) denote the
set of nodes of U reached by the chosen edges. Then

|ΓE(S)| ≥ (µ− 1)|S|+ 1.
Proof. The definition of BIBD implies that no two nodes in S share a neighbor

other than y. If y �∈ ΓE(S), then |ΓE(S)| = µ|S|. Otherwise, at most |S| of the
selected edges reach y; the other (µ− 1)|S| reach distinct nodes.

Corollary 3.4. A (w, q)-BIBD has (1, 1/2, µ)-expansion for every 2 ≤ µ ≤ q.
Proof. Let G = (X,Y ) be a (w, q)-BIBD, and let S be an arbitrary subset of input

nodes. We now show that |ΓE(S)| >√(µ− 1)µ|S| for an arbitrary set E containing



CONSTRUCTIVE IMPLEMENTATION OF SHARED MEMORY 633

µ outgoing edges from each node in S. Assume that |ΓE(S)| ≤√(µ− 1)µ|S|. Then,
there must be an output node in ΓE(S) that is adjacent to at least

√|S|µ/(µ− 1)
nodes in S. According to Lemma 3.3, this implies that |ΓE(S)| ≥ (µ−1)√|S|µ/(µ− 1)+
1 >

√
(µ− 1)µ|S|, which contradicts our assumption.

For convenience, we assume that both n and 3knρ are even powers of three.
Consider the sequence of integers d0, d1, . . . , dk defined as

{
d0 = log3 nρ,

di = 2
⌈

1
2

(
di−1

2 + 1 + k − i
)⌉
− k + i for 1 ≤ i ≤ k.

For 0 ≤ i ≤ k, set the number of i-modules to be mi = 3di . The following two
properties are easily established.

(i) di + k − i is even, for 0 ≤ i ≤ k.
(ii) 3

√
mi−1 ≤ mi ≤ 16

√
mi−1, which implies that mi−1 ≤ mi(mi − 1)/6 for

1 ≤ i ≤ k, and mi = Θ(n
ρ/2i

) for 0 ≤ i ≤ k.
We choose (Ui−1, Ui) as a subgraph of a (mi, 3)-BIBD, wheremi(mi−1)/6−mi−1

inputs are removed along with their incident edges. The inputs to be removed are
chosen in such a way that the remaining edges are evenly distributed among the
outputs, so that each node of Ui becomes adjacent to

ni =
3mi−1

mi

nodes of Ui−1. An efficient construction of such subgraphs is described in the ap-
pendix.

3.2. Mapping the HMOS onto the mesh. The HMOS is physically mapped
onto the mesh by storing each i-block in a distinct submesh of appropriate size. For
some values of the parameter ρ, the number of 0-blocks exceeds the mesh nodes,
hence a single mesh node must store more than one 0-block. There are 3k−imi =
Θ(3k−inρ/2

i

) i-blocks, 0 ≤ i ≤ k, and each i-block contains exactly ni (i− 1)-blocks,
1 ≤ i ≤ k. We define k nested tessellations of the mesh into submeshes as follows. The
outermost tessellation is a subdivision of the mesh into mk submeshes (k-submeshes),
each storing a distinct k-block. Each k-submesh is in turn tessellated into nk (k− 1)-
submeshes storing the component (k − 1)-blocks of the k-block assigned to the k-
submesh. In general, for 2 ≤ i ≤ k, each i-submesh, storing a given i-block, is
tessellated into ni (i − 1)-submeshes storing its component (i − 1)-blocks. Thus, for
1 ≤ i ≤ k, we have a total of

mknknk−1 · · ·ni+1 = 3
k−imi = Θ(3

k−inρ/2
i

)

i-submeshes, each of size

ti =
n

3k−imi
=

n

3di+k−i
= Θ(3i−kn1−ρ/2i

).

Note that the assumption k = O(log log n) ensures ti ≥ 1 for i ≥ 1 and n sufficiently
large. Moreover, since both log3 n and di + k − i are even, we have that ti is an
even power of three, hence

√
ti is integral and

√
ti−1 divides

√
ti. As a consequence,

the (i − 1)-submeshes storing the ni component (i − 1)-blocks of an i-block are all
contained within the i-submesh storing the i-block. Finally, the organization of the
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3knρ 0-blocks depends on the parameter ρ. When 3knρ < n, we assign each 0-block to
a submesh of t0 = n1−ρ/3k nodes and evenly partition the contents of the block among
these nodes. Otherwise, when 3knρ > n there are more 0-blocks than processors, so
we assign 3knρ−1 0-blocks to each processor. In either case, each processor stores
r3km/n copies of variables.

4. The access protocol. Suppose thatm shared variables are distributed among
the n mesh nodes according to the HMOS. In this section, we present the protocol
that realizes a parallel access to any n-tuple of variables, where each processor issues
a read/write request for a distinct variable. (The case of concurrent accesses can
be reduced to the case of exclusive accesses in time O(

√
n) by means of standard

sorting-based techniques for leader election and data distribution [Lei92].)
Let S denote the set of variables to be accessed. The access protocol consists of

a copy selection phase followed by a routing phase. In the first phase, a suitable set
of copies for the variables in S is chosen, so that accessing these copies will enforce
data consistency and generate low memory contention and network congestion. In the
subsequent phase, the selected copies are effectively accessed through an appropriate
routing strategy. In case of read operations, the accessed data are returned to the
requesting processors along the reverse routing paths.

4.1. Copy selection phase. Copy selection achieves the double objective of
controlling both memory contention and network congestion by means of a single
mechanism. The hierarchical structure of the HMOS provides a geographical distri-
bution of the copies into nested regions of the network. By carefully limiting the
number of copies that have to be accessed in any block at any level, we reduce the
number of packets that will ever be routed to any such region, which allows us to
adopt the efficient routing strategy illustrated in section 2.

4.1.1. A new consistency rule. Recall from section 3.1 that the r3k copies of
a variable v are associated with the source-sink paths of Hv, the subdag of H induced
by v and by all of its descendants. Suppose that we want to read/write v. In order
to guarantee consistency, the copies of v to be accessed are selected according to a
new rule, which extends the majority protocol of [UW87] to fit the structure of the
HMOS. Specifically, we require that the selected copies form a target set, which is
defined as follows. Let Cv be a set of copies of v, and let N (Cv) be the set of nodes
of Hv belonging to the source-sink paths associated with these copies. Recall that r
is odd, and let µ = (r + 1)/2.

Definition 4.1. Cv is a target set for v if |Cv| = µ2k and the following condition
holds: a majority (µ) of the nodes at level 0 of Hv belong to N (Cv), and, for each
node at level i belonging to N (Cv), a majority (two) of its successors at level i + 1
belong to N (Cv) for 0 ≤ i < k.

Figure 4.1 depicts the source-sink paths corresponding to a target set Cv4 for
variable v4 in the HMOS of Figure 3.1.

An easy inductive argument shows that any two target sets for the same variable
have nonempty intersection. Based on such a property we can guarantee consistency,
that is, ensure that a read always returns the most updated value, as follows. As
customary in any multicopy approach, we equip each copy with a time-stamp, which
is set to the current step whenever the copy is written. A read or write operation on
a variable v is simulated by accessing a target set of its copies. By the intersection
property of target sets, the copies accessed for reading a variable v must include at
least one of the most recently written copies for v, which can be identified by looking
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Fig. 4.1. The source-sink paths (solid lines) in Hv4 corresponding to a target set Cv4 of 6
copies for variable v4 in the HMOS H of Figure 3.1.

for the most recent time-stamp. It should be noted that a target set contains only µ2k

copies out of the r3k total copies of a variable. Therefore, unlike previous protocols,
we maintain consistency by accessing much less than a majority of the copies.

4.1.2. The selection procedure. The copy selection phase determines a target
set Cv for each v ∈ S. This is accomplished in k + 1 iterations, numbered from 0
to k, during which the nodes of the Hv’s are marked in a top-down fashion from the
sources to the sinks. More specifically, for every Hv, with v ∈ S, Iteration 0 marks
the source v and µ of its successors (0-modules); Iteration i, 0 < i ≤ k, marks two
successors (i-modules) of each marked node at level i− 1. In this fashion, at the end
of Iteration i, 0 ≤ i ≤ k, the marked nodes in each Hv form exactly µ2i distinct paths
from the source to nodes at level i (in what follows we refer to such paths as marked
paths). We choose Cv as the set of copies of v corresponding to the µ2k source-sink
marked paths in Hv at the end of the last iteration.

It is important to notice that a node ofH, say an i-module u, may belong to several
subdags Hv corresponding to variables in S. During the copy selection procedure, we
keep track of u independently in each such subdag; hence, u may result marked in
some of the subdags and unmarked in the others. Suppose that, at the end of Iteration
i, u is marked in some subdags and that a total of h marked paths in these subdags
reach u. This implies that at the end of copy selection there will be h2k−i marked
paths that pass through u, that is, h2k−i copies in

⋃
v∈S Cv stored in i-blocks of u.

In Iteration i + 1, the two successors of u to be marked are chosen to be the same
for all subdags in which u is marked; hence, for each chosen successor node, u will
contribute h paths to the total number of marked paths that will pass through that
node at the end of the iteration. The main idea behind the copy selection phase is to
control congestion in (i + 1)-blocks by choosing the nodes to be marked in Iteration
i+1 in such a way as to keep the number of marked paths passing through each such
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node under some reasonable bound.

The following notations will be needed to describe the copy selection procedure.

Definition 4.2. For 0 ≤ i ≤ k, Ai ⊆ Ui denotes the set of i-modules that are
marked in some Hv, with v ∈ S, during Iteration i. The modules in Ai are called
active modules.

Definition 4.3. The weight w(u) of an active module u ∈ Ai is the sum, over
all variables v ∈ S, of the number of marked paths from v to u in Hv.

From the previous discussion we conclude that exactly w(u) copies in
⋃
v∈S Cv

will reside in each of the selected 2k−i i-blocks of u, while the other i-blocks of u will
not contain any copy in

⋃
v∈S Cv. Using the expansion properties of the HMOS, we

will be able to guarantee suitably low values for the w(u)’s.

The actions performed by the copy selection procedure are reported below. Since
Iteration 0 is different from the others, it is described separately. In order to un-
derstand the parameters used in Iteration 0, recall that we chose (V,U0) to have
(n/m, ε, µ)-expansion, where 0 < ε < 1 and µ = (r + 1)/2. In other words, the graph
guarantees that for any set S of at most |S| ≤ n variables and any choice of µ 0-
modules adjacent to each variable, the overall number of chosen 0-modules is at least
β|S|1−ε for some constant β > 0. Finally, recall that each processor is in charge of a
distinct variable.

Iteration 0.

1. For v ∈ S, let pv denote the processor in charge of v. Each pv creates r
copy-packets denoted by the tuples [pv, v, uj = γ0(v, j), hv,uj

= 1] for 1 ≤ j ≤ r.
Upon creation, all copy-packets are regarded as unmarked.

2. Let CP0 denote an initially empty set. The following three substeps are
executed until µ copy-packets for each variable are put in CP0.

(i) Sorting : Sort all unmarked copy-packets by their third component.
(ii) Selection: For each u ∈ U0, let cu be the number of copy-packets with third

component u in the sorted sequence. If cu ≤ (2r/β)nε, then all such packets are
marked. Otherwise, none of them is marked. Subsequently, all the packets are sent
back to their originating processors.

(iii) Counting : For each v ∈ S, pv counts the total number of its copy-packets
marked so far. If these are at least µ, then exactly µ of them are put in CP0 while
the remaining r− µ copy-packets are discarded. Otherwise, the marked copy-packets
are locally buffered.

3. For each v ∈ S, pv marks the source of Hv and µ of its successors corre-
sponding to the copy-packets for v included in CP0.

The analysis will show that the set CP0 is determined in at most log n+1 iterations
of step 2.

Iteration i (1 ≤ i ≤ k). At the beginning of Iteration i, the mesh processors store
a set CPi−1 of copy-packets. Specifically, each processor pv stores copy-packets of
type [pv, v, u, hv,u], where u ∈ Ai−1 and

∑
u hv,u = µ2i−1. The value hv,u reflects the

multiplicity of u with respect to v, that is, the number of distinct marked paths in
Hv from v to u. Iteration i consists of the following steps.

1. The copy-packets in CPi−1 are sorted by their third component.
2. For each group of packets with the same third component u ∈ Ai−1, a leader

processor pu is elected. Each pu computes w(u) as the sum of the multiplicities carried
by the packets in its group, and creates the three module-packets [pu, u, γ(u, j), w(u)]
for 1 ≤ j ≤ 3.

3. The 3|Ai−1| module-packets are sorted lexicographically by their third and
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fourth components.
4. For each x ∈ Ui, a maximal subset Px of module-packets with third compo-

nent x is chosen, such that

∑
[pu,u,x,w(u)]∈Px

w(u) ≤ cµ2i−1
(
n1− 1−ε

2i + n1− 1−ε

2i−1

)
.

5. The chosen packets are sent back to their originating leader processors.
6. Assume that a leader processor pu receives h ≤ 3 module-packets back. If

h < 2, then pu selects 2−h extra module-packets from the 3−h that were not chosen
in the previous step. Otherwise, pu selects two module-packets among those received.

7. Let [pu, u, γ(u, j1), w(u)] and [pu, u, γ(u, j2), w(u)] be the two module-packets
selected by pu. Processor pu sends the names γ(u, j1) and γ(u, j2) to the processors
storing the copy-packets in its group.

8. Each copy-packet [pv, v, u, hv,u] ∈ CPi−1 is augmented with two extra com-
ponents containing γ(u, j1) and γ(u, j2).

9. The augmented copy-packets are routed back to the processors in charge of
their respective variables.

10. For any augmented copy-packet [pv, v, u, hv,u, γ(u, j1), γ(u, j2)] received at
processor pv, the nodes γ(u, j1) and γ(u, j2) at level i of Hv are marked (note that
the same node may be redundantly marked more than once). Moreover for each
newly marked node u′ at level i, a copy-packet [pv, v, u′, hv,u′ ] is created, where hv,u′

is obtained by summing up the multiplicities of the received (augmented) copy-packets
carrying u′ in one of the two extra components. These new copy-packets form the set
CPi, while all other packets are discarded.

When Iteration k terminates, for each v ∈ S, pv determines the set Cv of copies to
be accessed as those corresponding to the µ2k source-sink marked paths in Hv. It is
easily seen that for each v ∈ S, the set Cv computed by the copy selection procedure
is indeed a target set for v.

4.1.3. Analysis of the selection procedure. We now determine the running
time of the selection procedure described above. Let us first consider Iteration 0.
By Fact 2.1 and since r = O(1), steps 1 and 3 require altogether O(

√
n) time. The

sorting, selection and counting substeps of step 2 can be implemented in terms of
sorting and prefix operations in O(

√
n) time. It will be shown in Lemma 4.4 that

log n + 1 executions of such substeps are sufficient. Therefore, Iteration 0 requires
O(
√

n log n) time altogether. For i ≥ 1, Iteration i can be implemented in terms of
a constant number of sorting and prefix operations on a set of O(µ2i−1n) packets,
yielding a running time of O(

√
n2i−1). Therefore, copy selection is completed in time

O

(
√

n log n+
√

n

k∑
i=1

2i−1

)
= O

(√
n
(
log n+ 2k

))
.(4.1)

Lemma 4.4. After log n + 1 executions of step 2 in Iteration 0, the set CP0

contains exactly µn copy-packets. Moreover, for each active 0-module u ∈ A0, w(u) ≤
(2r/β)nε.

Proof. Let Sj be the number of variables for which fewer than µ copy packets have
been selected by the end of the jth execution of step 2. For the sake of convenience,
set S0 = |S| = n. We now show by induction that

Sj ≤ n

2j
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for any j ≥ 0, and this will imply that for T = log n+ 1, ST = 0. The inequality for
S0 is immediate, establishing the basis. Assume that the inequality holds for j − 1,
and suppose, for a contradiction, that Sj > n/2j . By using the expansion properties
of (V,U0), it is easy to see that in the jth execution of the selection substep, at least
βS1−ε

j 0-modules are addressed by unmarked copy-packets. All such 0-modules must
have been congested in the previous iteration (i.e., addressed by more than (2r/β)nε

copy-packets), which accounts for a total of at least

2r

β
nεβS1−ε

j > rSj−1

unmarked copy-packets involved in that iteration. However, this is impossible since
Sj−1 variables account for at most rSj−1 copy packets.

The bound on w(u) is easily established by observing that for each 0-module u,
all copy-packets with third component u that are added to CP0 are marked during
the same iteration of step 2. Therefore

w(u) ≤ 2r

β
nε.

It must be remarked that the copy selection phase can be improved in a number of
ways to obtain a faster running time at the expense of a more complex implementation.
However, to avoid further complications to the presentation, we chose to describe a
simpler yet slightly less efficient implementation, since, as shown in section 5, its
complexity does not influence the overall running time of the access protocol.

To complete the analysis, it remains to establish the bound on the weight w(u) of
any u ∈ Ai, at the end of Iteration i. Recall that the sum of the multiplicities of the
copy-packets in CPi with third component u yields w(u). Therefore, for 0 ≤ i ≤ k,

∑
u∈Ai

w(u) = µ2in.(4.2)

Lemma 4.5. There is a suitable constant c ≥ 3 such that, at the end of Iteration
i, for each u ∈ Ai, 0 ≤ i ≤ k,

w(u) ≤ cµ2in1− 1−ε

2i .

Proof. The proof proceeds by induction on i. The basis (i = 0) is established by
Lemma 4.4. Suppose that the inequality holds for i − 1, and let x be an i-module.
The weight of x is determined by steps 4 and 6 of Iteration i. More precisely, recall
that Px is the set of module-packets of kind [pu, u, x, w(u)] selected in step 4, and let
P ′x be the set of additional module-packets (still with third component x) not in Px,
selected in step 6. It is easy to see that

w(x) ≤
∑

[pu,u,x,w(u)]∈Px∪P′
x

w(u).

Because of the way the module-packets are selected in step 4, we already know that

∑
[pu,u,x,w(u)]∈Px

w(u) ≤ cµ2i−1
(
n1− 1−ε

2i + n1− 1−ε

2i−1

)
.
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Fig. 4.2. Critical modules in the proof of Lemma 4.5.

We must only show that the contribution of P ′x to w(x) is not too large. In order to

derive a contradiction, we suppose that w(x) > cµ2in1− 1−ε

2i . This implies

∑
[pu,u,x,w(u)]∈P′

x

w(u) > cµ2i−1
(
n1− 1−ε

2i − n1− 1−ε

2i−1

)
.

Define Sx = {u ∈ Ai−1 : [pu, u, x, w(u)] ∈ P ′x}, so that
∑

[pu,u,x,w(u)]∈P′
x

w(u) =
∑
u∈Sx

w(u).

By the inductive hypothesis, the weight of each u ∈ Sx is at most cµ2i−1n1− 1−ε

2i−1 ;
therefore

|Sx| ≥
∑
u∈Sx

w(u)

cµ2i−1n1− 1−ε

2i−1

> n
1−ε

2i − 1.

Note that for each u ∈ Sx, at least two module-packets, including [pu, u, x, w(u)], have
not been selected in step 4. Let

Γ∗(Sx) = {y ∈ Ui : ∃ u ∈ Sx s.t. [pu, u, y, w(u)] has not been selected in step 4}.

Note that in the graph (Ui−1, Ui) each u ∈ Sx is adjacent to either two or three nodes
in Γ∗(Sx), one of which is x (see Figure 4.2).

Since (Ui−1, Ui) is a BIBD, we can apply Lemma 3.3 and conclude that |Γ∗(Sx)| ≥
|Sx|+1 > n

1−ε

2i . We now show that the global weight assigned in step 4 to all the nodes
in Γ∗(Sx) exceeds the total weight carried by all the module-packets, thereby leading
to a contradiction. Let y ∈ Γ∗(Sx), and let [pu′ , u′, y, w(u′)] be a module-packet which
has not been selected in step 4, with u′ ∈ Sx. Then, we must have

w(u′) +
∑

[pu,u,y,w(u)]∈Py

w(u) > cµ2i−1
(
n1− 1−ε

2i + n1− 1−ε

2i−1

)
;
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that is,
∑

[pu,u,y,w(u)]∈Py

w(u) > cµ2i−1
(
n1− 1−ε

2i + n1− 1−ε

2i−1

)
− cµ2i−1n1− 1−ε

2i−1 = cµ2i−1n1− 1−ε

2i .

Adding up the contributions of all nodes in Γ∗(Sx), we get∑
y∈Γ∗(Sx)

∑
[pu,u,y,w(u)]∈Py

w(u) > |Γ∗(Sx)|cµ2i−1
(
n1− 1−ε

2i

)

> n
1−ε

2i cµ2i−1
(
n1− 1−ε

2i

)
= cµ2i−1n.

Since c ≥ 3, the above inequality leads to a contradiction because∑
y∈Γ∗(Sx)

∑
[pu,u,y,w(u)]∈Py

w(u) ≤
∑
y∈Ui

∑
[pu,u,y,w(u)]∈Py

w(u) ≤ 3
∑

u∈Ai−1

w(u) = 3µ2i−1n,

where the last equality follows from (4.2).

4.2. Routing phase. After copy selection is completed, the copies in
⋃
v∈S Cv

have to be accessed. Each request is encapsulated in a distinct packet, routed from
the requesting processor (origin) to the processor storing the copy (destination), and
back to the origin. The idea is to route the packets in stages so that they are moved
gradually closer to their destinations through smaller and smaller submeshes, in ac-
cordance with the tessellations defined on the mesh. As argued in section 2, when the
number of packets destined for any submesh is not too large, such a strategy yields
more profitable results than sending the packets directly to their destinations.

The origin-destination part of a packet’s journey consists of k+2 routing stages,
numbered from k + 1 down to 0. Stage i, with k + 1 ≥ i ≥ 1, is executed in parallel
and independently in every i-submesh (here, the whole mesh is viewed as a (k + 1)-
submesh). In this stage the packets are routed to arbitrary positions in the (i − 1)-
submeshes hosting their destination (i−1)-blocks, in such a way that the processors of
each submesh receive approximately the same number of packets. This can be achieved
by first sorting the packets according to their destination submeshes and then ranking
the packets destined to the same submesh. Observe that when 3knρ < n, a 0-block is
assigned to a 0-submesh of t0 = n1−ρ/3k nodes. By the end of stage 1, each packet
reaches a processor within its destination 0-submesh, and in stage 0 is sent to its
final destination. Instead, when 3knρ ≥ n, there are nρ−13k 0-blocks stored within
a single processor, hence each packet is at its final destination by the end of stage 1,
and stage 0 is not needed. In either case, once the packet reaches its final destination,
the request it carries is satisfied.

In order to estimate the time complexity of the above protocol, we need to de-
termine the maximum number of packets sent and received by any processor in each
stage. More formally, let δi, for k + 1 ≥ i ≥ 0, denote the maximum number of pack-
ets held by any processor at the beginning of stage i. Let also δ−1 be the maximum
number of packets received by a processor at the end of stage 0, when such stage is
needed (i.e., when 3knρ < n). We have the following lemma.

Lemma 4.6. Let k ≥ 0. Then

δk+1 = µ2k,

δi = O
(
µ2i3k−in

ρ+ε−1

2i

)
for k ≥ i ≥ 0.
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When 3knρ < n, we also have δ−1 = O(µnε).

Proof. The statement is immediately evident for δk+1, since every target set

contains µ2k copies. By Lemma 4.5, an i-block is addressed by at most cµ2in1−(1−ε)/2i

packets for k ≥ i ≥ 1. Since there are ti = Θ(3i−kn1−ρ/2i

) processors storing an i-
block, we have

δi ≤ cµ2in1− 1−ε

2i

ti
= O

(
µ2i3k−in

ρ+ε−1

2i

)
.

In order to establish the bound for δ0, we distinguish between two cases. If 3
knρ < n,

each 0-block is assigned to a submesh of t0 = n1−ρ/3k nodes and, by Lemma 4.5,
is addressed by at most cµnε packets, whence δ0 = cµnε/t0 = O(µ3knρ+ε−1). In
this case, stage 0 is needed to bring the packets to their final destinations. At
the end of this stage, each processor receives at most δ−1 ≤ cµnε packets. Other-
wise, if 3knρ ≥ n, there are 3knρ−1 0-blocks stored within a single processor, from
which δ0 = cµnε3knρ−1 = O(µ3knρ+ε−1) as before, but the routing terminates with
stage 1.

Set tk+1 = n, the size of the entire mesh, and let Ti be the time complexity of
stage i for k + 1 ≥ i ≥ 0.

Lemma 4.7. We have

Tk+1 = O(2kn
1
2+ ρ+ε−1

2k+1 ),

Ti = O(2i3
k−i
2 n

1
2+ 2ρ+3ε−3

2i+1 ) for k ≥ i ≥ 1.

When 3knρ < n, we also have T0 = O(nε).

Proof. Recall that for k + 1 ≥ i ≥ 1, stage i is executed in parallel and inde-
pendently in each i-submesh. The initial sorting and ranking are accomplished in
O(δi
√

ti) time. By Fact 2.2, the subsequent (δi, δi−1)-routing requires O(
√

δiδi−1ti)

time. Since δi ≤ δi−1, we get Ti = O(
√

δiδi−1ti). When 3
knρ < n, stage 0 consists

of a (δ0, δ−1)-routing in each submesh of size t0, requiring O(
√

δ0δ−1t0) time. The
lemma follows by plugging in the values for the δi’s and the ti’s and by recalling that
µ is a constant.

After reaching their destinations, the packets relative to read operations must
return to their origins carrying the accessed data. This second part of the routing
can be accomplished by running the above protocol backwards, thus maintaining the
same time complexity.

Theorem 4.8. The access protocol requires overall time

O

(
nε + n

1
2

(
log n+ 2kn

ρ+ε−1

2k+1 +

k∑
i=1

2i3
k−i
2 n

2ρ+3ε−3

2i+1

))
.

Proof. The running time of the access protocol is obtained by adding the contri-
butions of the copy selection and routing phases together. The complexity of copy se-
lection is given by (4.1), while the routing time is obtained by the summing of the Ti’s

given in Lemma 4.7. Note that ρ+ ε− 1 ≥ 0; therefore the term n1/22kn(ρ+ε−1)/2k+1

dominates the term n1/22k coming from copy selection. Note also that the term
nε, which accounts for the complexity of stage 0, does not dominate when 3knρ

≥ n.
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5. Tuning of the parameters. The complexity of the access protocol estab-
lished by Theorem 4.8 is a function of the following design parameters:

(i) k: there are k + 1 levels in the HMOS;
(ii) ρ: there are nρ 0-modules in U0;
(iii) ε: the first graph of the HMOS (V,U0) has (n/m, ε, µ)-expansion;
(iv) r: the (odd) input degree of (V,U0).

Furthermore, recall thatm = |V | = nτ for some constant τ > 1 and that µ = (r+1)/2.
The goal of this section is to determine suitable values of the above parameters

that guarantee the existence of graph (V,U0) and yield a good performance of the
access protocol. Such performance is closely related to the redundancy of the HMOS,
that is, the number of copies (r3k) used per variable. On the one hand, using many
copies per variable yields better access times, while, on the other, lower redundancy
yields simpler and space-efficient schemes. We will consider two scenarios: in the first
scenario, we optimize the parameters under the assumption that the number of copies
for each variable r3k can grow arbitrarily large. In the second scenario, we optimize
under the restriction that the scheme uses no more than a constant number of copies
for each variable.

We need the following technical result, which is a straightforward adaptation of
Lemma 4 in [PP97a].

Lemma 5.1. Let m = nτ , with constant τ > 1. There is a suitable constant c > 0
such that for any odd constant r ≥ cτ log τ , a random bipartite graph G = (V,U0) with
|V | = m, |U0| = n, input degree r, and output degree mr/n has (n/m, ε, µ)-expansion
with µ = (r + 1)/2 and ε = (τ − 1)/µ, with high probability.

We are now ready to prove one of the main results of this paper, which was stated
in section 1.1.

Proof of Theorem 1.1. We fix ρ = 1 and choose r to be the smallest odd integer
greater than max{cτ log τ, 6(τ−1)}. For such values, Lemma 5.1 ensures the existence
of (V,U0) with (n/m, ε, (r + 1)/2)-expansion, where ε ≤ 1/3. Since 2ρ + 3ε − 3 ≤ 0,
the complexity of the access protocol given in Theorem 4.8 becomes

T = O
(
2kn

1
2+ ε

2k+1

)
.(5.1)

By fixing k = max{0, �log2(ε/η)�}, we have 2k+1 ≥ ε/η, whence T = O(n1/2+η) and
R = r3k = O(1/ηlog2 3) = O(1/η1.59). By instead fixing k = log2 log2 n + O(1), so

that 2k+1 ≥ ε log2 n, we have T = O(n
1
2 log n) and R = O(log1.59 n).

As already noted before, the HMOS underlying the above result is fully construc-
tive, except for the first graph (V,U0), for which Lemma 5.1 only guarantees existence.
In practice, one can resort to a random graph for (V,U0), which, as the lemma shows,
will exhibit the required expansion property with high probability. Although no ex-
plicit construction for (V,U0) is known in the general case, this graph needs only weak
expansion, which makes it more amenable to explicit constructions than the graphs
employed in previous schemes (e.g., [UW87, AHMP87]).

In fact, an explicit construction for (V,U0) can be obtained when the shared
memory size m is within certain ranges. For example, [PP97] shows how to construct
a bipartite graph with m = Θ(n3/2) inputs, n outputs, and input degree r = 3, which
has (n/m, 1/3, 2)-expansion. This graph can be efficiently represented using constant
storage per node. Thus, using this graph as (V,U0) when m = Θ(n3/2), the result of
Theorem 1.1 still holds, and the HMOS becomes fully constructive.

A larger range of values form for which the HMOS can be made fully constructive,
still yielding nontrivial performance, can be obtained by employing other graphs for
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(V,U0). This is shown below, thus proving Theorem 1.2, which was stated in the
introduction.

Proof of Theorem 1.2. Let us consider first the case τ ≤ 3/2. We assume m =
x(x−1)/6, where x is an even power of three. The argument for different values of m
requires only trivial modifications. Fix nρ = x = Θ(nτ/2), and choose (V,U0) as an
(nρ, 3)-BIBD. By Corollary 3.4, such graph has (1, ε, 2)-expansion, with ε = 1/2. Since
2ρ+3ε− 3 = O(1/ log n), the complexity of the access protocol is still given by (5.1),
and the same argument used to prove Theorem 1.1 carries through. Consider now the
range 3/2 < τ ≤ 13/6, and choose nρ and (V,U0) as before. By plugging ε = 1/2 and
nρ = Θ(nτ/2) in the complexity formula given in Theorem 4.8 and choosing k = O(1)
large enough and even, the complexity of the access protocol becomes

T = O(n
1
2+ 2τ−3

8 ) = O(n
2τ+1

8 ).

For τ ≥ 13/6, it is convenient to choose (V,U0) as a 3− (nρ, 5, 3) design, a graph with
the following properties: |U0| = nρ, each node of V has degree 5, and for every three
distinct nodes u1, u2, u3 of U0 there are exactly 3 nodes of V adjacent to all three of
them. This implies that m = |V | = Θ(n3ρ). (See [Hal86] for a formal definition of the
graph). In [PP97], an explicit construction for the graph is provided, and it is shown
that it has (1, 2/3, 3)-expansion. With this choice for (V,U0), we can plug ε = 2/3
and nρ = Θ(nτ/3) in the formula of Theorem 4.8, and by choosing k = O(1) large
enough, we get access time

T = O
(
n

2
3 + n

1
2+

2τ/3−1
4

)
= O

(
n

2
3 + n

2τ+3
12

)
.

This yields T = O(n2/3) for 13/6 ≤ τ ≤ 5/2 and T = O(n(2τ+3)/12) for 5/2 ≤ τ ≤ 9/2,
which completes the proof.

Note that the access time of the constructive scheme tends to O(n) as m ap-
proaches n9/2, a performance that can be obtained through a straightforward scheme.

6. Extension to other architectures. A closer look at the access protocol
developed in the previous sections for the mesh reveals that it solely relies upon a
recursive decomposition of the network into subnetworks of the same type, and upon
�-sorting and (�1, �2)-routing primitives. As a consequence, our scheme can be ported
to any network topology that exhibits a suitable decomposition into subnetworks,
and for which an efficient implementation of the above primitives is available. In this
section we briefly discuss the porting of the scheme to the pruned butterfly and to
multidimensional meshes.

An n-leaf pruned butterfly, introduced in [BB95], is a variant of Leiserson’s fat-
tree [Lei85]. Its coarse structure may be interpreted as an n-leaf complete binary tree,
where the leaves represent the processor-memory nodes of the machine, the internal
nodes represent clusters of routing switches, and the edges represent channels whose
bandwidth doubles every other level from the leaves to the root. More precisely, each
subtree of n′ leaves is connected to its parent through a channel of capacity Θ(

√
n′).

The pruned butterfly is an important interconnection since it is area-universal in the
sense that it can route any set of messages almost as efficiently as any circuit of similar
area.

It follows from the definition that an n-leaf pruned butterfly can be decomposed
into 4i (n/4i)-leaf pruned butterflies connected through channels of capacity

√
n/4i,

a decomposition similar to the one of the mesh employed in our scheme. Moreover,
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it is shown in [HPP95] that �-sorting and (�1, �2)-routing can be performed on the
pruned butterfly in the same running time as on the mesh. This immediately implies
that both Theorem 1.1 and Theorem 1.2 also hold for the pruned butterfly.

We now consider the extension of the scheme to d-dimensional meshes, with d
constant. For d ≥ 3, a decomposition of an n-node d-dimensional mesh into sub-
meshes is obtained as an immediate generalization of the two-dimensional case. As
for the primitives, �-sorting and (�1, �2)-routing, with �1 < �2, require time Θ(�n

1/d)

and Θ(�
1−1/d
2 (n�1)

1/d), respectively [SK94]. Then, the same argument presented in
section 4.2 shows that the access protocol can be executed on a d-dimensional mesh
in time

T = O

(
nε + n

1
d

(
log n+ 2kn

(d−1)(ρ+ε−1)

d2k +

k∑
i=1

2i3
(d−1)(k−i)

d n
2(d−1)(ρ+ε−1)+ε−1

d2i

))
.

Let us fix ρ = 1 and ε < 1/(2d − 1), which, based on Lemma 5.1, requires r =
Ω(dτ) in order to guarantee the existence of the first graph (V,U0) of the HMOS.
Straightforward calculations show that the above formula becomes

T = O
(
2kn

1
d+

(d−1)ε

d2k

)
.

Arguing as in the proof of Theorem 1.1, we can prove the following result.
Theorem 6.1. For any constant τ ≥ 1, there exists a scheme to distribute

m = nτ shared variables among the local memory modules of an n-node d-dimensional
mesh (d constant) with redundancy R so that any n variables can be read/written in
time

T = O
(
n

1
d+η

)

for any constant η > 0, with R = O(1/η1.59), or in time

T = O
(
n

1
d log n

)

with R = O(log1.59 n).
It has to be remarked that the bandwidth of a d-dimensional mesh increases with

d; hence, in order to achieve access time close to the natural Ω(n1/d) lower bound, the
expansion required of (V,U0) must also increase with d. For this reason, the graphs for
which an explicit construction is currently available do not exhibit sufficient expansion
to grant a generalization of Theorem 1.2; however, they can still be used to yield fully
constructive schemes with nontrivial O(n1/d+ξd) access time for suitable constants
ξd < (d− 1)/d. The details follow from tedious yet trivial arithmetic manipulations,
which are omitted for the sake of brevity.

7. Conclusions. In this paper, we devised a scheme for implementing a shared
address space on a mesh of processor/memory pairs. The scheme enables the pro-
cessors to read/write any n-tuple of shared variables concurrently and yields a quasi-
optimal access time in the worst case. One of the most relevant novelties of our imple-
mentation is represented by the hierarchical memory organization scheme, the HMOS,
which provides a structured distribution of copies of the shared variables among the
memory modules. In particular, the HMOS succeeds in the following objectives, which
were not attained by the memory organizations known in the literature: (i) it provides
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a single mechanism to cope with both memory contention and network congestion. In
this fashion, copy selection can be employed to reduce both; (ii) it yields fast access
time by using a cascade of bipartite graphs with weak expansion, rather than using
one graph of maximum expansion, which greatly simplifies the implementation. In-
deed, the HMOS is fully constructive and yields quasi-optimal performance for any
memory size m = O(n3/2), which is sufficient, for example, to run any NC algorithm.
For large memory sizes, the HMOS embodies only one nonconstructive graph of weak
expansion.

The design of the HMOS is not specifically cast for the mesh topology. We
showed that it can be implemented on the pruned butterfly and on d-dimensional
meshes yielding good performance. More generally, our scheme is efficiently portable
to any low-bandwidth interconnection where routing takes advantage of partitions of
the processors into subnetworks, in the sense that it achieves higher performance by
moving messages gradually closer to their destinations through smaller and smaller
subnetworks, rather than by sending them directly to their destinations.

A challenging and long-standing open problem remains the construction of bi-
partite graphs that exhibit good expansion. The availability of explicit constructions
and concise representations for such graphs is crucial for attaining simple and ef-
ficient deterministic shared memory implementations for all memory sizes. Recent
developments in this area [PP97] seem to indicate that the construction of graphs
with a linear number of edges and moderate expansion, such as those required in
our scheme, are easier than the construction of the highly expanding graphs used in
previous schemes. If this is true, our scheme could become a general and constructive
tool for the implementation of shared memory on distributed memory machines based
on low-bandwidth interconnections.

Finally, we wish to point out that in a recent paper [HPP95], which appeared
after the results in the present paper were first presented [PPS94, PP95], a shared
memory implementation scheme for the mesh is devised that, through a novel and
complex protocol, achieves O(

√
n log n) access time. However, this scheme relies on

a nonconstructive graph of maximum expansion; hence it suffers from the same lim-
itations affecting other schemes in the literature, as discussed in the introduction.
The paper also proves an Ω(

√
n log(m/n2)/ log log(m/n2)) lower bound on the access

time of any deterministic scheme for implementing m = Ω(n2) shared variables. The
lower bound assumes that variables are accessed through a point-to-point protocol,
which requires that a processor dispatch a separate message for each copy it wants
to update. The assumption is satisfied by the scheme presented in this paper, which
implies that our access time is only a sublogarithmic factor away from optimal.

Appendix. In this appendix, we show how to construct a bipartite graph G =
(X,Y ) which is a subgraph of a (qd, q)-BIBD with the same number of output nodes,
i.e., |Y | = qd, fewer input nodes, say |X| = m, 1 ≤ m < qd−1(qd − 1)/(q − 1), and
such that each input x ∈ X has degree q, as in the original BIBD, and each output
y ∈ Y has degree ρ, with

⌊
qm

qd

⌋
≤ ρ ≤

⌈
qm

qd

⌉
.

As explained in section 3.1, these subgraphs (with q = 3 and m a power of three)
govern the assignment of replicas of (i − 1) modules to i-modules in the HMOS, for
1 ≤ i ≤ k. The construction is obtained by modifying the one for a (qd, q)-BIBD
given in [PP93].
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Let q be a prime power and let Fq be the finite field with q elements, with its
elements represented by the integers 0, 1, . . . , q−1. The qd output nodes of the BIBD
are associated with the set of d-dimensional vectors over Fq, and the inputs with the
qd−1(qd − 1)/(q − 1) pairs of vectors of kind

(ad−2, . . . , ah, 0, ah−1, . . . , a1, a0)
(0, . . . , 0, 1, bh−1, . . . , b1, b0),

where the ai’s and bi’s are elements of the field, and h ranges between 0 and d − 1.
For convenience, each such pair will be denoted by χ(h,A,B), where A is the integer
in [0, qd−1) whose representation in base q is (ad−2 . . . ahah−1 . . . a1a0), and B is the
integer in [0, qh) whose representation in base q is (bh−1 . . . b1b0). The subgraph G is
obtained from this BIBD by taking the same output set and selecting a subset of m
inputs as follows. Let � < d be the index such that

qd−1 q
� − 1
q − 1 ≤ m < qd−1 q

�+1 − 1
q − 1 ,

so that

m = qd−1

(
q� − 1
q − 1 + w

)
+ z(A.1)

for some w, 0 ≤ w < q� and z, 0 ≤ z < qd−1. The m pairs χ(h,A,B) that we select to
represent the nodes of X consist of the union of the three sets X1, X2, and X3 defined
below:

X1 =
{
χ(h,A,B) : 0 ≤ h < �, 0 ≤ A < qd−1, 0 ≤ B < qh

}
;

X2 =
{
χ(h,A,B) : h = �, 0 ≤ A < qd−1, 0 ≤ B < w

}
;

X3 = {χ(h,A,B) : h = �, 0 ≤ A < z, B = w} .

It is easy to verify that |X1|+ |X2|+ |X3| = m.
The edges are defined as follows: the input node

(ad−2, . . . , ah, 0, ah−1, . . . , a1, a0)
(0, . . . , 0, 1, bh−1, . . . , b1, b0)

is adjacent to the q outputs

(ad−2, . . . , ah, x, ah−1 + x · bh−1, . . . , a1 + x · b1, a0 + x · b0)

for every x ∈ Fq, where + and · denote the field operations. We now show that the
edges in G are evenly distributed among the outputs.

Theorem A.1. Any node u ∈ Y is connected to ρ nodes of X, where

⌊
qm

qd

⌋
≤ ρ ≤

⌈
qm

qd

⌉
.

Proof. Let u be associated with the vector (ad−1, . . . , a0). We determine the
value of ρ by separately counting the contributions of the nodes in the three subsets
X1, X2, and X3. Consider X1 and fix h < �. Using the properties of field operations,
one can easily show that for any B, 0 ≤ B < qh, there exists exactly one value
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A such that the node χ(h,A,B) is connected to u. Therefore, there are exactly∑�−1
h=0 qh = (q� − 1)/(q − 1) nodes of X1 connected to u. A similar argument shows

that exactly w nodes of X2 are connected to u. Finally, it can be seen that the
z nodes of X3 are connected to qz distinct output nodes; therefore, according to
whether u is one of such nodes or not, we know that either ρ = (q� − 1)/(q − 1) + w
or ρ = (q� − 1)/(q − 1) + w + 1. By (A.1) we conclude that

⌊
qm

qd

⌋
≤ ρ ≤

⌈
qm

qd

⌉
.

Note that when m is a power of q, it must be z = 0, and therefore ρ = qm/qd for
every output node.

Let X = Ui−1 be the set of (i − 1)-modules, and Y = Ui the set of i-modules.
Thus, q = 3, d = di, and m = 3di−1 . Each (i − 1)-module is adjacent to the 3 i-
modules that contain its (i− 1)-blocks, and, accordingly, each i-module u is adjacent
to the ρ (i− 1)-modules, each of which has one of its (i− 1)-blocks stored in u. For
each (i−1)-module, we must be able to efficiently determine the i-modules that store
its (i− 1)-blocks and the location of each block within the module.

It is easy to establish a bijection between the (i − 1)-modules and the pairs
χ(h,A,B) in X so that given an index s, 1 ≤ s ≤ m, the pair associated with the sth
module is determined in O(d) time. Similarly, a bijection between the i-modules and
the d-dimensional vectors over F3 is easily established. Consider the (i − 1)-module
associated with the pair

χ(h,A,B) =
(ad−2, . . . , ah, 0, ah−1, . . . , a1, a0)
(0, . . . , 0, 1, bh−1, . . . , b1, b0).

We adopt the convention that, for 0 ≤ j < 3, the jth (i − 1)-block of this module is
the �th item stored in the i-module u, where

u = (ad−2, . . . , ah, j, ah−1 + jbh−1, . . . , a1 + jb1, a0 + jb0).

and

� =
3h − 1
2

+B.

In [PP93] it is proved that the above rule is correct, i.e., no two (i − 1)-blocks of
(i− 1)-modules are assigned the same location within the same i-module. Moreover,
it is not difficult to show that 0 ≤ � < ρ.

Observe that the structure of any (Ui−1, Ui) is completely determined by the
parameter di. Since each di can be derived from n, we conclude that, in order to
represent (Ui−1, Ui), a processor needs to know only n. From this parameter, the pro-
cessor can determine the exact location of any copy of any (i− 1)-module performing
O(log n) operations (arithmetic or in F3).
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Abstract. This paper solves the problem of making a bipartite digraph strongly connected
by adding the smallest number of new edges that preserve bipartiteness. A result of Baglivo and
Graver shows that this corresponds to making a two-dimensional square grid framework with cables
rigid by adding the smallest number of new cables. We prove a min-max formula for the smallest
number of new edges in the digraph problem and give a corresponding linear-time algorithm. We
generalize these results to the problem of making an arbitrary digraph strongly connected by adding
the smallest number of new edges, each of which joins vertices in distinct blocks of a given partition
of the vertex set.

Key words. graph algorithms, strong connectivity, connectivity augmentation, min-max theo-
rems, rigidity, square grid framework
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1. Introduction. In the connectivity augmentation problem we are given a graph
and a positive integer k. We wish to find a smallest set of edges whose addition makes
the graph k-connected. Here “k-connected” can refer to vertex- or edge-connectivity.
Practical applications include the design of reliable networks [9], [16]. Much of the
work on connectivity augmentation is discussed in the survey article [7]. The result
most relevant to this paper is one of the first augmentation algorithms, due to Eswaran
and Tarjan, which makes a digraph strongly connected in linear time [6].

Restricted versions of the augmentation problem may be even more interesting in
terms of both theory and practical applications. Many restrictions can be modeled by
the minimum cost augmentation problem. However, even special cases of this problem
are NP-hard, e.g., making a digraph strongly connected by adding the smallest number
of edges from a given set [6]. Other restrictions that have been investigated include
the following: augmenting to achieve k-edge-connectivity while preserving simplicity
of the given graph [2], [12]; augmenting while preserving planarity [13], [14]; and
augmenting an undirected bipartite graph to achieve 2-vertex-connectivity [10] or k-
edge-connectivity [3] while preserving bipartiteness. Augmenting a biconnected graph
to achieve both k-edge-connectivity and 3-vertex-connectivity is studied in [11].

This paper investigates the problem of making a bipartite digraph strongly con-
nected while preserving bipartiteness. We prove a min-max formula for the smallest
possible number of new edges. We give a corresponding linear-time algorithm. In ad-
dition we generalize these results to the problem of strong-connectivity augmentation
with partition constraints (precisely defined below). We now give some motivation
for the problem.

A basic two-dimensional structure in statics is the square-grid framework (see
Figure 1.1). It consists of horizontal and vertical rods. Each rod has the same length,
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Fig. 1.1. Row 1 can pivot in this square grid framework. But if we add a rod in row 1, column
3, the framework becomes rigid and the bipartite graph becomes connected.
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Fig. 1.2. Here dashed lines represent cables. The joint at the upper left corner can move
inwards, compressing the cables in row 1, columns 1 and 2, and row 2, column 1. But if we rotate
the cable in row 1, column 1, by 90◦, the framework becomes rigid and the bipartite digraph becomes
strongly connected.

and is rigid. Incident rods are connected by a joint which allows the rods to pivot. The
rods collectively join all grid-points that are in a rectangular region and are adjacent
horizontally or vertically. In addition there may be a number of “diagonal rods” that
join two diagonally opposite points of a grid square. Such a framework is rigid if it
has no nontrivial deformations, i.e., fixing the position of one rod in the plane, the
positions of all other rods are uniquely determined. (These concepts are described
more precisely in [15].) Bolker and Crapo [4] show that any square-grid framework has
a natural representation as a bipartite graph, and the framework is rigid if and only
if its bipartite graph is connected (Figure 1.1). Because of this relation the results of
[3] solve problems such as, find a smallest set of new rods whose addition results in a
framework that is rigid, even after an arbitrary set of k diagonal rods fail.

A potentially cheaper way to make a framework rigid is to use pliable material
along the diagonals. A cable can be compressed but not stretched and can join two
diagonally opposite points of a grid square (see Figure 1.2). Baglivo and Graver
[1] show that a framework with cables has a natural representation as a bipartite
digraph, such that the framework is rigid if and only if its bipartite digraph is strongly
connected (Figure 1.2). The cable-framework rigidity problem is to make a given
framework with diagonal cables rigid by adding the smallest number of new cables.
Our solution to the graph augmentation problem solves the cable-framework rigidity
problem, by the theorem of Baglivo and Graver.

The main part of our solution to the problem of bipartite strong-connectivity aug-
mentation is a min-max formula for the optimum number of new edges (Lemma 5.3).
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This formula extends to the general problem of strong-connectivity augmentation with
partition constraints (Theorem 7.8). Roughly put, the formula states that the opti-
mum number of new edges either equals a natural lower bound or is one more than
that. The latter holds exactly when the graph belongs to one of four infinite families.

This result has similar overall structure to the min-max formula of [3] for bipartite
undirected graph k-edge-connectivity augmentation: Both formulas have an infinite
number of exceptional graphs that require one extra edge. The formula of [3] has a
single family of exceptional graphs. Our problem, just for the k = 1 case, seems to have
more complicated structure, with four distinct families. Together these two results
give evidence that min-max formulas with exceptions may be a general phenomenon.

Our result corresponds to the k = 1 case of [3]. This case is the problem of
augmenting a bipartite graph to make it connected and bipartite. This simple problem
has no exceptional families. It is equivalent to the rod-framework rigidity problem,
which was solved in [1] and [15]. Until now the cable-framework rigidity problem
has been left open, perhaps because the phenomenon of exceptional families has been
ignored.

Section 2 of this paper gives basic facts about our augmentation problem, includ-
ing lower and upper bounds on the solution size. Sections 3–5 prove the min-max
formula for bipartite augmentation. Sections 6 and 7 prove the formula in general
(reducing to the case covered in section 3). Section 8 presents efficient algorithms for
the augmentation problems. Section 9 discusses some augmentation problems related
to ours.

The material in section 5 is not logically necessary for proving the general formula.
However, it gives a simpler proof of the special case needed for the cable-framework
rigidity problem. Furthermore this proof is the basis of the algorithm in section 8
that is more efficient than the general algorithm. The reader should also be aware at
the outset that many details of the algorithms in section 8 are omitted because they
directly follow the proofs in preceding sections.

This section closes with some terminology. In the problem of (strong-connectivity)
augmentation with partition constraints we are given a digraph D = (V,E) together
with a partition P of V into disjoint sets called color classes. We wish to make
D strongly connected, if possible, by adding the smallest number of new directed
edges, where no new edge joins vertices in the same color class. The bipartite strong-
connectivity augmentation problem is the special case where D is a bipartite digraph
and the color classes are the two sets of the given bipartition of V .

We use B,W (“black,” “white”) as typical colors. A vertex v is colored B if
v ∈ B ∈ P. A singleton vertex v has {v} ∈ P, i.e., no other vertex has its color.
There is no restriction on a new edge incident with a singleton vertex. Note that in
our general augmentation problem there is no restriction on an original edge of E: it
can join vertices of the same color. We will refer to the augmentation problem for a
graph D without mentioning P when P is clear from context.

The symbols ⊆ and ⊂ denote set containment and proper set containment, re-
spectively. An over-bar denotes set complement (with the universe understood), e.g.,
B denotes the set of nonblack vertices V − B. A set consisting of a single element x
is usually denoted by x.

Consider a digraph. If S is a set of vertices containing y but not x, then an
edge (x, y) enters S and an edge (y, x) leaves S. A vertex x precedes a vertex y
(alternatively, x can reach y) if there is a path from x to y.

A digraph with no cycles is a dag (directed acyclic graph). A source (sink) is
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a vertex with no entering (leaving) edge. An extreme vertex is a source or a sink.
The strong component graph of a digraph is formed by contracting every strongly
connected component. It is a dag.

2. Basic facts. This section presents basic concepts and notation. In particular
it defines the quantity Φ and proves that an optimum solution to our augmentation
problem uses either Φ or Φ + 1 new edges. It also presents several graph families
that require exactly Φ new edges. These graph families provide the foundation of our
general solution.

The special case of strong-connectivity augmentation with partition constraints
when D is a dag is called the dag problem. The general problem reduces to the dag
problem, as follows. Let D be a given digraph. Let H be its strong component graph.
To assign colors to the vertices of H let a vertex x of H correspond to the strong
component X of D. If every vertex of X is colored B, then x is colored B. If X
contains vertices of two or more colors, then x is a singleton vertex. Solutions to the
augmentation problem with partition constraints on D and H correspond because of
the following observation: For two vertices xi, i = 1, 2, of H corresponding to strong
components Xi, i = 1, 2, of D, x1 and x2 have different colors if and only if some
vertex of X1 and some vertex of X2 have different colors.

From now on we will work on the dag problem for a dag H = (V,E). We use
the following notation. OPT is the smallest number of new edges needed to solve the
given dag problem. By definition OPT = 0 if |V | = 1 and OPT = ∞ (i.e., there is
no solution) if |V | > 1 and all vertices have the same color.

Let X be a set of vertices of H. X+ denotes the set of all sources in X and X−

the set of all sinks. For instance V + is the set of all sources of H. An isolated vertex
belongs to V + ∩ V −.

R−(X) denotes the set of all sinks that can be reached from some source of X.
Similarly R+(X) denotes the set of all sources that can reach some sink of X. For
X,Y ⊆ V , the predicate r(X,Y ) is true when some source of X precedes some sink
of Y . This is equivalent to R−(X) ∩ Y �= ∅. Note as a special case that if x is a
source and y is a sink, r(x, y) means x precedes y. We abbreviate r(X,X) to r(X).
Negation is denoted by ¬, e.g., ¬r(X,Y ).

We will characterize OPT in terms of the following quantity:

Φ =




0 if |V | = 1,
∞ if |V | > 1 and |P| = 1,
max{|V +|, |V −|, |B+|+ |B−| : B ∈ P} otherwise.

Clearly OPT = Φ in the first two cases. In the third case OPT ≥ Φ: A solution must
contain an edge entering every source and an edge leaving every sink. This implies
OPT ≥ |V +|, |V −|. One new edge cannot leave a sink and enter a source of the same
color. This implies OPT ≥ |B+|+ |B−| for any color B.

There are simple graphs with OPT > Φ. For instance, the graph on four vertices
b+ ∈ B+, b− ∈ B−, w+ ∈ W+, w− ∈ W− with edges (b+, w−) and (w+, b−) has
Φ = 2 and OPT = 3.

Any instance of the dag problem has a directionally symmetric instance, obtained
by reversing the orientations of all edges. Solutions to these two problems correspond,
and OPT and Φ are the same. We invoke directional symmetry to simplify the proofs.

It is convenient to work with graphs that have no isolated vertices. If |V | > 1
we eliminate an isolated vertex x by replacing it with vertices x1, x2 having the same
color as x and an edge (x1, x2). (There is no edge (x2, x1), so the transformed graph
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is a dag.) A solution on the transformed graph gives a solution on the original graph
by contracting x1, x2 to a vertex we call x.

Proposition 2.1. The transformation to eliminate an isolated vertex does not
change the value of |V +|, |V −|, |B+|+ |B−| for B ∈ P, Φ or OPT.

Proof. We show OPT does not change. Let H be the original graph and H ′ the
transformed graph. Clearly a solution on H ′ gives a solution on H that is no larger.
For the converse let F be a set of new edges in H and let F ′ = {(y, x1) : (y, x) ∈
F} ∪ {(x2, z) : (x, z) ∈ F}. A path in H + F corresponds to a path in H ′ + F ′ if the
vertex x is replaced by x1, x2. This implies H ′ + F ′ is strongly connected if H + F
is.

From now on assume the given dag H has no isolated vertices. We drop this
assumption in the statement of our main results (Lemma 5.3 and Theorem 7.8).

In a unicolored dag the extreme vertices all have the same color. In a bicolored
(tricolored) dag the extreme vertices are contained in at most two (three) color classes,
which we take as B and W (and G).

Lemma 2.2. A unicolored dag has OPT = Φ.

Proof. Assume |P| > 1, else, obviously, OPT = Φ = ∞. Thus Φ = |V +|+ |V −|.
Choose any vertex y of a color different from the extreme vertices. Add edges (y, x+)
for every x+ ∈ V + and (x−, y) for every x− ∈ V −. Thus y can reach every source
and every sink can reach y. This implies y can reach every vertex and every vertex
can reach y.

A rooted dag is a dag with exactly one source or exactly one sink.

Lemma 2.3. Any rooted dag has OPT = Φ.

Proof. By symmetry assume the given dag H has exactly one source x+. Assume
H is not unicolored (Lemma 2.2). Hence Φ = |V −| and some sink y− is differently
colored from x+. Add edge (y−, x+). The new strong component graph K has a
unique source that is a singleton vertex. Also Φ has decreased by 1. Now add an
edge from each sink of K to the source to get a strongly connected graph. This shows
OPT = Φ.

A set of extreme vertices is consistently colored unless it contains a source and
sink of the same color. The dag is consistently colored if V + ∪ V − is consistently
colored. (Equivalently, every color B has B+ or B− empty.)

Definition 2.4. A pair of vertices x− ∈ V − and y+ ∈ V + is compatible if the
pair is consistently colored and there are vertices x+ ∈ V + − y+, y− ∈ V − − x− with
r(x+, x−) and r(y+, y−).

Lemma 2.5. Any consistently colored set of two sources and two sinks contains
a compatible pair.

Proof. Let the consistently colored set consist of sources y+
i , i = 1, 2, and sinks

x−i , i = 1, 2. For i = 1, 2, if x−i , y
+
i is not compatible, then r(y+

i , x
−
i ). This makes

x−1 , y
+
2 compatible.

If vertices x− ∈ V −, y+ ∈ V + form a compatible pair, augmenting x−, y+ means
adding a new edge (x−, y+) to the graph and passing to the new strong component
graph. Thus if H + (x−, y+) has a strong component containing x− and y+, we
contract it. The augment operation also adds the new edge (x−, y+) to the solution
set of the augmentation problem.

Lemma 2.6. Augmenting a compatible pair x−, y+ decreases |V +|, |V −|, and
|B+|+ |B−| for B the color of x− or y+, each by one. Furthermore it does not create
an isolated vertex.

Proof. Let H be the given graph. Let K be the strong component graph of
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H + (x−, y+). Any vertex of V + − y+ is a source of K since it has no entering edge.
Any other vertex of H is not a source of K since it is preceded by a vertex of V +−y+.
(In particular y+ is preceded by x+ of Definition 2.4.) This proves |V +| decreases by
one. The other parts are similar.

Lemma 2.7. Any consistently colored dag has OPT = Φ.

Proof. A consistently colored dag has Φ = max{|V +|, |V −|}. Without loss of
generality let Φ = |V −|. If the given graph H is rooted, we are done by Lemma 2.3.
If not, H has a compatible pair by Lemma 2.5. Augment it. Lemma 2.6 shows the
graph remains consistently colored and Φ decreases by 1. Repeating this procedure
eventually makes H rooted.

Lemma 2.8. Let H be a dag with no compatible pair of vertices. Then H is either
rooted, unicolored, or bicolored. In the third alternative if H is bicolored by B and
W , then H contains two subgraphs that are rooted dags, one spanning B+ ∪W−, the
other spanning W+ ∪B−, and B+, B−,W+,W− �= ∅.

Proof. Suppose H is neither rooted nor unicolored. We show the third alternative
of the lemma holds. If H is consistently colored, then Lemma 2.5 gives a compatible
pair. Hence assume some color B has B+, B− �= ∅.

Claim. B− �= ∅ implies H contains a rooted dag spanning B+∪B− and B + �= ∅.
Proof. The hypothesis and Lemma 2.5 imply at least one of the sets B+, B− has

exactly one vertex. First suppose B+ = {b+}. Since H is not rooted, B + �= ∅. Since
any sink b− ∈ B− is incompatible with b+, r(b+, b−).

Next suppose B− = {b−} and |B+| > 1. Since any source b+ is incompatible with
b−, r(b+, b−). Furthermore b+ does not precede any other sink, which with B− �= ∅
implies B + �= ∅. This proves the claim.

Since H is not unicolored, B + ∪ B− �= ∅. The claim and its directionally sym-
metric version show H contains two rooted dags, spanning B+ ∪B− and B + ∪B−,
respectively. If two vertices of B + and B− have different colors, they are compatible.
Hence all extremes of B have the same color.

Lemma 2.9. Any dag has OPT ≤ Φ+ 1.

Proof. First assume the given dag H is bicolored. If H is unicolored or rooted,
Lemmas 2.2 and 2.3 show OPT = Φ. If H has a compatible pair, augment it. Lemma
2.6 shows this reduces Φ by one, so by induction we are done. Now Lemma 2.8
shows we can assume H contains two subgraphs that are rooted dags, one spanning
B+ ∪ W− and the other spanning W+ ∪ B−. We consider two cases that, using
directional symmetry, cover all possibilities.

Case 1. |W+| = |W−| = 1.

Lemma 2.8 shows B+, B− �= ∅. Hence Φ = |B+|+ |B−|. Add an edge from each
black sink to the unique white sink. The resulting graph has a unique sink, 1 + |B+|
sources, and Φ = 1 + |B+|. Hence Lemma 2.3 implies H has OPT ≤ Φ+ 1.

Case 2. |W+| = |B+| = 1 and |W−|, |B−| > 1.

We show OPT = Φ in this case. Observe that Φ = |V −|. Take distinct vertices
w+ ∈ W+, b+ ∈ B+, w−1 , w

−
2 ∈ W−, b−1 , b

−
2 ∈ B−. Add edges (w−1 , b

−
1 ), (b

−
1 , w

+)
and let K be the new strong component graph. The two new edges decrease |V −| by
two (since w+ precedes the sink b−2 ). K is a rooted dag with unique source b+. Since
K has a white sink w−2 , K has Φ = |V −|. Lemma 2.3 implies OPT = Φ for both K
and H.

Now we show that a dag H that is not bicolored reduces to the bicolored case.
First suppose Φ > |B+|+ |B−| for every B ∈ P. Lemma 2.8 shows a compatible pair
exists, so augment it. Lemma 2.6 and the assumption on Φ show this decreases Φ by
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Fig. 3.1. A 1-blocker for B. Black and white vertices are in B and W, respectively.

1. Repeat this as many times as possible until the graph becomes bicolored, rooted,
or Φ = |B+|+ |B−| for some B ∈ P. It remains only to analyze this last case.

Suppose Φ = |B+| + |B−|. Let K be the same dag using just two colors, B
and B. This does not change Φ, i.e., Φ ≥ |B +| + |B−|, since 2Φ ≥ |V +| + |V −| =
|B+|+|B−|+|B +|+|B−| = Φ+|B +|+|B−|. SinceK is bicolored it has OPT ≤ Φ+1.
Any solution to the augmentation problem on K is a valid solution on H. Hence
OPT ≤ Φ+ 1 for H.

Corollary 2.10. Any bicolored dag with Φ > |B+|+ |B−| for every B ∈ P has
OPT = Φ.

Proof. Apply the above argument. An augment decreases all four quantities that
define Φ, by Lemma 2.6. Hence it preserves the inequality of the lemma, and the
given dag eventually becomes rooted or satisfies Case 2 (or its directionally symmetric
version).

This result is generalized by Lemma 3.5.

3. Bicolored dags. Our solution to the augmentation problem works by reduc-
ing the graph to one of the simple families analyzed in section 2 or to a bicolored dag.
This section gives the key part of the argument for bicolored dags. We have already
seen that for such graphs OPT = Φ unless Φ is the number of extreme vertices in
some color (Corollary 2.10). Hence we will complete the analysis of bicolored dags by
considering two cases,

Φ = |B+|+ |B−| > |W+|+ |W−|;
Φ = |B+|+ |B−| = |W+|+ |W−|.

In both cases it is possible to have OPT = Φ + 1. This occurs precisely when the
graph is what we call a 1-blocker. This section proves that a bicolored graph that is
not a 1-blocker has OPT = Φ (Lemma 3.4). Blockers are discussed in section 4.

The following definition of 1-blocker applies to graphs in general, not necessarily
bicolored. Recall the function R− introduced at the start of section 2.

Definition 3.1. A dag is a 1-blocker if for some color B, (i) Φ = |B+|+ |B−|;
(ii) B+, B + �= ∅; (iii) R−(B) ⊆ B.

Figure 3.1 illustrates a 1-blocker. In a bicolored graph we can replace B by W
in Definition 3.1. As mentioned a 1-blocker always has OPT > Φ. This fact is not
needed in this section and is proved in Lemma 4.3.

Lemma 3.2. A bicolored dag with Φ = |B+|+ |B−| > |W+|+ |W−| has OPT = Φ
unless the dag is a 1-blocker.

Proof. If B+ = ∅, then |B−| = Φ ≥ |V −| implies V − ⊆ B. Hence the graph H
is consistently colored and Lemma 2.7 shows OPT = Φ. So by directional symmetry
assume B+, B− �= ∅.
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AssumeH is not a 1-blocker. This implies r(B). In proof, we can assumeW+ �= ∅,
since otherwise V + ⊆ B and B− �= ∅ imply r(B). Now since H is not a 1-blocker
condition (iii) fails, which means r(B).

Choose two vertices b+ ∈ B+ and b− ∈ B− with r(b+, b−) and call them witnesses.
Say that a pair of vertices x−, y+ is witness-compatible if it is compatible and in
addition, for x+ and y− as in Definition 2.4, x− = b− implies y− ∈ B, and y+ = b+

implies x+ ∈ B.
Assume V + − b+, V − − b− �= ∅, since otherwise H is rooted and Lemma 2.3

shows we are done. These two sets together contain a white extreme vertex, since
otherwise all extremes are black and Lemma 2.2 shows we are done. The two sets
contain a black extreme vertex, by the lemma’s hypothesis on Φ. Hence without loss
of generality assume there are vertices y+ ∈ W+ and y− ∈ B− − b−. Observe that
there exists a witness-compatible pair: If r(y+, y−), then b−, y+ is witness-compatible.
If ¬r(y+, y−), then y−, y+ is witness-compatible.

Call the witness-compatible pair x−, y+ and augment it. Lemma 2.6 shows the
augment decreases Φ by 1 and the resulting dag K satisfies the hypothesis of the
lemma on Φ. K is not a 1-blocker because (iii) fails, i.e., K has two witnesses. This is
clear if neither b+ nor b− is involved in the augment. If x− = b−, then K has source
b+ and sink y−, both black with r(b+, y−). Similarly if y+ = b+, then r(x+, b−).

Now the lemma follows by applying induction to K.

Lemma 3.3. A bicolored dag with Φ = |B+|+ |B−| = |W+|+ |W−| has OPT = Φ
unless the dag is a 1-blocker.

Proof. First observe that Φ = |V +| = |V −|. In proof, the hypothesis on Φ implies
2Φ ≥ |V +| + |V −| = (|B+| + |B−|) + (|W+| + |W−|) = 2Φ. Thus equality holds
throughout and Φ = |V +| = |V −|.

If B+ = ∅, then Φ = |V −| = |B−| so V − ⊆ B. The graph H is consistently
colored and Lemma 2.7 shows OPT = Φ. Hence by symmetry assume B+,W+ �= ∅.
Also assume H is not a 1-blocker, i.e., r(B) and r(W ).

Choose as witnesses four vertices b+ ∈ B+, b− ∈ B−, w+ ∈W+, w− ∈W− where
r(b+, b−) and r(w+, w−). Say that a pair of vertices x−, y+ is witness-compatible if
it is compatible and in addition, for x+ and y− as in Definition 2.4, y− has the same
color as x− if x− is a witness, and x+ has the same color as y+ if y+ is a witness.

If the four witnesses are not the only extreme vertices, then H has a witness-
compatible pair. In proof, without loss of generality assume there is another source
y+ ∈W+−w+. Since Φ = |V +| = |V −| = |B+|+ |B−| there is a sink y− ∈ B−− b−.
If r(y+, y−), then b−, y+ is witness-compatible. If ¬r(y+, y−), then y−, y+ is witness-
compatible.

Augment the witness-compatible pair. This decreases Φ by 1 and the resulting
dag satisfies the hypothesis of the lemma and is not a 1-blocker. This is proved by
the same argument as Lemma 3.2 (even when x− and y+ are both witnesses).

Now we can assume by induction that the four witnesses are the only extremes.
Augment b−, w+ to reduce Φ from 2 to 1. Lemma 2.3 completes the argument.

Corollary 2.10 and Lemmas 3.2 and 3.3 give the following.

Lemma 3.4. A bicolored dag has OPT = Φ unless it is a 1-blocker.

We extend part of this analysis to arbitrarily colored dags as follows.

Lemma 3.5. An arbitrarily colored dag H with Φ = |V −| > |V +|, |B+| + |B−|
for every B ∈ P has OPT = Φ.

Proof. Assume H is not rooted or bicolored by Lemma 2.3 and Corollary 2.10.
Lemma 2.8 shows there is a compatible pair. We will show how to augment a com-
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patible pair so that Φ decreases by one, and the new graph either has OPT = Φ
or continues to satisfy the inequality of the lemma. By induction this completes the
proof. Call a color B big if |B+|+ |B−| = Φ− 1.

Suppose a given compatible pair contains a vertex from every big color. Augment
it. This decreases |V −| and |V +| each by 1, so Φ decreases by 1. Furthermore the
inequality of the lemma is preserved. Hence we can assume that no compatible pair
contains a vertex from every big color.

Suppose there are two (or more) big colors, say, B and W . Since H has fewer
than 2Φ extreme vertices and is not bicolored, exactly one extreme vertex g is in
B ∪W . By symmetry let g be a source. Without loss of generality g precedes a black
sink. Change the color of g to black. This does not change Φ. The resulting bicolored
graph is not a 1-blocker since r(B) and W has fewer than Φ extremes. Hence Lemma
3.4 gives the desired conclusion.

We can now assume there is a unique big color B and no compatible pair contains
a vertex of B. Take a compatible pair x−, y+. Every vertex of B+ is incompatible
with x− and so precedes x−. Similarly every vertex of B− is preceded by y+. B+ and
B− are both nonempty. (This follows since Φ = |V −| > |V +| ≥ 2 implies that B has
at least two extremes. If all these extremes are sources (sinks), then some compatible
pair involves B by Lemma 2.5.) Now augment the pair x−, y+. This decreases Φ by
1 and makes Φ = |B+|+ |B−|. Also the new graph K has r(B). Take B and B as the
two colors of K. B has less than Φ extreme vertices, since H has 2Φ > |V +|+ |V −|.
We conclude that K is bicolored and is not a 1-blocker. A solution using OPT = Φ
new edges on K gives a similar solution on H.

To summarize the argument up to this point, we have shown how to augment a
bicolored dag that is not a 1-blocker by adding Φ new edges. This does not solve even
the bipartite strong-connectivity augmentation problem, since our reduction to the
dag problem can create new (singleton) colors. We solve the augmentation problem
by following the strategy of Lemma 3.5, i.e., we attempt to recolor vertices to get a
bicolored dag with the same value of Φ that is not a 1-blocker. Successful recoloring
can be blocked by 1-blockers as well as several other families, all of which we call
blockers. The next section studies blockers. Then section 5 executes our recoloring
strategy to solve the bipartite problem, and sections 6 and 7 do the same for the
general problem.

4. Blockers. This section defines blockers and shows they have OPT > Φ
(Lemma 4.3). It also completes the solution of our augmentation problem in another
major case (Lemma 4.5).

We define blockers for arbitrarily colored dags. The four types of blockers are
illustrated in Figure 4.1. For convenience we repeat Definition 3.1 for 1-blockers here.

Definition 4.1. A dag is a blocker if it is a 1-, 2-, 3-, or 4-blocker as defined
by the conditions below. In these conditions B and W denote two distinct colors.

A 1-blocker has
(i) Φ = |B+|+ |B−|;
(ii) B+, B + �= ∅;
(iii) R−(B) ⊆ B.

The remaining blockers have the same first condition:
(i) Φ = |V +| = |V −|.

A 2-blocker has
(ii) B+, B + �= ∅;
(iii) R−(B) ⊆ B.
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(a) 1-blocker

for B.

(b) 2-blocker

for B.

(c) 3+-blocker

for B,W .

(d) 3−-blocker

for B,W .

(e) 4-blocker

for B,W .

Fig. 4.1. Simple examples of blockers. Black, white, and shaded vertices are in B, W , and
V −B −W , respectively.

A 3-blocker is a 3+-blocker or a 3−-blocker, where a 3+-blocker has
(ii) B+,W+ �= ∅;
(iii) R−(B) ⊆W , R−(W ) ⊆ B, |V + −B −W | = 1;

and a 3−-blocker satisfies the reverse conditions
(ii) B−,W− �= ∅;
(iii) R+(B) ⊆W , R+(W ) ⊆ B, |V − −B −W | = 1.

A 4-blocker has
(ii) B+, B− �= ∅;
(iii) R−(B) ∪R+(B) ⊆W , |B+|+ |B−| = Φ− 1.

The five varieties of blockers (differentiating between 3+ and 3−) are distinct. For
instance, each blocker in Figure 4.1 satisfies only one set of blocker conditions.

The reachability conditions of a blocker are the containment relations in condition
(iii). We specify the color classes associated with a blocker by saying a 1- or 2-blocker
for B, or a 3- or 4-blocker for B,W . A blocker for B (B,W ) is a 1- or 2-blocker for B,
or a 3- or 4-blocker for B,W . The roles of B and W are asymmetric in a 4-blocker for
B,W . We say a 4-blocker for B if we do not wish to refer to the second color W . We
say a 3+- (3−-) blocker for z if z is the (unique) vertex of V +−B−W (V −−B−W ).

Lemma 4.2. The reverse graph of a blocker is a blocker of the same type (1, 2, 3,
or 4). Furthermore the reverse graph of a 3+-blocker (3−-blocker) is a 3−-blocker
(3+-blocker).

Proof. The lemma is obvious except for 1- and 2-blockers. For these we use two
simple properties of the reachability functions: Consider any two sets of vertices X
and Y in H. The set R+(X) (R−(X)) in H is equal to the set R−(X) (R+(X)) in
the reverse graph. In H, R−(X) ⊆ Y if and only if R+(Y ) ⊆ X. Now we consider
the two types of blockers.

1-blocker. The reachability condition R−(B) ⊆ B is equivalent to R+(B) ⊆ B,



HOW TO MAKE A FRAMEWORK WITH CABLES RIGID 659

which in the reverse graph is the reachability condition R−(B) ⊆ B. Next we verify
condition (ii) in the reverse graph. Conditions (ii) and (iii) in H imply B− �= ∅.
Conditions (i) and (ii) imply |B+|+ |B−| = Φ ≥ |V +| > |B+|, so B− �= ∅.

2-blocker. The argument is similar: The reachability condition R−(B) ⊆ B is
equivalent to R+(B) ⊆ B, which in the reverse graph is the reachability condition
R−(B) ⊆ B. For condition (ii) in the reverse graph, conditions (ii) and (iii) in H
imply B− �= ∅. Conditions (i) and (ii) imply |V −| = Φ ≥ |B+| + |B−| > |B−|, so
B− �= ∅.

Lemma 4.3. Any blocker has OPT > Φ.

Proof. We consider each of the four types of blockers in turn.

1-blocker. Let X be the set of all vertices preceded by a vertex of B+. X is a
nonempty proper subset of V , since B+ ⊆ X and X ∩B + = ∅. Hence some new edge
e leaves X. If OPT = Φ = |B+| + |B−|, then every new edge either leaves a black
sink or enters a black source, so e either leaves a black sink of X or enters a black
source of X. Such a sink does not exist since R−(B) ⊆ B, and such a source does not
exist since B+ ⊆ X. We conclude OPT > Φ.

We give a similar argument for each of the remaining blockers. They all have
Φ = |V +| = |V −|. We will assume that OPT = Φ. This implies every new edge must
leave a sink and enter a source. For each blocker we will derive a contradiction.

2-blocker. Let X be the set of all vertices preceded by a vertex of B +. X is a
nonempty proper subset of V , since B + ⊆ X and X ∩B+ = ∅. Hence some new edge
e leaves X, i.e., it leaves a sink of X and enters a source of X. Every sink of X is
black since R−(B) ⊆ B, and every source of X is black since B + ⊆ X. Hence e joins
two black vertices. This contradiction shows OPT > Φ.

3-blocker. Let H be a 3+-blocker for B,W and vertex z. Let X be the set of
all vertices preceded by a vertex of B+. X is a nonempty proper subset of V , since
B+ ⊆ X and z /∈ X. Hence some new edge e leaves X, i.e., it leaves a sink of X and
enters a source of X. The sink of X is white since R−(B) ⊆ W . This implies the
source of X is z, since B+ ⊆ X. We conclude e is directed from a white sink to z. A
similar argument shows that a new edge e′ is directed from a black sink to z. Clearly
e �= e′. This gives the desired contradiction, since OPT = Φ implies at most one new
edge is directed to z.

If H is a 3−-blocker, the lemma follows from the previous argument with
Lemma 4.2.

4-blocker. Let X be the set of all vertices preceded by a vertex of B+. X is a
nonempty proper subset of V , since B+ ⊆ X and X∩B− = ∅. (The latter holds since
R−(B) ⊆ W .) Hence a new edge e leaves X. The condition R−(B) ⊆ W implies e
goes from a white sink to a nonblack source.

The same argument on the reverse graph shows a new edge e′ goes from a nonblack
sink to a white source. A new edge cannot join two white vertices so e′ �= e. Thus we
have two new edges, neither incident to a black vertex. But |B+| + |B−| = Φ − 1 =
OPT − 1 implies there is at most one such new edge.

The next lemma is needed only for the general case of our theorem in sections 6
and 7. Call a dag a proper i-blocker if it is an i-blocker and in addition, for i equal to
3 or 4, it is not also a 1- or 2-blocker. Note that Lemma 4.2 implies the reverse of a
proper i-blocker is a proper i-blocker.

Lemma 4.4. A 3- or 4-blocker for B,W has r(B ∪W ) if it is proper.

Proof. Consider a proper 3-blocker H. Lemma 4.2 implies we can assume H is
a 3+-blocker. We claim B ∪W contains a sink. This claim establishes the lemma
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for 3+-blockers, since any source that precedes such a sink must be in B ∪W by the
reachability conditions of a 3+-blocker.

To prove the claim note that Φ > |B+| + |B−|, |W+| + |W−| since H is not a
1-blocker. Since a 3+-blocker has 2Φ extremes, this implies at least two extremes are
not in B ∪W . The definition of 3+-blocker shows at least one sink is not in B ∪W .

Suppose H is a proper 4-blocker. Since H is not a 2-blocker and B+,W+ �= ∅,
R−(W ) �⊆W . So let x be a source ofW that precedes a sink y ofW . The reachability
conditions of a 4-blocker show x, y /∈ B. Thus x and y are the desired vertices.

We conclude this section by analyzing another type of arbitrarily colored dag.
Lemma 4.5. An arbitrarily colored dag H with Φ = |B+|+ |B−| for some B ∈ P

has OPT = Φ unless H is a 1- or 2-blocker.
Proof. Let K be the given dag H with color classes taken to be B and B. As

shown at the end of Lemma 2.9, K has the same value of Φ as H and a solution on K
is valid on H. Lemma 3.4 shows K has OPT = Φ unless K is a 1-blocker. If K is a
1-blocker for B, then so is H. Suppose K is a 1-blocker for B. Thus Φ = |B +|+ |B−|.
Hence |V +|+ |V −| = |B+|+ |B−|+ |B +|+ |B−| = 2Φ ≥ |V +|+ |V −|, where we have
used Φ ≥ |V +|, |V −|. We conclude equality holds, i.e., Φ = |V +| = |V −|. This plus
R−(B) ⊆ B shows H is a 2-blocker for B.

Lemma 4.5, Lemma 3.5, and symmetry leave only one case to complete the anal-
ysis of arbitrarily colored dags,

Φ = |V −| = |V +| > |B+|+ |B−| for every B ∈ P.

The next section analyzes this last case for the dags that arise in bipartite strong-
connectivity augmentation. Sections 6 and 7 do the same for general augmentation.

5. Bipartite augmentation theorem. Consider the bipartite strong-connec-
tivity augmentation problem. The reduction of section 2 transforms a given bipartite
digraph into a dag H whose nonsingleton vertices have only two colors. We call such
a dag core-bicolored. This section gives the analysis of the last case mentioned above
for core-bicolored dags (Lemma 5.2). This completes the solution to the bipartite
strong connectivity augmentation problem and the cable-framework rigidity problem.
A dag is core-bicolored for B,W if every vertex not colored B or W is a singleton.

Lemma 5.1. A core-bicolored dag for B,W is consistently colored if it is not a
blocker but it satisfies conditions (i) and (iii) of a blocker for B (B,W ).

Proof. Let H be a dag satisfying the hypotheses of the lemma. We consider
each of the five varieties of blockers in turn. For each variety we assume H satisfies
conditions (i) and (iii) of that blocker for B (or B,W ), and we show H is consistently
colored.

1-blocker. If B + = ∅, then V + ⊆ B and condition (iii) implies V − = R−(V ) =
R−(B) ⊆ B. Thus H is consistently colored. If B+ = ∅, then Φ = |B+|+|B−| ≥ |V −|
implies V − ⊆ B. Again H is consistently colored.

2-blocker. If B+ = ∅, then V + ⊆ B and (iii) implies V − = R−(V ) = R−(B) ⊆ B.
Hence H is consistently colored. If B + = ∅, then V + ⊆ B. Thus |B+| + |B−| ≥
|V +| = Φ so equality holds, and B− = ∅. Thus H is consistently colored.

3+-blocker. Without loss of generality assume W+ = ∅. With (iii) this shows
|B+| = |V +|−1. We can assume B+, B− �= ∅ since otherwiseH is consistently colored.
Now (i) implies Φ = |B+|+ |B−|. In fact H is a 1-blocker for B, a contradiction.

3−-blocker. The reverse graph satisfies the hypotheses of the lemma for a 3+-
blocker (Lemma 4.2), so the previous argument applies.
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4-blocker. Suppose B− = ∅. Conditions (i) and (iii) imply there are |V +|−1 black
sources. We can assume W+,W− �= ∅ since otherwise H is consistently-colored. Now
H is a 2-blocker for W , a contradiction.

If B+ = ∅, then using Lemma 4.2 the previous argument applies to the reverse
graph.

Lemma 5.2. If H is core-bicolored and Φ = |V +| = |V −| > |B+|+ |B−| for every
B ∈ P, then OPT = Φ unless H is a blocker.

Proof. Let H be core-bicolored for B,W . Let G = V − B −W , so every vertex
of G is a singleton. Assume H is not a blocker. Lemma 2.7 shows we can assume H
is not consistently colored. Lemma 5.1 implies condition (iii) of a 2-, 3-, or 4-blocker
for B (B,W ) fails. Define the sets

W = {(x+, x−) ∈ B + ×B− : r(x+, x−)};
B = {(x+, x−) ∈W + ×W − : r(x+, x−)}.

We establish the properties of these sets in four claims.
Claim 1. W,B �= ∅.
Proof. W �= ∅ since condition (iii) of a 2-blocker for B fails.
Claim 2. No vertex is common to every ordered pair of W ∪B.
Proof. A common vertex z must belong to G. If z ∈ G+, then R−(B) ⊆ W ,

R−(W ) ⊆ B, and G+ = {z}. We have deduced condition (iii) of a 3+-blocker for
B,W , a contradiction. A symmetric argument holds if z ∈ G−.

Claim 3. W∪B contains two ordered pairs that do not contain a common vertex.
Proof. Take any pair (x+, x−) ∈ W ∪ B. Since x+ is not in every pair of W ∪ B,

there is a pair containing some y+ ∈ V + − x+. The pair must be (y+, x−), else we
are done. Similarly there is a pair (x+, y−) with y− ∈ V − − x−. Pairs (y+, x−) and
(x+, y−) have no common vertex.

Claim 4. Some ordered pair in W and some ordered pair in B do not contain a
common vertex.

Proof. Assume Claim 4 fails. Claim 3 shows there are ordered pairs (x+, x−),
(y+, y−) with all four vertices distinct, so by symmetry assume both pairs belong to
W −B. Claim 1 shows B has a pair, which must have a vertex in common with both
(x+, x−) and (y+, y−). Hence assume (x+, y−) ∈ B. This makes

x+, y− ∈ G, x−, y+ ∈W.

It is now clear that B = {(x+, y−)}. This implies R−(B) ∪R+(B) ⊆W .
Next we show G = {x+, y−}. Suppose there is a vertex g+ ∈ G+ − x+. Let g+

precede a sink z−. Since (g+, z−) /∈ B, z− ∈ W . We have z− �= y−, (g+, z−) ∈ W
and (x+, y−) ∈ B, contradicting the failure of Case 4. A symmetric argument applies
to a vertex g− ∈ G− − y−.

Since |G+| + |G−| = 2, the hypothesis of the lemma implies |B+| + |B−| =
|W+|+ |W−| = |V +| − 1. Hence condition (iii) of a 4-blocker for B,W is satisfied, a
contradiction.

By Claim 4, take (x+, x−) ∈ B and (y+, y−) ∈ W with all four vertices distinct.
Recolor the vertices of G to B or W so x+, x− ∈ B, y+, y− ∈ W , and, if possible,
|V +| ≥ |B+|+ |B−|, |W+|+ |W−|. If possible, this recoloring gives a bicolored graph
K that has the same value of Φ and is not a 1-blocker. Hence Lemma 3.4 shows K
has OPT = Φ. The solution to the augmentation problem on K is valid on H and
shows H has OPT = Φ.
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If the recoloring is impossible, the inequality hypothesized in the lemma and
symmetry imply x+, x− ∈ G and |V +| − 1 = |B+| + |B−|. Since condition (iii) of a
4-blocker fails, R−(B) ∪ R+(B) �⊆ W . Thus B contains a pair (z+, z−) with at least
one black vertex.

Suppose the pairs (z+, z−) ∈ B and (y+, y−) ∈ W have all four vertices distinct.
Use these pairs in the above recoloring procedure. The procedure succeeds and shows
OPT = Φ. To prove this note the procedure fails only if y+, y− ∈ G and |V +| − 1 =
|W+| + |W−|. But this implies the contradiction 2|V +| = |V +| + |V −| = (|B+| +
|B−|) + (|W+|+ |W−|) + (|G+|+ |G−|) ≥ 2(|V +| − 1) + 4.

Finally suppose vertices z+, z−, y+, y− are not all distinct. The unique common
vertex belongs to G. This makes vertices z+, z−, x+, x− distinct. Furthermore |W+|+
|W−| ≤ |V +| − 2, since |B+| + |B−| = |V +| − 1 and |G+| + |G−| ≥ 3. Thus we can
use the pairs (z+, z−) ∈ B and (x+, x−) ∈ W in the recoloring procedure to show
OPT = Φ.

We now put together the various results that solve the bipartite strong connec-
tivity augmentation and cable-framework rigidity problems.

Lemma 5.3. Any core-bicolored dag has OPT = Φ unless it is a blocker, in which
case OPT = Φ+ 1.

Proof. If H is a blocker, then OPT = Φ+ 1 by Lemmas 4.3 and 2.9. If H is not
a blocker, then OPT = Φ by Lemmas 4.5, 3.5, and 5.2.

Finally recall that we assumed the graph H has no isolated vertices. If there
are isolated vertices, we use the transformation of Proposition 2.1. The transformed
graph is a blocker if and only if the original graph is a blocker. This follows from the
observation that the transformation does not change any of the colors appearing in
any set R−(X), R+(X).

6. Merging colors. The general case of our theorem is proved in two steps,
presented in this section and the next. This section reduces the number of colors to
at most three, i.e., a tricolored dag (Lemma 6.2). The next section completes the
proof by analyzing tricolored dags.

We reduce the number of colors by merging colors. To merge color classes Ci,
i = 1, . . . , k, means to replace them by a new color

⋃k
1 Ci in P. Throughout this

section assume H is the given graph with partition P, where P contains at least four
nonempty color classes.

We start with two observations that follow easily from the definition of blocker.
First, if H is not a blocker and a merge does not change Φ but results in a blocker for
color B or colors B,W , then B or W is not a class of P. Second, if a color class with
no extreme vertices is merged with any other color, the new graph is an i-blocker if
and only if the original graph is. In particular we can assume every color of P contains
an extreme vertex.

We avoid creating blockers of certain types by using witnesses analogous to those
used in Lemmas 3.2 and 3.3. The following lemma gathers together some useful facts
for establishing witnesses.

Lemma 6.1. Let H be a blocker with exactly three colors Ci, i = 1, 2, 3.
(i) Suppose r(Ci) for i = 1, 2. Then H is a 1- or 4-blocker for C3.
(ii) Suppose r(C1), r(C2, C3) and either r(C1, C3) and |C+

1 | > 1 or r(C3, C1) and
|C−1 | > 1. Then H is a 1-blocker for C2 or C3, or a 4-blocker for C2.

Proof. First consider an arbitrary dag having a color C with r(C). The definition
of blocker shows that H is not a 1-, 3-, or 4-blocker for C. If H is a 2-blocker, it is a
2-blocker for C.
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Part (i) follows by applying the above observation. We turn to part (ii). If H is
a 2-blocker, the above observation shows it is a 2-blocker for C1, but r(C2, C3) makes
this impossible. If H is a 3+-blocker, say, for vertex z, then z ∈ C1 (since r(C1)). But
this implies |C+

1 | = 1 and ¬r(C3, C1), contradicting the hypothesis. Similarly if H is
a 3−-blocker for z, then z ∈ C1. But this implies |C−1 | = 1 and ¬r(C1, C3), contra-
dicting the hypothesis. H is not a 4-blocker for C1 by the preliminary observation.
Suppose H is a 4-blocker for C3. The other color of the blocker must be C2 since
r(C2, C3), but it must be C1 since r(C1, C3) or r(C3, C1). This contradiction gives
part (ii).

Lemma 6.2. If a graph H has |P| ≥ 4, then some merge gives a new graph with
the same value of Φ and |P| = 3. Furthermore the new graph is a blocker only if H
is.

Proof. Call a merge of P into three classes permissible if it does not change Φ. A
permissible merge can be found by repeatedly merging two color classes until a merge
of classes C1 and C2 would produce a class with at least Φ extreme vertices. Then
the desired permissible merge consists of classes C1, C2, and C1 ∪ C2.

For the rest of the argument assume H is not a blocker. We must show some
permissible merge gives a graph that is not a blocker. Order the blocker types as
2, 1, 3, 4. We will consider the blockers in this order. For each type i, we suppose
K is an i-blocker that results from a permissible merge of H. We will construct a
new permissible merge of H which results in a graph L. We will show that L is not
a blocker of type i or a type listed before i. Repeated application of this argument
eventually gives the desired merge.

2- and 1-blockers.

Claim. Let V be the disjoint union of X and Y , where X and Y are both the
result of a merge. Suppose further that R−(X) ⊆ Y and X+, X− �= ∅. Then X (Y )
can be partitioned into disjoint sets Xi (Yi), i = 0, 1, where each Xi (Yi) is the result
of merging classes of P contained in X (Y ), such that r(Xi ∪ Yi) for i = 0, 1.

Proof. Start by choosing X0 ⊆ X as a class of P containing a source. Take
Y0 ⊆ Y as a class of P containing a sink preceded by X+

0 . Let X1 and Y1 consist of
the remaining classes of P contained in X (Y ). If r(X1 ∪ Y1), we are done. Hence
assume the opposite:

R−(X1) ⊆ Y0 and R−(Y1) ⊆ X0 ∪ Y0.

We will prove r(X0 ∪ Y1) and r(X1 ∪ Y0). Clearly this implies the claim.

The first relation r(X0 ∪ Y1) holds if r(Y1, X0), so suppose the opposite. This
implies R−(Y1) ⊆ Y0. Next note that Y

+
0 �= ∅. This follows since X− �= ∅, so a sink

in X is preceded by a source of Y , and that source cannot be in Y1. Now since H is
not a 2-blocker for Y0, R

−(X0) �⊆ Y0. Thus r(X0, Y1). This implies the first relation.

Consider the second relation r(X1 ∪ Y0). If X
+
1 �= ∅, then r(X1, Y0). If X

+
1 = ∅,

then X−1 �= ∅, which implies r(Y0, X1).

Now suppose K is a 2- or 1-blocker. First note that the claim applies to B and
B. (For a 2-blocker the claim requires B− �= ∅. For a 1-blocker the claim requires
B− �= ∅. Both of these are shown in the proof of Lemma 4.2.)

So let B (B) be partitioned into sets Ai (Ci), i = 0, 1, where r(Ai∪Ci) for i = 0, 1.
For at least one index i, Ai ∪ Ci contains at most Φ extreme vertices. Without loss
of generality let the index be i = 0. Let the three new color classes be A0 ∪ C0, A1,
and C1.
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The new graph L is not a 2-blocker. In proof r(A0 ∪C0) implies L can only be a
2-blocker for X = A0 ∪ C0. However, this is inconsistent with r(X), i.e., r(A1 ∪ C1).

L is not a 1-blocker if K is a 1-blocker. In proof suppose L is a 1-blocker for color
X. X �= A0 ∪ C0 because r(A0 ∪ C0). X �= A1, C1 since A0 ∪ A1 contains exactly Φ
extreme vertices, so C0 ∪ C1 contains at most Φ extreme vertices. This implies A1

and C1 both contain fewer than Φ extremes.

3+-blockers. Suppose K is a proper 3+-blocker for B,W .
Claim. Without loss of generality B can be partitioned into disjoint sets Ai,

i = 0, 1, where each Ai is a merge of classes of P, such that (i) r(A0,W ), (ii) r(A1,W )
or r(W,A1).

Proof. Suppose B contains at least two classes of P. Let A0 be a class of P
contained in B that contains a source, and let A1 consist of the remaining classes of
P in B. Clearly property (i) holds. Suppose (ii) fails. Thus A+

1 = ∅ and ¬r(W,A1).
This means that K is a proper 3+-blocker for A0,W . W must contain at least two
classes of P since H is not a blocker. Repeat the above argument on the setW instead
of B. This time (ii) cannot fail, since that would make H a 3-blocker.

Assume B, A0, and A1 satisfy the claim. Let G = B ∪W . Either A0 ∪W or
A1 ∪ G contains at most Φ extreme vertices. Thus we get a permissible merging
consisting of either colors A0 ∪ W , A1, and G or A0, W , and A1 ∪ G. Recall the
relation r(G) from Lemma 4.4. Also note that A0, A1, and W each have fewer than Φ
extreme vertices, since both B and W contain fewer than Φ extremes in any proper
3-blocker for B,W .

Suppose the permissible merging is A0 ∪ W , A1, and G. Lemma 6.1(i) with
r(A0 ∪ W ) and r(G) shows that if L is a blocker, it is a 1-blocker for A1 or a 4-
blocker. The former is impossible since, as noted, A1 has fewer than Φ extreme
vertices.

Suppose the permissible merging is A1 ∪ G, A0, and W . These sets satisfy the
hypothesis of Lemma 6.1(ii), since we have r(A1 ∪ G), r(A0,W ) and furthermore,
either r(A1,W ), in which case A1 ∪G has at least two sources, or r(W,A1), in which
case A1 ∪G has at least two sinks. Now Lemma 6.1(ii) shows that if L is a blocker,
it is either a 1-blocker for A0 or W , or L is a 4-blocker. It is not a 1-blocker because,
as noted above, both A0 and W have fewer than Φ extreme vertices.

3−-blockers. Suppose K is a proper 3−-blocker. Lemma 4.2 shows its reverse
graph is a proper 3+-blocker. Apply the construction for proper 3+-blockers to the
reverse graph. If the new merging is a blocker, it must be a 4-blocker. The same
holds for the original graph.

4-blockers. Suppose K is a proper 4-blocker. Let X = B, Y =W if B contains
two or more classes of P; otherwise let X = W , Y = B. So X contains two or more
classes of P. Let G = B ∪W = X ∪ Y .

Claim. X can be partitioned into disjoint sets Ai, i = 0, 1, where each Ai is a
merge of classes of P, such that r(A0, Y ) and either r(A1, Y ) or r(Y,A1). In addition
A0 and A1 each contain fewer than Φ− 1 extreme vertices. Furthermore r(G).

Proof. The last part of the claim r(G) holds by Lemma 4.4.
SupposeX = B. Let A0 be a class of P contained inX that contains a source, and

let A1 consist of the remaining classes in B. Hence r(A0,W ). Furthermore r(A1,W )
or r(W,A1). In addition each Ai has fewer than Φ− 1 extreme vertices since Ai ⊂ B.

Suppose X =W . Let A0 be a class of P contained in W such that r(A0, B). Let
A1 consist of the remaining classes of P in W . We have r(A1, B) or r(B,A1), since
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otherwise H is a 4-blocker for B,A0 (both classes of P). Each set Ai contains fewer
than 2Φ− (Φ− 1)− 2 = Φ− 1 extreme vertices.

Either A0 ∪ Y or A1 ∪ G contains at most Φ extreme vertices. Thus we get a
permissible merging consisting of colors A0 ∪ Y , A1, and G or A0, Y , and A1 ∪G.

Consider a permissible merging A0 ∪ Y , G, and A1. These sets satisfy the hy-
pothesis of Lemma 6.1(i). The new graph L is not a 1- or 4-blocker for A1, since the
claim shows A1 has too few extreme vertices. Thus L is not a blocker.

Consider a permissible merging A1 ∪ G, A0, and Y . These sets satisfy the hy-
pothesis of Lemma 6.1(ii). L is not a 1- or 4-blocker for A0, since the claim shows A0

has too few extremes. Finally L is not a 1-blocker for Y , since Y is B or W and K is
a proper 4-blocker. This proves Lemma 6.2.

We finish this section with a simple result also proved by merging colors. The
result can be seen from Lemma 5.3, but the following proof is independent of section 5.

Lemma 6.3. Let H be a tricolored dag with Φ = |V +| = |V −|, where some color
does not contain a source. Then OPT = Φ if H is not a blocker.

Proof. Let the extreme vertex colors of H be B,W , and G, where G+ = ∅. By
Lemma 4.5 assume each color has fewer than Φ extreme vertices.

We can change the color of every extreme vertex of G to B orW without changing
Φ. This follows since 2Φ = |V +|+ |V −|, and we start with both B and W containing
fewer than Φ extremes. In fact we can do this recoloring even with the requirement
that a given vertex of G be colored B and another given vertex of G be colored W .

If every source has the same color, then Φ = |V +| implies H is consistently
colored. In this case OPT = Φ (Lemma 2.7). So assume B+,W+ �= ∅. We can
assume H is not a 2-blocker, so r(B). This implies r(W,B). Similarly r(B,W ).

G contains at least two sinks, since |V +| + |V −| = 2Φ ≥ |B+| + |B−| + |W+| +
|W−|+2. Now it is easy to see that there is a sink w ∈ B preceded by a source of W
and a different sink b ∈W preceded by a source of B.

If b is colored G, change it to B. If w is colored G, change it to W . Change the
color of the remaining extreme vertices of G to B or W without changing Φ. The
new bicolored graph is not a 1-blocker since r(B) and r(W ). Lemma 3.4 shows it has
a solution with OPT = Φ new edges, which gives a similar solution on H.

7. General augmentation theorem. This section solves the augmentation
problem for tricolored dags as follows. Section 7.1 presents various witness relations
that allow us to avoid generating blockers, as in sections 3 and 6. Then section 7.2
shows how to find an augmenting pair that does not create a blocker.

We use the following notational conventions throughout this section. The three
colors of the tricolored dag are designated as B, W , and G (“black,” “white,” and
“gray”). Sources of B,W,G, B,W,G are usually designated by b, w, g, b, w, g, respec-
tively. Sinks of B,W,G, B,W,G are usually designated by β, ω, γ, β, ω, γ, respec-
tively.

7.1. Witness relations. We begin with some simple relations that preclude
various blocker types.

Lemma 7.1. Let H be a tricolored blocker with colors B,W,G.
(i) r(B) and r(B) imply H is not a 2-blocker.
(ii) r(B), r(W ), and r(G) imply H is not a 2-blocker.
(iii) r(B,W ), r(W,G), and r(G,B) imply H is a 1-blocker.
(iv) Suppose

r(b, ω), r(w, β), and r(g, γ)
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for b ∈ B +, ω ∈ W−, w ∈ W+, β ∈ B−, g ∈ G+, γ ∈ G−, where the six
vertices are distinct (i.e., b �= w, g). Then either H is a 1-blocker or H is a
4-blocker for B.

Proof. Parts (i) and (ii) follow from the definition of 2-blocker.
(iii) H is not a 2-blocker for B because r(W,G). H is not a 3+-blocker for B

because r(B,W ) and r(W,G). Similarly H is not a 3−-blocker for B because r(G,B)
and r(W,G). H is not a 4-blocker for B because r(B,W ) and r(G,B). Now symmetry
of the colors gives the desired conclusion.

(iv) r(g, γ) and r(w, β) show H is not a 2-blocker. If H is a 3+-blocker, then
r(g, γ) shows it is a 3+-blocker for vertex g. Since b �= g we must have b ∈ W , but
then r(b, ω) shows H is not a 3+-blocker. If H is a 3−-blocker, then r(g, γ) shows it
is a 3−-blocker for γ. But this is inconsistent with r(b, ω). r(g, γ) shows H is not a
4-blocker for G. r(w, β) and r(b, ω) show it is not a 4-blocker for W .

Now we analyze the blocker types that can occur after augmenting a pair in some
commonly occurring configurations.

Corollary 7.2. Let H be a tricolored dag, with colors B,W,G, that is not a
blocker.

(i) Suppose

r(b, χ), r(x, β), and r(b, β)

for six distinct vertices b ∈ B+, χ ∈ V −, x ∈ V +, β ∈ B−, b ∈ B +, β ∈ B−,
where χ and x have different colors. Augmenting the compatible pair χ, x
does not give a 2-blocker.

(ii) Suppose

r(g, γ), r(w,χ), and r(x, ω)

for six distinct vertices g ∈ G+, γ ∈ G−, w ∈ W+, χ ∈ V −, x ∈ V +, and
ω ∈ W−, where χ and x have different colors. Augmenting the compatible
pair χ, x gives either a nonblocker, a 1-blocker, or a 4-blocker for B. The
latter cannot occur if B − {x, χ} has less than Φ− 2 extremes.

(iii) Suppose

r(b, ω), r(w, β), r(g, γ), and r(b, β)

for eight distinct vertices b ∈ B+, ω ∈ W−, w ∈ W+, β ∈ B−, g ∈ G+,
γ ∈ G−, b ∈ B +, β ∈ B− (i.e., b �= w, g and β �= ω, γ). Augmenting the
compatible pair β, b gives either a nonblocker, a 1-blocker, or a 4-blocker for
B. The latter cannot occur if B has less than Φ− 1 extremes.

Proof. (i) The new graph has r(b, β) and r(b, β), so it is not a 2-blocker by Lemma
7.1(i).

(ii) Follows from Lemma 6.1(i).
(iii) Follows from Lemma 7.1(iv).

7.2. Finding an augmenting pair. To complete the solution of our augmen-
tation problem we wish to show that a dag H that is not a blocker has OPT = Φ.
Toward this end we can make the following assumptions: H satisfies

Φ = |V −| = |V +| > |B+|+ |B−| for every B ∈ P,
since as mentioned at the end of section 4 this is the only case that remains to be
analyzed. H has exactly three nonempty colors, by Lemmas 3.4 and 6.2. Each color
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contains both a source and a sink, by Lemma 6.3. We make all these assumptions
throughout this section until the final result, Theorem 7.8, is presented. Now we give
the overall structure of the argument proving that H has OPT = Φ.

Lemma 2.8 shows H has a compatible pair. Augment such a pair. This decreases
Φ by 1, by the above assumption on Φ. The new graph K is still tricolored. If K is
not a blocker, induction (and the analysis of the previous sections) shows we are done.
So assume K is a blocker. It suffices to show how to augment a different compatible
pair so the new graph is not a blocker.

We accomplish this in a manner similar to section 6: Order the blocker types as
2, 3, 4, 1. For each type i, we suppose K is an i-blocker resulting from an augment
of H. We will augment a new compatible pair of H to get a new graph L. We will
show L is not a blocker of type i or a type listed before i. Repeated application of
this argument eventually gives the desired augment.

The rest of this section shows for each blocker type how to find a compatible pair
giving the desired graph L. The arguments refer to the three graphs H, K, L. The
functions R− and R+ always refer to H, as does the predicate r. rK and rL refer to
graphs K and L, respectively.

The following simple principle will be used repeatedly. For motivation note that
if χ, x is a compatible pair, then some source u and sink ξ satisfy r(u, χ) and r(x, ξ).

Lemma 7.3. Suppose graph K results from augmenting the pair χ, x. Then
rK(a, δ) implies r(a, δ) when

r(u, χ), r(x, ξ), and either ¬rK(a, ξ) or ¬rK(u, δ)
for vertices u, x, a ∈ V +, χ, ξ, δ ∈ V −.

Proof. rK(a, δ) with ¬r(a, δ) means the path from a to δ in K includes edge (χ, x).
Thus rK(a, ξ) and rK(u, δ).

Now we present the argument for each blocker type. It is convenient to consider
1-blockers first since that case gets used by the others.

1-blockers. This section shows that if an augment gives a 1-blocker, a different
augment gives a bicolored graph. In fact we prove a stronger result that is useful later
on.

Suppose an augment ofH gives a 1-blocker for B. B must have Φ−1 extremes (by
the assumption on Φ) and the augment cannot involve a vertex colored B. The latter
implies ¬r(B). These facts show the following lemma handles the case of augments
that give 1-blockers.

Lemma 7.4. Let H be a dag having a color B with exactly Φ− 1 extreme vertices
and ¬r(B). Then some augment of H gives a dag L that is not a blocker. Furthermore
two colors of L can be merged without changing Φ to get a bicolored dag that is not a
blocker.

Proof. Vertices x−, y+ form a good pair if neither vertex is colored B, the vertices
are compatible, and augmenting x−, y+ gives a new graph L with

rL(B) and rL(B).

We will find a good pair of vertices. This suffices to prove the lemma: L has Φ =
|B+|+ |B−| = |B +|+ |B−|, so using colors B,B gives a bicolored graph that is not a
1-blocker, as desired. We will argue by contradiction. So suppose no good pair exists.

We first show there are four distinct vertices b ∈ B+, ω ∈ W−, g ∈ G+, β ∈ B−

such that

r(b, ω) and r(g, β).
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In proof ¬r(B) implies there are vertices b ∈ B+ and β ∈ B− with r(b, χ), r(x, β) for
some x, χ /∈ B. Since H is not a 4-blocker x and χ can be chosen to have different
colors. Naming colors appropriately gives the desired vertices.

The compatible pair ω, g is a good pair if rL(B). (Whenever we refer to a good
pair, L denotes the graph that results from augmenting that pair.) The latter holds
if either r(B − g,B − ω) or r(B − g, ω) and r(g,B − ω). So neither of these two
alternatives holds. The failure of the second alternative implies that we can assume
¬r(B − g, ω) (since we can replace H by its reverse graph). This plus the failure of
the first alternative implies

R−(B − g) ⊆ B.(7.1)

Equation (7.1) with r(B) (since H is not a 2-blocker) implies there is a vertex β ∈ B−
with

r(g, β).

(It is possible that β = ω.)
Next we show

r(B,G) =⇒ G− = {β} and R+(W ) ⊆ B.(7.2)

Suppose r(b′, γ) for vertices b′ ∈ B+, γ ∈ G−. W+ �= ∅ and (7.1) show there are
vertices w ∈ W+, β′ ∈ B− with r(w, β′). The compatible pair γ,w is good if rL(B),
so ¬rL(B). Since r(g, β) and g �= w we must have γ = β. Thus β ∈ G. Furthermore
R+(W ) ⊆ B, since otherwise we can choose β ∈W .

We complete the proof of (7.2) by showing G− = {β}: Consider a vertex γ′ ∈
G−−β. We have shown γ = β holds for every choice of γ and β, so these two vertices
are unique. We have ¬r(B, γ′) (since otherwise γ′ could be chosen as γ), ¬r(g, γ′)
(since otherwise γ′ could be chosen as β), and ¬r(B− g, γ′) (by (7.1)). Hence γ′ does
not exist.

We can now assume without loss of generality that β ∈ G: This relation has just
been proved if r(B,G). On the other hand ¬r(B,G) implies any vertex of G− can be
chosen as β.

Next we show G+ = {g}: Suppose g′ ∈ G+ − g. g′ precedes a black sink β′ by
(7.1). The pair ω, g′ is compatible since we have r(b, ω) and r(g′, β′). In fact ω, g′ is a
good pair: The relation rL(B) holds since r(g, β) and β �= ω (because β ∈ G). Since
there are no good pairs, g′ does not exist.

Since H is not a 3+-blocker but |G+| = 1 and R−(W ) ⊆ B, we have r(B,W ).
Together with the hypothesis ¬r(B) we get r(B,G). Hence the hypothesis and con-
clusion of (7.2) hold. Thus |G+| = |G−| = 1, so W (as well as B) has exactly Φ − 1
extreme vertices. This along with R−(W ) ∪ R+(W ) ⊆ B makes H a 4-blocker, a
contradiction.

2-blockers.
Lemma 7.5. If an augment of H gives a graph K that is a 2-blocker, a different

augment of H gives a graph L that is not a 2-blocker.
Proof. SupposeK is a 2-blocker for B. SinceH is not a 2-blocker there are vertices

x ∈ B +, χ ∈ B− with r(x, χ) and either x or χ (or both) a vertex in the augment.
By possibly changing to the reverse graph (using Lemma 4.2) we can assume x is a
vertex in the augment. Without loss of generality assume x ∈ G+. We consider two
cases.
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Case 1. χ is not a vertex in the augment.
In this case the augment forming K gives four distinct vertices b ∈ B+, γ ∈ G−,

g ∈ G+, β ∈ B− such that

r(b, γ) and r(g, β).

Here we have replaced x and χ by g and β, respectively, and b and γ are the other
two vertices involved in the augment. γ must be in G since the edge added by the
augment joins differently colored vertices. b must be in B because it precedes β in K,
which is a 2-blocker for B. Finally γ �= β by the assumption of Case 1.

Next we show there are vertices b ∈ B +, β ∈ B− that are distinct from the other
four vertices such that

r(b, β).

In proof, such a pair of vertices with rK(b, β) exists, since a 2-blocker has B + �= ∅.
The relation r(b, β) follows from Lemma 7.3 (using ¬rK(b, β)).

If b can be chosen to have a color different from γ, then Corollary 7.2(i) applies
to the six vertices b, γ, b, β, g, β and we are done. So suppose no such vertex b exists.
This implies

γ, b ∈W.

In proof, the two vertices have different colors if γ ∈ B. Hence γ ∈W and so b ∈W .
We now show R−(W ∪G− g) ⊆ B. If not, then r(W ∪G− g,B). This continues

to hold in graph K, even if the only sink of B reachable from W ∪ G − g is γ. But
this contradicts K a 2-blocker.

The inclusion R−(W ∪G−g) ⊆ B implies |G+| = 1 (otherwise a vertex of G+−g
could be chosen as b; here we use γ ∈ W ). The inclusion also implies R−(W ) ⊆ B.
Since H is not a 3+-blocker we conclude r(B,W ). Hence we can take vertices b′ ∈ B+,
ω ∈W − with

r(b′, ω).

Corollary 7.2(i) applies to the six vertices b′, ω, b, β, g, β if the three sinks are
distinct (recall b ∈W ). That leaves us with two possibilities, ω = β and ω = β.

Suppose ω = β. Form L by augmenting the pair β, b. If b′ �= b, then rL(b
′, β)

and rL(g, γ), with γ ∈W , show L is not a 2-blocker by Lemma 7.1(i). If b′ = b, then
rL(g, γ), rL(g, β), and rL(b, β) with γ, b ∈ W show L is not a 2-blocker by Lemma
7.1(ii).

Suppose ω = β. Form L by augmenting the pair β, g. We have rL(b, γ), rL(b
′, β),

and rL(b, β). The supposition implies β ∈ G, and we have γ, b ∈ W . So Lemma
7.1(ii) shows L is not a 2-blocker.

Case 2. χ is a vertex in the augment.
The augment forming K gives four distinct vertices b ∈ B+, ω ∈ W−, g ∈ G+,

β ∈ B− such that

r(b, ω), r(g, ω), and r(g, β).

Here we have replaced x and χ by g and ω, respectively. We can assume b, β ∈ B
because otherwise, renaming vertices puts us in Case 1.
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Lemma 6.3 shows there are vertices w ∈ W+ and γ ∈ G−. Clearly these ver-
tices are distinct from the four vertices above. Since K is a 2-blocker, ¬rL(w, γ),
so ¬r(w, γ). Thus w, γ is a compatible pair. Form L by augmenting w, γ. The
three relations displayed above hold in L. So Lemma 7.1(ii) shows that L is not a
2-blocker.

3-blockers.
Lemma 7.6. If an augment of H gives a graph K that is a proper 3+-blocker, a

different augment of H gives a graph L that is not a 2- or 3-blocker.
Proof. Suppose K is a 3+-blocker for B, W , and vertex g ∈ G. H has |G+| equal

to 1 or 2. We consider these cases separately.
Case 1. |G+| = 2.
Case 1.1. R−(B) ⊆W and R−(W ) ⊆ B.
If B has Φ−1 extreme vertices, we are done by Lemma 7.4. Hence we can assume

both B and W have less than Φ− 1 extremes. This implies |G−| ≥ 2.
We claim there are vertices b ∈ B+, ω ∈ W−, w ∈ W+, β ∈ B−, g ∈ G+, and

γ ∈ G− with

r(b, ω), r(w, β), and r(g, γ).

The first two relations follow from the assumptions of Case 1.1. rK(G) holds since
K is a proper 3-blocker (recall Lemma 4.4). This implies r(G), since the augment
involves a source of G+. Now we have proved the last relation r(g, γ).

There are vertices g′ ∈ G+ − g and γ′ ∈ G− − γ. Suppose these vertices can
be chosen so r(g′, γ′). This gives eight vertices satisfying the hypothesis of Corollary
7.2(iii), so we are done. Now assume such vertices do not exist.

Case 1.1 implies R+(G) ⊆ G. So the assumption just made implies R+(G) = {g}.
Thus g′ precedes a sink of B ∪ W . Without loss of generality r(g′, ω′) for some
ω′ ∈ W−. Now the relations r(g, γ), r(w, β), and r(g′, ω′) satisfy the hypothesis of
Corollary 7.2(ii), so we are done.

If Case 1.1 does not hold, then without loss of generality the following applies.
Case 1.2. R−(B) �⊆W .
The augment that produces K involves the source g′ ∈ G+. Hence there are

vertices b ∈ B+, β ∈ B−, ω ∈W− with

r(b, β) and r(g′, ω).

Here the augment is for β, g′. The assumption of Case 1.2 implies we must have β a
nonwhite vertex preceded by a black source b. Since β is also nongray, β ∈ B. Finally
ω ∈W since rK(b, ω).

Since K is a proper 3-blocker there are vertices g ∈ G+ − g′, γ ∈ G− with
rK(g, γ). This implies r(g, γ) by Lemma 7.3 (since ¬rK(b, γ)). Similarly there are
vertices w ∈ W+, β′ ∈ B− − β with r(w, β′) (use ¬rK(b, β′)). Now the relations
r(g, γ), r(w, β′), and r(g′, ω) show Corollary 7.2(ii) applies and we are done.

Case 2. |G+| = 1.
Case 2.1. R−(B) �⊆W , R−(W ) �⊆ B.
We can assume there are vertices b ∈ B+, ω ∈W −, w ∈W+, ω ∈W− such that

r(b, ω) and r(w,ω).

Here the augment is for ω,w. The source of the augment is not in G by Case 2, so
without loss of generality w ∈ W . The first relation of Case 2.1 now shows ω ∈ W
and is preceded by a source b ∈ B. Finally ω ∈W− since rK(b, ω).
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Since K is a 3+-blocker it contains vertices w′ ∈W+ −w, β ∈ B− − ω such that
rK(w

′, β). Lemma 7.3 shows r(w′, β), since ¬rK(w′, ω). Now the relations r(w,ω),
r(b, ω), and r(w′, β) show Corollary 7.2(ii) applies and we are done.

If Case 2.1 does not hold, then without loss of generality the following applies.
Case 2.2. R−(B) ⊆W , R−(W ) �⊆ B.
Call vertices w ∈ W+, β ∈ B− a bad pair if r(w, β). The augment producing K

involves a vertex in a bad pair. We examine three corresponding possibilities.
First suppose there is only one bad pair, and the augment involves both its ver-

tices. Then there are vertices g ∈ G+, γ ∈ G−, w ∈W+, β ∈ B− such that

r(g, γ), r(w, γ), and r(w, β),

where the augment is for the bad pair γ,w. β ∈ B since w, β is not a bad pair. γ ∈ G
because γ ∈ B (since γ,w is bad) and γ ∈ W (since we augment γ,w). This implies
g ∈ G since g, γ is not a bad pair and R−(B) ⊆W .

Since K is a 3+-blocker it contains vertices b ∈ B+, ω ∈ W− with rK(b, ω).
Lemma 7.3 shows r(b, ω). Lemma 4.4 shows there is a vertex γ′ ∈ G− − γ with
rK(g, γ

′). The uniqueness of the bad pair shows ¬r(w, γ′), so r(g, γ′). The relations
r(g, γ′), r(w, γ), and r(b, ω) show Corollary 7.2(ii) applies and we are done.

Now we can assume there is a bad pair with only one of its vertices in the augment.
Suppose the sink is in the augment. Then there are vertices w,w′ ∈ W+, γ ∈ G−,
β ∈ B− such that

r(w′, γ) and r(w, β),

where the augment is for γ,w. The assumed bad pair is w′, γ, so w′ ∈ W . This
implies β ∈ B since K is a 3+-blocker. The assumptions of Cases 2 and 2.2 imply
w ∈W . Finally γ ∈ G since γ ∈ B (for a bad pair) and γ ∈W (by the augment).

Since K is a 3+-blocker it contains vertices b ∈ B+, ω ∈ W− with rK(b, ω).
Lemma 7.3 shows r(b, ω), since ¬rK(w′, ω). Lemma 4.4 shows there are vertices
g ∈ G+, γ′ ∈ G− − γ with rK(g, γ

′). Lemma 7.3 shows r(g, γ′), since ¬rK(w′, γ′).
The relations r(g, γ′), r(w′, γ), and r(b, ω) show Corollary 7.2(ii) applies and we are
done.

In the remaining case there is a bad pair having only its source in the augment.
There are vertices g ∈ G+, ω ∈W −, w ∈W+, β ∈ B− such that

r(g, ω) and r(w, β),

where the augment is for ω,w. w, β is the assumed bad pair. g ∈ G because g /∈ B
(since R−(B) ⊆W ) and g /∈W (since K is a 3+-blocker).

Since K is a 3+-blocker there are vertices w′ ∈ W+ − w, β ∈ B− − ω with
rK(w

′, β). Lemma 7.3 with ¬rK(w′, β) shows

r(w′, β).

The pair ω,w′ is compatible, so augment it to get the graph L. We will show L has
the desired properties. We consider two cases depending on the color of β.

Suppose every possible choice for β is colored W . Since K is a 3+-blocker there
is a vertex γ ∈ G− − ω with rK(g, γ) (Lemma 4.4). The assumption on β shows
¬r(w, γ), which implies r(g, γ). Graph L has rL(g, γ) and rL(w, β). Since β ∈ W ,
Lemma 6.1(i) shows we are done.
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Suppose we can choose β ∈ G. The hypothesis of Case 2.2 shows there are vertices
b ∈ B+, ω ∈ W− with r(b, ω). Graph L has rL(g, β), rL(b, ω), and rL(w, β). Since
β ∈ G, Lemma 7.1(iii) gives the desired conclusion.

It remains to consider when an augment of H gives a graph K that is a proper
3−-blocker. Lemma 4.2 shows the reverse of K is a proper 3−-blocker resulting from
an augment. So the above lemma shows a different augment gives a graph L that is
not a 2- or 3-blocker. The reverse of L is the result of the reverse augment and is also
not a 2- or 3-blocker.

4-blockers.
Lemma 7.7. If an augment of H gives a graph K that is a proper 4-blocker, a

different augment of H gives a graph L that is a nonblocker or a 1-blocker.
Proof. Suppose K is a proper 4-blocker for B. In H color B has Φ − 1 or Φ − 2

extreme vertices, since the augment decreases Φ by one. We consider these cases
separately.

Case 1. B has Φ− 1 extreme vertices.
Lemma 7.4 shows we can assume r(B). Hence the augment producing K involves

a black extreme vertex. By possibly changing to the reverse graph, assume it involves
a black source. Thus there are vertices w ∈W+, β ∈ B−, b ∈ B+, β ∈ B− with

r(w, β) and r(b, β).

The relation rK(w, β) implies w ∈ B, so without loss of generality take w ∈ W ,
making K a 4-blocker for B,W .

Lemma 4.4 shows there are vertices g ∈ G+, γ ∈ G− − β with rK(g, γ). Lemma
7.3 shows r(g, γ), since ¬rK(g, β). Augment the compatible pair γ,w. In the resulting
graph L, rL(b, β), rL(g, β), and B has Φ extreme vertices. Taking the colors as B and
B, L is not a blocker.

Case 2. B has Φ− 2 extreme vertices.
In this case the augment involves two nonblack extremes. Note this implies ¬r(B).

As before assume K is a 4-blocker for B,W .
Case 2.1. R−(B) ∪R+(B) �⊆W .
Together with the preceding observation this implies r(B,G) or r(G,B). By

possibly changing to the reverse graph assume r(B,G). Hence there are vertices
b ∈ B+, γ ∈ G−, w ∈W+, ω ∈W− with

r(b, γ) and r(w,ω).

Here vertices b, γ come from the assumption r(B,G), and the augment is for γ,w.
ω ∈W since K is a 4-blocker.

Next we show there are vertices w′ ∈ W+ − w, β ∈ B−, g ∈ G+, γ′ ∈ G− − γ
with

r(w′, β) and r(g, γ′).

Vertices satisfying these relations in graph K exist since K is a proper 4-blocker.
Lemma 7.3 with ¬rK(b, {β, γ′}) shows the same relations hold in H.

Augment the compatible pair β,w. The resulting graph L has rL(g, γ
′) and

rL(w
′, ω). Lemma 6.1(i) shows L is either a nonblocker, a 1-blocker, or a 4-blocker

for B. The last alternative does not hold since B has Φ− 2 extreme vertices in L.
Case 2.2. R−(B) ∪R+(B) ⊆W .
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There are vertices b ∈ B+, ω ∈W−, w ∈W+, β ∈ B−, g ∈ G+, γ ∈ G− with

r(b, ω), r(w, β), and r(g, γ).

The first two relations and their four vertices come from Case 2.2. The two gray
vertices exist and satisfy rK(g, γ), since K is a proper 4-blocker. We can assume
r(g, γ), since the augment involves a gray source or sink.

Suppose there are vertices g′ ∈ G+ − g, γ′ ∈ G− − γ with r(g′, γ′). Corollary
7.2(iii) shows we are done.

Next suppose there are vertices g′ ∈ G+−g, ω′ ∈W− with r(g′, ω′). This relation
plus r(w, β) and r(g, γ) satisfy the hypothesis of Corollary 7.2(ii), so we are done. We
can apply the same argument to the reverse graph if there are vertices w′ ∈ W+,
γ′ ∈ G− − γ with r(w′, γ′).

Note that |G+|+ |G−| ≥ 3 since |B+|+ |B−|+ |W+|+ |W−| ≤ (Φ−2)+(Φ−1) =
2Φ − 3. By possibly changing to the reverse graph, assume |G−| ≥ 2. Every vertex
of G− − γ has g as its only source predecessor, since otherwise one of the previous
cases applies. Now the same reasoning extends this remark to every vertex of G−

(including γ). If |G+| ≥ 2, then one of the previous cases applies (specifically the case
for r(g′, ω′)). Thus |G+| = 1. Since H is not a 3+-blocker we conclude r(W ).

The preceding paragraph shows there are vertices w′ ∈ W+, ω′ ∈ W−, and
γ′ ∈ G− − γ with

r(w′, ω′) and r(g, γ′).

(Possibly ω′ = ω.) Augment the compatible pair γ′, b. For the resulting graph L,
rL(g, γ), rL(w

′, ω′), and B has Φ − 2 extreme vertices. Lemma 6.1(i) shows we are
done.

Theorem 7.8. Any dag has OPT = Φ unless it is a blocker, in which case
OPT = Φ+ 1.

Proof. If H is a blocker, then OPT = Φ+ 1 by Lemmas 4.3 and 2.9. Suppose H
is not a blocker. OPT = Φ unless Φ = |V −| = |V +| > |B+|+ |B−| for every B ∈ P,
by Lemmas 4.5 and 3.5. For the remaining case, Lemma 6.2 reduces an arbitrarily
coloredH to a tricolored dag. Lemmas 7.4–7.7 prove the theorem on tricolored dags in
the remaining case. If the given dag has an isolated vertex, the theorem still applies,
as in the proof of Lemma 5.3.

8. Algorithms. This section gives algorithms to solve the bipartite strong-
connectivity augmentation problem in time O(n+m) and the general augmentation
problem in time O((n +m) log n). Here n and m denote the number of vertices and
edges in the input graph, respectively. The main ingredient is an algorithm to find
compatible pairs. This is given in section 8.1. The rest of the algorithm consists of
procedures that follow the proofs already presented. These procedures are given in
sections 8.2–8.5.

We start with two general observations. First recall that the strong component
graph of a given digraph can be constructed in linear time, using routines for depth-
first search and contraction [5]. Next observe that OPT ≤ Φ + 1 = O(n) new edges
get added to the graph. Hence all graphs we work with contain O(n+m) edges.

8.1. Compatible pairs. This section describes several routines to find com-
patible pairs. A compatible pair sequence x−i , y

+
i , i = 1, . . . , k, in a dag H has

x−i ∈ V −, y+
i ∈ V + with x−i , y

+
i a compatible pair in the strong component dag of

H+ {(x−j , y+
j ) : 1 ≤ j < i}. Consider two sets X− ⊆ V −, Y + ⊆ V + that have equal
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cardinality and are consistently colored. We give an algorithm to find a compatible
pair sequence whose vertices are in X−∪Y + and whose length is |X−|−1 = |Y +|−1.

The algorithm is based on a procedure ONE-PAIR that finds the next pair in the
desired sequence. Suppose we have found compatible pairs (x−j , y

+
j ), j = 1, . . . , i− 1.

Let Hi be the strong component graph of H + {(x−j , y+
j ) : 1 ≤ j < i}. Throughout

this discussion let V −, V +, X−, and Y + refer to Hi. Thus V − and V + represent
the sinks and sources of Hi. X

− and Y + represent the vertices of these sets V − and
V + that are in the original sets X− and Y +. The algorithm maintains a mapping
σ : X− ∪ Y + → V − ∪ V + with the property that for each source z+ ∈ Y + and each
sink z− ∈ X−,

r(z+, σ(z+)) and r(σ(z−), z−).

The following procedure finds a compatible pair x−, y+ with x− ∈ X−, y+ ∈ Y +

and augments it. The procedure assumes |X−| = |Y +| ≥ 2. It uses the above mapping
σ and updates σ to make it valid in the augmented graph.

PROCEDURE ONE-PAIR.
Step 1. Choose distinct vertices v−i ∈ X−, i = 1, 2, having |σ−1(v−i )| ≤ 2.

Similarly choose distinct vertices w+
i ∈ Y +, i = 1, 2, having |σ−1(w+

i )| ≤ 2.
Step 2. This step chooses x− as some vi and y+ as some wj so that after possibly

modifying σ,

σ(x−) �= y+ and σ(y+) �= x−.(8.1)

If for some i ∈ {1, 2}, σ(v−i ) �= w+
i and σ(w+

i ) �= v−i , take (x
−, y+) to be (v−i , w

+
i ).

Otherwise redefine σ(v−1 ) = w+
1 , σ(w

+
2 ) = v−2 and take (x−, y+) to be (v−1 , w

+
2 ).

Step 3. Augment the compatible pair x−, y+. Update σ for the new graph Hi as
follows: For every z+ ∈ σ−1(x−) − y+, change σ(z+) to σ(y+). Similarly for every
z− ∈ σ−1(y+)− x−, change σ(z−) to σ(x−).

We now show that ONE-PAIR is correct. First note that the vertices of Step 1
exist. In proof take v−i , i = 1, 2, to be the two vertices of X− with smallest value
|σ−1(v−i )|. Since the average value of |σ−1(v−i )|, vi ∈ X−, is at most |Y +|/|X−| = 1,
we have |σ−1(v−1 )|+ |σ−1(v−2 )| ≤ 2. Hence these vertices have the desired property.

It is clear that Step 2 chooses (x−, y+) so (8.1) holds. Also note that if Step 2
redefines σ we have r(w+

i , v
−
i ) for i = 1, 2, so the defining property of σ is maintained.

Equation (8.1) implies x−, y+ is compatible by the defining property of σ. Hence
the augment in Step 3 is valid. Finally we show Step 3 updates σ correctly. Recall
from Lemma 2.6 that the new graph Hi has sources V

+ − y+ and sinks V − − x−.
Hence Step 3 updates all vertices whose σ value is no longer an extreme vertex. The
update is correct by (8.1).

We conclude that ONE-PAIR is correct. This procedure can be repeated to find
a compatible pair until |X−| = |Y +| = 1.

Now we show how to find the desired compatible pair sequence in linear time
O(m + n). We use these data structures: The values σ(z) are stored in an ar-
ray. Each vertex z ∈ X− ∪ Y + has a list of the vertices in σ−1(z). There is a
list SHORT [X−] containing all vertices x− ∈ X− that have |σ−1(x−)| ≤ 2, and a
similar list SHORT [Y +]. All lists are doubly linked.

The mapping σ can be constructed initially in time O(m+ n) by two depth-first
searches: The first labels each vertex of Y + with a sink that it can reach. The second
labels each vertex of X− with a source that can reach it. Finally we initialize the
SHORT lists.
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Now we implement ONE-PAIR in time O(1). (This implies the desired time
bound for finding the compatible pair sequence.) Step 1 chooses vertices from the
appropriate SHORT list. In Step 2, suppose σ(x−) = z+ ∈ Y +. Delete x− from
σ−1(z+); if this makes |σ−1(z+)| ≤ 2, add z+ to SHORT [Y +]. Process y+ similarly.
Step 3 changes the appropriate σ-values and adds vertices to the lists σ−1(z) for
z = σ(x−), σ(y+). This may cause these vertices to be deleted from the SHORT
lists. Note that Steps 1 and 2 imply |σ−1(x−)|, |σ−1(y+)| ≤ 2. Hence Step 3 changes
O(1) σ values.

We extend this algorithm using the following observations.

Lemma 8.1. Take any vertex b ∈ B+ and let C be the set of all vertices compatible
with b. Let S = R−(b) and T = R−(V + − b)−B. If |S| > 1, then C = T . If |S| = 1,
then C = T − S.

Lemma 8.2. A pair of vertices x−, y+ that is compatible after an augment was
compatible before the augment.

Proof. Suppose x−, y+ was incompatible before the augment, i.e., before the aug-
ment we have R−(y+) = {x−} or R+(x−) = {y+}. Suppose R−(y+) = {x−}. The
edge added by the augment is directed from a sink other than x−, since x− is a sink
after the augment. Thus R−(y+) = {x−} after the augment. Similarly the condition
R+(x−) = {y+} is preserved by the augment.

In the given dag H let U be an arbitrary set of vertices. A maximal compatible
pair sequence for U is a compatible pair sequence with all its vertices in U that cannot
be extended by another pair. We will give an algorithm to find such a sequence. We
start with an algorithm C-SEQUENCE that finds a maximal compatible pair sequence
for U when the sources and sinks of U are consistently colored.

PROCEDURE C-SEQUENCE(U).

Step 1. Define sets X− ⊆ U− and Y + ⊆ U+ arbitrarily except for the constraint
that each has cardinality min{|U−|, |U+|}. If this cardinality is 0, return. Otherwise
apply the algorithm given above to find and augment a compatible pair sequence with
|X−|−1 pairs. (In the resulting graph at least one of the sets U−, U+ has cardinality
one. Hence there may be one more compatible pair that can be augmented, which is
found in Step 2.)

Step 2. Let u be the unique vertex of U+ (U−). Apply Lemma 8.1 to find the
vertices of U compatible with u. If such a vertex exists, augment the corresponding
pair.

Next we show how to find a maximal compatible pair sequence for U when the ex-
treme vertices of U have two colors, say, B andW . First execute C-SEQUENCE((U−∩
B)∪(U+∩W )). Then execute C-SEQUENCE((U−∩W )∪(U+∩B)). This procedure
is correct by Lemma 8.2.

Finally we give an algorithm MAX-SEQUENCE(U) to find a maximal compatible
pair sequence for U when the extreme vertices of U have three colors, B, W , and G.
Apply the above two-color procedure, taking the two colors as B and B. Then apply
the two-color procedure taking the two colors as W and W .

Lemma 8.3. MAX-SEQUENCE(U) finds a maximal compatible pair sequence
for U in a tricolored dag in time O(n+m).

Proof. MAX-SEQUENCE is correct by Lemma 8.2 and the fact that any augment
involves either a black vertex or a white vertex. For the time bound note that Step 2
of C-SEQUENCE finds the sets of Lemma 8.1 by depth-first search. As already noted
the graph contains O(n+m) edges.

We conclude this section by implementing the procedures for section 2. The
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implementations for Proposition 2.1, Lemmas 2.2 and 2.3 are straightforward. To
implement Lemmas 2.7 and 2.9, use MAX-SEQUENCE. In Lemma 2.9 if the graph
is not bicolored, after the augments are executed we determine the first time a color
B has Φ = |B+|+ |B−|. We undo all subsequent augments.

8.2. Bicolored dags.
Lemmas 3.2 and 3.3. To implement both lemmas, we must augment a maximal

sequence of witness-compatible pairs, where the witnesses are b+ ∈ B+, b− ∈ B− in
Lemma 3.2 and b+ ∈ B+, b− ∈ B−, w+ ∈ W+, w− ∈ W− in Lemma 3.3. We give a
linear-time procedure for this task.

Define the initial two or four witnesses as in Lemma 3.2 or 3.3. Let X be the set
of these initial witnesses. Execute MAX-SEQUENCE(V −X). Then do the following
for the two or four vertices of X. We illustrate for b− ∈ X (the other witnesses are
similar). Suppose in the current graph V −X contains both a white source y+ and a
black sink y−. These vertices are incompatible (by Lemma 8.2), so r(y+, y−). Hence
b−, y+ is witness-compatible. Augment this pair and (as in Lemmas 3.2 and 3.3)
change b− to y−.

This procedure augments a maximal sequence of witness-compatible pairs. In
proof let K be the dag at the end of the procedure and let X ′ be the set of witnesses
at the end. Lemma 8.2 shows that in K, V −X ′ has no pairs that are compatible in
the ordinary sense.

We claim that in K, V − X ′ does not contain both a white source and a black
sink. This is obvious if no augment was done for b−, so suppose an augment was done.
After executing MAX-SEQUENCE(V −X), we have either a unique white source in
W+ −X or a unique black sink in B− −X (by Lemma 2.5). The augment destroys
that source or sink.

The claim implies that K does not have a witness-compatible pair b−, y+ for
y+ /∈ X ′. The only other possibility is that b−, w+ is witness-compatible. If it were
there would be a white source y+ /∈ X ′ and a black sink y− /∈ X ′ with r(y+, b−) and
r(w+, y−). But this makes y−, y+ compatible, a contradiction.

We conclude our procedure augments a maximal sequence of witness-compatible
pairs. It is clear that the time is O(m+ n).

Lemma 3.5. The algorithm starts by augmenting a maximal compatible pair
sequence until the graph becomes bicolored or some color becomes big. This is done
by executing MAX-SEQUENCE(V ) and undoing the augments that occur after the
first time the termination condition is achieved. If there are two big colors, we reduce
to a bicolored dag as shown in the lemma. If there is a unique big color B, augment
a maximal compatible sequence where each augment involves a black vertex by exe-
cuting MAX-SEQUENCE(V ) with the colors taken to be B and B. If some augment
creates a second big color, undo any subsequent augments and proceed as above.

8.3. Blockers.
Detecting a blocker. We decide if an arbitrarily colored dag is a blocker in

linear time as follows. A set R−(X) or R+(X) can be computed in linear time by
depth-first search. Hence we can check if a dag is a blocker for a given color B in linear
time. (For 3- and 4-blockers, color B determines W .) At most two colors can have Φ
extreme vertices, so we can check for a 1-blocker in linear time. At most three colors
of a proper 4-blocker can have Φ − 1 extreme vertices (Lemma 4.4 implies Φ ≥ 3).
So we can check for such a blocker in linear time. V + contains vertices of exactly
three colors in a 3+-blocker. Hence we can check for a 3-blocker in linear time. For a
2-blocker, find two vertices x ∈ V +, y ∈ V − with r(x, y). If the dag is a 2-blocker, it
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must be a 2-blocker for the color of x or the color of y. So we can check for a 2-blocker
in linear time.

Implementing Lemma 4.5 is trivial.

8.4. Core-bicolored dags.
Lemma 5.2. Call a pair (x+, x−) ∈ B good if |B+| + |B−| ≤ |V +| − 2 or

|B+| + |B−| = |V +| − 1 and at most one vertex of the pair belongs to G. A pair of
W is good if it satisfies the symmetric condition. The proof of Lemma 5.2 shows if
H is not a blocker, then it has good pairs (x+, x−) ∈ B, (y+, y−) ∈ W with all four
vertices distinct. We give an algorithm to find two such pairs. Using these pairs we
recolor vertices to reduce to the bicolored case, as shown in the lemma.

First note that we can find a good pair in B by depth-first search: If |B+|+|B−| ≤
|V +| − 2, we do a depth-first search from (B ∪G)+. If |B+|+ |B−| = |V +| − 1, we do
a depth-first search from B+ and a second depth-first search from G+.

Start by finding a good pair (x+, x−) ∈ B. Then try to find a good pair of W in
the graph H − {x+, x−}. If such a pair exists, we are done. Otherwise execute the
case below that applies.

Case 1. H − x+ does not contain a good pair of W.
This implies x+ is in every good pair of W. Let (x+, y−1 ) be a good pair of W. If

it is the only good pair ofW, then use it with a good pair of B in H−{x+, y−} as the
desired pairs. Otherwise let (x+, y−2 ) be a second good pair of W. There is a good
pair of B in H − {x+}, say, (z+, z−). Use (z+, z−) with (x+, y−i ), where i ∈ {1, 2} is
chosen so y−i �= z−, as the desired pairs.

Case 2. Both H − x+ and H − x− contain a good pair of W, but H − {x+, x−}
does not.

This implies we can find good pairs (x+, y−) and (y+, x−) of W, where y− �= x−

and y+ �= x+. x+, x− ∈ G since (x+, x−) ∈ B. If y− ∈ G, then (x+, y−) is good for
B, so take (x+, y−) and (y+, x−) as the desired pairs. Now without loss of generality
assume that both y+ and y− are white. There is a good pair of B in either H − x+

or H − x−. Find such a pair and use it with either (x+, y−) or (y+, x−) to form the
desired pairs.

Theorem 8.4. The bipartite strong-connectivity augmentation problem and the
cable-framework rigidity problem can be solved in linear time.

8.5. General algorithm.
Merging colors. Lemma 6.2 is straightforward to implement in time O(n+m).

The algorithm finds a permissible merge into three colors that gives a nonblocker after
trying at most five merges.

The implementation of Lemma 6.3 is similar to Case 1 of Lemma 5.2 in the
previous section.

Augmentation algorithm. We are given a tricolored dag H that is not a
blocker. We implement the proof of section 7 to solve the strong connectivity aug-
mentation problem on H. Recall that the proof orders the blocker types as 2, 3, 4, 1.
The relation ≺ corresponds to precedence in this list, e.g., 2 ≺ 3, 4, 1. Similarly for
�,�,�.

For i = 2, 3, 4 define an i-witness set to be a set of vertices that satisfies one of
the conditions of Lemma 7.1 or Lemma 6.1(i) that preclude H from being a blocker of
type � i. For instance the six vertices of Lemma 7.1(iv) form a 3-witness set, as well
as a 2-witness set. Vertices b+ ∈ B+, b− ∈ B−, x+ ∈ B +, x− ∈ B− with r(b+, b−)
and r(x+, x−) form a 2-witness set, since they satisfy the condition of Lemma 7.1(i).
A 4-witness set differs from the others because it has an additional condition: There
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is a distinguished color B that has Φ − 2 extreme vertices. For instance, the above
3-witness set is a 4-witness set in a dag where B has Φ− 2 extremes.

Each of Lemmas 7.4–7.7 is easily implemented in linear time. Lemma 7.4 reduces
the graph to a bicolored dag. Lemmas 7.5–7.7 each start with a dag that has an
augment giving an i-blocker (i = 2, 3, 4) and execute a different augment that is
guaranteed not to give a blocker of type � i. This guarantee holds because the lemma
(and its corresponding algorithm) produces an i-witness set. (Lemma 7.7 produces a
4-witness set in a graph where B has Φ− 2 extreme vertices.)

These observations show we can execute one augment in linear time. This implies
an algorithm for the augmentation problem that runs in time O((n+m)Φ).

Now we give an algorithm with the improved time bound O((n+m) log Φ). The
algorithm consists of four stages: an initial stage and a stage for i-blockers, i = 2, 3, 4.
We refer to the stage for i-blockers as stage i. The algorithm starts in the initial stage.
After that it executes between zero and three blocker stages, always progressing from
a stage i to a higher-numbered stage.

Each stage has as input a tricolored dag that is not a blocker. For the initial
stage this is the given dag H. For subsequent stages it is an augmented version of H.
Stage i is also given an i-witness set.

Each stage begins by executing a sequence of augments that end with a dag K,
such that the following properties hold.

(i) Each augment decreases Φ by 1.
(ii) K is not a blocker.
(iii) No augment involves a vertex in the given witness set. (This set is ∅ in the

initial stage.)
(iv) In stage 4 each augment involves a vertex of color B (so B always has Φ− 2

extreme vertices).
(v) K is either (a) rooted, (b) bicolored, (c) has Φ = |B+|+|B−| for some color B,

(d) has Φ = O(1), or (e) an augment for K has been found whose execution
gives a blocker.

In cases (v(a))–(v(d)) complete the solution to the augmentation problem in time
O(n +m) using the procedure for Lemmas 2.3, 3.4, 4.5, or the above O((n +m)Φ)
algorithm, respectively. (Note K may be strongly connected, in which case it satisfies
(v(b)).)

Suppose case (v(e)) holds. If some color has no source or no sink, execute the
procedure of Lemma 6.3 to get a bicolored dag and complete the solution as in the
previous paragraph. Otherwise execute the procedure of Lemmas 7.4–7.7 to get a dag
L that is not a blocker. (For example, suppose K has an augment giving a 2-blocker.
Lemma 7.5 may give an augment that produces a nonblocker or perhaps a 4-blocker. In
the first case we take the nonblocker as L. In the second case we execute the procedure
for Lemma 7.7. Eventually we get a nonblocker L.) If L satisfies any of conditions
(v(a))–(v(c)), complete the solution as in the previous paragraph. Otherwise the last
lemma whose procedure is executed gives a j-witness set for L, where j ∈ {2, 3, 4}.
Proceed to stage j. (Note that if Lemma 7.4 for 1-blockers is executed, it gives a
graph satisfying (v(b)), so the solution gets completed.)

This algorithm executes each of the four stages at most once. In proof suppose
stage i ends with (v(e)) satisfied. The augment of (v(e)) gives a blocker of type � i.
This follows since the i-witness set is preserved (by (iii)–(iv)). Hence the procedure
of Lemmas 7.4–7.7 gives a nonblocker L that, if not bicolored, has a j-witness set for
some j � i. In this case the algorithm advances to stage j, so no stage gets repeated.
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Now we show how to implement a stage. We need only describe the procedure
that executes the sequence of augments satisfying (i)–(v).

Let X be the given set of i-witnesses (X = ∅ for the initial stage). The initial
stage and stages 2 and 3 begin by executing MAX-SEQUENCE(V − X). Stage 4
executes MAX-SEQUENCE(V −X) in the dag with colors taken to be B and B (for
the distinguished color B).

Let S be the sequence of augments that get executed in MAX-SEQUENCE. Undo
these augments. Take the final dag K to be the result of executing augments of S, in
order, until one of conditions (v(a))–(v(d)) holds, or executing the next augment in
S would give a blocker (so (v(e)) holds).

Correctness of this procedure depends on two facts. First note that the final
sequence of augments satisfies (i). This holds since an augment that does not decrease
Φ is executed in a dag that has a color B with Φ extreme vertices, so (v(c)) holds.

The second fact is that (v) is satisfied when the entire sequence S gets executed
to produce K. We show that in this case (v(d)) holds, Φ = O(1). Note that any
i-witness set has O(1) vertices (specifically it has at most 6 vertices). Hence the
following lemma is sufficient.

Lemma 8.5. Let H be a tricolored graph with X ⊆ V .
(i) If MAX-SEQUENCE(V −X) results in a dag K with Φ = |V +| = |V −|, then

K has Φ ≤ |X|+ 3.
(ii) Suppose executing MAX-SEQUENCE(V −X) in the dag with colors taken to

be B and B results in a dag K that (using the original colors) has Φ = |V +| = |V −| =
|B+|+ |B−|+ 2. Then K has Φ ≤ |X|+ 4.

Proof. (i) Consider K. If every color B has |(B − X)+| ≤ 1, then Φ = |V +| ≤
|X|+|V +−X| ≤ |X|+3. Hence assume some color B has |(B−X)+| > 1. This implies
|(B−X)−| ≤ 1 (Lemma 2.5). If |(B−X)−| ≤ 1, then Φ = |V −| ≤ |X|+ |V −−X| ≤
|X|+2. So assume |(B−X)−| > 1. This implies |(B−X)+| ≤ 1 (Lemma 2.5). Hence
B contains at most |X| + 2 extreme vertices. But B contains at least Φ extreme
vertices (since B contains at most Φ extremes). We have deduced Φ ≤ |X|+ 2.

(ii) If |(B − X)+|, |(B − X)−| ≤ 1, then Φ = |B+| + |B−| + 2 ≤ |X| + 4. So
without loss of generality assume |(B−X)+| > 1. The rest of the argument proceeds
as in part (i).

The efficiency of a stage depends on how fast we can find the subsequence of
augments of S that get executed. We start by finding the first augment in S that
results in a dag satisfying any of the conditions (v(a))–(v(c)). This is easy to do in
linear time. Let S′ be the sequence S up to and including the augment just found.
Now we must find the first augment in S′ that produces a blocker. This can be done
by a binary search of S′, where each probe tests if the corresponding dag is a blocker.

To see that this binary search is correct, note that the first augment in S′ that
produces a blocker changes a dag with OPT = Φ into a dag with OPT = Φ + 1.
Every subsequent dag has OPT = Φ + 1 (since each augment decreases Φ by 1, and
an augment decreases OPT by at most 1). Hence every subsequent dag is a blocker.

Each probe of the binary search takes time O(n+m) (section 8.3). Thus the time
for the binary search is O((n+m) log Φ).

Theorem 8.6. The problem of strong-connectivity augmentation with partition
constraints can be solved in time O((n+m) log n) (the value of OPT can be found in
time O(n+m)).

9. Related problems. The weighted version of bipartite strong-connectivity
augmentation is NP-hard, by reduction from the bipartite Hamiltonian cycle problem.
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[3] solves the problem of making an undirected bipartite graph k-edge-connected
while preserving bipartiteness, i.e., bipartite k-edge-connectivity augmentation. This
paper has solved the k = 1 case of bipartite directed k-edge-connectivity augmenta-
tion. We believe this directed problem is harder than the undirected problem of [3].
As evidence first recall that the directed problem for k = 1 already has a richer set
of blockers than the undirected problem for arbitrary k. Also for k = 1 the directed
problem can have OPT > Φ for graphs with arbitrarily large values of OPT. In con-
trast [3] shows that for the undirected problem, OPT ≥ 2k + 1 implies OPT = Φ.
Finally [8] shows that in the directed problem with arbitrary k, OPT takes on values
between Φ and Φ + k (for an appropriate definition of Φ). In contrast [3] shows any
undirected bipartite graph has OPT equal to Φ or Φ + 1.

We close by noting that if our operation is not adding new cables but replacing
existing cables by rods, the rigidity problem can be solved by the Lucchesi–Younger
Theorem [7].
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Abstract. We investigate a conjecture stated by Coffman, Flatto, and Wright within the context
of a stochastic machine minimization problem with a hard deadline. We prove that the conjecture
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1. Introduction. Problems of optimal stochastic allocation of machines under
waiting-time constraints have recently received considerable attention, as they are
important in the design of computer and communication networks and in stochastic
real-time scheduling problems (see [1], [2], [3]). From a theoretical point of view these
problems are complementary to makespan minimization problems (see, for example,
[4], [6], [7], [8]).

The general class of problems of optimal stochastic allocation of machines under
waiting-time constraints (also known as stochastic machine minimization problems)
can be formulated as follows: There are N jobs with processing times T1, T2, . . . , TN ,
deterministic or random with known distributions. Job waiting times are bounded by
a time W that is independent of T1, T2, . . . , TN , and may be deterministic or random
with a known distribution. There is an unlimited number of machines (processors)
initially available to process these jobs. At time 0, a timer is started with initial
value W and job scheduling begins. When the timer expires, all jobs not running at
that time and still waiting to be processed are assigned to available machines. The
objective is to determine, within the class of nonpreemptive policies, a policy that
minimizes the expected cost, with cost defined as the number of distinct machines
used throughout the schedule.

Several cases within the above class of problems have been considered so far in
the literature [1], [2], [3]. A problem of practical importance is the hard deadline case
where W is a constant. A partial analysis of this problem has been presented in [1],
where the structure of an optimal policy was proved under a conjecture that remains
so far an open problem. In this paper we prove that the conjecture stated in [1] is
true; consequently, the structure of the optimal policy proposed in [1] is correct.

The paper is organized as follows: the conjecture stated in [1] is precisely for-
mulated in section 2; an outline of the conjecture’s proof is given in section 3 and
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the technical details of the proof appear in section 4. Discussion of the results and
suggestions for further research appear in section 5.

2. The conjecture. Coffman, Flatto, and Wright [1] considered a stochastic ma-
chine minimization problem (described in section 1) where the job processing times
T1, T2, . . . , TN are independent samples of an exponentially distributed random vari-
able T with E(T ) = 1, and the job waiting times are bounded by a constant W .

For this particular stochastic machine minimization problem it is possible to define
a Markov process on the set of states (n, k, s), where n is the number of unfinished
jobs, k is the number of jobs currently assigned to processors, and s is the time
remaining on the timer (see [1]). Let V (n, k, s) denote the expected cost incurred by
an optimal allocation policy when the initial state is (n, k, s), and define

V (n, s) = min
1≤k≤n

V (n, k, s)(1)

as the expected cost incurred by an optimal allocation policy when there are n jobs
to be processed with s units of time remaining on the timer, and there is an unlimited
number of machines initially available. V (n, k, s) can be computed by the Bellman
equation,

(2)

V (n, k, s) = inf
0≤t≤s

{
e−k(s−t)V (n, k + 1, t) +

∫ s−t

0

ke−kuV (n− 1, k, s− u)du
}
, k < n,

V (n, n, s) = n.(3)

Coffman, Flatto, and Wright [1] proved that V (n, k, s) has the following properties.
Lemma 2.1. (i) V (n, k, 0) = n, V (n, k,∞) = k. (ii) V (n, k, s) is nondecreasing

in k for fixed n and s, strictly increasing in n for fixed k and s, and strictly decreasing
in s for fixed n and k < n.

Furthermore, the following assertion was made in [1].
Conjecture. For each n > 1, there exist nonnegative numbers lnk, 1 ≤ k ≤

n− 1, such that

V (n, k + 1, s) > V (n, k, s) for s > lnk,(4)

V (n, k + 1, s) = V (n, k, s) for s ≤ lnk,(5)

ln(n−1) ≤ ln(n−2) ≤ · · · ≤ ln1.(6)

Based on Lemma 2.1 and the above conjecture, Coffman, Flatto, and Wright
proved the following result in [1].

Theorem 2.2. For all k, 1 ≤ k ≤ n− 2,

l(n−1)k < lnk.(7)

The above theorem and the conjecture imply the following structure of an optimal
policy.
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Theorem 2.3 (see [1, Theorem 5.3]). Let the initial state have n > 1 jobs to be
scheduled, an unlimited number of machines available, and a clock time s such that
lnk < s ≤ ln(k−1) for some 1 ≤ k ≤ n − 1. Then assign jobs to k machines and
start running jobs in state (n, k, s). Continue running jobs in any given state until
one of the following three events occurs: (1) The clock expires; in this case assign the
remaining n − k ≥ 0 waiting jobs to new machines. (2) A machine completes a job
in some state (n′, k′, s′), k′ < n′; in this case replenish the machine and continue in
state (n′ − 1, k′, s′). (3) A state (n′, k′, s′), k′ < n′, is reached in which the remaining
time has reduced to s′ = ln′k′ ; in this case assign a waiting job to a new machine and
continue in state (n′, k′ + 1, s′).

In the remainder of this paper, we prove that the above stated conjecture is true,
thus completing the proof of the optimality of the policy described in Theorem 2.3.
We proceed as follows: First we briefly outline the main ideas of the proof and then
we present all the technical details.

3. Outline of the proof of the conjecture. We establish, via the Bellman
equation, the existence of “time thresholds” lnk, n = 1, 2, . . . and k = 1, 2, . . . , n − 1
that have the following features:
(F1) When the initial state is (n, k, s), s > lnk, then along sample path realizations

where there are no job completions it is optimal not to assign any new (i.e.,
previously unused) machines to jobs waiting to be processed as long as the
time remaining in the timer is strictly larger than lnk. (Along the same sample
path realizations it is optimal to assign a new machine to a job waiting to be
processed when the time remaining in the timer is equal to lnk.)

(F2) If the initial state is (n, k, t) and t ≤ lnk, then it is optimal to assign right away
at least one new machine to a job waiting to be processed.

(F3) For any n, n = 1, 2, . . . and k = 1, 2, . . . , n − 1 the “time thresholds” lnk are
ordered as follows:

ln(n−1) ≤ ln(n−2) ≤ · · · ≤ ln1.

To establish (F1) we use the Bellman equation and consider an initial state (n, k, s)
with the following characteristic: The earliest time lnks (according to the Bellman
equation) at which it is optimal to add a new machine along sample path realizations
where there are no job completions is such that lnks < s. We prove that for all states
(n, k, s′) such that s′ > lnks we have lnks = lnks′ := lnk. This result and the definition
of lnks (see (8)–(9)) lead to the proof of the first part of the conjecture (see (4)).

To establish (F2) we consider an instance where the initial state is (n, k, s), s >
lnk, and an optimal allocation policy satisfying the Bellman equation is used. We
show that along sample path realizations where there are no job completions until t
units of time remain on the timer (t < lnk by assumption) it is optimal to have at
least k + 1 jobs under processing at t. This implies that if the initial state is (n, k, t)
and an optimal allocation policy (satisfying the Bellman equation) is used, at least
one new machine must be allocated to a job waiting to be processed at t. This feature
together with a property of the cost function V (n, k, s), described by Lemma 2.1(ii),
leads to the proof of the second part of the conjecture (Eq. (5)).

To establish (F3) we use the first and second parts of the conjecture (already
proved), a property of the cost function V (n, k, s) described by Lemma 2.1 (ii), the
Bellman equation, and a contradiction argument. Feature (F3) of the “time thresh-
olds” lnk describes the last part of the conjecture (see (6)).

Thus, the validity of the conjecture is established.
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4. Proof of the conjecture. Consider the Bellman equation and for each state
(n, k, s) define

Asn,k :=

{
l : l = arg inf

0≤t≤s

[
e−k(s−t)V (n, k + 1, t) +

∫ s−t

0

ke−kuV (n− 1, k, s− u)du
]}

(8)
and

lnks := max
{
l : l ∈ Asn,k

}
.(9)

Let π∗ denote the allocation policy that satisfies the Bellman equation and has the
following characteristic: Along sample paths that originate at any state (n, k, s), with
n > k, s > lnks, and have no job completions until lnks units of time remain on the
timer, π∗ adds a new machine at that point.

Proof of (4). Consider an initial state (n, k, s) such that s > lnks. We prove that
for all s′ > lnks we have

lnks = lnks′ := lnk.(10)

This fact together with the definition of lnks leads to the proof of the first part of the
conjecture, namely, (4). To prove (10) we proceed in two steps.

Step (i). Take s′ such that lnks < s′ < s. We prove that Asn,k = As
′
n,k. Pick

l ∈ As′n,k; then

V (n, k, s′) = e−k(s
′−l)V (n, k + 1, l) +

∫ s′−l

0

ke−kuV (n− 1, k, s′ − u)du.(11)

Furthermore, since s > s′ > lnks,

V (n, k, s) = e−k(s−s
′)V (n, k, s′) +

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du.(12)

Substituting (11) into (12), we get

V (n, k, s) = e−k(s−s
′)

[
e−k(s

′−l)V (n, k + 1, l) +

∫ s′−l

0

ke−kuV (n− 1, k, s′ − u)du
]

+

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du.(13)

Letting

v = s− s′ + u(14)

in the second term of (13), we obtain

V (n, k, s) = e−k(s−l)V (n, k + 1, l) +

∫ s−l

0

ke−kuV (n− 1, k, s− u)du.(15)

Equation (15) proves that l ∈ Asn,k. Hence,

As
′
n,k ⊂ Asn,k.(16)
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Next, take l ∈ Asn,k; suppose that l �∈ As
′
n,k. Then, since by assumption s > s′ >

lnks ≥ l, it follows that

V (n, k, s) = e−k(s−s
′)V (n, k, s′) +

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du

< e−k(s−s
′)

[
e−k(s

′−l)V (n, k + 1, l) +

∫ s′−l

0

ke−kuV (n− 1, k, s′ − u)du
]

+

∫ s−s′

0

ke−kuV (n− 1, k, s− u)du

= e−k(s−l)V (n, k + 1, l) +

∫ s−l

0

ke−kuV (n− 1, k, s− u)du;(17)

the inequality in (17) results because l �∈ As′n,k. According to (17), l �∈ Asn,k and this

is a contradiction. Hence, l ∈ As′n,k; therefore,

Asn,k ⊂ As
′
n,k.(18)

From (16) and (18), we conclude that

Asn,k = As
′
n,k for all s′ such that lnks < s′ < s.(19)

Step (ii). Consider s′ such that �nks < s < s′. We prove that there is no �̂ ∈ As′n,k
such that �̂ ≥ s. The proof is by contradiction.

Suppose there exists �̂ ∈ As′n,k such that �̂ ≥ s; then �nks′ ≥ s. Start at (n, k, s′)
and use the optimal allocation policy π∗. Let Ω′ be the set of sample paths that start
at (n, k, s′) and along which there are no job completions until s units of time remain
on the timer. Since �nks′ ≥ s, the expected cost incurred by the optimal policy π∗

along Ω′ is V (n, k + k̂, s), where k̂ ≥ 1. Furthermore, since k̂ machines are added by
the optimal policy π∗ along Ω′, we conclude that when there are n unfinished jobs
and s units of time remain on the timer it is optimal to use k + k̂ machines (k̂ ≥ 1).
That is,

V (n, s) = V (n, k + k̂, s).(20)

On the other hand, since s > �nks, (1), Lemma 2.1(ii), the Bellman equation, and the
definition of �nks imply that

V (n, s) < V (n, k + 1, s) ≤ V (n, k + k̂, s),(21)

which, in turn, implies that when there are n unfinished jobs and s units of time
remain on the timer it is optimal to use less than k + 1 machines. Thus, under the
assumption that there exists �̂ ∈ As′n,k such that �̂ ≥ s, a contradiction (see (20) and

(21)) is reached. Consequently, every �̂ ∈ As
′
n,k satisfies �̂ < s. Furthermore, since

s′ > s > lnks′ , by arguments similar to those of step (i), we conclude that

As
′
n,k = Asn,k for all s′ such that lnks < s < s′.(22)

Hence, for all states (n, k, s), (n, k, s′) such that s > lnks, s
′ > lnks, we have

lnks = lnks′ := lnk.(23)
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From (2), (3), (8), (9), (19), (22), and (23), we conclude that there exists lnk such
that

V (n, k, s) < V (n, k + 1, s) for all s > lnk.(24)

Proof of (5). Consider any t ≤ lnk. We want to prove that for such a t,

V (n, k, t) = V (n, k + 1, t).(25)

To do this we formalize the idea outlining the proof of (F2) in section 3. Take (n, k, s),
s > lnk, as the initial state and use the allocation policy π∗. Let Ω be the set of sample
paths starting at (n, k, s) along which there are no job completions until t time units
remain on the timer. Then, because of (2), (8), (9), and the definition of policy π∗,
the expected cost incurred by the optimal policy π∗ along Ω is V (n, k+ r, s) for some
r ≥ 1. Moreover, since r machines are added by the optimal policy π∗ along Ω, it
follows that when there are n unfinished jobs and t units of time remain on the timer
it is optimal to use k + r machines (r ≥ 1). Hence,

V (n, k + r, t) = V (n, t) ≤ V (n, k, t).(26)

On the other hand, by Lemma 2.1(ii)

V (n, k + r, t) ≥ V (n, k, t).(27)

From (26) and (27) we conclude that

V (n, k, t) = V (n, k + r, t).(28)

From (28) and Lemma 2.1(ii) we obtain

V (n, k, t) = V (n, k + 1, t) for t ≤ lnk.(29)

Proof of (6). We use (4) and (5) and formalize the idea outlining the proof of
(F3) in section 3. Suppose that lnk > ln(k−1). Consider t such that lnk > t > ln(k−1)

and assume that there are n jobs to be processed at t. Then t < lnk and (5) imply
that

V (n, k, t) = V (n, k + 1, t).(30)

From (1), (30), Lemma 2.1(ii), and the Bellman equation it follows that it is optimal
to use at least k + 1 machines when there are n jobs to be processed with t units of
time remaining on the timer. On the other hand, t > ln(k−1) and (4) imply that

V (n, k, t) > V (n, k − 1, t).(31)

From (1), (31), Lemma 2.1(ii), and the Bellman equation we conclude that it is
optimal to use less than k machines when there are n jobs to be processed with t
units of time left on the timer. Thus, under the assumption lnk > ln(k−1) we reach
a contradiction. Consequently, lnk ≤ ln(k−1). By arguments similar to the above we
obtain the remaining inequalities in (6).

The proof of the conjecture is now complete.
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5. Discussion. The proof of the conjecture stated in [1] and described in sec-
tion 2 completes the proof of optimality of the policy described in Theorem 2.3.
Theorem 2.3 describes the nature of an optimal policy for the stochastic machine
minimization problem formulated in [1] and described in sections 1 and 2 of this
paper. According to this optimal policy allocation decisions are made at job comple-
tions, when the timer expires, or when the “time thresholds” lnk are reached. These
“time thresholds” can be computed for all n, k, k = 1, 2, . . . , n − 1 by (8) and (9).
The computation of lnk is a challenging and formidable task that will not be further
pursued in this paper.

The stochastic machine minimization problems investigated by Coffman, Flatto,
and Wright in [1], [2], [3] consider only the scheduling of jobs (tasks, projects) that
are initially available (i.e., they are available at time 0) in the system. Stochastic ma-
chine minimization problems with arrivals are interesting extensions of the problems
considered in [1], [2], [3], as they arise in wireless communication networks and in
automated target recognition systems (see [5]). A stochastic machine minimization
problem with Poisson arrivals, exponential service times, and hard deadlines has been
investigated in [5].

A class of interesting technical questions is to determine whether the structure
of the optimal policies described in [1], [2], [3] remains unaltered when arrivals are
included in the problem formulation.

Acknowledgments. The authors are grateful to the anonymous reviewers,
whose comments helped to significantly improve the presentation of the results of
this paper.
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Abstract. A wait-free hierarchy [ACM Transactions on Programming Languages and Systems,
11 (1991), pp. 124–149; Proceedings of the 12th ACM Symposium on Principles of Distributed
Computing, 1993, pp. 145–158] classifies object types on the basis of their strength in supporting
wait-free implementations of other types. Such a hierarchy is robust if it is impossible to implement
objects of types that it classifies as “strong” by combining objects of types that it classifies as “weak.”
We prove that if nondeterministic types are allowed, the only wait-free hierarchy that is robust is
the trivial one, which lumps all types into a single level. In particular, the consensus hierarchy (the
most closely studied wait-free hierarchy) is not robust. Our result implies that, in general, it is not
possible to determine the power of a concurrent system that supports a given set of primitive object
types by reasoning about the power of each primitive type in isolation.
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1. Introduction.

1.1. Background and overview of the result. Interest in asynchronous
shared-memory distributed computing dates back at least to Dijkstra’s work on mu-
tual exclusion [4]. In this model of computation, a set of processes cooperate toward
some common task (such as excluding each other from a critical section) by asyn-
chronously taking steps, some of which access shared registers. The operations that
the processes can apply to the shared registers may be simple read and write opera-
tions, or more complex ones such as test-and-set, fetch-and-add, and so forth.

In a more general version of this model of computation, processes communicate by
accessing shared objects. An object is accessed by applying an operation to it; the op-
eration changes the state of the object and returns a value to the process that invoked
it. Each object belongs to a type. A type consists of a set of states, a set of operations,
a set of responses to operations, and a state transition relation that describes the ef-
fect of applying each operation to an object of that type. More specifically, the state
transition relation specifies the responses the object may return and the states it may
enter if an operation is applied when the object is in a particular state. Examples of
types include register (with read and write operations only), test-and-set-register (with
test-and-set operation), stack, queue, and priority-queue, among many others. (We use
the sans serif font to indicate object types.)
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A distributed system supports, in hardware or software, a certain fixed set of
“base” object types. To enhance the usability of such a system, a programmer may
wish to enrich the set of available object types by implementing new types not directly
supported by the system. To implement a type T from a set of base types B in a
system of n processes, the programmer must provide n procedures for each operation
op of T ; these are the procedures that may be invoked by the n processes to apply op
to an object of type T . These procedures may use any number of objects, all belonging
to types in B ∪ {register}. Note that this notion of implementation takes registers for
granted. (For convenience, in the rest of the paper we say simply “registers” instead
of “objects of type register.”) This is reasonable since any realistic shared-memory
system will provide at least this much.1

An implementation is required to be linearizable [7]: Any concurrent execution
E consisting of invocations of the procedures written by the programmer must be
equivalent to a sequential execution Es consisting of the same procedure invocations,
where each invocation returns a response and changes the state of the object it accesses
in accordance with the state transition relation of the implemented type. Moreover,
the sequential execution Es must respect the order of procedure invocations that did
not overlap in E; it may serialize in any way procedure invocations that were active
concurrently in E.

Of special interest are wait-free implementations. In such implementations, a
process is guaranteed to complete any procedure it invokes within a finite number
of its own steps, regardless of whether other processes are fast, slow, or have even
crashed (i.e., halted before completing). The requirement of wait freedom precludes
the use of critical sections and busy waiting. In this paper, we consider only wait-free
and linearizable implementations.

A fundamental question is whether, in a system of n processes, it is possible to
implement a type T from a given set of base types B. In a seminal paper [6], Herlihy
established an important link between a type’s ability to support implementations of
other types and its ability to solve the well-known consensus problem [5], in which
processes must reach agreement on one of their input values. (This problem is formally
defined in section 3.1.) More specifically, he showed that if objects that belong to a
set of types B (together with registers) can be used to solve consensus among n
processes, then objects that belong to types in B (together with registers) can be
used to implement any type in a system of n processes. This fact is referred to as
“the universality of consensus.”

Define the consensus number of a type T , as the maximum number n such that
there is an algorithm that solves consensus among n processes using only objects of
type T (and registers)—or∞, if no such maximum exists. We can now place each type
in the consensus hierarchy according to its consensus number. By the universality
of consensus, the relative strength of two types T and T ′ is captured by their levels,
say, n and n′, respectively, in the consensus hierarchy. If n ≥ n′, then T is at least as
strong as T ′: in a system of n processes, T can be used to implement T ′. If, further,
n > n′, then T is strictly stronger than T ′: T ′ cannot be used to implement T in a
system of n processes.

Although consensus numbers allow us to make pairwise comparisons on the

1The notion of implementation that we use in this paper is the most prevalent in the literature,
although more restricted ones have also been studied. For instance, in some definitions registers
are not taken for granted, while in others only one object of each base type may be used in the
implementation. For further discussion on such more restricted definitions, see [8] and [10].



NONDETERMINISTIC WAIT-FREE HIERARCHIES 691

strength of types, it is not clear whether they can also be used to answer the more
general implementability question: Can we implement T from a set of base types B,
in a system of n processes? Jayanti [8] observed that consensus numbers could be
used to answer this question if the consensus hierarchy is robust ; i.e., no type at level
n can be implemented from types at levels strictly below n in a system of n processes.

If the consensus hierarchy is robust, a type T of consensus number n can be
implemented from the set of base types B in a system of n processes if and only
if B contains a type with consensus number n or more. Thus, we can answer the
implementability question by looking at the consensus numbers of the base types and
the desired target type. Another way of thinking about robustness is that if the
consensus hierarchy has this property, a set of types B is as strong as the strongest
of the types it contains. Thus, we can determine the power of a given set of types
by reasoning about the power of each type in isolation. If, on the other hand, the
consensus hierarchy is not robust, then to determine the power of a set of types
we must, in general, take into account the interactions between the types in the
set—a more formidable task. In view of the importance of the consensus hierarchy
and the salutary consequences of robustness, it is useful to know whether the consensus
hierarchy is robust.

Borowsky, Gafni, and Afek [1] and Peterson, Bazzi, and Neiger [15] proved that
if we restrict our attention to deterministic types, the consensus hierarchy is robust.
A type is deterministic if whenever we apply an operation to the type, the current
state uniquely determines the response of the operation and the new state of the
type. Although most of the common types are deterministic, some useful types are
most naturally specified as nondeterministic ones. For example, consider a priority
queue where keys are not unique. If several elements are in the queue with the same
maximum priority, it is natural to allow the priority queue to remove and return any
one of these elements. It is, of course, always possible to turn a nondeterministic
type into a deterministic one by restricting the allowable behavior of the type. This,
however, results in unnecessary restrictions for the implementor of the type. As
pointed out in [11], by arbitrarily and artificially excluding legitimate behavior, we
may be inadvertently ruling out efficient implementations of the type. Thus, the
investigation of properties of nondeterministic types is of practical relevance.

In this paper we prove that if we allow nondeterministic types, then the consensus
hierarchy is not robust. In view of this, a natural question is whether there is some
other hierarchy of types which, like the consensus hierarchy, classifies types according
to their strength in supporting wait-free implementations, but, unlike the consensus
hierarchy, is robust. Jayanti proved that only a coarsening of the consensus hierarchy
can have these properties [8]. In this paper we show that, in fact, the only hierarchy
that has these properties is the trivial one in which all types are lumped into level
one!

1.2. Overview of the proof. To prove our result we demonstrate two non-
deterministic (but finite) object types, negation and booster; each of these is at level
one of the consensus hierarchy, but, when combined, they can implement any type in a
system of n processes, for any n. The central idea behind our proof is the formulation
of equality negation, a weaker variant of the consensus problem which is formally
defined in section 3.2. An object of type negation enables processes to directly solve
this problem. An object of type booster allows processes to solve consensus provided
they can prove that they can solve equality negation among them using initial values
specified by the booster object.
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We give a simple algorithm that allows n processes to solve consensus using a
negation object, a booster object, and registers. (This algorithm suggests itself almost
immediately from the definition of the booster type.) By the universality of consensus,
this implies that the two types together can implement any type in a system of n
processes. The difficult part of our result is in proving that each of negation and
booster has consensus number one. The usual technique for proving upper bounds on
the consensus number of a type, known as the “bivalence argument” [5], works well
for deterministic types but runs into difficulties in the context of nondeterministic
types. The bulk of the technical work in the paper (sections 7 and 8) seeks ways to
circumvent these difficulties.

1.3. Related work. Jayanti was the first to raise the question of robustness
of the consensus hierarchy [8]. Before his work, it had been widely, though tacitly,
assumed that the hierarchy is robust. Jayanti showed that various natural variants of
the consensus hierarchy (including the one used in [6]) are not robust. He also proved
that if a robust hierarchy that classifies types according to their ability to implement
other types exists, it must be either the consensus hierarchy or a coarsening of it—i.e.,
a hierarchy obtained by collapsing together adjacent levels of the consensus hierarchy.

As mentioned earlier, Borowsky, Gafni, and Afek [1] and Peterson, Bazzi, and
Neiger [15] proved that the consensus hierarchy, restricted to deterministic types, is
robust. In recent work, Ruppert [18] gave simple proofs of robustness if we restrict
our attention to certain interesting classes of deterministic types.

In the next paragraph we describe some results concerning the (non)robustness of
the consensus hierarchy in a model of objects that differs from the “standard” model
introduced in [6] (and used in the present paper). To explain the different models
we recall that, in a system of n processes, each object of type T has n procedures
for each operation op of T . Processes trying to apply op to an object concurrently
must invoke different procedures. In the “standard” model of objects a process that
wishes to apply op to the object invokes one of these n procedures and remains bound
to it only for the duration of the invocation. Other processes may later use that
procedure. In the alternative model, each process permanently binds itself to one
procedure. Objects in this model are sometimes called hardwired, since the binding
of processes to procedures is fixed.

Chandra et al. [2] prove that in the model of hardwired objects, the consensus
hierarchy is not robust if nondeterministic types are allowed. Moran and Rappoport
[14] strengthen this result by proving that it applies even if only deterministic types
are allowed. We borrowed from [2] the idea of a booster type, which “boosts” the
power of a weak type T if it is given satisfactory evidence that processes have access
to T . The booster of [2] promotes a type that solves consensus between two processes
to a type that solves consensus among three processes. In our case, the booster
promotes a type that solves equality negation for n processes to a type that solves
consensus for n processes.

Closest to our results is the work of Schenk [19, 20], which precedes ours. He also
exhibits two nondeterministic object types each of which (together with registers) is
individually too weak to solve consensus between two processes, but which, taken
together, can solve consensus for any number of processes. Our result strengthens
this in two related ways: First, Schenk’s result requires a type that exhibits infinite
nondeterminism, while our types exhibit only bounded nondeterminism. Second,
and perhaps more important, his result requires a definition of wait freedom that is
different from the usual one. Specifically, he defines an algorithm to be wait-free if,
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for any input, there is a bound on the number of steps a process may take before
it halts. In the context of objects with infinite nondeterminism this definition is
strictly stronger than the usual definition of wait freedom, which requires only that
all executions of the algorithm be finite.

In [17], Rachman proved that for each n, there is a (nondeterministic) type with
consensus number n that cannot implement some type with consensus number smaller
than n in a system of 2n+1 processes. This result addresses a point of implementabil-
ity between types, but it has no bearing on the nonrobustness of the consensus hier-
archy. Informally, nonrobustness asserts that some “strong” type (i.e., a type at level
n) can be implemented by a combination of “weak” types (i.e., types at levels below
n) in a system of n processes. In contrast, Rachman’s result says that some “strong”
type (i.e., a type at level n) cannot implement some “weak” type (i.e., a type at a
level below n) in a system with sufficiently many processes.

1.4. Organization of the paper. In section 2 we define the model of compu-
tation used in this paper. In section 3 we review the consensus problem and introduce
the equality negation problem. In section 4 we define the types negation and booster.
In section 5 we show how to solve consensus for any number of processes using regis-
ters along with a negation and a booster object. In section 6 we define some concepts
and derive technical results needed in the next two sections. In sections 7 and 8 we
prove that registers and negation objects alone, as well as registers and booster objects
alone, cannot be used to solve consensus for two processes. Section 9 concludes the
paper.

2. The model of computation. In this section we describe the model of com-
putation used in this paper.

2.1. Types and objects. An object type T is a tuple (Q,OP,RES, δ), where Q
is a set of states, OP is a set of operations, RES is a set of responses to operations,
and δ ⊆ Q×OP×RES×Q is a state transition relation, which describes the possible
behaviors of objects of type T , and is sometimes called the type’s sequential specifica-
tion. More specifically, (q, op, res, q′) ∈ δ means that if the current state of an object
of type T is q and operation op is applied to it, then it is possible that response res
will be returned to the operation and the object will enter state q′. We say that T
is deterministic if for any q ∈ Q and op ∈ OP there is at most one res ∈ RES and
q′ ∈ Q so that (q, op, res, q′) ∈ δ; otherwise, we say that T is nondeterministic.

For convenience, in this paper we require each type (Q,OP,RES, δ) to be total :
For any q ∈ Q and op ∈ OP, there is at least one res ∈ RES and q′ ∈ Q such that
(q, op, res, q′) ∈ δ. That is, the type can do something in response to any operation in
any state. Further, we assume that for any q ∈ Q, op ∈ OP, and res ∈ RES there is at
most one q′ ∈ Q so that (q, op, res, q′) ∈ δ. In other words, if an operation is applied
in a given state, the type does not lead to different states unless it returns different
responses. We remark that this assumption is not necessary for the results in this
paper, but it simplifies the presentation of their proofs. All types considered in this
paper have this property, so we can make this assumption without loss of generality.

An object is an instance of an object type. For the purposes of this paper, we
can think of an object O of type T as an automaton whose states and state transition
relation are as in T—except that states are labeled with O, to distinguish them from
the states of other objects of the same type.

2.2. Processes and algorithms. A process is a deterministic automaton that
interacts with objects. More precisely, let O be a set of objects, and let OP and



694 WAI-KAU LO AND VASSOS HADZILACOS

RES be the set of all operations and responses, respectively, of the types to which
the objects in O belong. We define a process that uses O as a tuple P = (Σ,Σ0, ν, τ),
where Σ is a set of states, Σ0 ⊆ Σ is a set of initial states, and ν : Σ→ OP×O and
τ : Σ × RES → Σ are functions that describe the interaction of the process with the
objects. Intuitively, if P is in a state σ ∈ Σ and ν(σ) = 〈op, O〉, then in its next step
P will apply operation op to object O. (If ν(σ) = 〈op, O〉, we require that op be an
operation of O’s type.) Based on its current state, O will return a response res to P
and will enter a new state, in accordance with the state transition relation of the type
to which O belongs. Finally, P will enter state τ(σ, res), as a result of the response
it received from O. For convenience, we assume that the function ν is total. In other
words, it is always possible for a process to apply another operation. Note that we can
easily accommodate processes that terminate in this framework by imagining that a
process that reaches a final state applies infinitely many “do-nothing” operations
to a local dummy object which always returns ack to such operations.

An algorithm A consists of a set of processes Π, a set of objects O so that each
P ∈ Π uses a subset of O, and an initial state for each object in O. The designated
initial state of an object is one of the states of the type to which the object belongs.
If S is a set of types, we say that A uses S if every object that A uses belongs to a
type in S and A uses at least one object of every type in S. A configuration C of A
is a tuple consisting of a state for each process in Π and each object in O. C is an
initial configuration of A if each process is in one of its initial states, and each object
is in the state designated as the initial state by A.

A step of process P is a tuple (P, op, O, res); this indicates that P has applied
operation op to object O and received response res. Let P = (Σ,Σ0, ν, τ) and let C
be a configuration, where the state of P in C is σ. If ν(σ) = 〈op, O〉, we say that
P has operation op to O pending in C. If, in addition, the state of O in C is q,
and res is a legitimate response of O to op in state q (i.e., for some state q′ of O,
(q, op, res, q′) is in the state transition relation of O’s type), then we say that the step
e = (P, op, O, res) is applicable to C. If e = (P, op, O, res) is applicable to C, e(C)
denotes the configuration resulting from C after step e. More precisely, if in C the
state of P is σ and the state of O is q, then e(C) is the configuration in which P
has state τ(σ, res), O is in state q′ such that (q, op, res, q′) is in the state transition
relation of O’s type, and all other processes and objects are in the same state as in
C.2

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A’s
processes. S = e1, e2, . . . , ei, . . . is applicable to a configuration C if e1 is applicable to
C, and ei+1 is applicable to ei(ei−1(. . . (e1(C)) . . .)) for all i. If S is finite and has k
steps, S(C) denotes ek(ek−1(. . . (e1(C)) . . .)), i.e., the configuration that results after
applying the steps in S one at a time, starting with configuration C. If S and S′ are
schedules such that S is finite, then S ·S′ denotes their concatenation. If every step
in schedule S is a step of the same process P , then S is called a solo schedule of P .
If S is an infinite schedule and process P has infinitely many steps in S, then P is
correct in S.

2.3. Wait-free hierarchies and robustness. Recall from section 1.1 that the
consensus number of a type T is the maximum number n so that there is an algorithm
that solves consensus among n processes and uses only objects of type T and registers;

2It is here we use the assumption that, to go to different states, the object must return different
responses. Without this assumption, we have to define e(C) as a set of configurations, rather than
as a single one.
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if there is no such maximum, the consensus number of T is ∞. By the universality
of consensus, the consensus number of a type is a measure of its strength, i.e., of its
ability to support (wait-free and linearizable) implementations of other types.

A hierarchy (of types) is a function that assigns to each type a positive integer
or ∞, called the type’s level. The intention is that a type’s level reflects its strength:
the higher the level, the stronger the type. A hierarchy is wait-free if no type is
assigned to a level higher than the type’s consensus number. Intuitively, a wait-free
hierarchy does not overstate any type’s strength. Thus, a hierarchy must be wait-free
in order to comply with the intention that its levels somehow reflect the strength of
types. The consensus hierarchy is the hierarchy that maps each type exactly to its
consensus number. Clearly, the consensus hierarchy is wait-free.

A hierarchy h is robust if for any n ≥ 1 such that there is a type at level n and
any set of types B, there is no algorithm that solves consensus among n processes and
uses only objects that belong to types in B and registers, unless B contains a type
of level n or higher. Thus, if a wait-free hierarchy is robust, a type that is classified
as “strong” by the hierarchy cannot be implemented by types that are classified as
“weak.” To see this assume the contrary: a type T at level n can be implemented
using only objects of types below n (and registers). Since the hierarchy is wait-free
and T is at level n, we can solve consensus among n processes using only objects of
type T (and registers). Since T can be implemented from types in levels below n and
registers, we can solve consensus among n processes using only objects of types in
levels below n and registers, which contradicts the definition of robustness.

A hierarchy is nontrivial if it assigns types to at least two different levels. Jayanti
and Toueg [9] showed that the consensus hierarchy assigns types to all levels, and so
the consensus hierarchy is nontrivial.

3. The consensus and equality negation problems. In this section we re-
view the consensus problem and define equality negation, a problem that plays a
central role in our results.

3.1. The consensus problem. In the consensus problem, each of n processes
starts with a private initial value, drawn from the set {0, 1}. Each correct process
must eventually irrevocably decide one of these initial values, so that no two processes
decide different values. Thus, a consensus algorithm Ac for n processes satisfies the
following properties. Each process in Ac has two initial states associated with input
values 0 and 1, respectively, and two disjoint sets of states associated with decisions 0
and 1, respectively. Since a decision is irrevocable, we require that once a process has
entered a state associated with decision d ∈ {0, 1}, all states that it may subsequently
enter are also associated with d. In addition, for any schedule S that is applicable to
an initial configuration I of Ac, the following three properties hold.

Termination: If S is infinite, then for every correct process in S there is a prefix
S′ of S such that the process has decided in S′(I).

Validity: If a process has decided in S(I), then its decision must be the initial
value of some process in I.

Agreement: If two processes have decided in S(I), then their decisions are the
same.

The termination property requires correct processes to eventually decide in all
executions, regardless of the number of processes that are correct. Thus, this for-
mulation of this property commits us to so-called wait-free algorithms, where correct
processes satisfy their liveness properties (in this case, to eventually decide) regardless
of the progress made by other processes.
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3.2. The equality negation problem. We now define the equality negation
problem for n ≥ 2 processes, P0, . . . , Pn−1. To understand the definition it is best to
first consider the special case of two processes (n = 2). In this special case, each of
P0 and P1 has a private initial value, drawn from the set {0, 1, 2} (instead of {0, 1}
in consensus). Each correct process must irrevocably decide either 0 or 1 so that the
decisions of the processes are the same if and only if the initial values of the processes
are different.

We now generalize the problem for arbitrary n ≥ 2; the idea is to replace the
role of P1 by a group of n− 1 processes P1 = {P1, . . . , Pn−1}. More specifically, each
process has an initial value drawn from the set {0, 1, 2}. Additionally, we assume
that all processes in P1 have the same initial value; if not, the problem imposes no
constraints whatsoever on the behavior of processes. Every process must eventually
decide irrevocably either 0 or 1, so that no two processes in P1 decide different values;
and if P0 and any process in P1 decide, then their decisions are the same if and
only if their initial values are different. Thus, an equality negation algorithm Aen for
processes P0, . . . , Pn−1 satisfies the following properties. Each process in Aen has three
initial states associated with input values 0, 1, and 2, respectively. As in a consensus
algorithm, each process has two disjoint sets of states associated with decisions 0
and 1, respectively. Since a decision for equality negation is also irrevocable, once a
process has entered a state associated with decision d ∈ {0, 1}, all states that it may
subsequently enter must be associated with d as well. In addition, for any schedule S
applicable to an initial configuration I of Aen in which all processes in P1 have the
same initial value, the following three properties hold.

Termination: If S is infinite, then for every correct process in S, there is a prefix
S′ of S such that the process has decided in S′(I).

Negation: If process P0 and any process in P1 have decided in S(I), then their
decisions are the same if and only if their initial values are different.

Agreement: If any two processes in P1 have decided in S(I), then their decisions
are the same.

It is well known that there is no consensus algorithm for even two processes that
uses only registers [3, 13]. In the appendix we prove that the same is true for equality
negation.

Theorem 3.1. There is no algorithm that solves equality negation for two pro-
cesses and uses only registers.

4. Specification of types negation and booster. We define two nondetermin-
istic object types, named negation and booster, that will be used later to establish
the result that no nontrivial wait-free hierarchy is robust. Both of these types have
bounded nondeterminism; indeed, each has only finitely many states.

4.1. Type negation. The specification of negation appears in Figure 4.1.3 To
understand the specification, it is useful to keep in mind the following intuitive ex-
planation of the type. This type supports only one kind of operation, called negate,
with two parameters i ∈ {0, 1} and v ∈ {0, 1, 2}. For reasons that will be clear later,
we shall refer to i as the process parameter and to v as the initial-value parameter.
A negation object will become “upset” if and only if two negate operations with
process parameter 0 are applied or two negate operations with process parameter
1, but with different initial-value parameters, are applied. If the negation object is

3In this figure, and throughout this paper, for any variable v ∈ {0, 1}, v denotes the complement
of v; i.e., v = 1− v.
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Let A be the set of four-tuples of the form 〈v0, v1, u0, u1〉, where v0, v1 ∈ {⊥, 0, 1, 2},
u0, u1 ∈ {⊥, 0, 1}, and the following conditions apply:

• v0 = ⊥ if and only if u0 = ⊥;
• v1 = ⊥ if and only if u1 = ⊥;
• at least one of v0, v1 is not ⊥; and
• if v0, v1 �= ⊥ then v0 = v1 if and only if u0 �= u1.

Set of states: { , } ∪ A.

Set of operations: {negate(i, v) : i ∈ {0, 1}, v ∈ {0, 1, 2} }.
Set of responses: {0, 1}.

negate(i, v), i ∈ {0, 1}, v ∈ {0, 1, 2}, return either 0 or 1
case current state

: return Choose({0, 1})
: u ← Choose({0, 1})
if i = 0 then current state ← 〈v,⊥, u,⊥〉
else current state ← 〈⊥, v,⊥, u〉
return u

〈v0, v1, u0, u1〉 :
if i = 0 then

if v0 �= ⊥ then current state ← ; return Choose({0, 1})
else (∗ v0 = ⊥ and, thus, v1, u1 �= ⊥ ∗)

if v �= v1 then u ← u1

else u ← u1

current state ← 〈v, v1, u, u1〉; return u
else (∗ i = 1 ∗)

if v1 �= ⊥ then
if v �= v1 then current state ← ; return Choose({0, 1})
else return u1

else (∗ v1 = ⊥ and, thus, v0, u0 �= ⊥ ∗)
if v �= v0 then u ← u0

else u ← u0

current state ← 〈v0, v, u0, u〉; return u

Fig. 4.1. Specification of type negation.

upset, it will arbitrarily return either 0 or 1 to any operation, and will remain up-
set forever. As long as the negation object is not upset, it responds to invocations
with values that satisfy the following: All negate operations with process parame-
ter 1 receive the same response; any two negate operations with different process
parameters receive the same response if and only if their initial-value parameters are
different. Thus, an object O of type negation can be used to solve equality negation
for processes P0, . . . , Pn−1 in a direct way: P0 applies negate(0, v) to O, where v is
P0’s initial value; each process in {P1, . . . , Pn−1} applies negate(1, v′) to O, where
v′ is the process’s initial value; each process decides the value returned by object O.

To achieve this behavior, type negation has two distinguished states: the fresh
state, denoted by , and the upset state, denoted by . The remaining states are
of the form 〈v0, v1, u0, u1〉, where v0, v1 ∈ {⊥, 0, 1, 2} and u0, u1 ∈ {⊥, 0, 1}. The
intended meaning of state 〈v0, v1, u0, u1〉, assuming the object is initialized to the
fresh state, is as follows: v0 is the initial-value parameter of the first negate operation
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with process parameter 0; u0 is the value returned to that operation; v1 and u1 have
corresponding interpretations for the first negate operation with process parameter 1.
By maintaining this information, the object knows all it needs in order to respond
appropriately to the negate operations applied to it.

The pseudocode in Figure 4.1 describes the state transition relation of negation.
In addition to standard programming constructs, we use the function “Choose,” which
takes as a parameter a set V of integers and returns an arbitrary value in V . We also
assume that the present state of the type is recorded in variable current state.

4.2. Type booster. The specification of type booster is shown in Figure 4.2.
To understand the specification, it is useful to keep in mind the following intuitive
explanation of the type. There are two kinds of operations that can be applied to
a booster object: enroll and reveal. An enroll operation requires a parameter
i ∈ {0, 1} and arbitrarily returns a value in {0, 1, 2}. A reveal operation requires
three parameters i ∈ {0, 1}, v ∈ {0, 1, 2}, and u ∈ {0, 1} and returns a value in
{0, 1}; we shall refer to these three parameters as the process, challenge, and decision
parameters, respectively. A booster object will be “upset” if (and only if) any one of
the following holds:

• Two enroll(0) operations are applied.
• For some i ∈ {0, 1} and v ∈ {0, 1, 2}, a reveal(i, v, u) operation is applied

such that no enroll(i) operation has previously been applied or v is not the
response of any such enroll(i) operation.
• A reveal(i0, v0, u0) and a reveal(i1, v1, u1) operation are applied such that

one of the following is true: (a) i0 = i1 = 0, or (b) i0 = i1 = 1 and either
v0 �= v1 or u0 �= u1, or (c) i0 �= i1 and v0 = v1 ⇔ u0 = u1.

Once upset, the booster object remains upset forever. If not upset, the object main-
tains a secret: the parameter of the first enroll operation applied. The object will
reveal this secret to every process that subsequently accesses it with a reveal oper-
ation. If upset, however, the object arbitrarily returns either 0 or 1 to every reveal
operation.

The intended use of a booster object by processes P0, . . . , Pn−1 is as follows: The
first thing process P0 does to a booster object is to apply enroll(0) to “enroll” itself
in the object. Similarly, the first thing any process in P1 = {P1, . . . , Pn−1} does to
a booster object is to apply enroll(1) to enroll its group in the object. In response
to the enroll operation it applies, every process receives a value in {0, 1, 2} from
the booster object. This value is a “challenge” given by the object with which the
process is required to solve equality negation. More specifically, process P0 uses the
challenge, say, v0, received from the booster object as its initial value to solve equality
negation. The different processes in P1, however, may receive different challenges from
the booster object. Thus, before embarking upon solving equality negation, processes
in P1 must first choose a unique initial value, say, v1, from the set of challenges they
received. After solving equality negation and deciding a value u ∈ {0, 1}, process P0

(respectively, every process in P1) applies the operation reveal(0, v0, u) (respectively,
reveal(1, v1, u)) to the booster object to obtain the secret.

To achieve the behavior described above, type booster (like type negation) has
two distinguished states: the fresh state, denoted , and the upset state, denoted

. The remaining states are of the form 〈V, v0, v1, u0, u1, d〉, where V ⊆ {0, 1, 2},
v0, v1 ∈ {⊥, 0, 1, 2}, u0, u1 ∈ {⊥, 0, 1}, and d ∈ {0, 1}. The intended meaning of state
〈V, v0, v1, u0, u1, d〉 is as follows (assuming the object is initialized to the fresh state):

• d is the “secret”—the parameter the first enroll operation applied, i.e.,
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Let A be the set of six-tuples of the form 〈V, v0, v1, u0, u1, d〉, where V ⊆ {0, 1, 2},
v0, v1 ∈ {⊥, 0, 1, 2}, u0, u1 ∈ {⊥, 0, 1}, d ∈ {0, 1}, and the following conditions apply:

• if d = 0 then v0 �= ⊥; if d = 1 then V �= ∅;
• if v0 = ⊥ then u0 = ⊥;
• v1 = ⊥ if and only if u1 = ⊥, and if v1 �= ⊥ then v1 ∈ V ; and
• if v0, v1 �= ⊥ then v0 = v1 if and only if u0 �= u1.

Set of states: { , } ∪ A.
Set of operations: {enroll(i) : i ∈ {0, 1} } ∪ {reveal(i, v, u) : i, u ∈ {0, 1}, v ∈
{0, 1, 2} }.
Set of responses: {0, 1, 2}.

enroll(i), i ∈ {0, 1}, return a value in {0, 1, 2}
v ← Choose({0, 1, 2})
case current state

: no state change
: if i = 0 then current state ← 〈∅, v,⊥,⊥,⊥, 0〉
else current state ← 〈{v},⊥,⊥,⊥,⊥, 1〉

〈V, v0, v1, u0, u1, d〉 :
if i = 0 then

if v0 �= ⊥ then current state ←
else current state ← 〈V, v, v1, u0, u1, d〉

else current state ← 〈V ∪ {v}, v0, v1, u0, u1, d〉
return v

reveal(i, v, u), i, u ∈ {0, 1}, v ∈ {0, 1, 2}, return a value in {0, 1}
case current state

: current state ← ; return Choose({0, 1})
: return Choose({0, 1})

〈V, v0, v1, u0, u1, d〉 :
if i = 0 then

if v = v0 and u0 =⊥ and (u1 =⊥ or (v = v1 ⇔ u �= u1)) then
current state ← 〈V, v0, v1, u, u1, d〉; return d

else current state ← ; return Choose({0, 1})
else (∗ i = 1 ∗)

if v ∈ V and ((u1 = ⊥ and (u0 = ⊥ or (v = v0 ⇔ u �= u0)))
or (v = v1 and u = u1)) then

current state ← 〈V, v0, v, u0, u, d〉; return d
else current state ← ; return Choose({0, 1})

Fig. 4.2. Specification of type booster.

whether P0 or some process in P1 is the process that applied the first enroll.
More accurately, d is the parameter of the first enroll operation.
• V is the set of challenges given to processes in P1, one of which these processes

must use to solve equality negation. More accurately, V is the set of values
returned to enroll(1) operations.
• v0 is the challenge with which P0 must solve equality negation. More accu-

rately, the value returned to the first enroll(0) operation.
• v1 is the challenge chosen from V by processes in P1, with which these pro-
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cesses solve equality negation. More accurately, v1 is the challenge parameter
of the first reveal(1, ∗, ∗) operation.4

• u0 is the decision reached for equality negation by P0. More accurately, u0 is
the decision parameter of the first reveal(0, ∗, ∗) operation.

• u1 is the decision reached for equality negation by the first process in P1 that
tries to get the secret. More accurately, u1 is the decision parameter of the
first reveal(1, ∗, ∗) operation.

With this information, the object knows all it needs in order to respond appropriately
to operations.

5. The proof of nonrobustness. Later in the paper we shall prove that negation
and booster each has consensus number one. Taking this for granted, in this section
we prove our main result: in the context of nondeterministic types, no nontrivial
wait-free hierarchy can be robust. The key to this proof is the following lemma.

Lemma 5.1. For any n ≥ 1, if consensus among n processes can be solved using
only negation and booster objects and registers, then consensus among n+1 processes
can also be solved using only negation and booster objects and registers.

Proof. Suppose that consensus among n processes can be solved using only
negation and booster objects and registers. Let A1

c and A2
c be algorithms that solve

consensus among n processes, P1, P2, . . . , Pn, and use only negation and booster ob-
jects and registers. Without loss of generality, we may assume that A1

c and A2
c solve

consensus with initial values drawn from the set {0,1,2}.5
We shall show that the algorithm in Figure 5.1 uses A1

c and A2
c to solve consensus

among n+1 processes, P0, P1, . . . , Pn. The following are some conventions used in the
pseudocode in Figure 5.1 and other algorithms described later. We use capital letters
for names of shared objects (including registers) and lower-case letters for names of
local variables. Local variables with the same name that belong to different processes
are distinct. The notation “Apply(P, op, O)” denotes the procedure by which process
P applies operation op to object O; the procedure returns the response of the object
to that operation. We use a special (but familiar) notation for the application of
operations to an object R of type register: we place R on the left-hand side of an
assignment statement to indicate a write operation applied to R, and we use the
name R in any other context to indicate a read operation applied to R. If A is
an equality negation or consensus algorithm and P is a process of A, the procedure
Execute(P,A, k) causes the caller to execute the steps of process P in algorithm A
using k as its initial value and returns the decision of P in the simulated execution of
that algorithm.

Before proving that the algorithm in Figure 5.1 does, in fact, solve consensus, we
informally explain how it works.

• P0 first writes its initial value into register R0. It then enrolls in the booster
object Ob by applying enroll(0) and obtains a challenge, say, v, with which
it is required to solve equality negation. To do so, P0 applies negate(0, v)
to the negation object On. Let u be the value returned by On. By applying
reveal(0, v, u) to Ob, P0 determines whether it or one of {P1, . . . , Pn} was
the first to enroll in Ob.

4Here, and in the rest of the paper, we use “∗” to indicate a “don’t care” entry.
5In our definition of consensus (sometimes called binary consensus for emphasis), the initial

values of processes are drawn from the set {0, 1}. It is well known [16] that if a set of types that
includes register can be used to solve (binary) consensus, it can also be used to solve consensus with
initial values drawn from an arbitrary set.
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Shared: all booster and negation objects and registers used in A1
c and A2

c ,
each initialized as specified by A1

c or A2
c

Ob: booster, initialized to
On: negation, initialized to
R0, R1: register, each initialized to ⊥

Code for process P0

1 R0 := initial value of P0

2 v := Apply(P0,enroll(0), Ob)
3 u := Apply(P0,negate(0, v), On)
4 d := Apply(P0,reveal(0, v, u), Ob)
5 decide Rd

Code for process Pk, k ∈ {1, . . . , n}
1 init := initial value of Pk
2 R1 := Execute(Pk,A

1
c , init)

3 w := Apply(Pk,enroll(1), Ob)
4 v := Execute(Pk,A

2
c , w)

5 u := Apply(Pk,negate(1, v), On)
6 d := Apply(Pk,reveal(1, v, u), Ob)
7 decide Rd

Fig. 5.1. A consensus algorithm for n + 1 processes using only objects of types negation and
booster and registers.

• Processes P1, . . . , Pn first agree on one of their initial values; they use A1
c for

that purpose. They then write the agreed-upon initial value into register R1

(multiple processes may write into R1, but they all write the same value).
Each Pk, k ∈ {1, . . . , n}, then enrolls in Ob by applying enroll(1) and
obtains a challenge. Since, object Ob may hand out different challenges to
processes P1, . . . , Pn, these processes use the consensus algorithm A2

c to agree
upon one of these challenges, say, v. Each Pk, k ∈ {1, . . . , n}, uses v as its
initial value to solve equality negation. To do so, Pk applies negate(1, v)
to the negation object On. Let u be the value returned by On. By applying
reveal(1, v, u) to Ob, Pk determines whether P0 or one of the other processes
was the first to enroll in Ob.

Since all processes agree on whether P0 or one of the other processes was the first to
enroll in Ob, they can agree on the initial value of some process: If P0 was the first to
enroll, all processes agree on the value they read from R0; otherwise, they all agree
on the value they read from R1.

We now prove that the algorithm in Figure 5.1 solves consensus. It is clear that
the algorithm satisfies termination, since both A1

c and A2
c do. Consider any execution

of the algorithm. From the specification of booster and negation, it is easy to verify
that the algorithm accesses Ob and On in such a way that these objects never become
upset. Furthermore, if d is the parameter of the first enroll operation applied to Ob,
then that enroll operation will cause Ob to enter a state of the form 〈∗, ∗, ∗, ∗, ∗, d〉.
The last component of the state is never changed once it is set. Furthermore, any
reveal operation applied to Ob that does not cause the object to become upset
returns the last component of the state. Thus,

every reveal operation applied to Ob returns d, where d is
the parameter of the first enroll operation applied to Ob.

(1)

Next we claim that, for each k ∈ {0, 1}, at most one value is written into register
Rk and that value is an initial value of some process. This is clearly true for k = 0,
since only P0 writes into R0, and the value it writes there is its initial value. For k = 1,
this follows from the agreement and validity properties of the consensus algorithm A1

c

used by the processes in {P1, . . . , Pn} to determine the value they each write into R1.
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Thus, to prove the algorithm in Figure 5.1 satisfies validity, it suffices to show
that if a process decides the value in register Rd, then some process has previously
written a value into Rd. This follows from (1), since in the algorithm a process writes
into Rk before applying enroll(k), for each k ∈ {0, 1}.

It remains to show that the algorithm satisfies agreement. Consider any execution
in which two distinct processes P and P ′ have decided. By (1), P and P ′ decide the
value in the same register Rd, where d is the parameter of the first enroll operation
applied to Ob. By validity, a process decides the value in Rd only if some process has
written a value into Rd. As argued earlier, only one value is written into Rd in any
given execution. Therefore, P and P ′ decide the same value, the one written in Rd.
Therefore, the algorithm satisfies agreement.

Thus the algorithm in Figure 5.1 solves consensus for n + 1 processes. It uses
only registers and booster and negation objects because, in addition to the (regis-
ters, booster and negation) objects used by A1

c and A2
c , the algorithm uses only two

registers, one booster object, and one negation object.

Theorem 5.2. For any n ≥ 1, consensus among n processes can be solved using
only registers and objects of types negation and booster.

Proof. The theorem is proved by induction on n. The basis, n = 1 is trivial
(because consensus for one process is trivial). The induction step is Lemma 5.1.

Corollary 5.3. There is no nontrivial wait-free hierarchy that is robust.

Proof. Suppose h is a nontrivial wait-free hierarchy of types. We shall prove
that h is not robust. By Theorems 7.10 and 8.15 (see sections 7 and 8, respec-
tively) the consensus number of negation and booster is 1. Since h is wait-free,
h(negation) ≤ 1 and h(booster) ≤ 1, and thus h(negation) = h(booster) = 1. Since
h is nontrivial, there is some level n > 1 and some type T such that h(T ) = n. Let
B = {negation, booster}. By Theorem 5.2, there is an algorithm that solves consensus
among n processes and uses only objects that belong to types in B and registers.
Since h(negation) = h(booster) = 1 and n > 1, B contains no type that is at level n
or higher. Thus, h is not robust, as wanted.

6. Some technical preliminaries. In this section we define some concepts
and prove some technical results that are needed in our proofs that each of the types
negation and booster has consensus number one.

6.1. Computation trees. Let A be an algorithm, and let I be an initial con-
figuration of A. Consider a tree T whose nodes are finite schedules of A that are
applicable to I (not necessarily all of them), so that the root of T is the empty sched-
ule, denoted S⊥, and there is an edge from node S to node S′ only if S′ = S ·e for
some step e. We say that T is a computation tree of A from I if for any node S
of T and any process P of A S has at least one child S ·e, where e is a step of P .
In what follows we shall not distinguish between a node in a computation tree and
the (finite) schedule corresponding to the node. Similarly, we shall not distinguish
between a (finite or infinite) path in a computation tree and the (finite or infinite)
schedule corresponding to the path.

Informally, a computation tree of A from I represents executions of A starting
from I for all possible interleavings of the processes. A node S represents a point in
some execution; at that point the algorithm is in configuration S(I). It is easy to see
that if all object types used by A are deterministic, there is a unique computation
tree of A from I. If, however, some object types are nondeterministic, there may be
more than one computation tree of A from I.
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A computation tree of A from I is full if its set of nodes is the entire set of finite
schedules of A that are applicable to I. The full computation tree of A from I is
unique, regardless of whether the object types used by A are deterministic. If A uses
nondeterministic object types, we can think of the different computation trees of A
from I as obtained from the full computation tree of A from I by (repeatedly) applying
the following pruning rule: If there are multiple edges out of a node S corresponding
to steps of a single process P (because of the nondeterministic responses of the object
accessed by P in the operation pending in S(I)), then some, but not all, of these
edges may be pruned.

We use the following notation and terminology for computation trees. Let T be a
computation tree of A from an initial configuration I, let S be a node in T , and let P
be a process of A. The subtree of T that is rooted at S is denoted subtree(S, T ), and
we say that it is full if it is equal to subtree(S,F), where F is the full computation
tree of A from I. The set of nodes {S ·e : S ·e is a node in T and e is a step of P }
is denoted children(P, S, T ); these are the nodes reached from S by a single step of
process P . We say that S1 is a P -sibling of S2 in T if there is a node S in T so that
S1, S2 ∈ children(P, S, T ).

Lemma 6.1. Let A be an algorithm, and let T and T ′ be any computation trees of
A from (not necessarily distinct) initial configurations I and I ′, respectively. Consider
any nodes S0 and S0 ·S in T and node S1 in T ′ such that subtree(S1, T ′) is full and
every process that takes a step in S and every object is in the same state in S0(I) as
in S1(I ′). Then S1 ·S is a node in T ′, and every process that takes a step in S and
every object is in the same state in S0 ·S(I) as in S1 ·S(I ′).

Proof. Let Si be the schedule consisting of the first i steps of S for all 0 ≤ i ≤ |S|.
Using the fact that subtree(S1, T ′) is full and every process that takes a step in S and
every object is in the same state in S0(I) as in S1(I ′), a straightforward induction
on i proves that Si is applicable to S1(I ′), and every process that takes a step in S
and every object is in the same state in S0 ·Si(I) as in S1 ·Si(I ′). The lemma follows
from this, since S = S	, where � = |S|.

6.2. Valence of nodes. Let A be a consensus or equality negation algorithm for
processes P0, P1, . . . , Pn−1, where n ≥ 2. Let I be an initial configuration of A, T be
a computation tree of A from I, and S be a node in T . For any v ∈ {0, 1}, we say that
S is v-valent in T if there is no descendant S′ of S in T such that process P0 decides v
in S′(I). S is univalent in T if it is v-valent in T for some v ∈ {0, 1}. S is bivalent in
T if there are descendants S0 and S1 of S in T so that process P0 decides 0 in S0(I)
and it decides 1 in S1(I). (Note that in this definition it is the same process, P0, whose
decisions are 0 and 1 in S0(I) and S1(I), respectively.) Informally, a univalent node
represents a point in an execution of A where the outcome (of consensus or equality
negation) has been “sealed”—even if no process has actually decided yet. A bivalent
node represents a point in an execution where both outcomes are still possible.

The valence of a node S in T refers to whether S is bivalent or univalent in T
and, in the latter case, whether it is 0-valent or 1-valent. As noted in section 6.1,
if A uses nondeterministic types, there may be many computation trees of A from
I. Therefore, a node S that appears in two different computation trees may have a
different valence in one than in the other, because the valence of S in a computation
tree T depends on the subset of S’s descendants in the full computation tree that are
actually present in T .

Let S0 and S1 be two univalent nodes in T . We say that S0 and S1 have the same
valence in T if they are both 0-valent or both 1-valent in T . We say that they have
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opposite valence in T if one is 0-valent and the other is 1-valent in T .
The notions of v-valence, univalence, and bivalence for configurations of consen-

sus algorithms were originally defined in [5] and subsequently used extensively in the
literature. Although the above definitions are very much in the spirit of those in [5],
there are some minor differences. We now explain the reasons for these differences.
First, we define valence with respect to nodes of computation trees rather than con-
figurations. This is because some of our results (in particular, those in section 7)
are more conveniently proved using computation trees. A second, and more impor-
tant, difference is the fact that we now wish to have a more general definition that
encompasses both consensus and equality negation algorithms; in the past, valence
was defined only in the context of consensus algorithms. The need for this greater
generality underlies the other difference of our definition relative to the earlier ones:
In the “classical” definition, a node is v-valent if there is no descendant of it in which
any process (not P0 in particular) decides v. An analogous comment applies to the
definition of bivalence. In the case of consensus, there is no difference between the two
definitions, since the agreement property requires that any two processes that decide,
decide the same value. In the case of equality negation, however, if the initial values
of all processes are the same, then P0 is supposed to decide a different value than
the other processes. Thus, in this case, we should specify whether it is the decision
of P0 or the decision of the other processes that is taken to be the “outcome” of the
computation. It is not important which of the two is chosen. In our definition we
arbitrarily chose P0.

6.3. Properties of computation trees. In this section we prove several prop-
erties of computation trees of any consensus or equality negation algorithm for two
processes. These properties are used in sections 7 and 8. For the rest of this section,
let A be a consensus or equality negation algorithm for processes P0 and P1, and I
be any initial configuration of A.

Lemma 6.2. Let T be any computation tree of A from initial configuration I,
and let S be any node in T . For each k ∈ {0, 1}, there exists a solo schedule Sk of
process Pk such that S ·Sk is a node in T and Pk has decided in S ·Sk(I).

Proof. The proof is immediate from the termination requirement (of consensus
or equality negation) and the definition of computation tree.

By Lemma 6.2, every node S in T has a descendant S′ such that process P0 has
decided in S′(I). From the definition of valence it follows that S has exactly one of
the three possible attributes: 0-valent, 1-valent, or bivalent. Therefore, the valence of
each node in T is well defined.

Lemma 6.3. Let T be any computation tree of A from initial configuration I.
Let S0 and S1 be any univalent nodes in T such that some process has decided the
same value in S0(I) as in S1(I). Then S0 and S1 have the same valence in T .

Proof. Observe that if a process decides a value, say, v, in a node S of T , then the
initial configuration I and v uniquely determine the value w that P0 can decide in any
descendant of S in T . (If A is a consensus algorithm, then w = v regardless of the
initial configuration. If A is an equality negation algorithm, then w = v (respectively,
w = v) if the initial values of P0 and P1 in I are different (respectively, the same).)

Let Pk for some k ∈ {0, 1} be the process that has decided the same value, say,
v, in S0(I) as in S1(I). Let S′0 and S′1 be descendants of S0 and S1, respectively,
such that P0 has decided in S′0(I) and S′1(I) (S′0 and S′1 exist by Lemma 6.2). By
the preceding observation, P0 decides the same value, say, w, in S′0(I) as in S′1(I).
Recalling that S0 and S1 are both univalent, from the definition of w-valent node,
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it follows that S0 and S1 are both w-valent in T . Thus, S0 and S1 have the same
valence in T .

A computation tree T of A is 1-full if every subtree rooted at a 1-valent node
in T is full; in particular, every full computation tree of A is 1-full.

Lemma 6.4. Let T be any 1-full computation tree of A from initial configuration
I. Let S0 and S1 be any univalent nodes in T such that the state of some process and
each object is the same in S0(I) as in S1(I). Then, S0 and S1 have the same valence
in T .

Proof. Suppose, for contradiction, that S0 and S1 have opposite valence. Without
loss of generality, assume that S0 is 0-valent and S1 is 1-valent in T . Let P be the
process whose state in S0(I) is the same as in S1(I). By Lemma 6.2 (applied to node
S0 in T ), there exists a solo schedule S of P such that S0 ·S is a node in T and
P has decided in S0 ·S(I). Since T is 1-full and S1 is 1-valent in T , it follows that
subtree(S1, T ) is full. By hypothesis, the state of process P and each object is the
same in S0(I) as in S1(I). Since S is a solo schedule of P , by Lemma 6.1 (applied
for I ′ = I), S1 ·S is a node in T and P has the same state in S0 ·S(I) as in S1 ·S(I).
Thus, P decides the same value in S0 ·S(I) as in S1 ·S(I). By Lemma 6.3, S0 ·S and
S1 ·S have the same valence in T . This contradicts our assumption that S0 and S1

have opposite valence in T .

Let T be any computation tree of A from initial configuration I, let S be any
node in T , and let e0 and e1 be any steps of A. We say e0 and e1 commute at S in
T if both S ·e0 ·e1 and S ·e1 ·e0 are nodes in T and the state of each process and each
object is the same in S ·e0 ·e1(I) as in S ·e1 ·e0(I). We say that ek overwrites ek at S
in T for some k ∈ {0, 1} if both S ·ek and S ·ek ·ek are nodes in T and the state of
Pk and each object is the same in S ·ek(I) as in S ·ek ·ek(I).

Lemma 6.5. Let T be any 1-full computation tree of A from initial configuration
I. Let S be any node in T , and let e0 and e1 be any steps of A such that S ·e0 and
S ·e1 are univalent nodes of opposite valence in T . Then

(a) e0 and e1 do not commute at S in T ; and
(b) neither e0 nor e1 overwrites the other at S in T .
Proof. Without loss of generality, assume that S ·e0 is 0-valent and S ·e1 is 1-

valent in T .

(a) Suppose, for contradiction, that e0 and e1 commute at S in T . Then, by
definition, S ·e0 ·e1 and S ·e1 ·e0 are nodes in T and the state of each process and
object is the same in S ·e0 ·e1(I) as in S ·e1 ·e0(I). By Lemma 6.4, S ·e0 ·e1 and
S ·e1 ·e0 have the same valence in T . This contradicts the fact that S ·e0 ·e1 and
S ·e1 ·e0 have opposite valence in T (because S ·e0 and S ·e1 do).

(b) Suppose, for contradiction, that ek overwrites ek at S in T for some k ∈ {0, 1}.
Then, by definition, S ·ek and S ·ek ·ek are nodes in T and the state of Pk and each
object is the same in S ·ek(I) as in S ·ek ·ek(I). By Lemma 6.4, S ·ek and S ·ek ·ek
have the same valence in T . This contradicts the fact that S ·ek is k-valent and
S ·ek ·ek is k-valent in T (because S ·ek is).

Lemma 6.6. Let F be any full computation tree of A. Let S be any node in F ,
and let e0 and e1 be any steps of processes P0 and P1, respectively, such that S ·e0

and S ·e1 are univalent nodes of opposite valence in F . Then, e0 and e1 access the
same object.

Proof. Suppose, for contradiction, that e0 and e1 access different objects. Then e1

is applicable to S ·e0(I) and e0 is applicable to S ·e1(I). Since F is a full computation
tree, S ·e0 ·e1 and S ·e1 ·e0 are nodes in F . Furthermore, each process and object has
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the same state in S ·e0 ·e1(I) as in S ·e1 ·e0(I). Thus, e0 and e1 commute at S in F .
This contradicts Lemma 6.5(a) (because F is full and hence 1-full).

Let T be any computation tree of A, and S be any node in T . We say that S is
a critical node in T if S is bivalent and all of its children are univalent in T .

Lemma 6.7. Let T be any computation tree of A with a bivalent root. Then T
has a critical node.

Proof. Suppose, for contradiction, that T has no critical node. Then every
bivalent node in T has at least one child that is also bivalent in T . Thus, there is
an infinite path S of T that starts at the (bivalent) root of T and consists entirely
of bivalent nodes. Consider any node S′ on this path; since S′ is bivalent, no process
has decided in S′(I). Thus, there is an infinite schedule S of A that is applicable
to I such that, for any prefix S′ of S, no process has decided in S′(I). Since S is
infinite, at least one process takes infinitely many steps in S and therefore is correct
in S. As we have just shown, however, in every prefix S′ of S, no process—and,
in particular, no correct process in S—decides in S′(I). This contradicts the fact
that A is a consensus algorithm or an equality negation algorithm (in particular, it
contradicts the termination property of A).

7. Type negation has consensus number one. In this section we prove that
type negation has consensus number one—i.e., that consensus for two processes cannot
be solved using only negation objects and registers.

7.1. The bivalence argument and some limitations. There is a standard
technique for proving that there is no consensus algorithm for n processes using a
certain set of object types, known as “the bivalence argument.” This technique goes
back to the ground-breaking result of Fischer, Lynch, and Paterson [5] for the asyn-
chronous message-passing model and was further adapted by others, e.g., [3, 6, 13],
for the asynchronous read/write-memory model. In this subsection, we sketch the
main ingredients of this technique for two processes and call attention to a difficulty
that arises when it is applied to nondeterministic object types.

The bivalence argument employs proof by contradiction. It begins by assuming
that there is a consensus algorithm Ac for processes P0 and P1 that uses only objects
of some given types. Consider the full computation tree F of this algorithm from an
initial configuration I in which the two processes have different initial values. The
root of F is bivalent because, by validity, in a solo schedule a process can decide only
its own initial value. Thus, by Lemma 6.7, F has a critical node S. By definition,
some of the (univalent) children of the critical node S must be 0-valent and some
must be 1-valent in F . If the object types used by Ac are deterministic, then S has
exactly two children in F , say, S ·e0 and S ·e1, where ek is a step of process Pk for
k ∈ {0, 1}. Thus, in this case, we can say that the outcome of consensus after S is
determined by which one of the two processes takes the next step. By Lemma 6.6, e0

and e1 both access the same object. Finally, by a case analysis involving the types of
operations applied in steps e0 and e1, the following is shown: There exist schedules
S0 and S1 such that (i) both S ·e0 ·S0 and S ·e1 ·S1 are nodes in F , and (ii) some
process has decided the same value in S ·e0 ·S0(I) and S ·e1 ·S1(I). This contradicts
the fact that the outcome of consensus is determined by which of the two processes
takes the next step after S.

This type of argument runs into difficulties when applied to algorithms that use
nondeterministic types. Specifically, we can no longer assert that at the critical node
S, the outcome of consensus is determined by which of the two processes takes the
next step. Since the object types are nondeterministic, it is possible that each of the
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For k, v ∈ {0, 1}, evk = (Pk,negate(k, k), O, v).
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Fig. 7.1. A critical node in F .

two processes can lead to both a 0-valent node and a 1-valent node, depending on the
response of the object accessed.

To appreciate this point in more concrete terms, suppose that the consensus algo-
rithm Ac uses negation objects and that the critical node S is such that, in configura-
tion S(I), each process Pk has a negate(k, k) operation pending to a negation object
O in the fresh state. Recall that a negate operation applied to a fresh negation ob-
ject can return either 0 or 1. Suppose, further, that each process Pk decides the value
returned by the negate(k, k) operation (see Figure 7.1). Now the step of process Pk
that causes it to decide v, namely, evk, is not applicable after the other process, Pk,
has applied the step that causes it to decide the opposite value, v, for all k ∈ {0, 1}
and all v ∈ {0, 1}. This means that the we cannot derive a contradiction in the style
of the bivalence argument.

Despite this, it turns out that the negation type is not powerful enough to solve
consensus between two processes. To prove this, we use a modified version of the
bivalence argument, based on a restricted computation tree. This is described in the
following subsection.

7.2. The pruned computation tree. In the remainder of section 7, we assume,
for contradiction, that Ac is a consensus algorithm for processes P0 and P1 that uses
only negation objects and registers. Let I be an initial configuration of Ac in which
P0 and P1 have different initial values, T be any computation tree of Ac from I, and
F be the full computation tree of Ac from I. By the definition of type negation and
the definition of computation tree, it is easy to see that 1 ≤ |children(P, S, T )| ≤ 2
for every node S in T and each process P .

Consider a nonroot node S in T and let P be the process that takes the last step
in S. We say that S is an avoidable 1-valent node in T if S is 1-valent in F and has a
P -sibling S′ in F such that S′ is not 1-valent in F . Intuitively, an avoidable 1-valent
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node S in F is reached from its (bivalent) parent, Ŝ, by a step of some process P ;
that step seals the outcome of consensus to be 1. Furthermore, S has a P -sibling S′

that is not 1-valent; this means that the object accessed by the operation of P that
is pending in Ŝ(I) could have returned a value that would leave open the possibility
of the outcome of consensus being 0. In other words, starting from configuration
Ŝ(I), outcome 1 could be avoided by a fortuitous choice of the value returned by the
object accessed by the operation of process P that is pending in Ŝ(I). As a concrete
illustration, the computation tree shown in Figure 7.1 contains two avoidable 1-valent
nodes, namely, S ·e1

0 and S ·e1
1.

The pruned computation tree of Ac from I, denoted L, is the tree obtained
from the full computation tree F of Ac from I by pruning all its avoidable 1-valent
nodes—i.e., removing them and their descendants. L is, in fact, a computation tree:
If a node S in children(P, Ŝ,F) is pruned, then some P -sibling of S is not pruned.
In other words, Ŝ has at least one child Ŝ ·e in L where e is a step of P . Thus, the
pruning of S will not inhibit P from taking the next step after Ŝ. Intuitively, pruning
the avoidable 1-valent nodes from the full computation tree amounts to restricting the
nondeterministic behavior of objects: Whenever an object has two responses to an
operation, one of which forecloses the possibility of outcome 0 while the other leaves
the possibility of outcome 0 open, we restrict the behavior of the object by choosing
the latter response.

The following lemmas establish some basic properties of the pruned computation
tree L.

Lemma 7.1. The root of L is bivalent.

Proof. Recall that L is a computation tree of Ac from initial configuration I
in which the two processes have different initial values. Without loss of generality,
assume that P0 has initial value 0 and P1 has initial value 1 in I. By Lemma 6.2
(applied to the root, S⊥, of L), for each k ∈ {0, 1} there exists a solo schedule Sk of
Pk such that S⊥ ·Sk = Sk is a node in L and Pk has decided in Sk(I). Since Pk has
initial value k in I and Sk is a solo schedule of Pk, by validity, Pk must decide k in
Sk(I). By Lemma 6.2 (applied to node S1 of L), there is a solo schedule S′0 of P0 such
that S1 ·S′0 is a node in L and P0 has decided in S1 ·S′0(I). Since P1 has decided 1 in
S1(I) and the decision is irrevocable, P1 has decided 1 in S1 ·S′0(I). By agreement,
P0 has also decided 1 in S1 ·S′0(I). Thus, the root of L has two descendants, S0 and
S1 ·S′0 so that P0 has decided 0 and 1, respectively, in S0(I) and S1 ·S′0(I). Thus, the
root of L is bivalent.

Lemma 7.2. Let S be any node in the full computation tree F . Then

(a) S is not a node in L if and only if S is a descendant of an avoidable 1-valent
node in F . (By convention, a node is a descendant of itself.)

(b) If S is 1-valent in F and is also in L, then S is 1-valent in L.
(c) If S is 0-valent in F , then it is in L and is 0-valent in L.
(d) If S is in L and children(P, S,F) = {S′}, then S′ is in L.
Proof. Immediate consequences of the definition of L.

Lemma 7.3. L is 1-full.

Proof. We must show that every subtree rooted at a 1-valent node in L is full.
Consider any 1-valent node S in L. S cannot have any 0-valent descendants in F : by
Lemma 7.2(c), any such descendants would exist in L and be 0-valent in L, contra-
dicting that S is 1-valent in L. Thus, S is 1-valent in F . Consequently, all nodes in
subtree(S,F) are 1-valent, and therefore none of them can be an avoidable 1-valent
node in F . Hence, by Lemma 7.2(a), all nodes in subtree(S,F) are in L, proving that
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subtree(S,L) = subtree(S,F). Therefore, subtree(S,L) is full.
Lemma 7.4. Let S be any node in L and P be any process such that |children(P, S,

F)| = 2, each node in children(P, S,L) is univalent, and one of them is 1-valent in
L. Then children(P, S,L) = children(P, S,F) and both nodes in children(P, S,L) are
1-valent in L.

Proof. Let children(P, S,F) = {S′, S′′}. By the hypothesis of the lemma we may
assume, without loss of generality, that S′ ∈ children(P, S,L) and S′ is 1-valent in L.
It remains to show that S′′ is also in L and is 1-valent in L.

By Lemma 7.3, L is 1-full. Since S′ is 1-valent in L, subtree(S′,L) = subtree(S′,F)
and thus S′ is 1-valent in F . Since S′ is in L, by Lemma 7.2(a) S′ is not a proper
descendant of an avoidable 1-valent node in F . Therefore, as S′′ is a P -sibling of S′

in F , S′′ is not a proper descendant of an avoidable 1-valent node in F either. Also,
S′′ is not an avoidable 1-valent node in F , because its only P -sibling in F , namely,
S′, is a 1-valent node in F . By Lemma 7.2(a), S′′ is in L. Furthermore, S′′ must be
a 1-valent node in F . If not, then by definition S′ would be an avoidable 1-valent
node in F and, by Lemma 7.2(a), S′ would not be in L—a contradiction. Since S′′ is
1-valent in F and is also in L, by Lemma 7.2(b), S′′ is 1-valent in L.

7.3. The impossibility result. The proof that no algorithm can solve con-
sensus between two processes using only negation objects and registers is a bivalence
argument based on the pruned computation tree L. The only remaining tricky point
is to ensure that the computation tree nodes that exhibit the contradictory behavior
required by the bivalence argument have not been pruned away!

By Lemmas 6.7 and 7.1, L has a critical node E. By definition of a critical node,
there are steps e0 and e1 of processes P0 and P1, respectively, such that E ·e0 and
E ·e1 are univalent nodes of opposite valence in L. Without loss of generality, suppose
that E ·e0 is 0-valent and E ·e1 is 1-valent in L. (Otherwise, we rename e0 and e1

and apply the same argument.) To derive a contradiction, we first show that e0 and
e1 access the same object (Lemma 7.5). Then we prove that the object accessed in
e0 and e1 cannot be a register (Lemma 7.6). Finally, we prove that the object cannot
be a negation object (Corollary 7.8 and Lemma 7.9).

Lemma 7.5. Steps e0 and e1 access the same object.
Proof. Suppose, for contradiction, that e0 and e1 access, respectively, objects O0

and O1, where O0 �= O1. Then, e1 is applicable to E ·e0(I) and e0 is applicable to
E ·e1(I) and, in fact, E ·e0 ·e1(I) = E ·e1 ·e0(I). Thus E ·e0 ·e1 and E ·e1 ·e0 are nodes
in F . Since L is 1-full (by Lemma 7.3) and E ·e1 is 1-valent in L, subtree(E ·e1,L) =
subtree(E ·e1,F). Since E ·e1 ·e0 is in F , it follows that it is also in L. We shall prove
that E ·e0 ·e1 is also a node in L. This fact implies that e0 and e1 commute at E in
L, contrary to Lemma 6.5(a).

To show that E ·e0 ·e1 is in L, we consider two cases, depending on whether
children(P1, E,F) has one or two nodes.

Case 1. |children(P1, E,F)| = 1: Then that unique child has to be E ·e1 (since
E ·e1 is a node in F). Since O0 �= O1, each of P1 and O1 is in the same state in E(I)
as in E ·e0(I). It follows that e1 is the only step of P1 that is applicable to E ·e0(I);
thus, children(P1, E ·e0,F) = {E ·e0 ·e1}. By Lemma 7.2(d), E ·e0 ·e1 is in L.

Case 2. |children(P1, E,F)| = 2: Recall that all nodes in children(P1, E,L) are
univalent. Recall also that, by assumption, E ·e1 is in children(P1, E,L) and is
1-valent in L. Since |children(P1, E,F)| = 2, by Lemma 7.4, children(P1, E,F) =
children(P1, E,L) and both nodes in children(P1, E,L) are actually 1-valent in L. Let
the two nodes in children(P1, E,L) be E ·e1 and E ·e′1. Because each of P1 and O1 is
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in the same state in E(I) as in E ·e0(I), both e1 and e′1 are applicable to E ·e0(I) and
access the same object. Therefore, it must be that E ·e0 ·e1 or E ·e0 ·e′1 is in L. Since
E ·e1 and E ·e′1 are 1-valent in L and since e1 was chosen arbitrarily as a 1-valent
node in children(P1, E,L), we may assume without loss of generality that E ·e0 ·e1 is
in L. (Otherwise, we repeat the argument with e′1 instead of e1.)

In the remainder of this section, let O denote the object accessed in both e0

and e1.

Lemma 7.6. O is not a register.

Proof. Assume, by way of contradiction, that O is a register. Since register is
a deterministic type, children(P0, E,F) and children(P1, E,F) contain a single node
each. Let op0 and op1 be the (read or write) operations applied to O in steps e0

and e1, respectively. There are two cases.

Case 1. opk is a write operation for some k ∈ {0, 1}: Let v be the value written
into O by process Pk in step ek. Since Pk has the same state in E(I) as in E ·ek(I),
ek is also applicable to E ·ek(I), and therefore children(Pk, E ·ek,F) = {E ·ek ·ek}.
By Lemma 7.2(d), E ·ek ·ek is in L. Clearly, O has value v in both E ·ek(I) and
E ·ek ·ek(I). In addition, each other object and process Pk has the same state in
E ·ek(I) as in E ·ek ·ek(I). But then ek overwrites ek at E in L. This contradicts
Lemma 6.5(b).

Case 2. op0 and op1 are both read operations: Let v be the value of O in
configuration E(I). Since the value of a register is not changed by read operations,
O has the same value v in E ·e0(I) and E ·e1(I). It follows that e0 and e1 are applicable
to E ·e1(I) and E ·e0(I), respectively. Thus children(P0, E ·e0,F) = {E ·e0 ·e1} and
children(P1, E ·e1,F) = {E ·e1 ·e0}. By Lemma 7.2(d), E ·e0 ·e1 and E ·e1 ·e0 are
nodes in L as well. Clearly, the state of each process and each object in E ·e0 ·e1(I) is
the same as in E ·e1 ·e0(I). But then e0 and e1 commute at E in L. This contradicts
Lemma 6.5(a).

Since O is not a register and the assumed consensus algorithm Ac uses only
registers and negation objects, O must be of type negation. We shall now prove that
this is not the case by proving that the state of O in E(I) is not a legitimate state of
type negation. We say that O is fresh in a configuration C of Ac if its state in C is

and upset in C if its state in C is .

For each k ∈ {0, 1}, let jk ∈ {0, 1} and wk ∈ {0, 1, 2} be the process and initial-
value parameters, respectively, of the negate operation to O of process Pk that
is pending in E(I). In other words, the operation to O of Pk pending in E(I) is
negate(jk, wk). Recall that the response of a negate operation is 0 or 1. For
each k, u ∈ {0, 1}, let duk = (Pk,negate(jk, wk),O, u)—i.e., duk is a step in which Pk
applies negate(jk, wk) to O and receives u as response. Thus, ek ∈ {d0

k, d
1
k} for each

k ∈ {0, 1}.
The next lemma states that the application of the two negate operations pending

in E(I) does not upset O.

Lemma 7.7. For each k ∈ {0, 1}, let dk be any step in {d0
k, d

1
k} such that E ·ek ·dk

is a node in F . Then O is not upset in E ·ek ·dk(I).

Proof. Suppose, for contradiction, that O is upset in E ·ek ·dk(I) for some k ∈
{0, 1}. We first show that O is also upset in E ·ek ·dk(I). Since O is upset in
E ·ek ·dk(I), by the specification of negation, it is easy to verify that one of the follow-
ing conditions must hold (in verifying this, recall that e0 and d0 are negate(j0, w0)
steps to O, and e1 and d1 are negate(j1, w1) steps to O):

• O is upset in E(I).
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• O is fresh in E(I), and either
(a) j0 = j1 = 0, or
(b) j0 = j1 = 1 and w0 �= w1.

• The state of O in E(I) is of the form 〈v0, v1, u0, u1〉 and either
(a) v0 �= ⊥ and, for some � ∈ {0, 1}, j	 = 0, or
(b) v1 �= ⊥ and, for some � ∈ {0, 1}, j	 = 1 and w	 �= v1.

In each of these cases, it can be verified that O is also upset in E ·ek ·dk(I).

Since O is upset in E ·e1 ·d0(I), it is easy to verify that the step d′0 ∈ {d0
0, d

1
0}\{d0}

is also applicable to E ·e1(I) and O is upset in E ·e1 ·d′0(I) as well. Therefore,
children(P0, E ·e1,F) = {E ·e1 ·d0

0, E ·e1 ·d1
0}, and O is upset in both E ·e1 ·d0

0(I)
and E ·e1 ·d1

0(I). Likewise, as O is upset in E ·e0 ·d1(I), children(P1, E ·e0,F) =
{E ·e0 ·d0

1, E ·e0 ·d1
1}, and O is upset in both E ·e0 ·d0

1(I) and E ·e0 ·d1
1(I). Since L

is 1-full (by Lemma 7.3) and E ·e1 is 1-valent in L, it follows that both E ·e1 ·d0
0

and E ·e1 ·d1
0 are nodes in L. Furthermore, they are 1-valent in L because E ·e1 is.

Therefore, as e0 ∈ {d0
0, d

1
0}, E ·e1 ·e0 is a 1-valent node in L. Since L is a compu-

tation tree, there exists d ∈ {d0
1, d

1
1} such that E ·e0 ·d is a node in L. This node

is 0-valent in L because E ·e0 is. As we have just shown, O is upset in E ·e0 ·d(I).
Therefore, the state of P0 and each object is the same in E ·e1 ·e0(I) as in E ·e0 ·d(I).
By Lemma 6.4, E ·e1 ·e0 and E ·e0 ·d have the same valence in L. This contradicts
the fact that E ·e1 ·e0 is 1-valent and E ·e0 ·d is 0-valent in L.

We reached this contradiction by assuming O is upset in E ·ek ·dk for some k ∈
{0, 1}. Therefore, O is not upset in E ·e0 ·d1 or in E ·e1 ·d0.

Since once it has become upset, a negation object remains upset forever, we have
the following.

Corollary 7.8. O is not upset in E(I), E ·e0(I), or E ·e1(I).

We now rule out the remaining possibilities for the state of O in E(I).

Lemma 7.9. O is neither fresh nor in a state of the form 〈v0, v1, u0, u1〉 in E(I).

Proof. Suppose, for contradiction, that O is either fresh or in a state of the form
〈v0, v1, u0, u1〉 in E(I). There are two cases, depending on the values of j0 and j1 (the
process parameters of the two negate operations pending in E(I)).

Case 1. For some k ∈ {0, 1}, jk = 0: If jk = 0, then both d0
k

and d1
k

are

applicable to E ·ek(I), and O is upset in both E ·ek ·d0
k
(I) and E ·ek ·d1

k
(I), contrary

to Lemma 7.7. Thus, jk = 1. We distinguish two subcases.

Subcase 1(a). O is fresh in E(I): Since O is fresh in E(I), by the specification of
negation, both d0

1 and d1
1 are applicable to E(I). Thus, E ·d0

1 and E ·d1
1 are in F . Since

E is a critical node in L, by definition, every node in children(P1, E,L) is univalent.
Recall that E ·e1 is 1-valent. By Lemma 7.4, both E ·d0

1 and E ·d1
1 are nodes in L and

are 1-valent in L.

Let u ∈ {0, 1} be such that e0 = du0 . We further distinguish two cases, depending
on whether the initial-value parameters, w0 and w1, of the two pending negate
operations in E(I) are equal or not:

(i) w0 �= w1: By the specification of negation, e0 is the only step of P0 that
is applicable to E ·du1 (I), and du1 is the only step of P1 that is applicable
to E ·e0(I). Therefore, by Lemma 7.2(d), E ·du1 ·e0 and E ·e0 ·du1 are in L.
Furthermore, E ·du1 ·e0 is 1-valent in L (because, as we just showed, E ·du1
is); and E ·e0 ·du1 is 0-valent in L (because E ·e0 is). By the specification of
negation, it can be checked that O is in the same state in E ·e0 ·du1 (I) as in
E ·du1 ·e0(I) (namely, in state 〈w0, w1, u, u〉 if j0 = 0, and in state 〈w1, w0, u, u〉
if j0 = 1). Therefore, E ·e0 ·du1 and E ·du1 ·e0 are both nodes in L, and each
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process and each object is in the same state in E ·e0 ·du1 (I) as in E ·du1 ·e0(I).
This implies that e0 and du1 commute at E in L, contrary to Lemma 6.5(a).

(ii) w0 = w1: The argument of Subcase 1(a)(i) also applies in this subcase by
replacing du1 with du1 throughout. (But now the state of O in E ·e0 ·du1 (I) and
E ·du1 ·e0(I) is 〈w0, w0, u, u〉 if j0 = 0 and 〈w0, w0, u, u〉 if j0 = 1.)

Subcase 1(b). O is in a state of the form 〈v0, v1, u0, u1〉 in E(I): First we claim
that v0 = ⊥. If not, then by the specification of negation, O is upset in E ·ek(I) (since
ek is a negate(0, wk) step to O). This contradicts Corollary 7.8. Thus, v0 = ⊥.
Given this, by the definition of the states of negation, it must be that u0 = ⊥ and
v1, u1 �= ⊥. Recall that, in this case, ek is a negate(1, wk) step to O. Since v1 �= ⊥
and by Corollary 7.8 O is not upset in E ·ek(I), it must be that wk = v1. Then,
it is easy to verify that du1

k
is the only step of Pk that is applicable to E(I). Thus,

ek = du1

k
. We further distinguish two cases:

(i) wk �= wk: From the specification of negation, we can check that du1

k is the
only step of Pk that is applicable to E(I) and E ·ek(I). Thus, ek = du1

k ,
and by Lemma 7.2(d), E ·ek ·ek is in L. Also, ek is the only step of Pk that
is applicable to E ·ek (since O is in state 〈wk, v1, u1, u1〉 in E ·ek(I)). By
Lemma 7.2(d), E ·ek ·ek is a node in L.
By the specification of negation, it can be checked that O is in the same state
in E ·e0 ·e1(I) as in E ·e1 ·e0(I) (namely, in state 〈wk, v1, u1, u1〉). There-
fore, each process and each object is in the same state in E ·e0 ·e1(I) as in
E ·e1 ·e0(I). But then e0 and e1 commute at E in L, contrary to Lemma 6.5(a).

(ii) wk = wk: The argument in Subcase 1(b)(i) also applies in this case by re-

placing du1

k with du1

k throughout. (But now O is in state 〈wk, v1, u1, u1〉 in
both E ·e0 ·e1(I) and E ·e1 ·e0(I).)

Case 2. For both k ∈ {0, 1}, jk = 1: In this case, it must be that w0 = w1 = w,
for some w ∈ {0, 1}. (Otherwise, for each k ∈ {0, 1}, both d0

k
and d1

k
are applicable

to E ·ek(I) and O is upset in E ·ek ·d0
k
(I) and E ·ek ·d1

k
(I), contrary to Lemma 7.7.)

We distinguish two subcases.
Subcase 2(a). O is fresh in E(I): The argument of Subcase 1(a)(i) applies here

as well (but now the state of O in E ·e0 ·du1 (I) and E ·du1 ·e0(I) is 〈⊥, w,⊥, u〉).
Subcase 2(b). O is in a state of the form 〈v0, v1, u0, u1〉 in E(I): We further

distinguish two cases:
(i) v1 = ⊥: By the definition of the states of negation, we have u1 = ⊥ and

v0, u0 �= ⊥. Define u as

u =

{
u0 if w �= v0,
u0 if w = v0.

From the specification of negation, for each k ∈ {0, 1}, duk is the only step of
Pk that is applicable to E(I). Hence, ek = duk , for each k ∈ {0, 1}. Also, ek
is the only step of Pk that is applicable to E ·ek(I). Thus, by Lemma 7.2(d),
both E ·e0 ·e1 and E ·e1 ·e0 are in L. By the specification of negation, O is in
the same state in E ·e0 ·e1(I) as in E ·e1 ·e0(I) (namely, in state 〈v0, w, u0, u〉).
Therefore, each process and each object is in the same state in E ·e0 ·e1(I)
as in E ·e1 ·e0(I). But then e0 and e1 commute at E in L, contrary to
Lemma 6.5(a).

(ii) v1 �= ⊥: Since v1 �= ⊥, by the definition of the states of negation, u1 �= ⊥.
The argument of Subcase 2(b)(i) applies in this case by taking u to be u1

(instead of defining it as above).
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Since all cases lead to a contradiction, the lemma follows.

By Corollary 7.8 and Lemma 7.9, the state of O in E(I) is not a legitimate state
of type negation. Thus, O is not a negation object. This, together with Lemma 7.6
which shows that O is not a register, contradicts our hypothesis that Ac uses only
negation objects and registers. Thus, we have the following.

Theorem 7.10. Type negation has consensus number one.

8. Type booster has consensus number one. In this section, we show that
type booster has consensus number one. Unfortunately, even the modified version of
the bivalence argument of section 7 does not appear to be helpful in proving that
consensus between two processes cannot be solved using only booster objects and reg-
isters. Instead, we use a different technique, originally used (in a somewhat different
context) in [12]. Here is the outline of the proof.

Suppose, for contradiction, that type booster has consensus number at least two.
By the universality of consensus [6], we can implement a negation object for two pro-
cesses using only booster objects and registers. Thus, the equality negation problem
for two processes is solvable using only booster objects and registers. Let Aen be an
equality negation algorithm for two processes that uses a minimal number of booster
objects (together with any number of registers).6 By Theorem 3.1, Aen must use at
least one booster object. We will show that Aen can be modified into an equality
negation algorithm that uses one booster object less than Aen, thus contradicting the
definition of Aen.

In this section we deal exclusively with full computation trees of Aen. We first
establish some properties of such trees that will be needed later on.

Lemma 8.1. Let I be any initial configuration of Aen, and let F be the full
computation tree of Aen from I. Let S0, S0 ·S, and S1 be any nodes in F such that
every process that takes a step in S and every object, except a booster object O, is in
the same state in S0(I) as in S1(I). Suppose further that

• the state of O in S1(I) is , or
• the state of O in S1(I) is of the form 〈∗, ∗, ∗, ∗, ∗, d〉 for some d ∈ {0, 1} and

S contains no reveal step to O with return value d (i.e., S contains no step
of the form (∗,reveal(∗, ∗, ∗), O, d)).

Then, S1 ·S is a node in F , and every process that takes a step in S and every object
except O is in the same state in S0 ·S(I) as in S1 ·S(I).

Proof. From the specification of booster, it is easy to verify that

• the only state that is reachable from is itself, and a reveal operation can
return either 0 or 1 when applied to a booster object in state ;
• every state reachable from a state of the form 〈∗, ∗, ∗, ∗, ∗, d〉 is either of the

same form or , and a reveal operation can return d when applied to a
booster object in a state of the form 〈∗, ∗, ∗, ∗, ∗, d〉 or in state .

Let Si be the schedule consisting of the first i steps of S for 0 ≤ i ≤ |S|. Using the
above two properties, by a straightforward induction on i, we can show that for all i,
0 ≤ i ≤ |S|, Si is applicable to S1(I), and every process that takes a step in S and
every object except O is in the same state in S0 ·Si(I) as in S1 ·Si(I). The lemma
follows immediately from these facts, since S = S	, where � = |S|.

If the root of a full computation tree of Aen is univalent, the following lemma
tells how the valence of the root relates to the possible decisions of the processes.

6This number must be finite by the termination property of equality negation and the fact that
type booster is bounded nondeterministic.
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Lemma 8.2. Let k, u, v ∈ {0, 1}, I be any initial configuration of Aen, F be the
full computation tree of Aen from I, and S be any node of F . If the root of F is
v-valent and Pk has decided u in S(I), then

u =




v if k = 0,
v if k = 1 and P0, P1 have different initial values in I,
v if k = 1 and P0, P1 have the same initial value in I.

Proof. Let S0 be a solo schedule of P0 such that S ·S0 is in F and P0 has decided
in S ·S0(I) (S0 exists by Lemma 6.2). Since (by hypothesis) the root of F is v-valent,
P0 has decided v in S ·S0(I). By hypothesis, Pk has decided u in S(I); since the
decision of a process is irrevocable, Pk has decided u in S ·S0(I). If k = 0, clearly
u = v, as wanted. If k = 1, then P0 has decided v in S ·S0(I), and P1 has decided u
in S ·S0(I). By the negation property, u = v if P0 and P1 have different initial values
in I; and u = v if P0 and P1 have the same initial value in I—as wanted.

Lemma 8.3. For some initial configuration I of algorithm Aen, the full compu-
tation tree F of Aen from I has a bivalent root.

Proof. Suppose, for contradiction, that the root of every full computation tree of
Aen is univalent. For each i, j ∈ {0, 1, 2}, let Ii,j be the initial configuration of Aen

in which P0 and P1 have initial values i and j, respectively, and let Fi,j be the full
computation tree of Aen from Ii,j .

Without loss of generality, assume that the root of F1,1 is 0-valent. By Lemma 6.2
(applied to the root, S⊥, of F1,1), for each k ∈ {0, 1} there is a solo schedule Sk of
Pk such that S⊥ ·Sk = Sk is a node in F1,1 and Pk has decided in Sk(I1,1). By
Lemma 8.2, Pk decides k in Sk(I1,1); see Figure 8.1(a).

Since I1,1 and I1,2 differ only in the state of process P1 and since S0 is a solo
schedule of P0, by Lemma 6.1, S0 is node in F1,2 and P0 has the same state in
S0(I1,2) as in S0(I1,1); see Figure 8.1(b). Thus, P0 decides 0 in S0(I1,2). By the
hypothesis that the root of F1,2 is univalent, it follows that the root of F1,2 is 0-
valent. By Lemma 6.2 (applied to the root of F1,2), there is a solo schedule S′1 of P1

such that S′1 is a node in F1,2 and P1 has decided in S′1(I1,2). By Lemma 8.2, P1

decides 0 in S′1(I1,2). Repeating the argument in this paragraph with I1,2 replaced
by I0,1 and with the roles of 0 and 1 interchanged, we can prove that there exists a
solo schedule S′0 of P0 such that S′0 is a node in F0,1 and P0 decides 1 in S′0(I0,1); see
Figure 8.1(c).

Since I0,1 and I0,2 differ only in the state of P1 and S′0 is a solo schedule of
P0, by Lemma 6.1, S′0 is a node in F0,2 and P0 has the same state in S′0(I0,1) as in
S′0(I0,2). Since P0 decides 1 in S′0(I0,1), it also decides 1 in S′0(I0,2). By a similar
argument, replacing I0,1 and S′0 by I1,2 and S′1, respectively, and interchanging the
roles of P0 and P1, we can show that S′1 is a node in F0,2 and P1 decides 0 in S′1(I0,2);
see Figure 8.1(d). Thus, the root of F0,2 has descendants, namely, S′0 and S′1, in
which processes have decided different values in the corresponding configurations. By
Lemma 8.2, the root of F0,2 cannot be univalent. This contradicts our hypothesis
that the root of every full computation tree of Aen is univalent.

In the remainder of the section we focus exclusively on the initial configuration
I and the full computation tree F of Aen from I whose existence is asserted by
Lemma 8.3. Thus, from now on, we refer to the valence of a node without explicitly
specifying the computation tree, since that will always be F .

Since the root of F is bivalent, by Lemma 6.7, F has a critical node E. By the
definition of critical node, there are steps e0 and e1 of processes P0 and P1, respectively,
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P1 decides 1

S⊥ (univalent)

S⊥ (univalent)

S⊥ (univalent)

solo P0

solo P0 solo P0

solo P0

S ′1S1

solo P1

solo P1

solo P1

S⊥ (bivalent)

solo P1

S ′1

S ′0

S0 S1

S ′0

S0

P0 decides 0 P1 decides 0

P1 decides 0P0 decides 1

P0 decides 0 P1 decides 1

P0 decides 1

(a) A subtree of F1,1

(c) A subtree of F0,1 (d) A subtree of F0,2

(b) A subtree of F1,2

Fig. 8.1. Subtrees of four full computation trees of Aen.

such that E ·e0 and E ·e1 are univalent nodes of opposite valence. Without loss of
generality, assume that E ·e0 is 0-valent and E ·e1 is 1-valent (if not, we simply rename
e0 and e1). By Lemma 6.6, e0 and e1 access the same object, say, O. We can show
that O is not a register by using an argument similar to the one used in the proof
of Lemma 7.6 (except simpler, since we are now working with the full computation
tree and need not worry about whether certain schedules applicable to I have been
pruned). Thus, O is a booster object. In what follows, we say that O is fresh in a
configuration C of Aen if its state in C is and upset in C if its state in C is .

We now outline how the proof proceeds: To show that the assumed equality
negation algorithm Aen that uses only booster objects and registers does not exist,
we derive a contradiction in two stages. In the first stage, we prove certain facts about
the configuration E(I) and the booster object O. Specifically, we show that O is fresh
in E(I) (Corollary 8.5 and Lemma 8.7), that each process has an enroll operation
(with a different parameter) to O pending in E(I), and that neither process can decide
before one of them has applied a reveal operation to O (Lemma 8.11). Furthermore,
if neither process has yet applied a reveal operation to O but each is about to, then
the parameters of the two pending reveal operations must be such as to ensure that
O does not become upset (Lemma 8.13). These facts are then exploited in the second
stage of the proof to show how to solve equality negation using only registers and the
booster objects of Aen except O. We have thus reached a contradiction, as Aen was
assumed to use the smallest possible number of booster objects. The details of these
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two stages are carried out in the next two subsections.

8.1. Stage 1 of the proof. We now show that O is fresh in E(I). We do this
by proving that, in E(I), O is neither upset (Corollary 8.5) nor in a state of the form
〈V, v0, v1, u0, u1, d〉 (Lemma 8.7).

Lemma 8.4. Object O is not upset in E ·e0(I) or in E ·e1(I).
Proof. Suppose, for contradiction, that O is upset in E ·ek(I) for some k ∈ {0, 1}.

By Lemma 6.2 (applied to node E ·ek in F), there is a solo schedule Sk of Pk such that
E ·ek ·Sk is a node in F and Pk has decided in E ·ek ·Sk(I). Comparing configurations
E(I) and E ·ek(I), we note that Pk and each object other thanO is in the same state in
both. Since, by assumption, O is upset in E ·ek(I) and ek ·Sk is a solo schedule of Pk,
by Lemma 8.1, E ·ek ·ek ·Sk is a node in F , and Pk is in the same state in E ·ek ·Sk(I)
as in E ·ek ·ek ·Sk(I). Thus, Pk decides the same value in both E ·ek ·Sk(I) and
E ·ek ·ek ·Sk(I). By Lemma 6.3, E ·ek ·Sk and E ·ek ·ek ·Sk have the same valence.
Since E ·ek and E ·ek are univalent and have descendants of the same valence, they
also have the same valence. This contradicts the fact that E ·e0 is 0-valent while E ·e1

is 1-valent.
Once a booster object is upset, it remains upset forever. Thus, Lemma 8.4 implies

the following.
Corollary 8.5. Object O is not upset in E(I).
Lemma 8.6. E ·e0 ·e1 and E ·e1 ·e0 are nodes in F .
Proof. By definition of F , it suffices to show that for each k ∈ {0, 1} ek is

applicable to E ·ek(I). If ek is an enroll step, the lemma follows immediately by
the specification of booster.

Suppose that ek is a reveal step. If O is fresh in E(I), then O is upset in
E ·ek(I), contrary to Lemma 8.4. Thus, O is not fresh in E(I). By Corollary 8.5,
O is not upset in E(I). Thus, O is in a state of the form 〈∗, ∗, ∗, ∗, ∗, d〉 in E(I) for
some d ∈ {0, 1}. By the specification of booster, and since O is not upset in E ·ek(I),
the response returned by the reveal operation in ek is d. Since O is in a state of
the form 〈∗, ∗, ∗, ∗, ∗, d〉 in E(I) and is not upset in E ·ek(I), it must be in a state of
the form 〈∗, ∗, ∗, ∗, ∗, d〉 in E ·ek(I) as well (because the last component of the state
is never changed, once it is set). By the specification of booster, a reveal operation
to O applied in such a state can return the response d. Thus, ek is indeed applicable
to E ·ek(I).

Lemma 8.7. The state of O in E(I) is not of the form 〈V, v0, v1, u0, u1, d〉.
Proof. Suppose, for contradiction, that the state ofO in E(I) is 〈V, v0, v1, u0, u1, d〉.

By Lemma 8.6, both E ·e0 ·e1 and E ·e1 ·e0 are nodes in F . We shall show that

the state of O is the same in E ·e0 ·e1(I) as in E ·e1 ·e0(I).(2)

Clearly, the state of each process and object except O is the same in E ·e1 ·e0(I) as
in E ·e0 ·e1(I). By (2), we have thus shown that e0 and e1 commute at E in F . This
contradicts Lemma 6.5(a), as wanted.

It remains to show (2). Let op0 and op1 be the (enroll or reveal) operations
to O of processes P0 and P1 that are pending in E(I), respectively. There are three
cases, depending on the types of op0 and op1.

Case 1. Both operations pending in E(I) are enroll: Let op0 = enroll(i0) and
op1 = enroll(i1) for some i0, i1 ∈ {0, 1}. For each k ∈ {0, 1}, let rk be the response
of O to the enroll(ik) operation in step ek. There are three subcases.

Subcase 1(a). i0 = i1 = 0: From the specification of booster, O is upset in both
E ·e0 ·e1(I) and E ·e1 ·e0(I).
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Subcase 1(b). i0 = i1 = 1: From the specification of booster, O is in state
〈V ∪ {r0, r1}, v0, v1, u0, u1, d〉 in both E ·e0 ·e1(I) and E ·e1 ·e0(I).

Subcase 1(c). For some k ∈ {0, 1}, ik = 0 and ik = 1: Without loss of generality
we assume that i0 = 0 and i1 = 1. Then v0 = ⊥; if not, O would be upset in E ·e0(I),
which contradicts Lemma 8.4. By the definition of the set of states of booster, u0 = ⊥.
From this, it follows that O is in state 〈V ∪ {r1}, r0, v1,⊥, u1, d〉 in both E ·e0 ·e1(I)
and E ·e1 ·e0(I).

Case 2. One of the two operations pending in E(I) is enroll and the other
is reveal: Without loss of generality, we may assume that op0 = enroll(i0) and
op1 = reveal(i1, v, u) for some i0, i1, u ∈ {0, 1} and v ∈ {0, 1, 2}. Let r be the
response of the enroll(i0) operation that is returned in step e0. There are three
subcases.

Subcase 2(a). i0 = 0: Then v0 = ⊥ (otherwise, O would be upset in E ·e0(I),
contrary to Lemma 8.4), and hence u0 = ⊥ (by the definition of the set of states
of booster). Also, i1 = 1 (otherwise, O would be upset in E ·e1(I)). Thus, O is in
state 〈V,⊥, v1,⊥, u1, d〉 in E(I) and the operations of P0 and P1 pending in E(I) are
enroll(0) and reveal(1, v, u), respectively. From the specification of booster, the
state of O in both E ·e0 ·e1(I) and E ·e1 ·e0(I) is

{ 〈V, r, v,⊥, u, d〉 if v ∈ V and (u1 = ⊥ or (v = v1 and u = u1)),
otherwise.

Subcase 2(b). i0 = 1 and i1 = 0: Since O is not upset in E ·e1(I), the Boolean
expression

v = v0 and u0 = ⊥ and (u1 = ⊥ or (v = v1 ⇔ u �= u1))

is true, and O is in state 〈V, v0, v1, u, u1, d〉 in E ·e1(I). Thus, O is in state 〈V ∪ {r},
v0, v1, u, u1, d〉 in E ·e1 ·e0(I).

The state of O in E ·e0(I) is 〈V ∪ {r}, v0, v1,⊥, u1, d〉 (recall that u0 = ⊥). Since
the preceding Boolean expression is true, by the specification of booster, the appli-
cation of reveal(0, v, u) to O in state 〈V ∪ {r}, v0, v1,⊥, u1, d〉 does not cause O to
become upset; in fact, it causes it to enter state 〈V ∪ {r}, v0, v1, u, u1, d〉. Thus, e1 is
applicable to E ·e0(I), and the state of O in E ·e0 ·e1(I) is 〈V ∪ {r}, v0, v1, u, u1, d〉,
which is the same as in E ·e1 ·e0(I).

Subcase 2(c). i0 = 1 and i1 = 1: Similar to Subcase 2(b), except that in this
case the state of O in E ·e0 ·e1(I) and E ·e1 ·e0(I) is 〈V ∪ {r}, v0, v, u0, u, d〉 instead
of 〈V ∪ {r}, v0, v1, u, u1, d〉.

Case 3. Both operations pending in E(I) are reveal: Let op0 = reveal(i0, v, u)
and op1 = reveal(i1, v

′, u′) for some i0, i1, u, u
′ ∈ {0, 1} and v, v′ ∈ {0, 1, 2}. There

are three subcases.
Subcase 3(a). i0 = i1 = 0: Then O is upset in both E ·e0 ·e1(I) and E ·e1 ·e0(I).
Subcase 3(b). i0 �= i1: Without loss of generality, we may assume that i0 = 0

and i1 = 1. It must be the case that v = v0 and u0 = ⊥ (otherwise O is upset
in E ·e0(I), contrary to Lemma 8.4). Also v′ ∈ V and either u1 = ⊥, or v′ = v1

and u′ = u1 (otherwise O is upset in E ·e1(I)). Thus, the state of O in E(I) is
either 〈V, v,⊥,⊥,⊥, d〉 or 〈V, v, v′,⊥, u′, d〉. In either case, it can be verified from the
specification of booster that the state of O in both E ·e0 ·e1(I) and E ·e1 ·e0(I) is

{ 〈V, v, v′, u, u′, d〉 if v = v′ ⇔ u �= u′,
otherwise.
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Subcase 3(c). i0 = i1 = 1: Since O is not upset in either one of E ·e0(I) or
E ·e1(I), it must be that v, v′ ∈ V and O is in state 〈V, v0, v, u0, u, d〉 in E ·e0(I) and
in 〈V, v0, v

′, u0, u
′, d〉 in E ·e1(I). From the specification of booster, it can be checked

that the state of O in E ·e0 ·e1(I) is

{ 〈V, v0, v
′, u0, u

′, d〉 if v′ = v and u′ = u,
otherwise.

Similarly, the state of O in E ·e1 ·e0(I) is

{ 〈V, v0, v, u0, u, d〉 if v = v′ and u = u′,
otherwise.

Thus, O is in the same state in E ·e0 ·e1(I) as in E ·e1 ·e0(I). This completes the
proof of (2), and thereby of the lemma.

By Corollary 8.5 and Lemma 8.7, O must be fresh in E(I). Furthermore, each
Pk must have an enroll operation to O pending in E(I). (Otherwise, by the speci-
fication of booster, O would be upset in E ·ek(I), contrary to Lemma 8.4.) For each
k ∈ {0, 1}, let jk ∈ {0, 1} be the parameter of the enroll operation of Pk pending in
E(I).

The next lemma states that the parameters of the two enroll operations to O
pending in E(I) are different.

Lemma 8.8. j0 �= j1.
Proof. Suppose, for contradiction, that j0 = j1. As in the proof of Lemma 8.7,

we shall show that O is in the same state in E ·e0 ·e1(I) as in E ·e1 ·e0(I). This
fact, together with Lemma 8.6, implies that e0 and e1 commute at E in F , thus
contradicting Lemma 6.5(a).

Recall that j0, j1 ∈ {0, 1}. There are two cases.
Case 1. j0 = j1 = 0: Then O is upset in both E ·e0 ·e1(I) and E ·e1 ·e0(I).
Case 2. j0 = j1 = 1: Let r0 and r1 be the responses of O returned to the enroll

operations in e0 and e1, respectively. Then O is in state 〈{r0, r1},⊥,⊥,⊥,⊥, 1〉 in
both E ·e0 ·e1(I) and E ·e1 ·e0(I).

We next show that after applying its enroll operation that is pending in E(I) no
process can decide unless some process has applied at least one reveal operation to
O (Lemma 8.11). In the next two lemmas, we establish some properties of schedules
applicable to E(I) used to prove this fact.

Lemma 8.9. For any k ∈ {0, 1} and any node E ·S in F , if Pk is the process that
takes the first step in S, then E ·S is k-valent.

Proof. Later we prove that

for each k ∈ {0, 1}, the nodes in children(Pk, E,F) have the
same valence.

(3)

Let e be the first step in S, which is taken by process Pk for some k ∈ {0, 1}.
Thus, E ·e is a node in children(Pk, E,F). By (3), all nodes in children(Pk, E,F)
are univalent and have the same valence. One of these children, namely, E ·ek, is
k-valent. Therefore, E ·e is also k-valent. Since E ·S is a descendant of E ·e, it follows
that E ·S is k-valent.

It remains to prove (3). We prove it for k = 0. (The proof for k = 1 can be
obtained by interchanging the roles of 0 and 1 in the argument below.) For each
v ∈ {0, 1, 2}, let ev0 = (P0,enroll(j0),O, v). Since O is fresh in E(I) and an enroll
operation applied to a fresh booster object can return any value in {0, 1, 2}, it follows
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that children(P0, E,F) = {E ·ev0 : 0 ≤ v ≤ 2 }. Since E is a critical node, all nodes
in children(P0, E,F) are univalent. To prove (3), it suffices to show that for any
v, v′ ∈ {0, 1, 2}, E ·ev0 and E ·ev′0 have the same valence. From the specification of
booster and the fact that O is fresh in E(I) we have the following:

(a) For any v ∈ {0, 1, 2}, the state of O in E ·ev0(I) is 〈∗, ∗, ∗, ∗, ∗, j0〉.
(b) For any v ∈ {0, 1, 2}, if S is a schedule applicable to E ·ev0(I), then the state

of O in E ·ev0 ·S(I) is either of the form 〈∗, ∗, ∗, ∗, ∗, j0〉 or .
(c) A reveal operation can return j0 when applied to a booster object in a state

of the form 〈∗, ∗, ∗, ∗, ∗, j0〉 or in state .

Let v be any element of {0, 1, 2}. By Lemma 6.2 (applied to node E ·ev0 in F), there
is a solo schedule S of P1 such that E ·ev0 ·S is a node in F and P1 has decided in
E ·ev0 ·S(I). Since F is a full computation tree, by (a)–(c) we may assume, without
loss of generality, that S contains no step of the form (∗,reveal(∗, ∗, ∗),O, j0).

For any v′ ∈ {0, 1, 2}, the state of P1 and each object except O is the same in
E ·ev0(I) as in E ·ev′0 (I). Since the state of O in E ·ev′0 (I) is of the form 〈∗, ∗, ∗, ∗, ∗, j0〉
and since S does not contain a reveal step to O with return value j0, the hypothesis
of Lemma 8.1 applies for S0 = E ·ev0 and S1 = E ·ev′0 . Thus, E ·ev′0 ·S is a node in
F , and P1 is in the same state in E ·ev0 ·S(I) as in E ·ev′0 ·S(I). This implies that P1

decides the same value in these two configurations. By Lemma 6.3, nodes E ·ev0 ·S
and E ·ev′0 ·S have the same valence. Hence, E ·ev0 and E ·ev′0 (which are univalent
since E is critical) must also have the same valence. This completes the proof of (3)
and thereby of the lemma.

Lemma 8.10. Let E ·S be any node in F such that S contains no reveal step
to O, and dk be the first step of Pk in S for any k ∈ {0, 1}. Let Ŝ be the schedule
obtained from S by moving dk to the beginning (i.e., if S = S′ ·dk ·S′′ for some S′ and
S′′, then Ŝ = dk ·S′ ·S′′). Then, E · Ŝ is a node in F , and the state of each process
and each object other than O is the same in E · Ŝ(I) as in E ·S(I).

Proof. Let S′ and S′′ be such that S = S′ ·dk ·S′′. Recall that process Pk has an
enroll(jk) to O pending in E(I). Since S′ is a solo schedule of Pk (because dk is the
first step of Pk in S), the operation of Pk pending in E ·S′(I) is still enroll(jk) to
O. Thus, dk is an enroll step to O. By the specification of booster, dk is applicable
to E(I). Clearly, as dk is a step of Pk that accesses (only) O, the state of Pk and each
object other than O is the same in E(I) as in E ·dk(I). Also, the state of O in E ·dk(I)
is of the form 〈∗, ∗, ∗, ∗, ∗, jk〉 (recall that dk is an enroll(jk) step to O). Since E ·S′
is a node in F and S′ is a solo schedule of Pk that does not contain a reveal step to
O, by Lemma 8.1 (applied for S0 = E, S1 = E ·dk, and S = S′), E ·dk ·S′ is a node
in F , and the state of Pk and each object other than O is the same in E ·dk ·S′(I)
as in E ·S′(I). It follows that each process and each object other than O is in the
same state in E ·dk ·S′(I) as in E ·S′ ·dk(I). By hypothesis, E ·S′ ·dk ·S′′ is a node in
F and S′′ does not contain a reveal step to O. Again by Lemma 8.1 (applied for
S0 = E ·S′ ·dk, S1 = E ·dk ·S′, and S = S′′), E ·dk ·S′ ·S′′ is a node in F , and the
state of each process and each object other than O is the same in E ·S′ ·dk ·S′′(I) as
in E ·dk ·S′ ·S′′(I).

Lemma 8.11. Let E ·S be any node in F such that some process has decided in
E ·S(I). Then S has a reveal step to O.

Proof. Suppose, for contradiction, that some process has decided in E ·S(I), but
S contains no reveal step to O. Without loss of generality, we may assume that
both processes take steps in S. (If S contains only steps of process Pk for some
k ∈ {0, 1}, we extend S by a step of Pk, which cannot be a reveal step to O because
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the operation of Pk pending in E(I) is an enroll to O, and consider the extended
schedule instead.)

Let P	, � ∈ {0, 1}, be the process that does not take the first step in S, and Ŝ
be the schedule obtained from S by moving the first step of P	 to the beginning. By
Lemma 8.10, E · Ŝ is a node in F , and the state of each process and each object except
O is the same in E · Ŝ(I) as in E ·S(I). In particular, the process that has decided in
E ·S(I) decides the same value in E · Ŝ(I). By Lemma 6.3, E ·S and E · Ŝ have the
same valence. This contradicts Lemma 8.9, since P	 takes the first step in Ŝ while P	
takes the first step in S.

To summarize, O is fresh in E(I), each Pk has an enroll(jk) operation to O
pending in E(I), and j0 �= j1. By Lemma 8.11, no process can decide unless a reveal
operation is applied to O. Thus, by the termination requirement of equality negation,
there is a schedule S applicable to E(I) so that no process has taken a reveal step
to O in S, and each process has a reveal operation to O pending in E ·S(I). S
contains enroll steps of both processes because each process Pk, k ∈ {0, 1}, has
an enroll(jk) operation to O pending in E(I) but has a reveal operation to O
pending in E ·S(I). By Lemma 8.8, S contains both enroll(0) and enroll(1) steps
to O.

The next lemma proves that, in any execution starting from configuration E(I),
if each of the two processes is about to apply its first reveal operation to O, then
the application of these two operations does not cause O to become upset.

Lemma 8.12. Consider any node E ·S in F such that S contains no reveal step
to O and both processes have a reveal operation to O pending in E ·S(I). For each
k ∈ {0, 1}, let dk be any step of Pk and ck be any step of Pk such that E ·S ·dk ·ck is
a node in F . (Note that dk and ck are reveal steps that access O.) Then O is not
upset in E ·S ·dk ·ck(I).

Proof. Suppose, to the contrary, that O is upset in E ·S ·dk ·ck(I) for some k ∈
{0, 1}. Let P	, � ∈ {0, 1}, be the process that does not take the first step in S, and Ŝ
be the schedule obtained from S by moving the first step of P	 to the beginning. By
Lemma 8.10, E · Ŝ is a node in F , and each process and each object except O is in
the same state in E ·S(I) as in E · Ŝ(I). Let d̂k be any step of Pk such that E · Ŝ · d̂k
is a node in F . We shall prove that

E · Ŝ · d̂k ·ck is a node in F , and O is upset in E · Ŝ · d̂k ·ck(I).(4)

Given (4), process Pk and each object (includingO) is in the same state in E ·S ·dk ·ck(I)

as in E · Ŝ · d̂k ·ck(I). By Lemma 6.4, E ·S ·dk ·ck and E · Ŝ · d̂k ·ck have the same va-

lence. This contradicts Lemma 8.9, since P	 takes the first step in Ŝ, while P	 takes
the first step in S.

It remains to show (4). There are three cases.
Case 1. O is upset in E ·S(I): Since S contains only enroll operations to O,

it must contain two enroll(0) operations to O (otherwise O would not be upset
in E ·S(I)). Then so does Ŝ, and O is upset in E · Ŝ(I). It is immediate from

the specification of booster that O is upset in E · Ŝ · d̂k(I) and ck is applicable to

E · Ŝ · d̂k(I). Therefore, E · Ŝ · d̂k ·ck is a node in F , and O is upset in E · Ŝ · d̂k ·ck(I)
(because once a booster object becomes upset, it remains upset forever).

Case 2. O is not upset in E ·S(I) but it is upset in E ·S ·dk(I): S contains exactly
one enroll(0) and at least one enroll(1) step. (We have already argued, in the
paragraph preceding Lemma 8.12, that S contains both enroll(0) and enroll(1)
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steps. It cannot contain two enroll(0) steps because, otherwise, O would be upset in
E ·S(I), contrary to the hypothesis of this case.) By assumption, S does not contain
any reveal steps. Since O is fresh in E(I) and it is not upset in E ·S(I), the state of
O in E ·S(I) is 〈V, v,⊥,⊥,⊥, j	〉, where V is the set of return values of the enroll(1)
steps in S, and v is the return value of the enroll(0) step in S. (To see why the last
component of the state is j	, recall that P	 has an enroll(j	) operation to O pending
in E(I). Since P	 is the process that takes the first step in S, that step involves an
enroll(j	) operation to O. Since O is fresh in E(I), when that enroll(j	) operation
is applied to O, the state of O is set to a state of the form 〈∗, ∗,⊥,⊥,⊥, j	〉. The
last component of the state is not changed, once it is set.) Similarly, the state of
O in E · Ŝ(I) is 〈V, v,⊥,⊥,⊥, j	〉—i.e., the same as in E ·S(I), except for the last
component.

Since O is upset in E ·S ·dk(I) it follows, from the specification of booster, that
dk is a reveal(ik, vk, uk) step to O so that one of the following holds:

(a) ik = 0 and vk �= v (i.e., vk is not the return value of the enroll(0) step in S);
(b) ik = 1 and vk �∈ V (i.e., vk is not the return value of some enroll(1) step

in S).
In either case, it is immediate from the specification of booster that the application of
reveal(ik, vk, uk) to O in state 〈V, v,⊥,⊥,⊥, j	〉 will cause O to become upset (and
can return any value in {0, 1}). Since the state of process Pk is the same in E ·S(I) as

is E · Ŝ(I), d̂k is also a reveal(ik, vk, uk) step to O. Thus, O is upset in E · Ŝ · d̂k(I).

Hence, ck is applicable to E · Ŝ · d̂k(I). This implies that E · Ŝ · d̂k ·ck is a node in F ,

and O is upset in E · Ŝ · d̂k ·ck(I).
Case 3. O is not upset in E ·S ·dk(I) but it is upset in E ·S ·dk ·ck(I): Let the

reveal operation applied to O in dk be reveal(ik, vk, uk). Since O is not upset
in E ·S ·dk(I), and S does not contain any reveal steps, we conclude the following
about the state of O in E ·S ·dk(I):

• If ik = 0, then that state is 〈V, v,⊥, uk,⊥, j	〉, where V is the set of return
values of the enroll(1) steps in S, v is the return value of the enroll(0)
step in S, and vk = v.
• If ik = 1, then that state is 〈V, v, vk,⊥, uk, j	〉, where V is the set of return

values of the enroll(1) steps in S, v is the return value of the enroll(0)
step in S, and vk ∈ V .

As argued in the preceding case, d̂k is also a reveal(ik, vk, uk) step to O. Thus, the

state of O in E · Ŝ · d̂k(I) is as above, except that the last component is j	 instead of
j	. Since O is upset in E ·S ·dk ·ck(I), from the specification of booster it follows that
ck is a reveal(ik, vk, uk) step to O so that one of the following holds:

(a) ik = 0 and vk �= v (i.e., vk is not the return value of the enroll(0) step in
S).

(b) ik = 1 and vk �∈ V (i.e., vk is not the return value of some enroll(1) step in
S).

(c) ik = ik = 0.
(d) ik = ik = 1, and either vk �= vk, or uk �= uk.
(e) ik �= ik and it is not the case that vk = vk ⇔ uk �= uk.

In each of these cases, it can be seen that the application of a reveal(ik, vk, uk)
operation to O when in a state of the form 〈V, v,⊥, uk,⊥, j	〉 or 〈V, v, vk,⊥, uk, j	〉
(the only possible states of O in E · Ŝ · d̂k(I)) will cause O to become upset and can

return any value in {0, 1}. Thus, ck is applicable to E · Ŝ · d̂k(I). Therefore, E · Ŝ · d̂k ·ck
is a node in F , and O is upset in E · Ŝ · d̂k ·ck(I). This completes the proof of (4), and
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thereby of the lemma.
Using Lemma 8.12, we can show that starting from E(I), if each of the two

processes is about to apply its first reveal operation to O, then the parameters of
these two reveal operations satisfy certain properties.

Lemma 8.13. Consider any node E ·S in F such that S contains no reveal
step to O and both processes have a reveal operation to O pending in E ·S(I). For
each k ∈ {0, 1}, let ik, vk, and uk be the parameters of the reveal operation to O of
Pk that is pending in E ·S(I). Then

(a) for each k ∈ {0, 1}, vk is the response of an enroll(ik) step to O contained
in S;

(b) i0 and i1 cannot be both equal to 0;
(c) if i0 = i1 = 1, then v0 = v1 and u0 = u1;
(d) if i0 �= i1, then v0 = v1 ⇔ u0 �= u1.
Proof. For each k ∈ {0, 1}, let dk be a step of Pk and ck be a step of Pk such that

E ·S ·dk ·ck is a node in F . By the specification of booster, if any of the properties
(a)–(d) failed to hold, O would be upset in E ·S ·dk ·ck(I) for any k ∈ {0, 1}. This
would contradict Lemma 8.12. Thus, (a)–(d) must all hold.

8.2. Stage 2 of the proof. We now describe an algorithm that solves equality
negation between two processes, Q0 and Q1, and uses one less booster object than Aen.
Intuitively, the algorithm works as follows: Each process Qk simulates the actions
of the corresponding process Pk in an execution of Aen, and uses this execution to
determine what value to decide. In this simulation, the processes are allowed to access
all objects used by Aen except O, each of which is initialized to the state it has in
configuration E(I).

The simulation of Pk by Qk starts by pretending that Pk is in the state it has in
configuration E(I). Based on the current state of (the simulated) Pk, Qk determines
the operation op that Pk would apply next, and the object O to which op would
be applied. If O �= O, then Qk has access to O and can apply op to it directly
to determine the response and update the (simulated) state of Pk accordingly. If,
however, O = O, this is not possible, since Qk is not allowed to access O. Instead, in
this case, Qk acts as follows:

• If op is an enroll(i) operation, Pk pretends that it applied this operation
to O and received as the response the initial value for which Qk must solve
equality negation. In other words, Qk pretends that when Pk enrolls in O it
receives as the “challenge” with which to solve equality negation just the input
value for which Qk is required to solve equality negation! Qk then updates
the (simulated) state of Pk as if this step were executed and proceeds with
the simulation of the next operation of Pk.
• If op is a reveal operation, Qk does not simulate any more steps of Aen.

Instead, it decides a value based on the parameters of this reveal operation
and the parameter of the first enroll operation to O that it previously
simulated.

The algorithm is described more formally in Figure 8.2. A few remarks about
the conventions used in the pseudocode are in order. Recall, from Figure 5.1, that
Apply(Pk, op, O) is the procedure by which Pk invokes operation op on object O; it
returns the result of this invocation (and updates the state of O accordingly). In
addition, we assume that we are given two functions that describe the behavior of
processes P0 and P1 in Aen. (These correspond to the functions ν and τ discussed
when we formally defined processes in section 2.2.)
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Shared: every object other than O used in algorithm Aen,
each initialized to the state it has in E(I)

S : auxiliary variable : schedule of Aen applicable to E(I), initially empty
Code for process Qk, k ∈ {0, 1}
1 init := initial value of Qk

2 state := state of Pk in E(I)
3 j := parameter of the enroll operation to O by Pk pending in E(I)
4 while Qk has not decided do
5 〈op, O〉 := NextOp(Pk, state)
6 if O �= O then
7 [[ res := Apply(Pk, op, O); S := S ·(Pk, op, O, res) ]]
8 state := NextState(Pk, state, res)
9 else (∗ O = O ∗)
10 if op = enroll(i) then
11 S := S ·(Pk,enroll(i),O, init)
12 state := NextState(Pk, state, init)
13 else
14 let i, v and u be such that op = reveal(i, v, u)
15 if i �= j then
16 if v = init then decide u
17 else decide u
18 else
19 if i = 0 then (∗ i = j = 0 ∗)
20 decide u
21 else (∗ i = j = 1 ∗)
22 if v = init then decide u
23 else decide u

Fig. 8.2. Solving equality negation for two processes using Aen with one less booster object.

• NextOp(Pk, s): returns the pair 〈op, O〉, where the next operation that Pk
executes in Aen when in state s is to apply op to object O.

• NextState(Pk, s, r): returns the state that Pk enters in Aen if it receives
response r from the operation it invokes when in state s.

In the algorithm we also use an auxiliary variable S whose value, informally speaking,
is the schedule of steps of Aen that have been simulated by Q0 and Q1 so far. This
variable is not needed by the algorithm, but it is useful in proving its correctness (see
Lemma 8.14). In one atomic step, besides accessing an ordinary (local or shared)
variable, each process can also modify the auxiliary variable S. To emphasize this, we
bracket with “[[· · ·]]” the line that corresponds to a single atomic step affecting both
an ordinary variable and the auxiliary variable S (line 7).

Lemma 8.14. If Aen is an equality negation algorithm for processes P0 and P1,
then the algorithm in Figure 8.2 also solves equality negation for processes Q0 and Q1

using one fewer booster object than Aen.

Proof. It is obvious from Figure 8.2 that the algorithm uses one booster object
less than Aen. In the remainder of this proof we show that the algorithm solves
equality negation for Q0 and Q1. To this end, fix an arbitrary execution of the
algorithm. We shall prove that in this execution, the three properties of equality
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negation—termination, negation, and agreement—are satisfied.

First we establish some properties of this execution. Let Si be the value of the
auxiliary variable S when the schedule it contains consists of exactly i steps. By
lines 7 and 11 of Figure 8.2, it is clear that for all i, j, where 0 ≤ i ≤ j, if Sj is
defined, then Si is a prefix of Sj . A straightforward induction on i shows that for all
i ≥ 0 such that Si is defined, the following invariants hold.

(a) Si is a schedule of Aen that is applicable to E(I) (hence, E ·Si is a node in
F) and contains no reveal step to O.

(b) Let Qk be the process that assigns Si to S, and statek be the value to which
Qk sets its local variable state after assigning Si to S (cf. lines 8 and 12).
Then, for all j ≥ i, such that Sj is defined and there is no step of Pk in Sj
after Si, statek is the state of Pk in configuration Sj(I) of Aen.

With these invariants, we are now ready to prove that the execution satisfies the three
properties of equality negation.

Since only two processes execute the algorithm, the agreement requirement of
equality negation is trivially satisfied. We now show that the execution satisfies
termination. Suppose, for contradiction, that some correct process Qk is correct and
never decides. This means that the while loop of Qk does not terminate, and hence Si
is defined for all integers i ≥ 0. By invariant (a), Si is applicable to E(I) and contains
no reveal step to O for all i ≥ 0. Thus, there is an infinite schedule S∗ of Aen that
is applicable to E(I), contains infinitely many steps of Pk, and does not contain a
reveal step to O. By Lemma 8.11, Pk does not decide in E ·S′(I) for all prefixes S′

of S∗. This contradicts the fact that Aen satisfies the termination property. Thus,
the execution satisfies termination.

It remains to show that the execution satisfies the negation property. Assume that
both Q0 and Q1 decide in the execution. (Otherwise, negation is trivially satisfied.)
For each k ∈ {0, 1}, let initk be the initial value of process Qk (i.e., the value assigned
to local variable init of Qk in line 1); let jk be the value assigned to local variable j
of process Qk in line 3; and let statek be the value of local variable state of process
Qk when Qk decides. Let S∗ be the value of S when Q0 and Q1 have both decided
(i.e., S∗ is the final value of the auxiliary variable S). By the algorithm, the next
operation that Pk will execute when in statek is a reveal operation to object O;
let ik, vk, and uk be the parameters of that reveal operation. From invariant (b),
it follows that the operation of Pk pending in E ·S∗(I) is a reveal(ik, vk, uk) to
O. By invariant (a), E ·S∗ is a node in F , and S∗ contains no reveal operations
to O. Thus, the hypothesis of Lemma 8.13 holds (with S = S∗); we will make use
of parts (a)–(d) of this lemma below. By line 11 of the algorithm, the only return
values of enroll operations to O that appear in S∗ are init0 and init1. Thus, by
Lemma 8.13(a), v0, v1 ∈ {init0, init1}. There are three cases.

Case 1. For both k ∈ {0, 1}, ik �= jk: In this case, each Qk decides by line 16 or 17
(depending on whether vk = initk). Also, i0 �= i1 (because i0, i1, j0, j1 ∈ {0, 1} and,
by Lemma 8.8, j0 �= j1). Thus, by Lemma 8.13(7.2), u0 = u1 if and only if v0 �= v1.

By a case analysis of the four possible combinations of lines by which Q0 and Q1

can decide, we have that Q0 and Q1 decide the same value if and only if

(v0 = init0 and v1 = init1 and u0 = u1) /∗ Q0’s line 16; Q1’s line 16 ∗/
or (v0 = init0 and v1 �= init1 and u0 �= u1) /∗ Q0’s line 16; Q1’s line 17 ∗/
or (v0 �= init0 and v1 = init1 and u0 �= u1) /∗ Q0’s line 17; Q1’s line 16 ∗/
or (v0 �= init0 and v1 �= init1 and u0 = u1). /∗ Q0’s line 17; Q1’s line 17 ∗/
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Since u0 = u1 if and only if v0 �= v1, the above expression is equivalent to

(v0 = init0 and v1 = init1 and v0 �= v1)
or (v0 = init0 and v1 �= init1 and v0 = v1)
or (v0 �= init0 and v1 = init1 and v0 = v1)
or (v0 �= init0 and v1 �= init1 and v0 �= v1).

As argued above, v0, v1 ∈ {init0, init1}. Thus, the above disjunction is equivalent to
init0 �= init1. In other words, Q0 and Q1 decide the same value if and only if they
have different initial values.

Case 2. For both k ∈ {0, 1}, ik = jk: By Lemma 8.8, j0 �= j1. Thus, for some
k ∈ {0, 1}, ik = jk = 0 and ik = jk = 1. Then Qk decides by line 20 and Qk decides
by line 22 or 23 (depending on whether vk = initk). Thus, Qk decides uk. So we have
that Q0 and Q1 decide the same value if and only if

(vk = initk and uk = uk) /∗ Qk’s line 22 ∗/
or (vk �= initk and uk = uk). /∗ Qk’s line 23 ∗/

In this case, ik �= ik. By Lemma 8.13(7.2), uk = uk if and only if vk �= vk. Thus, the
above expression is equivalent to

(vk = initk and vk �= vk) or (vk �= initk and vk = vk).

S∗ does not contain two enroll(0) steps: Otherwise, O would be upset in E ·S∗(I)—
and therefore still upset after the application of the two reveal operations pending in
E ·S∗(I)—contrary to Lemma 8.12. Since jk = 0, Pk has an enroll(0) to O pending
in E(I). Hence, the unique enroll(0) to O in S∗ is a step of Pk. By line 11, the
response to that unique enroll(0) step to O in S∗ is the initial value of Pk, initk. By
Lemma 8.13(a) and the fact that ik = 0, vk is the response of the unique enroll(0)
step to O that is contained in S∗. Therefore, vk = initk. Thus, the above expression
is equivalent to

(vk = initk and initk �= vk) or (vk �= initk and initk = vk).

As argued earlier, vk ∈ {init0, init1}; so the above expression is equivalent to initk �=
initk. In other words, Q0 and Q1 decide the same value if and only if they have
different initial values.

Case 3. For some k ∈ {0, 1}, ik �= jk and ik = jk: By Lemma 8.8, jk �= jk,
so ik = ik. By Lemma 8.13(b), ik and ik cannot both be 0. Hence, we must have
ik = ik = jk = 1 and jk = 0. By Lemma 8.13(c), v0 = v1 and u0 = u1. Also, since in
this case ik �= jk, while ik = jk = 1, Qk decides by line 16 or 17 (depending on whether
vk = initk), and Qk decides by line 22 or 23 (depending on whether vk = initk). Keep-
ing in mind that u0 = u1, we have that Q0 and Q1 decide the same value if and only if

(vk = initk and vk �= initk) /∗ Qk’s line 16; Qk’s line 23 ∗/
or (vk �= initk and vk = initk). /∗ Qk’s line 17; Qk’s line 22 ∗/

Since v0 = v1 and, as argued earlier, v0, v1 ∈ {init0, init1}, the above expression is
equivalent to initk �= initk. Hence, Q0 and Q1 decide the same value if and only if
they have different initial values. In all cases the negation property is satisfied.

We now have all the pieces needed to prove the main result of this section.
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Theorem 8.15. Type booster has consensus number one.

Proof. Suppose, to the contrary, that booster has consensus number at least two.
Then we can solve consensus for two processes using only booster objects and registers.
By the universality of consensus [6], we can implement a negation object shared by
two processes using only booster objects and registers. Hence, we can solve equality
negation for two processes using only booster objects and registers. Let Aen be an
equality negation algorithm for two processes that uses a minimal number of booster
objects. By Theorem 3.1, Aen uses at least one booster object. By Lemma 8.14,
however, we can solve equality negation for two processes using one booster object
less than Aen. This contradicts the definition of Aen.

9. Conclusion. In this paper we showed that if nondeterministic object types
are allowed, then the only robust wait-free hierarchy is the trivial one, which lumps
all types into level one. In contrast, if only deterministic types are allowed, then
the consensus hierarchy is robust [1, 15]. Our understanding of the results regarding
deterministic types is far from complete. In view of the sharply contrasting results
regarding the robustness of wait-free hierarchies for deterministic and nondetermin-
istic types it would be interesting to understand the fundamental reason(s) why the
restriction to determinism inherently rules out types with properties like negation and
booster.

The unfortunate fact that (nontrivial) wait-free hierarchies are not robust suggests
that it would be desirable to investigate other ways of classifying types according to
their strength. A classification based on consensus numbers is computability-based:
it depends on whether objects of a certain type can be used to solve consensus for a
certain number of processes with no regard as to the efficiency of this solution. It would
be interesting to investigate complexity-based classifications, where the level of a type
may depend not only on its ability to solve consensus but also on doing so efficiently (in
some appropriate sense). Could a complexity-based hierarchy classify types according
to their strength in (efficiently) implementing other types, while being robust in the
sense that “powerful” types are not (efficiently) implementable by “weak” ones?

A different line of research might proceed from the observation that the types
negation and booster, although well within the set prescribed by the general definition
of type given in section 2.1, are not “natural” types. Is there a sensible definition of
“natural” types that excludes negation, booster, and other such “anomalous” types
without excluding any useful ones?

Appendix. Unsolvability of equality negation using only registers. In
this appendix we prove Theorem 3.1, which states that there is no algorithm that
solves equality negation for two processes and uses only registers. The proof is by
contradiction. Suppose that there is an equality negation algorithm, Aen, for processes
P0 and P1 that uses only registers. For each k ∈ {0, 1} and v ∈ {0, 1, 2}, consider
a solo execution of process Pk in algorithm Aen, where the initial value of Pk is v.
Since Aen uses only registers (which are deterministic), the solo execution of Pk with
initial value v is uniquely defined. Let ∆v

k be the decision of Pk in this solo execution.

Lemma A.1. There exist α0, α1 ∈ {0, 1, 2} such that α0 = α1 if and only if
∆α0

0 = ∆α1
1 .

Proof. Suppose, for contradiction, that no choice of values for α0, α1 ∈ {0, 1, 2}
satisfies the required property. Thus, (a) for all v ∈ {0, 1, 2}, ∆v

0 �= ∆v
1; and (b) for

all v0, v1 ∈ {0, 1, 2} such that v0 �= v1, ∆v0
0 = ∆v1

1 . By (b), ∆0
0 = ∆1

1, ∆1
1 = ∆2

0, and
∆2

0 = ∆0
1. Therefore, ∆0

0 = ∆0
1, which contradicts (a).
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Shared: all registers used in Aen, each initialized as specified by Aen

R0, R1: register, each initialized to ⊥
Code for process Qk, k ∈ {0, 1}
1 Rk := initial value of Qk

2 w := Execute(Pk,Aen, αk)
3 if w = ∆αk

k then decide Rk
4 else decide Rk

Fig. A.1. Solving consensus for processes Q0 and Q1 using Aen.

As the lemma below proves, the algorithm in Figure A.1 solves consensus for
processes Q0 and Q1. Since this algorithm uses two registers in addition to the objects
used by Aen, and since Aen uses only regusters, we have a consensus algorithm for two
processes that uses only registers. This contradicts the fact that no such algorithm
exists [3, 13]. Therefore, Aen cannot use only registers, as wanted.

Lemma A.2. The algorithm in Figure A.1 solves consensus for processes Q0 and
Q1.

Proof. The algorithm in Figure A.1 satisfies termination, since Aen does.

To prove that the algorithm satisfies validity, it suffices to show that if process
Qk decides the value in register Rd in an execution of the algorithm in Figure A.1,
then Qd has previously written its initial value into Rd. (Note that Rd is written only
once.) This property follows immediately if Qk decides the value in Rk in line 3. It
remains to cover the case where Qk decides in line 4. In this case, we want to prove
that before Qk decides Rk in line 4, Qk has previously written its initial value into
Rk (line 1). For this, it suffices to show that the execution of Pk that Qk simulated
in line 2 is not a solo Pk execution of Aen. (If the simulated execution is not a solo
Pk execution, Qk and Qk execute their line 2 concurrently, and therefore Qk executes
line 1 before Qk executes line 4.) To see why the execution of Pk that Qk simulated
is not a solo Pk execution, suppose the contrary. Then, by definition of ∆αk

k , Pk
would have decided ∆αk

k in that execution, and the value that Qk assigned to its local
variable w in line 2 would have been equal to ∆αk

k . But then Qk would be deciding
in line 3, not 4.

To prove that the algorithm satisfies agreement, consider any execution in which
both Q0 and Q1 decide. Let w0 and w1 be the values of the local variables w of Q0

and Q1, respectively, assigned in line 2 during that execution. Consider the execution
of algorithm Aen by P0 and P1 that Q0 and Q1 simulated in line 2. In this simulated
execution P0 and P1 have initial values α0 and α1 and decide w0 and w1. By the
negation property, w0 = w1 if and only if α0 �= α1. Combining with Lemma A.1, we
have w0 = w1 if and only if ∆α0

0 �= ∆α1
1 . Since w0, w1,∆

α0
0 ,∆α1

1 ∈ {0, 1}, it follows
that w0 = ∆α0

0 if and only if w1 �= ∆α1
1 . By the algorithm in Figure A.1, for any

k ∈ {0, 1}, Qk decides the value in Rk in line 3 if and only if wk = ∆αk

k and hence

if and only if wk �= ∆
α

k

k
. This, in turn, happens if and only if Qk decides the value

in R
k

= Rk in line 4. This means that both Q0 and Q1 decide the value in the same

register Rd for some d ∈ {0, 1}. By validity, a process decides the value in Rd only
after Qd has written its initial value into Rd. Since only one value is written into Rd,
agreement follows.
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Abstract. This paper studies various algorithmic issues in reconstructing a species tree from
gene trees under the duplication and the mutation cost model. This is a fundamental problem in
computational molecular biology. Our main results are as follows.

1. A linear time algorithm is presented for computing all the losses in duplications associated
with the least common ancestor mapping from a gene tree to a species tree. This answers
a problem raised recently by Eulenstein, Mirkin, and Vingron [J. Comput. Bio., 5 (1998),
pp. 135–148].

2. The complexity of finding an optimal species tree from gene trees is studied. The problem
is proved to be NP-hard for the duplication cost and for the mutation cost. Further, the
concept of reconciled trees was introduced by Goodman et al. and formalized by Page for
visualizing the relationship between gene and species trees. We show that constructing
an optimal reconciled tree for gene trees is also NP-hard. Finally, we consider a general
reconstruction problem and show it to be NP-hard even for the well-known nearest neighbor
interchange distance.

3. A new and efficiently computable metric is defined based on the duplication cost. We
show that the problem of finding an optimal species tree from gene trees is NP-hard under
this new metric but it can be approximated within factor 2 in polynomial time. Using
this approximation result, we propose a heuristic method for finding a species tree from
gene trees with uniquely labeled leaves under the duplication cost. Our experimental tests
demonstrate that when the number of species is larger than 15 and gene trees are close to
each other, our heuristic method is significantly better than the existing program in Page’s
GeneTree 1.0 that starts the search from a random tree.

Key words. gene trees, species trees, NP-hardness, algorithms
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1. Introduction. As DNA sequences become easier to obtain, in the field of
evolutionary moleculor biology emphasis has been placed on constructing gene trees
and, from the gene trees, reconstructing evolutionary trees for species (called species
trees) [9, 11, 20]. The current strategy for reconstructing species trees is based on the
separate consideration of distinct gene families represented by homologous sequences;
these homologous sequences are assumed to evolve in the same way as species. How-
ever, because of the presence of paralogy, sorting of ancestral polymorphism, and
horizontal transfer, gene trees and species trees are often inconsistent [21, 25, 31, 33]
and a “correct” species tree may simply not exist. Hence, a fundamental problem
that arises is how to reconcile different, sometimes contradictory, gene trees into a
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species tree [10]. This problem has been studied extensively for the last two decades.
Several similarity/dissimilarity measures for gene trees and species trees have been
proposed and efficient comparison methods have also been investigated. See, for ex-
ample, [8, 14, 15, 18, 32].

This paper studies the problem of reconciling different gene trees into a species tree
under two well-known duplication-based similarity measures. These measures were
proposed by Goodman et al. [14], Page [23], and Guigó, Muchnik, and Smith [15].
Genes have gene trees because of gene replication. As a gene copy at a locus in the
whole genome replicates and its copies are passed onto offsprings, branch points are
generated. Since the gene copy has a single ancestral copy, the resulting history is a
branching tree. Gene divergence causes all the inconsistencies among different gene
trees. Such divergence can be the result of either speciation or duplication events [22].
If the common ancestry of two genes can be tracked back to a speciation event, then
they are said to be related by orthology; if it is tracked back to a duplication event,
then they are related by paralogy [10]. Taking orthology and paralogy into account,
Goodman et al. proposed a similarity measure for annotating species trees with du-
plications, gene losses, and nucleotide replacements [14]. Later, Page developed a
method based only on duplications for interpreting inconsistency between vertebrate
globin gene trees and the species tree that is constructed from morphological data [23];
Guigó, Muchnik, and Smith elaborated the idea for locating the gene duplications in
eukaryotic history [15].

A species tree can be defined as the pattern of branching of species lineages via
the process of speciation. When species are split by speciation, the gene copies within
species likewise are split into separate bundles of descent. Thus, gene trees are con-
tained within species trees. However, a gene tree may disagree with the containing
species tree because of the reasons mentioned above. The duplication and muta-
tion costs were defined using a least common ancestor (LCA) mapping M from gene
trees to a species tree. Assume that only genes from each contemporary species are
presented in gene trees. In a gene tree, leaves denote the genes from contemporary
species; internal nodes are considered as ancestral genes. We may think that an ances-
tral gene is uniquely determined by the subset of contemporary genes descending from
it in the gene tree. Similarly, in a species tree, an internal node is considered as an
ancient species (which might not exist today) and is determined by the contemporary
species descending from it. We may denote a contemporary species and the genes
from that species by the same label. The mapping M from a gene tree to a species
tree just maps a contemporary gene to the corresponding species, and an ancestral
one to the most recent species which contains that gene (as a subset). Hence, we call
it the LCA mapping in this paper. When the gene and species trees are inconsistent,
it maps an ancestral gene g, and its child gene c(g) to the same ancient species. In
this case, we say that a duplication happens at g. Furthermore, roughly speaking,
the number of gene losses associated with g is defined as the total number of ancient
species between M(g) and M(c(g)) for all children c(g). To measure the similarity
between a gene and species trees, Page defined the duplication cost as the number of
duplications, and Guigó, Muchnik, and Smith defined the mutation cost as the sum of
the number of duplications and the number of gene losses [15]. The mutation cost is
not only efficiently computable, as shown in [4] and [34] independently (see also [5]),
but also biologically meaningful [18]. Reconstructing a global species tree is based on
the parsimonious criterion of minimizing the concerned cost between the gene trees
and the species tree. In their paper [15], Guigó, Muchnik, and Smith developed a
heuristic method for the problem using a nearest neighbor interchange (NNI) search
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algorithm and applied it to infer the most likely phylogenetic relationship among 16
major eukaryotic taxa from the sequences of 53 different genes. In spite of having sev-
eral serious flaws, their work demonstrated the potential of these measures in studies
of genome evolution.

The contributions of this paper are in three aspects. First, we study the properties
of the LCA mapping as well as the duplication and mutation costs. In particular, we
prove a less obvious fact that the duplication cost satisfies the triangle inequality
(Lemma 5.1) and study the relation between the duplication cost and the best-known
NNI distance. We also present a linear time algorithm for computing all the losses
in all duplications (section 3). Secondly, the complexity of reconstructing a species
tree from gene trees is investigated. We prove that the problem is NP-hard under the
duplication cost and under the mutation cost. The concept of a reconciled tree was
introduced by Goodman et al. [14] for studying hemoglobin gene phylogeny, where
there were significant discrepancies between gene and organismal phylogenies; later
it was formalized by Page [23] as a means of describing historical associations such
as those between genes and species. We prove that finding the best reconciled tree
from a gene tree is NP-hard. We also consider a general reconstruction problem
and prove it to be NP-hard even for the NNI distance. These results justify the
necessity of developing heuristic methods and experimental research for reconstructing
species trees [15, 24]. Finally, we give a heuristic method for reconstructing species
trees. To this end, we propose a new and efficiently computable metric, satisfying the
metric axioms, based on the duplication cost. Under this new metric, we show that
the problem of reconstructing a species tree from gene trees is NP-hard but can be
approximated within factor 2 in polynomial time. Using this approximation result,
we present a new heuristic method for reconstructing species trees from uniquely
leaf-labeled gene trees under the duplication cost.

The rest of the paper is divided into six sections. In section 2, we define the
concepts of gene duplications and losses, review the duplication cost and the mutation
cost and their basic properties, and formalize three problems of reconstructing a
species tree from gene trees. In section 3, we present a linear time algorithm for
computing all the losses between a gene tree and a species tree. In section 4, we
prove that the problems defined in section 2 are NP-hard. In section 5, a new metric
is proposed based on the duplication cost. We prove that, under the new metric,
reconstructing a species tree from gene trees is NP-hard but can be approximated
within factor 2 in polynomial time. Then a new heuristic method for reconstructing
species trees is proposed. Experimental results are given to demonstrate that our new
heuristic works quite well. In section 6, we consider a general reconstruction problem
and prove it to be NP-hard even for the popular NNI distance. In section 7, we discuss
further research and open questions.

We refer the reader to [2, 13] for textbooks on NP-completeness and approxima-
tion algorithms.

2. Comparing gene and species trees: Duplications and losses. In this
section we first define the gene trees and species trees. We then introduce the two
duplication-based measures for comparing gene and species trees: the duplication and
mutation costs. For their biological meaning, we refer the reader to [14, 15, 23].

2.1. Species trees and gene trees. For a set I of N biological taxa, the model
for their evolutionary history is a rooted full binary tree T where there are N leaves
each uniquely labeled by a taxon in I and N − 1 unlabeled internal nodes. Here the
term “full” means that each internal node has exactly two children. Such a tree is
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β-lineageα-lineage

α-human α-chimp α-horse β-chimp β-human β-horse

Fig. 1. A gene tree based on α-hemoglobin and β-hemoglobin [4].

called a species tree. In a species tree, we treat an internal node as a subset (called
a cluster) which includes as its members its subordinate species represented by the
leaves below it. Thus, the evolutionary relation “m is a descendant of n” is expressed
using set-theoretic notation as “m ⊂ n.”

The model for gene relationship is a rooted full binary tree with labeled leaves.
Usually, a gene tree is constructed from a collection of genes each having several copies
appearing in the studied species. For example, the gene family of hemoglobin genes
in vertebrates contains α-hemoglobin and β-hemoglobin. A gene tree based on these
two genes is illustrated in Figure 1 for human, chimpanzee, and horse. We use the
species to label the genes appearing in it. Thus, the labels in a gene tree may not be
unique. An internal node g corresponds to a multiset {xi11 , xi22 , . . . , ximm }, where ij is
the number of its subordinate leaves labeled with xj . The cluster of g is simply the
set

Sg = {x1, x2, . . . , xm}.

Finally, we use L(T ) to denote the set of leaf labels in a species or gene tree T .

2.2. Gene duplications and the duplication cost. Given a gene tree G and
a species tree S such that L(G) ⊆ L(S). For any node g ∈ G, we defineM(g) to be the
LCA of g in S, i.e., the smallest node s ∈ S such that Sg ⊆ s. Here we used the term
“smallest” to mean “farthest from the root.” This correspondenceM , first considered
by Goodman et al. [14], is referred to as a mapping of G into S by Page [23]. We call
M the LCA mapping from G to S. Obviously, if g′ ⊂ g, then M(g′) ⊆M(g), and any
leaf is mapped onto a leaf with the same label. For an internal node g, we use c(g)
(sometimes a(g) and b(g)) to denote a child of g and G(g) the subtree rooted at g.

Definition 2.1. Let g be an internal node of G. If M(c(g)) = M(g) for some
child c(g) of g, then we say G(g) and S(M(g)) are root-inconsistent or a duplication
happens at g.

The total number tdup(G,S) of duplications happening in G under the LCA map-
ping M is proposed as a measure for the similarity between G and S [14, 23]. We call
such a measure the duplication cost.

A subset A of (internal or leaf) nodes in a species tree S is disjoint if x ∩ y = φ
for any x, y ∈ A. For a disjoint subset A in S, the restriction of S on A is the smallest
subtree of S containing A as its leaf set, denoted by RS(A). The homomorphic subtree
S|A of S induced by A is a tree obtained from RS(A) by contracting all degree 2 nodes
except the root. These concepts are illustrated in Figure 2. We state, without proofs,
the following facts which will be used implicitly in the rest of this paper.
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Fig. 2. (a) A species tree S; (b) the restriction subtree RS(A) for A = {1, 2, x}; (c) the
homomorphic subtree S|A induced by A.

Proposition 2.2. Let G be a gene tree and S a species tree. Then tdup(G,S) = 0
if and only if G is identical to S|L(G).

Proposition 2.3. Let g be the root of G with children a(g) and b(g) and let s be
the root of S with children a(s) and b(s). Then, if a duplication happens at g under
the LCA mapping from G to S, then tdup(G,S) = 1 + tdup(a(g), S) + tdup(b(g), S).

Furthermore, the duplication cost also satisfies the triangle inequality, which will
be proved in Lemma 5.1 in section 5. Under the duplication cost, the problem of
finding the “best” species tree from a set of known gene trees can be formulated as
the following minimization problem.

Optimal Species Tree I (OST I).

Instance: n gene trees G1, G2, . . . , Gn.

Question: Find a species tree S with the minimum duplication cost
∑n
i=1 tdup(Gi, S).

One can easily convert the above optimization problem into its decision version
by having an extra integer c as input and requiring the minimum duplication cost to
be less than c. This comment applies to all other optimization problems in this paper.

2.3. Gene losses and the mutation cost. After defining the duplication cost,
we now introduce the mutation cost. We first define the number of gene losses asso-
ciated with the LCA mapping M from G to S. Since L(G) ⊆ L(S), S|L(G) is well
defined and M induces an LCA mapping M ′ from G to S|L(G). Let g and g′ be two
nodes in S|L(G) such that g ⊆ g′. Define

d(g, g′) = |{h ∈ S|L(G) |M ′(g) ⊂ h ⊂M ′(g′)}|.

Let a(g) and b(g) denote the two children of g. The number of losses lg associated
to g is

lg =




0 if M ′(g) =M ′(a(g)) =M ′(b(g));
d(a(g), g) + 1 if M ′(a(g)) ⊂M ′(g) &M ′(g) =M ′(b(g));
d(a(g), g) + d(b(g), g) if M ′(a(g)) ⊂M ′(g) &M ′(b(g)) ⊂M ′(g).

Note that our definition of l(g) is a generalization of the one defined by Guigó, Much-
nik, and Smith [15]. When L(G) = L(S) and gene tree G is also uniquely labeled, our
definition is identical to the one defined in [15]. The mutation cost is defined as the
sum of tdup and the total number of losses l(G,S) =

∑
g∈G lg. This measure turns

out to be identical to a biologically meaningful measure defined in Mirkin, Muchnik,
and Smith [18] when G has the same number of uniquely labeled leaves as S. The
problem of finding the “best” species tree from a set of known gene trees under this
measure is formulated as the following.
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Fig. 3. (a) A gene tree G; (b) a species tree S; (c) the reconciled tree Tr(G,S) of G with respect
to S.

Optimal Species Tree II (OST II).
Instance: n gene trees G1, G2, . . . , Gn.
Question: Find a species tree S with the minimum mutation cost

∑n
i=1(tdup(Gi, S)+

l(Gi, S)).

2.4. Reconciled trees. For visualizing the relationship between gene and species
trees, we use a third tree called the reconciled tree [14]. The reconciled tree has two
important properties. The first property is that the observed gene tree is a subtree
of the reconciled tree. The second property is that the clusters of the reconciled tree
are all clusters of the species tree. Formally, the reconciled tree is defined as follows.

Let T ′ and T ′′ be two rooted trees; we use T ′	T ′′ to denote the rooted tree T
obtained by adding a node r as the root and connecting r to r(T ′) and r(T ′′) so that
T ′ and T ′′ are two subtrees rooted at the children of r. Further, let t be an internal
node in T ′; then T ′| t→T ′′ denotes the tree formed by replacing the subtree rooted at
t with T ′′. Similarly, T ′| t→T1, t′→T2

can be defined for disjoint nodes t and t′.
For a gene tree G rooted at g and a species tree S rooted at s such that L(G) ⊆

L(S), letM be the LCA mapping fromG to S and let s′ =M(a(g)) and s′′ =M(b(g)).
The reconciled tree R = R(G,S) of G with respect to S is defined as

R =




R(G(a(g)), S) 	 R(G(b(g)), S) if s′ = s′′ = s,
S| s′→R(G(a(g)), S(s′)) 	 R(G(b(g)), S) if s′ ⊆ a(s), s′′ = s,
S| s′→R(G(a(g)),S(s′)), s′′→R(G(b(g)),S(s′′)) if s′ ⊆ a(s), s′′ ⊆ b(s),
S| a(s)→R(G,S(a(s))) if M(g) ⊆ a(s).

(1)

Such a concept is illustrated in Figure 3. An efficient algorithm was presented in [23]
for computing a reconciled tree given a set of gene trees and a species trees. It is
easy to see that the reconciled tree R(G,S) satisfies the following three properties, of
which the first two are mentioned above:

1. It containsG as a subtree, i.e., there is a subset L of leaves such thatR(G,S)|L
is isomorphic to G.

2. All clusters are in S, where a cluster is defined as a subset of species below
an internal node in S (see subsection 2.1).

3. For any two children a(g) and b(g) of a node g ∈ R(G,S), a(g)∩ b(g) = φ, or
a(g) = b(g) = g.

Actually, Page also defined the reconciled tree R(G,S) as the smallest tree satisfying
the above properties. However, these two definitions are not obviously equivalent. A
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rigorous proof of this equivalence is needed and unknown. Reconstructing a species
tree from a gene tree can be formulated as the following.

Optimal Species Tree III (OST III).
Instance: A gene tree G.
Question: Find a species tree S with the minimum duplication cost tdup(Tr(G,S), S).

3. Computing all loss events. When comparing a gene tree and a species
tree, one may need to know both mutation cost and all “loss events” (to be defined).
It is an open problem to compute all loss events efficiently [5]. In this section, we
will develop a linear time algorithm to solve the problem. In the rest of this section,
we assume that both gene tree G and species tree S are uniquely leaf labeled and
L(G) = L(S). We first introduce the concept of the gene loss events.

Let u ∈ G and a duplication du occur at u. Recall that S(M(u)) denotes the
subtree of S below M(u). A node v ∈ S(M(u)) is mixed in the duplication du if
v∩c(u) 
= φ for any child c(u) of u; it is speciated if v∩a(u) 
= φ but v∩b(u) = φ or vice
versa; it is gapped if v∩ c(u) = φ for any c(u). Finally, we say that a loss event occurs
at a maximal speciated/gapped node in du. Note that a unique loss event occurs at
some node on the path fromM(u) to any leaf in S. Figure 4 presents a mapping from
a gene tree G (in (b)) to a species tree S (in (a)). Three duplications occur at nodes
r(g), {4, 5, 6}, and {7, 8, 9} that are shown in (c), (d), and (e), respectively, where
mixed nodes are labeled with “+−,” speciated nodes with “+” or “−” depending on
which intersection is empty, and gapped nodes are not labeled. All 14 loss events are
marked by square boxes.

1 2 3 4 5 6 7 8 9

(b)

5 4 6 2 9 3 8 71 5 4 6 2 9 3 8 71

B

5 4 6 2 9 3 8 71

(c) (d) (e)

A

5 4 6 2 9 3 8 71

B
C

(a)

A

+−

+−

+− +− +−
+−

+−
C+−

+−
+−

−
− +

+−
+

−
− +

−+− −
+−

Fig. 4. Duplications between a species tree (a) and a gene tree (b).

Formally, the problem of computing all the loss events is formulated as follows.
Given a gene tree G and a species tree S such that L(G) = L(S), to find for each
duplication d occurring at a node g ∈ G, the subtree S(M−1(g)) of S with all the
loss events as its leaves. For example, for the gene tree and species tree illustrated in
Figure 4, the output is the three subtrees shown in Figure 5.

Note that the species tree S and gene tree G are rooted. We first impose an
arbitrary ordering on the children of each node and produce an in-order traversal of
G and S, respectively. Recall that in an in-order traversal, i < j if and only if i is in
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B

C

A

1 2 {4,6} 2 9 3 {7,8} {1,5} 4 6 2 {9,3} 8 7

Fig. 5. Output from computing all the loss events.

the left subtree of j [2]. Without loss of generality, we may assume that each node
of S is labeled by a number k ≤ 2n − 1, which is called the in-order number of the
node. Preprocess the tree S in O(n) steps so that an LCA query can be answered
in constant time [16, 28]. Using this preprocessing, we can also compute the LCA
mapping from G to S in linear time [34].

We store M in G as follows. To each node x in G, we associate a pair of 〈i, j〉,
where i is its in-order number while j is the in-order number of M(x) in S.

Definition 3.1 (see [34]). Let g be an internal node of G. It is said to be type-1
under the LCA mapping M : G → S if M(a(g)) ⊂ M(g) and M(b(g)) ⊂ M(g);
it is type-2 if M(a(g)) ⊂ M(g) and M(b(g)) = M(g) or vice versa; it is type-3 if
M(a(g)) =M(b(g)) =M(g). Recall that a(g) and b(g) denote the children of g.

To each node y ∈ S, we also assign an ordered pair 〈i, n23〉, where i is its in-order
number and n23 is the number of type-2 or type-3 nodes in G that is mapped to y.
Observe that duplications occur at type-2 or type-3 nodes.

For a type-1 node g1,M(a(g1)) andM(b(g1)) are distinct fromM(g1). The unique
path from M(a(g1)) to M(b(g1)) through M(g1) is called an arc in the mapping M
from G to T . For our purpose, we say that such an arc starts at M(g1). We also say
that such an arc passes through any intermediate nodes betweenM(a(g1)) andM(g1)
and between M(b(g1)) and M(g1). For a type-2 node g2, assume M(a(g2)) ⊂ M(g2)
and M(b(g2)) = M(g2). The unique path from M(g2) to its descendant M(a(g2)) is
called an arc in the mapping M from G to T ,1 starting at M(g2). Such an arc passes
through all intermediate nodes between M(a(g2)) and M(g2). To each node y in S
we associate a (linked) list A(y) of all arcs passing or starting from y and two integers
sy and py, where sy is the number of arcs starting at y, and py is the number of arcs
passing y.

Proposition 3.2. The A(y)’s, sy’s, and py’s can be computed in O(l+2n) time,
where l denotes the total number of loss events.

Proof. We use breadth-first search starting from the root on the gene tree G. For
each node x ∈ G, if M(x) 
= M(a(x)) and M(x) 
= M(b(x)), then M(a(x)),M(b(x))
is below M(x) in S, we use the in-order numbers of M(x), M(a(x)), and M(b(x)) to
travel down from M(x) to M(a(x)) and M(b(x)) in S, and add the arc (a(x), b(x)) to
the list A(y) and update sy and py for each node y on the arc. If x is a type-2 node,
let M(x) 
=M(a(x)) but let M(x) =M(b(x)). Then, we use the in-order numbers of
M(x), M(a(x)) to travel down from M(x) to M(a(x)), during which we add the arc
(x, a(x)) to the list A(y) and update sy and py for each node y on the arc.

1In [34], this is called a path.
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Now we analyze the time complexity. For each node x, we take O(d(M(a(x)),
M(b(x)))) in total to update the linked lists A(y), the starting numbers sy, and
passing numbers py of nodes y on the arc. Thus, the algorithm takes

t =
∑

x∈G−L(G)

d(M(a(x)),M(b(x)))

=
∑

y∈S−L(S)

|A(y)|

= n− 1 +
∑

y∈Mixed(S)

|A(y)|

≤ n+ l + tdup
≤ 2n+ l,

where the third equality follows from the fact that the number of duplications in
which a node y is mixed is equal to sy + py − 1 [34], and the first inequality is based
on the fact that for each duplication, the number of losses is equal to one plus the
number of mixed nodes [34]. This concludes the proof.

Proposition 3.3. Let x be an internal node in the species trees S; then a loss
event occurs at x in some duplication if and only if sp(x) + pp(y) − px − sx + n23 > 0,
where n23 is the number of type-2 or type-3 nodes mapped to x under the LCA map-
ping M .

Proof. There are exactly sp(x) + pp(y) − 1 duplications in which the parent p(x)
of x is a mixed node [34]. On the other hand, there are sx + px − 1 duplications in
which x is a mixed node. Further, n23 of these duplications occur at x. Thus, there
are exactly sp(x) + pp(y) − sx − px + n23 duplications in which p(x) is a mixed node
but x is a speciation, i.e., a loss event occurs at x if sp(x) + pp(y) − px − sx + n23 > 0.
This concludes the proof.

Thus, by Proposition 3.3, we can list all the nodes at which a loss event occurs
in O(n) steps by traveling down the species tree S. Moreover, we need to find out for
each loss event which duplication causes it. Recall that A(y) denotes the set of all
arcs that pass or start at y for each node y ∈ S. Let

A(y) = {(xi, x′i) | i ≤ m}
and let A−1(y) = {M−1xi,M

−1x′i | i ≤ m}. The following proposition is a combina-
tion of Claim 1 and Claim 2 in the proof of Proposition 3.4 in [34].

Proposition 3.4. The homomorphic subtree G|A−1
y

contains all the duplication

nodes z in which y is a mixed node.
By Proposition 3.4, we have the following.
Proposition 3.5. An in-order traversal of G|A−1

y
can be computed in O(|A−1(y)|)

steps.
Proof. Let |A−1(y)| = k. Then k = O(m). Radix sort A−1(y) in O(m) steps.

Let z1, z2, . . . , zk be the in-order list of leaves of G|A−1
y
. Let z′2j−1 = zj and z′2j =

LCA(zj , zj+1). Then z
′
1, z
′
2, . . . , z

′
2m−1 is the in-order traversal of G|A−1

y
.

Let Dup(G,S) denote the set of all duplications occurring under the LCAmapping
from G to S. For each duplication d ∈ Dup(G,S), let Loss(d) denote the set of nodes
of S on which a loss event occurs in d. For each node y ∈ Sloss = ∪Loss(d) on which
a loss event occurs, let

Sy = {d ∈ Dup(G) | y ∈ Loss(d)}.(2)
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Since for a duplication d, a loss event occurs at a node y if and only if the parent p(y)
of y is a mixed node in d, but y is a speciation node. Then, by Proposition 3.4, an in-
order traversal of Sy can be obtained from difference between the in-order traversal of
G|A−1(p(y)) and G|A−1(y), which takes at most O(sp(y)+ppy+sy+py) steps. Therefore,
we have the following.

Proposition 3.6. The Sy’s for all nodes y can be computed in O(l + n) steps.
Proof. Do a breadth-first search for loss nodes in S. For each loss node y, we

find the in-order traversals of G|A−1(y) and G|A−1(p(y)) and then find Sy from them
as described above. The complexity is

t =
∑

y∈Sloss

(O(sp(y) + pp(y) + sy + py)) ≤ O(l + 2n).

This concludes the proof.
Recall that, for each duplication d, we use Loss(d) to denote the set of nodes on

which a loss event occurs in d and let

Ld = {y ∈ S | y ∈ Loss(d)}.(3)

Then, from all Sy constructed above, we can derive all Ld as follows.
Proposition 3.7. All Ld can be computed in O(l) steps. Thus, all loss subtrees

can be constructed in O(l) steps.
Proof. Radix sort Sloss and let

y1, y2, . . . , yc

be the in-order list of nodes in Sloss. For a duplication, we will keep Ld in a linked
list which is denoted by the same symbol. Let there be m duplications d1, d2, . . . , dm.
Initially, Ldi is empty for every i. Then, we examine Sy1 , Sy2 , . . . , Syc in order one by
one. First, for each d ∈ Sy1 , we insert y1 in Ld. In general, after Sy1 , Sy2 , . . . , Syi have
been examined, we search Syi+1

in the same way: for each d ∈ Syi , we insert yi+1 in
Ld. After all Syi have been examined, Ld stores all the nodes on which a loss event
occurs in duplication d. Actually, following the construction carefully, one will see
that Ld is an in-order traversal. Therefore, one can easily construct the loss subtree
for duplication d from Ld. The time bound is obvious.

We have proved the following theorem.
Theorem 3.8. Given a gene tree G and a species tree S, Algorithm A constructs

the loss subtrees in O(n+ l) time.

Algorithm A.
INPUT: A gene tree G and species tree S.
1. Impose an arbitrary ordering on the children of each node and

produce an in-order traversal of G and S, respectively.
Assume ix denotes the in-order number of x for x ∈ G,S.

2. Compute the LCA mapping M : G→ S. To each x ∈ G assign
a pair < ix, iM(x) >; To each y ∈ S assign a pair < iy, n23 >, where
n23 is the number of type-2 or type-3 nodes in G that are mapped to y.

3. Compute the set Sloss of all the nodes in which a loss event occurs
using Proposition 3.3.

4. For each y ∈ Sloss, compute the set Sy that is defined in equation (2).
5. For each duplication d, use the sets Sy to compute Ld that is defined

in equation (3).
6. Reconstruct all the loss subtrees from the Ld’s.
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Fig. 6. (a) The tree L[T1, T2, . . . , Tn] and (b) a line tree.
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Fig. 7. (a) The gene tree Gij is constructed from the edge (vi, vj). (b) The gene tree Gi is
constructed from the node vi.

4. The complexity of finding optimal species trees.

4.1. Optimal species tree I. Given n trees T1, T2, . . . , Tn, we use L[T1, T2,
. . . , Tn] to denote the tree T shown in Figure 6(a). When Ti is a single labeled node,
the resulting tree is just a line tree as in Figure 6(b).

Theorem 4.1. The decision version of OST I is NP-complete.

Proof. The problem is trivially in NP. To prove its NP-hardness, we reduce the
independent set problem to OST I. Recall that the independent set problem is as
follows: given a graph G = (V,E) and an integer d ≤ |V |, decide if G contains an
independent set of size d, i.e., a subset of V ′ ⊆ V such that |V ′| = d and no two nodes
in V ′ are joined by an edge in E. Given an instance G = (V,E) of the independent set
problem, where V = {v1, v2, . . . , vn}, we construct a corresponding instance of OST I
as follows.

Let N = 5n3. For each vi, we introduce N labels lip, 1 ≤ p ≤ N , and a line tree
Ti = L[li1, li2, . . . , liN ]. We also introduce extra N labels l0p, 1 ≤ p ≤ N , and a line
tree T0 = L[l01, l02, . . . , l0N ]. For each pair (i, j) (1 ≤ i 
= j ≤ n) such that (vi, vj) ∈ E,
we define a tree Gij with leaves labeled by A = {lip | 0 ≤ i ≤ n, 1 ≤ p ≤ N} as shown
in Figure 7(a). In Gij , the left subtree is formed by connecting all Tp’s (p > 1) except
for Ti and Tj by a line tree. Note that Gij and Gji have different right subtrees.
Hence, we use two trees Gij and Gji to encode an edge (i, j). Finally, for each vi ∈ V ,
we define a tree Gi with leaves labeled by A as shown in Figure 7(b). The left subtree
of Gi is formed by connecting all Tp’s except for Ti by a line tree, and the right subtree
is a line tree with leaves l0k (1 ≤ k ≤ N) and lik (1 ≤ k ≤ N) from left to right.
Overall, we encode an edge (vi, vj) by two trees Gij and Gji and a node vi by one
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tree Gi. Obviously, such a construction can be carried out in polynomial time. The
NP-hardness of OST I derives from the following lemma.

Lemma 4.2. The graph G contains an independent set of size d if and only if
there is a species tree S for all the gene trees Gij and Gi constructed above with the
duplication cost c < (|E|+ n− d+ 1

2 )N .
Proof. (⇒) Assume that G contains an independent set K of size d. Without loss

of generality, we assume V (K) = {v1, v2, . . . , vd}. Then, we define a species tree S as

S = L[ln1, . . . , lnN , . . . , l(d+1)1, . . . , l(d+1)N , l01, . . . , l0N , ld1, . . . , ldN , . . . , l11, . . . , l1N ].

For each i ≤ d, tdup(Gi, S) = n − 1. For each i > d, tdup(Gi, S) = N + n − 1.
Further, for any (vi, vj) ∈ E, either i > d or j > d, and so

N ≤ tdup(Gij , S) + tdup(Gji, S) ≤ N + 2n.(4)

Thus, the duplication cost c of S is

∑
(vi,vj)∈E

(tdup(Gij , S) + tdup(Gji, S)) +
∑

1≤i≤n
tdup(Gi, S)

≤ |E|(N + 2n) + (n− d)(N + n− 1) + d(n− 1)

≤ (|E|+ n− d)N + 2n3

<

(
|E|+ n− d+ 1

2

)
N.

(⇐) We prove the converse by contradiction. Suppose that the optimal duplica-
tion cost is c for gene trees Gij and Gi. Denote Ai = {lip | 1 ≤ p ≤ N}. Let S be
an optimal species tree. Then one can define a total order ≺ on {Ai|1 ≤ i ≤ n} such
that LCA(Ai) ⊂ LCA(Aj) implies Ai ≺ Aj . Suppose Ain ≺ Ain−1

≺ · · · ≺ Ai0 is
such a total order; then we define a line tree S′ as

S′ = L[li01, . . . , li0N , li11, . . . , li1N , . . . , lin1, . . . linN ].

Let S′ have duplication cost c′. Then we have the following two facts.
Fact 1. c′ ≤ 2n3 + c.
Proof. Since S′|Ai

= Ti, no duplication happens at all subtrees Ti (0 ≤ i ≤ n) in
each gene tree Gi′j′ and Gi′ . On the other hand, let u be any internal node on a right
subtree of Gij . If u is a parent of some lip (0 ≤ p ≤ N − 1) and u is not a duplication
node in the mapping from Gij to S, then it is easy to see LCA(Aj) ⊂ LCA(Ai)
and LCA(A0) ⊂ LCA(Ai). Thus Aj ≺ Ai and A0 ≺ Ai. Therefore, u is not a
duplication node in the mapping from Gij to S′. Note that two exceptions are the
parent and the brother of liN . Similarly, for each internal node x ∈ Gi that is a parent
of l0p (1 ≤ p ≤ N − 1), it will not be a duplication node for S′ if it is not for S. Thus,
the duplication cost for S′ on all the right subtrees of gene trees is at most the cost
for S plus 2n2.

Since there are at most n′ = n2 + n(n − 1)(n − 2) extra internal nodes on the
left subtrees of gene trees that have not been considered above, we have that c′ ≤
2n2 + n′ + c ≤ 2n3 + c. This finishes the proof of Fact 1.

Fact 2. c′ ≥ (|E|+ n− d+ 1)N .
Proof. Let E< = {(vi, vj) ∈ E | parentS′(li1),parentS′(lj1) ⊂ parentS′(l01)}

and V< = {vi ∈ V |parentS′(li1) ⊂ parentS′(l01)}. If G = (V,E) does not contain
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Fig. 8. Rooted line trees.

an independent set of size d, then |E<| − |V<| ≥ 1 − d. In fact, this is trivial if
|V<| < d. Otherwise, let the largest independent set of restriction subgraph G|V< be
K ′. Then |K ′| ≤ d− 1. Since K ′ is largest, for any node v ∈ V< −K ′, (v, v′) ∈ E for
some v′ ∈ K ′. This implies that |E<| ≥ |V<| − |K ′| ≥ |V<| − d + 1 or, equivalently,
|E<| − |V<| ≥ 1− d when |V<| ≥ d.

It is easy to verify that, for any i, j, if (vi, vj) ∈ E<, then
tdup(Gij , S

′) + tdup(Gji, S′) ≥ 2N,(5)

and if vi /∈ V<, then
tdup(Gi, S

′) ≥ N.(6)

By formulae (4), (5), and (6), we have

c′ ≥
∑

vi∈V−V<

tdup(Gi, S
′) +

∑
(vi,vj)∈E−E<

(tdup(Gij , S
′) + tdup(Gji, S′))

+
∑

(vi,vj)∈E<

(tdup(Gij , S
′) + tdup(Gji, S′))

≥ N (n− |V<|) +N (|E| − |E<|) + 2N |E<|
≥ (|E|+ n+ |E<| − |V<|)N
≥ (|E|+ n− d+ 1)N.

Thus, Fact 2 is proved.
Combining Fact 1 and Fact 2, we have that c > (|E|+n−d+ 1

2 )N , a contradiction.
Thus, we finish the proof of the lemma.

Remark 1. We have actually proved that OST I is NP-hard even for all gene
trees with the same uniquely labeled leaves. Such a stronger conclusion will be used
to prove that OST III is NP-hard in section 4.3.

Remark 2. Based on the above remark, we can also prove that the decision
version of OST I remains NP-complete even for one gene tree that are not uniquely
leaf-labeled. The proof of this result can be found in the proof of Theorem 4.7.

4.2. Optimal species tree II. Let C be a set of full binary trees G with
leaves uniquely labeled by L(G), and let T be a full binary tree with leaves uniquely
labeled by

∑
G∈C L(G). We say that C is compatible with T if for every G ∈ C, the

homomorphic subtree T |L(G) of T induced by L(G) is G, and it is compatible if it is
compatible with some tree. Finally, recall that L[z, w, v, u, x] denotes a rooted line
tree with 5 leaves z, w, v, u, x as shown in Figure 8(a).

Lemma 4.3. If a collection C of 5-leave rooted line trees L[y, wi, vi, ui, x], 1 ≤ i ≤
k, is compatible, then it is compatible with a rooted line tree L[y, xn, xn−1, . . . , x1, x],
where {x1, x2, . . . , xn} = ∪ki=1{ui, vi, wi}.
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Fig. 9. Three trees correspond to an ordered triple (a, b, c).
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Fig. 10. The species tree constructed from a cyclic ordering f .

Proof. Choose a label z not in {x, y} and ∪ki=1{ui, vi, wi}. For each t = L[y, wi,
vi, ui, x], we add an edge between z and the root so that the resulting tree tz is an
unrooted full binary tree in which each internal node has degree 3. It is not difficult
to see that tz is defined by the following set of quartets [29]:

Q(tz) = {xui|viz, xvi|wiz, xui|yz, xvi|yz, xwi|yz}.

Suppose that C is compatible with a rooted full binary tree T ; then Cz = {tz | t ∈ C}
is compatible with T z, and thus quartet set ∪t∈CQ(tz) is compatible with T z. By a
lemma in [29], ∪t∈CQ(tz) is compatible with a line tree L[x, u1, u2, . . . , u|A|, y, z]. This
implies that C is compatible with the binary tree rooted at the internal
node that is jointed with z (after the removal of z), which has the form shown in
Figure 8(b).

Theorem 4.4. The decision version of OST II is NP-complete.
Proof. The problem is obviously in NP. To prove its NP-hardness, we now describe

a transformation from the cyclic ordering problem [13] to OST II. The cyclic ordering
problem is defined as follows.

Instance: A finite set A, and a collection C of ordered triples (a, b, c)
of distinct elements from A.
Question: Is there a one-to-one function f : A → {1, 2, . . . , |A|}
such that, for each (a, b, c) ∈ C, we have either f(a) < f(b) < f(c)
or f(b) < f(c) < f(a) or f(c) < f(a) < f(b)?

The problem is proved to be NP-complete in [12].
Suppose an instance (A,C) of the cyclic ordering problem is given. We construct

for each ordered triple π = (a, b, c) ∈ C three gene trees Gπ1 = L[y, c, b, a, x], Gπ2 =
L[y, a, c, b, x], and Gπ3 = L[y, b, a, c, x] as shown in Figure 9, where x and y are two
new labels fixed for all triples in C. Now, we consider a collection G(C) = {Gπi | 1 ≤
i ≤ 3, π ∈ C} of 3|C| gene trees. Obviously, such a construction can be carried out in
polynomial time.

We claim that there is a species tree, with leaves A ∪ {x, y}, which has mutation
cost at most 14|C| if and only if A has a cyclic ordering.

Suppose a cyclic ordering f exists. Let f(i) denote the ith smallest element in A
and let S = L[y, f(|A|), . . . , f(2), f(1), x] as in Figure 10.
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Fig. 11. Three trees in the first column in Table 1.
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Fig. 12. Cases (a)–(m) in the proof of Claim 1.

For a triple π = (a, b, c) ∈ C, without loss of generality, we may assume that
f(a) < f(b) < f(c). Then Gπ1 is the homomorphic subtree of S on {x, a, b, c, y}.
Thus, c(G1, S) = 0, c(G2, S) = 5, and c(G3, S) = 9. Hence, the total mutation cost
over all 3|C| gene trees is 14|C|.

Conversely, suppose that T is a species tree with leaves A ∪ {x, y} and with
mutation cost at most 14|C|. Then we have the following fact.

Fact . For any π = (a, b, c) ∈ C, the homomorphic subtree of T on {x, a, b, c, y} is
G1, G2, or G3 as shown in Figure 9.

Proof. The homomorphic subtree T ′ of T on {x, a, b, c, y} is a full binary tree
with five labeled leaves. Assume that it is not one of Gπ1 , G

π
2 , or G

π
3 . All possible

homomorphic subtrees are illustrated in Figure 11 and Figure 12 and a case-by-case
analysis of the mutation cost of G1, G2, and G3 with T is shown in Table 1.

Hence, T has mutation cost at least 14|C|+ 1. This is a contradiction. Thus we
conclude the fact.

By Lemma 4.3, there exists a line tree such that for each triple π = (a, b, c), the
homomorphic subtree on {x, y, a, b, c} is one of the gene trees Gπ1 , G

π
2 , G

π
3 . It is not

difficult to see that such a line tree induces a cyclic ordering. This concludes the proof
of Theorem 4.4.
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Table 1
Case-by-case analysis of duplications.

Case Ti (a) (b) (c) (d)
Cost 17 18 27 42, 45 29,32
Case (e) (f) (g) (h) (i)
Cost 31,34 32,35 35 34 35
Case (j) (k) (l) (m)
Cost 26,29 20 33 28, 29,32

4.3. Optimal species tree III. To prove the hardness result, we need to estab-
lish Lemma 4.5 and Lemma 4.6, which are derived from the definition of reconciled
trees. Recall that for a node g in a gene tree G, G(g) denotes the subtree of G rooted
at g.

Lemma 4.5. Given a gene tree G and a species tree S, let Tr be the reconciled
tree of G with respect to S, and let g be an internal node in G. If g is mapped to
t ∈ Tr when G is considered as a subtree of Tr, then Tr(t) is the reconciled tree of
G(g) with respect to S(t).

Proof. The lemma follows from the definition of reconciled trees.
Lemma 4.6. Let Tr be the reconciled tree of G with respect to S. Then tdup(Tr, S)

= tdup(G,S).
Proof. We prove this lemma by induction on the number of leaves in G. It is

obviously true for a gene tree G that has only three leaves. Now assume that G has
at least four leaves. Let t be the root of Tr with children a(t) and b(t), let g be the
root of G with children a(g) and b(g), and let s be the root of S with children a(s)
and b(s). We consider the following cases.

Case 1. a(t) ∩ b(t) = φ.
Note that t = s and a(t) and b(t) are two clusters in S. Further, by the

definition of reconciled trees, a(t) 
= t, and b(t) 
= t. Thus, t is not a duplica-
tion node under the LCA mapping from Tr to S. On the other hand, since G
is identical to Tr|L(G), we have that a(g) ⊂ a(t), b(g) ⊂ b(t) or a(g)subsetb(t),
b(g) ⊂ a(t). Let a(g) and b(g) be mapped to t1 and t2, respectively, when G
is considered as a subtree of Tr. By Lemma 4.5, Tr(t1) = Tr(G(a(g)), S(t1)) and
Tr(t2) = Tr(G(b(g)), S(t2)). By induction, tdup(Tr(t1), S(t1)) = tdup(G(a(g)), S(t1))
and tdup(Tr(t2), S(t2)) = tdup(G(b(g)), S(t2)). Since a(g) ⊆ t1 and b(g) ⊆ t2, g is not
a duplication node under the LCA mapping from G to S. Thus,

tdup(G,S) = tdup(G(a(g)), S(a(s))) + tdup(G(b(g)), S(b(s)))
= tdup(Tr(a(t)), S(a(s))) + tdup(Tr(b(t)), S(b(s)))
= tdup(Tr, S).

Case 2. a(t) = b(t).
Then a(t) = b(t) = t = s. Thus a duplication happens at t under the LCA

mapping from Tr to S. Since a(t) = b(t), then either a(g) is mapped to a(t) or b(g) is
mapped to b(t). Otherwise, a(t) or b(t) contains G as a subtree, which contradicts the
fact that Tr is the reconciled tree of G with respect to S. Without loss of generality, we
may assume that the former is true. Let b(g) be mapped to t′. Note that t′ ⊆ b(t) = s.
Under the LCA mapping from G to S, a(g) is mapped to s. Thus, by induction,

tdup(Tr, S) = 1 + tdup(Tr(a(t)), S) + tdup(Tr(b(t)), S)
= 1 + tdup(a(g), S) + tdup(G(b(g)), S(t

′))
= tdup(G,S).
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Fig. 13. Connection of m gene trees in a right line tree.

This proves Lemma 4.6.
By Lemma 4.6, the problem OST III is a special case of the problem OST I in

which each instance has only one gene tree. Unfortunately, such a problem is still
NP-hard when a given gene tree is not a uniquely leaf-labeled tree.

Theorem 4.7. The decision version of OST III is NP-complete.
Proof. Again, the problem is obviously in NP. To prove its NP-hardness, by

Lemma 4.6, we need only to prove the following problem to be NP-hard:
Given a gene tree, find a species tree S with the minimum duplication
cost tdup(G,S).

Given a class C of m gene trees with the same n uniquely labeled leaves, we
construct a gene G by connecting all gene trees in C through a right line tree as
shown in Figure 13. Since all gene trees in C have the same labeled leaves, we have
that for any species tree S,

tdup(G,S) = m− 1 +
∑

1≤i≤m
tdup(Gi, S).

This finishes the reduction from an NP-hard problem OST I to the problem given
above (see Remark 1 after Theorem 4.1).

5. A heuristic method. We have proved that the problem of reconstructing
an optimal species tree from gene trees is NP-hard. Therefore, there is unlikely an
efficient algorithm for the problem. In this section, we will develop a heuristic method
for it in a special case when all gene trees are uniquely leaf-labeled. Throughout
this section, we will assume that trees are uniquely leaf-labeled without explicitly
mentioning it.

5.1. A new metric. In this section, we introduce a new metric for measuring
the similarity of two rooted full binary trees with uniquely labeled leaves based on
the concept of duplications. Given two rooted full binary trees T1 and T2, in which
each internal node has at least two children, we define the LCA mapping M from T1

to T2 as in section 2. We say a duplication happens at x ∈ T1 under M if and only
if for some child c(x) of x, M(c(x)) = M(x). We also use tdup(T1, T2) to denote the
number of duplications occurring under the mapping M .

Let T be a rooted full binary tree. For any internal edge e = (u, v), the contraction
tree of T at e is the resulting tree after the removal of e and combining u and v into
a new node p such that p is adjacent to all the neighbors of both u and v.

Lemma 5.1. The duplication cost satisfies the triangle inequality, i.e., tdup(T1, T3)
≤ tdup(T1, T2) + tdup(T2, T3) for any three rooted full binary trees T1, T2, and T3 with
same uniquely labeled leaves.

Proof. Let Mij denote the LCA mapping from Ti to Tj . Now let T ′1 be the
resulting tree from T1 by contracting all edges (u, v) such that M12(u) = M12(v).
Furthermore, let M ′12 be the mapping from T ′1 to T2. We prove the following facts.
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Fact 1. For any m ∈ T ′1, M ′12(m) = m. Thus, tdup(T
′
1, T2) = 0.

Proof. It follows from the definition of T ′1.
Fact 2. tdup(T1, T3) ≤ tdup(T1, T2) + tdup(T2, T3) if tdup(T

′
1, T3) ≤ tdup(T2, T3).

Proof. Under the mapping M13, a duplication happens at a node n ∈ T1 if and
only if M13(n) = M13(c(n)) for some child c(n) of n. Let D denote the set of such
duplication nodes in T1 under M13. We divide D into two disjoint subsets:

D1 = {n ∈ D |M12(n) =M12(c(n))}

and

D2 = {n ∈ D |M12(n) 
=M12(c(n))}.

Obviously, |D1| ≤ tdup(T1, T2) since any node in D1 is also a duplication node under
M12. Furthermore, by the definition of T ′1, |D2| ≤ tdup(T

′
1, T3) since any node in

D2 is a duplication under the LCA mapping from T ′1 to T3. Hence, tdup(T1, T3) =
|D1|+ |D2| ≤ tdup(T1, T2) + tdup(T

′
1, T3) ≤ tdup(T1, T2) + tdup(T2, T3) if tdup(T

′
1, T3) ≤

tdup(T2, T3). This concludes the proof of Fact 2.
Let M ′12(n) = p and M ′12(c(n)) = q. Then, by Fact 1, n = p and c(n) = q. If

M13(n) =M13(c(n)), then all nodes in the path fromM23(p) andM23(q) are mapped
to the same node in T3. This implies that tdup(T

′
1, T3) ≤ tdup(T2, T3) and so, by

Fact 2, tdup(T1, T3) ≤ tdup(T1, T2) + tdup(T2, T3). This finishes the proof of
Lemma 5.1.

Now we define a new similarity measure between two rooted full binary trees as

d(T1, T2) =
tdup(T1, T2) + tdup(T2, T1)

2
.

Since the duplication cost is computable in linear time [34], the measure d(., .) is also
efficiently computable. Further, it satisfies the three metric axioms.

Proposition 5.2. For any three full binary trees T1, T2, and T3 with the same
uniquely labeled leaves, d(., .) satisfies the following properties:

(1) d(T1, T2) = 0 if and only if T1 = T2;
(2) d(T1, T3) ≤ d(T1, T2) + d(T2, T3) for any T2;
(3) d(T1, T2) = d(T2, T1).
In what follows, we call d(., .) the symmetric duplication cost. Interestingly, the

symmetric duplication cost is closely related to the NNI distance for full binary trees,
which was introduced independently in [19] and [27]. An NNI operation swaps two
subtrees that are separated by an internal edge (u, v) as illustrated in Figure 14. The
NNI distance, DNNI(T1, T2), between two full binary trees T1 and T2 is defined as the
minimum number of NNI operations required to transform one tree into the other.

Proposition 5.3. For any species trees T1 and T2, d(T1, T2) ≤ DNNI(T1, T2).
Proof. Suppose T1 is converted into T2 by one NNI operation. Then, we can

easily verify that d(T1, T2) = 1. Thus, d(T1, T2) ≤ DNNI(T1, T2). Since d(., .) satisfies
the triangle inequality, the result holds in general also.

We now prove the following NP-completeness result.
Theorem 5.4. The decision version of finding an optimal species tree from a set

of gene trees is NP-complete under the symmetric duplication cost.
Proof. Obviously, it is in NP. In section 4.1, we have shown that OST I is NP-

complete even for all gene trees with the same uniquely labeled leaves. Moreover, we
may even assume that the duplication cost between any two gene trees is at least 2.
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Fig. 14. The two possible NNI operations on an internal edge (u, v).
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Fig. 15. The tree G′j of Theorem 5.4.

We reduce this special case of OST I to the problem of finding an optimal species
tree from gene trees under the symmetric duplication cost. Given an instance of
OST I I1 = {G1, G2, . . . , Gn} where each Gi is leaf uniquely labeled, and for any
i 
= j, L(Gi) = L(Gj) and tdup(Gi, Gj) ≥ 2. Assume that the leaf label set is
L = {l1, l2, . . . , lm} for each gene tree. For any species tree S with leaf label set L, if
S 
= Gi for any i, 1 ≤ i ≤ n, then tdup(S,Gi) ≥ 1 for any i. If S = Gi for some i in
the range from 1 to n, then tdup(S,Gj) ≥ 2 for any j 
= i. Thus, for any species tree
S with leaf label set L,

n∑
j=1

tdup(S,Gj) ≥ n.(7)

Let N = 3n2. We introduce mN new labels lik, 1 ≤ i ≤ m and 1 ≤ k ≤ N . For
any j (1 ≤ j ≤ n) and k (1 ≤ k ≤ N), we construct Gjk from Gj by replacing
the leaf li by lik for every i, 1 ≤ i ≤ m. Let G′j be the tree L(Gj1, Gj2, . . . , GjN )
defined in Figure 15. Note that G′j is a tree with mN labeled leaves. Finally, let
I2 = {G′1, G′2, . . . , G′n}. In order to finish the reduction, we now prove that I1 has
a solution with cost at most d if and only if I2 has a solution with cost less than
(d+n2 + 1

4 )N .
Suppose S is a solution for I1 with cost d. Let S′ be the tree obtained from S

by replacing each leaf li by a line tree L(li1, li2, . . . , liN ). Then it is easy to see that
tdup(Gjk, S

′) = tdup(Gj , S). Thus, tdup(G
′
j , S
′) ≤ tdup(Gj , S)N + N . Furthermore,

since tdup(L(li1, li2, . . . , liN ), G
′
k) = 0, and S′ has n− 1 internal nodes that are not in

L(li1, li2, . . . , liN ) for any i, tdup(S
′, G′j) ≤ n−1. Therefore, the symmetric duplication

cost of the solution S′ for I2 is

n∑
i=1

tdup(S
′, G′j) + tdup(G

′
j , S
′)

2
≤ 1

2
(dN + nN + n(n− 1)) <

(
d+ n

2
+

1

4

)
N.

Conversely, assume that the optimal solution for I1 has duplication cost at least
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d + 1. Suppose S is a solution of I2. For any 1 ≤ k ≤ N , let Ak = {lik|1 ≤ i ≤ m},
Sk = S|Ak

, and let uk be the LCA of ujk in S, where ujk’s are the nodes in G′j as
shown in Figure 15. Note that uk does not depend on the choice of j. Obviously,
uN ⊆ · · · ⊆ u2 ⊆ u1. Assume that there are h indices k’s (1 ≤ k ≤ N − 1) satisfying
uk+1 ⊂ uk. Let these indices be k1, k2, . . . , kh. Then for any k 
= kt (t = 1, 2, . . . , h),
1 ≤ k ≤ N − 1, ujk is a duplication node in the mapping from G′j to S. Hence, we
have that

tdup(G
′
j , S) ≥

N∑
k=1

tdup(Gjk, S) +N − 1− h.(8)

We use hj to denote the number of duplications that occur on one of the nodes uk1 ,
uk2 , . . ., ukh under the LCA mapping from S to G′j . Let j

′ be the index that minimizes
hj over all j from 1 to n and let h′ = h−hj′ . Assume that ur1 , ur2 , . . . , urh′ are the h

′

nonduplication nodes in the mapping from S to G′j′ . We have that {r1, r2, . . . , rh′} ⊆
{k1, k2, . . . , kh} and r1 < r2 < · · · < rh′ . Let A =

⋃h′
t=1Art ; then it is easy to verify

that in the tree S|A, for any 1 ≤ s ≤ h′, Ars ∩ LCA(
⋃h′
t=s+1Art) = ∅. Thus,

tdup(S,G
′
j) ≥ hj + tdup(S|A, G′j) ≥ h− h′ +

h′∑
t=1

tdup(Srt , Gjrt).(9)

Combining formulae (7), (8), and (9), we have

n∑
j=1

[
tdup(G

′
j , S) + tdup(S,G

′
j)
]

≥
N∑
k=1

n∑
j=1

tdup(Gjk, S) + n(N − 1− h′) +
h′∑
t=1

n∑
j=1

tdup(Srt , Gjrt)

≥ (d+ n+ 1)N − n.
Thus we know that for any solution of I2, the cost is at least (d+n+1)N−n

2 ≥ (d+n2 +
1
4 )N .

5.2. A heuristic method for finding species trees. Although finding an
optimal species tree from gene trees is NP-hard for the symmetric duplication cost
d(., .), we have the following approximation result.

Theorem 5.5. There is a polynomial-time approximation of ratio 2 to the prob-
lem of finding an optimal species tree from gene trees with the symmetric duplication
cost d(., .).

Proof. Given an input of n gene trees G1, G2, . . . , Gn, we compute
∑n
i 	=j d(Gi, Gj)

for each j ≤ n and output Gj with the minimum cost
∑n
i 	=j d(Gi, Gj) as the species

tree. We now prove that the output species tree has at most twice the optimal
symmetric duplication cost. Assume that G1 is the output and S is an optimal
species tree. Then

∑
i≤n
d(Gi, G1) ≤

∑
i≤n

∑
j≤n

d(Gi,Gj)

n

≤
∑

i≤n

∑
j≤n

(d(Gi,S)+d(Gj ,S))

n

≤ 2
∑
i≤n d(Gi, S).
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This proves Theorem 5.5.

In general, the optimal species tree for a set of gene trees under the symmetric
duplication cost is different from ones under the duplication and mutation costs.
However, these trees should be quite similar to each other intuitively. Hence, based
on Theorem 5.5, we propose the following heuristic method for the problem.

Search Paradigm

Input: Gene tree G1, G2, . . . , Gn.
1. Find a gene tree T ′ = Tk with the minimum
symmetric duplication cost

∑
i≤n d(Ti, Tk).

2. Search for the optimal species tree starting from
T ′ using NNI, CP, or alternate NNI and CP.

Here cut and paste (CP) is also known as subtree pruning and regrafting [30]. Ac-
cording to the experimental research conducted by Page and Charleston [24], the best
choice seems to be alternating between the NNI and CP method in step 2 of our
heuristic method.

We have extensively tested our heuristic method and compared it with the al-
gorithm that starts the search from a random tree. The latter was implemented in
Page’s package GeneTree Version 1.0. When running Page’s algorithm, we start from
a random tree and search near-optimal species trees using the method of alternating
NNI and CP. We also use the method of alternating NNI and CP to do the search
in our algorithm. When there are less than 10 species, and gene trees in each data
set are chosen randomly, both algorithms perform well. They produce quickly species
trees with optimal duplication costs. However, when there are over 15 species, and
gene trees in a data set are closely related, which is usually true for practical molec-
ular data, our algorithm performs much better. We have conducted 22 tests. We
generated a set of gene trees as follows: (a) Generate a random tree R using an
algorithm of Rémy [1, 26]; (b) repeatedly generate a tree by randomly choosing up
to 10 NNI operations and applying these operations on R. The results are listed in
Table 2 except for three unfinished tests in which the algorithm of searching from a
random tree took over one hour and was stopped before finishing, but our algorithm
finished within half a minute. Our algorithm found species trees with better duplica-
tion costs in all the cases and took much fewer CP and NNI operations (and hence
much less time) to get the solution. We used a Pentium MMX-233 personal computer.
In each of the 22 tests, our algorithm finished in less than half a minute, while the
search-from-a-random-tree algorithm took more than one hour for 6 tests.

6. A general reconstructing problem. There is a large family of genes each
having several distinct copies in the studied species. In order to derive a species
tree that truly reflects the evolution of species, one needs full knowledge about which
copies of the gene are comparable. This is usually impossible until a careful study of
the species has been done. However, one may have different confidences in different
genes. Hence, it is natural to propose the following general problem. We use I+ to
denote the set of positive integers and let m be any similarity measure between gene
and species trees.

General Optimal Species Tree (GOST).

Instance: A set of n gene trees G1, G2, . . . , Gn, to each tree a confidence value
ci ∈ I+ is associated.

Question: Find a species tree S with the minimum cost
∑n
i=1 cim(Gi, S).
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Table 2
R = the algorithm that starts the search with a random tree, SP = our search paradigm. The

last column contains the numbers of NNI/CP operations used by the two algorithms.

Data
sets

Species
Gene
trees

Alg.
Optimal

trees
Dup.
cost

NNI/CP
operations

1 15 5
SP
R

14 18
10628
37872

2 15 5
SP
R

4 21
2848

53394

3 15 10
SP
R

1 34
716

147540

4 15 10
SP
R

1 32
1466

17228

5 17 5
SP
R

3 16
2780

102758

6 17 5
SP
R

2
999

17
21

994
872660

7 17 5
SP
R

9
6

17
9221

42356

8 17 5
SP
R

7 18
7310

105370

9 17 5
SP
R

14
999

18
20

12638
878552

10 18 5
SP
R

6
999

19
23

7490
1059318

11 18 5
SP
R

6 19
7289

113472

12 18 5
SP
R

2 20
1684

16462

13 18 5
SP
R

6 16
6430

33968

14 18 5
SP
R

1 17
1068

98694

15 19 7
SP
R

1
22
23

1216
84170

16 19 7
SP
R

2 26
2374

15880

17 20 5
SP
R

7
999

13
15

8898
1326562

18 20 7
SP
R

1
999

31
36

1430
1384018

19 20 8
SP
R

4
999

38
43

6656
1323186

Clearly, GOST is NP-hard under the duplication cost and the mutation cost. For
the NNI distance, the same conclusion also holds.

Theorem 6.1. The decision version of GOST is NP-complete for the NNI dis-
tance.

Proof. We reduce the problem of computing NNI distance between two trees (see
[3]) to GOST. Given are two binary trees T1 and T2 with n leaves. By applying an
NNI operation to T1, there are as many as 2n− 2 different resulting trees. Let T3 be
such a tree, i.e., dNNI(T3, T1) = 1. We consider the following instance I of GOST:

I = {T1, T2, T3, c1 = 2, c2 = 2, c3 = 1}.
Let S be an optimal species tree for I. Then one can easily verify that S = T3 if
and only if dNNI(T1, T2) = dNNI(T1, T3)+dNNI(T3, T2). Note that the NNI distance
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dNNI(T1, T2) is at most n log n + 2n [17]. If GOST is solved in polynomial time,
we can compute dNNI(T1, T2) using an efficient search as follows. For each T3 such
that dNNI(T1, T3) = 1, compute the optimal species tree S for the instance I defined
above. If S = T3, then we use T3 to replace T1, compute dNNI(T3, T2) inductively,
and output 1 + dNNI(T3, T2). This finishes the reduction and hence the proof.

Note that the approximation algorithm in Theorem 5.5 cannot be generalized to
GOST. Therefore, it is challenging to develop polynomial-time algorithms with good
approximation factors for GOST under the various similarity measures.

7. Further research. Further studies on our topics in relation with parametric
complexity classes have been carried out recently by Fellows et al. We refer the reader
to [6, 7]. We end the paper with a list of open questions.

1. Is the definition of reconciled tree in section 2.4 identical to the one defined by
Page (the smallest tree satisfying the three properties listed in section 2.4)?

2. Study the complexity of approximating the problems OST I, OST II, and
OST III. Is it possible to develop efficient polynomial-time approximation
algorithms for these problems?

3. Develop efficient polynomial-time approximation algorithms for GOST de-
fined in section 6 under the various measures studied here.
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[15] R. Guigó, I. Muchnik, and T. Smith, Reconstruction of ancient molecular phylogeny, Mol.
Phy. and Evol., 6 (1996), pp. 189–213.

[16] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), pp. 338–355.

[17] M. Li, J. Tromp, and L. Zhang, Some notes on the nearest neighbor interchange distance, J.
Theoret. Bio., 182 (1996), pp. 463–467.

[18] B. Mirkin, I. Muchnik, and T. Smith, A biologically meaningful model for comparing molec-
ular phylogenies, J. Comput. Bio., 2 (1995), pp. 493–507.

[19] G.W. Moore, M. Goodman, and J. Barnabas, An iterative approach from the standpoint of
the additive hypothesis to the dendrogram problem posed by molecular data sets, J. Theoret.
Bio., 38 (1973), pp. 423–457.

[20] M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, 1987.
[21] J. E. Neigel and J. C. Avise, Phylogenetic relationship of mitochondrial DNA under various

demographic models of speciation, in Evolutionary Processes and Theory, Academic Press,
Orlando, FL, 1986, pp. 515–534.

[22] S. Ohno, Evolution by Gene Duplication, Springer-Verlag, Berlin, 1970.
[23] R. Page, Maps between trees and cladistic analysis of historical associations among genes,

organisms, and areas, Syst. Bio., 43 (1994), pp. 58–77.
[24] R. Page and M. Charleston, From gene to organismal phylogeny: Reconciled trees and the

gene tree/species tree problem, Mol. Phy. and Evol., 7 (1997), pp. 231–240.
[25] P. Pamilo and M. Nei, Relationship between gene trees and species trees, Mol. Bio. Evol., 5

(1988), pp. 568–583.
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Abstract. Let G = (V,E) be an undirected graph, S be a subset of its vertices, CS be the set
of minimum edge-cuts partitioning S, and λS be the cardinality of such a cut. We suggest a graph
structure, called the connectivity carcass of S, that represents both cuts in CS and the partition of V
by all these cuts; its size is O(min{|E|, λS |V |}). In this paper we present general constructions and
study in detail the case λS odd; the specifics of the case λS even are considered elsewhere. For an
adequate description of the connectivity carcass we introduce a new type of graph: locally orientable
graphs, which generalize digraphs. The connectivity carcass consists of a locally orientable quotient
graph of G, a cactus tree (in case λS odd, just a tree) representing all distinct partitions of S by
cuts in CS , and a mapping connecting them. One can build it in O(|S|) max-flow computations in
G. For an arbitrary sequence of u edge insertions not changing λS , the connectivity carcass can be
maintained in time O(|V |min{|E|, λS |V |} + u). For two vertices of G, queries asking whether they
are separated by a cut in CS are answered in O(1) worst-case time per query. Another possibility is
to maintain the carcass in O(|S|min{|E|, λS |V |}+ u) time, but to answer the queries in O(1) time
only if at least one of the vertices belongs to S.

Key words. edge-connectivity, minimum cuts, graph structures, incremental maintenance,
dynamic algorithms
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1. Introduction. Connectivity problems play an important role in applications
of graph theory in computer science and have been extensively studied. In particular,
much attention has been given to edge-connectivity problems. A pair of vertices s
and t of an undirected graph G = (V,E) is said to be k(-edge)-connected if there
exist k edge-disjoint paths between them (equivalently, there is no k′-cut, k′ � k− 1,
separating s and t). The k-connectivity is an equivalence relation, and its equivalence
classes are called k-connectivity classes. It is known that the system of globally
minimum cuts and connectivity classes formed by them in a graph is represented
by a cactus tree, i.e., a graph whose blocks are edges and cycles [DKL] (for a brief
description in English see [NV, NGM]); it is just a tree if the size of globally minimum
cuts is odd. On the other hand, the lattice of all (s, t)-minimum cuts for fixed vertices
s and t is represented by all closed sets of some directed acyclic graph (dag) with one
source and one sink [PQ].1 Both these data structures can be maintained efficiently
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under edge insertions (see [DW] for the first one and, e.g., [I] for the second). In
[DV1] we have suggested a new structure, which is a natural generalization of both
the aforementioned representations. This data structure represents all minimum cuts
of G partitioning a fixed vertex subset and the corresponding partition of this subset
into its connectivity classes; besides, it represents the partition of V by all these cuts.
Our structure admits efficient incremental maintenance as well.

In this paper we describe general constructions and provide a detailed analysis
of the odd case, that is, of the case when the cardinality of the cuts in question is
odd. This allows us to introduce all the main ideas while avoiding certain technical
difficulties. For a brief analysis of the general case, see [DV1, DV2]; a detailed analysis
will be given elsewhere.

A well-known model for pairwise minimum cuts in a graph is the Gomory–Hu tree
[GH]. It represents one minimum (x, y)-cut for any pair of vertices x, y, which is far
from being sufficient for the purpose of incremental maintenance. Indeed, if the newly
inserted edge increases the value of the single minimum (x, y)-cut represented by the
Gomory–Hu tree, one cannot tell whether the size of minimum (x, y)-cuts remains the
same or increases.

One of the goals of connectivity studies is to provide tools for fast answering con-
nectivity queries in dynamic graphs, such as “Are vertices u and v k-connected?” or
“Show k-cuts separating u and v.” An important problem of this type is maintain-
ing the hierarchy of the k-connectivity classes, k � l; the corresponding incremental
algorithms (that allow insertions of edges to G) are presented in [WT] for l = 2,
[GI] for l = 3, and [DW] for l = 4. We hope that our data structure can play the
crucial role in solving this problem for arbitrary l. Indeed, take for a vertex subset
a (k − 1)-connectivity class, then its connectivity subclasses are just k-connectivity
classes of G. The totality of these subclasses gives the partition of V into k-classes.
Thus, it suffices to maintain our data structures for all (k − 1)-classes of the graph,
k � l. Observe that when an edge insertion causes merging of some (k − 1)-classes,
their new connectivity structures must be merged as well. The analysis of this merge
is beyond the scope of the present paper; the case l = 4 is handled in [DW]. So,
the results cover the “local” part of the work on the maintenance of the hierarchy of
connectivity classes for a general l.

Another application of connectivity structures is augmentation problems of the
type: given a graph, add the minimum number of edges so as to increase the con-
nectivity of the whole graph to a prescribed value. The cactus structure of minimum
cuts was employed essentially in [NGM, Be] to develop clear and fast schemes and al-
gorithms for graph augmentation. One can suppose that the suggested generalization
of this structure to locally minimum cuts will help to improve the results in this area.

Finally, the analysis of the connectivity structure of a vertex subset in a graph can
arise itself in an application. For example, let us consider an interconnection network
N whose nodes are terminals and auxiliary intermediate stations. Then it is natural
to define the connectivity structure of N as the connectivity structure of the set of
terminals in N . As an illustration, consider the network with the terminals A, B,
and C shown on Figure 1.1; the 3-cuts shown by dashed lines are the minimum cuts
partitioning {A,B,C}, but there exist also two irrelevant 2-cuts and one irrelevant
3-cut.

Let us consider a vertex subset S and the set of all minimum S-cuts, that is, cuts
of G that partition S and have the minimum cardinality, λS , among such cuts; λS is
said to be the connectivity of S. Two such cuts are called equivalent if they partition
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A C
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Fig. 1.1. Minimum cuts in an interconnection network.

S in the same way. We prove that the system of all such partitions of S, and thus also
all the (λS + 1)-connectivity classes of S, is represented by a cactus tree HS (called
the skeleton), similarly to the representation of [DKL]. These partitions are defined
by cuts of HS almost bijectively. In the odd case the skeleton is just a tree, and the
representation of the partitions by its cuts is a bijection.

Each family of equivalent minimum S-cuts is represented, similarly to [PQ], by
cuts of a two-terminal dag of a special type, called a strip, which is defined up to the
reversal of all its edges. Such a strip is obtained from G by certain contractions; in
what follows we identify each vertex of the strip with the subset of V contracted into
this vertex. We show that these strips agree on intersections in the following sense.
First, if two nonterminal vertices of two strips intersect (as subsets of V ), then these
vertices coincide. Thus, the total partition of V by all minimum S-cuts subdivides
only the two terminal vertices of each strip. We denote by FS the graph obtained
from G by contraction of each part of this total partition into a single vertex. Second,
let two vertices of two strips coincide; then these vertices have, in a sense, the same
set of incident edges. It turns out that the two 2-partitions of this set into incoming
and outcoming edges in both strips coincide as unordered 2-partitions. As a result,
at each vertex of FS there arises a unique distinguished unordered 2-partition of the
set of incident edges (called the inherent partition). The graph FS with the inherent
partitions at its vertices we call the flesh; it represents the entire family of minimum
S-cuts. In this paper we extend to FS methods used for dags in the case |S| = 2.

In order to build appropriate tools for analyzing FS , we introduce and study a
special type of graphs: undirected graphs with a 2-partition of the set of incident
edges at each vertex; we call them locally orientable graphs. In general such a graph
cannot be oriented globally, but still preserves certain properties of digraphs. An
analogue of an oriented path in a locally orientable graph is a path that agrees with
inherent partitions (called a coherent path); we consider reachability along coherent
paths. For graphs satisfying a certain natural restriction on cyclic coherent paths one
can define the notions of reachability cones and strongly connected components, and
adjust depth-first search (DFS) to scanning such graphs and finding these components.
These techniques apply to the flesh since it satisfies even a stronger restriction: all its
coherent paths are simple (thus, FS is, in a sense, acyclic).

Finally, to each vertex of FS we assign the set of families of equivalent minimum
S-cuts in whose strips this vertex is nonterminal. The corresponding cuts of HS define
a subset of edges in HS (called the projection πS of the vertex); it turns out to be a
path. The structure consisting of the skeleton, the flesh, and the projection mapping
is called the connectivity carcass of S.

The connectivity carcass allows to answer readily several types of queries. The
query asking whether two given vertices in S are (k + 1)-connected is answered just



756 YEFIM DINITZ AND ALEK VAINSHTEIN

by checking whether they are mapped into the same node of HS or by checking
whether they are contained in the same vertex of FS . In the latter way one can
check also whether two arbitrary vertices of G are separated by a minimum S-cut. A
minimum S-cut separating two vertices of which at least one belongs to S is defined
immediately in terms of their projections. The same query in the general case may
require, in addition, to combine such a cut with a reachability cone of one of the given
vertices. For any two subsets S1, S2 of S, the corresponding strip of minimum S-cuts
separating S1 from S2 is obtained by a certain contraction of the flesh defined by the
projection mapping. The orientations of the edges in this strip are induced by the
inherent partitions at the vertices of the flesh.

The connectivity carcass can be constructed by a polynomial algorithm. This is
possible since it is “glued” naturally from (s, t)-strips of type [PQ], s, t ∈ S, s fixed
(because of their “coincidences on intersections”).

When considering incremental dynamics of the connectivity carcass, we assume
that the cardinality of minimum S-cuts does not change under edge insertions; if such
a change occurs, we say that the connectivity carcass vanishes. As a matter of fact,
there arises a new system of larger minimum S-cuts, but this transition is beyond the
scope of dynamic considerations in this paper.

Upon inserting a new edge into G, all the three components of the carcass change
accordingly, and all the changes are of a contractive nature (provided λS does not
change). The change of the graph of the flesh consists in contracting several vertices
into a single new vertex. In particular, the endpoints U1 and U2 of the image of the new
edge in FS , and all the vertices that can be visited by a coherent path between U1 and
U2, “fall” into the new vertex. The other flesh vertices that are contracted are defined
in terms of projections and reachability. The inherent partitions remain the same,
except for the new flesh vertex, where the inherent partition is glued naturally from
those of constituting vertices, or becomes trivial in case it was trivial for at least one
of the constituting vertices. The change of the skeleton consists in contracting edges
and “squeezing” cycles in the path-of-edges-and-cycles connecting the projections of
U1 and U2 in the cactus tree HS ; in the odd case it is just an ordinary path, and all
of its edges are contracted. The projection of the new flesh vertex is πS(U1)∩πS(U2).
The set of the other flesh vertices for which the projection changes is defined by their
reachability from U1 and U2. From the projection of such a vertex, certain parts of
the sets πS(U1) \ πS(U2) or πS(U2) \ πS(U1) are deleted.

The incremental algorithm [DV1] for maintaining the connectivity carcass is built
according to the above scheme. In particular, it maintains the reachability cones of
units, and thus involves, as a subproblem, incremental maintenance of transitive clo-
sures. The complexity of this algorithm is O(|V |min{|E|, λS |V |}+ u), where u is the
number of edge insertions (it is assumed that all of them preserve the connectivity of
S); therefore, we do not exceed the complexity of best known algorithms for main-
tenance of the transitive closure (see [I, LL]). Each query asking whether two given
vertices are separated by a minimum S-cut is answered in O(1) worst-case time; such
a cut itself can be shown in O(|V |) amortized time. The dag representation of all
minimum S-cuts separating any two subsets of S can be obtained in O(|E|) amor-
tized time. (For a comparison, in [GN] such a representation for an arbitrary pair of
one-element subsets is constructed in O(|V | · |E|) time.)

The complexity of maintenance can be reduced at the expense of an increase in
the reaction time for certain queries: we guarantee the same O(1) worst-case time
only in the cases when at least one of the vertices in question belongs to S. To
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avoid the time-consuming maintenance of reachability cones, we suggest (see [DV2])
maintaining, instead of the actual flesh, a weaker contraction of the initial flesh,
called the preflesh; the actual flesh can be obtained from the preflesh by contraction
of its strongly connected components. The skeleton, the preflesh, and the projection
mapping are maintained incrementally in time O(|S|min{|E|, λS |V |}+ |V | log |V |+u)
for an arbitrary sequence of u edge insertions preserving the connectivity of S. The
only increase of the reaction time, to O(|E|) worst case, arises for the separation query
in the case when the vertices in question both do not belong to S and have the same
projection; the cut query in this situation is answered within the same O(|E|) time.

As a corollary, we can simultaneously maintain the connectivity carcasses for all
parts S1, . . . , Sr of an arbitrary partition of V in O(|V |min{|E|, λS |V |}+r|V | log |V |+
ru) time. Certain more delicate considerations extend this complexity bound (with
the same overhead and even cheaper updates) to the “local” part of the work on
the maintenance of the hierarchy of k-connectivity classes, k � l, mentioned above.
The crucial observation is that when an edge (v, w) is added to G, the totality of
connectivity carcasses for all k-connectivity classes, k � l − 1, changes if and only if
v and w belong to different l-classes. It turns out that the complexity of this local
work is O(|V |min{|E|, λS |V |} + r|V | log |V | + u), where r is the number of (l − 1)-
connectivity classes.

The first part of the paper treats the general case (λS arbitrary). In section 2 we
give basic definitions and concepts. In section 3 we introduce locally orientable graphs
and study their properties. In section 4 we consider a number of simple cases to gain
intuition and to prove several basic lemmas. In section 5 we define the flesh (for the
general case) and the skeleton (for the odd case only) and state their properties. In
the rest of the paper λS is assumed to be odd. In section 6 we define the projection
and present further properties of the connectivity carcass. In section 7 we describe
the transformations of the connectivity carcass under the insertion of an edge to G.
In section 8 we describe algorithms for construction and incremental maintenance of
the connectivity carcass and for answering the queries.

The results of this paper were published in a preliminary form in [DV1, DV2].

2. Basic definitions and properties. In this paper we consider connected
undirected graphs G = (V,E), |V | � 2, without loops and possibly with parallel
edges. We assume that these properties are preserved under vertex contractions; that
is, we delete the obtained loops, but keep all the parallel edges. As usually, we denote
|V | by n and |E| by m. For each ordered 2-partition P = (VP , V̄P), V̄P = V \ VP ,
of the vertex set V we define its edge-set EP as the set of edges whose ends lie in
distinct parts of P. An ordered 2-partition C is said to be a cut of G if no proper
subset of EC coincides with EP for some other 2-partition P. The sets VC and V̄C are
called the sides of C; we say that a vertex v ∈ V lies inside C if v ∈ VC , and outside C
if v ∈ V̄C . For any cut C, the opposite cut C̄ is defined by VC̄ = V̄C , V̄C̄ = VC ; we say
that C̄ is obtained from C by flipping. Let C and C′ be two cuts such that VC ⊆ VC′ ;
we say that C′ dominates C and write C � C′. If the inclusion VC ⊂ VC′ is strict, we
write C ≺ C′.

For any two cuts C and C′, denote by C ∩ C′ the 2-partition (VC ∩ VC′ , V̄C ∪ V̄C′),
and by C ∪C′ the 2-partition (VC ∪VC′ , V̄C ∩ V̄C′). Observe that the 2-partitions C ∩C′
and C ∪ C′ are not necessarily cuts; however, if they are, then C ∩ C′ � C � C ∪ C′ and
C ∩ C′ � C′ � C ∪ C′. As usually, the cardinality c(C) = c(VC , V̄C) of a cut C is defined
to be the size of its edge-set EC ; clearly, c(C̄) = c(C). The notion of cardinality is
extended naturally to arbitrary 2-partitions of V and, moreover, to arbitrary pairs of
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disjoint subsets of V : if X1, X2 ⊂ V , X1 ∩ X2 = ∅, then c(X1, X2) stands for the
number of edges with one end in X1 and the other in X2.

Let S be a subset of V ; we denote by σ the cardinality of S. Any cut C defines a
2-partition (SC , S̄C) of S, with SC = VC ∩ S, S̄C = V̄C ∩ S. A cut C is said to be an
S-cut if both SC and S̄C are nonvoid. For S = {a, b}, we speak of (a, b)-cuts instead of
{a, b}-cuts to keep the usual notation. It is easy to see that the minimum cardinality
among 2-partitions dividing S is equal to that among S-cuts; we denote it by λS .
Moreover, each 2-partition of minimum cardinality λS dividing S is an S-cut. In
this paper we are interested only in S-cuts of cardinality λS ; we call them minimum
S-cuts, or S-mincuts. The following basic property of S-mincuts (see Figure 2.1) is
used extensively throughout the paper.

Lemma 2.1. Let C and C′ be two arbitrary S-mincuts such that both VC ∩ VC′ ∩S
and V̄C ∩ V̄C′ ∩ S are nonempty. Then

(i) c(VC ∩ V̄C′ , V̄C ∩ VC′) = 0;
(ii) c(VC ∩ VC′ , VC ∩ V̄C′) = c(VC ∩ V̄C′ , V̄C ∩ V̄C′), c(VC ∩ VC′ , V̄C ∩ VC′) = c(V̄C ∩

VC′ , V̄C ∩ V̄C′).
Proof. (i) We assume that C �= C′, since otherwise the assertion is trivial. Let s

and t be two arbitrary vertices in VC ∩ VC′ ∩ S and V̄C ∩ V̄C′ ∩ S, respectively. Then
both C and C′ are (s, t)-mincuts, and hence, by [FF, Chap. 1, Corollary 5.3], every
edge e between VC ∩ V̄C′ and VC′ ∩ V̄C must be both free of any maximal (s, t)-flow
and saturated by it.

(ii) By (i), for any maximal (s, t)-flow c(VC ∩ VC′ , VC ∩ V̄C′) is the flow entering
VC ∩ V̄C′ , and c(VC ∩ V̄C′ , V̄C ∩ V̄C′) is the flow leaving VC ∩ V̄C′X ∩ Ȳ . These two
quantities are equal by the flow conservation law. The second equality is proved in
the same way.

The following observation, though trivial, is important: for any two S-mincuts C1

and C2, at least one of the pairs C1, C2 and C1, C̄2 satisfies the conditions of Lemma 2.1.
Two S-cuts are said to be S-equivalent if they define the same 2-partition of S.

Equivalence classes of S-mincuts are called bunches. Evidently, if one replaces each
cut of a bunch by the opposite cut, then one again gets a bunch, which is said to
be opposite to the initial one. The following statement is an immediate corollary of
Lemma 2.1.

Fact 2.2. Let C and C′ be two S-mincuts satisfying the conditions of Lemma 2.1.
Then

(i) both C ∩ C′ and C ∪ C′ are S-mincuts;
(ii) let C′′ be an S-mincut S-equivalent to C′; then C∩C′′ and C∪C′′ are S-mincuts

S-equivalent to C ∩ C′ and C ∪ C′, respectively.
In particular, the intersection and the union of two S-equivalent S-mincuts are

cuts from the same bunch as well.
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Let S1 and S2 be two disjoint subsets of S. An S-mincut is said to be an (S1, S2)-
mincut if it keeps S1 and S2 on different sides. It follows immediately from Fact 2.2(i)
that the intersection of all (S1, S2)-mincuts having S1 inside is again an (S1, S2)-
mincut. We call it the S1-tight (S1, S2)-mincut.

Two vertices of G are said to be S-equivalent if they are not separated by any S-
mincut. Equivalence classes of vertices are called S-units, or simply units. Evidently,
the unit containing a given vertex is just the inner side of the intersection of all S-
mincuts having this vertex inside. We denote by FS the quotient graph obtained from
G by contracting all the vertices of the same unit. The vertices of FS are naturally
called units. Each S-mincut induces naturally a cut of FS separating the same units;
in what follows we do not distinguish between these two cuts.

Observe that, in general, S is partitioned by the set of all S-mincuts into subsets
S1, S2, . . . , Sr, and r can be less than σ. This situation is handled in the following
lemma.

Lemma 2.3. (i) Contract each Si, 1 � i � r, to a supervertex and denote the
set of supervertices by S̄. Then S̄-mincuts and S-mincuts coincide up to the above
contraction; in particular, FS = FS′ .

(ii) Fix an arbitrary vertex vi in each Si, 1 � i � r, and denote S′ = {v1, . . . , vr}.
Then the sets of S′-mincuts and S-mincuts coincide; in particular, FS = FS′ .

Proof. (i) Follows immediately from definitions.

(ii) Indeed, since S′ ⊆ S, each S′-cut is an S-cut, and hence either λS′ > λS ,
or λS′ = λS and each S′-mincut is an S-mincut. On the other hand, any S-mincut
separates some pair (Si, Sj) and thus separates vi from vj . Therefore it is also an
S′-cut, and moreover an S′-mincut, as required.

Let f : V →M be a mapping to an arbitrary set M . For any W ⊆ V , we denote
by f(W ) the set {f(w) : w ∈W}. We say that a 2-partition P of M f -induces a cut
C if VC = f−1(MP). Similarly, given a mapping g : S →M , we say that P g-induces
a bunch of S-cuts if SC = g−1(MP) for any cut C in this bunch.

To illustrate the above notions, let us consider the graph G presented on Fig-
ure 2.2(a). Large black circles denote vertices in S; thus λS = 2. All the ten S-mincuts
are shown by dashed lines. They fall into four bunches consisting of 1, 2, 2, and 5
cuts, respectively, marked by braces. The vertices of G fall into eight units marked
by numbers. The quotient graph FS is presented on Figure 2.2(b). The quotient
mapping f takes all the vertices of a unit i to the vertex i of FS . Each S-mincut is
f -induced by a unique cut of FS (e.g., see cuts C1 and C2 in Figures 2.2(a) and (b)).
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Fig. 3.1. Local and global orientability.

Let us consider also a four-element set M = {a, b, c, d} and the mapping g : S → M
that takes the vertices of S belonging to the units 2, 3, 4, 8 to a, c, b, d, respectively.
The four 2-partitions of M shown in Figure 2.2(c) g-induce the four bunches of S-
mincuts in G. Observe that all the above constructions are valid also for the set S′

obtained by deleting from S any of the two vertices in unit 3.

3. Locally orientable graphs.

3.1. General locally orientable graphs. Recall that in the case |S| = 2 the
quotient graph FS possesses the structure of a dag, up to the reversal of all its edges.
In general, FS has a more sophisticated structure; however, as is shown in this paper,
one can think of FS as being glued from simpler dag-like objects of the above type.
The basic local property of FS is that the edges incident to any vertex are subdivided
in a unique way into two groups. This subdivision is inherited from the subdivision
into the edges leaving and entering the same vertex in the corresponding dags.

In this section we introduce and study general graphs equipped with this
additional local structure, which are in a sense intermediate between undirected and
directed graphs. We further impose on these graphs additional restrictions and arrive
at certain important properties similar to those known for directed graphs. These
properties support the detailed analysis of FS carried on in subsequent sections.

Let v be an arbitrary vertex of an undirected graph. The star of v is the set Ev
of edges incident to v. Assume that a certain unordered 2-partition of Ev is fixed;
the parts of this 2-partition are called the two sides of the star. If both sides of Ev
are nontrivial (nonempty), then v is called a stretched vertex; otherwise (when one of
the sides coincides with Ev and the other is empty) v is called a terminal. A graph
is said to be locally orientable if a 2-partition of the star into two sides is fixed at
each of its vertices. In other words, a locally orientable graph is a pair (G; E), where
G = (V,E) is an undirected graph and E is a mapping that assigns to each vertex
v ∈ V an unordered 2-partition of Ev. We say that (G; E) overlies the initial graph
G, and that G underlies the locally orientable graph (G; E).

In particular, for any vertex v of an arbitrary directed graph, the partition of
arcs incident to v into incoming and outcoming defines a 2-partition of Ev in the
underlying undirected graph. Thus, for any digraph D, there exists a canonically
defined locally orientable graph, which overlies the underlying undirected graph of
D. A locally orientable graph (G; E) is called globally orientable if one can direct the
edges of G in such a way that for any vertex v all the edges entering v form one side of
Ev defined by E , while all the edges leaving v form its other side. Figure 3.1 provides
two examples of locally orientable graphs of which one is globally orientable, while
the other is not. Here and in what follows stretched vertices are denoted by rectangles
to visualize the corresponding 2-partitions; terminals are denoted by circles. Globally
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orientable graphs are essentially equivalent to directed graphs in the following sense.

Lemma 3.1. Given a connected globally orientable graph, the overlying directed
graph is restored uniquely up to the global reversal of arcs.

Proof. Let )G1 and )G2 be two digraphs overlying a given locally orientable graph
G. Let V + be the subset of vertices at which the ordered 2-partitions of the star into
incoming and outcoming arcs in )G1 and )G2 coincide, and let V

− be the subset of
vertices at which they are opposite. Evidently, (V +, V −) is a partition of V . Assume
that both its parts are nonempty. Since G is connected, it contains an edge between
vertices v+ ∈ V + and v− ∈ V −. Assume, without loss of generality (w.l.o.g.), that
the corresponding arc in )G1 leaves v

+ and enters v−. Then the corresponding arc in
)G2 must leave both of them, a contradiction. Thus either V

− = ∅ and )G1
∼= )G2, or

V + = ∅ and )G2 is opposite to )G1.

The following construction provides a criterion for the global orientability of a
locally orientable graph G. (We do not use this criterion in what follows.) Let us
split each vertex v of G and its star into the two vertices v1 and v2 whose stars are
exactly the sides at v and add the auxiliary edge (v1, v2); the obtained graph we
denote G′.

Proposition 3.2. A locally orientable graph G is globally orientable if and only
if G′ is bipartite.

Proof. Let G be globally orientable and )G be its overlying digraph. Let us
transform )G into )G′ similarly to the above transformation; evidently, )G′ overlies G′.
The partition ({v1 : v ∈ V }, {v2 : v ∈ V }) shows that G′ is bipartite.

Now let G′ be bipartite with the partition (V ∗, V ∗∗). Let us direct all edges from
V ∗ to V ∗∗. The contraction of all auxiliary edges results in a digraph overlying G. It
is consistent with the 2-partitions at vertices since for each v ∈ V the corresponding
vertices v1 and v2 belong to different parts, i.e., arcs only leave v1 and only enter v2,
or vice versa.

According to Lemma 3.1, locally orientable graphs are a generalization of directed
graphs. Some concepts of digraphs have their natural analogues for this generalization.
A path (v0, e1, v1, e2, . . . , er, vr) in a locally orientable graph is said to be coherent if
for any of its inner vertices vi, 1 � i � r − 1, the edges ei and ei+1 belong to the
opposite sides of the star of vi (see Figure 3.2). Clearly, the inverses of any coherent
path, any single edge path, and any single vertex path are coherent paths. Observe
that each coherent path can be extended beyond its endpoint, provided it is not a
terminal. Coherent paths are natural analogues of directed paths in digraphs. In
particular, a coherent path in a globally orientable graph corresponds to a directed
path in the overlying digraph or to the inverse of such a path.

For an arbitrary locally orientable graph, all vertices and edges of coherent paths
beginning at a vertex v are called reachable from v. All these vertices and edges form
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the reachability subgraph of v. Observe that the reachability relation on vertices is
symmetric (though not transitive: see vertices x, y, z in Figure 3.1(a)). Therefore,
the notion of mutual reachability of two vertices is well defined.

We call a 2-partition P of the vertex set of a locally orientable graph (in particular,
its cut) transversal if any coherent path intersects the corresponding edge-set EP at
most by one edge. Thus, if both endpoints of a coherent path lie on the same side of
a transversal cut, then all of the path lies on the same side of this cut. Observe that
the edge-set of a transversal 2-partition intersects at most one side of the star of any
vertex. Moreover, the following statement can be proved easily.

Fact 3.3. Let P1 and P2 be two transversal 2-partitions of the vertex set of a
locally orientable graph such that VP1

∩ VP2
is a single stretched vertex v. Then the

intersections of the star of v with the edge-sets of P1 and P2 are exactly the two sides
of this star.

3.2. Coherent locally orientable graphs. A cyclic coherent path (for which
v0 = vr and r > 1) is called a coherent cycle if the edges er and e1 belong to the
opposite sides at v0 (see Figure 3.2). A locally orientable graph is called coherent if
each its cyclic coherent path is a coherent cycle. Coherent locally orientable graphs
possess the following remarkable property.

Lemma 3.4. The reachability subgraph of any vertex of a coherent locally ori-
entable graph is globally orientable.

Proof. To construct a global orientation of the reachability subgraph of v we
proceed as follows. Let us choose a side of the star of v. Moving along any coherent
path starting at v and leaving v from this side, we direct all its edges from v. Similarly,
moving along any coherent path starting at v and leaving v from the opposite side,
we direct all its edges to v.

Let us prove the following statement: if two paths P1 and P2 from v to an arbitrary
vertex u leave v from the same side (from the opposite sides), then they enter u at
the same side (at the opposite sides). Assume to the contrary that P1 and P2 leave
v from the same side and enter u at the opposite sides (see Figure 3.3(a)). Then the
cyclic coherent path composed of P1 and the inverse of P2 is not a coherent cycle.
Similarly, if P1 and P2 leave v from the opposite sides and enter u at the same side,
then the cyclic coherent path composed of the inverse of P2 and P1 is not a coherent
cycle (see Figure 3.3(b)).

Assume now that in our construction some edge e acquires two opposite orien-
tations via paths P1 and P2. Evidently, the behavior of these paths at an arbitrary
endpoint of e distinct from v contradicts to the above statement. Thus, the orientation
of edges is well defined. Finally, to prove its consistency with the initial orientability
structure we have to ensure that if two edges e1, e2 incident to a vertex u are oriented
to and from u, respectively, then they are at the opposite sides of u. For u = v it
is evident. For u �= v, we have to consider four cases depending on the types of the
paths P1 and P2 that defined the orientations of the edges e1, e2, respectively. For
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example, let both P1 and P2 leave v from the side opposite to the one chosen in the
construction and let e1 and e2 be oriented as in Figure 3.3(c). Then P2 enters u via
e2 while P1 enters u via an edge preceding e1 in P1. Thus P2 and P1 enter u at the
opposite sides, a contradiction with the above statement. The three other cases are
handled in the same way.

According to Lemmas 3.1 and 3.4, one can construct in an obvious way a version
of the DFS that starts from an arbitrary vertex v and scans all the vertices and edges
reachable from v in the same direction (i.e., by paths leaving v from the same side).

For a coherent locally orientable graph, the relation “two vertices belong to the
same coherent cycle” is symmetric and transitive; the subgraphs induced by its equiv-
alence classes are naturally called strongly connected components. It is easy to see
that strongly connected components intersecting a reachability subgraph lie entirely
in this subgraph and correspond bijectively to the strongly connected components
of its overlying digraph. Hence, we can execute any DFS-based linear algorithm for
finding strongly connected components on any reachability subgraph.

An analogue of a dag is an acyclic locally orientable graph, the one without cyclic
coherent paths; thus, it is coherent. In particular, the underlying graph of a dag is
acyclic in the above sense. As in the proof of Lemma 3.4, it follows from the acyclicity
that for any two coherent paths joining v1 and v2, their initial edges leave v1 from
the same side. Thus, the set of vertices reachable from v1 splits into two reachability
cones corresponding to the sides of its star. (If v1 is a terminal, one of the cones is
trivial.) It is easy to see that if v2 belongs to a reachability cone R of v1, then one
of the reachability cones of v2 contains v1 while the other lies strictly inside R. (This
property may be regarded as a weak analogue of transitivity.) Acyclicity implies that
each coherent path can be extended beyond each of its endpoints up to a terminal. As
a corollary, each nontrivial reachability cone of a vertex contains at least one terminal
distinct from this vertex.

3.3. Strips. A locally orientable graph is called balanced if for any stretched
vertex the two sides of its star have equal cardinalities. In this subsection we study
balanced acyclic two-terminal locally orientable graphs. It is shown that such graphs
are essentially identical to dags used in the analysis of (s, t)-mincuts. In fact, the
quotient graph FS in the general case has all the above properties except for one: it
has more than two terminals (see section 5). To study this sophisticated object we
use the results presented in this subsection.

Lemma 3.5. Any acyclic two-terminal locally orientable graph is globally ori-
entable.

Proof. By Lemma 3.4, it is enough to prove that the reachability subgraph of a
terminal in such a graph coincides with the entire graph. Each vertex or edge is a
coherent path; therefore, it can be extended to a coherent path between two terminals.
By the acyclicity, these terminals are distinct, and the result follows.

According to this Lemma, properties of an acyclic two-terminal locally orientable
graph G are similar to those of its overlying dag )G. In particular, the following
statements concerning transversal cuts are true.

Fact 3.6. (i) The transversal cuts of G underlie the cuts of )G in which all arcs
are directed from the part containing the source to the part containing the sink.

(ii) Any transversal 2-partition of G is a (transversal) cut separating the termi-
nals.

(iii) A reachability cone of any vertex in G defines a transversal cut ; it is the
intersection of all transversal cuts such that both this vertex and the terminal that
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belongs to this cone lie inside them.

An acyclic two-terminal globally orientable graph is called a strip (of width w)
if all its transversal cuts are of the same cardinality w. Observe that the degree of a
terminal in a strip equals its width (since the 2-partition isolating this terminal is a
transversal cut).

Let s and t be the terminals and v be a vertex of a strip. We label the sides of
the 2-partition and the cones at v by s and t; the cones are denoted Rs(v) and Rt(v).
Thus, any two coherent paths (u1, . . . , u2) ∈ Rx(u1) and (u2, . . . , u3) ∈ Rx(u2), x = s
or t, can be concatenated into a coherent path (u1, . . . , u2, . . . , u3) ∈ Rx(u1).

Strip Lemma. (i) An acyclic two-terminal locally orientable graph is a strip if
and only if it is balanced.

(ii) There exists at most one strip for a fixed underlying graph and a fixed pair of
terminals.

Proof. (i) Let G be a balanced acyclic locally orientable graph with two terminals

s and t. By Lemma 3.5, G is globally orientable. Let )G be the overlying digraph
of G in which s is the source and let C be a transversal cut of G such that s ∈ VC .
We consider the difference ∆ between the sum of outdegrees (in )G) for all vertices in
VC and the sum of their indegrees. On one hand, since G is balanced and t /∈ VC , ∆
equals the outdegree of s. On the other hand, since each internal arc of VC contributes
1 to both sums and all external arcs are directed outside (by Fact 3.6(i)), ∆ equals
the cardinality of EC . Thus c(C) equals the outdegree of s for any transversal cut C.

Let now G be a strip and )G be its overlying dag with the source s and the sink t.
Let v be an arbitrary nonterminal vertex and let R be the reachability cone of v in )G.
Both 2-partitions (R, V \R) and (R\v, (V \R)∪v) are transversal since any directed
path can only enter R (or R \ v) but not leave it. By Fact 3.6(ii), they are cuts.
Their cardinalities differ by the difference between the indegree and the outdegree of
v. Since both cardinalities are equal, the indegree and outdegree at v are equal as
well.

(ii) The statement is evident for graphs with two vertices; hence, we assume that
there exists a vertex v �= s, t. Let us consider a strip G with a source s and the
sink t. It is easy to see that the deletion of s from G yields new terminals. Indeed,
the one-vertex coherent path v can be extended up to terminals in both directions;
these terminals are distinct since the graph is acyclic. As it was shown in the proof of
Lemma 3.4, all the deleted edges incident to an arbitrary vertex belong to the same
side of the vertex. Hence, for any new terminal exactly half of incident edges are
deleted, and for any other vertex strictly less than half (a characterization in terms
of the underlying graph). Let us prove that the contraction of the new terminals
implies a strip. The obtained graph is evidently balanced and two-terminal. Assume
that there exists a cyclic coherent path in it. Evidently, it starts and ends at the new
terminal and thus can be extended to a cyclic coherent path starting and ending at s
in the initial strip, a contradiction. Finally, the initial strip can be restored uniquely
from the strip obtained.

Assume to the contrary that assertion (ii) is not valid. Then there exists a minimal
counterexample: a graph with the minimal number of vertices giving rise to two
distinct strips. Let us execute with these strips the above procedure. According to
the characterization mentioned, the resulting undirected graphs coincide. Thus, by
the minimality of the counterexample, the resulting strips coincide as well. By the
remark at the end of the previous paragraph, the same holds for the initial strips, a
contradiction.
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Fig. 3.4. Construction of the (a, b)-strip.

The concept of a strip allows us to reformulate and refine the main result of [PQ]
on the representation of all minimum cuts between two vertices of a graph. Let us
consider an undirected graph G and an arbitrary pair of its vertices a, b. Assume
f is a maximal flow from a to b in G, and Gf is the corresponding residual graph.
The result of the contraction of each strongly connected component of Gf to a new
supervertex is a dag Da,b not depending on f . The corresponding quotient mapping
is denoted by δa,b, and the underlying locally orientable graph of this dag by Wa,b

(see Figure 3.4).

Theorem 3.7. Let G be an undirected graph and a, b be a pair of its vertices.
Then the graph Wa,b overlies F{a,b}, is a strip, and its transversal cuts correspond
bijectively to the minimum (a, b)-cuts of G via the δa,b-inducing.

Proof. Recall that a vertex subset X in an arbitrary dag is said to be closed if no
other vertices can be reached from this subset, or, equivalently, if no arc goes from X
to X̄. By [PQ] the δa,b-inducing provides a bijection between the minimum (a, b)-cuts
of G and the 2-partitions of type {a closed set of Da,b, its complement}. According
to Fact 3.6(i), the 2-partitions of the above type overlie exactly the transversal cuts
of Wa,b. Since all minimum (a, b)-cuts of G have the same cardinality, so do all the
transversal cuts ofWa,b, and henceWa,b is a strip. It follows from the above discussion
that the partition of V into the vertices of Wa,b is a refinement of the partition into
the vertices of F{a,b}. To prove that they, in fact, coincide, it is sufficient to show
that each vertex U of Wa,b is separated from all other vertices by transversal cuts.
Indeed, by Fact 3.6(iii), these cuts are just the two cuts defined by reachability cones
of U .

Remark. Observe that natural analogues of the above construction and of Theo-
rem 3.7 are valid for directed graphs.

The strip Wa,b will be referred to as the (a, b)-strip, and its vertices as (a, b)-
units, or units of Wa,b. Obviously, Wb,a coincides with Wa,b and δb,a = δa,b. The
above constructions and results can be extended easily to the case of minimum cuts
separating two disjoint vertex subsets A and B: it is enough to contract A and B
into new supervertices. The corresponding (A,B)-strip is denoted by WA,B and the
quotient mapping by δA,B .

Lemma 3.8. Let u be a vertex of G and U �= δa,b(b) be the corresponding (a, b)-
unit. The contraction of the reachability cone of U in Wa,b containing the terminal
δa,b(a) gives the ({a, u}, b)-strip; its width is equal to the width of the initial strip
Wa,b.

Proof (see Figure 3.5). It is easy to see that the contraction of a side of a
transversal cut in an acyclic locally orientable graph preserves acyclicity. Therefore,
by Fact 3.6(iii) and the Strip Lemma, the above contraction yields a strip W. Since
the terminal δa,b(b) remains untouched, the width of W equals that of Wa,b.

By part (ii) of the Strip Lemma, it is enough to prove now that the underlying
graph of W coincides with that of W{a,u},b. Since all ({a, u}, b)-cuts are (a, b)-cuts,
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Fig. 3.5. To the proof of Lemma 3.8.

we can study them (more exactly, their images) in Wa,b. First, by Fact 3.6(iii), the
reachability cone R in question coincides with the ({a, u}, b)-unit containing {a, b}.
Second, let U ′ and U ′′ be two (a, b)-units not belonging to R and let C be an (a, b)-cut
separating them. Evidently, the union of C and the cut defined by R is an ({a, u}, b)-
cut Cu separating U ′ and U ′′.

Observe that for an arbitrary vertex subset S, the set of all minimum S-cuts is
the union of the sets of minimum (a, b)-cuts for certain pairs of vertices a, b ∈ S. It
is natural to ask whether it is possible to glue the corresponding (a, b)-strips together
to form a single object. The main finding of this paper is that such an object exists:
it is FS with a canonical structure of local orientability defined by these (a, b)-strips.

4. Simple cases.

4.1. Generalities. To make our ideas more intuitive, we consider in this section
several simple cases. The word “case” refers to the structure of partitions of S by
S-mincuts; an example of such a structure is shown in Figure 2.2(c). From this point
of view, the simplest possible cases arise when S is divided (by all S-mincuts together)
into two or three parts.

Assume that S is divided into two parts S1 and S2. By Lemma 2.3(i), we can
consider these parts as supervertices a and b and thus reduce this case to the situation
when S = {a, b}. It is convenient to represent this situation by the “skeleton” graph
shown in Figure 4.1(a). In a similar way, the case when S is divided into three parts is
reduced to the situation when S = {a, b, c} and any one of these vertices is separated
from any other one by an S-mincut. Clearly, from the three possible types of S-
mincuts, (a, {b, c}), (b, {a, c}), and (c, {a, b}), at least two must exist. So we have two
subcases: the asymmetric, when exactly two types of S-mincuts are present, and the
symmetric, when there are present all three of them. As before, we represent these
subcases by certain “skeleton” structures. The asymmetric subcase is represented
by the path (a, b, c) (provided we assume that there are no (b, {a, c})-cuts), and the
symmetric subcase by the 3-star with terminals a, b, c (see Figures 4.1(b) and (c)).
Observe that the 1-cuts of all these skeleton structures (they are shown by dashed
lines in Figure 4.1) correspond bijectively to distinct partitions of S by minimum
S-cuts in the original graph.

In addition, in the last subsection we consider the case when S is divided into an
arbitrary number of parts, but the corresponding skeleton structure is just a path.

The definitions and results of this section can be regarded as prototypes of defini-
tions and results for the general case presented in sections 5–7. Sometimes the proofs
are omitted; this means that a more general result is proved in a subsequent section.

4.2. A two-element subset S. From the static point of view, the case σ = 2
is covered completely by Theorem 3.7; recall that for S = {a, b} one has FS =Wa,b.
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Fig. 4.2. Dynamics of F{a,b}.

Let us turn to dynamics. In what follows, we put a hat over any notation (e.g.,

R̂c, or F̂S) to denote the corresponding object after edge insertion. Recall that the
units of FS are defined as the strongly connected components of the graph Gf , where
f is a maximum flow from a to b in G. Since we restrict ourselves to the case of a fixed
value of (a, b)-mincuts, we may use the same flow f for the entire dynamic process.
Hence, we can maintain the graph Gf fixing local changes. Namely, the insertion
of a new edge (u1, u2) implies the addition of two arcs (u1, u2) and (u2, u1) to Gf .
Moreover, one can maintain the dag Da,b of the strongly connected components of
Gf as follows. Let U1, U2 be the components containing u1, u2, respectively. The new

dag D̂a,b is obtained from the current one by adding arcs (U1, U2) and (U2, U1) and
shrinking the new strongly connected component containing both U1 and U2. This
transformation can be easily extended to the underlying strip Wa,b as follows.

If U1 = U2, then there are no changes in Wa,b. Otherwise, U1 and U2 are con-
tracted to a new unit Unew.

If U1 and U2 are not mutually reachable in Wa,b, then there are no other changes
in Wa,b (see Figure 4.2(a)). Otherwise, assume w.l.o.g. that U2 ∈ Rb(U1) and U1 ∈
Ra(U2); then Rb(U1) ∩ Ra(U2) (that is, the set of all the units and edges of all the
paths between U1 and U2) is contracted into U

new as well (see Figure 4.2(b)).

If both U1 and U2 are terminals, then the system of S-mincuts vanishes. If exactly
one of them is a terminal, then Unew is the corresponding terminal in the new strip.
If both U1 and U2 are stretched, then Unew is stretched as well, and the side of the
2-partition at Unew labeled by a (resp., b) is glued from the sides of the 2-partitions
at all the contracted units labeled by the same letter (except for the internal edges of
the contracted subgraph).

Observe that the dag of the strongly connected components is exactly the object
maintained by algorithms [I, LL], with the time complexity O(mn). Evidently, any
such algorithm can be easily modified to maintain a strip, with the same complexity.

As was mentioned in the previous subsection, the above description covers also
a more general situation, when σ is arbitrary, but all the S-mincuts divide S in
the same way into two subsets S1 and S2. Recall that by Lemma 2.3 in this case
FS =WS1,S2

=Ws1,s2 = F{s1,s2} for any s1 ∈ S1, s2 ∈ S2.



768 YEFIM DINITZ AND ALEK VAINSHTEIN

b

_
b

_
L

Lb Rb

b
ca

acW

R

a’

W

b
ca

ac

c’a’c’ ’

b UbC4

C

U
C3 C2 C1

Fig. 4.3. Structure of F{a,b,c} in the asymmetric case.

4.3. A three-element subset S: The asymmetric subcase. The smallest
nontrivial case, from the static point of view, is S = {a, b, c} and any two of these
vertices are separated by an S-mincut. In this subsection we consider the asymmetric
subcase; we assume w. l. o. g. that there are no (b, {a, c})-cuts. Thus, every S-mincut is
an (a, c)-cut, and vice versa. Therefore, the entire family of S-mincuts is represented
by the strip Wa,c; in particular, (a, c)-units coincide with S-units. We define the
structure of local orientability on the graph F{a,b,c} by keeping that ofWa,c at all the
units, except for the unit Ub containing b, which is now regarded as a terminal. Since
Wa,c is acyclic and balanced, and turning a vertex to a terminal does not extend the
set of coherent paths, we see that F{a,b,c} is acyclic and balanced as well. Besides, we
see that all S-mincuts of G are transversal cuts in F{a,b,c}; observe that the converse
is not true; see, e.g., the cut that separates Ub from all the other units.

We denote by (Lb, L̄b) the {a, b}-tight ({a, b}, c)-mincut (for the definition see
section 2 immediately after Fact 2.2). Similarly, (Rb, R̄b) is the {b, c}-tight ({b, c}, a)-
mincut (see Figure 4.3(a)). Observe that according to Lemma 2.1(i), there are no
edges between Lb ∩Rb and L̄b ∩ R̄b.

In our next statement we summarize other properties of the cuts (Lb, L̄b) and
(Rb, R̄b).

Lemma 4.1. (i) Lb and Rb are the two reachability cones of the unit Ub in Wa,c,
and hence Lb ∩Rb coincides with this unit.

(ii) The sides of the star of Ub in Wa,c are induced in F{a,b,c} by edge-sets of
(Lb, L̄b) and (Rb, R̄b).

(iii) The contraction of Lb in F{a,b,c} gives Wb,c, the contraction of Rb in F{a,b,c}
gives Wa,b.

Proof. (i) The proof follows from Fact 3.6(iii).

(ii) The proof follows from (i) and Fact 3.3.

(iii) The proof follows from Lemma 3.8.

Evidently, either Ub is a separating vertex of F{a,b,c}, or F{a,b,c} \Ub is connected.
In the latter case we build from F{a,b,c} a locally orientable graph Wac by deleting
all the vertices of Ub and contracting Lb ∩ R̄b to the terminal a

′ and L̄b ∩ Rb to the
terminal c′ (see Figure 4.3(a)). (Informally, Wac is the common part of Wa,b and
Wb,c in F{a,b,c}.) An S-mincut C of G that separates Lb ∩ R̄b from L̄b ∩Rb and thus
generates an (a′, c′)-mincut C′ in Wac we call an extension of C′.

Lemma 4.2. (i) The graph Wac is a strip of width λ′ = λS − 1
2 degUb <

1
2λS.

(ii) All of its transversal cuts, and only they, are extendible to S-mincuts.

(iii) If a 2-partition of Lb ∪ Rb enters an extension of some transversal cut of
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Fig. 4.4. Dynamics of F{a,b,c} in the asymmetric case.

Wac, then it enters some extension of any such cut. (Informally, all transversal cuts
of Wac are interchangeable in S-mincuts.)

Proof. (i) Observe that deletion of vertices does not give rise to new coherent
paths; thus, it preserves the acyclicity of a locally orientable graph. For the same
reason, any transversal 2-partition induces a transversal 2-partition in the new graph.
Since the contraction of a side of a transversal 2-partition preserves acyclicity, Wac is
an acyclic two-terminal balanced locally orientable graph. Hence, it is a strip by part
(i) of the Strip Lemma. It is easy to see, applying Lemma 2.1, that λS = c(Lb, L̄b) =
deg a′+ 1

2 degUb. Since λ
′ = deg a′, we get λ′ = λS− 1

2 degUb. Assume that λ
′ � 1

2λS .
Then degUb � λS , which means that (Lb ∩Rb, L̄b ∪ R̄b) is a 2-partition of cardinality
at most λS separating b from {a, c}, a contradiction.

(ii) Let us denote by W ′ the graph obtained from F{a,b,c} by deleting Ub. By
(i), any transversal cut (Z, Z̄) of Wac has cardinality λ′ and generates a 2-partition
(X, X̄) of the same cardinality in W ′. By Lemma 2.1, the edge-set of the 2-partition
(X ∪ Ub, X̄) in F{a,b,c} has exactly by 1

2 degUb more edges, i.e., λ
′ + 1

2 degUb = λS
edges. Thus, it is a cut and is an extension of (Z, Z̄).

Conversely, let (X, X̄) be an S-mincut separating Lb ∩ R̄b from L̄b ∩ Rb. It
generates a 2-partition of cardinality λ′ inW ′ and a 2-partition of the same cardinality
separating a′ and c′ inWac. Thus, it is a λ′-cut separating a′ and c′, i.e., a transversal
cut.

(iii) Since there are exactly two such partitions, namely, ((Lb ∩ R̄b)∪Ub, L̄b ∩Rb)
and (Lb ∩ R̄b, (L̄b ∩Rb) ∪ Ub), one can proceed exactly as in the proof of (ii).

Remark. Observe that Lemma 4.2 remains true for a more general definition of
an extension, in which C is required only to separate the ends of all edges between
Lb ∩ R̄b and L̄b ∩ R̄b that lie in Lb ∩ R̄b and the ends of all edges between L̄b ∩ R̄b and
L̄b ∩Rb that lie in L̄b ∩Rb. Such a definition would allow us to consider, for example,
the cuts C3 and C4 on Figure 4.3(b) as extensions of C′, while according to the current
definition, the only extensions of C′ are C1 and C2. However, in what follows we do
not consider such a generalization of the notion of extension.

Dynamics of F{a,b,c} in the asymmetric subcase are induced by those of F{a,c} =
Wa,c (see section 4.2) straightforwardly, except for the case when Ub, and possibly
some other units, is contracted to Unew. Let us consider this case; it occurs when
Ub ∈ Rc(U1)∩Ra(U2), up to flipping of U1 and U2 (see Figure 4.4). The only specifics

in this case is that Unew becomes a new terminal (in fact, Ûb).

Remark. To translate the definition of the contracted set into the terms of F{a,b,c},
one has to take into account that a coherent path in Wa,c is either a coherent path
in F{a,b,c}, or a concatenation of two coherent paths: a path to Ub in Lb and a path
from Ub in Rb. Under this translation, the above condition on Ub is equivalent to
U1 ∈ Ra(Ub) = Lb and U2 ∈ Rc(Ub) = Rb.

There is a special situation when not only Ub but Ua as well is contracted to
Unew; this occurs when U1 = Ua (see Figure 4.4(b)). In this situation the asymmetric
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three-element case degenerates, and we arrive at the case considered at the end of
section 4.2; that is, F{a,b,c} becomes equal to W{a,b},c = Fb,c = Fa,c. Evidently, Ua
above can be replaced by Uc.

Finally, if {U1, U2} = {Ua, Ub}, then the system of S-mincuts vanishes.

As we see, the reduction of the three-element case to the two-element case is
defined via subsets Lb and Rb. Let us consider the dynamics of Lb (those of Rb are
similar) in the case when F{a,b,c} does not degenerate.

Lemma 4.3. The set Lb is extended if and only if U1 ∈ Lb and U2 /∈ Lb (up

to flipping of U1 and U2). The new part of L̂b is the union of units U ′ such that
U ′ ∈ Ra(U2) and U ′ /∈ Lb.

Proof. The “if” part of the first statement is trivial, since U2 is added to Lb.

Let U ′ be a new unit in L̂b and let (U
′, . . . , Unew, . . . , Ub) be a coherent path in

Ŵa,c; clearly, it lies entirely in R̂c(U
′). Its edges form two coherent paths in F{a,b,c}:

(U ′, . . . , U∗) ∈ Rc(U
′) and (U∗∗, . . . , Ub) ∈ Rc(U

∗∗) (see Figure 4.5). Since U ′ is
new in L̂b, we have U

∗ �= U∗∗, and thus the statement holds for the case when Unew

contains only U1 and U2. Otherwise we may assume w.l.o.g. that U
∗, U∗∗ ⊂ Unew =

Rc(U1) ∩ Ra(U2). Hence in Wa,c there exist coherent paths (U
∗, . . . , U2) ∈ Rc(U

∗)
and (U1, . . . , U

∗∗) ∈ Rc(U1). The first of them does not contain Ub by assumption,
and thus (U ′, . . . , U∗, . . . , U2) is a coherent path in F{a,b,c}. Therefore, U2 ∈ Lb would

imply U ′ ∈ Lb in a contradiction to the assumption that U
′ is new in L̂b. The path

(U1, . . . , U
∗∗, . . . , Ub) does not contain Ub twice (as a coherent path inWa,c), and thus

is a coherent path in F{a,b,c}; hence, U1 ∈ Lb. The assertion follows.

4.4. A three-element subset S: The symmetric subcase. Assume now
that all types of {a, b, c}-cuts exist in G. Let Cx = (Vx, V̄x) be the {y, z}-tight
({y, z}, x)-mincut (Figure 4.6(a)); here and in what follows x, y, z ∈ {a, b, c}, x �=
y �= z. As usual, these three 2-partitions define the following eight subsets of V :
V ∅ = Va ∩ Vb ∩ Vc; V

a = V̄a ∩ Vb ∩ Vc; V
b = Va ∩ V̄b ∩ Vc; V

c = Va ∩ Vb ∩ V̄c;
V ab = V̄a∩ V̄b∩Vc; V bc = Va∩ V̄b∩ V̄c; V ac = V̄a∩Vb∩ V̄c; V abc = V̄a∩ V̄b∩ V̄c. These
subsets are called cells.

The following statement is crucial for the rest of our results (see Figure 4.6(b)).

3-Star Lemma. (i) V abc = ∅.

(ii) Vertices of V xy can be adjacent only to vertices of V xy, V x, V y; besides,
c(V xy, V x) = c(V xy, V y).

Proof. Let us consider the cut Cx,xy = Cz ∩ C̄x = (V x ∪ V xy, V \ (V x ∪ V xy)).
Since both Cz, Cx are minimum (x, z)-cuts, the cut Cx,xy is a minimum (x, z)-cut as
well, and hence c(Cx,xy) = λS . Similarly, Cy,xy = Cz∩C̄y = (V y∪V xy, V \(V y∪V xy))
is a minimum (y, z)-cut with c(Cy,xy) = λS . Therefore, both Cx,xy and Cy,xy are
minimum (x, y)-cuts. According to Lemma 2.1(i), there are no edges between V xy

and V \ (V x ∪V xy ∪V y), and, moreover, c(V xy, V x) = c(V xy, V y), so assertion (ii) is
proved.
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We know already that there are no edges between V abc and V xy. By Lemma 2.1(i)
applied to the minimum (x, y)-cuts Cx and Cy, we get that there are no edges between
V xy∪V abc and V z∪V ∅. So, there are no external edges incident to V abc at all. Since
the initial graph is connected, we thus get V abc = ∅.

Properties of the cuts Cx are similar to those of the cuts (Lb, L̄b) and (Rb, R̄b) (see
section 4.2). In particular, the first statement below can be regarded as an analogue
of Lemma 4.1(iii).

Lemma 4.4. (i) Contraction of the inner side Vx of Cx in F{a,b,c} gives the
underlying undirected graph of the strip W{y,z},x.

(ii) Every unit, except for V ∅, corresponds in this way to a vertex in either one
or two strips.

(iii) For every unit U �= V ∅, the 2-partitions of its star induced by the 2-partitions
at the corresponding vertices in these strips coincide.

Proof. (i) Since all ({y, z}, x)-mincuts are S-mincuts and Cx is the {y, z}-tight
({y, z}, x)-mincut, the result of the contraction still represents all ({y, z}, x)-mincuts.
Therefore, the only thing we have to prove is that no ({y, z}, x)-unit distinct from
the contracted one can be divided by an S-mincut. Indeed, let U , to the contrary,
be such a unit and C be an S-mincut dividing U . W.l.o.g. we can assume that C is
an (z, {x, y})-cut containing z inside; recall that z lies also inside Cx (see Figure 4.7).
Then Cx ∪ C is a ({y, z}, x)-mincut dividing U , a contradiction.

(ii) The proof follows from (i) immediately.

(iii) Assume w.l.o.g. that U lies in V xy. According to (i) and (ii), U is a unit in
the strips W{y,z},x and W{x,z},y. By Lemma 3.8, both these strips are contractions
of the same strip Wx,y. Moreover, in both cases U is not a contracted unit, so local
orientations at U in both cases are inherited from Wx,y, and thus coincide.

Let us assign to every unit, except for V ∅, the 2-partition of its star defined in
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Lemma 4.4(iii), and to V ∅ the trivial 2-partition. Then F{a,b,c} becomes a locally
orientable graph. Evidently, the contraction of F{a,b,c} described in Lemma 4.4(i)
yields now the stripW{y,z},x itself. One can say, thus, that all the stripsW{y,z},x “are
glued” into the aggregate structure F{a,b,c} because they “coincide on intersections.”

Lemma 4.5. (i) The locally orientable graph F{a,b,c} is balanced and acyclic.

(ii) Each S-mincut is transversal in F{a,b,c}.
Proof. (i) Evidently, F{a,b,c} is balanced, since the 2-partition at each nonterminal

unit is inherited from a strip. Let us prove its acyclicity. Indeed, let there exist a
cyclic coherent path P . By the definition, any two units lying on P are separated by
an S-mincut. However, this cut fails to be transversal, since its edge-set has at least
two edges in common with P . Thus, (i) follows from (ii).

(ii) First, let us observe that a coherent path in F{a,b,c} that enters V x cannot
leave it. Indeed, the 2-partition (V x, V̄ x) can be represented as Cx,xy ∩ Cx,xz (see
the proof of the 3-Star Lemma) and is thus a minimum (x, {y, z})-cut. Therefore,
a coherent path in F{a,b,c} that enters and leaves V x yields in Wx,{y,z} a coherent
path that intersects at least twice the edge-set of the transversal cut (V x, V̄ x), a
contradiction.

Now let C be an S-mincut contradicting the claim, and let P be a coherent
path intersecting EC at least twice. Assume w.l.o.g. that C is an (x, {y, z})-cut;
then it is represented as a transversal cut in Wx,{y,z}. If the path P lies entirely
in V x ∪ V xy ∪ V xz, then it is represented as a coherent path in Wx,{y,z}, a contra-
diction. Thus, by part (ii) of the 3-Star Lemma, P must enter either V ∅, or V y, or
V z. However, V ∅ is a terminal, and a path entering V y or V z cannot leave them.
Hence, in this case the contraction takes P to a coherent path inWx,{y,z}, and we are
done.

Therefore, an arbitrary undirected graph with three distinguished vertices in the
symmetric case, as well as in the asymmetric one, defines canonically an acyclic bal-
anced locally orientable graph F{a,b,c}.

Remark. Recall that a strip can be considered as a general graph model of a
two-ended object of a constant width. In a sense, the locally orientable graph F{a,b,c}
with the structure given by Figure 4.6(b) represents a general three-ended object of a
constant width.

The following statement stems from the proof of Lemma 4.5.

Fact 4.6. Any intercell coherent path in F{a,b,c} belongs to one of the following
four types: V x-V xy; V x-V xy-V y; V x-V y; V x-V ∅.

According to Lemma 4.1(i) and (ii), in the asymmetric subcase one can recon-
struct the strip Wa,c starting from F{a,b,c} and using the cuts (Lb, L̄b) and (Rb, R̄b).
In a similar way, in the symmetric subcase one can obtain each of the three strips
Wx,y by a contraction of F{a,b,c} defined in terms of the cuts Cx.

Lemma 4.7. Let us contract Vy ∩ Vz in F{a,b,c} and assign to the contracted unit
the 2-partition of its star into the edges crossing the cuts Cy and Cz, respectively. The
result is the strip Wy,z.

Proof (to visualize the statement and the proof observe that Vy ∩Vz = V ∅ ∪V x,
see Figure 4.6). Let us denote by W the locally orientable graph defined in the
statement of the lemma. (It is well defined due to part (ii) of the 3-Star Lemma.) We
consider the two following ways of constructing the strip W{x,z},y. First, we take the
strip Wy,z and, according to Lemma 3.8, contract the cone of x (more exactly, of the
unit Ux containing x) that contains z. Second, we take F{a,b,c} and contract the inner
part Vy of the cut Cy (see Lemma 4.4(i)). Since both ways yield the same result, we
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conclude that all units U ∈ V y ∪ V yx ∪ V yz in Wy,z and F{a,b,c} coincide, as well as
the 2-partitions at these units. Proceeding in the same way with the strip W{x,y},z,
we get the coincidence for all units, except for Ux in Wy,z and Vy ∩ Vz, which is a
single unit in W; thus, Ux = Vy ∩ Vz. Observe that, on one hand, the two sides of Ux
inW are just the intersections of its star with the edge-sets of the cuts Cy and Cz. On
the other hand, by Fact 3.6(iii), these two cuts correspond to the cones of Ux in Wy,z

via our contraction mapping. Thus, the 2-partitions at Ux in the two graphs coincide
as well, and the proof is completed.

Similarly to the asymmetric case, one can build a locally orientable graph Wxy,
x, y ∈ {a, b, c}, x �= y, by deleting from F{a,b,c} all the vertices of V ∅∪V z∪V xz∪V yz,
z �= x, y, and contracting V x and V y to terminals. (Informally, Wab, Wbc, and Wac

are the common parts of all three strips Wa,b, Wb,c, and Wa,c.) An S-mincut C of G
that separates V x from V y, and thus generates a cut C′ in Wxy separating its termi-
nals, we call an extension of C′ (compare with the definition preceding Lemma 4.2).
The following statement is an analogue of Lemma 4.2.

Lemma 4.8. (i) The graphs Wxy are strips of width λxy � 1
2λS.

(ii) All their transversal cuts, and only they, are extendible to S-mincuts.

(iii) Each pair of transversal cuts of Wxy and Wxz, z �= x, y, has a mutual
extension to a minimum (x, {y, z})-cut.

(iv) If a 2-partition of V \ V xy enters an extension of some transversal cut of
Wxy, then it enters some extension of any such cut. (Informally , all transversal cuts
of this strip are interchangeable in S-mincuts.)

Proof. (i) Observe that, according to Lemma 4.7, one can construct Wxy in a
similar way starting from Wx,y. Therefore, the proof of Lemma 4.2(i) applies with
minor changes: the assumption λxy > 1

2λS implies the existence of a 2-partition of
cardinality less than λS separating z from {x, y}.

(ii) The “all” part of the assertion is proved exactly as in Lemma 4.2. To prove
the “only” part we consider an arbitrary cut C separating V x from V y. Assume,
w.l.o.g., that C is an (x, {y, z})-cut containing x inside. Replacing C by C ∪ Cy we
arrive to the case considered in the proof of Lemma 4.2(ii).

(iii) It follows easily from the proof of Lemma 4.2(ii) that any transversal cut C′1
of Wxy can be extended to an (x, {y, z})-cut C1 of F{a,b,c}. Then C̃1 = C1 ∩ Cz is
a minimum (x, z)-cut, as the intersection of minimum (x, z)-cuts. Observe that C̃1

is an (x, {y, z})-cut. Similarly, starting from a transversal cut C′2 of Wxz we find an
(x, {y, z})-cut C̃2. Their union is evidently a mutual extension of C′1 and C′2. Observe
that C̃1 ∪ C̃2 is the unique mutual extension of C′1 and C′2, since by definition, each
such extension contains V x inside and V ∅ ∪ V y ∪ V z ∪ V yz outside.

(iv) Let C be an extension of some transversal cut of Wxy and let C′1 be an
arbitrary transversal cut of Wxy. Assume w.l.o.g. that both x and V ∅ lie inside C.
Recall that Cy,xy defined in the proof of the 3-Star Lemma is a minimum (x, y)-cut.
Therefore, C̃ = C ∩C̄y,xy is also a minimum (x, y)-cut. On the other hand, similarly to
the proof of Lemma 4.2(ii), there exists an extension C1 of C′1 such that V x ∪ V xz lies
inside C1 and V

y ∪V yz ∪V ∅∪V z outside it. The cut C̃ ∪C1 is thus an extension of C′1
(since C̄ is an extension of the cut separating the unit Ux in Wxy), and it partitions
V \ V xy in the same way as C.

Let us analyze the incremental dynamics of FS in the symmetric subcase. Since
FS is glued from the strips Wx,{y,z} (or their extensions Wx,y), it suffices to study
the dynamics of these strips. According to section 4.2, insertion of an edge (u1, u2)
modifies each of the strips in such a way that all the units, as well as the canonical
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Fig. 4.8. Dynamics of F{a,b,c} in the symmetric case, I.

2-partitions of their stars, remain the same except for the units contracted into the
new one (containing both u1 and u2). Hence, by Lemma 4.4, the same holds for the

locally orientable graph FS . According to the same lemma, if for some strip Ŵx,{y,z}
the single new unit is not the terminal containing y and z, then it coincides with the
new unit Unew of FS . The same is true if for some strip Ŵx,y the new unit is not the
unit containing z.

In the description of incremental dynamics of FS we make use of the partition
into the cells V x, V xy, V ∅. Therefore, to be self-contained, we have to describe the
changes in the cells; note that it suffices for this to clear up the dynamics of the sets
Vx.

Below we consider all the nine distinct possibilities to insert a new edge (u1, u2),
u1 ∈ U1, u2 ∈ U2, with respect to the cell partition.

Case 1. If U1 = U2 (in particular, U1 = U2 = V ∅), then FS evidently remains
the same.

Case 2. If U1 and U2 belong to the same set V
xy (see Figure 4.8(a)), we can trace

the dynamics in any of Wx,{y,z}, W{x,z},y, and Wx,y. Clearly, the definition of the
contracted unit Unew (see section 4.2) can be translated straightforwardly into terms
of FS : Unew results from the contraction of U1, U2, and the units and edges on the
coherent paths between U1 and U2 (all of them belong to V xy). Since the contracted
unit in the modified strip is nonterminal, this contraction is the only change in FS .
Note that the changes are localized in V xy and can be traced also in Wxy.

Case 3. Similarly, if U1, U2 ∈ V x (see Figure 4.8(b)), we can trace the changes in
any of the strips Wx,{y,z}, Wx,y, or Wx,z to define U

new in the same way. It is easy
to show that the changes are localized in V x.

In all the above cases all the cuts Ca, Cb, Cc remain the same, and thus the
partition into cells is stable.

Case 4. Let now U1 ∈ V x, U2 ∈ V xy (see Figure 4.9(a)). As in the previous
two cases, the new unit Unew can be defined via Wx,{y,z}, Wx,y, or Wx,z. The strip
Wx,y can be used also for establishing the dynamics of the set Vy via Lemma 4.3;

in terms of this lemma, it is the set Lz. By the same lemma, the new part of V̂y
is V ′ = Rx(U2) \ Vy. Another way is to use W{x,z},y, where the set Vy forms the
terminal Uxz containing x and z; then the new part of V̂y = Ûyz is Rx(U2) \ Uyz.
It follows from Fact 4.6 that V ′ is contained in V xy and coincides with the cone of
U2 in Wxy in the direction to the terminal containing x, minus this terminal. From
the dynamics of Wx,{y,z} and Wz,{x,y}, respectively, it is clear that the sets Vx and
Vz do not change. Therefore, all the cells are stable except for V̂

x = V x ∪ V ′ and
V̂ xy = V xy \ V ′.

Case 5. If U1 ∈ V xz, U2 ∈ V xy (see Figure 4.9(b)), we can use strips Wx,{y,z},
Wx,y, and Wx,z for determining Unew. In this case, there are no coherent paths
between U1 and U2; hence, U

new = {U1, U2}. Using stripsWx,y andWx,z, respectively,
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Fig. 4.9. Dynamics of F{a,b,c} in the symmetric case, II.
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Fig. 4.10. Dynamics of F{a,b,c} in the symmetric case, III.

in the same way as W{x,z},y in the previous case, we establish that V̂y = Vy ∪Rx(U2)

and V̂z = Vz ∪Rx(U1). Therefore, V̂
x = V x ∪Rx(U1) ∪Rx(U2), while V

xy and V xz

are cut down correspondingly.
Case 6. If U1 = V ∅, U2 ∈ V xy (see Figure 4.10(a)), we use the strip Wx,y. Once

again Unew = {U1, U2}. Both Vx and Vy grow to Vx ∪ Rx(U2) and Vy ∪ Ry(U2),

respectively. Therefore, V̂ x = V x ∪ Rx(U2) \ U2, V̂
x = V x ∪ Rx(U2) \ U2, and

V̂ ∅ = V ∅ ∪ U2.
Case 7. If U1 ∈ V x, U2 = V ∅ (see Figure 4.10(b)), we consider the strip Wx,{y,z}

with terminals Ux, x ∈ Ux, and Uyz = Vx, y, z ∈ Uyz, V
∅ ⊂ Uyz. By section 4.2,

the cone Ryz(U1) is added to Uyz, resulting in V̂x = Vx ∪ Ryz(U1). Evidently, strips

W{x,z},y and W{x,y},z do not change; hence Vy and Vz are stable. Using the sets V̂x,
V̂y = Vy, and V̂z = Vz in accordance to the definition of a cell, we get U = V̂ ∅ =

V ∅ ∪ (V x ∩Ryz(U1)), V̂
y = V y ∪ (V xy ∩Ryz(U1)), V̂

z = V z ∪ (V xz ∩Ryz(U1)), and
each one of V x, V xy, V xz is lessened by the corresponding part of Ryz(U1).

A special subcase occurs when U1 = Ux. Then Wx,{y,z} vanishes, and we arrive
at the asymmetric case for F{y,x,z}. In terms of section 4.3, Ûx = Vx ∪ V ∅, L̂x = Vz,

R̂x = Vy, V̂yz = Vyz, and Ŵyz =Wyz.
Case 8. The case U1 ∈ V x, U2 ∈ V yz (see Figure 4.11(a)) is equivalent to a

composition of the two previous cases: apply the transformation of Case 6 and the
transformation of Case 7 with x replaced by y.
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Fig. 4.11. Dynamics of F{a,b,c} in the symmetric case, IV.

To see this, assume first that V ∅ �= ∅ and choose an arbitrary vertex w ∈ V ∅.
Then the transformation of F{a,b,c} equals the sum of the transformations caused by
adding two edges: (u1, w) and (w, u2). Indeed, addition of each one of these edges
affects only one of the strips Wyz and Wx,{y,z}, and their dynamics are exactly the
same as in Cases 6 and 7, respectively.

The case V ∅ = ∅ can be reduced to the previous one by the following trick.
We add to G a new vertex w and three new edges (a,w), (b, w), (c, w). It is easy
to see that S-mincuts of the new graph G∗ correspond bijectively to S-mincuts of
G; more precisely, (X, X̄) corresponds to (X, X̄ ∪ {w}) if and only if |X ∩ S| = 1.
Hence, all the cells of F∗{a,b,c} coincide with the corresponding cells of F{a,b,c} except
for (V ∗)∅ = {w}. Since (V ∗)∅ is now nonvoid, the transformation taking F∗{a,b,c} to
F̂∗{a,b,c} is exactly as described above; to obtain F̂{a,b,c} it suffices just to delete w.

Case 9. The last case occurs when U1 ∈ V x, U2 ∈ V y (see Figure 4.11(b)).
It can be considered as a composition of two Case 7’s: apply the transformation
of Case 7 as described and the same transformation with x replaced by y. In this
situation the two transformations are not independent: their joint action forces the
set V ′ = V xy ∩Ryz(U1) ∩Rxz(U2) to be added to both Vx and Vy and thus to move
from V xy to V ∅. The validity of the above description can be observed in the same
way as in the previous case; the two edges added in this case are the edges between
U1 and V

∅ and between V ∅ and U2.

The only special subcase not yielded by double application of Case 7 occurs if
U1 = Ux, U2 = Uy. It results in vanishing of both strips Wx,{y,z} and Wy,{x,z}, and
thus leads to degeneration of F{a,b,c} to Ŵ{x,y},z = F̂x,z = F̂y,z; evidently, Ŵ{x,y},z
coincides with W{x,y},z.

4.5. An arbitrary subset S with the path structure. Let S = {a = b0, b1,
. . . , br−1, br = c}; assume that there exist exactly r distinct partitions of S by S-
mincuts and each of them is of the form ({a, b1, . . . , bi−1}, {bi, . . . , br−1, c}), 1 � i � r.
This means that the skeleton structure (in the sense defined in section 4.1) for this
case is the path (a, b1, . . . , br−1, c) (see Figure 4.12). Similarly to the case of the path
(a, b, c) (section 4.3), all S-mincuts are represented by the (a, c)-stripWa,c. We define
the structure of local orientability on the graph FS by keeping that of Wa,c at all the
units, except for the units Ubi containing bi, 1 � i � r− 1, which are now regarded as
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terminals. As in section 4.3, FS is acyclic and balanced and all S-mincuts of G are
transversal cuts in FS .

For each i, 0 � i � r − 1, let (Li, L̄i) be the {a, b1, . . . , bi}-tight ({a, b1, . . . , bi},
{bi+1, . . . , br−1, c})-mincut. Similarly, for each i, 1 � i � r, let (Ri, R̄i) be the
{c, br−1, . . . , bi}-tight ({c, br−1, . . . , bi}, {bi−1, . . . , b1, a})-mincut. Besides, we define
Lr and R0 to be the entire set of units of FS . The properties of the cuts (Li, L̄i)
and (Ri, R̄i) are similar to those of (Lb, L̄b) and (Rb, R̄b) (see Lemma 4.1) and of Cx
(see Lemma 4.4(i) and Lemma 4.7). We omit the proof, since it is similar to that of
Lemma 4.1; for illustration, see Figure 4.13.

Lemma 4.9. (i) For any pair i, j, 0 � i < j � r, one has Li ⊂ Lj and Ri ⊃ Rj.
(ii) For any i, 0 � i � r, Li and Ri are the reachability cones of the unit Ubi in

Wa,c, and hence Li ∩Ri coincides with this unit.
(iii) The sides of the star of Ubi in Wa,c are induced in FS by edge-sets of (Li, L̄i)

and (Ri, R̄i).
(iv) For any pair i, j, 0 � i < j � r, the contraction of Li and Rj in FS into two

terminals gives F{bi,...,bj}.
By Lemma 4.9(iii), the strip Wa,c can be restored from FS . Observe that the

sets {bi, . . . , bj}, i < j, have the path structure similar to that of S. Therefore, by
Lemma 4.9(iii) and (iv), the strips Wbi,bj can be restored from FS as well. A unit
which is not contracted to a terminal in the construction described in Lemma 4.9(iv)
is said to be distinguished by Wbi,bj .

The two nested families {Li} and {Ri} define a cell structure on the set of units.
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Namely, the cell Qij , 0 � i � j � r, is defined as the intersection (Lj \ Lj−1) ∩ (Ri \
Ri+1), where L−1 = Rr+1 = ∅ (compare with the definition preceding the 3-Star
Lemma). Observe that Qii is exactly the unit containing bi. Part (iv) of Lemma 4.9
implies that the units of the same cell are distinguished by the same “partial” strips
Wbp,bq . More exactly, the following statement holds.

Lemma 4.10. The units of the cell Qij are distinguished by the strip Wbp,bq if
and only if the paths (bi, . . . , bj) and (bp, . . . , bq) in the skeleton structure have at least
one common edge.

Proof. According to (iv) above, to obtain Wbp,bq we contract the cells Q
ij with

j � p or i � q, and the assertion follows.

Edges between cells and, generally, mutual reachability of their units are subject
to the following restriction.

Lemma 4.11. Let U1 and U2 be mutually reachable in FS , Ul ∈ Qil,jl , l = 1, 2,
and i1 < i2. Then

(i) j1 � j2;

(ii) if U1 is a stretched unit and U3 lies in the same reachability cone of U1 as U2,
U3 ∈ Qi3,j3 , then i1 � i3 and j1 � j3.

Proof. (i) Assume that i1 < i2, j2 < j1, and there exists a coherent path P2

between U1 and U2. Evidently, U1 is not a terminal. Let us extend P2 behind U1 up
to a terminal Ubp . W.l.o.g. we may assume that p > i1 (the case p < j1 is treated
in the same way). Let us consider the S-mincut (X, X̄) with X = Lj1 ∩ R̄i1+1.
Evidently, the endpoints U2 and Ubp of the extended path lie outside this cut, while
an intermediate unit U1 lies inside this cut. So, the extended path intersects the
transversal cut (X, X̄) at least twice, a contradiction.

(ii) Let Ubp be as above. From (i) we get immediately that either p � j1 or p � i1.
If p � j1, then we set i = min{i2, j1}; now both Ubp and U2 belong to Ri, while U1

does not (since i1 < i2), a contradiction. Hence, p � i1.

Let us now extend a coherent path P3 between U1 and U3 behind U3 up to
a terminal Ubq . (Since U3 is not necessarily a stretched unit, it may happen that
Ubq = U3.) Observe that P3 can be extended up to Ubp ; we denote the obtained
coherent path by P ′3. Once more we get from (i) that either q � j1 or q � ii. If q � i1,
then the endpoints Ubq and Ubp of P

′
3 belong to Li1 , while its intermediate unit U1

does not, a contradiction. Hence, q � j1.

Assume now that i3 < i1; in this case U3 �= Ubq . Let us consider the part of P
′
3

between U1 and Ubq . Both its endpoints belong to Ri1 , while its intermediate unit U3

does not, a contradiction.

Assume now that i3 = i1 and j3 < j1; again we have U3 �= Ubq . Let us consider
the same path as in the previous case. Both its endpoints do not belong to Lj3 , while
its intermediate unit U3 does, a contradiction.

Therefore, i1 = i3 implies j1 � j3. Finally, i1 < i3 implies the same inequa-
lity.

Remark. Observe that the first assertion of the above lemma can be regarded as
a generalization of Lemma 2.1(i).

Let us now extend the definition of the cell structure to the edges of FS . Let
e = (U1, U2) be an edge of FS , and assume that U1 ∈ Qi1j1 and U2 ∈ Qi2j2 . We put
i = min{i1, i2}, j = max{j1, j2}, and say that e belongs to the cell Qij . Observe that
by Lemma 4.11 there are three types of edges belonging to a cell Qij : internal (both
endpoints belong to Qij), external (one endpoint belongs to Qij and the other one
either to Qij

′
, i � j′ < j, or to Qi

′j , i < i′ � j), and through (one endpoint belongs
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Fig. 4.14. To the definition of the strip Wij .

to Qij
′
, i � j′ < j, and the other one to Qi

′j , i < i′ � j); for an illustration, see
Figure 4.13.

This definition can be justified as follows. Insert a dummy vertex u into the edge
e, thus dividing it into e1 and e2. Evidently, if an S-mincut (X, X̄) of the initial
graph is crossed by e, then upon insertion of u it is replaced by two S-mincuts of
the modified graph: (X ∪ {u}, X̄) and (X, X̄ ∪ {u}). Conversely, let (Y, Ȳ ), u ∈ Ȳ ,
be an S-mincut of the modified graph crossed, say, by e1. Then (Y ∪ {u}, Ȳ \ {u})
is another S-mincut of the modified graph, and it is crossed by e2. Finally, if an
S-mincut is not crossed by e, then it remains intact in the modified graph, and vice
versa. It follows from the above discussion that the only difference between the initial
FS and the modified one is the new unit U that consists of the single dummy vertex
u and belongs to the cell Qij ; U , together with the incident edges e1 = (U1, U) and
e2 = (U2, U), replaces the edge e in FS . This dummy unit, in a sense, represents the
edge e, and thus justifies the above definition. Observe that this definition is stable
with respect to insertion of dummy vertices. Namely, if e belongs to the cell Qij , then
both e1 and e2 belong to the same cell.

For any pair i, j, 0 � i � j � r, excluding cases i = j = 0 and i = j = r, we
build from FS a locally orientable graph Wij with the set of nonterminals Qij (see
Figure 4.14). We delete

⋃{Qpq : p < i � j < q} and ⋃{Qpq : i < p � q < j}.
(Observe that by Lemma 2.1 there are no edges between Qij and the deleted sets.)
Next, we contract the sets

⋃{Qpq : p � i, q � j, (p, q) �= (i, j)} and ⋃{Qpq : p �
i, q � j, (p, q) �= (i, j)} into two terminals a′ and c′. Finally, we delete the edges
between a′ and c′ that do not belong to Qij . Observe that this definition is consistent
with the definition of Wac given in section 4.3 (W02, in our new notation), because
all the edges between a′ and c′ in F{a,b,c} belong to Q02. Evidently, all the edges
that belong to Qij participate inWij . Besides, each external edge participates in one
more such graph, and each through edge in two more such graphs. Extensions of cuts
of Wij to S-mincuts are defined similarly to the case analyzed in section 4.3. The
following statement is an analogue of Lemmas 4.2 and 4.8.

Lemma 4.12. (i) The graph Wij is a strip of width λij ; if j = i, then λij > λS/2,
while if j � i+ 2, then λij < λS/2.

(ii) All its transversal cuts, and only they, are extendible to S-mincuts.
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(iii) For any sequence i1 < i2 < · · · < il � jl < · · · < j2 < j1, any set of l
transversal cuts of Wi1j1 , . . . ,Wiljl has a mutual extension to an S-cut. Moreover, if
jl � il + 2, then λi1j1 + · · ·+ λiljl < λS/2.

(iv) Let i1 < i2 < · · · < il � jl < · · · < j2 < j1 and let a 2-partition of V \{Qi1j1∪
· · · ∪Qiljl} enter a mutual extension of a set of transversal cuts of Wi1j1 , . . . ,W iljl .
Then it enters some mutual extension of any set of such cuts. (Informally, all sets of
transversal cuts for such a sequence of strips are interchangeable in S-mincuts.)

Proof. (i) The fact that Wij is a strip is proved similarly to Lemma 4.2(i) taking
into account that the sets Xa =

⋃{Qpq : p � i, q � j, (p, q) �= (i, j)} and X̄c =⋃{Qpq : p � i, q � j, (p, q) �= (i, j)} define transversal cuts Ca = (Xa, X̄a) and
Cc = (Xc, X̄c) (shown by a double line on Figure 4.14). The inequality for the case
j = i follows from the fact that the cardinality of the cut (Ubi , V \ Ubi) exceeds λS .
In the case j � i+ 2 we see that all the edges of FS incident to a′-type terminals in
the strips Wij and Wi+1,i+1 belong to the edge-set of Ca. Therefore, λij +λi+1,i+1 �
c(Ca) = λS . Since λ

i+1,i+1 > λS/2, we are done.

(ii) Let Xa and X̄c be defined as above. Given any transversal cut C′ = (a′ ∪
Z, Z̄ ∪ c′) of Wij , let us consider the edge-set of the 2-partition C = (Xa ∪Z, Z̄ ∪ X̄a)
of V . As compared with the edge-set of Ca, it loses the edges between Xa and Z and
gets the edges between Z and Z̄ ∪ X̄c. However, the same holds for the cut C′ as
compared with the cut of Wij that separates a′. Since, by (i), the cuts in the second
pair have equal cardinalities, the same is true for the first pair. Thus C is a minimum
S-cut.

Conversely, let (X, X̄) be an S-mincut separating Xa from X̄c. By the same
reasons as above, it generates a 2-partition of cardinality λij inWij that is a minimum
(i.e., transversal) cut of Wij .

(iii) Let C′k be a transversal cut of Wikjk , 1 � k � l. Denote by Ck the extension
of C′k defined as in the proof of (ii) and consider the S-mincut C = C1 ∪ · · · ∪ Cl.
Inequalities i1 < i2 < · · · < il � jl < · · · < j2 < j1 guarantee that C is an extension
for any of the C′k and hence is a mutual extension of the whole set {C′1, . . . , C′k}.
The same inequalities guarantee that no edge is counted more than once in the sum
λi1j1 + · · · + λiljl ; the rest of the proof of the inequality λi1j1 + · · · + λiljl < λS/2
follows the proof of (i).

(iv) Assume that l = 1. Let C0 be an extension of some transversal cut of Wi1j1

and let C′ be an arbitrary transversal cut of Wi1j1 . Take X̄c as above and put
X∗c = Xc \Qi1j1 ; then C∗ = (X∗c , X̄

∗
c ) is an S-mincut. Now define the cut C of G as

in the proof of (ii); then (C0 ∩ C∗) ∪ C is an extension of C′ that divides V \Qi1j1 in
the same way as C0. For l > 1 the proof applies with evident minor changes.

Dynamics of FS , S = {a = b0, . . . , br = c}, in the case of the path structure are
induced by those of F{a,c} =Wa,c, in the same way as it was done for F{a,b,c} in the
asymmetric subcase (see section 4.3). To be more precise, let U1 ∈ Qi1j1 , U2 ∈ Qi2j2

(we may assume w.l.o.g. that j1 � j2); we call ik, jk the coordinates of Uk, k = 1, 2.
Certain elements of S “fall inside” Unew when j1 � i2; in this case U

new is a terminal
and it contains all the bk such that j1 � k � i2 (see Figure 4.15(a)).

Concerning the dynamics of the sets Lk (those of Rk are similar), Lemma 4.3 can
be generalized as follows.

Lemma 4.13. The sets Lk, j1 � k < j2, and only they, are extended (at least by

U2). The new part of L̂k is the union of the units U ′ ∈ Qi
′j′ such that j′ > k and

U ′ ∈ Ra(U2).

The proof of Lemma 4.13 is similar to that of Lemma 4.3 (see Figure 4.15(b)).
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Fig. 4.15. Dynamics in the case of the path structure.

In the case when Unew is not a terminal, its new cell and the new cells of the other
units can be defined via the characterization of the sets L̂k, R̂l given in Lemma 4.13.
We use the following notation. Let jmin = min{j1, j2} and imax = max{i1, i2}. The
unit U(j) is the one of U1, U2 with the j-coordinate not less than that of the other
one, and U(i) is the one of them with the i-coordinate not greater than that of the
other one.

Corollary 4.14. (i) The new unit Unew belongs to the cell Q̂imaxjmin .

(ii) Let a unit U ′ ∈ Qij move to the cell Q̂i
∗j∗ .

If j > jmin and U ′ ∈ Ra(U(j)), then j∗ = jmin, otherwise j
∗ = j.

If i < imax and U ′ ∈ Rc(U(i)), then i∗ = imax, otherwise i
∗ = i.

Moreover, an analogue of Corollary 4.14 is valid also in the case when Unew is
a terminal if we previously merge the cells with the identified indices in the range
[j1, . . . , i2].

5. The flesh and the skeleton of the connectivity carcass.

5.1. The system of units, or the flesh of the connectivity carcass. Let
us consider an arbitrary bunch B of S-cuts, and let (SB, S̄B) be the corresponding
partition of S (see section 2 for all the necessary definitions). In fact, B is the set of
all minimum (SB, S̄B)-cuts; thus the structure of B can be represented by the strip
WSB,S̄B . For brevity, in what follows this strip is denoted by WB, the corresponding
quotient mapping by δB, and the units of WB are called B-units. Therefore, the
following statement holds.

Fact 5.1. Any bunch of S-cuts B is represented by the strip WB and the mapping
δB so that the δB-inducing provides a bijection between the transversal cuts of WB and
the S-cuts in B.

Evidently, for the bunch B̄ of cuts opposite to cuts in B, the strip WB̄ coincides
with WB.

By the definition, the partition of V into S-units is a refinement of its partition
into B-units. The following statement shows that only the two terminal B-units can
be refined.

Lemma 5.2. Each nonterminal B-unit is an S-unit.
Proof. The proof is similar to that of Lemma 4.4(i). Let U be a nonterminal B-

unit subdivided by an S-mincut C. Evidently, there exist vertices x ∈ SB and y ∈ S̄B
separated by C; assume w.l.o.g. that x lies inside C. By the definition of B-units, the
bunch B contains cuts C1 and C2 separating SB from U and U from S̄B, respectively.
Observe that all the three cuts C, C1, and C2 are minimum (x, y)-cuts. Let us consider
the cut C1 ∪ (C ∩ C2). It contains SB inside, contains S̄B outside, and thus belongs to
B. However, it subdivides U , a contradiction.
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In what follows we say that the S-units described in Lemma 5.2 are distinguished
by the bunch B or by the bunch strip WB (compare with the definition preceding
Lemma 4.10).

By the definition, the star of any nonterminal vertex of the locally orientable
graph WB is partitioned into two sets of equal cardinality. Thus, by Lemma 5.2,
the star of the corresponding vertex of FS is halved. The crucial observation is that
the arising 2-partition does not depend on the choice of B (see Lemma 4.4(iii) for a
particular case of the same statement).

Lemma 5.3. If an S-unit is distinguished by several bunch strips, then the 2-
partitions of its star in all these strips coincide.

Proof. Let U be an S-unit distinguished by bunches B and B′. W.l.o.g., the
2-partition (SB′ , S̄B′) divides SB. Therefore, for any x ∈ S̄B one can choose y ∈ SB
separated from x by this 2-partition. Similarly to the proof of Lemma 4.4(iii), both
strips WB and WB′ are contractions of the same strip Wx,y. (In this case Lemma 3.8
is used repeatedly.) Hence, the 2-partitions at U in these strips are inherited from
Wx,y and thus coincide.

Let us provide FS with a canonical structure of a locally orientable graph (see
definitions in section 3). To the star of any S-unit distinguished by at least one bunch
strip we assign the partition into sides indicated in Lemma 5.3. To the star of any
other unit we assign the trivial 2-partition. These 2-partitions are said to be inherent.
The quotient graph FS endowed with the structure of a locally oriented graph as
described above is said to be the flesh of the connectivity carcass of S.

As for general locally orientable graphs, the units of the former type are called
stretched, and those of the latter type, terminals. In addition, a unit is called heavy
if it intersects S. Observe that only terminal units (but, in general, not all of them)
can be heavy. Below we prove several basic properties of FS .

In what follows we illustrate certain general concepts on the graph shown in
Figure 5.1(a). Large black circles denote vertices in S; several S-mincuts are shown
by dashed lines; nontrivial S-units are encircled by dotted lines. The corresponding
flesh is presented in Figure 5.1(b).

According to the definitions above, FS is obtained by “gluing together” all the
bunch strips. Conversely, each bunch strip can be reconstructed from FS with the help
of contractions. Indeed, let B be an arbitrary bunch of S-mincuts. The intersection
of all cuts in B is called the tight cut of B; the union of all cuts in B is called the
loose cut of B. (Evidently, each of them separates a terminal of WB from all other
units.) Observe that the tight cut of B is just the SB-tight (SB, S̄B)-mincut (for the
definition, see section 2 immediately after Fact 2.2), while the loose cut of B is the
opposite of the S̄B-tight (S̄B, SB)-mincut. The following statement is a generalization
of Lemma 4.1(iii) and Lemma 4.4(i).

Lemma 5.4. For any bunch B, the strip WB is obtained from FS by contracting
all the units inside the tight cut of B and all the units outside the loose cut of B into
terminals.

Proof. The proof follows immediately from Lemmas 5.2 and 5.3 (for details, see
the proof of Lemma 4.4(i)).

Parts (i) and (ii) of the next statement provide a generalization of Lemma 4.5.

Theorem 5.5. (i) The flesh FS is a balanced acyclic locally orientable graph.

(ii) Each S-mincut is transversal in FS.
(iii) Let ñ and m̃ be the numbers of vertices and edges of FS , respectively. Then

ñ � n, m̃ � m, m̃ = O(λSñ).
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Fig. 5.1. Connectivity carcass of a graph and its contractions to strips.
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Fig. 5.2. To the proof of Theorem 5.5.

Proof. (i) The fact that FS is balanced is clear, since inherent partitions at
stretched units of FS come from those in bunch strips (see Lemma 5.3). Acyclicity of
FS follows from part (ii) of this theorem exactly in the same way as in the proof of
Lemma 4.5.

(ii) Assume to the contrary that the claim is violated by some pair G,S and the
corresponding flesh FS . Then there exists a minimal counterexample, namely, an
S-mincut C and a coherent path P in FS such that P intersects the edge-set of C at
least twice and the number of units in P is minimal among all such pairs C, P (see
Figure 5.2). By minimality, the endpoints of P lie outside C, and all the inner units
of P lie inside C (up to flipping of C). Let U be an arbitrary inner unit of P ; since
P is a coherent path, U is a stretched unit. Therefore, there exists a bunch that
distinguishes U . Let C1 be the S-mincut in this bunch defined by a cone R of U in
the corresponding strip and C2 be the S-mincut in this bunch defined by R\U . Up to
taking the other cone of U , we may assume that both pairs C1, C and C2, C satisfy the
conditions of Lemma 2.1. Thus, by Fact 2.2, both C1 ∩ C and C2 ∩ C are S-mincuts;
moreover, they belong to the same bunch and their inner parts differ exactly by U .

Let us traverse P from an endpoint up to U and take the edge entering U and the
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next edge of P . By Fact 3.3, exactly one of the above edges intersects the edge-set of
C2 ∩ C; let U ′ be the other endpoint of this edge. Since U ′ lies inside C2 ∩ C, it lies
inside C as well, and thus cannot be an endpoint of P . Let P ′ be the subpath of P
leaving U by the edge (U,U ′) and ending at the corresponding endpoint of P . Since
both U and this endpoint of P lie outside C2 ∩ C, the pair C2 ∩ C, P ′ contradicts the
minimality of the pair C, P .

(iii) The first two inequalities are evident. Let us show that m̃ � λS(ñ−1). Since
any two units are separated by an S-mincut, the size of a minimum cut between them
in FS is at most λS . Let us consider the Gomory–Hu tree of FS (see [GH]). Recall
that its vertices correspond bijectively to the units, and thus any of its edges defines
a cut of FS . By [GH], this cut is a minimum cut between some two units, and hence
its size is at most λS . Since there are ñ − 1 such cuts and each edge of FS takes
part in at least one of them, their total number m̃ does not exceed λS(ñ − 1), as
required.

The flesh can be considered, in a sense, as a generalization of a strip. By the
way, at early stages we called our structure “branching dag.” The meaning of such a
nickname will become more clear in the next subsection (see also section 4.4).

5.2. The system of bunches, or the skeleton of the connectivity carcass:
Odd case. For the case S = V , the S-mincuts are the (globally) minimum cuts of
G, and any bunch consists of exactly one S-mincut. Recall (see the introduction)
that the structure of all minimum cuts of G is represented by a cactus tree (see
[DKL]); if the graph connectivity is odd, it is, in fact, a tree. The construction is
based on the Crossing Lemma [Bi, DKL]. A generalization of this lemma to the S-
mincuts and the existence of a cactus tree representation of all 2-partitions of S by
S-mincuts were stated (without proof) independently in [Na, W93] (see also [DV1]).
The generalization of the lemma is straightforward (see below); for a proof of the
existence of a cactus tree representation, see [DN, Nu].

As usual, two 2-partitions of a set are called crossing if they divide the set into
four nonvoid parts. We consider a more delicate notion: two S-cuts C and C′ (which
are 2-partitions of V ) are said to be S-crossing if they divide S into four nonvoid
parts.

S-Crossing Lemma. Let C and C′ be S-crossing S-mincuts; then
(i) c(VC ∩ VC′ , VC ∩ V̄C′) = c(VC ∩ V̄C′ , V̄C ∩ V̄C′) = c(V̄C ∩ V̄C′ , V̄C ∩ VC′) = c(V̄C ∩

VC′ , VC ∩ VC′) = λS/2;
(ii) c(VC ∩ VC′ , V̄C ∩ V̄C′) = c(VC ∩ V̄C′ , V̄C ∩ VC′) = 0.
Hence, the 2-partitions C ∩ C′, C ∩ C̄′, C̄ ∩ C̄′, C̄ ∩ C′ are S-mincuts as well.
The proof coincides with that of the Crossing Lemma, with an additional obser-

vation that in our case all 2-partitions involved are actually S-cuts.
It follows immediately from part (i) of the S-Crossing Lemma that for λS odd

there are no S-crossing S-mincuts. Let us show that whenever this S-crossing-free
property holds, we can represent the system of bunches of S-mincuts by a tree (for an
example, see Figure 5.1(c)). Recall that each bunch is uniquely characterized by the
corresponding 2-partition of S; let us concentrate on these 2-partitions. Observe that
the S-crossing-free property for S-mincuts is equivalent to the crossing-free property
for these 2-partitions of S (i.e., that no two such 2-partitions are crossing).

Theorem 5.6. For any set X and any crossing free family F of 2-partitions of
X,

(i) there exist a unique tree H with the node set N and a mapping ϕ : X → N
such that ϕ-inducing provides a bijection between the cuts of H and the 2-partitions
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in F ;

(ii) the size of H is linear in the number of subsets that X is cut into by the
members of F .

This statement can be considered as folklore; however, for a proof see [DW,
section 4.1].

Corollary 5.7. For any G = (V,E) and any S ⊆ V with the S-crossing-
free property the system of bunches of S-mincuts is represented by a tree, which we
denote by HS ; its node set is denoted by NS. The corresponding mapping S → NS
is denoted by ϕS ; the bunches of S-mincuts correspond bijectively to the cuts of HS

via ϕS-inducing. Moreover, the cardinality of NS is linear in the number of (λS +1)-
connectivity classes in S.

The tree HS is said to be the skeleton of the connectivity carcass of the set S.
Its edges are called structural edges (to distinguish them from the edges of the graph
G). Any cut of HS is defined by a single structural edge.

Observe that the image ϕS(S) does not necessarily coincide with NS . The nodes
N for which ϕ−1

S (N) = ∅ are called empty nodes (e.g., node N on Figure 5.1(c)). It
follows from the construction that the degree of each empty node is at least three. It
is easy to see that the preimages of the nonempty nodes in NS are exactly the classes
of (λS + 1)-connectivity in S.

By Corollary 5.7, for any S with λS odd, the system of bunches of S-mincuts
is represented by the skeleton HS , which is a tree. For λS even, this is also the
case if the S-crossing-free property holds. In general, analogues of Theorem 5.6 and
Corollary 5.7 are valid, in which the tree is replaced by a cactus tree. It means that
each bunch is represented by a cut of this cactus tree, which is defined either by a
structural edge not belonging to any cycle, or by a pair of structural edges belonging
to the same cycle. For details see [DV1].

In the rest of the paper we assume that the skeleton is a tree, thus completely
covering the odd case.

6. Structure and properties of the connectivity carcass.

6.1. Tight cuts. Let ε be an arbitrary structural edge of HS and N be one
of its endpoints. By Theorem 5.6, this edge defines two mutually opposite bunches
of S-mincuts; these two bunches are represented by a strip (see Fact 5.1), which we
denote W(ε). (For example, Figures 5.1(d) and (e) show the strips W(N,N1) and
W(N,N3), respectively.) Consider the cut of HS corresponding to ε and containing
N inside. The intersection of all S-mincuts of the bunch represented by this cut of
HS is the tight cut of this bunch. This cut is said to be the N -tight cut in direction
ε and is denoted by C(N, ε) (e.g., the cut C3 on Figure 5.1(a) is the N -tight cut in
direction (N,N1)).

A path in HS is an alternating sequence of distinct nodes and structural edges; we
consider the opposite sequence as the same path traversed in the opposite direction.
The unique path between two arbitrary nodes M , N of the skeleton is denoted by
[M,N ]. For any two structural edges ε′ and ε′′ there exists a unique path that starts
by one of them and ends by the other one; we denote this path by [ε′, ε′′].

It turns out that tight cuts are monotonous along paths in the skeleton. More
precise, the following generalization of Lemma 4.9(i) holds; it makes use of the domi-
nation relation ≺ between cuts defined at the beginning of section 2.

Lemma 6.1. For any path P = (N0, ε1, N1, . . . , εr, Nr) in the skeleton HS, r � 2,
one has C(N0, ε1) ≺ C(Nr−1, εr).
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Proof. Observe that the sets S∩VC(N0,ε1) and S∩VC(Nr−1,εr) are nonempty, since
the cuts in question are S-cuts. Moreover, S∩VC(N0,ε1) is contained in S∩VC(Nr−1,εr),
since both sets are ϕS-preimages of subtrees of HS and the subtree of the former is
contained in that of the latter; the set inclusion is strict since the partitions of S by
distinct bunches are distinct.

Let a and b be arbitrary vertices in S ∩ VC(N0,ε1) and S ∩ V̄C(Nr,εr), respectively.
Both C(N0, ε1) and C(Nr−1, εr) are minimum (a, b)-cuts, so their intersection C is a
minimum (a, b)-cut as well. By the set inclusion proved above, the cut C belongs to
the bunch defined by ε1, and thus coincides with C(N0, ε1), since the latter cut is tight.
This coincidence, together with the strict inclusion S ∩ VC(N0,ε1) ⊂ S ∩ VC(Nr−1,εr),
implies the assertion of the lemma.

Corollary 6.2. For any path P = (N0, ε1, N1, . . . , εr, Nr) in the skeleton HS,
r � 2, one has VC(N0,ε1) ∩ VC(Nr,εr) = ∅ and VC(N1,ε1) �⊆ VC(Nr−1,εr).

Remark. Let ε′ and ε′′ be two arbitrary structural edges and C′ and C′′ be two tight
cuts in directions ε′ and ε′′, respectively. Observe that Lemma 6.1 and Corollary 6.2
cover all the possible choices for C′ and C′′.

6.2. Reconstruction of pairwise strips. According to Lemma 5.4, one can
obtain the strip representation for any bunch of S-mincuts just by a contraction
of FS . This fact holds also in a more general situation, when one is interested in
the strip representation Ws1,s2 for an arbitrary pair of vertices s1, s2 ∈ S, or, more
generally, in the strip WS1,S2 for an arbitrary pair of disjoint subsets S1, S2 ⊂ S,
provided the cardinality of (S1, S2)-mincuts equals λS . Observe that in this case
the (S1, S2)-mincuts, which are represented by WS1,S2 , are exactly the S-mincuts
separating S1 from S2. In this subsection we describe the contractions of FS that give
the corresponding strips. The reader can use for illustration Figure 5.1(d) (S1 = {s1},
S2 = {s2, s′2, s3}), Figure 5.1(e) (S1 = {s3}, S2 = {s1, s2}), Figure 5.1(f) (S1 = {s2},
S2 = {s3}).

Let T1 and T2 be two edge-disjoint subtrees ofHS . The link of T1 and T2 is defined
as the unique path with one endpoint in T1 and the other one in T2 and having no
edges in common with T1 and T2. We denote the link of T1 and T2 by L(T1, T2).
Observe that the link of two distinct nodesM and N is just the path [M,N ], the link
of two distinct edges ε′ and ε′′ extended by these edges themselves gives exactly the
path [ε′, ε′′], and the link of two subtrees intersecting by a node is this very node.

Let S1 and S2 be disjoint subsets of S. By Theorem 5.6, a bunch of S-mincuts
separates S1 from S2 if and only if the deletion of the corresponding edge of HS pro-
duces two subtrees containing ϕS(S1) and ϕS(S2), respectively. Let T (S1) and T (S2)
be the minimal subtrees of the tree HS containing ϕS(S1) and ϕS(S2), respectively.
For brevity, we write L(S1, S2) instead of L(T (S1), T (S2)). The following statement
follows easily from Theorem 5.6 and Lemma 6.1.

Fact 6.3. (i) If T (S1) ∩ T (S2) �= ∅, then there are no S-mincuts separating S1

from S2.
(ii) Otherwise, the edges of HS corresponding to the bunches of S-mincuts sepa-

rating S1 from S2 form the link L(S1, S2).
(iii) Under the assumptions of (ii), let N1 be the endpoint of L(S1, S2) lying in

T (S1) and ε1 be the edge of L(S1, S2) incident to N1. Then the S1-tight (S1, S2)-
mincut coincides with the N1-tight cut in direction ε1.

Now we can prove the main result of this subsection, which is a generalization
of Lemma 4.1(i),(ii), Lemma 4.7, and Lemma 4.9 (ii)–(iv). For an illustration, see
Figure 6.1.
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Fig. 6.1. To the proof of Theorem 6.4.

Theorem 6.4. Let S1 and S2 be two subsets of S such that T (S1)∩ T (S2) = ∅.
The strip WS1,S2 is obtained as follows.

The underlying graph of WS1,S2 is obtained from FS by contractions of certain
subsets of units to a single heavy unit. These subsets correspond bijectively to the
nodes of the link L(S1, S2). The subset UN that corresponds to a node N is equal to
the intersection of the inner sides of N -tight cuts in directions of the edges of L(S1, S2)
incident to N .

The inherent partition at any noncontracted unit remains the same. The inherent
partition at a new unit UN is induced by the edge-sets of the N -tight cuts defining
UN .

Proof. Let us delete all the edges of the path L(S1, S2). The trees of the forest
thus obtained correspond bijectively to the nodes of L(S1, S2): a node N corresponds
to the tree TN that contains N . Denote by ΣN the inverse image of the set of all the
nodes of TN under the mapping ϕS . Observe that ΣN is a nonempty subset of S.
Indeed, if N is an endpoint of the link, then ΣN is just the intersection of a side of a
certain S-mincut with S and is thus nonempty. If N is an inner node of the link, then
ΣN = ∅ would imply that the cuts of HS defined by the two structural edges incident
to N ϕS-induce the same 2-partition of S, in contradiction to Theorem 5.6 (compare
with the proof of Lemma 6.1). Besides, by Fact 6.3(ii), the S-mincuts separating S1

from S2 do not divide ΣN . Therefore, in any case all the set ΣN lies in a single heavy
unit of the strip WS1,S2

, which we denote by U ′N . Observe that if N is an endpoint
of the link, then U ′N is a terminal of WS1,S2

(since ΣN contains one of S1 and S2).
Let now N1 and N2 be two neighboring nodes in the link such that N1 and

ϕS(S1) lie on the same side of the edge (N1, N2) in HS . Let us consider the set of
all (S1 ∪ ΣN1 , S2 ∪ ΣN2

)-mincuts (all of them are represented in WS1,S2
). It is easy

to see that the subtrees T (S1 ∪ ΣN1) and T (S2 ∪ ΣN2) contain nodes N1 and N2,
respectively. By Fact 6.3(ii), this set of cuts is represented by the strip W(N1, N2)
defined by the structural edge (N1, N2). Therefore, by Lemma 3.8, to get the strip
W(N1, N2), it is sufficient to contract the corresponding cones of the nodes U

′
N1
and

U ′N2
in WS1,S2 .
By Facts 3.6(iii) and 6.3(ii) and Lemma 6.1, these cones are just the inner sides of

the tight cuts C(N1, (N1, N2)) and C(N2, (N1, N2)), respectively. Since the intersection
of the two opposite cones of any unit in a strip coincides with this unit, we thus get
that the units U ′N constructed in the proof coincide with the sets UN defined in the
formulation of the theorem.

Observe that, by Lemma 5.4, one can obtain W(N1, N2) directly from FS by
contracting the inner sides of the same tight cuts C(N1, (N1, N2)) and C(N2, (N1, N2)).
Therefore, there is a bijection between the units of FS and WS1,S2 that lie between
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pairs of the above-described tight cuts; moreover, this bijection preserves the inherent
partitions. Let us consider the set of units in WS1,S2

that do not participate in that
bijection. One can deduce from Lemma 6.1 and Corollary 6.2 that each such unit U
lies either inside the tight cut C(N, (N,M)), where N is an endpoint of the link and
(N,M) belongs to the link, or in the intersection of the inner sides of the two tight
cuts C(N, (N,N1)) and C(N, (N,N2)), where N is an inner node of the link and N1

and N2 are the neighbors of N in the link. In the first case, U is one of the terminal
units of WS1,S2

(by Fact 6.3(iii)). In the second case, U lies in the intersection of
the two opposite cones of the unit UN in WS1,S2 , and thus coincides with UN . The
claim concerning the inherent partition at UN follows immediately from the above
construction and Fact 3.3.

Remarks. (1) Let us distinguish a subset of coherent paths in FS by preventing
their inner units from “falling inside” any unit UN , N ∈ L(S1, S2). By the construc-
tion above, these paths correspond naturally to the coherent paths ofWS1,S2

without
inner units UN , N ∈ L(S1, S2).

(2) Observe that for any path P = (N0, ε1, . . . , εr, Nr) in HS , the link of the
subsets of S lying inside C(N0, ε1) and C(Nr, εr) is exactly P , since there are no
empty nodes of degree at most two in HS . The strip corresponding to these two
subsets is denoted by W(P ).

6.3. The projection mapping. Let U be an arbitrary unit of the flesh FS .
We say that U is projected to an edge ε of the skeleton HS if U is a nonterminal
unit of W(ε) (for example, unit U2 in Figure 5.1(b) is a stretched unit of the strip
W(N1, N) shown in Figure 5.1(d), and thus U2 is projected to the edge (N1, N)). In
other words, U is projected to ε = (N1, N2) if it lies outside the N1-tight and N2-tight
cuts in direction ε.

Theorem 6.5. (i) For any stretched unit U of the flesh, the set πS(U) of struc-
tural edges to which U is projected is nonempty and is the edge-set of a path in the
skeleton.

(ii) For any terminal unit U of the flesh, the set of structural edges to which U is
projected is empty, and there exists a unique node πS(U) of the skeleton such that U
belongs to all πS(U)-tight cuts.

Proof. (i) The set πS(U) is nonempty by the definition of a stretched unit. Let
us show that there exists a path in the skeleton containing all the structural edges in
πS(U). If there is only one such edge, then the statement is trivial; thus in what follows
we assume that |πS(U)| � 2. Let us take a path P = (N0, ε1, N1, . . . , Nr−1, εr, Nr)
that is inclusion-maximal among all paths with both end-edges in πS(U). Suppose,
to the contrary, that there exists an edge ε ∈ πS(U) that does not belong to P (see
Figure 6.2(a)). Then the link of ε and P meets P in an inner node Ni (otherwise
P could be extended). We denote by ε′ the edge of this link incident to Ni. By
Lemma 6.1, U lies outside the cuts C(Ni, εi), C(Ni, εi+1), and C(Ni, ε′). However, this
contradicts the following generalization of part (i) of the 3-Star Lemma.

Lemma 6.6. Let N be a node of HS , ε1, ε2, ε3 be structural edges incident to N ,
Ci = C(N, εi), i ∈ {1, 2, 3}. Then

⋂
i V̄Ci = ∅.

Proof. Let us choose a vertex si ∈ S in such a way that si ∈ V̄Ci , i = 1, 2, 3.
Vertices si are distinct, since they belong to inverse images (under ϕS) of disjoint
subtrees of HS . Observe that T ({sj , sk}) is a path containing both εj and εk, but not
containing εi. Thus, by Fact 6.3(iii), the {sj , sk}-tight ({sj , sk}, si)-mincut coincides
with Ci. Therefore, Ci is exactly the cut Csi as defined in section 4.4, and the assertion
of the lemma follows from part (i) of the 3-Star Lemma.
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Fig. 6.2. To the proofs of Theorem 6.5 and Lemma 6.6.

Remark. Clearly, the remaining assertions of the 3-Star Lemma can be generalized
to our case as well.

It remains to show that each edge (Ni−1, εi, Ni) in P belongs to πS(U). Indeed,
U lies outside both C(N1, ε1) and C(Nr−1, εr) and thus, by Lemma 6.1, outside both
C(Ni, εi) and C(Ni−1, εi), as required.

(ii) Now let U be a terminal unit of the flesh. Then, for each structural edge
ε, U lies inside exactly one of the two tight cuts in direction ε. Let us consider the
collection I of all tight cuts that contain U inside and have inclusion-minimum inner
sides. Let C′ and C′′ be two arbitrary cuts in I, ε′ and ε′′ be the corresponding
structural edges, and let [ε′, ε′′] = (N0, ε

′, N1, . . . , Nr−1, ε
′′, Nr). Then, by Lemma 6.1

and the minimality of the cuts in question, one of the following possibilities holds:
either C′ = C(N0, ε

′) and C′′ = C(Nr, ε′′) or C′ = C(N1, ε
′) and C′′ = C(Nr−1, ε

′′).
In the first case, the tight cut C(N1, ε

′) contains U inside (by Lemma 6.1), and
thus both tight cuts in direction ε′ contain U inside, a contradiction. In the second
case, let us assume that there exists an edge ε ∈ P (ε′, ε′′) distinct from ε′ and ε′′.
Then, by Lemma 6.1 and the minimality of C′ and C′′, both tight cuts in direction ε
do not contain a terminal U inside, a contradiction. Therefore, C′ and C′′ are tight
cuts of the same node N (N = N1 = Nr−1). One can prove easily that any other cut
in I is also an N -tight cut.

Moreover, any N -tight cut belongs to I. Indeed, assume that C is the N -tight
cut in direction ε and C /∈ I (see Figure 6.2(b)). Denote by C∗ the other tight cut
in direction ε. Then U lies either inside C or inside C∗. In the first case, there exists
a cut in I dominated by C. (For the definition of domination, see the beginning of
section 2.) By the above reasoning, this cut is an N -tight cut, and we thus get two
N -tight cuts with nested inner sides, which contradicts Corollary 6.2. In the second
case, by Lemma 6.1, C∗ is dominated by all the N -tight cuts except for C, and thus
by all the cuts in I, which contradicts the minimality of these cuts. Therefore, we
can set πS(U) = N .

Thus, the projection mapping πS is defined, assigning to each unit U the path
of Theorem 6.5 (observe that a single node is itself a path); the endpoints of this
path are called the coordinates of U in HS (compare with the definition preceding
Lemma 4.13). For an example see Figures 5.1(b) and (c): the coordinates of the unit
U1 are N and N3, those of U2 are N1 and N3, and those of U are N and N .

The triple (FS ,HS , πS) is called the connectivity carcass of S. According to
Theorems 5.5(iii) and 5.6, its size is O(min{m̃, λSñ}) = O(min{m,λSn}).

Let us consider a cut of the skeleton HS defined by a structural edge and repre-
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senting a bunch B. If we delete this edge from the skeleton, it falls into two connected
components HS(B) and H̄S(B) containing ϕS(SB) and ϕS(S̄B), respectively.

Theorem 6.7. The set of vertices lying inside the tight (resp., outside the loose)
cut of B is the union of all units U of FS such that πS(U) ⊆ HS(B) (resp., πS(U) ⊆
H̄S(B)).

Proof. Let us denote by ε the structural edge corresponding to B, and by N and
N̄ its endpoints lying in HS(B) and H̄S(B), respectively. Then the tight cut of B is
C(N, ε), and the loose cut of B is C̄(N̄ , ε). Now let U be an arbitrary unit of FS . If
ε ∈ πS(U), then, by definition, U lies outside both C(N, ε) and C(N̄ , ε). Otherwise,
ε /∈ πS(U); by Theorem 6.5 we may assume w.l.o.g. that πS(U) ⊆ HS(B). Let us
prove that U lies inside C(N, ε).

Assume to the contrary that this is not the case; then U lies inside C(N̄ , ε), since
otherwise the projection of U would contain ε. If U is a stretched unit, then there
exists a structural edge ε′ ∈ πS(U) ⊆ HS(B). Let [ε′, ε] = (N̄ ′, ε′, N ′, . . . , N, ε, N̄).
Then U lies outside C(N ′, ε′) and inside C(N̄ , ε), in a contradiction to Lemma 6.1.
Now let U be a terminal unit, and N ′ = πS(U) ⊆ HS(B) be its projection. We
consider the link (N ′, ε1, . . . , N) of N ′ and ε in HS . By Theorem 6.5(ii), U lies
inside C(N ′, ε1), which, by Lemma 6.1, contradicts to the fact that U lies outside
C(N, ε).

It follows readily from Theorem 6.7 that the projections of distinct terminal units
are distinct. (It suffices to take for B the bunch of an arbitrary cut separating one
of these units from the other.) Hence, πS provides an injection of the set of terminal
units into the set of nodes of HS .

Theorem 6.7 provides another point of view on the construction of Theorem 6.4.

Corollary 6.8. A unit UN is the union of all units U of FS such that πS(U) ⊆
TN . A unit U of FS does not fall inside any unit UN , N ∈ L(S1, S2), if and only if
πS(U)∩L(S1, S2) �= ∅. A unit UN is reachable from U in WS1,S2

if and only if N is
not inner for πS(U) ∩ L(S1, S2).

The following statement reveals an intimate relation between the projection of a
stretched unit and its reachability cones. Let U be a stretched unit, R1 and R2 be
the reachability cones of U , N1 and N2 be the sets of nodes that are the projections of
the terminals belonging to R1 and R2, respectively, and T1 and T2 be the minimum
subtrees of HS containing N1 and N2, respectively. Observe that each reachability
cone of U contains at least one terminal, and hence both T1 and T2 are nonempty.

Theorem 6.9. The projection of U coincides with the link of T1 and T2.

Proof. Let ε be an arbitrary structural edge in the projection πS(U) and B be one
of the two opposite bunches represented by ε. It is easy to see that all the terminals
that belong to R1 lie inside the tight cut of B, while those in R2 lie outside the loose
cut of B, up to flipping of B. Hence, by Theorem 6.7, T1 ⊆ HS(B) and T2 ⊆ H̄S(B). It
follows immediately that the trees T1 and T2 are disjoint, and that πS(U) ⊆ L(T1, T2).

Assume now that πS(U) �= L(T1, T2); then there exists a subpath P = (N ′, ε′, N,
ε′′, N ′′) of the link such that ε′ belongs to πS(U), while ε′′ does not. By Corollary 6.8,
UN is reachable from U in W(P ). Hence, by the remark after Theorem 6.4, there
exists a coherent path in FS that leads from U to the intersection of the inner sides of
C(N, ε′) and C(N, ε′′). Let us extend this path to a terminal U∗ of FS (see Figure 6.3).

If the extended path leaves the inner side of the N -tight cut in direction ε for
some ε �= ε′, ε′′, then it cannot return back, and, by Theorem 6.7, the projection of
U∗ lies in the subtree of HS that is separated from N by ε. However, this projection
belongs either to T1 or to T2, and hence one of the edges ε

′ and ε′′ does not belong
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Fig. 6.3. To the proof of Theorem 6.9.

to L(T1, T2), a contradiction.
Otherwise, U∗ lies inside all the N -tight cuts, and thus, by Theorem 6.5, it is

projected to N , which gives the same contradiction as above.
By Theorem 6.9, each of T1 and T2 contains exactly one coordinate of U . There-

fore, we can label the reachability cones of any stretched unit (and thus the parts of
the inherent partition) by its coordinates; the reachability cone of U that contains the
terminals whose projections coincide with or lie “behind” the coordinate N is denoted
by RN (U). Moreover, we can now redenote the trees Ti: the tree that contains N is
denoted by TN (U).

6.4. The cell structure. For any path in the skeleton with endpoints M and
N we define the cell QMN as the set of units with the coordinates M,N (compare
with definitions preceding the 3-Star Lemma and Lemma 4.10); by definition, the cell
QNM coincides with QMN . A cell of type QMM is called terminal ; it is either empty
or consists of exactly one terminal unit (with projection M).

Let us introduce a visibility relation, which is, in a sense, a relaxation of the
reachability relation studied in section 3. We say that a cell QM2N2 is visible from
a nonterminal cell QM1N1 in direction N1 if both P1 = [M1, N1] and P2 = [M2, N2]
are subpaths of the same path P , so that P = [M1, N2] or P = [M1,M2]. We
denote this path P by [P1, P2] (which is consistent with the previous use of notation
[·, ·]). It is easy to see that if QM2N2 is visible from QM1N1 in both directions, then
QM2N2 = QM1N1 . The following statement, which is a generalization of Lemma 4.11,
shows that the visibility relation is indeed a relaxation of the reachability relation.

Theorem 6.10. Let U1 be a stretched unit with coordinates M1 and N1, U2 ∈
RN1(U1), and let Q1 and Q2 be the cells containing U1 and U2, respectively. Then
Q2 is visible from Q1 in direction N1.

Proof. If U2 is a terminal, then the assertion follows immediately from Theo-
rem 6.9. Now let U2 be a stretched unit with coordinates M2 and N2, and let w.l.o.g.
U1 ∈ RM2

(U2). Since RN2
(U2) ⊆ RN1

(U1), we get TN2
(U2) ⊆ TN1

(U1); hence the
path [N1, N2] lies entirely in TN1(U1), and, by Theorem 6.9, intersects with [M1, N1]
exactly by N1. Therefore, N1 lies on [M1, N2]. Since U2 is stretched, we can prove in
a similar way that M2 lies on [M1, N2], as required.

By Theorem 6.10, when we consider several units lying on the same coherent
path, we may assume that their coordinates are named consistently. In other words,
if πS(U1) = [M1, N1], πS(U2) = [M2, N2], and U2 ∈ RN1(U1), then we assume that
U1 belongs to RM2

(U2), and hence [πS(U1), πS(U2)] = [M1, N2].
The following statement can be considered as the main relation between coherent
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paths in the flesh and the skeleton.

Corollary 6.11. Let U lie on a coherent path P from U1 to U2; then M ∈
[M1,M2] and N ∈ [N1, N2].

Remark. It follows immediately from Corollary 6.11 that when one builds the
stripW([M1, N2]) (as described in Theorem 6.4), no intermediate unit of P is subject
to contraction.

We now can extend the definition of the projection to the edges of FS , similar to
what was done in section 4.5. Let e = (U1, U2) be an edge of FS and assume that
U1 ∈ QM1N1 , U2 ∈ QM2N2 . We then say that the projection of e equals [M1, N2]; in
other words, we define πS(U1, U2) = [πS(U1), πS(U2)]. As in section 4.5, this definition
can be justified by inserting a dummy vertex in the edge e; it is easy to see that the
projection of the unit that contains such a vertex is exactly [M1, N2]. As before, there
are three types of edges belonging to a cell QMN : internal (both endpoints belong to
QMN ), external (exactly one endpoint belongs to QMN ), and through (both endpoints
do not belong to QMN ).

For any proper path [M,N ], M �= N , we build from FS a locally orientable graph
WMN with the set of nonterminals QMN (which may be as well empty). We delete
all the cells nonvisible from QMN (observe that by Theorem 6.10 there are no edges
between QMN and the deleted sets) and contract all the cells visible from QMN only
in direction M and those visible only in direction N into two terminals M̃ and Ñ ,
respectively. Finally, we delete all the edges between M̃ and Ñ that do not belong to
QMN . An S-mincut C of G that separates the preimages of the terminals, and thus
generates an (M̃, Ñ)-mincut C̃ in WMN , is called an extension of C̃ (compare with
definitions preceding Lemmas 4.2 and 4.8). The following result is a generalization of
Lemmas 4.2, 4.8, and 4.12.

Theorem 6.12. (i) The graph WMN is a strip; moreover, if [M,N ] contains at
least two structural edges, then its width λMN does not exceed λS/2.

(ii) All its transversal cuts, and only they, are extendable to S-mincuts. Such an
extension can be found in any bunch corresponding to an edge in [M,N ] and in no
other bunch.

(iii) Let {QMiNi} be a set of pairwise nonvisible cells such that all the paths
[Mi, Ni] contain at least one common edge. Then any set of transversal cuts ofWMiNi

has a mutual extension to an S-mincut. Moreover, if all the paths [Mi, Ni] contain at
least two common edges, then

∑
i λ

MiNi � λS/2.

(iv) If a 2-partition of V \ ⋃iQMiNi enters a mutual extension of some sample
of transversal cuts, one from each of WMiNi , then it enters some mutual extension of
any such sample. (Informally , samples of transversal cuts of these strips are inter-
changeable in S-mincuts.)

Proof. We start from the following general observation. Let ε′ = (M ′, N ′) be
an arbitrary structural edge of [M,N ]. (We assume that [M,M ′] and [N,N ′] do not
intersect.) Let us consider the strip W(ε′). Its terminals correspond naturally to M ′

and N ′. Evidently, any unit of QMN remains stretched in W(ε′); its cones and the
sides of its star are labeled by M ′ and N ′. Let RM ′ denote the union over U ∈ QMN

of the cones RM ′(U) in W(ε′); RN ′ is defined similarly.

Let us delete R̄M ′ ∩ R̄N ′ and contract R̄M ′ ∩RN ′ and RM ′ ∩ R̄N ′ into two new
terminals M̃ ′ and Ñ ′, respectively. It is easy to see that each direct edge between
M̃ ′ and Ñ ′ corresponds to a through edge in QMN ; the converse is not true, since
the endpoints of a through edge do not necessarily belong to RM ′ or RN ′ . Thus, the
number of direct edges between M̃ ′ and Ñ ′ does not exceed the number of through
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Fig. 6.4. To the proof of inequality λMN < λS/2.

edges in QMN . If it is strictly less, we add complementary direct edges in order
to equalize these quantities. Let us denote the obtained locally orientable graph by
W̃MN . We claim that W̃MN coincides with WMN .

First of all, QMN = RM ′ ∩ RN ′ . Indeed, the inclusion QMN ⊆ RM ′ ∩ RN ′ is
trivial. On the other hand, if U ∈ RM ′ ∩ RN ′ , then there exist U ′, U ′′ ∈ QMN such
that U lies on a coherent path from U ′ to U ′′. Hence, by Corollary 6.11, πS(U) =
[M,N ] and so U ∈ QMN .

Let us consider an arbitrary edge e = (U,U∗) such that U ∈ QMN and U∗ /∈ QMN .
While constructing W̃MN and WMN , this edge is not deleted (by Lemma 2.1 and
Theorem 6.10, respectively) and goes from U to a terminal. In W̃MN this terminal
corresponds to the label of the side at U in FS that contains e. By Theorems 6.7
and 6.10, the same holds true forWMN . Therefore, the stars of the corresponding ter-
minals in W̃MN andWMN coincide, and thus these locally orientable graphs coincide
as well.

(i) By the construction of W̃MN , it is a balanced acyclic two-terminal locally
orientable graph; hence, by part (i) of the Strip Lemma, it is a strip.

Let [M,N ] contain at least two structural edges, and let N1, N2, N3 be any
three consequent nodes in [M,N ]. We consider the strip W([N1, N3]) and define the
cones RN1 and RN3 in it and the strip W̃MN ≡ WMN in the same way as above. By
Theorem 6.10 and the construction of W([N1, N3]) in Theorem 6.4, the contracted
unit UN2 belongs to R̄N1 ∩ R̄N3 . Since C1 = (RN1 , R̄N1) and C3 = (RN3 , R̄N3) are
S-mincuts, there are no edges between RN1 ∩RN3 and R̄N1 ∩ R̄N3 (by Lemma 2.1).
Next, since C1 ∩ C̄3 is an S-mincut, one has c(RN1 ∩ R̄N3 , R̄N1 ∩ R̄N3) = λS −
λMN ; similarly, c(R̄N1 ∩ RN3 , R̄N1 ∩ R̄N3) = λS − λMN (see Figure 6.4). Hence,
c(R̄N1 ∩ R̄N3 ,RN1 ∪ RN3) = 2(λS − λMN ). However, since UN2 ∩ S �= ∅, one has
c(R̄N1 ∩ R̄N3 ,RN1 ∪RN3) � λS . Thus λ

MN < λS/2, as required.

(ii) Existence of an extension for any (M ′, N ′) ∈ [M,N ] is proved in the same
way as it was done in Lemma 4.12(ii), with the set Xa replaced by RM ′ ∩ R̄N ′ and
X̄c by RN ′ ∩ R̄M ′ .

Any extension of a transversal cut of WMN separates the preimages of M̃ from
those of Ñ and hence the set of terminals “behind” M from the set of terminals
“behind” N . By Fact 6.3(ii) and the second remark after Theorem 6.4, the bunch of
such a cut must be defined by an edge in [M,N ].

(iii) Let ε′ = (M ′, N ′) be a common edge of all the [Mi, Ni]. We consider the
strip W(ε′) and build the sets Ri

M ′ and Ri
N ′ as above. Let R∗M ′ be the union of Ri

M ′

over all i, and let R∗M ′ be defined similarly. Let e = (U,U∗) be an edge such that
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U ∈ QMiNi , U∗ /∈ QMiNi , and U∗ /∈ Ri
M ′ ; then U∗ /∈ R∗M ′ . Indeed, assume to the

contrary that U∗ ∈ Rj
M ′ , j �= i; then, by Theorem 6.10, the cell QMiNi is visible from

QMjNj , a contradiction. The rest of the proof of the existence of a mutual extension
is similar to that of Lemma 4.12(iii), as above. The inequality for

∑
i λ

MiNi follows
immediately from Lemma 4.12(iii) applied to the strip W(∩i[Mi, Ni]). One should
note, however, that some nodes of (∩i[Mi, Ni]) can be empty, and hence the inequality
of type λii > λS/2 for such a node is replaced by λii � λS/2. As a consequence, we
get a nonstrict inequality for

∑
i λ

MiNi .

(iv) The proof is similar to that of Lemma 4.12(iv).

6.5. Other properties of the connectivity carcass. Assume that we are
interested in pointing out an S-mincut separating two given vertices of G that lie in
distinct units U1 and U2. The following statement is obtained easily.

Lemma 6.13. (i) Let πS(U1) and πS(U2) be distinct nodes of HS. Consider any
cut of HS separating them, and let B be any of the corresponding bunches. Then the
tight and the loose cuts of B separate U1 from U2.

(ii) Let one of the projections, say, πS(U1), contain a structural edge ε1 = (M1, N1),
and let M , N be the coordinates of U1 in the corresponding order. Then one of the
sets RM (U1) ∪ V C(M1,ε1) and RN (U1) ∪ V C(N1,ε1) defines an S-mincut separating U1

from U2.

Proof. (i) The proof follows from Fact 6.3(ii).

(ii) It is clear from the structure ofWε1 that both sets mentioned define S-mincuts;
on the other hand, their intersection is exactly U1 �= U2, and the result follows.

Consider now a pair s, t of non-(λS+1)-connected vertices in S. Let us decompose
the connectivity carcass with respect to this pair.

Let Ui = UNi , 0 � i � k, be the heavy units of Ws,t, s ∈ U0, t ∈ Uk (see
Theorem 6.4 for details); it is easy to prove that Ui are numbered according to any
topological order of Ws,t. For any i as above we put Σi = S ∩ Ui (which coincides
with ΣNi defined in the proof of Theorem 6.4) and contract the set S in two different
ways: Si is obtained by contraction of S \Σi into a single vertex si, and S̃ is obtained
by contraction of each of Σi into a single vertex s̃i. The graphs G

i and G̃ are defined
similarly as the results of the above two contractions applied to G. Note that the
connectivity of S̃ in G̃ is exactly λS , while the connectivity of S

i in Gi can be greater
than λS .

It can be shown easily that the connectivity carcass of S̃ in G̃ has the same type
as one considered in section 4.5. Its skeleton is the path [N0, Nk] and its flesh is
obtained from Ws,t by turning the heavy units Ui, 0 � i � k, into terminals.

Let I denote the set of indices such that λSi(Gi) = λS .

Lemma 6.14. (i) The skeleton HS is obtained from the path [N0, Nk] = HS̃(G̃)
and the skeletons HSi(Gi), i ∈ I, by identifying Ni with the node N i = ϕSi(si) of
HSi(Gi).

(ii) The units of the flesh FS are

• the units of FSi(Gi), i ∈ I, except for the unit U i containing si;

• the nonheavy units of Ws,t;

• the terminal units U (i) = U i ∩VC(Ni,(Ni,Ni−1)) ∩VC(Ni,(Ni,Ni+1)) �= ∅, i ∈ I, and

U (i) = VC(Ni,(Ni,Ni−1)) ∩ VC(Ni,(Ni,Ni+1)) �= ∅, i /∈ I (for i = 0 and i = k only one

of the above two cuts is taken), if nonempty.

Moreover, if a unit other than U (i) participates in a more than one flesh as above,
then it participates in FS̃(G̃) and at most two of FSi(Gi).
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(iii) The projection of any unit other than U (i) is the concatenation of its projec-
tions in the connectivity carcasses that contain it.

Proof. Observe that each S-mincut ofG either partitions one of Σi, i ∈ I, and does
not partition its complement in S or separates some of Σi from the others according
to the skeleton HS . More exactly, each bunch of S-mincuts of G coincides either with
a bunch of S̃-mincuts of G̃ or with a bunch of Si-mincuts of Gi for some i ∈ I. This
implies assertion (i).

Let U be a terminal unit of FS corresponding to a node N of HS . Recall that U
is the intersection of all N -tight cuts. If N belongs to the subtree Hi of HS hanging
on the path [N0, Nk] at Ni and N �= Ni, then these cuts are the N -tight cuts of
the connectivity carcass of Si in Gi. Therefore, U is a terminal unit of this partial
connectivity carcass. If N = Ni, i ∈ I, then all the N -tight cuts are of the same
type, except for one or two cuts corresponding to the edges of [N0, Nk] incident to
Ni. Clearly, Ui is a unit of FS for any i /∈ I. Thus we get assertion (ii) for terminals.

Let U be a stretched unit. It is distinguished by all bunches that correspond to
the edges of its projection. The projection is contained either in one of Hi, or in
Hi ∪ [N0, Nk] for some i, or in Hi ∪ [Ni, Nj ] ∪ Hj . The rest of assertion (ii) follows,
as well as assertion (iii).

7. Incremental transformations of the connectivity carcass.

7.1. Transformations of the components of the connectivity carcass.
In this section we describe the transformations of all the three components of the
connectivity carcass caused by insertion of a new edge (u1, u2) that preserves the value
of λS . In what follows Ui stands for the unit containing ui, Qi for the cell containing
Ui, and Pi for the projection πS(Ui), i = 1, 2. If U1 = U2, then the carcass does not
change. So in what follows we assume that U1 �= U2. If P1 and P2 are edge-disjoint, we
denote by L1 and L2, respectively, the endpoints of the link L = L(P1, P2). Otherwise,
we set L = ∅ and denote by [M,N ] the intersection of the projections; furthermore, in
this case we assume w.l.o.g. that if P1 = [M1, N1] and P2 = [M2, N2], then the paths
[M1,M2] and [N1, N2] do not intersect and M ∈ [M1,M2], N ∈ [N1, N2]. In both
cases we denote by T the minimal subtree of HS containing both P1 and P2. Recall
that we put a hat over any notation (e.g., ĤS or F̂S) to denote the corresponding
object after edge insertion.

The main concern of this section is to distinguish, in terms of the connectivity
carcass, the S-mincuts that do not separate U1 from U2, since these are exactly the
S-mincuts that are preserved under the insertion.

The transformations of the skeleton under edge insertion are as follows.

Theorem 7.1. If L contains at least one structural edge, then all the nodes
and structural edges of L are contracted to a single new node; otherwise the skeleton
remains the same.

Proof. Let ĤS be obtained from HS by contraction of L into a new node N (or

ĤS = HS if L does not contain any edges). We define ϕ̂S as follows: ϕ̂S = ϕS if
ϕS /∈ L, and ϕ̂S = N otherwise.

Let ε be an arbitrary structural edge in HS .

If ε /∈ T , then, by Theorem 6.7, both U1 and U2 lie in the same terminal of the
strip W(ε). Hence, in this case the new edge does not affect any cut of this strip.

If ε ∈ T , but ε /∈ L, then at least one of the units U1 and U2 is a stretched unit
in W(ε). Hence, in this case at least one tight cut of W(ε) is not affected by the new
edge, and thus the corresponding 2-partition of S is still an S-mincut.
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Finally, if ε ∈ L, then, by Theorem 6.7, U1 and U2 lie in distinct terminals ofW(ε).
Hence, in this case no cuts represented by W(ε) survive, and thus the corresponding
2-partition of S ceases to be an S-mincut.

Thus, by Theorem 5.6, ĤS is indeed the skeleton of the graph G∪ (u1, u2).

The transformations of the flesh under edge insertion are as follows.

Theorem 7.2. The new flesh is obtained by contraction of a certain subset of
units of FS into a single new unit Unew. This subset contains

(i) U1 and U2;

(ii) all the units lying on coherent paths between U1 and U2;

(iii) all the units U such that πS(U) ⊆ L;
(iv) in the case when an endpoint K of Pi is the unique common point of Pi and

Pj∪L, i, j ∈ {1, 2}, i �= j, all the units U such that U ∈ RK(Ui) and πS(U) ⊆ Pi∪L.
Proof. First, let us prove the following statement concerning the initial graph G.

Claim A. If a unit U satisfies at least one of the conditions of Theorem 7.2, then
any S-mincut that separates U1 from U separates also U1 from U2.

Indeed, if U = U2, then the claim is trivial.

Let U belong to a coherent path between U1 and U2. Let C be an S-mincut that
separates U1 from U but fails to separate U1 from U2; then we get a coherent path
with both endpoints on one side of C and an intermediate unit U on the other side, a
contradiction.

Let πS(U) ⊆ L, and let C be an S-mincut separating U1 from U . By Theorem 6.7,
the structural edge ε representing C in HS lies either in L or in P1. If ε ∈ L, then
U1 and U2 are separated by any cut represented by ε (see the proof of Theorem 7.1).
If ε ∈ P1, then U1 is a stretched unit of W(ε), while both U and U2 lie in the same
terminal of W(ε), and the claim follows.

Assume now that an endpoint K of P1 is the unique common point of P1 and
P2 ∪ L, and besides, U ∈ RK(U1) and πS(U) ⊆ P1 ∪ L. Let C and ε be as in the
previous case; then, by Theorem 6.7, ε belongs to P1 ∪ L. If ε ∈ L, we proceed as
above. If ε ∈ P1∩πS(U), then both U1 and U are stretched units ofW(ε). Moreover,
U2 lies in one of the terminals of W(ε), and, by Theorem 6.10, U lies in the cone of
U1 containing this terminal. Thus, C separates U1 from U2. If ε lies in P1, but not in
πS(U), then, by Theorem 6.10, both U and U2 lie in the same terminal of W(ε), and
again C separates U1 from U2.

Finally, if an endpoint K of P2 is the unique common point of P2 and P1∪L, and
besides, U ∈ RK(U2) and πS(U) ⊆ P2 ∪L, one has to interchange the roles of U1 and
U2 in the above reasoning.

Therefore, Claim A is proved, and as an immediate corollary we get that all the
units listed in Theorem 7.2 are indeed contracted into a single new unit.

Let us now prove another statement concerning the initial graph G.

Claim B. If a unit U violates all the conditions of Theorem 7.2 and U ′ �= U is
an arbitrary unit, then there exists an S-mincut that separates U from U ′ and does
not separate U1 from U2.

Indeed, let P = πS(U), let Q be the cell containing U , and assume first that U is
a stretched unit.

Suppose that there exists a structural edge ε ∈ P that does not belong to T .
Then U is a stretched unit in W(ε), while both U1 and U2 lie in the same terminal of
W(ε) (by Theorem 6.7). Therefore, any S-mincut that separates U from U ′ in W(ε)
satisfies the assertion of the claim.
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From now on we may assume that P lies entirely in T . By the assumptions of the
Theorem, P does not lie entirely in L; hence, there exists an edge ε ∈ P that belongs
(w.l.o.g.) to P1. If ε belongs also to P2, then all the three units U , U1, and U2 are
stretched inW(ε). If U1 and U2 lie in the opposite cones of U inW(ε), then U lies on
a coherent path from U1 to U2, which is prohibited by the assumptions of the claim.
So, there exists a cone R of U inW(ε) that contains neither U1 nor U2. If R does not
contain U ′ as well, then the cut of W(ε) defined by R satisfies the assertion of the
claim. Otherwise, we use instead of R the cone R′ of U ′ in W(ε) that is contained in
R.

If ε /∈ P2, then in W(ε) both U and U1 are stretched, while U2 lies in a terminal.
Let R be the cone of U in W(ε) that contains the other terminal. If U1 does not
belong to R, then the cut of W(ε) defined by R (or by R′, as above, if U ′ ∈ R)
satisfies the assertion of the claim.

Now let U1 ∈ R; this means, in particular, that U belongs to some cone of U1

in W(ε), and thus in FS , say, U ∈ RK(U1). By Theorem 6.10, this means that Q is
visible from Q1 in direction K. Therefore, if ε1 is the edge of P1 incident to K, then
ε1 ∈ P . If ε1 ∈ P2, we proceed in the same way as above; so, we may assume that
ε1 /∈ P2. Let us consider the strip W(ε1). Both U and U1 are stretched in W(ε1);
moreover, U lies in a cone R1 of U1, while U2 lies in a terminal. If this terminal
does not belong to R1, we consider the cone R of U that lies inside R1. It is easy to
see that the cut of W(ε1) defined by R (or by R′, as above, if U ′ ∈ R) satisfies the
assertion of the claim.

Finally, let the terminal containing U2 in W(ε) lie in R1. It follows immediately
from Theorem 6.7 that in this case K is the unique common point of P1 and P2 ∪ L.
By the assumptions of the claim, P does not lie entirely in P1 ∪L; hence, there exists
an edge ε2 of P such that ε2 ∈ P2. Evidently, in W(ε2) both U and U2 are stretched,
while U1 lies in a terminal. Let U lie outside the cone of U2 in W(ε2) that contains
this terminal, and let R be the cone of U in W(ε2) that contains the other terminal;
then the cut of W(ε2) defined by R (or by R′, as above, if U ′ ∈ R) satisfies the
assertion of the claim. Otherwise, we use the same reasoning as above to see that one
of the endpoints of P2 is the unique common point of P2 and P1 ∪ L, and hence T is
just a path. Therefore, Q1 and Q2 are visible from Q in opposite directions. Thus,
the coherent path from U1 to U in W(ε1) can be concatenated with a coherent path
from U to U2 in W(ε2), and we get that U lies on a coherent path from U1 to U2, in
a contradiction with the assumptions of the claim.

Assume now that U is a terminal unit, and let P ′ = πS(U
′). Observe that P from

now on is a node of HS .

If P ∩ P ′ = ∅, then, by the assumptions of the claim, there exists a structural
edge ε that belongs to the link of P and P ′ and does not lie in L. Evidently, the
units U and U ′ lie in the opposite terminals of the strip W(ε). On the other hand,
the units U1 and U2 cannot lie in the opposite terminals in such a strip. Therefore,
one of the tight cuts in direction ε satisfies the assertion of the claim.

Now let U ′ = U1 and P be a node of P1. If P is not an endpoint of P1, then at
least one of the two P -tight cuts in directions of the edges of P1 incident to P does
not contain U2 (otherwise P would belong to L). If P is an endpoint of P1, then the
P -tight cut in direction of the edge of P1 incident to P does not contain U2 (for the
same reason as above).

This completes the proof of Claim B, since if U ′ is stretched and satisfies the
assumptions of the claim, then we can use the same reasoning as above interchanging
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the roles of U and U ′, whereas if U ′ violates the assumptions of the claim, then any
cut that separates U from U1 separates also U from U ′, by Claim A.

As an immediate corollary of Claim B we get that all the units not listed in
Theorem 7.2 remain uncontracted, and thus the Theorem is proved.

The transformations of the projections under edge insertion are as follows.

Theorem 7.3. (i) The projection of Unew is either the new node obtained by the
contraction of L (if L contains at least one structural edge), or P1 ∩ P2 otherwise.

(ii) The intersection with L is deleted from the projection of any noncontracted
unit.

(iii) For each unit U ∈ RN1(U1), the common part of πS(U) and the path between
M1 and M (or L1) is deleted from πS(U). Similar transformations are applied to
RM1(U1), RN2(U2), RM2(U2).

Proof. Assume first that U is an arbitrary stretched unit of the initial graph, and
let ε be an arbitrary structural edge of πS(U).

If ε /∈ T , then both U1 and U2 lie in the same terminal ofW(ε), and thus the new
edge does not affect any cut of W(ε). Hence, ε is preserved in the new projection of
U .

If ε ∈ L, then U1 and U2 lie in the opposite terminals of W(ε), and thus all the
cuts of W(ε) do not survive. Hence, ε is deleted from the new projection of U .

If ε ∈ P1 ∩P2, then both U1 and U2 are stretched units of W(ε). Therefore, both
tight cuts ofW(ε) remain unaffected by the new edge, and hence ε is preserved in the
new projection of U .

The only remaining case is when ε belongs to exactly one of the P1 and P2; assume
w.l.o.g. that ε ∈ [M1,K], where K =M if P1∩P2 �= ∅, and K = L1 otherwise. Then
U1 is a stretched unit of W(ε), while U2 lies in the terminal of W(ε) that belongs to
RN1(U1) (or, more exactly, to the cone of U1 inW(ε) that lies inRN1(U1)). Therefore,
if U /∈ RN1

(U1), then ε is preserved in the new projection of U , while otherwise it is
deleted from the new projection.

Assume now that U is a terminal of FS ; evidently, the new edge cannot convert it
to a stretched unit, and thus all we have to do is to establish that the new projection
of U cannot shift.

By Theorem 6.5(ii), U lies in the intersection of all the K-tight cuts, where
K = πS(U). It follows easily from Theorem 7.1 that if ε is incident to K and ε /∈ L,
then the new K-tight cut in direction ε dominates the old one. Therefore, if K /∈ L,
or K = L, then K remains to be the projection of U in the new skeleton.

Finally, let K ∈ L and K �= L; we denote by εi and ε′i the edges of the path
[K,Li] incident to K and Li, respectively (i = 1, 2). By Lemma 6.1, any Li-tight cut,
except for the Li-tight cut in direction ε

′
i, dominates the K-tight cut in direction εi.

By Theorem 7.1, all the edges incident to Li except for ε
′
i are preserved in the new

skeleton, and are incident to its new node. Evidently, the tight cut of the new node
in any of these directions dominates the Li-tight cut in the same direction. Thus, the
Unew lies in the intersection of all the tight cuts of the new node.

Remark. It follows from Theorems 7.2 and 7.3 that if a unit must be contracted,
then its new projection obtained formally via Theorem 7.3 coincides with that of
Unew.

Finally, let us describe the transformation of the inherent 2-partition under edge
insertion.

Theorem 7.4. (i) The inherent 2-partitions at noncontracted units remain the
same.
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(ii) If P1∩P2 does not contain any edges, then the inherent 2-partition at Unew is
trivial. Otherwise, the inherent 2-partition for Unew is glued from those for contracted
units. Namely, the part of the star of U1 labeled by N1 (resp., M1) is glued with that
for U2 labeled by N2 (resp., M2). For other units, two parts are glued together if the
corresponding reachability cones contain the same unit out of U1 and U2.

Proof. (i) Follows immediately from Theorem 7.3, since the 2-partition at a unit
U of the flesh is either trivial or inherited from the 2-partition at the same unit of
any strip Ŵ(ε), ε ∈ πS(U).

(ii) The first part follows immediately from Theorem 7.3.
Let P1∩P2 now contain at least one edge ε. By Lemma 5.3, it is enough to prove

the statement for the 2-partition at U in the strip Ŵ(ε). It follows from Theorems 7.1–

7.3 that to get Ŵ(ε) fromW(ε) one has just to insert the edge (U1, U2) intoW(ε) and
to transform it accordingly. This transformation was already considered in section 4.2,
so the statement follows.

7.2. Local reachability cones. The transformations of the connectivity carcass
described in Theorems 7.2 and 7.3 are formulated in terms of reachability cones.
Therefore, to maintain the carcass, we need to maintain the cones as well. However,
reachability cones in an acyclic locally orientable graph behave in a more complicated
way than those in a dag. In particular, insertion of an edge may cause a reduction of
a reachability cone. Indeed, if a stretched unit belonging to a cone is contracted into a
terminal (see Theorem 7.2), then any coherent path passing through this unit cannot
be traced behind it in the modified flesh. To avoid these difficulties, we introduce
a simpler structure, called a local reachability cone, which preserves all the useful
properties of reachability cones but is easier to handle.

LetR be a reachability cone of an arbitrary unit U . We define the local reachability
cone Rloc as the set of units U ′ ∈ R such that πS(U) ∩ πS(U

′) contains at least one
edge. (In particular, the local cone of a terminal is empty.) One can check easily that
local reachability cones of U are obtained from the corresponding reachability cones of
U in the strip W(πS(U)) by deleting the terminals. Observe that reachability cones
in the assumptions of Theorems 7.2 and 7.3 can be replaced by the corresponding
local reachability cones.

Indeed, for any unit U whose projection is changed according to Theorem 7.3(iii),
the intersection πS(U)∩P1 contains at least one edge, and hence such a unit belongs
to Rloc

N1
(U1) (or, similarly, to Rloc

M1
(U1), Rloc

N2
(U2), or Rloc

M2
(U2)).

The units U distinguished by condition (iv) of Theorem 7.2 satisfy U ∈ RK(Ui)
and πS(U) ⊆ Pi ∪ L. However, if πS(U) ∩ Pi does not contain any edges, the latter
inclusion implies πS(U) ⊆ L, and hence U is already distinguished by condition (iii).
Otherwise πS(U) ∩ Pi contains at least one edge, and this together with the former
inclusion implies U ∈ Rloc

K (Ui).
Finally, let us consider the units distinguished by condition (ii) of Theorem 7.2.

Evidently, these units form the intersection of the two reachability cones R(U1) and
R(U2). (For the sake of simplicity, we do not specify the labels of the cones.) Let us
prove that it suffices to consider only the units lying in the intersection Rloc(U1) ∩
Rloc(U2). Indeed, if R(U1) ∩ R(U2) = ∅, then Rloc(U1) ∩ Rloc(U2) = ∅, and the
assertion is trivial. Otherwise, by Theorem 6.10, the minimum tree containing P1 and
P2 is a path, and the projection of any unit U ∈ R(U1)∩R(U2) belongs to this path.
If πS(U) intersects both P1 and P2 at least by an edge, then U ∈ Rloc(U1)∩Rloc(U2).
If πS(U) intersects both P1 and P2 at most by a node, then πS(U) ⊆ L, and U is
distinguished by condition (iii) of Theorem 7.2. Finally, if πS(U) intersects at least
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by an edge exactly one of P1 and P2, then the assumptions of Theorem 7.2(iv) are
satisfied, and U is distinguished by condition (iv).

8. Construction and incremental maintenance of the connectivity car-
cass.

8.1. Construction of the connectivity carcass. We build the connectivity
carcass by a recursive algorithm based straightforwardly on Lemma 6.14; in what
follows we use the notation of this lemma.

First of all, we choose an arbitrary vertex s ∈ S and find maximal flows from s
to all the other vertices t ∈ S; this allows us to define λS as the minimal value of
these flows. All the vertices t ∈ S such that the value of a maximal flow from s to t
exceeds λS are contracted together with s; in what follows s denotes this new vertex.
We then choose an arbitrary one of the remaining vertices of S (denoted by t) and
execute the following procedure.

We build the strip F = Ws,t, as explained in section 3.3. To build the skeleton

H = HS̃(G̃) we find a topological order of the units in F . Let U0  s, U1, . . . , Uk  t
be the heavy units in this order; we define H as a k-edge path (N0, N1, . . . , Nk), k � 1.

To find the corresponding projections π = πS̃ , we execute DFS in F in direction
Uk first from Uk−1, then from Uk−2, and so on up to U0. In any such execution we
assign Ni as a coordinate to the units found from Ui and backtrack each time when
we discover a unit already visited in the previous search. To get the other coordinate
we repeat the same process in direction U0 first from U1, then from U2, and so on up
to Uk.

Next, for each i, 0 � i � k, we turn the unit Ui into a terminal. If Ui contains
vertices of S distinct from s and t, we do the following. We build the set S′ by taking
all the vertices of S that do not belong to Ui, together with s and t, if they are not yet
included in S′. We contract all the vertices of S′ into a new vertex si, thus obtaining
the new graph Gi and the new set Si in it. We then scan the vertices t′ in Si \ si
and find a maximum flow from si to t′. If its value exceeds λS , then we just contract
t′ to si. Otherwise, we stop scanning and build the connectivity carcass (Hi,F i, πi)
of Si in Gi by a recursive execution of the same procedure, with s = si, t = t′. This
carcass is then merged with the current triple (H,F , π), as follows.

The skeleton H is merged with Hi by identifying the node Ni ∈ H with the node
πi(si) ∈ Hi.

The new terminal unit corresponding to Ni is built according to Lemma 6.14; it
participates in FS if the result is a nonempty set.

To merge the partitions of V into units of F and F i we assume that each vertex
v ∈ V knows its units U(v) and U i(v), and each unit knows its cardinality. Now,
for each v ∈ V we check the units U(v) and U i(v). If their cardinalities are equal,
we concatenate their projections into the new projection of U(v) and cancel U i(v).
Otherwise, we set the new U(v) to be the smallest of the two units involved, preserve
its projection, and cancel the other unit.

Notice that the sets Si \ si, 0 � i � k, do not intersect since they belong to the
disjoint vertex sets Ui, respectively.

The above-described algorithm implies the following result (the proof is omitted).

Theorem 8.1. The connectivity carcass of an arbitrary vertex subset S can be
constructed in time dominated by the complexity of 2σ − 2 max-flow computations in
G.
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8.2. Incremental maintenance of the connectivity carcass. Let n be the
number of vertices in the initial graph G, σ̃ � σ be the number of (λS+1)-connectivity
classes in S, ñ � n be the initial number of flesh units, m̃ � m, m̃ = O(λSñ), be the
initial number of flesh edges.

We maintain the connectivity carcass under an arbitrary sequence of updates
(edge insertions) not changing the connectivity of S and queries “Are vertices v, w ∈ G
separated by an S-mincut?” denoted by Sep(v, w), “Show an S-mincut separating
v, w ∈ G,” denoted by Cut(v, w), and “Construct the strip WS1,S2 for S1, S2 ⊂ S,”
denoted by Strip(S1, S2).

In order to maintain the connectivity carcass efficiently, we propose to keep track
of the projections represented by the coordinates and of certain parts of reachability
cones specified below. It follows from the discussion in section 7.2 that instead of a
reachability cone R it suffices to maintain any partial subcone of R that contains the
corresponding local reachability cone Rloc; we will maintain and use a certain subcone
of this type named Rpart. By Lemma 3.4, any reachability cone R of an arbitrary
unit W , and hence Rpart, is globally orientable. Since it is acyclic, it can be treated
in the same way as a dag. In what follows we assume thatW is the source in this dag.
Following [I], we represent Rpart by a directed spanning tree rooted at W and make
use of the following reachability vector of length ñ. Each entry of the vector takes
one of the three values to distinguish the following situations: the unit is currently
contained in Rpart; the unit was never contained in Rpart; the unit was previously
deleted from Rpart. At the initial moment we set Rpart = R; the initialization takes
O(ñm̃) time for all the cones together.

The skeleton is represented as follows. First, we fix an arbitrary node of the
skeleton and make it the root. Second, we attach to each node a single auxiliary leaf
bearing the same name. When an edge from a child to its parent is contracted, the
new node acquires the name of the parent; observe that only edges of the skeleton
are contracted. It follows easily by induction that at any moment the names of the
auxiliary leaves attached to each skeleton node are exactly the names of the original
nodes contracted into this node. The projection of any unit U is represented by the
pair of auxiliary leaves corresponding to the coordinates of U ; in fact, the actual
projection is the path between the parents of these two leaves.

To handle the obtained rooted tree we make use of the compressed tree data
structure proposed in [W92]. This data structure allows us to perform an arbitrary
sequence of w nearest common ancestor (NCA) and parent queries and edge contrac-
tions in O(w + t log2 t) time, where t is the size of the initial tree. In our case this
means that we can perform NCA and parent queries in O(1) amortized time with an
overhead of O(σ̃ log2 σ̃), since by Theorem 5.6 the size of the skeleton is O(σ̃).

The set of units is represented with the help of the standard union-find technique
(see [AHU]) that allows us to perform an arbitrary sequence of w operations in O(w+
t log t), where t is the size of the initial set. In our case this means that we can perform
find operations in O(1) worst-case time with an overhead of O(ñ log ñ). Each side of
a unit W is represented as a linked list of edges, and the whole such list is labeled by
the corresponding coordinate of W .

When a new edge is inserted, it takes O(1) worst-case time to locate the units U1

and U2 containing its endpoints. The nontrivial case, when U1 and U2 are distinct,
can occur at most ñ times (since this causes the contraction of these units). For each
nontrivial case, we do the following.

On the first stage we analyze the relative position of the projections πS(U1) and
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πS(U2). If they are edge-disjoint, we find their link and, according to Theorem 7.1,
contract the edges of the link. Otherwise, we find their intersection and establish the
correspondence between the endpoints of the intersection and the endpoints of the
projections (see the beginning of section 7.1 for details). It is easy to check that in
order to find the link or the intersection of two projections, and to establish the latter
correspondence, it suffices to apply a constant number of NCA and parent queries.
Since we spend O(1) amortized time for each of O(ñ) queries with an overhead of
O(σ̃ log2 σ̃) (covering all contractions), the total time for the first stage is O(σ̃ + ñ+
σ̃ log2 σ̃) = O(ñ+ σ̃ log2 σ̃).

On the second stage we change the projections. By Theorem 7.3(i), we assign
to Unew either the contracted node of the skeleton or the path πS(U1) ∩ πS(U2).
Evidently, the total cost of such an assignment is O(ñ). Further, since projections are
represented by coordinates, contractions in the skeleton do not imply explicit changes
in this representation. Thus, projection changes prescribed by Theorem 7.3(ii) do not
require any time.

Finally, to find units whose coordinates must be changed according to Theo-
rem 7.3(iii), we execute DFS in the spanning tree of each of the four partial cones
involved and backtrack each time when we reach a unit whose projection no more
intersects a certain path in the skeleton; see Theorem 7.3(iii) for details (e.g., for
the case of RN1(U1) this path is either [M1,M ] or [M1, L1]). The validity of such a
backtracking is justified by Theorem 6.10. It is easy to see that all the operations
performed on the second stage, other than the analysis of the relative position of two
paths in the skeleton, require O(1) amortized time per unit. The latter analysis can
be performed in O(1) amortized time per unit as well by means of NCA and parent
queries as above.

To estimate the total amount of time required by projection changes in this case,
let us assign a weight to each edge in the flesh. The weight of an edge is equal to the
sum of the lengths of the projections of its endpoints. (The length of a projection is
just the number of structural edges in it.) Observe that each time when an edge is
scanned, the projection of its tail is truncated. Hence, the length of the projection of
the tail strictly decreases, and the same occurs to the weight of the edge considered.
Since the initial weight of each edge is O(σ̃), we see that the overall number of pro-
jection changes is O(σ̃ñ), and that of edge scans is O(σ̃m̃). Thus, the total amount
of work on the second stage is O(ñ+ σ̃ñ+ σ̃m̃+ σ̃ log2 σ̃) = O(σ̃m̃).

The contractions in the flesh are performed on the third stage. Evidently, the total
cost of contractions described in Theorem 7.2(i) is O(ñ log ñ). The set of units that
must be contracted according to Theorem 7.2(ii) is the intersection of two opposite
local reachability cones (see the discussion in section 7.2); to find these units we just
scan the reachability vectors of the corresponding partial cones. Since each contraction
itself takes O(log ñ) amortized time, the total amount of time for contractions in this
case is O(ñ2 + ñ log ñ) = O(ñ2).

To find the units that must be contracted according to Theorem 7.2(iii) and (iv),
we scan all the units and check for each of them whether its new projection coincides
with this of the contracted unit (see the remark after Theorem 7.3). This takes O(1)
amortized time per unit (by using a constant number of parent queries) and thus
O(ñ) time for the whole scan. Each contraction itself takes O(log ñ) amortized time.
Since each occurrence of this case leads to a contraction in the skeleton, the total
number of such occurrences is O(σ̃). Hence, the total amount of work in this case is
O(σ̃ñ+ ñ log ñ+ σ̃ log2 σ̃) = O(σ̃ñ+ ñ log ñ).
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To find the 2-partition at the new unit, provided it is stretched, we establish the
correspondence between the labels at the sides of the stars involved and concatenate
the corresponding linked lists. This can be done in O(ñ+ σ̃ log2 σ̃) time with the same
technique as above.

On the fourth stage we change partial reachability cones. Let Rpart be a partial
cone of some unit W . As it was described above, Rpart is represented by a spanning
tree rooted at W and the three-valued reachability vector. Since the set of the con-
tracted units is already known, we scan the corresponding entries of the reachability
vector and find the list L(Rpart) of the units in Rpart that should be contracted.
Since each unit is contracted at most once, the total amount of work for these scans
is O(ñ2). If the list L(Rpart) is empty, the cone Rpart is not changed. Otherwise we
proceed as follows (see the proof of Theorem 8.2 for support).

If Unew is a terminal, we just delete all the units belonging to L(Rpart), together
with their subtrees, from the tree representing Rpart, and change the reachability
vector accordingly. Since each unit is deleted at most once from each tree, and the
total number of trees is O(ñ), the total amount of work in this case is O(ñ2).

If Unew is not a terminal, we do the following. For each unit U belonging to the
list L(Rpart) and distinct from W , we check whether its parent belongs to the list; if
it does, we contract the edge from U to its parent, and if not, we mark this edge. If
there are marked edges, we identify all their tails into a new unit W ′ and delete all
marked edges except for an arbitrary one. Finally, if exactly one of U1 and U2 (say,
U1) never belonged to Rpart, the other one (in our case, U2) belongs to Rpart, and
πS(W ) ∩ (πS(U1) ∩ πS(U2)) contains at least one edge, we add a certain subtree to
Rpart by identifying its root with W ′, if defined, or with W otherwise. To obtain this
subtree we execute DFS in the spanning tree of the corresponding partial cone of U1

and backtrack each time when we get to a unit that belongs to Rpart or was previously
deleted from Rpart. Clearly, the total amount of work in this case is proportional to
the number of edge operations, that is, contractions, marking and deletions of edges
currently in Rpart, and scans of edges currently not in Rpart. Each edge in Rpart is
contracted or marked and deleted at most once. Besides, each time when Rpart is
updated, at most one edge is marked and not deleted. Finally, each scan turns an
edge currently not in the entire cone R to an edge in R. Moreover, such an edge
never belonged to R before, and hence each edge is scanned at most once. Therefore,
the total number of edge operations is O(ñm̃).

To find whether two vertices of G are separated by an S-mincut, it suffices to
find the corresponding units (in O(1) worst-case time) and to check whether they do
not coincide. If this is the case, the partition of S corresponding to such a cut can be
obtained via Lemma 6.13 using Theorem 6.7. Finding a cut of the skeleton separating
two given nodes and finding an edge of a projection takes O(1) amortized time (with
the help of NCA queries). To find a tight cut as in Lemma 6.13(ii), we check for all
units the inclusion of Theorem 6.7 in O(1) amortized time per unit.

To obtain the stripWS1,S2
of Theorem 6.4 we execute O(|S1|+ |S2|) NCA queries

to check whether T (S1)∩T (S2) = ∅, and if this is the case, to find the link L(S1, S2).
Next, for each unit U we check whether its projection intersects the path L(S1, S2) by
an edge. If this is not the case, a few NCA queries give us the endpoint N ∈ L(S1, S2)
of the link of L(S1, S2) and πS(U). The unit U belongs to the contracted subset
corresponding to N . To obtain the orientation, it suffices to execute DFS by coherent
paths from any terminal unit of the strip.
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The complexity of the above-described algorithm is given by the following state-
ment.

Theorem 8.2. The connectivity carcass of an arbitrary vertex subset S can be
maintained in O(ñm̃+u+qsep+qcutñ+qstripm̃) time for an arbitrary sequence of u edge
insertions preserving the value of λS , qsep queries Sep(v, w), qcut queries Cut(v, w),
and qstrip queries Strip(S1, S2). Moreover, each query Sep(v, w) can be answered in
O(1) worst-case time.

Proof. It follows from the discussion above that the only thing one has to check is
that partial reachability cones are maintained properly, that is, that at any moment
they remain intermediate between local reachability cones and ordinary ones. Since
for a terminal both the local cone and its partial cone maintained by the algorithm
are trivial, we assume from now on that W is a stretched unit and remains stretched
in the modified flesh.

It is convenient to use the same notation as in section 7, that is, P1 = [M1, N1]
and P2 = [M2, N2] are the projections of U1 and U2, respectively; if U

new is stretched,
then [M,N ] is their intersection (it contains at least one edge), the paths [M1,M2]
and [N1, N2] are disjoint, and M ∈ [M1,M2], N ∈ [N1, N2]. Besides, π̂S(U) stands
for the modified projection of U , provided U exists in the modified flesh, or for the
projection of Unew otherwise. In the latter case U is one of the units constituting
Unew, and hence is implicitly contained in it as a set of vertices, which justifies our
notation. In the same sense, we say that a cone is increased upon edge insertion if
the set of vertices that constitute its units increases.

Let us prove first the following statement.

Lemma 8.3. If an edge insertion takes a unit U out of a local cone Rloc of W ,
then U will never belong to Rloc again.

Proof. We prove, moreover, that if U ∈ Rloc and U /∈ R̂loc, then already π̂S(W )
and π̂S(U) intersect at most by a node; since the projections can only shrink upon
edge insertions, this would mean that U never belongs to Rloc again. Assume to
the contrary that π̂S(W ) and π̂S(U) intersect at least by an edge. Then U /∈ R̂loc

can occur only if Unew is a terminal and each coherent path from W to U in FS
passes through at least one unit that constitutes this terminal. Let U ′ be such an
intermediate unit on a coherent path from W to U , and let π̂S(U

′) = N ′. It follows
immediately from Theorem 6.10 that π̂S(W ) and π̂S(U) belong to distinct branches

of ĤS hanging at N
′, so they intersect at most by a node, a contradiction.

Remark. Observe that the monotonicity property of Lemma 8.3 does not hold for
the cone R(W ) itself. For example, let G be a graph shown on Figure 8.1(a). Assume
that S = {x, y, z}; then FS is as shown on Figure 8.1(b), and hence U ∈ R(W ).
Upon insertion of the edge (v, y) the flesh changes as shown on Figure 8.1(c); here
U /∈ R(W ). Finally, upon subsequent insertion of the edge (y, u) the flesh changes as
shown on Figure 8.1(d), and again U ⊂ U ′′ ∈ R(W ).

It follows immediately from Lemma 8.3 that when maintaining Rpart, one does
not need to include in it anew the units that were previously deleted from it.

Observe that exactly the same reasoning proves that if Unew is a terminal, then
the whole subtree rooted at any unit in L(Rpart) does not belong to the corresponding

R̂loc. Thus, the case when the new unit is a terminal is completed.

Assume now that Unew is stretched; clearly, in this case R is not decreased. First
of all, observe that if U ′, U ′′ ∈ L(Rpart) and there exists a coherent path from W
to U ′′ passing through U ′, then all the units on this path lying between U ′ and U ′′

belong to L(Rpart) as well. Indeed, let U be such a unit, and consider an arbitrary
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Fig. 8.1. Nonmonotonicity of reachability cones.

S-mincut separating U , say, from U ′. It follows immediately from Theorem 5.5(ii)
that the same S-mincut separates also U ′ from U ′′, and hence it no more exists after
the edge insertion. Therefore, U is contracted into Unew as well. This means that the
units in L(Rpart) form a set of subtrees in the tree representing Rpart in such a way
that no root of a subtree is a descendant of another root. It follows immediately that
the contraction-marking-deletion-identifying procedure described in the algorithm is
well defined, and that the tree thus obtained represents the part of R̂part containing
all the vertices constituting Rpart, and thus Rloc. Clearly, if Rloc does not increase,
we are done.

Let us consider the case when Rloc is increased. Evidently, this happens if and
only if the new unit belongs to R̂loc and at least one of U1 and U2 (say, U1) does not
belong to Rloc. Let us prove the following statement.

Lemma 8.4. The conditions Unew ∈ R̂loc and U1 /∈ Rloc are equivalent to the
following three: U1 /∈ Rpart, U2 ∈ Rpart, and πS(W )∩ (P1 ∩ P2) contains at least one
edge.

Proof. Indeed, Unew ∈ R̂loc implies that π̂S(W ) ∩ (P1 ∩ P2) contains at least one
edge, therefore, the same is true for πS(W ) ∩ (P1 ∩ P2) (since projections can only
shrink). Next, if πS(W ) ∩ (P1 ∩ P2) contains at least one edge and U1 /∈ Rloc, then
U1 /∈ R; indeed, U1 ∈ R would imply together with U1 /∈ Rloc that πS(W ) intersects
P1 at most by a node, a contradiction. Clearly, U1 /∈ R implies U1 /∈ Rpart. The same
reasoning with U1 replaced by U2 shows that if U2 /∈ Rpart, then U2 /∈ R. Finally, to
get the condition U2 ∈ Rpart, it remains to rule out the case U1, U2 /∈ R. It follows
easily from Theorem 7.2 that the units constituting Unew are, apart from U1 and U2,
exactly those lying on coherent paths between U1 and U2. Therefore, U1, U2 /∈ R
together with Unew ∈ R̂loc would imply the existence of a unit U ∈ R lying on such
a path; hence, extending a coherent path from W to U behind U we can get either to
U1 or to U2, a contradiction.

In the other direction, U1 /∈ Rpart implies U1 /∈ Rloc and U2 ∈ Rpart implies
Unew ∈ R̂. By Theorem 7.3, any edge contained in πS(W ) ∩ (P1 ∩ P2) is contained
also in π̂S(W )∩(P1∩P2), and hence, the existence of an edge in the former intersection

together with Unew ∈ R̂ implies Unew ∈ R̂loc.

In fact, in the algorithm, instead of checking condition U1 /∈ Rpart, we check
whether U1 has never belonged to Rpart. Indeed, if U1 currently does not belong to
Rpart but has belonged to it previously, then by Lemma 8.3 we do not need to include
U1 into R̂part.
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Let us describe now the additional units acquired by R̂loc. Assume w.l.o.g. that
the cones ofW under consideration are in direction N2. (By Theorem 6.10 this makes
sense, since U2 ∈ Rpart.) Let us prove that all the additional units belong to Rloc

N1
(U1)

(see Figure 8.2). Indeed, all such units evidently belong to RN1
(U1). If U ∈ RN1

(U1)
but U /∈ Rloc

N1
(U1), then πS(U) does not have edges in common with πS(U1) and lies

behind N1 with respect to M1. However, by Theorem 7.3(iii), the part of πS(W )
lying behind N1 with respect to M1 is deleted in the modified carcass. Hence, π̂S(W )

intersects π̂S(U) at most by a node, and thus U /∈ R̂loc. The backtracking rule in the
cone Rloc

N1
(U1) is justified by Lemma 8.3.

8.3. Maintenance of the cell structure. As one can easily see from the de-
scription of the algorithm in section 8.2, the most time-consuming problem is to
maintain the flesh, namely, the distribution of the vertices of the initial graph among
units and reachability between units. Below we propose a less detailed, cell-oriented
approach. It allows us to reduce the complexity of maintenance at the expense of an
increase in the reaction time for certain separation queries: we guarantee the same
O(1) worst-case time only in the cases when at least one of the vertices in question
belongs to S. To avoid the time-consuming maintenance of reachability cones, we sug-
gest to maintain, instead of the actual flesh, a weaker contraction of the initial flesh,
called the preflesh; the actual flesh can be obtained from the preflesh by contraction
of its strongly connected components. At any moment the partition of V into units
represented by our data structure (henceforth, preunits) is, in a sense, intermediate:
it is a refinement of the true partition, while the initial partition is a refinement of
this partition. Though this approach does not guarantee the proper distribution of
vertices among units, it keeps track of the distribution of vertices of G among cells.

More exactly, upon inserting a new edge we execute all the contractions as pre-
scribed only if the resulting unit is a terminal; otherwise, we contract only the two
preunits containing the endpoints of the inserted edge, as described in Theorem 7.2(i).
Thus, the preflesh can be not acyclic but is a coherent locally orientable graph, and
the true units are just its strongly connected components. Besides, we maintain only
the 2-partitions at the preunits, but not reachability cones of any kind. The set of
the preunits, the 2-partitions at each one of them, and the skeleton are represented
in the same way as in the previous algorithm.

The preliminary stage of the new algorithm (distinguishing between trivial and
nontrivial edge insertions) almost coincides with that of the previous one and has the
same complexity O(u). The only difference is that we locate not the units, but the
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preunits Up1 and U
p
2 that contain the endpoints of the new edge.

The first stage of the new algorithm (update of the skeleton) coincides literally
with that of the previous one and has the same complexity O(ñ+ σ̃ log2 σ̃).

The only difference on the second stage (update of projections) is related to
the case of units whose coordinates must be changed according to Theorem 7.3(iii).
Instead of scanning the cones, we scan the two reachability subgraphs of Up1 and U

p
2 .

It is done by executing a DFS four times (in both directions for both preunits) with
backtracking each time when we reach a preunit whose projection no longer intersects
a certain path in the skeleton. It is easy to see that all the reasoning involving weights
of edges remains valid in this case; hence the total amount of work on the second stage
is O(σ̃m̃).

The third stage of the new algorithm (update of the preflesh) is somewhat different
from the corresponding stage of the previous one. If the new unit (and thus the new
preunit) is not a terminal, we contract only the preunits Up1 and U

p
2 . The 2-partition

at the new preunit is maintained exactly as in the previous algorithm with the help
of labels, and the total amount of time for this case is O(ñ log ñ+ σ̃ log2 σ̃).

If the new unit (and thus the new preunit) is a terminal, we just contract all
the preunits whose new projection coincides with the projection of the new terminal
(see the remark after Theorem 7.3). Thus, the total amount of time in this case is
O(σ̃ñ+ ñ log ñ+ σ̃ log2 σ̃) = O(σ̃ñ+ ñ log ñ).

To find whether two vertices of G are separated by an S-mincut, we find the
corresponding preunits (in O(1) worst-case time). If they coincide, then such a cut
does not exist. Otherwise, we check their projections. If the projections differ, then
such a cut exists and is a cell cut. To find it we analyze the projections of all the
preunits and verify the inclusion of Theorem 6.7. This can be done in O(ñ) amortized
time by means of NCA queries as in the previous algorithm.

If the projections coincide, then the two preunits belong to the same nonterminal
cell. In this case we do not know at once whether a cut in question exists or not;
thus we answer both queries simultaneously. According to Lemma 6.13, the work to
be done is split into two parts. One of them consists of finding a certain cell cut
and is done exactly in the same way as in the previous case and within the same
time. The other part is to find a certain reachability cone of one of our preunits. It is
done by scanning the reachability subgraph of this preunit. Since, unlike the previous
algorithm, we have no special data structure supporting reachability cones, this is
done similarly to the scanning on the second stage. Thus, the time for both queries
in this case is O(m̃).

Finally, to obtain the strip WS1,S2 of Theorem 6.4 we proceed exactly as in the
previous algorithm and get this strip up to contractions of strongly connected com-
ponents. To get the true strip, we replace the ordinary DFS used in the previous
algorithm for obtaining orientations by the extended DFS that also finds and con-
tracts strongly connected components. The total time remains the same.

We thus get the following result.

Theorem 8.5. The cell structure of the connectivity carcass of an arbitrary
vertex subset S can be maintained in O(σ̃m̃+ ñ log ñ+ u+ qm̃) time for an arbitrary
sequence of u edge insertions preserving the value of λS and q queries Sep(v, w),
Cut(v, w), Strip(v, w). Moreover, if at least one of the vertices v, w is in S, or v and
w belong to distinct cells, then the query Sep(v, w) can be answered in O(1) worst-case
time, and the query Cut(v, w) in O(ñ) amortized time.



808 YEFIM DINITZ AND ALEK VAINSHTEIN

REFERENCES

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1976.

[Be] A. Benczur, Augmenting undirected connectivity in Õ(n3) time, in Proceedings of the
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Abstract. Given an alphabet Σ, a (directed) graph G whose edges are weighted and Σ-labeled,
and a formal language L ⊆ Σ∗, the formal-language-constrained shortest/simple path problem con-
sists of finding a shortest (simple) path p in G complying with the additional constraint that l(p) ∈ L.
Here l(p) denotes the unique word obtained by concatenating the Σ-labels of the edges along the
path p. The main contributions of this paper include the following:

(1) We show that the formal-language-constrained shortest path problem is solvable efficiently
in polynomial time when L is restricted to be a context-free language (CFL). When L is specified as
a regular language we provide algorithms with improved space and time bounds.

(2) In contrast, we show that the problem of finding a simple path between a source and a
given destination is NP-hard, even when L is restricted to fixed simple regular languages and to very
simple classes of graphs (e.g., complete grids).

(3) For the class of treewidth-bounded graphs, we show that (i) the problem of finding a
regular-language-constrained simple path between source and destination is solvable in polynomial
time and (ii) the extension to finding CFL-constrained simple paths is NP-complete.

Our results extend the previous results in [SIAM J. Comput., 24 (1995), pp. 1235–1258; Proceedings
of the 76th Annual Meeting of the Transportation Research Board, 1997; and Proceedings of the 9th
ACM SIGACT-SIGMOD-SIGART Symposium on Database Systems, 1990, pp. 230–242]. Several
additional extensions and applications of our results in the context of transportation problems are
presented. For instance, as a corollary of our results, we obtain a polynomial-time algorithm for the
best k-similar path problem studied in [Proceedings of the 76th Annual Meeting of the Transportation
Reasearch Board, 1997]. The previous best algorithm was given by [Proceedings of the 76th Annual
Meeting of the Transportation Research Board, 1997] and takes exponential time in the worst case.
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1. Introduction. In many path-finding problems arising in diverse areas, cer-
tain patterns of edge/vertex labels in the labeled graph being traversed are allowed/
preferred, while others are disallowed. Thus, the feasibility of a path is determined
by (i) its length (or cost) under well-known measures on graphs such as distance, and
(ii) its associated label. The acceptable label patterns can be specified as a formal
language. For example, in transportation systems with mode options for a traveler
to go from source to destination, the mode selection and destination patterns of an
itinerary that a route will seek to optimize can be specified by a formal language. The
problem of finding label-constrained paths also arises in other application areas such
as production distribution network, VLSI design, databases queries [MW95, AMM97],
etc. Here, we study the problem of finding shortest/simple paths in a network sub-
ject to certain formal language constraints on the labels of the paths obtained. We
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illustrate the type of problems studied here by discussing prototypical application
areas.

1.1. Intermodal route planning. Our initial interest in the problem studied
in this paper came from our work in the TRANSIMS1 project at the Los Alamos Na-
tional Laboratory. We refer the reader to [TR+95a, AB+97, TR+95b] for a detailed
description of this project.

As a part of the intermodal route planning module of TRANSIMS, our goal is to
find feasible (near optimal) paths for travelers in an intermodal network (a network
with several mode choices, such as train, car, etc.) subject to certain mode-choice
constraints. The mode choices for each traveler are obtained by either processing
the data from the microsimulation module or by certain statistical models built from
real life survey data. We refer the reader to Ben-Akiva and Lerman [BaL] for a
detailed discussion and references on the theory of discrete choice analysis as applied
to transportation science. The following example illustrates a prototypical problem
arising in this context.

Example 1. We are given a directed labeled, weighted graph G. The graph
represents a transportation network with the labels on edges representing the various
modal attributes (e.g., a label t might represent a rail line). Suppose we wish to find a
shortest route from s to d for a traveler. This is the ubiquitous shortest path problem.
But now we are also told that the traveler wants to go from s to d using the following
modal choices: either he walks to the train station, then uses trains, and then walks
to his destination (office), or he would like to go all the way from home to office in a
car. Using t to represent trains, w to represent walking, and c to represent a car, the
traveler’s mode choice can be specified as w+t+w+∪ c∗, where ∪,+, and ∗ denote the
usual operators used to describe regular languages.

1.2. Searching the Web. Browsing the Web to find documents of interest as
well as searching a database using queries can be interpreted as graph traversals in a
certain graph. From this viewpoint, one views the Web (database) as a directed (undi-
rected), labeled graph—the nodes are URL sites (text) and the edges are hyperlinks.
A query for finding a particular URL site, for instance, proceeds by browsing the
network by following links and searching by sending information retrieval requests
to “index servers.” A serious problem that arises in the context of using pattern-
matching-based search engines is that the queries cannot exploit the topology of the
document network. For example, as pointed out in [Ha88],

Content search ignores the structure of a hypermedia network. In
contrast, structure search specifically examines the hypermedia struc-
ture for subnetworks that match a given pattern.

We refer the reader to the work of [MW95, AMM97, Ha88] for a more thorough
discussion on this topic. A recent paper by Abiteboul and Vianu [AV99] also discusses
how regular expression constrained path queries can be used to query the Web. The
following example is essentially from [AMM97].

Example 2. Let G be a graph describing a hypertext document. Suppose we want
to search for job opportunities for software engineers. We first query an index server
to find pages that mention the keywords “employment job opportunities” and then,
from each of these pages, we could follow the local paths of lengths 0, 1, or 2 to find
pages that contain the keywords “software engineer.” We can state the above problem

1TRANSIMS is an acronym for the Transportation Analysis and Simulation System. See
http://transims.tsasa.lanl.gov for details.
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as finding labeled paths in G with constraints on the admissible labelings. We refer
to [AMM97] for a number of additional interesting queries that can be formulated in
such a framework.

2. Problem formulation. The problems discussed in the above examples can
be formally described as follows: Let G(V,E) be an (un)directed graph. Each edge
e ∈ E has two attributes—l(e) and w(e). l(e) denotes the label of edge e. In this
paper, the label is drawn from a (fixed) finite alphabet Σ. The attribute w(e) denotes
the weight of an edge. Here, we assume that the weights are nonnegative integers.
Most of our positive results can in fact be extended to handle negative edge weights
also (if there are no negative cycles). A path p of length k from u to v inG is a sequence
of edges 〈e1, e2, . . . , ek〉, such that e1 = (u, v1), ek = (vk−1, v), and ei = (vi−1, vi) for
1 < i < k. A path is simple if all the vertices in the path are distinct. Given a path
p = 〈e1, e2, . . . , ek〉, the weight of the path is given by

∑
1≤i≤k w(ei) and the label of

p is defined as l(e1) · l(e2) · · · l(ek). In other words the label of a path is obtained by
concatenating the labels of the edges on the path in their natural order. Let w(p) and
l(p) denote the weight and the label of p, respectively.

Definition 1 (formal-language-constrained shortest path).Given an(un)directed
labeled, weighted graph G, a source s, a destination d, and a formal language (regular,
context-free, context-sensitive, etc.) L, find a shortest (not necessarily simple) path p
in G such that l(p) ∈ L.

Definition 2 (formal-language-constrained simple path). Given an (un)directed
labeled, weighted graph G, a source s, a destination d, and a formal language (regular,
context-free, context-sensitive, etc.) L, find a shortest simple path p in G such that
l(p) ∈ L.

For the rest of the paper we denote the formal-language-constrained shortest
path problem restricted to regular, context-free, and context-sensitive languages by
REG-ShP, CFG-ShP, and CSG-ShP, respectively. Similarly, we denote the formal-
language-constrained simple path problem restricted to regular, context-free, and
context-sensitive languages by REG-SiP, CFG-SiP, and CSG-SiP, respectively.

In general we consider the input for these problems to consist of a description
of the graph (including labeling and weights) together with the description of the
formal language as a grammar. By restricting the topology of the graph and/or the
syntactic structure of the grammar, we get modifications of the problems. If we claim
a statement to be true “for a fixed language,” we refer to the variant of the problem,
where the input consists of the graph only, whereas the language is considered to be
part of the problem specification.

Note that in unlabeled networks with nonnegative edge weights, a shortest path
between s and d is necessarily simple. This need not be true when we wish to find a
shortest path subject to an additional constraints on the set of allowable labels. As a
simple example, consider the graph G(V,E) that is a simple cycle on four nodes. Let
all the edges have weight 1 and label a. Now consider two adjacent vertices x and y.
The shortest path from x to y consists of a single edge between them; in contrast a
shortest path with label aaaaa consists of a cycle starting at x and the additional
edge (x, y).

3. Summary of results. We investigate the problem of formal-language-
constrained path problems. A number of variants of the problem are considered and
both polynomial-time algorithms as well as hardness results (NP-, PSPACE-hardness,
undecidability) are proved. Two of the NP-hardness results are obtained by combin-
ing the simplicity of a path with the constraints imposed by a formal language. We
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Free finite FP FP FP NP-c.
Fixed LT FP FP FP NP-c.5

Free RL FP FP 1 FP NP-c.
Fix. 1-log-SPCE-TM FP undec2 FP NP-c.
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1Section 5.1, Theorem 11; 2section 7.5; 3section 5.3; 4section 6.3, Theorem 26; 5section 6.2, Theorem 20.

Fig. 1. Summary of results on formal-language-constrained simple/shortest paths in contrast to
the word recognition problems. LT, RL, CFL, CSL denote locally testable, regular, context-free, and
context-sensitive languages, respectively. For regular languages, the time bounds hold for regular ex-
pressions with the operators (∪, ·, ∗, 2). FP states that the problem can be computed in deterministic
polynomial time, even if the language specification is part of the input. The superscripts in the table
and the corresponding text tell where the result is proven.

believe that the techniques used to prove these results are of independent interest.
The main results obtained in the paper are summarized in Figure 1 and include the
following:

(1) We show that CFG-ShP has a polynomial-time algorithm. For REG-ShP
with operators (∪, ·, ∗), we give polynomial-time algorithms that are sub-
stantially more efficient in terms of time and space. The polynomial-time
solvability holds for the REG-ShP problem, when the underlying regular
expressions are composed of (∪, ·, ∗, 2)2 operators. We also observe that the
extension to regular expressions over operators (∪, ·, ∗,−) is PSPACE-hard.

(2) In contrast to the results for shortest paths, we show that the problem finding
any simple paths between a source and a given destination is NP-hard, even
when restricted to a very simple, fixed locally testable regular language (see
section 6.2 for details) and very simple graphs (undirected grid graphs).

(3) In contrast to the results in (1) and (2) above, we show that for the class of
treewidth-bounded graphs, (i) the REG-SiP is solvable in polynomial time,
but (ii) CFG-SiP problem is NP-complete, even for a fixed deterministic
linear context-free language (CFL). The easiness proof can be extended to
one-way-log-space recognizable languages. It uses a dynamic programming
method, although the tables turn out to be quite intricate.

(4) Finally, we investigate complexity of problems CSG-ShP and CSG-SiP. Us-
ing simple reductions and, in contrast to the complexity results in (1) and
(2), we show that (i) CSG-SiP is PSPACE-complete but (ii) CSG-ShP is
undecidable even for a fixed language.

(5) As an application of the theory developed here, we provide a polynomial-
time algorithm for a number of basic problems in transportation science. In

2Operator ✷2 or simply 2 stands for the square operator. R2 denotes R ·R.
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section 7 we consider two examples, namely, the best k-similar path and
the trip chaining problem.

The results mentioned in (1)–(4) provide a tight bound on the computational
complexity (P versus NP) of the problems considered, given the following assumptions:
The inclusions of classes of formal languages “finite ⊂ locally testable” and “regular ⊂
deterministic linear context-free” are tight, i.e., there is no natural class of languages
“in between” these classes. Furthermore in this paper grid-graphs are considered to
be the “easiest” class of graphs that do not have a bounded treewidth.

Preliminary versions of the algorithms outlined here have already been incorpo-
rated in the route planning module of TRANSIMS. In [JMN98] we conduct an exten-
sive empirical analysis of these and other basic route-finding algorithms on realistic
traffic network.

4. Related work. We refer the reader to the monograph by Huckenbeck [Hu97]
for a comprehensive survey on path problems. References [TR+95a, AB+97, TR+95b]
provide a detailed account of the TRANSIMS project. Regular-expression-constrained
simple path problems were considered by Mendelzon and Wood [MW95]. The authors
investigate this problem in the context of finding efficient algorithms for processing
database queries (see [CMW87, CMW88, MW95]). A recent paper by Abiteboul and
Vianu describes further results on related problems [AV99]. Yannakakis [Ya90, Ya95]
in his keynote talk has independently outlined some of the polynomial-time algorithms
given in section 5. Romeuf [Ro88] also independently considered some of the prob-
lems discussed in section 5. However, the emphasis in [Ya90] was on database theory
and Romeuf [Ro88] considered only regular languages. Online algorithms for find-
ing regular-expression-constrained paths are given in [BKV91]. Our work on finding
formal-language-constrained shortest paths is also related to the work of Ramalingam
and Reps [RR96]. The authors were interested in finding a minimum-cost derivation
of a terminal string from one or more nonterminals of a given context-free grammar.
The problem was first considered by Knuth [Ku77] and is referred to as the grammar
problem. [RR96] gives an incremental algorithm for a version of the grammar problem
and as corollaries obtain incremental algorithms for single-source shortest path prob-
lems with positive edge weights. We close this section with the following additional
remarks:

(1) To our knowledge this is the first attempt at using formal language theory
in the context of modeling mode/route choices in transportation science.

(2) The polynomial-time algorithms and the hardness results presented here give
a boundary on the classes of graphs and queries for which polynomial-time query
evaluation is possible. In [MW95] the authors state that

Additional classes of queries/dbgraphs for which polynomial-time evalua-
tion is possible should be identified . . ..

Our results significantly extend the known hardness as well as easiness results in
[MW95] on finding regular-expression-constrained simple paths. For example, the
only graph theoretic restriction considered in [MW95] was acyclicity. On the positive
side, our polynomial-time algorithms for regular-expression-constrained simple path
problems when restricted to graphs of bounded treewidth are a step toward charac-
terizing graph classes on which the problem is easy. Specifically, it shows that for
graphs with fixed-size recursive separators, the problems is easy. Examples of graphs
that can be cast in this framework include chordal graphs with fixed clique size, outer
planar graphs, series parallel graphs, etc. (see [Bo92] for other examples).

(3) The basic techniques extend quite easily (with appropriate time performance
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bounds) to solve other (regular-expression-constrained) variants of shortest path prob-
lems. Two notable examples that frequently arise in transportation science and can
be solved are (i) multiple-cost shortest paths [Ha92, BAL97] and (ii) time-dependent
shortest paths [OR90]. These extensions are briefly outlined in section 7.

The rest of the paper is organized as follows. Section 4.1 contains preliminary
results and basic definitions. In section 5, we present efficient algorithms for grammar-
constrained shortest path problems (namely, REG-ShP and CFG-ShP). Section 6
contains our hardness/easiness results for simple paths. Section 7 outlines several
extensions and applications of our basic results.

4.1. Basic definitions. We recall the basic concepts in formal language and
graph theory. Additional basic definitions on topics related to this paper can be
found in [HU79, GJ79, AHU, CLR, HRS76, Pa94, Ta81]. For the rest of the paper,
we use |I| to denote the size of an object I represented using binary notation.

Definition 3. Let Σ be a finite alphabet disjoint from {ε, φ, (, ),∪, ·, ∗}. A regular
expression R over Σ is defined as follows:

(1) The empty string “ε,” the empty set “φ,” and, for each a ∈ Σ, “a” are atomic
regular expressions.

(2) If R1 and R2 are regular expressions, then (R1 ∪ R2), (R1 · R2), and (R1)
∗

are compound regular expressions.
Definition 4. Given a regular expression R, the language (or the set) defined

by R over Σ and denoted by L(R) is defined as follows:
(1) L(ε) = {ε}; L(φ) = φ; ∀a ∈ Σ:L(a) = {a}.
(2) L(R1 ∪R2) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) or w ∈ L(R2) }.
(3) L(R1 ·R2) = L(R1) · L(R2) = {w1w2 | w1 ∈ L(R1) and w2 ∈ L(R2) }.
(4) L(R∗) =

⋃∞
k=0 L(R)

k, where L(R)0 = {ε} and L(R)i = L(R)i−1 · L(R).
Definition 5. A nondeterministic finite automaton (NFA) is a 5-tuple M =

(S,Σ, δ, s0, F ), where
(1) S is a finite nonempty set of states;
(2) Σ is the input alphabet (a finite nonempty set of letters);
(3) δ is the state transition function from S × (Σ ∪ {ε}) to the power set of S;
(4) s0 ∈ S is the initial state;
(5) F ⊆ S is the set of accepting states.
If there is an s ∈ S such that δ(s, ε) is a nonempty subset of S, then the automaton

M is said to have ε-transitions. IfM does not have any ε-transitions and ∀ s ∈ S and
∀ a ∈ Σ the set δ(s, a) has at most one element, then δ can be regarded as a (partial)
function from S×Σ to S andM is said to be a deterministic finite automaton (DFA).

The extended transition function δ∗ from S×Σ∗ is defined in a standard manner.
The size of M denoted by |M | is defined to be equal to |S||Σ|.

Definition 6. Let M = (S,Σ, δ, s0, F ) be an NFA. The language accepted by M
denoted L(M) is the set

L(M) = {w ∈ Σ∗ | δ∗(s0, w) ∩ F �= φ }.

A string w is said to be accepted by the automaton M if and only if w ∈ L(M).
Definition 7. A context-free grammar (CFG) G is a quadruple (V,Σ, P, S),

where V and Σ are disjoint nonempty sets of nonterminals and terminals, respectively,
P ⊂ V × (V ∪Σ)∗ is a finite set of productions, and S is the start symbol. A CFG G
is said to be linear if at most one nonterminal appears on the right-hand side of any
of its productions.
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Definition 8 (see[Bo88, AL+91]). Let G = (V,E) be a graph. A tree-decom-
position of G is a pair ({Xi | i ∈ I}, T = (I, F )), where {Xi | i ∈ I} is a family of
subsets of V and T = (I, F ) is a tree with the following properties:

(1)
⋃
i∈I Xi = V .

(2) For every edge e = (v, w) ∈ E, there is a subset Xi, i ∈ I, with v ∈ Xi and
w ∈ Xi.

(3) For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi
⋂
Xk ⊆ Xj.

The treewidth of a tree-decomposition ({Xi | i ∈ I}, T ) is max
i∈I

|Xi|−1. The treewidth
of G is the minimum treewidth of a tree decomposition.

5. Shortest paths. In this section, we present polynomial-time algorithms for
the problems REG-ShP and CFG-ShP.

5.1. Algorithm for REG-SHP and extensions. In this subsection, we will
describe our algorithms for regular expression constrained shortest path problems. We
note that regular expressions over (∪, ·, ∗) can be transformed into equivalent NFAs in
O(n) time [AHU], where n represents the size of the regular expression. Thus for the
rest of this subsection we assume that the regular expressions are specified in terms
of an equivalent NFA.

The basic idea behind finding shortest paths satisfying regular expressions is
to construct an auxiliary graph (the product graph) combining the NFA denoting
the regular expression and the underlying graph. We formalize this notation in the
following.

Definition 9. Given a labeled directed graph G, a source s, and a destination
d, define the NFA M(G) = (S,Σ, δ, s0, F ) as follows:

(1) S = V ; s0 = s; F = {d};
(2) Σ is the set of all labels that are used to label the edges in G; and
(3) j ∈ δ(i, a) if and only if there is an edge (i, j) with label a.

Note that this definition can be used to interpret an NFA as a labeled graph as well.

Definition 10. Let M1 = (S1,Σ, δ1, p0, F1) and M2 = (S2,Σ, δ2, q0, F2) be two
NFAs. The product NFA is defined as M1 ×M2 = (S1 × S2,Σ, δ, (p0, q0), F1 × F2),
where ∀a ∈ Σ, (p2, q2) ∈ δ((p1, q1), a) if and only if p2 ∈ δ1(p1, a) and q2 ∈ δ2(q1, a).

It is clear that L(M1×M2) = L(M1)∩L(M2). Algorithm RE-Constrained-Short-
Paths outlines the basic steps for solving the problem and uses the cross product
construction mentioned above.

Theorem 11. The algorithm RE-Constrained-Short-Paths computes the exact so-
lution for the problem REG-ShP with nonnegative edge weights in time O(T (|R||G|)).
Here T (n) denotes the running time of a shortest path algorithm on a graph with
n nodes.

Proof. For the correctness of the algorithm observe the following: Consider a
shortest path q∗ in G of cost w(q∗) that satisfies the regular expression R. This
path and the accepting sequence of states in the NFA imply a path q′ of the same
cost between (s0, s) to (f, d) for some f ∈ F . So we know that the sought path is
considered. Conversely, for each path τ in M(G)×M(R) of cost w(τ) that begins on
a starting state and ends on a final state, the projection of τ to the nodes of G yields
a path of same cost in G from s to d that satisfies the regular expression R.

To calculate the running time of the algorithm, observe that the size of M(R)×
M(G) is O(|R||G|). As the overall running time is dominated by step 4, we obtain
O(T (|R||G|)) as a bound.
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Algorithm RE-Constrained-Short-Paths:
• Input: A regular expression R, a directed labeled weighted graph
G, a source s, and a destination d.

• 1. Construct an NFA M(R) = (S,Σ, δ, s0, F ) from R.
2. Construct the NFA M(G) of G.
3. Construct M(G) ×M(R). The length of the edges in the

product graph is chosen to be equal to the corresponding
edges in G.

4. Starting from state (s0, s), find a shortest path to the ver-
tices (f, d), where f ∈ F . Denote these paths by pi,
1 ≤ i ≤ w. Also denote the cost of pi by w(pi).

5. C∗ := minpi w(pi); p∗: w(p∗) = C∗.
(If p∗ is not uniquely determined, we choose an arbitrary
one.)

• Output: The path p∗ in G from s to d of minimum length subject
to the constraint that l(p) ∈ L(R).

5.2. Extensions: Other regular expressions. We consider two possible ex-
tensions for the problem REG-ShP, namely, allowing the additional operators for
taking the complement (−) and for squaring an expression (2).

Theorem 12. Shortest path in the complement of an NFA or a regular expression
over (∪, ·, ∗) is PSPACE-hard.

Proof. Let R be such a regular expression. The question of deciding if the
complement of L(R) is empty (regular expression nonuniversality) is known to be
PSPACE-complete (see [GJ79, problems AL1 and AL9]). Given an instance of such
a problem we create a graph G with one node v. There is a loop from v to v for
each symbol in the alphabet. The existence of a path from v to v with the label in
the complement of the language (Σ∗ − L(R)) is equivalent to the existence of such a
word.

This immediately implies the following corollary.
Corollary 13. REG-ShP for regular expressions over (∪, ·, ∗,−) is PSPACE-

hard.
It is easy to see that regular expressions consisting of operators from (∪, ·, ∗, 2) can

be represented by CFGs with rules of the form A → BB. This observation together
with the results of the next section (section 5.3) yields the following corollary.

Corollary 14. REG-ShP for regular expressions over (∪, ·, ∗, 2) can be solved
in polynomial time.

5.3. Algorithm for CFG-SHP. We now extend our results in section 5.1 to
obtain polynomial-time algorithms for CFL-constrained shortest path problems. Be-
side the applicability of the algorithm, this result stands in contrast to the hardness
of simple-path problems even for a single fixed regular expression.

The algorithm for solving CFG-constrained shortest paths is based on dynamic
programming. Hence we will first investigate the structure of an optimal shortest path
from s to d in the graph G that is labeled according to the CFG R. Assume that R is
in Chomsky normal form, i.e., all rules of the form C → AB or C → a (see [HU79] for
details). Consider any such shortest path p with l(p) = a1a2 · · · am. One important
property of any CFG is that nonterminals are expanded independently. In the case
of a Chomsky normal form, the derivation forms a binary tree, which means that the
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label of p can be decomposed into two parts l1 and l2 such that l(p) = l1l2, S → AB,

A
∗→ l1, and B

∗→ l2.
With this structure in mind let us define the quantity D(i, j, A) as the shortest

path distance from i to j subject to the constraint that the label on this path can be
derived starting from the nonterminal A.

These values are well defined and fulfill the following recurrence:

D(i, j, A) = min
(A→BC)∈R

min
k∈V

(
D(i, k, B) +D(k, j, C)

)
,(1)

D(i, j, a) =
{
w(i, j) if l((i, j)) = a,
∞ otherwise.

(2)

Observation 15. These equations uniquely determine the function D and im-
mediately imply a polynomial-time dynamic programming algorithm.

Proof. Consider the case that D and D′ satisfy the above recurrence but are
different. Then there must be a smallest witness of this fact a = D(i, j,X) and
b = D′(i, j,X), and a �= b. Let us assume a > b and consider the smallest such b.
As the definition (2) is unambiguous, we know that X = A is a nonterminal. As b is
minimal, it is finite and satisfies (1). This implies that there must exist the witnesses
e = D(i, k, B) and f = D(k, j, C) that establish b = e+f as their sum. As all lengths
in the graph are positive, both e and f are smaller than b. By the choice of a and b
we know that e = D′(i, k, B) and f = D′(k, j, C), implying with (1) the contradiction
a ≤ e+ f = b.

This discussion immediately implies a dynamic programming approach to com-
pute the table of D. Starting with the values for links in the network, we fill the
table with increasing values. This can be done with a Bellman–Ford-type algorithm.
This algorithm will finally set at least one entry in the table per round. The exe-
cution time is bound by the square of the number of entries in the table times the
amount of time needed to compute the two minima in (1). This is polynomial, namely,
O(|V |5|N |2|R|2) with V being the vertices of the graph, N the nonterminals, and R
the rules of the grammar in Chomsky normal form.

Another way of implementing this is to set the table by filling in the smallest
values first. There a heap is used to hold the current estimates on entries, and
the smallest one is finally put in the table generating or changing estimates. This
implies one extract-min operation and up to 2|V ||R| update operations for every
entry. Using Fibonacci–Heaps (see [CLR] for an analysis), this sums up to O(|V |2|N | ·
(log(|V |2|N |) + 2|V ||R|)), that is, O(|V |3|N ||R|).

A naive adaptation of a Floyd–Warshall-type algorithm fails, because we cannot
split an optimal path in two optimal subsolutions at an arbitrary node of the path.
The splitting in the above dynamic programming works only because it is done in
accordance with the grammar.

6. Simple paths. Next we investigate the complexity of finding formal-language-
constrained simple paths. For the ease of exposition, we present our results for di-
rected, multilabeled graphs. The following lemma shows how to extend these results
to undirected and unilabeled graphs.

Lemma 16.
(1) REG-SiP on directed, multilabeled grids can be reduced to REG-SiP on di-

rected grids.
(2) REG-SiP on directed grids can be reduced to REG-SiP on undirected grids.
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Fig. 2. Example for replacing multilabels. All the dotted edges “inside” are labeled with v. Only
the connection to the right is completely depicted.

(3) For all k ≥ 1, CFG-SiP on directed graphs of treewidth k can be reduced to
CFG-SiP on undirected graphs of the same treewidth.

Proof. (1) Applying the changes illustrated in Figure 2 to all nodes of a multil-
abeled grid G, we obtain an unilabeled grid G′. G′ is part of a grid roughly |Σ|2 times
larger than the original one. Furthermore, the alphabet needs to be extended by two
symbols, one for inaccessible edges and one, the symbol v, for the edges “inside” the
extended nodes.

The regular language L is replaced by the regular language L′ defined as follows:

L′ = { w ∈ (Σ ∪ {v})∗ | w = v∗x1v∗x2v∗ · · · v∗xnv∗ and x1x2 · · ·xn ∈ L }.

Now paths in the new instance (G′, L′) are in one-to-one correspondence to paths in
the original instance (G,L).

(2), (3) It is well known (see, for example, [HU79]) that regular and CFLs
are closed under substitution. Let Σ = {a, b, . . . , z} be an alphabet. Then Σ′ =
{a′, b′, . . . , z′} is a marked copy of this alphabet. Substitution with the homomor-
phism a �→ aa′, ∀ a ∈ Σ yields the following: If L ⊆ Σ∗ is regular, the language

L′ = { w ∈ (Σ ∪ Σ′)∗|w = x1x
′
1x2x

′
2 · · ·xnx′n and x1x2 · · ·xn ∈ L }

is also regular. Let G be the original graph. The directed edges in G labeled with a
get replaced by two consecutive edges labeled with a and a′, introducing a new node.

In this situation paths in G′ complying with L′ are in a one-to-one correspondence
to paths in G complying with L. It is straightforward to extend the weight function
on the edges to preserve the weights of paths. Additionally relative path length (in
number of edges used) are preserved.

The proof of (2) follows from the fact that the resulting G′ can be embedded in
a grid using a new symbol v �∈ (Σ ∪ Σ′) as label.

For (3) let T be a tree-decomposition of treewidth k. If k = 1, the graph itself is a
tree and replacing edges by paths of length 2 does not change the treewidth. Otherwise
let T be a tree-decomposition of width k > 1. For every new node we create a new set
of the tree-decomposition consisting of the new node and the endpoints of the edge
it splits. This set is included in the tree of the decomposition by attaching it to the
set that covered the split edge. As k > 1, sets of cardinality 3 cannot change the
treewidth, yielding a new tree-decomposition of width k.
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6.1. Finite languages.
Definition 17. A language L is called finite if there are only finitely many words

in L.
Finite languages are considered one of the smallest subclasses of the regular lan-

guages.
Theorem 18. For any fixed finite language L the problem REG-SiP can be

solved in polynomial time.
Proof. Let k be the maximum length of a word in L. Considering all k-tuples of

nodes, and checking if they form the sought path, yields a polynomial-time algorithm
of running time O(nk).

Theorem 19. Let C be a graph class (such as planar, grid, etc.) such that
the Hamiltonian path problem is NP-hard when restricted to C. Then the problem
REG-SiP is NP-hard when restricted to C and (free) finite languages.

Proof. Consider a fixed class of graphs C for which the Hamiltonian path
problem is NP-hard. Then given an instance G of the Hamiltonian path problem
in which G ∈ C, with n nodes, we construct an instance G1 of the regular-expression-
constrained simple path problem by labeling all the edges in G by a. We now claim
that there is a Hamiltonian path in G if and only if there is a simple path in G1

that satisfies an−1, i.e., the constraining language is chosen to be the finite language
L = {an−1}.

6.2. Hardness of REG-SIP. Before formally stating the theorem and the proof
we present the overall idea. We perform a reduction from 3-SAT. It will be easy to
verify that the reduction can be carried out in polynomial time (logarithmic space).

Our encoding of a satisfiability question naturally decomposes into two parts.
The first is to choose an assignment; the second is to check whether this assignment
satisfies the given formula. Choosing the assignment will correspond to choosing a
certain part of the path. The 3-CNF formula will be checked clause by clause. This
requires access to the value of a variable more than once. Here this is achieved by
forcing sufficiently many subpaths to be similar (in the sense that they stand for
the same assignment). These “copies” of the assignment can then be used to check
whether the underlying assignment satisfies the 3-CNF formula. This is now a local
task, as there is one copy of the assignment for every clause.

In order to achieve sufficiently many similar copies of the assignment, the following
beads and holes argument will be useful: Think of n+ 1 holes forming a straight line
and n beads between every two of them. Each bead is allowed to fall in one of the
two holes adjacent to it. Moreover, we allow at most one bead in each hole. The state
of the system after the beads fall down in the holes is a description of the contents of
each hole. By reporting which hole is free, the state of the beads and holes system is
described completely; since all beads left of the free hole fell in the left hole and the
remaining beads fell into the right hole. We additionally know that there exists a set
of at least n/2 consecutive beads that fell in the same direction.

The construction presented enforces an overall snake-like path, which goes up
and down several times. This is schematically depicted in Figure 3. Figure 4 provides
additional details about the construction and will be described in what follows. At
this point it is sufficient to note that nodes on a vertical dotted line will be referred
to as nodes on a column, and vertices on each horizontal dotted line will be referred
to as nodes on a level (or a row). For the case of n levels (variables) and m columns
the following statements provide an overall outline of the proof:

(1) Every column of the rotated grid (depicted in Figure 4) represents a member
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Fig. 3. Overall shape of all feasible paths; the dotted circles stand for nodes to be identified.
One possible leg in the first column is depicted as a dashed line.

of an extended sequence of clauses. Any feasible path from S to D will use all of the
column nodes. Such a path naturally decomposes into subpaths which span an entire
column and are called legs.

(2) The shape of a leg uniquely corresponds to an assignment; for this, levels of
the rotated grid are identified with variables.

(3) Identically shaped legs do not interfere with neighboring columns.
(4) Let p be one fixed feasible path, i.e., a path that consists of m legs, as many

as there are columns. Such a path visits every node but precisely n variable nodes,
one per level. Therefore, the shape of the legs of p cannot change too often (following
the beads and holes argument), which in turn ensures that there will be a lot of similar
legs.

(5) On each column the labeling together with the language allows us to check
that the assignment represented by the leg satisfies a clause (of the extended set of
clauses). For this we use three symbol of the alphabet to stand for the three literals
of the clause.

We will prove the theorem for multilabeled directed grid-graphs. Lemma 16
implies that the result holds for unilabeled undirected grid graphs.

Theorem 20. The REG-SiP problem is NP-hard for complete multilabeled di-
rected grids and a fixed regular expression.

Proof. We present a reduction from the problem 3-SAT, which is well known to
be NP-complete; see, for example, [GJ79].

Given a 3-SAT formula we construct a labeled complete directed grid, such that
there exists a path from the start vertex to the destination vertex, that complies with
a fixed (independent of the formula) regular expression, if and only if the formula is
satisfiable.

Let F = (X,C) be a 3-CNF formula, X = {x1, x2, x3, . . . , xn} the set of variables,
and C = {c1, c2, c3, . . . , cm} the set of clauses.
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Fig. 4. Graph corresponding to the formula (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3 ∨ x4), west-true, east-
false, in general upward edges are labeled a, b, and c, downward edges are labeled d, e, and f . The
label �a in the figure states that the corresponding edge is not labeled with a (by this deviating from
the general rule). For simplicity the additional 4 = (4+2)−2 repetitions of the basic clause-sequence
are omitted.

For the beads and holes argument we need n + 2 repetitions of the sequence
of clauses. To do this, we construct an extended sequence d1, . . . , dM of clauses that
consists of exactly n+2 copies of the original sequence of clauses (M = m(n+2)). It is
important that the ordering of the basic sequence remains unchanged between different
copies. This extended sequence of clauses is used in what follows for constructing the
graph.

We will describe a grid rotated by 45 degrees against the coordinate system that
we use to define levels (i.e., rows) and columns. There are three different types of
vertices: (i) clause-vertices, (ii) variable-vertices, and (iii) join-vertices. The layout
of these vertices is illustrated in Figure 4 by means of an example. The coordinate
system essentially has for every clause Ci a vertical line with the name of the clause
and for every variable xi a horizontal line named by the variable. These lines are
shown as dotted lines in Figure 4. The vertices of the grid lie in the middle of the
so-formed line-segments. Clause-vertices lie on dotted vertical (clause-)lines and are
drawn as rhombuses. Variable vertices lie on horizontal (variable-)lines and are drawn
as circles. There are additional bottom and top lines of join-vertices that are drawn
as hexagons. It is easy to see that this grid is part of a complete square grid with
(M + n+ 2)2 nodes.

To simplify the description we assume thatM is even. For the rest of the proof, by
a slight abuse of notation, we use the phrase edges incident on a vertex v to mean both
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the incoming and outgoing edges that have v as one of the endpoints. The start node S
is the lowermost clause-node on C1, the destination node D the lowermost clause-node
on CM . To achieve paths of the snake-like form depicted in Figure 3, we direct all edges
incident on a clause-vertex on an odd-numbered column upward and all edges incident
on a clause-vertex lying on even-numbered columns downward. This orientation is
depicted in Figure 4. In order to enforce the overall shape of admissible paths, we label
the edges incident on join-vertices with w. Furthermore, with important exceptions
to be described later, upward edges are in general multilabeled with a, b, and c, where
as downward edges are in general multilabeled with d, e, and f . Let us define the
regular expression

R =
(
(a∗ ∪ b∗ ∪ c∗)ww(d∗ ∪ e∗ ∪ f∗)ww

)∗
(a∗ ∪ b∗ ∪ c∗)ww(d∗ ∪ e∗ ∪ f∗)

and the corresponding language L = L(R).

The final construction will have some of the labels removed; this only makes the
set of feasible paths smaller. The following proposition summarizes a key property of
the above construction.

Proposition 21. Let P be a simple path in the described graph from S to
D complying with the regular language L. Then the following holds: (i) P can be
partitioned into a set of legs and (ii) there exist m consecutive legs that have identical
shape.

Proof. (i) Call every subpath labeled with w(d+∪ e+∪f+)w or w(a+∪ b+∪ c+)w
a leg. Here x+ := x∗x is the usual shorthand used in regular expressions. As the
label of P is in the given regular language, this defines a partitioning of P into M
subpaths Li. Because of the labeling of the grid, all legs have one endpoint at the
lower join level and one at the upper join level. Because of this all Li have the same
length. Additionally every second vertex of a leg is a clause-node, and all these clause-
nodes are in the same column. As we traverse a leg from the low-numbered end to the
high-numbered end, we deviate from the vertical line passing through variable-vertices
on the way. The sequence of deviations (east/west) defines the shape of the leg. The
shape of a leg is used to infer an assignment to the variables as discussed later.

(ii) As P is simple, every node of the grid is visited at most once by P . As a result
the shapes of two neighboring legs Li and Li+1 are not independent. If Li deviates at
(variable-)level j to the east, Li+1 may not deviate to the west on that level. As there
are (M + 1)n variable-vertices in the grid and Mn variable-vertices on P , there are
exactly n variable-vertices not used by P . An averaging argument yields that there
must exist m consecutive columns of variable-vertices that are all used by P . This
implies that all legs in that range must have identical shape.

These m legs will be used as multiple copies of an encoding of an assignment of
truth values to the variables. The removing of some of the labels of the graph will
allow us to enforce the semantics of the clauses. Given the shape of a leg we use the
following rule (denoted rule R) to infer an assignment to the variables:

(R)
If the shape deviates on level xi to the west (east), we assign xi the
truth value TRUE (FALSE).

Note that we have m legs with identical shapes and thus we have a consistent as-
signment to the variables across clauses. The constraining regular expression and
appropriate labels to the edges also have to ensure that the following holds. The
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leg corresponding to each Ci can only have shapes such that the corresponding as-
signment to the variables using rule R makes Ci true. For an odd-numbered clause
C2k+1 ≡ (u1 ∨ u2 ∨ u3), we remove labels from the graph in the following way: If
u1 = xi (resp., u1 = ¬xi) we remove the label a from both the edges incident on the
variable-vertex xi that is to the east (resp., west) of the column C2k+1. For u2 (resp.,
u3) the label b (resp., c) is removed in the same way on the level corresponding to
the variable of the literal. For even-numbered clauses d, e, and f take the role of a,
b, and c.

Proposition 22. Let Lk be a leg of a path in G from S to D on column Ck
complying with L and let A be the assignment corresponding to the shape of Lk using
rule R. Then the labeling of Lk can be chosen to be of the form wxx . . . xxw with
x ∈ {a, b, c, d, e, f} if and only if A evaluates Ck to TRUE.

Proof. Let A evaluate Ck to TRUE. Then at least one of the literals of Ck is
TRUE. We can choose the x accordingly (for example, x = a if it is the first literal
and k is odd). On the level corresponding to this positive (resp., negative) literal the
path deviates to the west (resp., east), and can thus be labeled with x; independent
of its shape, Lk can be labeled with x on all other levels.

Conversely, if the leg is labeled in wxx . . . xxw, we can focus on the literal of the
clause corresponding to x (for example, the first literal if x = a). As the labeling at
the level of that variable is available only in the correct direction, A must evaluate
the clause to true.

This completes the construction of the graph. We now prove the correctness of
the reduction.

Suppose there exists a satisfying assignment A to the formula. Then we choose the
shape of the path from S to D in the snake-like fashion with the additional property
that we deviate to the west on level xj if xj is set to TRUE by A; otherwise we deviate
to the east. Since A is a satisfying assignment, each clause contains at least one literal
that is set true by A. So we choose the labeling on all legs Lk of the path in column
Ck corresponding to this literal of Ck. This yields a simple path that complies with
L.

Conversely, let there be a simple path from S to D complying with L. By Propo-
sition 21, we know that the path has m consecutive legs of the same shape corre-
sponding to an assignment A. By construction of the extended sequence of clauses
and Proposition 22 we know that A satisfies all of the original clauses. So the formula
is satisfiable.

In fact this result stays valid for a smaller class of infinite regular languages.
Definition 23 (see [Str94]). A language L is called locally testable if there exists

a k and a finite set S such that

w ∈ L ⇐⇒ (∀v <k w : v ∈ S).
Here v <k w stands for the fact that v is a subword of length k of w.

Corollary 24. The REG-SiP problem is NP-hard for a complete multilabeled
directed grid and a fixed locally testable language.

Proof. In the proof of Theorem 20 the constraining regular language can be
replaced by the regular language L defined as follows:

L =
{
v ∈ Σ∗

∣∣∣ x1x2 <2 v →
(
x1 ∈ {a, b, c, d, e, f} → x2 = x1 ∨ x2 = w

)}
.

This condition is equivalent to stating that any sequence of y ∈ {a, b, c, d, e, f}
may be ended only by a w. Starting from the first symbol in the word, L guarantees
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that this single symbol is repeated until the next w. The labeling of the grid ensures
that this w is at the top join-vertex between the columns C1 and C2. There the
simplicity enforces another w and it follows inductively that L enforces the snake-like
shape of the path as well as the uniform labeling of the legs. So it is as strong as the
language used in the proof of Theorem 20.

It should be noted that Lemma 16 cannot be applied immediately in this situation.
Nevertheless the result of the corollary extends. This is easy to verify using a slight
modification of the graph proposed in the proof of Lemma 16 and a modification of
the language. This makes use of the fact that the directionality can readily be omitted
and that constructions of the form xi = y → xi+5 = y are also expressible in locally
testable languages.

Note that the result of Theorem 20 immediately extends to other graph classes.
Corollary 25. Let C be a class of graphs such that ∀ k > 0 there is an instance

I ∈ C that contains as a subgraph a (k×k)-mesh and both the graph and the subgraph
are computable in time polynomial in k; then the REG-SiP problem is NP-hard for
C.

Thus the REG-SiP problem is NP-hard even for (i) complete cliques, (ii) interval
graphs, (iii) chordal graphs, (iv) complete meshes, (v) complete hypercubes, (vi) per-
mutation graphs.

6.3. Hardness of CFG-SIP. We show that CFG-SiP, the problem of find-
ing a simple path complying with a CFL, is NP-hard even on graphs with bounded
treewidth. Before formally stating the proof, we give the overall idea. We present a
reduction from 3-SAT (see, e.g., [GJ79] for definition). The basic idea is to have a
path consisting of two subpaths. The first subpath uniquely chooses an assignment
and creates several identical copies of it. The second subpath checks one clause at
every copy of the assignment and can only reach the destination if the assignment
satisfies the given formula.

Consider the language L = {w#wR$w#wR · · ·w#wR|w ∈ Σ∗}. As is stan-
dard, wR denotes the reverse of string w. At the heart of our reduction is the
crucial observation that L can be expressed as the intersection of two CFLs L1
and L2. Consider L1 = {w0#w1$wR1 #w2$wR2 t · · ·wk$wRk #wk+1 |wi ∈ Σ∗ } and
L2 = { v1#vR1 $v2#vR2 · · · vk#vRk | vi ∈ Σ∗ }. To see that L = L1 ∩ L2, observe that
w0 = v1, v

R
1 = w1, and ∀ i, wRi = vi+1, v

R
i+1 = wi+1, establishing that vi = vi+1 holds

∀ i, and thus L = L1 ∩ L2.
Now, imagine w representing an assignment to the variables of a 3-CNF formula

with a fixed ordering of the variables. For every clause of the formula, we create
a copy of this assignment. L is used to ensure that all these copies are consistent,
i.e., identical.

Note that we have two basic objects for performing the reduction—a CFG and a
labeled graph. We will specify L1 as a CFG and use the labeled graph and simple paths
through the graph to implicitly simulate L2. Recall that there is a straightforward
deterministic pushdown automaton M for accepting L2. Our graph will consist of
an “upward chain” of vertices and a “downward chain” of vertices along with a few
additional vertices. The upward chain will simulate the behavior ofM when it pushes
w on the stack. The “downward chain” will then simulate popping the contents of
the stack and verifying that they match wR. We will call such a gadget a “tower” as
an analogy to the stack of M .

We now describe the proof in detail. For the purposes of simplicity, we prove the
results for directed graphs; the extension to undirected graphs follows with Lemma 16.
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Fig. 5. The gadget Hi used to implement the tower, forcing the assignment to be spread
consistently over the graph. Dashed ellipses denote the so-called level sets.

Theorem 26. The CFG-SiP problem is NP-hard, even for graphs of constant
treewidth and a fixed deterministic CFL.

Proof. Reduction from 3-SAT. Let F (X,C) be a 3-CNF formula, where X =
{x1, . . . , xn} denotes the set of variables and C = {c1, . . . , cm} denotes the set of
clauses. Corresponding to F , we create an instance G(V,E1 ∪ E2) of CFG-SiP as
follows. We will describe the reduction in two parts—first the subgraph (V,E1) and
then the subgraph (V,E2).

The subgraph (V,E1) is constructed as follows: Corresponding to each clause cj ,
we have a tower T j . It consists of n “simple-path stack-cell” gadgets H for each
variable one. This basic gadget is depicted in Figure 5.

Consider a simple path p from one of the bottom nodes (marked by a square in
the figure) to one of the top nodes. Because of the labels of this gadget, we can define
the signature y of this path by l(p) = cyc with y ∈ {a, b}. Let q be another simple
path that has no vertex in common with p, starts at one of the top nodes, and ends
in one of the bottom nodes. Then we can again properly define the signature z of this
path by l(q) = czc.

Because of the nodes α and β, the signatures are identical, i.e., y = z. Further-
more, if p uses the node x′i, the node xi is not used at all, and q has to use the node
¬xi. Similarly, if p uses the node ¬x′i, the node ¬xi is not used at all, and q has to
use the node xi.

These gadgets are now composed to form towers T j , by identifying the top termi-
nal nodes of Hj

i with the bottom terminal nodes of Hj
i+1. The tower has four levels

corresponding to every variable. We call this a floor of the tower. The bottom of the
tower T j is connected to the bottom of the tower T j+1. The start vertex is connected
to the bottom of the tower T 1. These connections are depicted in Figure 6. Before
we describe the remaining edges, we discuss the properties of a tower.

Consider a tower T j and a simple path r labeled according to (c(a∪ b)c)∗#(c(a∪
b)c)∗ that starts at one bottom vertex and reaches the other bottom vertex. Such a
path has the following important properties:

(1) The path r consists of two simple subpaths p and q separated by an edge
labeled with #. p starts at the bottom of the tower and is labeled according to the reg-
ular expression (c(a∪ b)c)∗. On every floor it uses exactly one of the nodes {x′i,¬x′i},
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Fig. 6. Assembling the gadgets, building the graph G1.

thus realizing an assignment to the variables of X. This assignment uniquely corre-
sponds to the labeling of this path.

(2) The constraints of simplicity and the direction of edges imply that q has the
following structure: it starts at the unused top vertex, is labeled with l(q) = l(p)R,
avoids already-used nodes, and reaches the unvisited bottom vertex. Furthermore q
is uniquely determined given p.

(3) Note that for each variable xi, the simple path r visits exactly one of the
nodes in {xi,¬xi}. If the path reflects an assignment in which xi is true, then xi is
unused and ¬xi is used, and vice versa. These free nodes will be used in the second
part of the reduction to verify that the chosen assignment is indeed satisfying F .

We now assemble the towers to form the graph G1 depicted in Figure 6.
Proposition 27. Any simple path in G1 starting at the start node s and

reaching the intermediate node τ , with the constraint that the labeling belongs to
$((c(a ∪ b)c)∗#(c(a ∪ b)c)∗$)∗, generates the language

L2 = { $w1#wR1 $w2#wR2 $ · · ·wn#wRn $ |wi ∈ (c(a ∪ b)c)∗ } .

Proof. The statement follows from the above.
We now choose the constraining CFL for the path from s to τ to be

L1 = { $w1#w2$wR2 #w3$wR3 # . . . wk−1$wRk−1#wk$ | k ∈ N, wi ∈ (c(a ∪ b)c)∗ }
The following important lemma follows from Proposition 27 and the definition of

L1.
Lemma 28.
(1) Proposition 27 enforces that in every tower the used and unused nodes can be

uniquely interpreted as an assignment to the variables of X.
(2) L1 enforces that these assignments are consistent across two consecutive tow-

ers.
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Fig. 7. One tower of the second part of the graph, according to the clause (xi ∨ ¬xj ∨ xk).

We now describe the subgraph (V,E2). The label of each edge in this subgraph
is u. The subgraph is composed of m subgraphs D1 · · ·Dm, the subgraph Di cor-
responding to clause ci, depicted in Figure 7. Every Di basically consists of four
simple chains. The first one goes up the tower. There it splits into three downward
directed paths. Each of them corresponds to a literal of ci. The node in the tower
Ti corresponding to that literal is used as part of the path. At the very bottom the
three paths are joined and connected to Di−1. At the boundaries D0 is replaced by d
and Dm+1 by τ . This completes the description of the graph G(V,E1 ∪ E2).

The instance of CFG-SiP consists of the graph G(V,E1∪E2) and the constraining
CFL L = L1 · u∗. This forces the path to go through every tower using edges in
G(V,E1), visit vertex τ , and then use the edges of G(V,E2) to reach d.

We now prove the correctness of the reduction. Suppose, there exists a satisfying
assignment for F . Then we choose the path from s through all the towers to τ
accordingly. For the remaining path to d we use the fact that for every clause of F at
least one literal is true. Choosing the downward-directed subpath according to this
literal we can complete a simple path to d. By construction, the label of this path
complies with the CFG.

Conversely suppose there exists a simple path in G from s to d satisfying the
labeling constraint. The alternation of # and $ in L enforces that such a path visits
every tower, then the vertex τ , and finally the destination. In this situation we can
define an assignment A according to the path in the first tower. By Lemma 28, and
the path’s being simple, we know that A is consistently represented in all the towers.
The second part of the path shows that A is a satisfying assignment for F .

Finally it is easy to verify that G has a constant treewidth. For this we describe
a tree decomposition of the graph. The up to four nodes of one level in a gadget Hi
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Fig. 8. The smaller gadgets replacing the Hi used in the original construction. a stands for
a1, a2, a3; b for b1, b2, b3. To encode the clauses some of these labels get removed, as in the proof of
Theorem 20.

and the up to four nodes of the path Di form so-called level-sets. Two neighboring
level-sets together, and two bottom level-sets of neighboring towers, respectively, form
a set of the tree-decomposition. Additional sets for s, d, and τ with all the adjacent
nodes are needed. This shows that the treewidth is bounded by 16.

Actually the result of Theorem 26 can be extended to obtain the following.

Corollary 29. CFG-SiP is NP-hard when restricted to graphs of treewidth 3
and a fixed linear, deterministic CFG.

Proof. The proof is similar to the proof of Theorem 26, and thus we describe
only the necessary modifications needed to prove the corollary. First we can replace
the second part of the graph, used to verify that the assignment satisfies the formula.
This is done as in the proof of Theorem 20, by replacing a (and b) by three symbols
a1, a2, and a3 (b1, b2, b3). We modify the language such that for the context-free part
all ai are equivalent and all bi are equivalent. Then we add a regular component to
the language (take the intersection), enforcing that on one leg all the indices have to
be identical. By removing certain labels we can make sure that in every tower one
clause is tested.

Since we do not need the free nodes anymore, the gadget Hi depicted in Fig-
ure 5 can be replaced by a much smaller one, depicted in Figure 8. Note that re-
placing parallel directed links by disjoint paths of length 2 does not increase the
treewidth in this situation. The additional nodes and edges can be covered in a tree-
decomposition by some more leaf-sets of size 3. This does not increase the width of
the tree-decomposition. In total the treewidth of the modified construction is reduced
to 3.

Taking a new alphabet symbol x we define the language H = { wxwP#v|w ∈
L1, v ∈ (Σ− {#})∗ }. It is easy to see that H can be specified by a linear CFG if L1
is a regular language. Here wP is defined to be the reverse of w with bottom marker
$ and top marker # exchanged. We take L1 to be a regular language that forces the
path to use the top marker of every tower. It is sufficient to argue that the proof of
Theorem 26 can be modified such that the constraining CFL can be replaced by H.

For this we double the sequence of variables, introducing a new set of variables
{x′i = x2n−i+1} yielding the extended sequence x1, x2, . . . , xn, x

′
n, x
′
n−1, . . . , x

′
1. The

new variables are used only while constructing the towers, but not for the evaluation
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Fig. 9. Schematic labeling of the path; w1 = v1vR2 ; solid arrows stand for correspondence
enforced by the language, dashed arrows for correspondence resulting from the graph.

of clauses. Additionally we have to incorporate the middle marker x into the graph.
Assuming the number of clauses m is odd, this means that we modify the tower m/2

at the level of the lowermost gadget H
m/2
n+1 created for the new variable x′n. In this

gadget we replace both upward edges by paths of length 2. The upper edge gets the
original label, the lower edge gets labeled with x.

The proof of correctness consists of showing that the new H ensures a single
assignment is represented by all the subpaths in the towers. This can be shown
inductively from the middle symbol x outwards. The way the information is spread
is depicted in Figure 9. The induction starts with the fact that the signature w1 of
the upward path in tower m/2 is forced by H to comply with v1 = v

R
2 , leading to the

definition w1 = v1v
R
2 , with the property w1 = w

R
1 . So we do not have to distinguish

between w1 and wR1 . Then the graph enforces w2 = w1, H enforces w3 = w2, and so
on. This establishes that all the (lower halves of the) signatures are identical. The
remaining part of the proof follows the details given for Theorem 26 closely.

Note that the language H in the proof of Theorem 26 can also be accepted by a
deterministic log-space-bounded Turing machine having a two-way input tape.

6.4. Algorithm for REG-SIP on graphs of bounded treewidth. In con-
trast to the above NP-hardness results we show that for graphs of bounded treewidth
the problem REG-SiP is solvable in polynomial time. The class of treewidth-bounded
graphs includes interval graphs and chordal graphs with bounded clique size, complete
meshes, with fixed length or width, outer planar graphs, series parallel graphs, etc.
We refer the reader to [AC+93, AL+91, Bo88, Bo92, BL+87] for other polynomial-
time-solvable problems for treewidth-bounded graphs. This easiness result, along with
the hardness result in the preceding section, also implies that these results are in a
sense the best possible. We will use the notion of a nice tree-decomposition discussed
in [Bo92].

Definition 30. A tree-decomposition 〈{Xi | i ∈ I }, T = (I, F )〉 is nice if one
can choose a root r in the tree such that

• T is a binary tree;
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• if i is a leaf, then |Xi| = 1 (start node);
• if i has two children j and k, then Xi = Xj = Xk (join node);
• if i has one child j, then there exists a vertex v such that either

– Xi = Xj \ {v} (forget node), or
– Xi = Xj ∪ {v} (introduce node).

We use the fact, that there exists always a nice tree-decomposition of optimal
width (treewidth), and that it can be constructed in linear time [Bo92].

Theorem 31.The REG-SiP problem is solvable in polynomial time on treewidth-
bounded graphs

Proof. Given a treewidth-bounded graph G along with a nice tree-decomposition
T (I, F ), we describe an algorithm that computes tables of (partial) shortest simple
paths in a bottom-up fashion in T . Specifically, we have one table for every set Xi
corresponding to the node i of T . We describe the entries of these tables and how
to compute the values (i) for leaf sets and (ii) for internal nodes from the values in
the tables of the child node(s). Since the number of values computed, as well as
the number of tables, is polynomial in the size of G, this yields a polynomial-time
algorithm.

The complicated task is to keep track of the simplicity of the path or, more
precisely, the nodes used by the partial solutions represented by entries of the table.
We have an entry for each type of path going through the set of nodes to which the
table is attached. Since these sets are separators in G it is not necessary to keep the
complete information about possible paths “behind” the separator. For the remainder
of this section, we use k to denote the treewidth of the tree-decomposition T . In the
following, for a set Xj corresponding to a node i in T we give a characterization of
the distinct subsolutions that need to be maintained.

First we introduce the notion of an “atom”: a simple path in the already “visited”
part of the graph. An atom is characterized by

(1) a node in Xj the path starts;
(2) the state the automaton is in before reading in the label of the path;
(3) a node in Xj the path ends;
(4) the state of the automaton after having read in the label of the path.

We accept the special situation of one-node paths, i.e., indices with identical nodes
and states.3 There are two special “half” atoms standing for a beginning segment
and an end segment of the path: There we have a node and a state identifying the
end node of a simple path that starts at the source, such that its label can lead the
automaton to the specified state. Similarly, for the end segment of a path we have
a node and a state such that the labeling along the path gets the automaton from
this state to an accepting state at the sink. Thus the subsolutions are completely
described by

the O(k) atoms plus the two special half atoms together with a set
of other used nodes in Xi.

We only need to allow the atoms to be empty, meaning that they do not denote any
path. Noting that the total number of ways to partition a set of size k is kO(k) leads
to an upper bound of (2k · |NFA|)O(k) for the number of entries in the tables4 which
is polynomial in the size of the NFA for fixed treewidth k.

Note that the entry in the table where both of the special half atoms are empty
stands for a complete solution in the already visited part of the graph. For every type

3Here we could actually account for ε moves in the automaton if we choose to.
4We have not attempted to optimize the size of the tables.
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of partial solutions we maintain the total length of the shortest partial solution.

We now describe the tables more formally. For the leaf sets consisting of a single
node v the table is easy to compute. It has entries with value 0 for the following
partial solutions:

s �= v �= d for all states i: the length 0 path v-v, with start and end states i, no
additional nodes used.

v = s the length 0-path from s to v ending in the initial state.
v = d for all accepting states f ∈ F : the length 0-path from v to d beginning in

state f .

In order to compute the tables in a bottom-up fashion in T , we need to consider
three possible cases depending on the type of nodes in T . Let i be a node in T .

i is a join node: (1) Letting j and l be the children of i, we know that Xi = Xj =
Xl. Combine a partial solution stored in the table associated j with a partial
solution stored in the table associated with l. For all pairs of types of partial
solutions check if they can be combined to form another partial solution
(no commonly used nodes, matching boundary node and state of the partial
solution, respecting special cases for source and destination subpaths). Create
the new type and compute the value of the combined solution. If the type
does not yet exist in the table or the newly computed value is smaller than
the old table entry, update the table entry. This is justified by the observation
that the described subsolutions associated with j and k are disjoint except at
the set of separator nodes Xi.

(2) Keep the componentwise min of the tables: for all types of partial
solutions (their descriptions match as the two sets of the decomposition are
identical), keep the smaller value. If the solution according to a type does
not exist, we assume its value to be infinity. (This can also be seen as (1),
where we combine the entry with an “empty subsolution” of cost 0 from the
left and from the right and then choose the better one.)

i is a forget node: Let v be the node removed from the set in the nice tree-decom-
position. We discard all partial solutions that contain a path with endpoint v.
In all partial solutions, we delete v in the set of used nodes. For the resulting
identical subsolutions we keep the one with minimum value.

i is an introduce node: Let v be the new node, ei the edges between v and nodes
in the set of the child.

(1) Set up the new node. Copy all known partial solutions. Create new
partial solutions by combining all known with all solutions created according
to the rules stated above for leaf sets of the form {v}.

(2) Include the incident edges one by one. Consider all possible new
paths using this edge.

The correctness of the algorithm follows by noting the following:

(1) Given an entry in the root of the table for the existence of a path p of a given
length, we can easily find such a path recursively from subsolutions associated with
the children of the root.

(2) Conversely, let p be one of the optimal (shortest) solutions. Let Xr be the
set associated with the root of T . Assume that r is a join node and let l and w be
the left and right children. The argument for the other two cases is similar and thus
omitted. It is easy to see that the path p can be broken into two paths p1 and p2 (p2
could be empty) such that p1 is a subsolution maintained at l and p2 is subsolution
maintained at w.
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The following generalization of the previous result holds.
Corollary 32. Let L be a fixed language decidable by a one-way input tape,

log-space-bounded nondeterministic Turing machine (NDTM). Then the problem of
finding a shortest simple path from source to destination according to L is solvable in
polynomial time on treewidth bounded graphs.

Proof. The length of a simple path in the graph is bounded by n. The number
of configurations of an NDTM using logn tape cells is polynomial in n. No other
configurations of the machine can be used while recognizing a word of length smaller
than or equal to n. As the machine reads the input tape in one direction only,
we can create an NFA with states representing configuration that (i) decides L for
words of length ≤ n and (ii) has a size polynomial in n. Using the algorithm in the
proof of Theorem 31 with NFA M , we can compute the sought path in polynomial
time.

Note that anbncn and all languages accepted by pushdown automata having only
one stack-symbol are examples of such languages.

6.5. Algorithm for acyclic graphs. Another well-known situation in which
shortest simple paths are feasible is for acyclic graphs. This stems from the fact that
all paths in an acyclic graph are simple and by this the shortest and the shortest
simple path always coincide. This, together with the results of section 5, yields the
following result.

Corollary 33. The problem CFG-SiP is solvable in polynomial time on directed
acyclic graphs.

Making use of the fact that the length of a simple path is bounded by the size of
the graph, we get the following.

Corollary 34. The problem of finding a shortest simple simple from source to
destination in a directed acyclic graph according to a formal language L is solvable in
polynomial time if there exists a polynomial time computable CFL R of size polynomial
in n with the following property:

x ∈ Σ∗, |x| ≤ n : (x ∈ L↔ x ∈ L(R)).

7. Extensions and applications. In this section, we briefly discuss extensions
and applications of our results to problems in transportation science. For many of
these applications, it is possible to devise dynamic-programming-based methods to
solve the problems; our aim is to convey the applicability of the general methodology
proposed here.

7.1. Node labels and trip chaining. Consider the problem where the nodes
have labels, instead of the edges and the constraint is on the concatenated node labels
of a path. Easy transformations of the input show that all the results we develop for
the edge-labeled case are also true for the node-labeled case. We can transform this
kind of instance into an edge-labeled one by the following steps: The network stays
the same, the edges get labeled with a new symbol. Every node gets an additional
loop attached. This loop gets the label(s) of the node. Then the language has to be
extended such that (i) exactly every second symbol has to be the new edge symbol
and (ii) the word without the edge symbols is in the original language. It is easy to see
that regular and context-free languages are closed under this operation. This shows,
that easiness results for edge label constraints imply easiness results for node label
constraints. If we have an edge-labeled graph, we split the edges and insert a node
with the edge label, and label all the old nodes with one new symbol. The language has
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Fig. 10. Automaton used to count shared links, accepting if less than 4.

to be extended as above. This construction transfers edge-label-constrained hardness
results to node-label-constrained results.

The node label extensions turn out to be useful in modeling transportation-related
problems. In many transportation applications (e.g., TRANSIMS) one needs to find
paths for travelers who need to visit a fixed sequence of location types. For instance,
we might want to find a shortest path from home to home that visits some locations,
e.g., ATM–gas station–supermarket–post office, in this particular order, but with the
freedom to choose one of the several ATMs (gas stations, etc.) in the city. Problems of
this type are referred to in the transportation literature as trip chaining problems. The
problem cannot be solved by direct application of Dijkstra’s shortest path algorithm
to find best paths between two consecutive subdestinations and concatenating these
paths. By treating each destination type as a node label and constructing a simple
regular expression, we can select places for the subdestinations and find shortest
path in networks that satisfy the precedence constraints using the polynomial result
discussed in this paper.

7.2. Finding alternatives to shortest paths. There has been considerable
interest in algorithms for variations of shortest paths (see [AMO93, Ta81, HNR68,
OR90, Ha92, BAL97]). For example, in a recent paper by Scott, Pabon-Jimenez, and
Bernstein [SJB97], the authors consider the following problem: given a graph G, a
shortest path SP in G, and an integer parameter, find the shortest path SP1 in G
that has at most k links in common with SP . Call this the best k-similar path
problem. In [SJB97], the authors present an integer linear program formulation of the
problem and present a heuristics based on Lagrangian relaxation. It can be verified
that the heuristic takes exponential time in the worst case. Quoting [SJB97], “The link
overlap constraint thus makes finding the best path much more difficult (i.e., shortest
path problems with a single constraint are NP-hard)”; thus suggesting that the best
k-similar path problem is likely to be NP-hard. Here we show that this problem is
solvable in time T (k|G|), where T (n) denotes the time taken to find a shortest path
on a graph with n vertices. This substantially improves upon the exponential-time
algorithm given in [SJB97]. Our approach for solving the problem is based on using
our algorithm for regular-expression-based shortest paths. The approach uses the fact
that, given a k and symbol a ∈ Σ, the language consisting of all words w ∈ Σ∗ with
no more than k occurrences of the symbol a in them is regular. Given a graph G, a
shortest path SP in G and an integer parameter k, we perform the following steps:

(1) Label the edges on the shortest paths by a and all the other edges in G by b.
(2) Construct an NFA M that accepts all strings that have no more than k

occurrences of a. The corresponding automaton M is shown in Figure 10
(and happens to be deterministic).

(3) Find a shortest path in G with the constraint that its label is in L(M).
The proof of correctness is straightforward. We note that in this particular case,

we in fact always get a simple path, since we can always remove a loop from a path
without increasing its length or acceptability of the shorter string.
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7.3. Handling left-turn and U-turn penalties. Suppose we are told that in
our road network there is additional cost incurred when we take certain left turns.
This is a common scenario in transportation science and is referred to as turn penalties
[HM95]. This is not an unlikely scenario. In fact the current Dallas Fort Worth case
study has exactly this situation. Specifically, several left turns in the study area are
prohibited, which amounts to saying that the cost of taking that edge if it is a left
turn is ∞. Moreover, the infrastructure change that is proposed for the case study
intends to make a series of left turns illegal near the area of Valley View Mall and the
Galleria.

A well-known reduction from the original problem to the problem of finding a
shortest path in a modified network (see [AMO93] for details) can be used to solve
this problem. (The basic idea is to replace each intersection by a clique of size 4.
A slightly more complicated subgraph is required for directed graphs.) Instead of
giving a penalty to a turn, suppose we wish to find a path in which we do not take
more than, say, k left turns. This variant of the problem cannot be solved by a direct
application of Dijkstra’s algorithm, but is amenable to an efficient solution using the
formal language approach. To do this we again replace each intersection by a clique
of size 4 and then add appropriate labels to each of these edges. We then construct
an automaton, which accepts strings that contain at most k labels corresponding to
left turns. This can be constructed along the lines of the k-similar path problem.
The rest of the details are straightforward. Now consider a more complicated query
in which we wish to find a path such that the number of left turns is a small fraction
of the total number of edges. It is easy to see that this can be written as a CFG and
thus again can be solved efficiently.

7.4. Time-dependent networks and multicriteria shortest paths. In sev-
eral transportation applications, it is desirable to solve shortest path problems on
networks in which the edge weights are a function of time. In [OR90] Orda and
Rom consider this type of problem for various waiting policies and function classes.
One of their basic algorithms is a dynamic programming on functions. Combining this
with our results, we obtain a polynomial-time algorithm for CFL-constrained shortest
paths in time-depending networks.

As a final application, consider bicriteria and in general multicriteria shortest path
problems. For instance, we might have two different weight functions on each edge a
function c(e) that captures the cost of using that edge and a function t(e) that captures
the time it takes to traverse the edge. The aim of the bicriteria shortest path problem
aims at finding a minimum cost path from a source s to a destination d, that obeys
a given budget bound B on the time taken to go from s to d. This problem has been
studied extensively in the literature (see [MRS+95] and the references therein). Given
that the cross product construction simply constructs multiple copies of the basic
graph, it is easy to design a polynomial-time approximation scheme for the bicriteria
shortest path problem subject to labeling constraints. The idea is a straightforward
combination of the ones outlined here and those used for designing approximation
schemes for the basic bicriteria problem.

7.5. Other formal languages. As expected, attempts to extend the poly-
nomial-time algorithms to more general grammars such as the context-sensitive gram-
mars fail to yield polynomial-time results. Intuitively, the hardness of the problems is
due to the fact that emptiness and recognition problems for context-sensitive grammars
are undecidable and PSPACE-complete, respectively.

Consider the problem for context-sensitive grammars. It is easy to show that
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the problem (CSG-ShP) is undecidable even for a fixed log-space decidable context-
sensitive language. It is easy to see that the language

L =
{
w#i | w ∈ {0, 1}∗, TM(w) halts on an empty input using space log i

}

is context sensitive. It is in fact log-space computable. It is also straightforward to
see that

L′ = {w | ∃i w#i ∈ L}
is another way of stating the halting problem and is thus undecidable.

Showing that we can use CSG-ShP to decide L′ establishes that CSG-ShP is
itself undecidable. For w ∈ {0, 1}∗ we construct a directed chain labeled according
to w with start s and end d. We additionally put a loop from d to d labeled with #.
The fixed constraining language is L. Now w ∈ L′ is equivalent to the existence of a
(in general not simple) path from s to d in this graph. Note that this graph is nearly
a tree.

In contrast, the CSG-SiP is PSPACE-complete. Membership in PSPACE follows
by observing that a simple path in a graph G(V,E) can have at most |V | nodes. Thus
a space-bounded NDTM [HU79] can guess a simple path p and then verify that
l(p) ∈ L(M), where M is the context-sensitive grammar. The hardness is shown by
reducing the problem of deciding if w ∈ L(M) to finding a simple path in a directed
chain that is labeled according to w. Let s and t denote the two endpoints of this chain.
Then there is a path from s to t whose labels are in L(R) if and only if w ∈ L(R).
Similar extensions hold for other formal languages. Note that for this argument the
context-sensitive language can be fixed to represent an arbitrary PSPACE-complete
problem.

8. Conclusions. In this paper, we have presented a general approach for mod-
eling and solving a number of problems that seek to find paths subject to certain
labeling constraints. The model was shown to be particularly useful in understand-
ing and solving transportation science problems. The results in this paper provide a
fairly tight characterization of the complexity of these problems, varying the type of
considered path, the underlying grammar, and allowed graph classes. For a number
of nontrivial cases this completely characterizes the boundary between easy and hard
cases. Our results can also be seen investigating tradeoffs between (i) economy of
descriptions of languages used to describe labeling constraints and (ii) the efficient
solvability of the corresponding problems.

In [BK+99, JBM99, JMN98], we have obtained a number of additional theo-
retical as well as empirical results on related topics. Specifically in [JBM99], we
show how applying our results on finding REG-ShP in time-dependent networks can
be used to solve a number of additional problems arising in transportation science.
In [BK+99, JMN98], we have carried out a detailed experimental analysis to validate
the suitability of extensions of the algorithm suggested here on realistic transporta-
tion networks. We refer the reader to the Web site http://transims.tsasa.lanl.gov for
comprehensive information about TRANSIMS and related documents.

The results presented here raise a number of questions for further investigation.
First, it would be of interest to characterize the class of fixed regular (context-free)
languages for which the regular-expression-constrained simple path problems are solv-
able in polynomial time. It would also be of interest to provide natural formulation
of other label-constrained subgraph problems. For example, what is a natural way
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to specify labeling constraints for spanning trees of a graph? A number of possible
ways present themselves; the aim is to find ways that are both natural and useful in
modeling practical problems.
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Abstract. We propose a fast methodology for encoding graphs with information-theoretically
minimum numbers of bits. Specifically, a graph with property π is called a π-graph. If π satisfies
certain properties, then an n-node m-edge π-graph G can be encoded by a binary string X such that
(1) G andX can be obtained from each other in O(n logn) time, and (2) X has at most β(n)+o(β(n))
bits for any continuous superadditive function β(n) so that there are at most 2β(n)+o(β(n)) distinct
n-node π-graphs. The methodology is applicable to general classes of graphs; this paper focuses on
planar graphs. Examples of such π include all conjunctions over the following groups of properties:
(1) G is a planar graph or a plane graph; (2) G is directed or undirected; (3) G is triangulated,
triconnected, biconnected, merely connected, or not required to be connected; (4) the nodes of G
are labeled with labels from {1, . . . , �1} for �1 ≤ n; (5) the edges of G are labeled with labels from
{1, . . . , �2} for �2 ≤ m; and (6) each node (respectively, edge) of G has at most �3 = O(1) self-loops
(respectively, �4 = O(1) multiple edges). Moreover, �3 and �4 are not required to be O(1) for the cases
of π being a plane triangulation. These examples are novel applications of small cycle separators
of planar graphs and are the only nontrivial classes of graphs, other than rooted trees, with known
polynomial-time information-theoretically optimal coding schemes.
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1. Introduction. Let G be a graph with n nodes and m edges. This paper
studies the problem of encoding G into a binary string X with the requirement that
X can be decoded to reconstruct G. We propose a fast methodology for designing
a coding scheme such that the bit count of X is information-theoretically optimal.
Specifically, a function β(n) is superadditive if β(n1)+β(n2) ≤ β(n1+n2). A function
β(n) is continuous if β(n + o(n)) = β(n) + o(β(n)). For example, β(n) = nc logd n
is continuous and superadditive, for any constants c ≥ 1 and d ≥ 0. The continuity
and superadditivity are closed under additions. A graph with property π is called a
π-graph. If π satisfies certain properties, then we can obtain an X such that (1) G
and X can be computed from each other in O(n log n) time, and (2) X has at most
β(n)+o(β(n)) bits for any continuous superadditive function β(n) so that there are at
most 2β(n)+o(β(n)) distinct n-node m-edge π-graphs. The methodology is applicable
to general classes of graphs; this paper focuses on planar graphs.
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A conjunction over k groups of properties is a boolean property π1 ∧ · · · ∧ πk,
where πi is a property in the ith group for each i = 1, . . . , k. Examples of suitable π
for our methodology include every conjunction over the following groups:

F1. G is a planar graph or a plane graph.
F2. G is directed or undirected.
F3. G is triangulated, triconnected, biconnected, merely connected, or not re-

quired to be connected.
F4. The nodes of G are labeled with labels from {1, . . . , �1} for �1 ≤ n.
F5. The edges of G are labeled with labels from {1, . . . , �2} for �2 ≤ m.
F6. Each node of G has at most �3 = O(1) self-loops.
F7. Each edge of G has at most �4 = O(1) multiple edges.

Moreover, �3 and �4 are not required to be O(1) for the cases of π being a plane
triangulation. For instance, π can be the property of being a directed unlabeled
biconnected simple plane graph. These examples are novel applications of small cycle
separators of planar graphs [12, 11]. Note that the rooted trees are the only other
nontrivial class of graphs with a known polynomial-time information-theoretically
optimal coding scheme, which encodes a tree as nested parentheses using 2(n−1) bits
in O(n) time.

Previously, Tutte proved that there are 2β(m)+o(β(m)) distinct m-edge plane trian-
gulations where β(m) = (83 − log2 3)m+ o(m) ≈ 1.08m+ o(m) [17] and that there are

22m+o(n) distinct m-edge n-node triconnected plane graphs that may be nonsimple
[18]. Turán [16] used 4m bits to encode a plane graph G that may have self-loops.
Keeler and Westbrook [10] improved this bit count to 3.58m. They also gave coding
schemes for several families of plane graphs. In particular, they used 1.53m bits for a
triangulated simple G, and 3m bits for a connected G free of self-loops and degree-1
nodes. For a simple triangulated G, He, Kao, and Lu [5] improved the bit count to
4
3m+O(1). For a simple G that is triconnected and thus free of degree-1 nodes, they
[5] improved the bit count to at most 2.835m bits. This bit count was later reduced

to at most 3 log2 3
2 m + O(1) ≈ 2.378m + O(1) by Chuang et al. [2]. These coding

schemes all take linear time for encoding and decoding, but their bit counts are not
information-theoretically optimal. For labeled planar graphs, Itai and Rodeh [6] gave
an encoding of 3

2n log n+O(n) bits. For unlabeled general graphs, Naor [14] gave an
encoding of 1

2n
2 − n log n+O(n) bits.

For applications that require query support, Jacobson [7] gave a Θ(n)-bit encod-
ing for a connected and simple planar graph G that supports traversal in Θ(logn)
time per node visited. Munro and Raman [13] improved this result and gave schemes
to encode binary trees, rooted ordered trees, and planar graphs. For a general planar
G, they used 2m+8n+ o(m+ n) bits while supporting adjacency and degree queries
in O(1) time. Chuang et al. [2] reduced this bit count to 2m + (5 + 1

k )n + o(m + n)
for any constant k > 0 with the same query support. The bit count can be further
reduced if only O(1)-time adjacency queries are supported, or if G is simple, tricon-
nected, or triangulated [2]. For certain graph families, Kannan, Naor and Rudich [8]
gave schemes that encode each node with O(log n) bits and support O(log n)-time
testing of adjacency between two nodes. For dense graphs and complement graphs,
Kao, Occhiogrosso, and Teng [9] devised two compressed representations from adja-
cency lists to speed up basic graph search techniques. Galperin and Wigderson [4]
and Papadimitriou and Yannakakis [15] investigated complexity issues arising from
encoding a graph by a small circuit that computes its adjacency matrix.

Section 2 discusses the general encoding methodology. Sections 3 and 4 use the
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methodology to obtain information-theoretically optimal encodings for various classes
of planar graphs. Section 5 concludes the paper with some future research directions.

2. The encoding methodology. Let |X| be the number of bits in a binary
string X. Let |G| be the number of nodes in a graph G. Let |S| be the number of
elements, counting multiplicity, in a multiset S.
Fact 1 (see [1, 3]). Let X1, X2, . . . , Xk be O(1) binary strings. Let n = |X1| +

|X2|+ · · ·+ |Xk|. Then there exists an O(log n)-bit string χ, obtainable in O(n) time,
such that given the concatenation of χ,X1, X2, . . . , Xk, the index of the first symbol
of each Xi in the concatenation can be computed in O(1) time.

Let X1+X2+ · · ·+Xk denote the concatenation of χ,X1, X2, . . . , Xk as in Fact 1.
We call χ the auxiliary binary string for X1 +X2 + · · ·+Xk.

A graph with property π is called a π-graph. Whether two π-graphs are distinct
or indistinct depends on π. For example, let G1 and G2 be two topologically non-
isomorphic plane embeddings of the same planar graph. If π is the property of being
a planar graph, then G1 and G2 are two indistinct π-graphs. If π is the property of
being a planar embedding, then G1 and G2 are two distinct π-graphs. Let α be the
number of distinct n-node π-graphs. Clearly it takes 
log2 α� bits to differentiate all
n-node π-graphs. Let indexπ(G) be an 
log2 α�-bit indexing scheme of the α distinct
π-graphs.

Let G0 be an input n0-node π-graph. Let λ = log log log(n0). The encoding
algorithm encodeπ(G0) is merely a function call codeπ(G0, λ), where the recursive
function codeπ(G,λ) is defined as follows:

function codeπ(G,λ)
{
if |G| = O(1) or |G| ≤ λ then
return indexπ(G)

else
{
compute π-graphs G1, G2, and a string X, from which G can be recovered;
return codeπ(G1, λ) + codeπ(G2, λ) +X;
}
}

Clearly, the code returned by algorithm encodeπ(G0) can be decoded to recover G0.
For notational brevity, if it is clear from the context, the code returned by algo-
rithm encodeπ(G0) (respectively, function codeπ(G,λ)) is also denoted encodeπ(G0)
(respectively, codeπ(G,λ)).

Function codeπ(G,λ) satisfies the separation property if there exist two constants
c and r, where 0 ≤ c < 1 and r > 1, such that the following conditions hold:

P1. max(|G1|, |G2|) ≤ |G|/r.
P2. |G1|+ |G2| = |G|+O(|G|c).
P3. |X| = O(|G|c).
Let f(|G|) be the time required to obtain indexπ(G) and G from each other. Let

g(|G|) be the time required to obtain G1, G2, X from G, and vice versa.
Theorem 2.1. Assume that function codeπ(G,λ) satisfies the separation property

and that there are at most 2β(n)+o(β(n)) distinct n-node π-graphs for some continuous
superadditive function β(n).

1. |encodeπ(G0)| ≤ β(n0) + o(β(n0)) for any n0-node π-graph G0.

2. If f(n) = 2n
O(1)

and g(n) = O(n), then G0 and encodeπ(G0) can be obtained
from each other in O(n0 log n0) time.
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Proof. The theorem holds trivially if n0 = O(1). For the rest of the proof we
assume n0 = ω(1), and thus λ = ω(1). Many graphs may appear during the execution
of encodeπ(G0). These graphs can be organized as nodes of a binary tree T rooted at
G0, where (i) if G1 and G2 are obtained from G by calling codeπ(G,λ), then G1 and
G2 are the children of G in T , and (ii) if |G| ≤ λ, then G has no children in T . Further
consider the multiset S consisting of all graphs G that are nodes of T . We partition
S into �+1 multisets S(0), S(1), S(2), . . . , S(�) as follows. S(0) consists of the graphs
G with |G| ≤ λ. For i ≥ 1, S(i) consists of the graphs G with ri−1λ < |G| ≤ riλ. Let
G0 ∈ S(�), and thus set � = O(log n0

λ ).
Define p =

∑
H∈S(0) |H|. We first show

|S(i)| < p

ri−1λ
(1)

for every i = 1, . . . , �. Let G be a graph in S(i). Let S(0, G) be the set consisting
of the leaf descendants of G in T ; for example, S(0, G0) = S(0). By condition P2,
|G| ≤ ∑

H∈S(0,G) |H|. By condition P1, no two graphs in S(i) are related in T .

Therefore S(i) contains at most one ancestor of H in T for every graph H in S(0). It
follows that

∑
G∈S(i) |G| ≤

∑
G∈S(i)

∑
H∈S(0,G) |H| ≤ p. Since |G| > ri−1λ for every

G in S(i), inequality (1) holds.
Statement 1. Suppose that the children of G in T are G1 and G2. Let b(G) =

|X|+ |χ|, where χ is the auxiliary binary string for codeπ(G1, λ) + codeπ(G2, λ) +X.
Let q =

∑
i≥1

∑
G∈S(i) b(G). Then |encodeπ(G0)| = q +

∑
H∈S(0) |codeπ(H,λ)| ≤

q +
∑
H∈S(0)(β(|H|) + o(β(|H|))). By the superadditivity of β(n), |encodeπ(G0)| ≤

q + β(p) + o(β(p)). Since β(n) is continuous, Statement 1 can be proved by showing
p = n0 + o(n0) and q = o(n0) below.

By condition P3, |X| = O(|G|c). By Fact 1, |χ| = O(log |G|). Thus, b(G) =
O(|G|c), and

q =
∑
i≥1

∑
G∈S(i)

O(|G|c).(2)

Now we regard the execution of encodeπ(G0) as a process of growing T . Let a(T ) =∑
H is a leaf of T |H|. At the beginning of the function call encodeπ(G0), T has exactly

one node G0, and thus a(T ) = n0. At the end of the function call, T is fully expanded,
and thus a(T ) = p. By condition P2, during the execution of encodeπ(G0), every
function call codeπ(G,λ) with |G| > λ increases a(T ) by O(|G|c). Hence

p = n0 +
∑
i≥1

∑
G∈S(i)

O(|G|c).(3)

Note that
∑
i≥1

∑
G∈S(i)

|G|c ≤
∑
i≥1

(riλ)cp/(ri−1λ) = pλc−1r
∑
i≥1

r(c−1)i = pλc−1O(1) = o(p).(4)

By (3) and (4), we have p = n0+o(p), and thus p = O(n0). Therefore
∑
i≥1

∑
G∈S(i) |G|c

= o(n0). By (2) and (3), p = n0 + o(n0) and q = o(n0), finishing the proof of State-
ment 1.

Statement 2. By conditions P1 and P2, |H| = Ω(λ) for every H ∈ S(0). Since∑
H∈S(0) |H| = p = n0 + o(n0), |S(0)| = O(n0/λ). Together with (1), we know
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|S(i)| = O( n0

riλ ) for every i = 0, . . . , �. By the definition of S(i), |G| ≤ riλ for every
i = 0, . . . , �. Therefore G0 and encodeπ(G0) can be obtained from each other in time

n0

λ
O


f(λ) +

∑
1≤i≤�

r−ig(riλ)


 .

Clearly f(λ) = 2λ
O(1)

= 2o(log log n0) = o(log n0). Since � = O(log n0) and g(n) =
O(n),

∑
1≤i≤� r

−ig(riλ) =
∑

1≤i≤� λ = O(λ log n0), and Statement 2 follows.
Sections 3 and 4 use Theorem 2.1 to encode various classes of graphs G. Section 3

considers plane triangulations. Section 4 considers planar graphs and plane graphs.

3. Plane triangulations. A plane triangulation is a plane graph, each of whose
faces has size exactly 3. For any plane triangulation P with n nodes, m edges, and
f faces, Euler’s formula ensures that n − m + f = 2 even if P contains self-loops
and multiple edges. One can then obtain m = 3n− 6. Therefore every n-node plane
triangulation, simple or not, has exactly 3n− 6 edges.

In this section, let π be an arbitrary conjunction over the following groups of
properties of a plane triangulation G: F2, F6, and F7, where �3 and �4 are not
required to be O(1). Our encoding scheme is based on the next fact.
Fact 2 (see [12]). Let H be an n-node m-edge undirected plane graph, each of

whose faces has size at most d. We can compute a node-simple cycle C of H in
O(n+m) time such that

• C has at most 2
√
dn nodes; and

• the numbers of H’s nodes inside and outside C are at most 2n/3, respectively.
Let G be a given n-node π-graph. Let G′ be obtained from the undirected version

of G by deleting the self-loops. Clearly each face of G′ has size at most 4. Let C ′

be a cycle of G′ having size at most 4
√
n guaranteed by Fact 2. Let C consist of the

edges of G corresponding to the edges of C ′ in G′. Note that C is not necessarily a
directed cycle if G is directed. Since G′ does not have self-loops, 2 ≤ |C| ≤ 4√n. If
�4 ≥ 2, then |C| can be 2. Let Gin (respectively, Gout) be the subgraph of G formed
by C and the part of G inside (respectively, outside) C. Let x be an arbitrary node
on C.

G1 is obtained by placing a cycle C1 of three nodes outside Gin and then trian-
gulating the face between C1 and Gin such that a particular node y1 of C1 has degree
strictly lower than the other two. Clearly this is feasible even if |C| = 2. The edge
directions of G1 −Gin can be arbitrarily assigned according to π.

G2 is obtained from Gout by (1) placing a cycle C2 of three nodes outside Gout

and then triangulating the face between C2 and Gout such that a particular node y2 of
C2 has degree strictly lower than the other two, and (2) triangulating the face inside
C by placing a new node z inside of C and then connecting it to each node of C by
an edge. Note that (2) is feasible even if |C| = 2. Similarly, the edge directions of
G2 −Gout can be arbitrarily assigned according to π.

Let u be a node of G. Let v be a node on the boundary B(G) of the exterior
face of G. Define dfs(u,G, v) as follows. Let w be the counterclockwise neighbor of
v on B(G). We perform a depth-first search of G starting from v such that (1) the
neighbors of each node are visited in the counterclockwise order around that node,
and (2) w is the second visited node. A numbering is assigned the first time a node is
visited. Let dfs(u,G, v) be the binary number assigned to u in the above depth-first
search. Let X = dfs(x,G1, y1) + dfs(x,G2, y2) + dfs(z,G2, y2).
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Lemma 3.1.
1. G1 and G2 are π-graphs.
2. There exists a constant r > 1 with max(|G1|, |G2|) ≤ n/r.
3. |G1|+ |G2| = n+O(

√
n).

4. |X| = O(log n).
5. G1, G2, X can be obtained from G in O(n) time.
6. G can be obtained from G1, G2, X in O(n) time.
Proof. Statements 1–5 are straightforward by Fact 2 and the definitions of G1,

G2, and X. Statement 6 is proved as follows. It takes O(n) time to locate y1 (respec-
tively, y2) in G1 (respectively, G2) by looking for the node with the lowest degree on
B(G1) (respectively, B(G2)). By Fact 1, it takes O(1) time to obtain dfs(y1, G1, x),
dfs(y2, G2, x), and dfs(y2, G2, z) from X. Therefore x and z can be located in G1

and G2 in O(n) time by depth-first traversal. Now Gin can be obtained from G1 by
removing B(G1) and its incident edges. The cycle C in Gin is simply B(Gin). Also,
Gout can be obtained from G2 by removing B(G2), z, and their incident edges. The
C in Gout is simply the boundary of the face that encloses z and its incident edges in
G2. Since we know the positions of x in Gin and Gout, G can be obtained from Gin

and Gout by fitting them together along C by aligning x. The overall time complexity
is O(n).
Theorem 3.2. Let G0 be an n0-node π-graph. Then G0 and encodeπ(G0) can be

obtained from each other in O(n0 log n0) time. Moreover, |encodeπ(G0)| ≤ β(n0) +
o(β(n0)) for any continuous superadditive function β(n) such that there are at most
2β(n)+o(β(n)) distinct n-node π-graphs.

Proof. Since an n-node π-graph has O(n) edges, there are at most 2O(n log n)

distinct n-node π-graphs. Thus, there exists an indexing scheme indexπ(G) such that

indexπ(G) and G can be obtained from each other in 2|G|
O(1)

time. The theorem
follows from Theorem 2.1 and Lemma 3.1.

4. Planar graphs and plane graphs. In this section, let π be an arbitrary
conjunction over the following groups of properties of G: F1, F2, F3, F6, and F7.
Clearly an n-node π-graph has O(n) edges.

Let G be an input n-node π-graph. For the cases of π being a planar graph
rather than a plane graph, let G be embedded first. Note that this is only for the
encoding process to be able to apply Fact 2. At the base level, we still use the indexing
scheme for π-graphs rather than the one for embedded π-graphs. As shown below,
the decoding process does not require the π-graphs to be embedded.

Let G′ be obtained from the undirected version of G by (1) triangulating each
of its faces that has size more than 3 such that no additional multiple edges are
introduced, and then (2) deleting its self-loops. Let C ′ be a cycle of G′ guaranteed
by Fact 2. Let C consists of (a) the edges of G corresponds to the edges of C ′ in
G′, and (b) the edges of C ′ that are added into G′ by the triangulation. (C is not
necessarily a directed cycle of a directed G.) Let GC be the union of G and C. Let Gin

(respectively, Gout) be the subgraph of GC formed by C and the part of GC inside
(respectively, outside) C. Let C = x1x2 · · ·x�x�+1, where x�+1 = x1. By Fact 2,
� = O(

√
n).

Lemma 4.1. Let H be an O(n)-node O(n)-edge graph. There exists an integer k
with n0.6 ≤ k ≤ n0.7 such that H does not contain any node of degree k or k − 1.

Proof. Assume for a contradiction that such a k does not exist. It follows that
the sum of degrees of all nodes in H is at least (n0.6 + n0.7)(n0.7 − n0.6)/4 = Ω(n1.4).
This contradicts the fact that H has O(n) edges.
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w0

w3

w2

w1

wk−1 wk

wk−2

Fig. 1. A k-wheel graph Wk.

Let Wk, with k ≥ 3, be a k-wheel graph defined as follows. As shown in Figure 1,
Wk consists of k + 1 nodes w0, w1, w2, . . . , wk−1, wk, where w1, w2, . . . , wk, w1 form a
cycle. w0 is a degree-k node incident to each node on the cycle. Finally, w1 is incident
to wk−1. ClearlyWk is triconnected. Also, w1 and wk are the only degree-4 neighbors
of w0 in Wk. Let k1 (respectively, k2) be an integer k guaranteed by Lemma 4.1 for
Gin (respectively, Gout). Now we define G1, G2, and X as follows.

G1 is obtained from Gin and a k1-wheel graph Wk1 by adding an edge (wi, xi) for
every i = 1, . . . , �. Clearly for the case of π being a plane graph, G1 can be embedded
such that Wk1 is outside Gin, as shown in Figure 2(a). Thus, the original embedding
of Gin can be obtained from G1 by removing all nodes of Wk1 . The edge directions
of G1 −Gin can be arbitrarily assigned according to π.

G2 is obtained from Gout and a k2-wheel graphWk2 by adding an edge (wi, xi) for
every i = 1, . . . , �. Clearly for the case of π being a plane graph, G2 can be embedded
such that Wk2 is inside C, as shown in Figure 2(b). Thus, the original embedding of
Gout can be obtained from G2 by removing all nodes of Wk2 . The edge directions of
G2 −Gout can be arbitrarily assigned according to π.

Let X be an O(
√
n)-bit string which encodes k1, k2, and whether each edge

(xi, xi+1) is an original edge in G, for i = 1, . . . , �.
Lemma 4.2.
1. G1 and G2 are π-graphs.
2. There exists a constant r > 1 with max(|G1|, |G2|) ≤ n/r.
3. |G1|+ |G2| = n+O(n0.7).
4. |X| = O(

√
n).

5. G1, G2, X can be obtained from G in O(n) time.
6. G can be obtained from G1, G2, X in O(n) time.
Proof. Since Wk1 and Wk2 are both triconnected, and each node of C has degree

at least 3 in G1 and G2, statement 1 holds for each case of the connectivity of the
input π-graph G. Statements 2–5 are straightforward by Fact 2 and the definitions
of G1, G2, and X. Statement 6 is proved as follows. First of all, we obtain k1 from
X. Since Gin does not contain any node of degree k1 or k1− 1, w0 is the only degree-
k1 node in G1. Therefore it takes O(n) time to identify w0 in G1. wk1 is the only
degree-3 neighbor of w0. Since k1 > �, w1 is the only degree-5 neighbor of w0. w2 is
the common neighbor of w0 and w1 that is not adjacent to wk1 . From now on, wi, for
each i = 3, 4, . . . , �, is the common neighbor of w0 and wi−1 other than wi−2. Clearly,
w1, w2, . . . , w� and thus x1, x2, . . . , x� can be identified in O(n) time. Gin can now be
obtained from G1 by removing Wk1 . Similarly, Gout can be obtained from G2 and
X by deleting Wk1 after identifying x1, x2, . . . , x�. Finally, GC can be recovered by
fitting Gin and Gout together by aligning x1, x2, . . . , x�. Based on X, G can then be
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Fig. 2. G1 and G2. The gray area of G1 is Gin. The gray area of G2 is Gout.

obtained from GC by removing the edges of C that are not originally in G.

Remark. In the proof for statement 6 of Lemma 4.2, identifying the degree-k1

node (and the k1-wheel graphWk1) does not require the embedding for G1. Therefore
the decoding process does not require the π-graphs to be embedded. This is different
from the proof of Lemma 3.1.

Theorem 4.3. Let G0 be an n0-node π-graph. Then G0 and encodeπ(G0) can be
obtained from each other in O(n0 log n0) time. Moreover, |encodeπ(G0)| ≤ β(n0) +
o(β(n0)) for any continuous superadditive function β(n) such that there are at most
2β(n)+o(β(n)) distinct n-node π-graphs.

Proof. Since there are at most 2O(n logn) distinct n-node π-graphs, there exists
an indexing scheme indexπ(G) such that indexπ(G) and G can be obtained from each

other in 2|G|
O(1)

time. The theorem follows from Theorem 2.1 and Lemma 4.2.

5. Concluding remarks. For brevity, we left out F4 and F5 in sections 3 and 4.
One can verify that Theorems 3.2 and 4.3 hold even if π is a conjunction over F1
through F7 including F4 and F5.

The coding schemes given in this paper require O(n log n) time for encoding and
decoding. An immediate open question is whether one can encode some graphs other
than rooted trees in O(n) time using information-theoretically minimum number of
bits. It would be of significance to determine whether the tight bound of the number
of distinct π-graphs for each π is indeed continuous superadditive.
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Abstract. This paper describes an output-sensitive scheme to construct the visibility graph of
a simple polygon with m obstacles and n vertices in optimal O(|E| + T +m logn) time where |E|
is the size of the visibility graph and T is the time required to triangulate the simple polygon with
obstacles. We use a partition of the space into regions called corridors which eases the efforts of the
construction. Our algorithms are simple and the data structures used are only linked lists.
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1. Introduction. The visibility graph, GV IS = (V,E), of a simple polygon
with m obstacles is a graph where the vertices in set V , |V | = n, are the vertices of
the simple polygon with obstacles and the edge set, E, is defined as follows: (u, v) ∈ E
iff u and v can be connected to each other by a line segment that does not intersect
any edge or vertex of the simple polygon or obstacle. Such an edge is referred to
as a visibility edge. We refer to the simple polygon with obstacles as a polygonal
structure. The visibility graph is a fundamental structure in computational geometry.
It has a number of applications including being a graph in which the shortest distance
between any pair of vertices in the polygonal structure can be found using standard
graph algorithms [AAG+86]. While in recent developments algorithms for the shortest
path problem use a continuous version of Dijkstra’s algorithm, the visibility graph
approach still provides for simple and efficient solutions [KM88, KMM97] which are
optimal when the number of obstacles is O(

√
n).

Since the visibility graph has size O(n2), algorithms for this problem will require
O(n2) time in the worst case. In fact, worst case time optimal algorithms are well
known for this problem [AAG+86, Wel85, GM91]. Other related results may be
found in [Her89, OW88]. In this paper we describe an algorithm which requires time
O(|E|+T +m log n), where E is the edge set of the visibility graph and T is the time
required for triangulating the simple polygon with obstacles. An O(n log n) worst case
bound on T is well known [PS85]. However, when the number of obstacles is small
improvements are possible. A bound of O(n+m log1+εm) [BYC94] is known for the
triangulation problem when there are O(m) obstacles.

We note that a scheme requiring O(|E| + n log n) steps for solving this problem
has also been discovered by [GM91]. The algorithm developed here appears simpler
and uses less complicated data structures.

Our development is as follows: The algorithm first partitions the space into sub-
regions which we call corridors. We describe this in section 2. The visibility graph of
corridors is easy to determine in linear time. We show how to do this in section 3. We
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Obstacles Triangulation edges

Dual Graph

Fig. 1. Partition.

then show how to extend this construction to the case of a general polygonal structure
in section 4.

2. Corridor structure. In this section we will consider the triangulation of the
polygonal structure and extract from it regions which we call corridors. This partition
of the space into corridors has been used before in a shortest path algorithm [KM88].

Consider an arbitrary triangulation of the simple polygon with obstacles.

The triangulation partitions the space into triangular regions. We consider the
dual graph Gd = (Vd, Ed) obtained by assigning vertices to the regions and edges
between a pair of vertices if the two corresponding triangles share an edge. Let
v ∈ Vd be a vertex. The region corresponding to v is denoted by T (v). Furthermore,
let e = (v1, v2) be an edge in the dual graph. The triangulation edge that separates
the triangles, T (v1) and T (v2), is defined to be D(e), the edge dual to e. T (v1) and
T (v2) are termed adjacent triangles (Figure 1).

We next partition the dual graph into paths called C-paths. We define a 2-path
in Gd to be a simple path in which all internal vertices, if they exist, are of degree
2. A C-path is a 2-path of maximal length. Each such C-path, P , defines a corridor,
C, as follows: C(P ) = ∪a∈PT (a), degree (a) = 2 or 1, i.e., the region formed by the
union of the sequence of triangles corresponding to the vertices of degree 2 and degree
1, if they exist, of P . A corridor is a simple polygon.

We consider the general case, when the path P starts and ends at vertices of
degree 3. The corridor C(P ) has two sides comprising edges which are edges of the
polygonal structure. There are also two bounding edges which form the corridor
end. These edges are triangulation edges which separate the corridor from the other
regions. A corridor may also simply be an edge as we see below.

When an endpoint of the path P has degree 1, the corresponding corridor end
has a degenerate bounding edge, (u, v) with u = v. The last triangle in the corridor
comprises two edges of the polygonal structure. And there is no adjacent corridor at
this corridor end.

Corridors are connected to each other by triangles called junctions. These junc-
tions correspond to vertices with degree 3 in the dual graph, Gd. A corridor may be
connected either to other corridors through a junction at a corridor end or to none.
These corridors are called adjacent corridors. The case when the corridor is connected
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to exactly one other corridor through a junction occurs when both the bounding edges
of the other corridor form two of the three edges of the junction triangle.

Note that a corridor may be degenerate. Consider when two degree 3 vertices u
and v are adjacent. The edge D(e), dual to e = (u, v), is said to form a degenerate
corridor. The corridor consists of a single (triangulation) edge alone which serves as
the two bounding edges. The two vertices are degenerate sides of the corridor.

Given a triangulation, the partitioning of the polygonal region into corridors and
junctions can be achieved in O(n) time. This is done by identifying the degree 3 and
degree 1 vertices in the dual graph. Each C-path which connects a degree 3 or degree
1 vertex to another degree 3 or degree 1 vertex defines a corridor.

2.1. Definitions. We need the following definitions.
We define the corridor distance, dist(u, v), between two vertices u and v of the

polygonal structure in a corridor, C(P ), to be the minimum number of edges required
to be traversed in P ∈ Gd to reach a triangle containing u from another triangle
containing v. More precisely, dist(u, v) is the minimum number of edges required to
be traversed in P to reach a vertex b ∈ Gd from another vertex a ∈ Gd such that
u ∈ T (a) and v ∈ T (b).

Given points u, v, and w, we will let � (u, v, w) represent the smaller angle (less
than 180 degrees) formed at v by the line segments (v, u) and (v, w). An angle
� (u, v, w) is defined to be inside a corridor if the corridor contains a sector, S(u, v, w),
of a circle in the plane defined as follows: S(u, v, w) = B(v, ε) ∩ Cone(u, v, w) where
ε is a sufficiently small constant, B(v, ε) is the circle of radius ε centered at v, and
Cone(u, v, w) is the cone in the plane with vertex v and angle � (u, v, w) with the sides
defined by the lines containing the line segments (v, u) and (v, w).

Given a list L and elements (pointers) a and b of (into) L, suppose a precedes b
in a list L. This will be indicated by a �L b. And if a succeeds b in the list, L, then
we shall represent this by a �L b. Use of L will be eliminated wherever understood.

3. Constructing the visibility diagram of a corridor. In this section we
show how to construct the visibility diagram for the set of vertices in a corridor. We
consider only nondegenerate corridors.

Let P be a C-path in Gd. Let C(P ) be the corresponding corridor with two
bounding edges U = (a, b) and B = (p, q) and two sides, (i) S1, which connects a
to p using edges of the polygonal structure, and (ii) S2, which connects b to q. We
let the sequence of degree 1 and 2 vertices of the path P be p1, p2, . . . , pk and let
the triangles, corresponding to the vertices on the path, be T1, T2, . . . , Tk. Note that
Ti = T (pi).

To construct the visibility diagram for the corridor, we traverse the corridor from
one boundary, say, U = (a, b), a ∈ S1, b ∈ S2, called the upper boundary, to the other
boundary, B, the bottom boundary, i.e., the vertices of the corridor are processed in
order of increasing corridor distance from the vertices on the bounding edge, U . The
basic attempt is to construct a list for the current vertex, v, that contains vertices
visible to v from among the vertices already considered in the corridor. This suffices
to construct all the visibility edges since each visibility edge, (u, v), v being at greater
corridor distance than u from the boundary U , is constructed once when v is processed.
Two lists are constructed for each vertex v, one list for each of the two sides of the
corridor. Each such list is called a visibility list. The lists are sorted in the order
that the visible vertices occur along the sides of the corridor, i.e., by decreasing value
of the distance dist(u,w), u ∈ C, w ∈ U , or, equivalently, by increasing value of
dist(v, u), u ∈ C.
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For a vertex, v, the visibility list comprising vertices visible to v on side S1 is
LIST1(v) and that comprising vertices visible to v on side S2 is LIST2(v). We let
T1 = (a, b, v1). v1 is the first vertex to be considered in the corridor. LIST1(v1)
contains a and LIST2(v1) contains b. The algorithm next considers another vertex
obtained from the triangle T2 adjacent to T1 in the corridor C. T2 adds one new vertex.
This vertex is adjacent to v1 via a triangulation or a corridor edge. The visibility list
of the new vertex is constructed and this process is repeated for successive vertices.
We describe the general step next.

Let vi be the vertex and Ti the triangle to be considered at the ith step. vi is
contained in triangle Ti which also contains vi−1, the last vertex considered. Assume
without loss of generality (w.l.o.g.) that vi is on side S1. Let u1 . . . uk = vi be the
vertices on side S1 already considered by the algorithm and let w1 . . . wl be the vertices
on side S2 already considered up to this step.

First we describe how to build LIST1(vi). The first vertex visible to vi is uk−1 on
side S1. From uk−1 we will obtain the next visible vertex, say, uj . Considering vertices
along the corridor would involve traversing too many useless (invisible) vertices. We
thus use the vertices on the visibility lists of uk−1 itself, taking care not to traverse
this list more than a constant number of times.

We find uj by traversing LIST1(uk−1) to find the highest indexed vertex v such
that � (v, uk−1, vi) is an angle inside the corridor, if it exists. This vertex is the vertex
in {u1 . . . uk−2} closest to vi on side S1, which may be visible to vi. Note that if no
such angle is found, then no visible vertex uj exists. The vertex satisfying the above
angle property is a candidate for addition to the visibility list of vi.

Let this candidate be called vq. Suppose vq is visible. The next vertex on
LIST1(vi) is obtained from vq. Again we find the highest indexed vertex in LIST1(vq),
v, such that the � (v, vq, vi) is an angle inside the corridor and we determine its vis-
ibility. This is repeated until we find a candidate which is not visible or the end of
the corridor is reached.

To determine if the candidate vq is visible or not, note that the vertex will be
invisible only if (vi, vq) intersects an edge on S2. At least one such edge, say, et, will
be visible from vi and in fact the vertex of the intersected edge furthest from vi, say,
vt, satisfies dist(vt, vi) < dist(vq, vi). This is because the sequence of triangles in the
corridor which starts from a triangle containing vi and ends at a triangle containing
vq includes the triangle containing et. Note that in fact the edge which obstructs the
visibility has an endpoint which either is in LIST2(vi) or is a candidate for addition
to LIST2(vi).

In the algorithm below, LIST1(vi) and LIST2(vi) are built simultaneously. At
each step we maintain two candidates to be added, one to each list. When both
candidates are present then the candidate closer to uk is added to the appropriate
list. If only one candidate is present, then it is added to the appropriate list provided
it is visible. The next candidate for the updated list is computed from the visibility list
of the candidate added. This process is repeated either until the end of the corridor
is reached or until no candidate is available.

We can now detail our algorithm. It is assumed that vi is on side S1.

Algorithm CorrVis(C).
{ Corridor C has a boundary (a = v0, b = v−1) and comprises triangle T1 . . . Tk. }
i← 0;
Repeat

i← i+ 1;
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Pick vertex vi, adjacent to vi−1, in triangle Ti = (vi−1, vj , vi), j ≤ i− 2;
If vi−1 is on side S1 then

begin
LIST1(vi)← vi−1; can2 ← vi−2

end
else

begin
LIST1(vi)← vi−2; can2 ← vi−1

end;
Repeat

vis←last vertex added to visibility lists of vi;
If vis is in LIST1(vi) then

can1 ← CANDIDATE(vi, vis)
else can2 ← CANDIDATE(vi, vis);
If Both can1 and can2 exist then

If dist(can1, vi) ≤ (can2, vi) then
Add can1 to LIST1(vi)

else Add can2 to LIST2(vi)
else If can1 exists and is visible to vi then

Add can1 to LIST1(vi)
else If can2 exists and is visible to vi then

Add can2 to LIST2(vi);
Until (no more candidates are added to the lists);

Until (no more triangles left);

Next we describe two procedures used in the above algorithm. The first proce-
dure determines if a candidate can is visible to vertex vi. The second procedure,
CANDIDATE(vi, vis), generates the candidate following vis which may be added
to the visibility list of vi that contains vis. The procedure may not return with a
candidate if vis is the last vertex in the visibility list of vi.

3.1. Determining visibility. Let can1 and can2 be the two candidates at time
step t. Let u1, u2 . . . ul be the vertices in LIST1(vi) and let w1, w2 . . . wr be the vertices
in LIST2(vi). Assume that there is a coordinate frame centered at vi. Let αj be the
angle that (vi, uj) makes with the x-axis, and let βj be the angle that (vi, wj) makes
with the x-axis. We assume w.l.o.g. that LIST1(vi) is being constructed in a clockwise
fashion and LIST2(vi) in a counterclockwise fashion. LIST1 and LIST2 are defined
to overlap if ∃p, q, 1 ≤ p, q ≤ r and ∃j, k, 1 ≤ j, k ≤ l such that [βp, βq] ∩ [αj , αk] �= ∅.
If such an overlap occurs, then one of the vertices in (up, uq, wj , wk), say, uq, is not
visible from vi since it is blocked by an edge on side S2.

To determine visibility the following cases arise:

(1) Both can1 and can2 exist. Then the closer of the two vertices is visible to vi.
(2) Suppose can1 exists but can2 does not. Let w′ be the candidate generated

for the visibility list, LIST2(vi), when the last vertex wr was added to it. w′

may not have existed. In this case it suffices to check if LIST1(vi), with the
candidate can1 added to it, overlaps with LIST2(vi). If it does, then can1 is
not visible. If w′ existed, then can1 is not visible and will not exist since w′

is not visible (see proof of Lemma 3.1 below).
(3) Suppose can2 exists and can1 does not. This case is symmetric to the previous

case.

Note that candidates are added to the visibility lists for vi in order of increas-
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ing distance from vi. We formally prove the correctness of the above procedure for
computing the visibility.

Lemma 3.1. The candidate visible to vi, from among can1 and can2, is correctly
computed.

Proof. We show the correctness of the procedure in the three cases that arise
when determining can1 and can2.

Consider the first case. In this case since both can1 and can2 exist the candidate
closer to vi, say, can1, is visible. The proof is by contradiction: Suppose not. Then
can1 is obstructed due to the overlap of LIST1(vi) appended with can1 and LIST2(vi).
But then no candidate at greater corridor distance than can1 will be visible from the
last vertex, t, in LIST2(vi). Since can2 is generated from LIST2(t) and must be
visible from t, this is a contradiction.

In the second case, if w′ does not exist, then there is no vertex, w′, on side S2 such
that w′ is visible to wr and � (vi, wr, w′) is an angle less than 180 degrees inside the
corridor. Thus only vertices in LIST2(vi) can obstruct the visibility of the candidate,
can1, from vi. This is determined correctly.

Alternatively suppose w′ exists. Then since it is not a candidate currently, it has
already been determined that w′ is not visible due to an obstruction by an obstacle
edge on side S1. This implies that any vertex, v, such that dist(v, vi) > dist(w

′, vi)
and � (v, uj , vi) is an angle inside the corridor, uj being the last vertex in the current
list LIST1(vi), is not visible to vi and to uj . As candidates are considered in order of
increasing distance from vi, dist(can1, vi) > dist(w

′, vi) and thus can1 is not visible
to vi and cannot exist.

The third case is symmetric to the first.

3.2. Next candidate computation. To find the next vertex which is a candi-
date for the visibility list of v after a vertex vis has been added, we employ a scheme
which generates the next candidate by a simple scan of the visibility list at vis. To do
so we associate a constant number of pointers with each of the visibility lists of every
vertex whose visibility lists have been built up. We next show that the lists will be
scanned once only by a pointer, throughout the construction, thus ensuring efficient
generation of candidates.

We need the following property and definitions: We let U = (u1, u2) be the upper
bounding edge of a corridor C.

Definition. A vertex a occurs before a vertex b on side, S, of corridor, C, with
respect to bounding edge U , if dist(a, u1) < dist(b, u1).

Henceforth, we assume that the scan direction and starting boundary are fixed.
Note that the visibility lists at a vertex, v, are ordered so that a vertex y follows x in
the list if dist(x, v) ≤ dist(y, v).

Lemma 3.2 (property monotonicity). Let a and b be vertices of corridor C such
that a occurs before b. Let u be a vertex visible to both a and b such that dist(u, u1) <
dist(a, u1) ≤ dist(b, u1). Let Pa and Pb be the pointer positions in LIST1(u) (or in
LIST2(u) as appropriate) which give the next candidates for addition to the visibility
list LIST1(or LIST2) of a and b. If a and b are on side S1(S2), then

• Pa � Pb (Pa � Pb) in LIST1(u) if u is on S1, and
• Pa � Pb (Pa � Pb) in LIST2(u) if u is on S2.

Proof. We assume that a, b, and u are on S1. The next candidate vertex for
addition to LIST1 of a or b is obtained by the first vertex, va or vb, visible to u such
that the angle � (va, u, a) or � (vb, u, b) is an angle inside the corridor. Consider the
straight line rays (a, u) and (b, u) with origin a and b, respectively. Let the rays strike
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Fig. 2. Order in a corridor.

the side S1 at qa and qb. The next candidate, va(vb), for a(b) is the first vertex in
LIST1(u) after the point qa(qb) on S1. Since qb is closer to u than qa the property
follows. A symmetric proof applies in the other cases. (See Figure 2.)

We use this property as follows: There are two pointers associated with a list, say,
LIST1(u), at a vertex u on side S1 of a corridor C. The first pointer, p1, generates
candidates for vertices on side S1 whereas the second one, p2, generates candidates
for vertices on side S2. Initially, the pointer p1, associated with a list of u, is at
one end of the list. Note again that the list is ordered by increasing distance of the
visible vertices from u. The pointer, p1, associated with the list at vertex u points
to the candidate which is generated for LIST1(v), using the list LIST1(u), when u
is added to the visibility list of v. The next time u is added to the visibility list of
some other vertex, say, w, further along the corridor and on the same side, S1, the
pointer moves from its current position in LIST1(u) to generate the candidate for w.
Since vertices are considered in order of their increasing distance from the bounding
edge, for construction of the visibility lists, the monotonicity property of the position
of the pointers (Lemma 3.2) ensures that the direction of movement of the pointer,
p1, is monotone and thus the list is scanned once only by the pointer, p1, to generate
candidates for all the vertices on side S1 in the corridor. The same property is true
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for p2 when generating candidates for vertices in S2 using LIST1(u), except that the
list is traversed by this pointer in a direction opposite to that of p1. Thus we have
the following.

Lemma 3.3. Let v ∈ C. The visibility lists LIST1(v) and LIST2(v) are traversed
only once to generate candidates for vertices in C.

3.3. Correctness and time complexity. We show the following lemma.
Lemma 3.4. The visibility graph, GV IS(V,E), where V is the set of vertices of

a triangulated corridor, is correctly generated in O(|E|) time.
Proof. We first show correctness of the algorithm, CorrVis(C). It suffices to show

that for a given vertex vi, the visibility lists are correctly computed given the visibility
lists of vertices which occur before vi in the corridor. We show that LIST1(vi) is
correctly computed. The construction of LIST2(vi) is symmetric and the correctness
follows by a similar argument.

Assume that vi is not on the boundary of the corridor. If it is, then the visibility
list is the null list which is trivially constructed. To prove that LIST1(vi) is correctly
computed, we use induction on the distance dist(vi, vis) where vis ∈ LIST1(vi) or
LIST2(vi). For the base case note that the vertex adjacent to vi at distance 1 is
trivially in LIST1(vi). Suppose all visible vertices at distance ≤ k have been added
to LIST1(vi) ∪ LIST2(vi). Consider the closest vertex, v, visible to vi at distance
greater than k from vi. Assume w.l.o.g. that v ∈ LIST1(vi). The vertex, v, is in
the visibility list of vertex v′ such that dist(vi, v

′) ≤ k and v′ is the vertex prior to v
in LIST1(vi). To prove this, consider the triangle T = (v, vi, v

′). If v is not visible
to v′, then (v′, v) is intersected by an edge e of side S1 but no edge of S1 intersects
(vi, v) and (vi, v

′). Thus ∃ a vertex v′′ on side S1 such that dist(vi, v
′′) > dist(vi, v′),

which is inside T and visible to vi. This contradicts the choice of v′. Thus v will
be generated as a candidate when v′ is added to LIST1(vi). Moreover, the visibility
of the candidate is correctly determined as Lemma 3.1 proves. This completes the
induction step.

To prove the time complexity note that, by Lemma 3.3, each visibility list is
traversed once only while generating candidates for visibility lists of other vertices.
Moreover, visibility of a candidate is checked in constant time since the last vertices in
the two lists together with the candidate suffice to determine when an overlap occurs.
Visibility list construction thus requires time O(|∪v∈C(LIST1(v) ∪ LIST2(v))|) =
O(|E|).

4. Visibility in a simple polygon with obstacles. To construct the visibility
diagram of a simple polygon among obstacles we investigate the properties of the
visibility lists of a point v in the polygonal structure. We need the following definitions.

Let SC = C1, C2 . . . Ck be a sequence of corridors such that (s.t.) Ci+1 is adja-
cent to Ci via junction Ji, i.e., both corridors have a bounding edge in the triangle
corresponding to the junction Ji, ∀i, 1 ≤ i ≤ k − 1. Let VSC = {v|v ∈ Gd & T (v) ∈
[∪iCi] ∪ J } where J = {J1, J2, . . . , Jk−1} and ESC ⊂ E is the set of edges induced
by VSC . The vertices and edges in VSC and ESC form a path PSC ∈ Gd.

Similar to the previous section the corridor distance between two vertices v1 and
v2, dist(v1, v2), along a sequence of corridors SC is the minimum number of edges
required to be traversed on the path, PSC , to reach a triangle containing v1 from a
triangle containing v2.

We assume a rectangular coordinate system L on the plane.
In the visibility diagram of a simple polygon with obstacles since the visible

vertices may belong to different corridors there is no induced ordering on the vertices
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themselves. However, the set of vertices visible to v can be partitioned such that with
each partition is associated a sequence of corridors. In this section we show that the
visible vertices can be arranged in a tree, called the visibility tree. We then show
how to construct these trees for all the vertices in the polygonal structure in time
proportional to the number of visibility edges.

4.1. Visibility trees. Let v be a vertex in a corridor C. Let U = (a, b) and
B = (p, q) be the two bounding edges of the corridor. And let V ISB(v) be the set of
vertices visible to v through edge B, where a vertex is defined to be visible through
edge B if the visibility edge (v, v′), v′ ∈ V ISB(v), intersects B. Suppose each visibility
edge is labeled by the sequence of corridors which it traverses to reach vertex v. This
labeling partitions the set of visibility edges in V ISB(v), with edges that traverse the
same sequence of corridors being in one partition. Note that all the visibility edges
in a partition are in the same corridor. The edges in a partition can be ordered and
will be shown in fact to be constructed by a procedure similar to that in the previous
section. We represent the partition of the set of visibility edges in V ISB(v) by a tree
called a visibility tree and termed TV ISB(v). We will describe the construction of
this tree below. All vertices visible to v can be divided into two sets, V ISU (v) and
V ISB(v), and for each set a visibility tree will be constructed.

We now show how to construct the tree, TV ISB(v). At the root, r, of TV ISB(v)
are two lists LIST1 and LIST2 which store, in order, vertices u of C on the two sides
S1 and S2 that are visible to v and with corridor distance to v, dist(u, v), less than
dist(p, v) and dist(q, v), respectively. These vertices are termed to lie in between v
and B. The root has at most two sons. With each son is associated a corridor which
contains vertices visible to v through B. The two sons are ordered from left to right
in increasing order of the angle of visibility edges from v to visible vertices in each
of the two corridors. The angle is measured in, say, the counterclockwise direction
in a coordinate system parallel to L and centered at vertex v. Assume w.l.o.g. that
the angle between (p, v) and (q, v) is less than π in the counterclockwise direction.
The angle of a visibility edge (v, p′) is measured relative to (v, p), i.e., by � (p, v, p′).
The ordering obtained is called an angle ordering. A similar ordering is defined for
TV ISU (v). In this tree the sons are ordered again by increasing angle order. The
angles are measured in the counterclockwise direction in a coordinate system parallel
to L and fixed at vertex v. The angle of a visibility edge (v, b′) is measured relative
to (v, b), i.e., by � (b′, v, b).

W.l.o.g. we restrict our attention to TV ISB(v). The corridors at the sons of the
root of TV ISB(v) are chosen so as to contain the closest vertex visible to v through B.
Note that these corridors are not necessarily adjacent to C via the junction triangle,
T , containing edge B. Since a vertex may belong to one or two corridors, the node
has at most two sons. Let C1 and C2 be the two corridors. Each of the sons has two
lists which contain, in order, the vertices on each of the two sides of the corridor, say,
C1, that are visible to v such that the corresponding visibility edges cross triangles in
C1 and intersect B. The visibility edges to the vertices in the corridor at the left son
precede the visibility edges to the vertices in the corridor at the right son. Note that
the corridors at the two sons could be the same. However, the lists of visible vertices
stored at the left son are disjoint from the lists at the right son. This relationship
of sons of a node in the tree to their parent node, as illustrated for the root node, is
repeated recursively.

In general, a node p in the tree TV ISB(v) is associated with a corridor Cp, a
bounding edge B(p) of Cp, and at most two lists, LIST1(Cp) and LIST2(Cp). Note
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Fig. 3. Visibility tree.

that Cp may not be adjacent to the corridor, C ′, associated with the parent of p. In
this case there is a unique sequence of corridors which connects C ′ to Cp. This is
the sequence of corridors traversed by the visibility edge to the vertex closest to v in
Cp. We term the sequence which connects C ′ with Cp as AC(p). We let SC(path(p))
be the sequence of corridors, not including Cp, which are associated with or connect
corridors corresponding to nodes on path(p) from p to the root node of TV ISB(v),
i.e., SC(path(p)) = AC(p)Cp1AC(p1)Cp2AC(p2) . . . AC(pk), where pk is the root of
the tree TV ISB(v), and p1, p2 . . . are the nodes on the path from p to the root.

We consider vertices, w, in Cp that are visible to v such that the visibility
edge, (w, v), w ∈ Cp, intersects B(p) and the triangles in the sequence of corridors
SC(path(p)). Cp has two sides. Assume w.l.o.g. that visible vertices on side S1 occur
before than visible vertices on side S2, the vertices being ordered by angle ordering.
LIST1(Cp) is the list of vertices on side S1 of Cp, visible to v, such that the visibility
edge, (vi, v), vi ∈ LIST1(Cp), intersects B(p) and the triangles in the sequence of
corridors SC(path(p)). Similarly, LIST2(Cp) is the list of nodes on side S2 of the cor-
ridor Cp visible to v through B(p) and the same sequence of corridors, SC(path(p))
(Figure 3). As in the previous section the vertices in the lists are ordered according
to increasing corridor distance from v.

Moreover, let son(p) be either one of the two possible sons of p. Associated with
son(p) is a corridor Cson and a bounding edgeB(son) which contains the closest visible
vertex to v through B(son) and the sequence SC(path(son(p))). son(p) contains
LIST1(Cson) and LIST2(Cson).

The following lemma shows the usefulness of this tree.

Lemma 4.1. Let v be in corridor C. Let B be a bounding edge of C. At the root
of TV ISB(v) are stored all vertices visible to v in corridor C and lying in between
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v and B. Every other vertex visible to v is stored at a node in TV ISB(v) s.t., at
node w ∈ TV ISB(v), are stored all vertices visible to v having the property that the
corresponding visibility edge intersects B and B(w) and traverses the corridor sequence
SC(path(w)).

Proof. The first part of the lemma follows from the definition of TV ISB(v). To
prove the second part first note that a vertex stored in a list at a node in TV ISB(v)
satisfies the required property by construction.

Second, we show that every visible vertex is stored at the correct node w in
TV ISB(v). Consider a vertex, vw, in a corridor Cw, visible to v through B.

We prove by induction on the distance of vw from v that vw is present in ei-
ther LIST1 or LIST2 at a node w, with an associated bounding edge B(w) and
a corridor Cw, in TV ISB(v) s.t. this vertex is visible through a corridor sequence
CS = SC(path(w)) and boundary B(w). For the base case, the construction proce-
dure adds the closest vertex from the same corridor, C. Assume that the hypothesis
is true for vertices at distance at most k from v. Consider the vertex vw in Cw which
is at distance greater than k from v. Suppose CS = C1 . . . Cq is the sequence of
corridors intersected by the edge (v, vw) where C1 is the first corridor traversed after
the boundary B. W.l.o.g. assume that Cq, the last corridor in the sequence CS, has a
vertex visible to v. By the induction hypothesis, a node q in TV ISB(v) corresponding
to Cq exists.

First consider the case when vw is the first vertex in corridor Cw that is visible
to v through the sequence CS and B(w). Since vw is the closest vertex visible to v
through the sequence CS and since q exists, the definition of TV ISB(v) ensures that
a node corresponding to Cw will be present in the tree as a son of q and vw will be
contained in a list at that node. Since CS = SC(path(w)) the edge (v, vw) has the
required property that it intersects B,B(w), and SC(path(w)). Note that if vw is a
vertex in a junction triangle, then it is part of two corridors and q will have two sons.

Alternatively, vertices from Cw already exist at the node w and vw is added to a
list at Cw in order of its distance from v according to the description of the visibility
tree.

This completes the induction step.

We can list all the vertices visible to v through edge B by enumerating the lists
at the nodes of TV ISB(v). We describe an algorithm L-Traversal for doing so below.
In the algorithm, r is the node in the tree being currently visited and rl and rr are
the left and right sons, respectively.

Algorithm L-Traversal (r).
begin

Output LIST1(Cr);
L-Traversal(rl);
L-Traversal(rr);
Output LIST2(Cr) in reverse order;

end.

Here Cr is the corridor associated with node r. The procedure is called with the
root of TV ISB(v) as parameter.

Note that if w is a node in TV ISB(v), then all vertices in the lists associated with
nodes in the left subtree at w are output before the vertices in the lists associated
with nodes in the right subtree at w. It is easy to see the following claim which shows
an ordering of the visibility edges by angle.

Lemma 4.2. An L-traversal of TV ISB(v) lists, in increasing angle order, all the
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vertices visible to v through edge B of corridor C.
We note the following fact about TV ISB(v). A corridor may be associated with

more than one node in the tree since sections of the same corridor may be visible to
v but through different sequences of corridors (see Figure 3 where Cw3 = Cw4 = C4)
or through different boundary edges. However, each vertex appears only once in the
tree.

To summarize, the sets of all visible vertices are stored in trees. For each vertex
v, in corridor C with bounding edges U and B, are constructed two trees TV ISU (v)
and TV ISB(v) which store vertices visible to v through U and B, respectively.

4.2. Constructing TV ISB(v). Next we describe how to construct TV ISB(v).
We start with building the visibility lists at the root of TV ISB(v). Let C be the
corridor containing v. After building the visibility list for C, one or two sons of the root
node are created, each corresponding to a corridor containing the closest visible vertex
to v through the bounding edge, B. Visibility lists are built for these corridors and
the process is repeated with the addition of sons associated with available corridors.

In the next section we detail the construction of the visibility list for a corridor
Cw at a node w in TV ISB(v) and subsequent generation of children nodes and the
first vertex of the visibility lists at each child node. We outline the methodology: At
each step we maintain at most two candidates from Cw, one each for addition to the
two visibility lists, LIST1(Cw) and LIST2(Cw). A vertex p is added to LIST1(Cw)
or to LIST2(Cw), as applicable, at the tree node w in TV ISB(v) as follows:

1. If both candidates exist, then p is the closest vertex, visible to v, among the
two candidates from Cw.

2. If only one candidate exists, then p is that candidate provided it is visible.
As in the previous section, visibility is determined from the candidates and the

current visibility lists, LIST1(C
′) and LIST2(C

′) where C ′ is either Cw or a corridor
at the parent of w in TV ISB(v).

4.3. Obtaining candidates and constructing visibility edges. We detail
the maintenance of two candidates for addition to the lists at the node w, correspond-
ing to Cw, in TV ISB(v). The initial candidates at the root of TV ISB(v) are obtained
from the vertices adjacent to v in the corridor, C. Suppose a vertex q is added to
LIST1(Cw) from among the candidates. A new candidate needs to be obtained. This
candidate is obtained from the visibility tree of q in corridor Cw. Let X be the bound-
ing edge of the present corridor, Cw, containing q through which the visibility has to
be further extended. Using a scan of LIST1(Cr), where r = w is the root node of
TV ISX(q), the first vertex l, referred to by can∗, which is a candidate for addition to
LIST1 as a vertex visible to v, is determined. Note that edges are ordered by their
corridor distance. There are two cases: If l exists and is in the same corridor, then it
forms the next candidate for LIST1(Cw). Alternatively, l may not exist in the same
corridor.

Suppose the candidate does not exist in the same corridor. Then a new candidate
is to be obtained from another corridor. However, the construction of the other list
LIST2(Cw) may not have finished. A candidate is obtained for the construction of
this list and added to LIST2(Cw) so that the resultant list does not overlap with
LIST1(Cw). We assume that given a vertex q in corridor C, the two lists of vertices
in C visible to q are present. This construction is performed as preprocessing for all
the corridors using the algorithm in the previous section. When construction of both
LIST1(Cw) and LIST2(Cw) finishes, new candidates from other corridors are to be
obtained.



VISIBILITY GRAPH OF A SIMPLE POLYGON WITH OBSTACLES 859

q

TVIS  (q  )1X

LIST  (C  )11

TVIS   (q  )X 2

LIST  (C  )22

Cw

v

1
q
2

can1

can4

can

C 1 C 2

X

can3 2

Fig. 4. Candidate generation.

Let q1 and q2 be the two vertices last added to LIST1(Cw) and LIST2(Cw),
respectively. It may be that one of these lists, say, LIST2(Cw), is empty. In this case
q2 is chosen to be the vertex last added to a LIST2 at the first ancestor node of w in
the tree TV ISB(v), which contains a vertex in the list LIST2 at that node. We let
C(q1) and C(q2) be the corridors containing q1 and q2, respectively.

The following scheme, termed Find-next, is adopted to find candidates and extend
the visibility tree in the adjacent corridors.

4.3.1. Description of procedure Find -next. Let t1 be the node of
TV ISX1(q1) such that vertices visible through bounding edge X1 are to be found
from the corridors associated with the sons of that node. Initially, t1 is the root
node. And let t2 be a node of TV ISX2(q2) such that vertices visible through bound-
ing edge X2 are to be found from the corridors associated with the sons of that
node. Again, initially t2 is the root node. We assume w.l.o.g. that both the left
and right sons of t1 and t2 exist. We generate two candidates can1 and can2 from
LIST1(Cleft(t1)) and LIST1(Cright(t1)). And two other candidates can3 and can4

come from LIST2(Cleft(t2)) and LIST2(Cright(t2)). These candidates are obtained by
finding the first vertex in the corresponding list that may be visible to v (Figure 4).
The candidates may or may not exist. A candidate is visible if there exists a visi-
bility edge which traverses, unobstructed, the sequence SC(Path(w)) as well as the
corridor Cw. The visibility of can1 and can2 is determined by checking that each
is not obstructed by the last candidate entered into LIST2(C(q2)) and the visibility
of can3 and can4 is determined by checking that each is not obstructed by the last
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candidate in LIST1(C(q1)). Such a visible candidate is termed r-visible. This check
for visibility ignores that a candidate may be obstructed by some other candidate.

The following property is easy to see.

Lemma 4.3. The closest r-visible candidate from among can1, can2, can3, and
can4 is visible from v.

We next describe how to determine the closest r-visible candidate and extend the
construction of the visibility tree. We need the following definition.

Definition. dist(C, v), C a corridor and v a vertex, is the corridor distance of
the vertex in C closest to v.

Let cm be the candidate closest to v among the visible candidates can1, can2,
can3, and can4. cm will be used as can∗ to further construct the tree TV ISB(v). The
following cases arise.

Case 1. cm is can1 in corridor C ′. In this case add a tree node, w′, corresponding
to corridor C ′. Next, candidates can be generated for LIST1(C

′) and LIST2(C
′). The

first candidate for LIST2 may be found from C ′. If no candidate is available from C ′,
then the first candidate for LIST2 will be found from a descendant corridor. Note
that a sibling of w′ in the tree cannot exist. This follows by contradiction. Suppose
it did. Then the vertex at the junction of the corridors, corresponding to the left and
right sons, would be visible and thus can1 would not be the closest candidate, cm.

Case 2. cm is can2 in corridor C ′′. If this candidate vertex is a junction vertex,
then two tree nodes at the two sons of the current tree node are constructed. Each
node corresponds to a corridor containing can2. Alternatively, one son of the current
tree node is constructed. Note that in the second case can1 does not exist. In the
first case, let C ′ and C ′′ be the two corridors obtained. Candidates for LIST1 and
LIST2 in both corridors are generated. This is done by using the left son of t1 to
obtain the first candidate available for LIST1(C

′) and by using the left son of t2
to obtain the first candidate for LIST2(C

′). Similarly the lists at the right sons of
t1 and t2 are used to obtain the first candidates for LIST1(C

′′) and LIST2(C
′′),

respectively. These candidates are then used to generate other candidates at greater
corridor distance. In the second case, the lists in the corridor containing can2, say,
C ′′, are generated similarly as above.

Case 3. The candidate is can3. Again if the vertex is a junction vertex, then two
sons are constructed. Otherwise, one son is constructed. Candidates for LIST1 and
LIST2 in the corridors constructed are obtained as in the previous case.

Case 4. The candidate cm is can4. This case is symmetric to the first case and
one tree node is added as a son of the current tree node.

Finally, consider the case when candidates can1 and can2 either do not exist or
are not r-visible. Then we show how to determine a node in TV ISX1(q1) such that
visible vertices are to be found from the corridors associated with the sons of that
node. This node is used to update t1.

We have three cases (Figure 5).

Case (i). If can1 does not exist and can2 is not r-visible due to overlap with
LIST2(C(q2)), then t1 is updated to be the left son of t1 in TV ISX1(q1) or its
descendants. This is because no vertex can be visible through the corridor associated
with the right son since can2 itself is obstructed by a vertex in LIST2(C(q2)).

Case (ii). If can2 also does not exist, then t1 is updated to become the right son
since no vertex can become a candidate from the corridor associated with the left son
of t1 or its descendants.

Case (iii). If can1 exists and is not visible again due to overlap with LIST2(C(q2)),
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then processing need not continue.

A similar procedure is used to update t2 if both can3 and can4 either do not exist
or are not r-visible. We call the entire procedure described above Find-new.

We obtain the following lemma.

Lemma 4.4. Given a pair of nodes, t1 and t2, in two visibility trees, TV ISX1(q1)
and TV ISX2(q2), respectively, the procedure Find-new correctly does one of the fol-
lowing:

(1) Finds the closest visible candidate, can∗, from the corridors at the sons of t1
and t2 and generates sons at node w of TV ISB(v);
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(2) updates t1 and t2 in the two trees from among the sons of t1 and t2 such that
the visible vertex closest to v is in a corridor at a descendant node of the
updated t1 and t2;

(3) determines that no visible vertex exists at a descendant node of t1 or t2.

Find-new is applied repeatedly to obtain candidates or to determine if the pro-
cessing stops.

This describes procedure Find-next. Thus procedure Find-next finds the closest
visible candidate from the corridors at descendant nodes of t1 and t2 and generates
sons of w in TV ISB(v) or determines that no visible vertex exists at a descendant
node of t1 or t2.

Furthermore, note the following. Suppose that can1 exists. Then can1 as well as
can2, if can2 exists, can be found in time proportional to the time required to find
can1 in LIST1(left(t1)) or at descendant nodes. This is so because in this case can2

will be a vertex of a junction triangle. Similarly, if can4 exists, the time required to
find can3 and can4 is proportional to the time required to find can4.

For an efficient algorithm we will not implement procedure Find-next as above.
We will detail an efficient procedure to determine the closest visible candidates later
in the section. The algorithm will use linked lists and pointers to detect the closest
visible vertex.

Finally, note that at a vertex the algorithm may not be able to obtain a candidate
for its visibility list since the candidates may not be currently present. The availability
of the visibility lists depends on the sequence in which vertices are considered by the
overall algorithm for building visibility lists. However, if all the candidates required
were available, the following lemma shows that the lists are correctly built.

Lemma 4.5. Suppose vertices in visibility lists are available when required for
computation of candidates. Then TV ISB(v) is correctly computed.

Proof. The proof is by induction on the size of TV ISB(v). The base case, when
TV ISB(v) has one node, is trivially true since the vertices adjacent to v in C, of
which there is at least one, are in the visibility list at the root of TV ISB(v). Assume
that the tree is correctly built when there are k vertices in the visibility tree of v. Let
w be the tree node at which the vertex prior to the (k + 1)st vertex, in L-Traversal
order, exists. Consider additions to the visibility lists, LIST1(Cw) and LIST2(Cw).
If the (k+1)st candidate is in the same corridor, then by a proof similar to the proof
of Lemma 3.1 addition to the visibility lists is correctly done.

Thus consider the case when there are no candidates in corridor Cw. Note that
LIST1(Cw) or LIST2(Cw) may be empty. Let v1 be the last vertex added to LIST1

at w or an ancestor node, if LIST1(Cw) is empty. And let v2 be the last vertex
added to LIST2 at w or at an ancestor node. Candidates are to be obtained from the
corridors at the descendants of the root node in TV ISB′(v1) and TV ISB′′(v2), B

′

and B′′ being bounding edges. We let t1 and t2 be the root nodes of TV ISB′(v1) and
TV ISB′′(v2), respectively. Let vc be the closest vertex visible to v through Cw. We
prove by induction on the corridor distance between vc and Cw that this candidate
and the corridors at the sons of the node corresponding to w will be correctly added.
For the base case, consider the case when the vertex vc is at distance 1 from Cw, i.e.,
dist(Cw, vc) = 1. The vertex vc must be either in LIST1(y), where y is one of left(t1)
or right(t1), or in LIST2(z), where z is one of left(t2) or right(t2). Let Clw and Crw
be the corridors adjacent to Cw. If the closest vertex is in the junction between the
three corridors, then two sons are added to the node w, one corresponding to Clw and
the other to Crw. If the closest vertex is not the vertex in the junction, then one node
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is added since only one adjacent corridor may have visible vertices. If both do, then
the vertex at the junction will also be visible. This is determined in the procedure
above as shown in Lemma 4.4

For the induction step, suppose that dist(Cw, vc) = j and further assume that if
dist(Cw, vc) < j, then the vertex and the corridors at the sons of w have been correctly
determined and vc obtained. We consider the corridors Clw and Crw adjacent to Cw
above. Suppose vc is in one of these corridors or in the closest corridor from among the
set C = {Cleft(t1), Cright(t1), Cleft(t2), Cright(t2)}. Then, by Lemma 4.4, we are done
since the son corresponding to the corridor will be added when cm = vc, the closest
visible vertex in the corridors at the sons of t1 and t2, is determined. Otherwise, we
need to determine the corridor through which the closest vertex is visible. This is
achieved in the above procedure, Find-next, by determining a corridor, say, C ′ ∈ C,
which does not contain vc but through which vertices are visible. The correctness of
the determination of C ′ follows from Lemma 4.4. Candidates are generated from the
sons of the tree node which is in TV ISB′(v1) and TV ISB′′(v2) and corresponds to
the corridor C ′. Since dist(C ′, vc) < j we can, by induction, conclude that the pro-
cedure Find-next, when applied recursively, correctly determines the vertex, vc, and
the corridor or corridors which are to be associated with the son or sons, respectively,
of the tree node w ∈ TV ISB(v).

This also completes the induction step to show that TV ISB(v) is correctly gen-
erated.

Each vertex added to TV ISB(v) uses the visibility tree at v, TV ISU (v), where
U is the other bounding edge of the corridor containing v, to further construct its
visibility tree. The vertices from TV ISB(v) are considered in order of their occurrence
in the L-Traversal of TV ISB(v) for construction of visibility edges using v. This is
done to ensure efficiency.

We next consider the possibility that candidates are not available. Let us consider
the case when a candidate for the visibility tree of a vertex v is to be obtained from
LIST1(C) at a node associated with corridor C in TV ISX(q), the visibility tree of a
vertex q. If the candidate is not present in the list, then v is put in a list associated
with the vertex q, WAITLIST1(q). This list contains the vertices whose candidates
have to be obtained from LIST1(C) for some C, in TV ISX(q).

When vertices are added to the visibility list of q, a candidate for each vertex in
WAITLIST1(q) is generated if possible.

A similar situation arises when a candidate for v is to be obtained from LIST2(C)
for some C in TV ISX(q). WAITLIST2(q) is a list which contains v when the can-
didate for v is not present.

We note the following property of the visibility lists.

Lemma 4.6 (property sort). Let v1 and v2 be two vertices added to
LIST1(C1)(LIST2(C1)) for a corridor C1 in tree TV ISB(v). Then v1 and v2 are
added to the visibility list in the same order as they occur in the visibility list,
LIST1(C1)( LIST2(C1)), i.e., in order of increasing corridor distance from v.

Proof. We use induction on the maximum corridor distance between v and the
vertices to be added. The basis of induction is easily established since when the
corridor distance is 1 then there is only one vertex to be considered. Assume that
v1 is closer to v than v2 is. And let the corridor distance between v and v2 be k or
greater. Next suppose that the claim is true for distances less than or equal to k− 1.
We show that v1 and v2 become candidates for the visibility list of v in that order.

Suppose v2 occurs immediately after v1 in the visibility list of v. Then v2 will
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be generated as a candidate after v1 has been added to the visibility list of v since
procedure Find-next determines the closest candidate for a list at every step. Alterna-
tively, suppose there is some other vertex, say, w ∈ C1, s.t. dist(v1, v) < dist(w, v) <
dist(v2, v). If more than one vertex satisfies this property then let w be the vertex
closest to v2. By induction, w occurs as a candidate for the visibility list of v after v1
and since v2 will be obtained from w, v2 becomes a candidate after v1.

Using this property we next show that the visibility trees can be built in time
proportional to the sizes of all the trees. There are two kinds of pointers associated
with each vertex q. One kind is used to construct the tree and the other kind is used
to generate candidates.

The movements of the first kind of pointer require O(E) time, given the candi-
dates, since by Property Sort, vertices are added in order for each corridor. We
next consider the complexity of generating candidates.

4.4. Generating r-visible candidates. There are two cases in the generation
of candidates. In one case, the candidates are generated from already constructed
lists. In the second case, candidates are generated for vertices which are in some
WAITLIST . As the vertices are added to the visibility list of a vertex, say, q, with
respect to one direction along the corridor, C, containing q, candidates are generated
for vertices visible to q in the other direction and occurring in WAITLIST1(q) and
WAITLIST2(q). The ordering in which vertices are added to WAITLIST s will be
the ordering in an L-Traversal of TV ISU (q) when candidates are to be generated from
TV ISB(q) where U and B are the bounding edges of the corridor C. We assume that
the visibility edges are visited in sorted angle order.

We show below that, as in the case of a simple corridor, the generation of can-
didates requires linear time. In order to generate can1, can2, can3, and can4 we will
generate two kinds of candidates. From the first kind, canh and cani, we will obtain
can1 and can2. From the second kind, canj and cank, we will obtain can3 and can4,
respectively. Consider a sequence of vertices for which a candidate is generated from
the visibility list in TV ISB(q), B a bounding edge. We show below that as in the
case of simple corridors the direction of the pointer movement required to generate
candidates is monotone.

Let q be a vertex with visibility trees TV ISB(q) and TV ISU (q), B and U being
bounding edges. Let a and b be vertices visible to q through edge U . Let q ∈
LIST1(Cw) or LIST2(Cw), where Cw is a corridor at node w ∈ TV ISX(a), and let
q ∈ LIST1(Cy) or LIST2(Cy), where Cy is a corridor at node y ∈ TV ISY (b) for some
bounding edges X and Y . Note that Cw and Cy are the same corridor.

Let P1a be the position of the candidate ca in TV ISB(q), which gives canh,
the first kind of candidate, and which is the first candidate which follows q in some
LIST1 in TV ISX(a). The candidate ca may be required to be added, as canh, in an
L-Traversal to LIST1 of corridor Cw or of a corridor at the left or only son of w in
TV ISX(a). Let P1b be the position of the candidate cb in TV ISB(q) which is the first
candidate following q, in some LIST1 in TV ISY (B). This candidate may be required
for addition, as canh, to LIST1 of Cy or of a corridor at the left or only son of y in
TV ISY (b). Similarly, let Q1a and Q1b be the positions of da and db, which give cani,
the first kind of candidate if one exists, in TV ISB(q). The candidates da and db may
be required to be added, as cani, to TV ISX(a) and TV ISY (b), respectively. In fact
da and db are the first candidates following q in a L-Traversal which may be required
to be added to LIST1 at the right sons of TV ISX(a) and TV ISY (b), respectively.

The following property, the proof of which is similar to Lemma 3.2 and hence
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omitted, is stated next.

Lemma 4.7. If a follows b, a �= b in an L-Traversal of TV ISU (q), then
• P1a �LIST1 P1b(Q1a �LIST1 Q1b) when ca(da) and cb(db) are in a LIST1

at a node v ∈ TV ISB(q);
• alternatively, cb (db) may be found at a node which is a predecessor of ca (da)
in an L-Traversal of TV ISB(q).

The candidates found above are related to can1 and can2 and are required to be
obtained using procedure Find-next as follows. Consider the case that the candidate
is not in the current corridor Cw or Cy. Suppose can1 exists at the left son of the
current node w or y. Then canh is can1 and if cani exists it is can2. Note that in
this case cani is a vertex at a junction.

Alternatively, suppose can1 does not exist at the left son of the current node w
or y. In the first case, if no vertex is visible at the left son or a descendant of the left
son of the current node in TV ISB(q), canh, if it exists, is can2. Otherwise, if a vertex
is visible at the left son or a descendant of the left son of the current node, then, if
cani exists, cani is can2.

A similar property is true for pointer positions of the candidates for LIST2 in
TV ISX(a) and TV ISY (b). In this case canj and cank are the two candidates to be
found and are analogous to canh and cani. Let P2a be the position of the candidate ea
in TV ISB(q), which is the first candidate of the second kind, called cank, following q
to be added to a LIST2 in TV ISX(a). This candidate may be required to be added in
an L-Traversal to LIST2 of Cw or a corridor at the right or only son of w in TV ISX(a).
Similarly let P2b be the position in the tree of the candidate eb in TV ISB(q) which
is the first candidate following q, for addition to LIST2 of TV ISY (b). The candidate
is added to Cy or a corridor at the right or only son of y in TV ISY (b). Similarly, let
Q2a and Q2b be the positions of another second kind of candidate canj , if it exists,
in TV ISB(q), termed fa and fb, respectively, which are the first candidates following
q which may be added in an L-Traversal to LIST2 at the left sons of TV ISX(a) and
TV ISY (b), respectively.

Lemma 4.8. If a follows b, a �= b in an L-Traversal of TV ISU (q), then
• P2b �LIST2 P2a(Q2b �LIST2 Q2a) when ea(fa) and eb(fb) are in a LIST2

at a node v ∈ TV ISB(q);
• alternatively, eb (fb) may be found at a node which is a predecessor of ea (fa)
in an L-Traversal of TV ISB(q).

We next show how the above properties ensure that a linear scan of lists at nodes
in TV ISB(q) suffices to generate candidates for all points having q in their visibility
list. Suppose we have just constructed a visibility edge from a vertex v to a vertex q in
a corridor C. Assume that q ∈ LIST1(C). To extend the visibility tree of v, we need
to obtain either one or two candidates for LIST1 from the visibility tree TV ISB(q)
for some B. To obtain the candidates from q we use the pointer positions when the
candidates were last generated for a vertex v′ which was added to the visibility list
of q immediately preceding the addition of v. The following procedure is used to
generate candidates canh and cani.

Let P1 be the position of the pointer used to generate canh for v′ at a node x
in the tree TV ISB(q). Let Cx be the corridor corresponding to node x. We now
show how to find a candidate can∗ from which the two candidates canh and cani
will be obtained. The search for can∗ starts with the current position of P1, say, in
LIST1(Cx), and proceeds linearly along the list, LIST1, at node x and other nodes as
would an L-Traversal of the tree TV ISB(q). The search stops having found the first
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candidate vertex in a LIST1 in the L-Traversal. There are two cases. Either can∗ is
found or not.

• can∗ exists. Assume that v �= v′. Further suppose that can∗ is found at node
y in the tree. We let canh be can∗. Next we need to find cani. There are
two subcases. Either the node at which the candidate cani for v

′ was found,
if at all, is on the path, path(y, root), from y to the root, root, of TV ISB(q),
or it is not on path(y, root).

In the first subcase let w be the node. The search for cani proceeds
along the path from w to the root, i.e., along path(w, root). This search
for cani requires considering the vertices at the junction triangles connecting
adjacent corridors along the tree path. Let x′ be a node on the path. Then
a junction triangle connects the three corridors associated with x′, left(x′),
and right(x′). The vertex common to C(left(x′)) and C(right(x′)), called
vcr(x′), is checked to be a candidate for cani provided right(x′) /∈ path(w, y).
The search stops at the last node z on the path, path(w, root) s.t. vcr(z) is a
candidate. (See Figure 6.)

Alternatively, when cani for v
′ was not on path(y, root), the search for

cani proceeds as above along the path from y to the root. Note that in this
case the previous node at which the candidate cani for v

′ was found occurred
prior to nodes on the path in an inorder traversal of the tree TV ISB(q).

We now consider the case when v = v′. In this case, the candidate canh
previously found for v′ has not been used. If cani, found previously, also has
not been used, then no new candidate need be discovered. If it has been used,
then cani is updated. Let y ∈ TV ISB(q) be the node at which canh for v′

was discovered. And let w ∈ TV ISB(q) be the node at which cani for v′ was
discovered. Let z be the first descendant node of w on path(w, y) with a right
son not on path(w, y). Then cani is the vertex common to C(left(z)) and
C(right(z)).
• can∗ does not exist. Suppose that can∗ was not found. Then neither canh
nor cani can exist since a scan of LIST1 at nodes obtained by an L-Traversal
of the tree would have found canh or cani.

A symmetric procedure is also applied for the search for canj and cank. We repeat
the details for completion. Let P2 be the position of the pointer used to generate canj
for v at a node w in the tree TV ISB(q). We now show how to find a candidate
can∗ from which the two candidates canj and cank will be obtained. The search for
can∗ starts with the current position of P2, say, in LIST2(Cx), and proceeds linearly
along the list, LIST2, at node x and other nodes as would an L-Traversal of the tree
TV ISB(q). The search stops having found the first vertex which is a candidate in a
LIST2 of TV ISB(q). There are two cases. Either can

∗ is found or not.

• can∗ exists. Assume that v �= v′. Further suppose that can∗ is found at node
y in the tree. We let canj be can

∗. Next we need to find cank. There are
two subcases. Either the node at which the candidate cank for v

′ was found,
if it exists at all, is on the path from y to the root, path(y, root), or not.

In the first subcase let w be the node. The search for cank proceeds along
the path from w to y, i.e., along path(w, y). This search for cank requires
considering the vertices at the junction triangles connecting adjacent corridors
along the tree path. Let x′ be a node on the path. Then the junction triangle
connects the three corridors associated with x′, left(x′), and right(x′). The
vertex common to C(left(x′)) and C(right(x′)), called vcl(x′), is checked to
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be a candidate for cank provided left(x′) /∈ path(w, y). The search stops at
the last node z on the path, path(w, root), s.t. vcl(z) is a candidate.

Alternatively, when cank for v′ was not on path(y, root), the search for
cank proceeds as above along the path from y to the root. Note that in this
case the previous node at which the candidate cank for v

′ was found occurred
prior to nodes on the path in an in-order traversal of the tree TV ISB(q).

Next suppose that v = v′. In this case, the candidate canj previously
found for v′ has not been used. If cank, found previously, also has not been
used, then no new candidate need be discovered. If it has been used, then
cank is updated. Let y ∈ TV ISB(q) be the node at which canj for v′ is
discovered. And let w ∈ TV ISB(q) be the node at which cank for v′ was
discovered. Let z be the first descendant node of w on path(w, y) with a left
son not on path(w, y). Then cank is the vertex common to C(left(z)) and
C(right(z)).
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• can∗ does not exist. Suppose that can∗ was not found. Then neither canj
nor cank can exist since a scan of LIST2 at nodes obtained by an L-Traversal
of the tree would have found canj or cank.

The closest candidate from among canh, cani, canj , and cank will give the can-
didate to extend the visibility tree of v as described in procedure Find-next.

Lemma 4.9. The candidates can be correctly generated in time linear in the size
of the visibility trees.

Proof. Consider a vertex q in corridor C with bounding edges U and B. We
only consider generation of candidates which lead to the addition of new nodes in
the visibility trees. Candidates along a corridor are easily determined as shown in
the previous section. We prove the claim for the generation of the candidates canh
and cani for vertices in TV ISU (q) from the lists LIST1 at nodes in TV ISB(q). We
will assume that candidates are generated for the vertices in TV ISU (q) in the same
order as they occur in an L-Traversal of TV ISU (q). A similar analysis holds when
the vertices are considered in reverse order of the L-Traversal. The proof for the
generation of the candidates canj and cank from lists LIST2 is similar.

The candidates canh and cani are generated using a pointer. Initially the pointer
is at the beginning of the list of vertices obtained from LIST1(C = Cw), w ∈
TV ISB(q), when the visible vertices are scanned in an L-Traversal of the tree. At
the generic step there are two cases. Either the vertex, v, for which a candidate is to
be found is different from the vertex, say, v′, for which a candidate is found at the
previous step or it is the same.

First, consider the case when the vertex is different. The pointer P1 which gen-
erates canh may move from its current position. By Lemma 4.7 this movement is
monotone. We next show that cani is correctly determined. If canh and cani exist,
then cani is a junction vertex since then both the visibility lists LIST1 and LIST2

are nonempty at the left and right sons, respectively, of the current node, called curr,
in TV ISB′(v), where B′ is a bounding edge. The tree node at which cani exists is to
be determined. First note that all junction vertices, which are candidates, occur con-
secutively along the path. Also, by Lemma 4.7, the position of the node at which cani
is obtained comes after its previous position in an L-Traversal of TV ISB(q). Thus
it suffices to consider the path path(w, root) or path(y, root) where y is the node at
which canh is found and w is the node at which the cani candidate for the vertex v

′

was found.

Next, consider the case when the vertices are the same, i.e., v′ = v. In this case
the position of canh does not change. Let this position be at node y. cani may have
been added to a visibility list and used. Let vcan be the node at which cani is found.
Since cani is added to a visibility list at the right son of the current node, curr,
in TV ISB′(v) where B′ is a bounding edge, candidates for addition to lists at the
descendants of the left son are required. canh is one candidate which may be added to
a visibility list at the left son or a descendant node of the left son. To determine cani it
suffices to consider junction vertices at nodes which are proper descendants of the node
vcan with their right son not on the path to y. This is because the junction vertices
at these nodes are candidates and the junction vertex at the first such descendant is
cani. This path, Ps, is traversed only once for successive determination of candidates
cani for vertex v when cani is used but canh is not used as a candidate. Eventually
the corridor containing canh will be reached and either canh will be used or it will
be determined that the visibility subtree of v cannot be extended further. The time
for traversing this path, Ps, is charged to the initial traversal which determined the
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position of cani when a candidate for v was computed.

Thus the lists in a tree, TV ISB(q), can be traversed in linear time to determine
candidates for vertices visible to q through the other bounding edge of the corridor
C. The lemma follows.

Finally note that the determination of a candidate for a vertex u at q occurs only
after candidates are determined for other vertices before u in an L-Traversal of the
lists in the visibility tree TV ISB(q), B a bounding edge. Since vertices have to wait
for candidates inWAITLIST s, there is a possibility of a deadlock. To avoid deadlock
we adopt the following simple strategy.

4.5. Avoiding deadlock. We consider two directions, UP and DOWN . A
visibility edge (u, v) corresponding to vertex v in the visibility list at u is assumed
to be directed from u to v. The same edge is assumed to be directed from v to u
when u occurs in the visibility list of v. A directed edge (u, v) is in the direction
UP if y(v) ≥ y(u) and in the direction DOWN if y(u) > y(v). We partition the
edges in the visibility tree TV ISB(u) into two sets. One set is the set of edges in the
direction DOWN , termed TDV ISB(u), and the other in the direction UP , termed
TUV ISB(u). A candidate for a vertex in TUV ISU (u) is obtained from TDV ISB(u)
and TUV ISB(u) where U and B are the bounding edges of corridor C containing u.
A candidate for a vertex in TDV ISU (u) is similarly obtained. A symmetric procedure
applies when candidates are to be found for vertices in TV ISB(u).

The lists TUV ISB(u) and TDV ISB(u) are constructed by the procedure de-
scribed above in the previous sections. We require candidates to start the construc-
tion. The first candidate for TUV ISB(u), u ∈ C, through a bounding edge B, is
obtained by finding the edge which a horizontal ray crossing B, in the direction of
increasing x, strikes the polygonal structure. The endpoint of this edge above the ray
gives the required first candidate. This first candidate can be found for all vertices
simultaneously by a horizontal sweep through the corridors. Given the list of hori-
zontal rays emanating through a bounding edge, each ray starting at a vertex in the
corresponding corridor, the rays which traverse without obstruction a given corridor,
C ′, which is adjacent to the current one via a junction, can be computed in O(log n)
steps. The rays emanating from vertices in C ′ can be appended to the rays which
traverse C ′ in time linear in the size of C ′. In general, given a set of rays entering
a corridor, C ′, through a bounding edge, U , the rays that emanate from the other
bounding edge, B, can be obtained by using binary search to eliminate rays that
strike the convex hull of any of the two sides of the corridor. Moreover, the rays that
originate from a side, say, S1, of C

′ can be obtained by a linear scan, which starts
at the bounding edge U and eliminates rays obstructed by the edges on the corri-
dor sides. The corridor processing requires O(log n+ C ′r) where C

′
r is the number of

rays that originate from C ′. Given that there are O(m) corridors the sweep requires
O(m log n+n) steps. The sweep details are similar to the sweep in [KM] which sweeps
using the corridor structure to construct a restricted set of visibility edges. A similar
sweep gives the first candidates in TDV ISB(u), u ∈ C, and B a bounding edge, for
all vertices u in the polygonal structure.

4.6. Correctness. The correctness of the scheme is obtained from the following
properties.

Lemma 4.10. (1) The visibility lists LIST1(C) and LIST2(C) are correctly built
in sorted order at a tree node.

(2) The nodes of TV ISB(v) are correctly generated.
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Proof. First, assume that all the required visibility lists are present. The proof of
(1) is similar to the proof of Lemma 3.4.

To prove (2) we show that the visibility tree is correctly built. If candidates are
available, then the correctness follows from Lemma 4.5.

We thus remove the assumption that the visibility lists containing the required
candidates are present. We need to show that the algorithm is not deadlocked. For
this purpose we consider the following rank function on visibility edges. Let u and v
be vertices in corridors with bounding edges B1, U1 and B2, U2, respectively. Let v
be a visible vertex in TUV ISB1(u) and u be a visible vertex in TDV ISB2(v). Let
prev(v) be the vertex prior to v in TUV ISB1(u) and let prev(u) be the vertex prior
to u in TDV ISB2(v). Note that the vertices are ordered by an L-Traversal of the
visibility tree.

We let v′ = prev(v). We define rank(u, v) = max(r(u, v), r(v, u)), where

• r(u, v) = 1 + rank(u, v′) when v is not visible to v′;
• r(u, v) = rank(u, v′) + rank(v′, v) when v is visible to v′;
• rank(u, v) = 1 when v is the first vertex in the L-Traversal of the visibility
tree of u.

The rank function is well defined since the rank rank(u, v), v ∈ TUV ISB1(u),
depends only on the rank of a vertex w above u, i.e., with y(w) > y(u).

We prove by induction on the rank of edge (u, v) that when at time t a candidate
is to be generated for v from TV ISU1(u), then TV ISB1(u) contains v as well as all
vertices in the tree prior to v. Also at this step TV ISB2(v) contains u and all vertices
prior to u.

Basis step. When the rank of an edge (u, v) is 1 the claim is trivially true since
both vertices u and v are added as the first vertex in each other’s visibility lists by
the initial construction.

Induction step. Suppose that the induction hypothesis is true for all edges with
rank < k. Consider an edge (u, v) with rank k. Let v′ be prev(v) in TDV ISB1(u),
v ∈ TDV ISB1(u), and let u′ be prev(u) in TUV ISB2(v), u ∈ TUV ISB2(v). Since
(u, v′) has rank less than k, when a candidate for u is to be generated u has already
been added to the visibility list of TUV ISB′(v′), B′ a bounding edge, and all vertices
prior to u have been added to TUV ISB′(v′). Similarly v is in a visibility list at
TDV ISB′′(u′), B′′ a bounding edge, and all vertices prior to v have also been added.
When v is considered as a candidate for the visibility list of u after v′, v′ and all vertices
prior to v′ in TDV ISB1(u) have been added. And similarly u

′ and all vertices prior to
u′ also are present in TUV ISB2(v). The algorithm will thus generate the candidate v
for addition to the visibility list of u and the candidate u for addition to the visibility
list of v using vertices already in the visibility lists at u′ and v′, respectively. The
conditions for the generation of candidates are satisfied as shown above. Thus v will
be added to TDV ISB1(u) and u will be added to TUV ISB2(v). And all vertices
prior to v and u have been added to TDV ISB1(u) and TUV ISB2(v), respectively.
This completes the induction step.

The algorithm is thus never deadlocked.

The lemma follows.

We have thus shown that the algorithm correctly builds the visibility lists.

Since the data structures used in the algorithm are lists which store the visibility
edges at each node of the visibility trees, the space requirement is linear in the number
of visibility edges and vertices in the polygonal structure. Together with the analysis
of the time complexity in the previous section we obtain the last theorem.
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Theorem 4.11. GVIS(V,E), the visibility graph of V , the set of vertices of a
simple n-vertex polygon with m obstacles, can be correctly constructed in time O(| E |
+ T +m log n) and O(E) space, where | E | is the number of edges in the visibility
graph and T is the time required to triangulate the polygon with obstacles.

5. Conclusions. We may note that the algorithm presented above does not use
sorting but only a triangulation of the polygonal structure.

The corridor structure used in this algorithm for partitioning the polygonal struc-
ture has been used for another algorithm to construct a restricted visibility graph,
Gs = (V,Es), which contains shortest path information [KM]. In this graph common
tangents between the corridor chains, where a corridor chain is a convex chain enclos-
ing a side of a corridor, are required. The common tangents from a corridor chain,
CHC , in C through a bounding edge B to other corridor chains, can be stored in a tree
structure, called TANV ISB(CHC), similar to TV ISB(v), v ∈ C. With each node of
the tree are associated a corridor chain, say, CHC′ , and a tangent common to both
corridor chains, CHC and CHC′ , if there is a visible common tangent. The tangents
are constructed using the trees for other corridor chains and the sides of the corridors
as in the algorithm presented above. The crucial property is a monotonicity property
of the position of the tangents in the corridors as well as at the nodes of the tree
TANV ISB(CHC). This holds when the corridor chains, for which tangents are to be
constructed using CHC , are considered in an in-order traversal of TANV ISU (CHC),
where U is the other bounding edge of C. This monotonicity property ensures that
each tree will be scanned once during the construction of all the tangents in the re-
stricted graph. Also each vertex in the corridor is scanned once to construct the
tangents. The above outlines an extension of the scheme, described above in the
paper, for constructing the restricted visibility graph in O(|Es|+ T +m log n) time.

Finally, we would like to thank the referees for their helpful comments on the
manuscript.
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Abstract. In this paper we derive a worst case formula comparing the number of cache hits for
two different cache memories. From this various other bounds for cache memory performance may
be derived.

Consider an arbitrary program P which is to be executed on a computer with two alternative
cache memories. The first cache is set-associative or direct-mapped. It has k sets and u blocks in each
set; this is called a (k, u)-cache. The other is a fully associative cache with q blocks—a (1, q)-cache.

We derive an explicit formula for the ratio of the number of cache hits h(P, k, u) for a (k, u)-cache
compared to a (1, q)-cache for a worst case program P . We assume that the mappings of the program
variables to the cache blocks are optimal.

The formula quantifies the ratio

inf
P

h(P, k, u)

h(P, 1, q)
,

where the infimum is taken over all programs P with n variables. The formula is a function of the
parameters n, k, u, and q only. Note that the quantity h(P, k, u) is NP-hard.

We assume the commonly used LRU (least recently used) replacement policy, that each variable
can be stored in one memory block, and that each variable is free to be mapped to any set.

Since the bound is decreasing in the parameter n, it is an optimal bound for all programs with
at most n variables. The formula for cache hits allows us to derive optimal bounds comparing the
access times for cache memories. The formula also gives bounds (these are not optimal, however)
for any other replacement policy, for direct-mapped versus set-associative caches, and for programs
with variables larger than the cache memory blocks.

Key words. cache memory, fully associative cache, set-associative cache, direct-mapped cache,
0, 1-matrices, performance bound, extremal matrices

AMS subject classifications. 68R05, 68M07, 90C27, 05A05, 05D99

PII. S0097539798349164

1. Introduction. Cache memories reduce the memory access time in computer
systems; an excellent survey can be found in [20]. The hardware budget is, however,
limited in terms of gates, routing, etc., when designing cache memories. This hardware
budget can be used in different ways, e.g., one can include different amounts of as-
sociative memories thus yielding a fully associative, set-associative, or direct-mapped
cache. Due to the limited hardware budget, using associative memories reduces the
number of storage elements in the cache. Moreover, the access time usually increases
with increasing associativity. Consequently, trade-offs between the access time, the
degree of associativity, and the number of storage elements are of interest. Such
design trade-offs are difficult. One aspect here is the implementation cost of asso-
ciative memories as compared to the storage elements. This ratio depends on the
implementation technique [17].
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Fig. 1. A direct-mapped and a set-associative cache with two sets for a data segment of size 8.

Another aspect is the maximum difference in hit ratio between small fully as-
sociative caches and larger set-associative or direct-mapped caches. Calculating the
maximum hit ratio decrease when reducing the number of storage elements is not dif-
ficult, i.e., in the worst case scenario the hit ratio may drop to zero. This can best be
understood by considering a loop with a large number of iterations. (The definition of
a loop can be obtained from any textbook on introductory computer programming.)
In each loop iteration we access the same n variables. If we use the LRU or FIFO
replacement policies [21] and reduce the number of cache blocks from n to n− 1, the
cache hit ratio will drop from 100 percent to zero. Estimating the maximum hit ratio
increase when increasing the degree of associativity and decreasing the total number
of storage elements is, however, nontrivial. Figure 1 illustrates two cases of different
associativity.

A problem with direct-mapped caches and caches with a limited degree of asso-
ciativity, i.e., a limited set size, is that the performance for certain access patterns
may be seriously impaired due to collisions. Consider a direct-mapped cache and a
loop with a large number of iterations. Two different variables are accessed in the
loop. If these two variables are mapped to the same set, there will be collisions, and
each variable reference will result in a cache miss. However, if we consider a system
with a degree of associativity larger than or equal to two, no collisions will occur;
with the exception of the initial references, all references to the two variables result
in cache hits.

If the variables can be mapped independently of each other, the compiler or pro-
grammer may detect the collisions and try to map the variables to different sets.
However, in some cases the number of collisions will increase when the set size de-
creases, even when using the best possible mapping of variables to sets. This can be
understood with the aid of the example below.

Consider a program with three loops, each containing a large number of iterations.
In loop one, variables A and B are accessed repeatedly. In loop two, variables B and
C are accessed, and in loop three, variables A and C are accessed. Only one variable
can be allocated in a block. Consider also a small cache system with two blocks. This
system can be arranged in one of two ways: direct-mapped or fully associative. In
the direct-mapped case, at least two of the variables A, B, and C are mapped to the
same set. As a result, at least one of the three loops results in a large number of
collisions, even when using the best possible mapping of variables to sets. In the fully
associative case, there will be no collisions.

In this paper we establish several comparisons of cache memory performance, all
derived from one basic optimal formula. The main part of the report is focused on this
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particular formula. It is an optimal upper bound on the maximum relative increase
of cache hits when using a fully associative cache as compared to a set-associative
or direct-mapped cache. In section 9 we show that the result can also be used for
comparing set-associative caches with direct-mapped caches. We assume that the
compiler, or programmer, is free to map variables to any arbitrary cache set. In some
cases, e.g., for different elements in large variables such as arrays and matrices, this
is obviously not true. In section 9, however, we will demonstrate that the results are
indeed valid for a large number of real cases, including many programs which access
large variables. From an applied point of view, section 3, which presents the formula,
and section 9, which presents various applications and extensions of the main formula,
are the most important sections.

The present paper is part of a series of reports on optimal worst case bounds in
computer science contexts. We have also derived optimal bounds for static versus
dynamic allocation of parallel programs [7, 9], for cluster versus dynamic allocation
[8], for all programs with a specified parallelism [10], for the worst case performance
drop at memory reorganization [11], and for the cluster execution time for a program
P only knowing one or more execution times for P , executed with dynamic allocation
and any schedule [12, 13]. We have also obtained optimal performance bounds on
the gain of permitting dynamic allocation of communication channels in distributed
processing [14]. All these reports provide optimal bounds for NP-hard quantities [2].
In the present report we consider the NP-hard problem of finding an optimal mapping
for a certain program P with a (k, u)-cache, i.e., a mapping maximizing the number
of cache hits. We provide a formula for this number for worst case programs.

The method in all the reports consists of two steps:

1. Successive elimination of unnecessary programs, leading to a subset of all
programs. This set contains at least one extremal (worst case) program and
allows matrix representation of the remaining programs.

2. In the remaining set of programs—sometimes regarded as matrices—those
where all possible rows occur equally frequently are proven to be extremal.
Here we have obtained a formulation which is sufficiently simple to allow the
derivation of explicit formulas.

The first step is, of course, application-dependent to a higher degree than the
second. In the present report, the first step is taken care of in sections 2–6, while
sections 7 and 8 deal with the second step. Section 9 gives different applications and
generalizations of the results. Section 10 contains a short discussion of the results in
relation to existing research. Section 11 displays plots of the formula as well as an
application which takes memory access times into consideration.

2. Problem definition and notation. A data cache is defined by five pa-
rameters: the number of sets, the number of blocks in each set, the block size, the
replacement policy within a set, and the update policy to main memory. We focus
here on two parameters: the number of cache sets and the number of blocks in each
set. A cache with k sets containing u blocks each is denoted as (k, u)-cache. In some
reports, this cache configuration is referred to as a u-way set-associative cache with
k sets. A mapping maps each variable in a program onto a specific memory address
and thus to a specific cache set. During the complete execution each variable will
be stored on this address. Thus a mapping can be thought of as a partition of the
variables into k sets.

If u equals one, the cache is direct-mapped. If k equals one, the cache is fully
associative. It is well known [5] that with a fixed number of blocks, the hit ratio is



OPTIMAL CACHE MEMORY COMPARISON 875

higher, or at least equal, with a fully associative cache than with a direct-mapped
cache. The left part of Figure 1 shows a (4, 1)-cache, and the right part shows a
(2, 2)-cache for a data segment of size 8.

In this study, the results are valid for any block size (for further details see the
discussion in section 9.4). However, all blocks are of the same size. We are only
interested in the hit ratio, i.e., the percentage of all memory references that can be
handled by the cache. The hit ratio is unaffected by the update policy, e.g., write-
through or copy-back. The update policy is thus of no importance in this study.

In cache memory systems, code references are much easier to handle than data
references. In this report, we only consider data references. When the code references
are ignored, the execution of the program P can be regarded as a sequence of m(P )
references to n different program variables. All variables are stored in the data seg-
ment. We assume that the data segment is infinitely large, and that the compiler or
programmer is free to map any variable onto any block. This assumption is discussed
in section 9. We also assume that all memory words in a variable are stored in the
same block. We only consider variables which are referenced at least once, and hence
n ≤ m(P ).

The only limit on the size of the program variables is that no variable should
exceed one cache memory block. This restriction is discussed and to a large extent
removed in section 9. Several small variables may be mapped to the same cache block.
If a variable in one block is transferred to, or from, the cache, all other variables
mapped to the same block are transferred simultaneously. In Theorem 2.2, we show
that we may in the remainder of the report consider only the case of having exactly
one variable mapped to each block.

No initial storing is assumed; the first referenced block will thus be stored in the
cache without replacing any other variable. We assume that the LRU [16] replacement
policy is used within each set. This means that if a cache set is full and a variable
mapped to this set is referenced which is not in the cache, then the variable—together
with other variables mapped to the same block—replaces the least recently referenced
block in the cache set. This is a reasonable replacement policy which has been used
in some machines [6] as well as in other studies (e.g., see [5] and [19]). We discuss
other replacement policies in section 9.

If the number of sets exceeds one, different mappings of variables to memory
addresses may result in different hit ratios. Consider, for example, a direct-mapped
cache and a program which repeatedly accesses two variables in a loop. If these two
variables are mapped to the same set, each access will result in a cache miss. If,
however, the two variables are mapped to different sets, there would be no cache
misses, apart from the initial references. A mapping which for a particular program
P results in a maximal number of hits is referred to as an optimal mapping for P .
The number of hits for a program P , using an optimal mapping and a (k, u)-cache, is
denoted h(P, k, u). The number of hits for a program P with an arbitrary mapping
A is denoted by h(A,P, k, u). Hence, if A1 is an optimal mapping for the program P ,
h(A1, P, k, u) = h(P, k, u).

Some of the memory references that can be handled by the (1, q)-cache may lead
to misses using the (k, u)-cache, at least for some values on n, k, q, and u. References
which are hits using the (1, q)-cache but misses using the (k, u)-cache are referred to as
extra misses. We now consider a mapping which, using a (k, u)-cache, minimizes the
number of extra misses. Using this mapping, the number of extra misses for a certain
program P is denoted em(P, k, u, q). The number of extra misses with a specific
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mapping A is denoted by em(A,P, k, u, q). In mathematical language, all possible
mappings are all possible partitions of the n variables in k sets. We summarize as
follows.

Definition 2.1. Given a program P , we denote the maximal number of hits and
the minimal number of extra misses as follows:

h(P, k, u) = max
A

h(A,P, k, u),

and

em(P, k, u, q) = min
A

em(A,P, k, u, q).

Note that h(P, k, u) and em(P, k, u, q) may be realized with different mappings.
The problem of finding an optimal mapping using a (k, u)-cache is NP-hard (see [2,
problems P01 and P02], for example).

We next prove that in the interest of worst case estimates, we need only to con-
sider programs where each variable is the size of one block. Note that in this case
h(A1, P, 1, q) = h(A2, P, 1, q) for any mappings A1 and A2. As a result, we need no
notation of mappings in conjunction with the quantity h(P, 1, q). In the following
theorem, n-programs denote programs with n variables.

Theorem 2.2.

inf
n-programs P

h(P, k, u)

h(P, 1, q)
= inf
n-programs P with blocksized variables only

h(P, k, u)

h(P, 1, q)
.

Proof. Consider any program P with n variables in which some variables are
mapped to the same block when using an optimal mapping for a (1, q)-cache. Suppose
that the variables i1, i2, . . . , ij are mapped to the same block. Then there is another
program P ′, which has none of the variables i1, i2, . . . , ij , but a new variable i0. The
size of i0 equals the sum of the sizes of the variables i1, i2, . . . , ij , and each reference
to i1, i2, . . . , ij in P is replaced by a reference to i0 in P ′. Since all variables mapped
to the same block are transferred to and from the cache simultaneously, we have
h(P, 1, q) = h(P ′, 1, q).

Next consider a (k, u)-cache. By the construction the mappings of the variables
of P ′ can be regarded as those mappings of the variables of P where the variables
i1, i2, . . . , ij are mapped to the same block. In addition, for each mapping A′ of the
variables of P ′, there is a mapping A of the variables of P so that h(A′, P ′, k, u) =
h(A,P, k, u). Hence

h(P ′, k, u) = max
A′

h(A′, P ′, k, u) ≤ max
A

h(A,P, k, u) = h(P, k, u).

Thus

h(P ′, k, u)
h(P ′, 1, q)

≤ h(P, k, u)

h(P, 1, q)
.

By repeating this argument we obtain a program P ′′ where no variables are
mapped to the same block, and where

h(P ′′, k, u)
h(P ′′, 1, q)

≤ h(P, k, u)

h(P, 1, q)
.
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We also increase the size of each variable in P ′′ to equal the size of one block. Clearly
this also preserves the inequality.

Denote the number of variables of the program P ′′ by y; obviously, y < n. We next
construct a program P ′′′ with n variables by adding one reference each to n− y new
variables as the n−y last references in the program P ′′. Each new variable is the same
size as one block. The n− y last references in the program P ′′′ are all misses in any
cache and with any mapping since the first reference to a block is always a miss. Hence
we can also obtain an optimal mapping from an optimal mapping of the program P ′′

by adding the new variables to any block. Hence h(P ′′, 1, q) = h(P ′′′, 1, q), and
h(P ′′, k, u) = h(P ′′′, k, u).

Given any program P with n variables, we can thus construct a program P ′′′ with
n variables, where each variable is the size of one block, and where

h(P ′′′, k, u)
h(P ′′′, 1, q)

≤ h(P, k, u)

h(P, 1, q)
.

We also need the quantity eh(A,P, k, u, q), the extra hits. This is the number
of memory references for P which are misses with a (1, q)-cache but hits using a
(k, u)-cache, when using a mapping A. We clearly have the following relation.

Lemma 2.3. h(A,P, k, u)− h(P, 1, q) = eh(A,P, k, u, q)− em(A,P, k, u, q).
The significance of the results is based on the calculation of an explicit formula

for the following function.
Definition 2.4.

r(n, k, u, q) = max
P

em(P, k, u, q)

h(P, 1, q)
,

where the maximum is taken over all programs P with n variables.
The formula for r(n, k, u, q) is presented in Theorem 3.2.

3. Main results. Our first result states that the formula for

max
P

em(P, k, u, q)/h(P, 1, q)

can be used to obtain optimal worst case estimates for the hit ratio comparing the two
caches. Here we thus obtain an optimal bound on the NP-hard quantity h(P, k, u).

Theorem 3.1.
(i) The worst case ratio of cache hits comparing two caches is given by

inf
P

h(P, k, u)

h(P, 1, q)
= 1− r(n, k, u, q),

where the infimum is taken over all programs P with n variables.
(ii) Consider a program P with n variables, and suppose that the hit ratio h(P, 1, q)/

m(P ) for P with a (1, q)-cache is known. In this case, an optimal estimate
of the hit ratio for the program P using a (k, u)-cache is given by

inf
P

h(P, k, u)

m(P )
= (1− r(n, k, u, q))

h(P, 1, q)

m(P )
.

The proof of Theorem 3.1 is given at the end of this section. The function 1 −
r(n, k, 1, k), which compares a direct-mapped cache to a fully associative cache, is
plotted in section 11.2.
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The formula for r(n, k, u, q) is given in the following theorem.
Theorem 3.2. Suppose that n, k, u and q are positive integers, and denote I =

� n−ik−1� and J = n− i− (k − 1)� n−ik−1� = (n− i)mod(k − 1).
Then, if n ≤ ku or u ≥ q, r(n, k, u, q) = 0. If ku < q and ku < n, then

r(n, k, u, q) = 1. In the remaining cases we may compute the value of r(n, k, u, q) as

r(n, k, u, q) =
1

q
(
n
q

) min
i=�n/k�,�nu/q�,�nu/q�+1,...,n


min(q,i)∑

j=u+1

j

(
i

j

)(
n− i

q − j

)

+ J

min(q,I+1)∑
j=u+1

j

(
I + 1

j

)(
n− I − 1

q − j

)

+ (k − 1− J)

min(q,I)∑
j=u+1

j

(
I

j

)(
n− I

q − j

)
 ,

or as

r(n, k, u, q) = 1− 1

q
(
n
q

) max
i=�n/k�,�nu/q�,�nu/q�+1,...,n


min(u,i)∑

j=1

j

(
i

j

)(
n− i

q − j

)

+ J

min(u,I+1)∑
j=1

j

(
I + 1

j

)(
n− I − 1

q − j

)

+ (k − 1− J)

min(u,I)∑
j=1

j

(
I

j

)(
n− I

q − j

)
 .

By counting terms in the sums it is easily seen that the first formula has fewer
terms if and only if

min(q, i)−min(u, i) + J(min(q, I + 1)−min(u, I + 1))

+ (k − 1− J)(min(q, I)−min(u, I)) ≥ ku.

That is, for q ≥ 2u, the first formula is computationally most efficient, and if u is
close to 1, the second is favorable.

This theorem is proved in section 8.
We also prove that the function r is increasing.
Lemma 3.3. For any n > 0, r(n, k, u, q) ≤ r(n+ 1, k, u, q).
By this lemma, which is proved in section 8, a bound for a large n is valid as a

bound for all programs with at most n variables. We thus have the following more
n-independent version of Theorem 3.1(i).

Theorem 3.4. The worst case ratio of cache hits comparing two caches is given
by

inf
P

h(P, k, u)

h(P, 1, q)
= 1− r(n, k, u, q),

where the infimum is taken over all programs P with at most n variables.
We will next describe the results for specific programs (Theorem 3.9) from which

the general results of Theorems 3.1 to 3.4 follow. These also have some interest in
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their own right. Below, we describe the complete programs: these are extremal for
the ratio maxP em(P, k, u, q)/h(P, 1, q) and essential in the calculation of the formula.

As discussed previously, a program can be represented by a sequence ofm integers,
each between 1 and n, where each integer occurs at least once since each variable is
referenced at least once. In this sequence, each entry represents one memory reference,
and its value denotes the variable which is referenced.

When executed using a (1, q)-cache, the program induces a sequence of states for
the cache. Our results are based on an analysis of this sequence of states. We will
next describe its representation briefly—the full description is given in section 6.

For any given program P we initially add n references, one reference to each of
the n variables, in the same order as they are initially referenced in the program P .
This gives the program P ′ with m(P ′) = m(P ) + n. Note that if n > q, we add n
misses using a (1, q)-cache.

For any reference in the program P ′ after the initial n references, the state of the
cache is described by a so-called (q, n)-hit vector. This vector contains one entry for
each variable; the content describes whether the variable is in the cache or not. There
are n− q 0’s for variables not in the cache. Variables in the cache are denoted by “1,”
except the least recently referenced variable in the cache, which is represented by “q”
at the corresponding position.

The program P is represented by a matrix M(P ) having as rows all induced
(q, n)-hit vectors of P ′ which represent hits using a (1, q)-cache. If n > q, P ′ has at
least n + 1 initial misses, i.e., the number of rows of the matrix M(P ) is less than
m(P ). Obviously there exist q(nq ) different (q, n)-hit vectors.

The raison d’etre for the (q, n)-hit vectors is that we represent enough informa-
tion for our purpose, and that any collection of (q, n)-hit vectors represents a program
(Theorem 6.12). Therefore, results about programs can be derived by studying col-
lections of (q, n)-hit vectors. The main part of section 6 is devoted to establishing the
fact that the problem can be studied using the (q, n)-hit vector representation.

Definition 3.5. A program P is complete if all q(nq ) possible (q, n)-hit vectors

are equally frequent in the matrix M(P ).
Theorem 3.6. All complete programs are extremal for the ratio em(P, k, u, q)/

h(P, 1, q), i.e., for each complete program P we have

em(P, k, u, q)/h(P, 1, q) = max
P ′

em(P ′, k, u, q)/h(P ′, 1, q).

Here the maximum is taken over all programs P ′ with the same number of vari-
ables as P .

The main part of the report is devoted to proving the correctness of this theorem.
In parallel with this we prove the usefulness of the (q, n)-hit vector description.

We next consider optimal mappings of the n variables onto the k sets. A mapping
where each set contains either �n/k� or �n/k� variables is called a uniform mapping.
A mapping where one set has i variables, where i > �n/k�, and the other k − 1 sets
have �(n− i)/(k−1)� or �(n− i)/(k−1)� variables is called a quasi-uniform mapping.

We prove the following theorem, which is essential in order to compute the The-
orem 3.2 formula.

Theorem 3.7. For any complete program P there is an optimal mapping which
is either uniform or quasi-uniform.

In section 7 we prove that, practically speaking, complete programs may have any
hit ratio. We in fact prove that the set of possible hit ratios for complete programs is
dense in the interval (0, 1).
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Lemma 3.8. For any number H, 0 ≤ H ≤ 1, and for any ε > 0, there is a
complete program P such that

∣∣∣∣h(P, 1, q)m(P )
−H

∣∣∣∣ < ε.

We conclude this section by showing how Theorem 3.1 follows once Theorem 3.6
and Lemma 3.8 have been established.

Theorem 3.9.
(i) For any program P with n variables, we have

h(P, 1, q)(1− r(n, k, u, q)) ≤ h(P, k, u).

(ii) For any complete program P with n variables, we have

h(P, 1, q)(1− r(n, k, u, q)) ≤ h(P, k, u) < m(P )− h(P, 1, q)r(n, k, u, q).

Proof. Given a program P , use A0 and A1 to denote optimal mappings for the
number of cache hits and for the number of extra misses, respectively. From Lemma
2.3 we then obtain

h(P, k, u) = h(A0, P, k, u) ≥ h(A1, P, k, u)

≥ h(P, 1, q)− em(A1, P, k, u, q) = h(P, 1, q)− em(P, k, u, q).

Hence

h(P, k, u) ≥ h(P, 1, q)− em(P, k, u, q).

By invoking r(n, k, u, q) ≥ em(P, k, u, q)/h(P, 1, q) the inequality in (i) follows.
The right inequality for complete programs follows from the relation

h(A,P, k, u) + em(A,P, k, u, q) < m(P ).

To the left we here have all hits and a subset of the misses when using a (k, u)-cache,
and to the right we have all memory references. Only the misses which are also misses
with a (1, q)-cache are not represented. Since the initial reference is a miss for both
caches, a strict inequality is valid. By taking optimal mappings A0 and A1 as before
we get

h(A0, P, k, u) < m(P )− em(A0, P, k, u, q) ≤ m(P )− em(A1, P, k, u, q)

= m(P )− em(P, k, u, q).

Now, by invoking Theorem 3.6, for complete programs P we have r(n, k, u, q) =
em(P, k, u, q)/h(P, 1, q); the right inequality follows.

Proof of Theorem 3.1(i). By taking h(P, 1, q)/m(P ) arbitrarily close to 1, Theorem
3.1(i) follows immediately from Lemma 3.8, Theorem 3.6, and Theorem 3.9.

4. Method overview. The results in section 3 are established when we have
proved the following facts for complete programs.

1. Complete programs are extremal: Theorem 3.6.
2. The formula in Theorem 3.2 is valid for complete programs. Part of this is to

establish that a complete program has an optimal mapping which is uniform
or quasi-uniform (Theorem 3.7).
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3. There are complete programs with any hit ratio: Lemma 3.8.

In order to derive a mathematical formula for r(n, k, u, q) for all positive integers
n, k, q, and u, we start by taking care of trivial cases of integers n, k, q, and u (section
5). For the nontrivial cases, we successively take away uninteresting sets of programs
with the argument that if a program which is removed is extremal, then there is
another program which is also extremal and which is not removed. Thus we always
keep at least one program which is extremal for the problem.

We next represent the sequence of states for a (1, q)-cache which is induced by
the program P with a sequence of so-called (q, n)-state vectors. This vector describes
the state of the cache and thus contains enough information about the history of P
to decide whether the next reference is a hit or a miss.

We have seen that the minimum of the ratio h(P, k, u)/h(P, 1, q) can be obtained
by calculating the maximum of em(P, k, u, q)/h(P, 1, q). For this ratio, the (1, q)-
cache misses are uninteresting and they are not represented in the sequence of (q, n)-
state vectors. By frequent use of this flexibility, i.e., by adding (1, q)-cache misses in
certain ways, it is possible to prove that any arbitrary sequence of (q, n)-state vectors
represents a valid program. Theorem 6.9 thus states that, starting with any (q, n)-
state vector, one can add (1, q − 1)-cache misses so that the next hit occurs at any
other state for the (1, q − 1)-cache.

With the aid of Theorem 6.11 we can always add cache misses so that the next hit
always references the variable which in this time cycle is the least recently referenced
one. This allows the representation to be further simplified into so-called (q, n)-hit
vectors. The aim of section 6 is Theorem 6.12. Using this theorem, it becomes valid
to consider arbitrary sequences of (q, n)-hit vectors.

In section 7, complete programs are defined and studied. In this section, Theorems
3.6 and 3.7 and Lemma 3.8 are proved. The proof of Theorem 3.6 consists of the so-
called duplication argument, which is a cornerstone in [7, 8, 9, 10, 11, 12, 13, 14].

The calculation of the explicit formula, Theorem 3.2, is made in section 8. In
section 9 the applicability of the results is discussed, and section 10 concludes the
paper. Section 11 displays some graphics related to the results.

Figures 2 and 3 present the logical structure of the theorems and lemmas needed
to establish Theorems 3.1 and 3.2.

5. Trivial cases.

Theorem 5.1. If n ≤ ku, then r(n, k, u, q) = 0.

Proof. If n ≤ ku, then all variables can be contained within a cache with k
sets each containing u blocks. As a result, there will be no extra misses for the
(k, u)-cache.

Theorem 5.2. If ku < q and ku < n, then r(n, k, u, q) = 1.

Proof. From the definition of r(n, k, u, q) it is obvious that r(n, k, u, q) ≤ 1 for
any values of n, k, q, and u.

If ku < q, it is possible to write a program P which repeatedly accesses a
set of variables requiring q blocks of memory space. Since we use the LRU re-
placement policy, we will obtain a cache-miss for every reference using the (k, u)-
cache. For the (1, q)-cache we will, however, obtain no misses after the first itera-
tion. By increasing the number of such iterations, it is possible to make the ratio
em(P, k, u, q)/h(P, 1, q) > 1 − ε for any ε > 0. Thus sup em(P, k, u, q)/h(P, 1, q)
= 1.

Theorem 5.3. If u ≥ q, then r(n, k, u, q) = 0.
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Transformation group:
Set of (q,n)-hit vectors which
have the 0:s in the same posi-
tions and where ”q” occurs
equally frequently in all re-
maining positions. This fre-
quence is the repetition factor.

All complete programs P have the
same ratio em(P,k,u,q )/h(P,1,q).

Lemma 7.3

Complete programs may have any
hit ratio h(P,1,q)/m(P).

Lemma 3.8

For any complete program there is an
optimal mapping which is uniform or
quasi-uniform.

Theorem 3.7

Complete programs are extremal
for the ratio em(P,k,u,q )/h(P,1,q).

Theorem 3.6

A program is complete if
the corresponding sequence of q,n-hit
vectors representing (1,q)-cache hits
contain all possible (q,n)-hit vectors
equally frequently.

Formula for
r(n,k,u,q).

Theorem 3.2

(i) inf {h(P,k,u )/h(P,1,q), programs P
of n variables} = 1 - r(n,k,u,q).
(ii) Hit ratio bound, similar to (i).

Theorems 3.1

h(A,P,k,u ) - h(P,1,q) =
eh(A,P,k,u,q ) - em(A,P,k,u,q ).

Lemma 2.3

Definition 3.5

Definition

r(n,k,u,q) is
increasing in n.

Lemma 3.3

For any program P:
h(P,1,q)(1-r(n,k,u,q)) ≤ h(P,k,u ).
For a complete program:
h(P,k,u )≤m(P)-h(P,1,q)r(n,k,u,q).

Theorem 3.9

If n > q+1, any sequence of (q,n)-hit
vectors represents a program.

Theorem 6.12

Implication:
Other connection:

(q,n)-hit vector (V(1),...,V(n)):
V(i)=0: variable not in the cache
V(i)=1 - variable in the cache, not

least recently referenced
V(i)=q - variable in the cache,

least recently referenced

Definition

If n = q+1, then there is a program P
such that the sequence of (q,n)-hit
vectors to hits using a (1,q)-cache forms
a complete sequence.

Theorem 7.1

If n > q+1 then ∃ an extremal pro-
gram where each hit is a reference
to a variable i with V(i) = q.

Theorem 6.11

(i) inf {h(P,k,u )/h(P,1,q), programs P
of n variables} = 1 - r(n,k,u,q).
(ii) Hit ratio bound, similar to (i).

Theorems 3.4

Fig. 2. Logical structure outside section 6 (excluding the proofs in section 9).
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Fig. 3. Logical structure of section 6.
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Proof. If u ≥ q, then each set in the (k, u)-cache is larger than the set in the
(1, q)-cache. Consequently, using the LRU replacement policy, no extra misses can
occur.

Having isolated the trivial cases above, we assume that n > ku ≥ q > u in the rest
of this paper, unless otherwise stated. In addition, “extremal programs” will, unless
otherwise stated, denote programs which maximize the quantity em(P, k, u, q)/h(P, 1, q).

6. From programs to (q, n)-hit vectors.
Theorem 6.1. For any values of n, k, u, and q, there is at least one extremal

program such that each variable occupies exactly one block.
Proof. The only difference in the above statement compared to that in Theorem

2.2 is that here we wish to maximize em(P, k, u, q)/h(P, 1, q), whereas in that proof
we want to minimize h(P, k, u)/h(P, 1, q). It is easily seen that the same proof also
works for this theorem.

There are thus extremal programs which have room for exactly one variable in
each block. From now on we consider only such programs.

Since there are n variables in the program, we know that there will be at least n
cache misses because each variable will be referenced at least once. The first reference
to a variable, which always results in a miss, is referred to as the initial reference.

Theorem 6.2. Consider an arbitrary extremal program P and denote the first
referenced variable by i1, the second referenced variable by i2, and so on. Then con-
sider a program P ′ which is identical to P , with the exception that a sequence of n
memory references to variables i1, i2, . . . , in in this order has been added at the start
of the program. Then P ′ is also an extremal program.

Proof. Since we are considering the case when n > q, the number of hits using
a (1, q)-cache is the same for P and P ′. That is, memory reference number r in P
results in a miss using a (1, q)-cache if and only if memory reference number r + n
in P ′ results in a miss using a (1, q)-cache. Recall that we use the LRU replacement
policy. Hence h(P, 1, q) = h(P ′, 1, q).

Consider memory reference number r2 in program P and denote the referenced
variable by i. If r2 results in a hit using a (1, q)-cache, then there is another reference
r1 which also accesses variable i, such that r1 < r2 and there are no references to
variable i between r1 and r2. The sequence of memory references between r1 and r2
completely determines if r2 will result in a miss using a (k, u)-cache, i.e., this sequence
determines if an extra miss will occur. Obviously this sequence corresponds to the
sequence r1 + n to r2 + n in P ′. As a result, the number of extra misses is the same
for P and P ′, i.e., em(P, k, u, q)/h(P, 1, q) = em(P ′, k, u, q)/h(P ′, 1, q). Consequently,
if P is an extremal program, P ′ is also an extremal program.

Hence there are extremal programs which have no hits during the n first memory
references using a (1, q)-cache. From now on we consider only such programs.

A (q, n)-state vector V defines the variables currently stored in a (1, q)-cache and
the order in which they have been referenced. V has one entry for each variable. If
variable i is not in the cache, then V (i) = 0. Otherwise V (i) denotes the number of
variables referenced since variable i was referenced last, including variable i. Hence
if variable i is the most recently accessed variable, V (i) = 1. If it is the second most
recently accessed variable, V (i) = 2, and so on (see Figure 4). Hence after the first n
memory references, the (q, n)-state vector consists of the q first positive integers and
n− q zeros. As discussed before, the LRU replacement policy is used.

Clearly, a (q, n)-state vector has n entries and contains each of the first q positive
integers exactly once, and n− q zeros. If a reference to variable j is a cache miss, and
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0 1 0 0 4 3 2

Variables 1, 3 and 4 are not in the (1,q)-cache

If a miss occurs, variable 5 is replaced

Fig. 4. A (q, n)-state vector where q = 4 and n = 7.

V (i) = q, then variable i is replaced in the cache. We then set V (i) = 0, increment
all positive integers, and set V (j) = 1. If the reference to variable j is a hit, we
increment all entries which are smaller than V (j) and then set V (j) = 1. Figure 4
shows a (q, n)-state vector for the case when q = 4 and n = 7.

We are interested in the ratio em(P, k, u, q)/h(P, 1, q) for extremal programs.
When using a (1, q)-cache there are no hits during the first n memory references.
Therefore, we do not consider the n first memory references, i.e., we assume that
there are always q nonzero entries in a (q, n)-state vector. The numbering of the
(q, n)-state vectors is chosen so that the (q, n)-state vector number r describes the
state of the cache immediately before reference r in the program.

Now consider a mapping A of the n variables to k sets. Each mapping can be
regarded as a partition of the first n positive integers in k sets Aj ; mapping A is thus
the sets A1, . . . , Ak.

Lemma 6.3. Consider a (k, u)-cache, a mapping A, and a (q, n)-state vector V
corresponding to reference r in a program P . Assume that i0 ∈ Aα.

Then the variable i0 is not in the (k, u)-cache at reference r in program P if and
only if there are j variables ij, which are also mapped to Aα, such that 0 < V (ij) <
V (i0) and j ≥ u.

Proof. This is a direct consequence of the definition of the (q, n)-state vector,
Theorem 6.2, and of the fact that the LRU replacement policy is used.

The next theorem states that a (q, n)-state vector contains enough information
about the history of the program for our purposes.

Theorem 6.4. If the (q, n)-state vector after r references and the mapping of
variables to sets are known, then it is possible to determine from this information
whether reference r is an extra miss or not.

Proof. Consider a (q, n)-state vector V , a mapping A, and a reference to a variable
i0. If V (i0) > 0, no miss will occur using a (1, q)-cache. This is a direct consequence
of the definition of the (q, n)-state vector.

Assume that i0 ∈ Aα using the (k, u)-cache and there are j variables ij , which
are also mapped onto Aα. In this case, the previous lemma guarantees that if 0 <
V (ij) < V (ia) and j ≥ u, a cache miss will occur using the (k, u)-cache and mapping
A.

Consequently, if the (q, n)-state vector and the mapping of variables to memory
blocks are known, it is possible to determine if an extra miss will occur.

Our next aim is to prove that any sequence of (q, n)-state vectors represents the
sequence of (1, q)-hits for some program (Theorem 6.9). This allows us to consider
arbitrary sequences of (q, n)-state vectors.

Two (q, n)-state vectors V and V ′ are said to be congruent if V (i) = V ′(i) for all
i such that V (i) = 0.

Lemma 6.5. For two arbitrary (q, n)-state vectors V1 and V2, it is possible to
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generate a sequence of memory references such that, starting from V1, we reach a state
vector which is congruent with V2 without producing any hits using a (1, q)-cache.

Proof. Generate a reference to the first variable i (the variables are enumerated
in some fixed arbitrary order) for which V1(i) = 0 and V2(i) 	= 0, thereby producing a
new (q, n)-state vector V ′. If V ′ and V2 are not congruent, we again issue a reference
to a variable i, where V ′(i) = 0 and V2(i) 	= 0. This procedure can be repeated until
we reach a vector V ′ which is congruent with V2.

For the sequence of memory references generated in this way there are no hits
using a (1, q)-cache.

Consider two congruent (q, n)-state vectors V and V ′. The q indexes ij for which
V (ij) 	= 0 are enumerated in such an order that V (i1) = 1, V (i2) = 2, . . . , V (iq) = q.
V and V ′ aremodular congruent if there is an integer x: V (ij) = ((V ′(ij)+x)mod q)+1
for all j : 1 ≤ j ≤ q.

Lemma 6.6. For two modular congruent (q, n)-state vectors V1 and V2, it is
possible to generate a sequence of memory references such that, starting from V1, we
reach V2 without producing any hits using a (1, q − 1)-cache.

Proof. If we issue a reference to the variable iq : V1(iq) = q, we will obtain a
new state vector V ′1 which is modular congruent to V1. This reference will also clearly
be a miss when using a (1, q − 1)-cache. By repeating this kind of reference, we can
generate any vector V which is modular congruent to V1 without producing any hits
when using a (1, q − 1)-cache.

Two (q, n)-state vectors V1 and V2 are quasi-identical if V1(i) = V2(i) for all i
except two indexes ia and ib so that V2(ia) = 0, V2(ib) > 0, V1(ia) = V2(ib), and
V1(ib) = V2(ia).

Lemma 6.7. For two quasi-identical (q, n)-state vectors V1 and V2, it is possible
to generate a sequence of memory references, such that, starting from V1, we reach
V2 without producing any hits using a (1, q − 1)-cache.

Proof. Consider two state vectors V ′1 and V ′2 which are modular congruent with
V1 and V2, respectively. V

′
1 and V ′2 have been chosen so that V ′1(ib) = q and so that

V ′1 and V ′2 are also quasi-identical. By issuing one reference to the variable ia with
V ′2(ia) = q we obtain V ′′2 which is modular congruent to V ′2 .

From Lemma 6.6 we know that it is possible to generate a sequence of memory
references, such that, starting from V1, it is possible to reach V ′1 without producing
any hits using a (1, q − 1)-cache. From V ′1 we obtain V ′′2 by issuing a reference to
variable ia. Since V

′
1(ia) = 0, this reference leads to a miss using a (1, q − 1)-cache.

Again, Lemma 6.6 guarantees that, starting from V ′′2 , it is possible to generate a
sequence of memory references such that we reach V2 without producing any hits
using a (1, q − 1)-cache.

Lemma 6.8. For two congruent (q, n)-state vectors V1 and V2, it is possible
to generate a sequence of memory references so that, starting from V1, we reach V2

without producing any hits using a (1, q − 1)-cache.

Proof. Assume that V1(z) = V2(z) = 0, and that V2(ij) = j for all j : 1 ≤ j ≤ q.
In this case, the algorithm below reaches V ′1 = V2, starting from V1, without generating
any hit using a (1, q − 1)-cache.

1. Let j = q and let V ′j be modular congruent to V1 such that V ′j (iq) = q.
2. If j = 1, the algorithm terminates; else let j = j − 1.
3. If V ′j+1(ij) = j, then V ′j = V ′j+1 and go to 2.
4. Go to state Xj , which is quasi-identical with V ′j+1, i.e., Xj(i) = V ′j+1(i) for

all i : 1 ≤ i ≤ n except that Xj(ij) = V ′j+1(z) = 0 and Xj(z) = V ′j+1(ij) = t
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(t < j).
5. Go to state X ′j , which is quasi-identical with Xj , i.e., X

′
j(i) = Xj(i) for all

i : 1 ≤ i ≤ n except that X ′j(iy) = Xj(ij) = 0 and X ′j(ij) = Xj(iy) = j, i.e.,
iy is the index for which Xj(iy) = j.

6. Go to state V ′j , which is quasi-identical with X ′j , i.e., V
′
j (i) = X ′j(i) for all

i : 1 ≤ i ≤ n except that V ′j (z) = X ′j(iy) = 0 and V ′j (iy) = X ′j(z) = t, n.b.
V ′j is congruent with V1 and V2.

7. Go to 2.

The above algorithm guarantees that V ′1(i) = V2(i) for all i : j ≤ i ≤ n. Moreover,
Lemma 6.7 guarantees that there will be no hits using a (1, q − 1)-cache during steps
4, 5, and 6 in the above algorithm.

Theorem 6.9. If n > q + 1, it is possible to go from any (q, n)-state vector V1

to any other (q, n)-state vector V2 without producing any hits in a (1, q)-cache.

Proof. This follows immediately from Lemmas 6.5 and 6.8.

For the moment, we are considering only cases in which n > q + 1. The case
when n = q + 1 will be handled later. As discussed previously, a program can be
represented by the sequence of memory references, with associated (q, n)-state vectors,
which corresponds to hits using a (1, q)-cache. From Theorem 6.9 we know that if
n > q + 1, each (q, n)-state vector in this sequence is completely independent of any
other vector in the sequence.

Theorem 6.10. Consider a mapping A and two memory references r1 and r2,
both referring to the same variable x. Denote the (q, n)-state vectors corresponding
to r1 and r2 by V1 and V2, respectively. Assume that these vectors are such that
0 < V1(x) = p < q, V2(x) = q, and V2(i) = V1(i), when V1(i) < p; otherwise
V2(i) = V1(i) − 1 for all i 	= x. Assume also that reference r1 is a miss using a
(k, u)-cache and a mapping A. Then reference r2 is also a miss using a (k, u)-cache
and the mapping A.

Proof. From Lemma 6.3 we know that if reference r1 leads to a miss using a
(k, u)-cache and mapping A, then there are i variables zi, which are mapped to the
same set as x, such that 0 < V (zi) < V (x) = p and i ≥ u. We also know that
V2(i) = V1(i), when V1(i) < p. Consequently, at reference r1 the same zi variables
are mapped to the same set as x. Under these conditions, Lemma 6.3 tells us that
reference r2 will result in a cache miss.

Theorem 6.11. If n > q+1, there exists an extremal program such that each hit
using a (1, q)-cache is a reference to the variable for which the corresponding entry in
the (q, n)-state vector equals q.

Proof. Consider a program P and its induced sequence of (q, n)-state vectors. If
a reference r occurs to a variable i with V (i) < q, it is possible to use Theorem 6.9
to add memory references immediately before reference r so that V ′(i) = q, where
V ′ is the new (q, n)-state vector preceeding reference r. If this is done for all i such
that V (i) < q, we obtain a new program P ′ which has the same number of hits using
a (1, q)-cache: h(P, 1, q) = h(P ′, 1, q). It remains to check that the number of extra
misses does not decrease. Using Theorem 6.9 it is possible to add memory references
in such a way that V ′ fulfills all conditions in Theorem 6.10, with no new hits. It
then follows from Theorem 6.10 that all extra misses in P are also extra misses in
P ′. If sequences of memory references are added in this way at each spot where
a reference r occurs to a variable i with V (i) < q, then from the program P we
obtain a program P ′ where each hit is a reference to a variable i with V (i) = q, and
em(P, k, u, q)/h(P, 1, q) = em(P ′, k, u, q)/h(P ′, 1, q).
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1 1 q 0 0 0

0 1 0 0 q 1

1 q 1 0 0 0

0 1 1 0 q 0

1 1 q 0 0 0

1 1 q 0 0 0

0 1 0 0 q 1

1 q 1 0 0 0

0 1 1 0 q 0

1 0 q 0 1 0

miss

miss

hit

miss

miss

Number of extra misses: 4

1 1 q 0 0 0

0 1 0 0 q 1

1 q 1 0 0 0

0 1 1 0 q 0

1 0 q 0 1 0

set 1 set 2

hit

miss

miss

hit

hit

Number of extra misses: 2

Sequence of
5 q,n-hit vectors

set 3 set 1 set 2 set 3

Fig. 5. Two mappings of the same program with a (3, 1)-cache, compared to a (1, 3)-cache.

From now on we will consider only programs for which each hit using a (1, q)-cache
is a reference to the variable for which the corresponding entry in the current (q, n)-
state vector equals q. There is at least one extremal program within this set. The ratio
em(P, k, u, q)/h(P, 1, q) is, however, unchanged if all (q, n)-state vectors corresponding
to misses using a (1, q)-cache are deleted—both quantities in the ratio deal with (1, q)-
cache hits. It is clear that each arbitrary sequence of (q, n)-state vectors represents
a program of this kind, with all misses removed. Hence we may look for extremal
programs among the set of arbitrary sequences of (q, n)-state vectors.

Now consider a fixed mapping A, i.e., a partition of the variables in k sets consist-
ing of u variables in each set. Our aim is to find how many of the (q, n)-state vectors
result in a miss for a (k, u)-cache; this is the number of extra misses. Each reference
to a variable i corresponds to an entry equaling q in the current (q, n)-state vector,
V (i) = q. We know that the variable i is discarded using a (k, u)-cache if the number
of variables j : V (j) > 0 belonging to this partition set is larger than u. This is a
necessary and sufficient condition for an extra miss. Since we are thus only interested
in whether a certain entry in a (q, n)-state vector is 0, q, or some value between 0 and
q, we can further simplify our notation. In a (q, n)-state vector “0,” “1,” and “q” are
left unchanged, but all other integers are replaced by “1.” As a result, each vector has
one “q,” q − 1 “1,” and n− q “0.” Such a vector is referred to as a (q, n)-hit vector.
This vector also contains enough information to be able to decide whether an extra
miss occurs or not.

In the following discussion we will often represent a program as a matrix which
has (q, n)-hit vectors as rows. Again, only the hits are represented—all (q, n)-hit
vectors representing misses with a (1, q)-cache are deleted.

Since a program has by definition h(P, 1, q) hits using a (1, q)-cache, we obtain
an h(P, 1, q) × n matrix. Figure 5 shows a program for which there are five cache
hits using a (1, 3)-cache, i.e., h(P, 1, q) = 5. The program has six variables. The first
cache hit that occurs is a reference to variable number three. When this hit occurs,
variables number one and two are also in the cache.

The example in Figure 5 shows that if the mapping of variables to sets is known,
it is possible to determine if the memory reference corresponding to a certain (q, n)-hit
vector will result in a miss using a (k, u)-cache or not. Remember, we are interested
in the mapping of variables to sets resulting in a minimum number of misses using a
(k, u)-cache. The figure also shows that the number of extra misses depends on the
mapping.

The problem of calculating r(n, k, u, q) = maxP em(P, k, u, q)/h(P, 1, q) for all
programs P with n variables can now be formulated as the problem of finding a
sequence of (q, n)-hit vectors for which the ratio obtained when dividing the minimum
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0 1 0 0 q 1 1

0 1 0 0 1 q 1

0 1 0 0 1 1 q

0 q 0 0 1 1 1

0 1 0 0 4 3 2

q,n-state vector V

q,n-hit vector V

Transformation
group T

Sequence of memory block references: 5, 6, 7, 2

Fig. 6. A transformation group T.

number of misses for the sequence, when using a (k, u)-cache, with the length of the
sequence is maximal.

The following theorem follows from Theorems 6.11 and 6.4. It summarizes the
aim of the present section of reformulating the problem into arbitrary sequences of
(q, n)-hit vectors.

Theorem 6.12. If n > q + 1, any sequence of (q, n)-hit vectors represents a
program.

It is obvious that any program with n variables corresponds to a sequence of
(q, n)-hit vectors, as described before Definition 3.5.

7. Complete programs. There are q(nq ) distinct (q, n)-hit vectors. A program

for which the corresponding sequence of (q, n)-hit vectors contains exactly x copies
of each distinct vector is referred to as a complete program; x is referred to as the
repetition factor. Such a sequence of (q, n)-hit vectors is referred to as a complete
sequence.

A set of q (q, n)-hit vectors forms a transformation group if all zeros are positioned
at the same entries in all vectors and if the “q” is positioned differently in all vectors.
Consequently, there are x(nq ) transformation groups in a complete program.

Figure 6 shows a (q, n)-state vector V and the corresponding (q, n)-hit vector
V . The figure also shows the transformation group T , in which V is a member.
The arrows on the right side of the figure correspond to a sequence of four memory
references, where the first reference is to a variable mapped to block 5, the second is
to a variable mapped to block 6, the third to block 7, and the fourth to block 2. These
four memory references go through all (q, n)-hit vectors in T exactly once, reaching
(q, n)-hit vector V again after the fourth memory reference. With a (1, 4)-cache, none
of the four memory references would result in a cache miss.

So far, we have considered only the case when n > q + 1. This is because if
n = q+1, we cannot guarantee that there is a program corresponding to any arbitrary
sequence of (q, n)-hit vectors (see Theorem 6.12). In the next theorem, however, we
will show that there are complete programs even when n = q + 1.

Theorem 7.1. If n = q+1, then there is a program P such that the sequence of
(q, n)-hit vectors corresponding to hits using a (1, q)-cache forms a complete sequence.

Proof. We are going to describe a complete program P with n = q + 1 variables.
The program P starts by generating the n− 1 memory references 2, 3, . . . , q + 1.

This gives cache misses only, and the (q, n)-hit vector V = (0, q, 1, . . . , 1, 1). The
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following q references are references to the variables 2, 3, . . . , q + 1 in this order. By
the definition of transformation groups we then clearly issue cache hits such that we
go through all (q, n)-hit vectors in the transformation group T of V exactly once,
returning finally to V .

Having done this we generate a memory reference to variable 1. This issue gives a
miss and a new (q, n)-hit vector V ′ belonging to a different transformation group T ′,
where V ′(1) = 0. Again, we generate a sequence of q memory references, such that
we go through all (q, n)-hit vectors in T ′ exactly once, finally returning to V ′ with no
misses when using a (1, q)-cache. This procedure is repeated until we have produced
all the q + 1 different transformation groups.

Clearly the cache hits in the program P correspond to all possible (q, n)-hit vec-
tors, and each (q, n)-hit vector occurs once. Consequently, P is a complete program
for the case where x is one. Note that by repeating the (q+1)2 memory references it
is possible to obtain a complete program for any positive integer value of x.

Proof of Lemma 3.8. Consider a complete program P for which the hits occur
in such order that (q, n)-hit vectors belonging to the same transformation group are
listed consecutively. If h(P, 1, q)/m(P ) > H, we add y cache misses at the end of the
program, thus obtaining a new program P ′ which is also complete since only cache
hits are involved in the definition of complete programs.

h(P ′, 1, q)
m(P ′)

=
h(P, 1, q)

m(P ) + y
.

If h(P, 1, q)/m(P ) < H, we consider another complete program P ′ where we have
increased the repetition factor from x to x′, still with (q, n)-hit vectors belonging to
the same transformation group listed consecutively. Since only hits occur within a
transformation group, we introduce no new misses. Let α = x′

x . It is clear that by

denoting the misses using a (1, q)-cache, b(P ) = m(P )−h(P, 1, q), and α = x′
x we get

h(P ′, 1, q)
m(P ′)

=
αh(P, 1, q)

αh(P, 1, q) + b(P )
.

Hence we can increase the ratio so it is arbitrarily close to 1. By repeating the two
techniques it is possible to find a complete program which has a hit ratio arbitrarily
close to H.

Lemma 7.2. Consider a complete program P . The variables in P include i1 and
i2. If A(i1) = S1 (variable i1 is mapped onto set S1) and A(i2) = S2, and there is
another mapping A′ which is identical to A except A′(i1) = S2 and A′(i2) = S1, then
the number of extra misses is the same for mappings A and A′.

Proof. Obviously, the number of misses using a (k, u)-cache for vectors V where
V (i1) = V (i2) is the same for mappings A and A′. The symmetry of complete
sequences guarantees that all (q, n)-hit vectors V in P , for which V (i2) 	= V (i1),
can be grouped into pairs (V, V ′), such that V (i) = V ′(i), with the exception of
V (i1) = V ′(i2) and V (i2) = V ′(i1). If and only if V results in a miss for mapping
A using a (k, u)-cache, then V ′ results in a miss for mapping A′ using a (k, u)-cache.
Similarly, if and only if V results in a miss for mapping A′ using a (k, u)-cache, then
V ′ results in a miss for mapping A using a (k, u)-cache. Consequently, the number of
extra misses is the same for A and A′.

Lemma 7.3. All complete programs P with n variables have the same ratio
em(P, k, u, q)/h(P, 1, q).
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Proof. Obviously, the ratio em(P, k, u, q)/h(P, 1, q) is not affected by the order in
which the (q, n)-hit vectors are listed in the sequence corresponding to the complete
program. The only potentially significant difference between two complete programs
is thus the repetition factor x. Creating x copies of each row increases both the
number of extra misses em(P, k, u, q) and the number of hits using a (1, q)-cache
h(P, 1, q) with the factor x. As a result, the ratio em(P, k, u, q)/h(P, 1, q) is not
affected by x, i.e., all complete programs P with n variables have the same ratio
em(P, k, u, q)/h(P, 1, q).

Proof of Theorem 3.7. Lemma 7.3 and Theorem 3.6 allow us to consider a com-
plete program of q(nq ) rows. All references in one transformation group corresponding
to a certain set will generate extra misses if the number of nonzeros in that set is
larger than u; we otherwise obtain no extra misses. One transformation group will
therefore contribute with i extra misses for each partition set where the number of
nonzeros is i > u; the contribution is otherwise zero.

Consider two sets A1 and A2 in a mapping A, applied to a complete program P .
The program may be represented by a matrix with q(nq ) rows; the mapping may then
also be referred to as a partition. The sets A1 and A2 are size n1 and n2, respectively,
where n1 − n2 ≥ 2. We will next move one variable from the larger set A1 to the
smaller set A2, thereby producing the partition A′. If we denote the transferred
column by c, we can write A′1 = A1\{c} and A′2 = A2 ∪ {c}. A′ and A have all other
partition sets in common.

We will next study under what conditions we have

em(A′, P, k, u, q) ≤ em(A,P, k, u, q).

If we replace A by A′, the number of extra misses will not change at rows where
the cth column contains a zero. However, at each row of P where we have 1 at column
c, and we also have exactly u nonzeros in A2 and do not have u nonzeros in the rest
of A1, the number of extra misses will increase by u + 1. Here we have added the
extra misses for all permutations in the same transformation group. Similarly, in a
row where we have exactly u nonzeros in A′1 and do not have u nonzeros in A2, the
number of extra misses will decrease by u + 1. Since P contains each permutation
exactly once, with the aid of elementary combinatorics we may count these changes
and we obtain

em(A′, P, k, u, q) = em(A,P, k, u, q)

+ (u+ 1)

((n2

u

)(n− n2 − 1

q − u− 1

)
−
(
n1 − 1

u

)(
n− n1

q − u− 1

))
.

Let f(l) = ( lu )(
n−l−1
q−u−1 ). So the contribution to the number of extra misses if one

column is moved from A1 to A2, where |A1| = n1 and |A2| = n2, is

em(A′, P, k, u, q)− em(A,P, k, u, q) = (u+ 1)(f(n2)− f(n1 − 1)).

We may now easily calculate for which l the function f(l) is increasing or decreas-
ing. We get

f(l)− f(l − 1) =

(
l

u

)(
n− l − 1

q − u− 1

)
+

(
l − 1

u

)(
n− l

q − u− 1

)

=

(
l

l − u
− n− l

n− l − q + u+ 1

)(
l − 1

u

)(
n− l − 1

q − u− 1

)
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=
l(n− l − q + u+ 1)− (l − u)(n− l)

(l − u)(n− l − q + u+ 1)

(
l − 1

u

)(
n− l − 1

q − u− 1

)

=
−lq + l + un

(l + 1− u)(n− l − q + u)

(
l − 1

u

)(
n− l − 1

q − u− 1

)
.

We can conclude that f(l) − f(l − 1) ≥ 0 if and only if l ≤ un
q−1 . Since q ≤ ku,

we have un
q−1 ≥ n

k
q
q−1 ≥ n

k . We therefore have a critical size un
q−1 for l which is higher

than n/k. Of course, in a uniform partition, the partition sets have size �n/k� and
�n/k�.

Hence, if n2 < n1− 1 ≤ un
q−1 , the number of extra misses will decrease if we move

a column from a larger to a smaller set.
On the other hand, if n2 > n1−1 ≥ un

q−1 , the number of extra misses will decrease
if, conversely, we move a column from a smaller to a larger set.

We will next repeat the argument by successively decreasing the number of ex-
tra misses by transferring columns between partition sets. We then finally obtain a
uniform, or a quasi-uniform partition, which we may see as follows.

If all blocks in the starting partition are smaller than the critical size un
q−1 , we

apply the argument repeatedly to move columns from larger to smaller sets, thereby
finally obtaining a uniform partition.

If one block is larger than the critical size, we apply the argument to pairs of
the other blocks. We again move columns from larger to smaller sets, giving a quasi-
uniform partition.

If the starting partition has two or more sets which are larger than the critical size,
we apply the argument to a pair where both blocks are larger than the critical size.
We then instead move columns from the smallest set to the largest. This argument is
repeated for the same pair, until the smallest set is smaller than the critical size.

If there are still two or more blocks larger than the critical value, we apply this
procedure to another such pair. Ultimately, we will have only one set which is larger
than the critical size. This is handled as described above.

Consequently, our only candidates for optimal partitions are the uniform parti-
tions, which have partition set sizes

(⌈n
k

⌉
, . . . ,

⌈n
k

⌉
,
⌊n
k

⌋
, . . . ,

⌊n
k

⌋)
,

together with the quasi-uniform partitions, defined by partition set size sequence

(
i,

⌈
n− i

k − 1

⌉
, . . . ,

⌈
n− i

k − 1

⌉
,

⌊
n− i

k − 1

⌋
, . . . ,

⌊
n− i

k − 1

⌋)
,

where i = max(�n/k�+ 1, � unq−1�), . . . , n.
The quasi-uniform partitions have the size of one set larger or equal to the critical

value un
q−1 but larger than �n/k�; while the other k − 1 sets are as equally sized as

possible.
Numerical calculation shows that in most cases a uniform partition is optimal if

the parameters are moderately large. For example, if all four parameters are at most
10, there are only three cases where a uniform partition is not optimal: (n, k, u, q) =
(9, 7, 1, 7), (10, 7, 1, 7), and (10, 8, 1, 8).

Proof of Theorem 3.6. Consider a sequence of (q, n)-hit vectors corresponding to
an arbitrary program P0 (see Figure 7), and take a mapping A0 which is optimal for
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0 1 q
q 0 1
0 1 q
1 q 0

0 1 q
0 1 q
0 1 q
0 1 q

0 q 1
0 q 1
0 q 1
0 q 1

1 q 0
1 q 0
1 q 0
1 q 0

q 1 0
q 1 0
q 1 0
q 1 0

1 0 q
1 0 q
1 0 q
1 0 q

q 0 1
q 0 1
q 0 1
q 0 1

0 1 q
q 0 1
0 1 q
1 q 0

0 q 1
q 1 0
0 q 1
1 0 q

1 q 0
0 1 q
1 q 0
q 0 1

q 1 0
1 0 q
q 1 0
0 q 1

1 0 q
0 q 1
1 0 q
q 1 0

q 0 1
1 q 0
q 0 1
0 1 q

n! copies

reordering the
q,n-hit vectors in P1

P0

P1

Fig. 7. Creating a complete program P1 from an arbitrary program P0.

the program P0. Let A1 be an optimal mapping for a complete program defined by n
and q. We then clearly have

em(P0, k, u, q)

h(P0, 1, q)
=

em(A0, P0, k, u, q)

h(P0, 1, q)
≤ em(A1, P0, k, u, q)

h(P0, 1, q)
.

As discussed previously, the (q, n)-hit vectors form a h(P0, 1, q) × n matrix; in the
example in Figure 7 we have h(P0, 1, q) = 4 and n = 3.

We next duplicate the program P0 in n! copies, where each copy corresponds
to one of the n! permutations of the n columns in the h(P0, 1, q) × n matrix. The
copies are concatenated, resulting in a sequence of (q, n)-hit vectors of the length
n!h(P0, 1, q). This sequence corresponds to a program P1. It is clear that P1 is a
complete program (see the version of P1 furthest to the right in Figure 7).

The mapping A1 on each of the n! permutations of the columns of P0 can now
be alternatively regarded as mappings A1,i, i = 1, . . . , n!, on the program P0. Now
fix the mapping A1 to be such that em(A1, P0, k, u, q) ≤ em(A1,i, P0, k, u, q) for all
i = 1, . . . , n!.

Then em(A1, P, k, u, q) is also a lower bound of the mean value of the quantities
em(A1,i, P0, k, u, q). Since the sum of these is em(A1, P1, k, u, q), we obtain

em(A1, P0, k, u, q)

h(P0, 1, q)
≤ 1

n!

n!∑
i=1

em(A1,i, P0, k, u, q)

h(P0, 1, q)

=
em(A1, P1, k, u, q)

n!h(P0, 1, q)
=

em(A1, P1, k, u, q)

h(P1, 1, q)
.
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In addition, we know from Lemma 7.3 that all complete programs P with n
variables have the same ratio em(P, k, u, q)/h(P, 1, q). From this we know that for an
arbitrary program P0,

em(P0, k, u, q)

h(P0, 1, q)
≤ em(A1, P1, k, u, q)

h(P1, 1, q)
=

em(P1, k, u, q)

h(P1, 1, q)
,

where P1 is complete. Hence complete programs are extremal.

8. Calculating r(n, k, u, q).
Proof of Theorem 3.2. By Theorems 5.1, 5.2, and 5.3 we know that if n ≤ ku or

u ≥ q, then r(n, k, u, q) = 0; and if ku < q and ku < n, then r(n, k, u, q) = 1. In the
remaining part of the proof we disregard such cases.

Consider a complete program P . We represent the program by a 0,1-matrix and
assume no repetitions, i.e., P has (nq ) rows. Each row in the matrix corresponds to a
transformation group. We may reconstruct the transformation group by copying the
row in q copies and replacing the ith nonzero with “q” in the ith copy for i = 1, . . . , q.

Now apply a partition A on P , and consider a specific row in P . The 1’s which
are in partition sets where there are u+1 1’s or more will result in extra misses. The
cache set can only handle u variables, and the worst case program implies that the
variables are referenced cyclically, resulting in only extra misses.

On the other hand, 1’s which are in a set with u 1’s or less will give no extra
misses. Here the cache set can contain all the variables.

Assume that the ith partition set Ai of the partition A has wi columns. How
many rows (permutations) have j 1’s in Ai?

Since P contains one copy of each possible permutation of q 1’s in n positions, it
is an easy combinatorial task to give an exact answer to this question. There are (wi

j )

different ways of distributing these 1’s in Ai, and there are (n−wi

q−j ) different ways of
distributing the other q − j 1’s in the remaining n − wi positions. We obtain extra
misses only if j ≥ u+ 1, and then we obtain j extra misses. The contribution to the
number of extra misses from the ith set is thus

min(q,wi)∑
j=u+1

j

(
wi
j

)(
n− wi
q − j

)
.

By adding the contributions from all sets, we get two alternative formulas for
r(n, k, u, q) with any partition A:

r(n, k, u, q) =
1

q
(
n
q

) min
A


 k∑
i=1

min(q,wi)∑
j=u+1

j

(
wi
j

)(
n− wi
q − j

)


= 1−max
A

1

q
(
n
q

) k∑
i=1

min(u,wi)∑
j=1

j

(
wi
j

)(
n− wi
q − j

)
.

Essentially, in the first form we count the number of 1’s which appear. In the
second form, we count the number of 1’s which do not appear and subtract this
number from the total number of 1’s, which is q(nq ).

Using Theorem 3.7, we may invoke the set sizes of uniform and quasi-uniform
partitions. Hence, by inserting in the above formula

(w1, . . . , wk) =

(
i,

⌈
n− i

k − 1

⌉
, . . . ,

⌈
n− i

k − 1

⌉
,

⌊
n− i

k − 1

⌋
, . . . ,

⌊
n− i

k − 1

⌋)
,
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where i = �n/k�,max(�n/k� + 1, � unq−1�), . . . , n, we obtain the formula in Theorem

3.2. Since we have at most three set sizes, i, � n−ik−1�, and � n−ik−1�, we obtain only three
terms in the sum.

Proof of Theorem 3.4. Suppose that P0 is a complete matrix and A0 is an optimal
mapping for P0. Hence

r(n, k, u, q) = max
programs P with n variables

em(P, k, u, q)

h(P, 1, q)

=
em(P0, k, u, q)

h(P0, 1, q)
=

em(A0, P0, k, u, q)

h(P0, 1, q)
.

We next construct a program P1 by adding to program P0 a new variable, of size
exactly one block, as the very last reference. Since this variable is not referenced
before, it is a miss using any cache. Hence we can obtain an optimal mapping A1 to
the program P1 by adding the new variable to any set. The program P1 has n + 1
variables but may not be optimal. Thus

em(P0, k, u, q)

h(P0, 1, q)
=

em(P1, k, u, q)

h(P1, 1, q)

≤ max
programs P with n+1 variables

em(P, k, u, q)

h(P, 1, q)
= r(n+ 1, k, u, q).

9. Discussion. In this section we discuss the practical implications of the results
as well as the assumptions on which they are based. Subsection 9.1 demonstrates how
our results can be used for obtaining a bound on the worst case performance. In
subsection 9.2 we discuss how the results can be used for comparing set-associative
caches with direct-mapped caches, or other set-associative caches. In the remaining
subsections we discuss some of the restrictions and assumptions in the definition of
the problem. More specifically, in subsection 9.3 we discuss how replacement policies
other than LRU would affect our results. Subsection 9.4 discusses the restriction that
each variable must fit in one cache block. This discussion shows that the results
obtained can be used also for programs with large variables. In subsection 9.5 we
discuss large scientific programs which manipulate large matrices in different ways,
e.g., matrix multiplication and addition.

9.1. Applying the results. The results reported here make it possible to obtain
optimal worst case bounds on the cache hit ratio for set-associative and direct-mapped
caches. This can best be understood by considering the following example.

Consider a program P , with n variables, for which we have obtained a certain hit
ratio X using a (1, q)-cache. Now we are interested in the hit ratio Y for P using an
optimal mapping of variables to memory addresses for a different cache organization—
a (k, u)-cache—such that q < ku and u < q. We know that X ≤ h(P, 1, q)/m(P )
and that Y = h(P, k, u)/m(P ). Consequently, we know from Theorem 3.1(ii) that
X(1− r(n, k, u, q)) ≤ Y . One practical implication of this is that if we should obtain
a hit ratio which is smaller than X(1−r(n, k, u, q)) using a (k, u)-cache, then we know
that the mapping of variables to memory addresses is not optimal. Generally we do
not know if X = h(P, 1, q)/m(P ) or not, and Theorem 3.1(ii) gives an optimal lower
bound on h(P, k, u)/m(P ). Consequently, based on the information we have the lower
bound on Y is optimal.

In the above example the results were used for evaluating the performance (hit
ratio) of one particular program P . However, it is also possible to use our results when
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evaluating different cache architectures, e.g., r(100, k, u, q) tells us how much worse
a hit ratio we may obtain for a (k, u)-cache compared to a (1, q)-cache for programs
with 100 variables or less (Lemma 3.3 shows that r(n, k, u, q) is an increasing function
of n). However, the results can also be used for more complex scenarios. Consider,
for example, two cache memory systems: in system one we have a (1, 20)-cache, and
in system two we have a (20, 2)-cache. The main memory access time is the same in
both cases, and the access time for the (1, 20)-cache is eight times faster than a main
memory access; the access time for the (20, 2)-cache is, on the other hand, ten times
faster than a main memory access, i.e., the (20, 2)-cache is slightly faster than the
(1, 20)-cache.

Let M be the access time for one memory reference on the main memory, and let
C denote the access time on the cache memory. For a program P with length L and
hit ratio H on system one we obtain the total access time (AT ).

AT (P ) = L(CH +M(1−H)) = L(M − (M − C)H).

Let H ′ be the hit ratio with system two. From Theorem 3.1 we know that H(P )(1−
r(n, k, u, q)) ≤ H ′(P ) ≤ 1. Lower and upper bounds of the ratio AT2(P )/AT1(P )
when using caches with access times C1 and C2, respectively, follow:

C2/C1

M/C1 − (M/C1 − 1)H
≤ AT2(P )

AT1(P )
≤ M/C1 − (M/C1 − C2/C1)H(1− r(100, k, u, q))

M/C1 − (M/C1 − 1)H
.

In section 11.3 the bounds f1(H) and f2(H), respectively, are plotted as a function
of the program parameter H when system one is a (1, 20)-cache with M/C1 = 8, and
system two is a (20, 2)-cache with M/C2 = 10, i.e., C2/C1 = 1.25. Here we consider
programs with 100 variables or less, and we thus need r(100, 20, 2, 20) = 0.1652. The
functions f1(H) and f2(H) are interesting when we want to compare the two cache
organizations.

9.2. Comparing set-associative and direct-mapped caches. Consider two
set-associative cache memories. Cache M1 is a (k, uc1)-cache, and M2 is a (kc2, u)-
cache. We assume that c1 ≥ 1 and c2 ≥ 1.

Theorem 9.1.

h(P, kc2, u)

h(P, k, uc1)
≥ 1− r(nk, c2, u, c1)

for all programs P with n variables.
Proof. We first consider an arbitrary program P with n variables and an optimal

mapping A1 for M1, i.e., we have h(A1, P, k, uc1) = h(P, k, uc1). We then construct
another program P ′ with n′ = nk variables and a mapping A′1. P

′ is identical to P
with the exception that n′−n references to the n′−n new variables are added at the
end of the program; one reference is added for each new variable. Mapping A1 is used
to define a mapping A′1. Mapping A′1 is identical to A1 for the n original variables.
The remaining n′−n variables are mapped in such a way that the number of variables
in each set equals n. The mapping of the variables n′ − n does not affect the number
of hits since the references to these variables are initial references, which are always
cache misses according to LRU policy. As a result, h(A,P, k, uc1) = h(A′, P ′, k, uc1)
using any mapping A, and h(P, kc2, u) = h(P ′, kc2, u).

P ′ can be viewed as the sum of k interleaved programs P ′i , i = 1, . . . , k. A
program P ′i contains the references to the variables in set i (1 ≤ i ≤ k) in M1 using
mapping A′1.
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We then consider a mapping A2 for M2 such that variables which are mapped to
set i in A′1 (1 ≤ i ≤ k) are mapped to one of the c2 sets i+ kj (j = 0, . . . , c2 − 1) in
A2. For instance, if k = 2 and c2 = 2, then all variables mapped to set zero in A′1
are mapped to sets zero or two in A2, and all variables mapped to set one in A′1 are
mapped to sets one or three in A2.

The mapping A2 defines, of course, a mapping of the variables in the set i in A
′
1,

i.e., the variables of the program P ′i . Denote this submapping of A2—the mapping of
the variables of P ′i only—by A2,i. Using this mapping, each of the k sets in M1 can
be treated as a fully associative cache for P ′i containing uc1 blocks. This is compared
to a (c2, u)-cache. Using Theorem 3.1 and Lemma 3.3 we have

h(P ′i , c2, u)
h(P ′i , 1, uc1)

≥ 1− r(nk, c2, u, uc1)

for all programs P ′i .
For any two positive sequences a1, . . . , an and b1, . . . , bn we have

∑
i ai/

∑
i bi ≥

mini ai/bi. Hence,

∑k
i=1 h(P

′
i , c2, u)∑k

i=1 h(P
′
i , 1, uc1)

≥ 1− r(nk, c2, u, uc1).

The subprograms P ′i were constructed from the optimal mapping A′1 for the pro-
gram P ′. It thus follows that

h(P ′, k, uc1) =
k∑
i=1

h(P ′i , 1, uc1) =
k∑
i=1

h(A′1, P
′
i , 1, uc1).

The mapping A2 is not usually optimal; hence

h(P ′, kc2, u) ≥ h(A2, P
′, kc2, u) =

∑
i

h(P ′i , c2, u).

It follows that

h(P, kc2, u)

h(P, k, uc1)
≥ 1− r(nk, c2, u, uc1)

for all programs P with n variables.

9.3. Other replacement policies. In this paper we have used the LRU re-
placement policy throughout. In this subsection we will, however, show that some of
the results can be applied to systems with other replacement policies.

Consider a fully associative cache, i.e., a (1, q)-cache, and a direct-mapped cache,
i.e., a (k, 1)-cache.

Theorem 9.2.
(i) With any replacement policy we have

h(P, k, 1)

h(P, 1, q)
≥ 1− r(n, k, 1, q)

for all programs P with n variables. We assume the same replacement policy
for the (1, q)-cache and the (k, 1)-cache.
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(ii) Consider a program P with n variables and suppose that the hit ratio h(P, 1, q)/
m(P ) for P with a (1, q)-cache is known. For all replacement policies then

h(P, k, 1)

m(P )
≥ (1− r(n, k, 1, q))

h(P, 1, q)

m(P )
.

Proof. Consider a hit in the (1, q)-cache. We now temporarily redefine the (q, n)-
hit vectors. We denote by q the variable which, according to the present replacement
policy, is next to be excluded from the cache in the case of a cache miss. The variables
marked with “1” are the remaining variables in the cache.

Now the same proofs can be used for showing that complete programs represent
the worst case scenario when comparing a direct-mapped cache with a fully associative
cache. We do not know, however, if it is possible to obtain a sequence of (q, n)-hit
vectors corresponding to a complete program. Consequently, Theorem 9.2 follows from
Theorem 3.1 and the fact that the complete program is still the worst case program
when comparing a fully associative cache to a direct-mapped cache. In contrast to
Theorem 3.1, however, the bound is not necessarily optimal.

9.4. Large variables. In some cases, one variable may be too large to fit within
one cache block. Examples of such variables are strings, records, and arrays which
are accessed sequentially. (We will discuss matrices separately in the next subsec-
tion.) Accesses to such large variables consist of a number of clustered accesses to the
different blocks in which the variable is contained.

Theorem 9.3. Consider programs P with n large variables, each consisting of
v blocks. These blocks are mapped to consecutive memory addresses. Each access to
one of these variables results in a sequence of accesses to the v blocks.

(i)
h(P, k, u)

h(P, 1, q)
≥ 1− r(n, �k/v�, u, �q/v�)

for all programs P with n variables, each variable consisting of v blocks.
(ii) Suppose that the hit ratio h(P, 1, q)/m(P ) for P with a (1, q)-cache is known.

Then

h(P, k, u)

m(P )
≥ (1− r(n, �k/v�, u, �q/v�))h(P, 1, q)

m(P )
.

Proof. Consider a (1, q′)-cache, where q′ = v�q/v�, and a (k′, u)-cache, where
k′ = v�k/v�. Since q′ ≥ q and k′ ≤ k, it is clear that h(P, k, u)/h(P, 1, q) ≥
h(P, k′, u)/h(P, 1, q′) for any program P . As a result, it is sufficient to show that

h(P, k′, u)
h(P, 1, q′)

≥ 1− r(n, �k/v�, u, �q/v�) = 1− r(n, k′/v, u, q′/v)

for all programs P with n variables with a size of v blocks each.
Consider the set of mappings for the (1, q′)-cache where the first block in each

variable is mapped to set i, where i = 0, v, 2v, . . . , k′ − v − 1. Let h′(P, k′, u) be the
maximum number of cache hits for program P within this set of mappings. Obviously,
h′(P, k′, u) ≤ h(P, k′, u). If we restrict ourselves to these mappings, we end up in a
situation which is identical to having n one block variables and comparing a (1, q′′)-
cache to a (k′′, u)-cache, where q′′ = q′/v = �q/v� and k′′ = k′/v = �k/v�.

For such systems Theorem 3.1 guarantees the following.
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(i) The worst case ratio of cache hits comparing two caches is given by

inf
P

h(P, k′′, u)
h(P, 1, q′)

= 1− r(n, k′′, u, q′′),

where the infimum is taken over all programs P with n variables.
(ii) Consider a program P with n variables, and suppose that the hit ratio

h(P, 1, q′′)/m(P ) for P with a (1, q′′)-cache is known. Then an optimal esti-
mate of the hit ratio for the program P using a (k′′, u)-cache is given by

inf
P

h(P, k′′, u)
m(P )

= (1− r(n, k′′, u, q′′))
h(P, 1, q′′)
m(P )

.

Consequently, Theorem 9.3 follows from Theorem 3.1 and the fact that

h(P, k, u)/h(P, 1, q) ≥ h(P, k′, u)/h(P, 1, q′)
≥ h′(P, k′, u)/h(P, 1, q′) = h(P, k′′, u)/h(P, 1, q′′)

for any program P with n variables consisting of v blocks.

9.5. Scientific programs with large matrices. If the colliding variables are
two elements in a large matrix, then the compiler can obviously not map them inde-
pendently of each other. One scenario where these types of cache collisions occur are
scientific applications, where large matrices are manipulated in different ways. In such
programs, there are large loops that access rows, columns, diagonals, etc. Such loops
contain long sequences of memory accesses for which the addresses are separated by
a fixed distance called the stride. Some scientific applications are not well suited to
cache memories, since the matrices are too large to fit into a cache. The bound is ob-
viously valid (but not optimal) for such programs. In some cases, however, the access
pattern can be adapted to cache memory systems, e.g., by dividing the computation
into a number of steps and then accessing a limited part of the matrices in each step.
In other cases, the matrix may be small enough to fit into the cache.

Consider a system with k cache sets of unit size and a program accessing a b× k-
matrix, i.e., a matrix with b rows and k columns, which is mapped row-by-row starting
at memory address zero. This means that the ith element in each row is mapped to set
i. As long as the program accesses each row sequentially, there are no collisions, i.e.,
there will be no cache misses after the first iteration through a row. If, however, the
program accesses each column sequentially, there will be a collision on every access,
i.e., for column j all memory accesses will be made to cache set j. As a result, there
will be no cache hits when we iterate through a column.

It has been shown that these kinds of collisions can be handled by adding a number
of dummy columns or, alternatively, dummy rows. By adding a dummy column in
the example above, we can access a column sequentially with a minimum number of
collisions [15]. Other access patterns, e.g., diagonals, can be handled in a similar way.
However, for some combinations of access patterns some collisions always remain [15],
i.e., if we eliminate the collisions for columns and diagonals, we may create conflicts
for other access patterns.

We are interested in the minimum ratio h(P, k, u)/h(P, 1, q) for all programs P .
It is clear that the minimum ratio occurs for programs with exactly q accesses in each
loop. This is explained by the fact that, except for the initial misses, there will be no
misses in the (1, q)-cache as long as the number of accesses in each iteration in the
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loop is less than or equal to q. When the number of accesses in each loop iteration
exceeds q there will be no hits at all using the (1, q)-cache. Clearly, the number of
access conflicts per iteration is a nondecreasing function of the number of accesses in
each loop iteration when using the (k, u)-cache.

By using the same kind of proof as in [15], we see that the worst case programs are
the ones where all loops are equally long, and all strides occur equally frequently. For
these kinds of programs we cannot improve the hit ratio for a (k, u)-cache by adding
dummy columns. As a result, we know that the worst case program contains all com-
binations of the possible (bk, q)-hit vectors. (There are bk elements in the array, i.e.,
n = bk.) This is, in fact, the same kind of situation as for programs with any arbitrary
access pattern and where we are free to map any variable to any address. However, in
the case of matrices we obtain uniform partitions. Consequently, by disregarding the
quasi-uniform partitions in the formula in Theorem 3.2 we obtain an optimal bound
on programs containing large matrices. Disregarding quasi-uniform partitions has a
very limited impact on r(n, k, u, q). The limited possibility of mapping elements in an
array independently of each other is thus almost completely compensated for by the
fact that the array accesses must be separated by a fixed distance, i.e., by the stride.

Another, somewhat unusual, approach is to use nonlinear mapping functions.
When ordinary linear mapping is used, every kth memory block is mapped to the
same set. However, in some cases nonlinear mapping functions have been suggested
[1, 18]. In such cases, the problem of optimally mapping variables to memory addresses
is transformed into the problem of defining an optimal mapping function. In this case,
different parts of large arrays can be mapped independently of each other.

10. Conclusions. The average behavior of set-associative caches has been stud-
ied extensively. One rule of thumb is that a (k, 1)-cache gives about the same hit ratio
as a (k/4, 2)-cache [3]. On [3, p. 421] there is a table where the hit ratio using different
cache sizes and different degrees of associativity is shown for a “typical” work load. A
smaller version of the same table is also shown in [5]. These tables show that the hit
ratio gain resulting from going from a (k, 1)-cache to a (k/2, 2)-cache is larger than
the gain resulting from going from a (k/2, 2)-cache to a (k/4, 4)-cache; going from a
(k/4, 4)-cache to a (k/8, 8)-cache results in an even smaller gain.

The plot in section 11.1 shows that the worst case scenarios behave rather dif-
ferently to the average case scenarios. When q << n (left side of the plot) we see
that the maximum performance drop of using a (k/2, 2)-cache instead of a (1, k)-cache
(q = k) is smaller than the maximum performance drop of using a (k, 1)-cache in-
stead of a (1, k)-cache. The plot also shows that the maximum performance drop of
using a (k/4, 4)-cache instead of a (1, k)-cache (q = k) is smaller than the maximum
performance drop of using a (k/2, 2)-cache instead of (1, k)-cache. This is what one
would intuitively expect. Quantifying the different worst case scenarios would not be
possible, however, without the result presented here.

The plot in section 11.1 also shows that the worst case behavior is counter-intuitive
(at least for us) and does not conform to the average case behavior when q is almost
as large as n (right side of the plot). In this case the maximum performance drop of
using a (k/2, 2)-cache instead of a (1, k)-cache (q = k) is larger than the maximum
performance drop of using a (k, 1)-cache instead of a (1, k)-cache and so on, i.e., the
curves cross each other. In order to understand this we will consider the case when
n = 7 and q = k = 6. In this case the worst case program corresponds to the following
matrix of (q, n)-hit vectors.
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q 1 1 1 1 1 0
1 q 1 1 1 1 0
1 1 q 1 1 1 0
1 1 1 q 1 1 0
1 1 1 1 q 1 0
1 1 1 1 1 q 0
q 1 1 1 1 0 1
1 q 1 1 1 0 1
1 1 q 1 1 0 1
1 1 1 q 1 0 1
1 1 1 1 q 0 1
1 1 1 1 1 0 q
q 1 1 1 0 1 1
1 q 1 1 0 1 1
1 1 q 1 0 1 1
1 1 1 q 0 1 1
1 1 1 1 0 q 1
1 1 1 1 0 1 q
q 1 1 0 1 1 1
1 q 1 0 1 1 1
1 1 q 0 1 1 1
1 1 1 0 q 1 1
1 1 1 0 1 q 1
1 1 1 0 1 1 q
q 1 0 1 1 1 1
1 q 0 1 1 1 1
1 1 0 q 1 1 1
1 1 0 1 q 1 1
1 1 0 1 1 q 1
1 1 0 1 1 1 q
q 0 1 1 1 1 1
1 0 q 1 1 1 1
1 0 1 q 1 1 1
1 0 1 1 q 1 1
1 0 1 1 1 q 1
1 0 1 1 1 1 q
0 q 1 1 1 1 1
0 1 q 1 1 1 1
0 1 1 q 1 1 1
0 1 1 1 q 1 1
0 1 1 1 1 q 1
0 1 1 1 1 1 q

Consider a (6, 1)-cache. The optimal mapping for this case is to map two variables
to one set, and one variable to each of the five other sets. The number of extra
misses in this case is 10. Then consider a (3, 2)-cache. The optimal mapping for
this case is to map three variables to one set, and two variables to each of the other
two sets. The number of extra misses in this case is 12. Consequently, the worst
case program performs better on a (6, 1)-cache than on a (3, 2)-cache using the LRU
replacement policy. In this case the worst case program is a program with seven
variables and seven equally long loops, where each loop cyclically references six of
the seven variables; each loop corresponds to one of seven possible ways of selecting
six variables. One contribution of this study is that this kind of counter-intuitive
behavior can be identified and indeed even quantified.
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It is well known that one problem with direct-mapped (and set-associative) caches
as compared to fully associative caches is that they exhibit an extremely poor worst
case performance [4]. Without our results, however, it has not previously been pos-
sible to quantitatively compare the worst case behavior of direct-mapped and set-
associative caches to fully associative caches. Section 11.2 displays a plot of this
performance relation.

On [3, pp. 408–425] there is a very comprehensive discussion of the performance
implications of various cache parameters, e.g., the LRU replacement policy outper-
forms random replacement, particularly for caches with relatively few blocks (up to
a couple of thousand blocks). Moreover, the “optimal” block size increases with in-
creasing cache size. Based on these observations it is reasonable to assume that large
caches will have large blocks and that the LRU replacement policy is used within
each set. Consequently, the LRU assumption made in this report is reasonable. The
assumption that each variable can be mapped to one block becomes more reasonable
for large cache blocks.

The discussion in section 9 shows that our results are applicable to a number
of real scenarios. Moreover, the discussion in section 9 shows that a number of our
assumptions with regard to the replacement policy, variable sizes, etc., can be relaxed,
thus making the results applicable to a large number of cases.

11. Graphics section.

11.1. Increasing degree of associativity. This plot shows the worst case
number of cache hits for four degrees of associativity, compared to full associativity.
Here we compare only organizations with the same number of cache memory blocks.
The worst case corresponds to the infinum

inf
P

h(P, k, u)

h(P, 1, q)
= 1− r(80, k, u, q)

taken over programs of at most 80 variables.

Notes.
(1) The function r is defined only for integers—values representing noninteger

arguments are plotted by linear interpolation.
(2) The improvement in a relative number of cache hits for worst case programs,

as a function of the associativity, occurs fairly slowly. This is in accordance with [5];
see discussion in section 10.
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(3) If the number of cache memory blocks (q) is close to the number of variables
(n) (right side of the plot), less associativity can be favorable compared to more
associativity with a constant number of cache memory blocks. In section 10 we
describe programs which provide examples of this phenomenon.

11.2. Direct mapping versus full associativity. This plot shows the worst
case hit ratio comparing a direct-mapped cache with a fully associative cache. The
cache has k blocks, and programs of n variables are considered. The function plotted is

inf
P

h(P, k, 1)

h(P, 1, k)
= 1− r(n, k, 1, k).

The minimum value for 1 − r(n, k, 1, k) for n and k at most 50 is 0.4262 and occurs
at (n, k) = (50, 8).

Suppose we want to compare a direct-mapped cache to a fully associative cache
with equal number of cache blocks, and we are interested in the number of cache hits
for programs with at most 50 variables. Then the ratio of cache hits in the two cases
can vary more for different programs if we have eight memory blocks than any other
number of cache blocks. If we have eight memory blocks in the cache, the ratio is in
the worst case 0.4262.

11.3. Maximal and minimal access time. As described in section 9, esti-
mates on cache hits can easily be transformed to estimates on access times. Consider
a (20,2)-cache with cache access time 1/8; the main memory access time is normalized
to 1. Denote the hit ratio for the program P on this system by H and the access time
A1(H). Next the same program is to be executed on a (1,20)-cache with cache access
time 1/10. Here optimal upper and lower bounds f1(H) and f2(H) for the access
time A2(H) on the second system, relatively A1(H), are plotted.

f1(H) =
0.8

8− 7H
≤ A2(H)

A1(H)
≤ 8− 5.635H

8− 7H
= f2(H).
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Notes.

(1) The lower bound is trivial, while the upper bound follows from Theorem 3.1.
Both bounds are optimal, i.e., there are programs with any access time in the interval
given by f1(H) and f2(H).

(2) Usually higher associativity results in slightly higher cache access time. If this
relationship is known, i.e., if C(k, u) is known, the above argument can be extended
to provide optimal associativity in the sense of minimal access time for worst case
programs.
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Abstract. This paper considers the problem of paging under the assumption that the sequence of
pages accessed is generated by a Markov chain. We use this model to study the fault-rate of paging
algorithms. We first draw on the theory of Markov decision processes to characterize the paging
algorithm that achieves optimal fault-rate on any Markov chain. Next, we address the problem of
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1. Introduction. This paper considers the problem of paging in a two-level
store under the assumption that the sequence of pages accessed (henceforth called
the reference string) is generated by a Markov chain. Each page of virtual memory is
represented by a state (or node) of the Markov chainM , whose transition probabilities
pij specify the probability that an access to i is immediately followed by an access to
j.

Sleator and Tarjan [19] initiated the worst-case study of paging, introducing a
style of worst-case analysis that has come to be known as competitive analysis [12].
We wish to address some shortcomings of the traditional adversarial analysis of pag-
ing [19]. Borodin et al. [2] provided an important step toward bridging the gap
between such worst-case analysis and reality by providing a model that captured the
essential aspects of locality of reference in the reference string. Here we follow their
lead and assume that the reference string is generated by a Markov chain (thereby
removing the adversary’s role).

We refer to on-line paging with the reference string generated by such a Markov
chain as Markov paging. We focus on questions such as the following: Given a Markov
chain, what is the best paging algorithm for reference strings generated by it and how
can this algorithm be computed? Is there a simple algorithm that performs near-
optimally on every Markov chain? Can Markov paging explain why some paging
algorithms perform poorly in practice?

Some salient features of our work are the following:
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• There is recent interest in the systems community in designing paging algo-
rithms that adapt to the locality characteristics of a program [5, 15]. Thus
insights derived from theoretical studies may have an impact on implemen-
tations.
• Markov paging, like the access graph model in [2, 10], offers a clean theoretical
abstraction for locality of reference in a program. Unlike the models in [2,
10, 12, 19], there is no adversary generating the reference string, much as in a
real program. Furthermore, certain simple properties of real programs—such
as the fact that a data-dependent loop typically gets executed many times
before exiting—can be modeled well.
• Practitioners study the page-fault rate for a program and a paging algorithm,
rather than competitiveness. Page-fault rate has little meaning in an ad-
versarial model but is eminently suited to a probabilistic model. In Markov
paging, there is (as we shall see) a precise meaning to the page-fault rate of an
algorithm as well as the best page-fault rate achievable on the Markov chain.
Note that if each request is drawn independently from a probability distribu-
tion, the problem of devising the paging algorithm with lowest fault-rate has
an easy solution [9].
• Markov paging enables us to provide a mathematical basis for the poor per-
formance of certain paging algorithms (such as random replacement (RR)
and frequency count (FC)). For example, the FC algorithm can be bad in the
Markov paging setting, whereas one might think that on a probabilistic input
this algorithm would perform well.
• Somewhat surprisingly, we find that several plausible approaches to devising
paging algorithms will fail for Markov paging. For example, all marking algo-
rithms, provably best in an adversarial model, suffer from page-fault rates that
are far from optimal in Markov paging. This includes probabilistic versions
of the FAR algorithm of [2, 10]. We also find that natural approximations
of the optimal off-line paging algorithm MIN are far from optimal in Markov
paging.
• We present an on-line paging algorithm that is computable in polynomial time
and achieves a fault-rate within a constant times the best possible fault-rate
on every Markov chain.

While our approach enables us to move away from competitive analysis toward a
performance measure of greater interest to practitioners, two practical limitations of
our work should be noted. First, in practical settings, page reference sequences may
not be accurately modeled by a Markov chain in which pages are equated with chain
states, since each page contains many memory locations. For example, a single page
may have a number of basic blocks of code, and the next page to be referenced will
depend on which basic block the program is currently in. Second, while the algorithm
we present is polynomial-time computable, it requires the estimation and storage of
commute times between pairs of pages of memory. The time and memory involved
are considerable, so a simpler algorithm may be more applicable in practice.

1.1. Model. We have n pages that may be either in memory or on disk. Only k
pages may be in memory at any time. An on-line paging algorithm is presented with
a sequence of page requests. If the page currently requested is in memory, (a hit), no
cost is incurred. However, if the page requested is not in memory (a fault), it must be
fetched from the disk into memory for a unit cost. Furthermore, if there are already
k pages in memory, one of the pages in memory must be evicted to make room for
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the requested page. The decision of which page to evict must be made by the paging
algorithm without detailed knowledge of future requests.

We now augment this basic model with a Markov source of references. Let M
be an irreducible Markov chain whose state space is the set of n pages, and let A be
an on-line paging algorithm. We define fA(M,k) to be the long-term frequency of
faults incurred by A running on page request sequences generated by M and using
a memory that can hold k pages. This is formalized in section 2. It is also shown
in section 2 that there is an optimal fault-rate for every Markov chain M , which we
denote by f∗(M,k).

Note that we are not concerned here with the problem of inferring the Markov
chain by observation of the page request sequence. We assume that the transition
probabilities are already known. For example, they could be approximated to arbi-
trary accuracy by sampling a large enough initial prefix of the reference string.1

1.2. Related previous work. The underpinnings of competitive paging were
laid in [12]. The literature of computer performance modeling and analysis contains
related work, both theoretical and empirical. Denning [6] (and references therein) de-
veloped the working set model of program behavior for capturing locality of reference.
Spirn [20] gives a comprehensive survey of models for program behavior. Franaszek
and Wagner [9] studied a model in which every request is drawn independently from
the same probability distribution. Shedler and Tung [18] and Lewis and Shedler [14]
study paging in a Markov chain whose states represent least recently used (LRU) stack
distances, a model convenient for studying the LRU paging algorithm. Denning and
Spirn showed empirically that in order for a first-order Markov model to reasonably
approximate real program behavior, it is necessary to separate data and instruction
reference streams. Borodin et al. [2] and Irani, Karlin, and Phillips [10] have studied
locality of reference in paging, though with an adversarial model.

Irani et al. [11] have studied other on-line problems when requests are indepen-
dently drawn from a probability distribution. Vitter and Krishnan [21] considered
the problem of prefetching into a cache when the reference string is generated by
a Markov source (or mth-order Markov source). Under the assumption that there
is always sufficient time to prefetch as many pages as wanted, Vitter and Krishnan
show that data compression techniques can be used to obtain algorithms with optimal
limiting page-fault rates.

1.3. Guided tour of the paper. Section 2 draws on the theory of Markov
decision processes to characterize paging algorithms that achieve optimal fault-rate
on any Markov chain. Theorem 2.1 shows that there is a memoryless, deterministic
optimal on-line algorithm. Theorem 2.2 shows that there is a linear program that
determines the optimal on-line algorithm, but this algorithm may have running time
exponential in k. Section 3 shows that a number of plausible approaches for designing
an efficient and provably good Markov paging algorithm will fail. Our main result, in
section 4, gives an efficiently computable paging algorithm whose fault-rate is within
a constant factor of the best possible on every Markov chain.

2. Markov decision theory and optimal paging. We begin by studying the
relationship between page replacement policies and Markov decision theory [7].

A Markov decision process can be described as follows. Consider a discrete time
Markov chain, whose state at time t is Yt. After each observation of the system, one

1For this reason, the results we obtain assuming the Markov chain is known hold also in a limiting
sense in the case where the Markov chain is not known.
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of a set of possible actions is taken. Say that Ki is the set of actions possible when the
system is in state i. Let At be the action taken at time t. A (possibly randomized)
policy R is a set of functions Da(Ht−1, Yt), where a is an action in KYt , meaning that
if Ht−1 is the history of states and actions up to time t−1, and Yt is the state at time
t, then the probability action a is taken at time t is Da(Ht−1, Yt). The actions can
be such that they change the state of the system. We define this precisely by saying
that qij(a) is the probability of the system being in state j at the next instant, given
that the system is in state i and action a is taken; i.e.,

Pr(Yt+1 = j |Ht−1, Yt = i, At = a) = qij(a).

An additional set of parameters associated with a Markov decision process are costs:
when the chain is in state i and action a is taken, a known cost wia is incurred.

Let SR,T be the expected cost of operating a system up to time T using policy
R. (SR,T =

∑
0≤t≤T

∑
j

∑
a PR(Yt = j, At = a)wja.)

A standard cost criterion in Markov decision theory is to minimize the expected
average cost per unit time, i.e., to find a policy R to minimize

lim supT→∞
SR,T
T

.(2.1)

We formalize the notion of expected faulted rate fA(M,k) of a paging algorithm
A running on request sequences generated by the Markov chain M as follows. Let S
be the state space of M (remember S is just the set of pages). Define the following
augmented Markov chain whose state space is S′. A state in S′ has two components:
r and I. Here r is the most recent request, and I is a subset of S of size k representing
the set of pages that are in memory immediately before servicing the request r.

When the system is in the state (r, I), and r �∈ I, then there are k actions that
can be taken by the on-line algorithm: for each x ∈ I, x can be evicted. The effect of
the actions is described as follows. Suppose that pij are the transition probabilities
of the underlying Markov chain. For each r′ ∈ S,

Pr(Yt+1 = (r′, I ′) |Ht, Yt = (r, I), At = x) = prr′ ,

where I ′ = I \ {x} ∪ {r}.
When the system is in state (r, I) and r ∈ I, only the trivial action can be taken.

The algorithm A is simply a policy for this Markov decision problem.
We set

w(r,I),a =

{
1 if r �∈ I,
0 otherwise

and define the expected fault rate fA(M,k) to be the expected average cost per unit
time, as defined in (2.1) above.

The following two theorems instantiate basic results in Markov decision theory
(see [7, Chapter 3, Theorem 2, and Chapter 6, Lemma 4]) to the case of Markov
paging.

Theorem 2.1. For a given Markov chain there is an on-line page replacement
policy that has minimum fault rate and is memoryless, time-invariant, and determin-
istic.

Thus for the optimum algorithm, the decision of which page to evict on a fault
depends only on the current request and the k pages in memory and is deterministic.
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Theorem 2.2. The problem of computing the optimal on-line paging strategy on
Markov chain M can be expressed as a linear programming problem in n

(
n
k

)
variables.

Note that this linear programming formulation gives us an algorithm for comput-
ing the optimal paging strategy on M whose running time may be exponential in k.
We know of no technique to improve this upper bound, and this leads us to the study
of efficiently computable strategies that approximate f∗(M) well on every M . Note
that when k is close to zero or to n, the linear program gives an efficient algorithm for
computing the optimal on-line paging strategy. In fact, it is particularly instructive
to consider the case n = k + 1, both for its own sake and because it has traditionally
given good insights in paging [2, 8].

Theorem 2.3. When n = k + 1, for every M , there is an efficiently computable
deterministic paging strategy that evicts only one of two fixed nodes (k − 1 pages are
never evicted) whose fault-rate is at most 2f∗(M,k).

Proof. Let G be the complete directed graph on n states, weighted by expected
hitting times in M (the weight of edge (i, j) being Hi,j). For any memoryless, time-
invariant, and deterministic algorithm, in any execution, the “hole” (the page that
isn’t in the memory) must eventually get into some cycle in G. Once in a cycle,
the expected fault rate is just the reciprocal of the average edge weight around the
cycle. Thus the optimal paging algorithm must use a max mean cycle. (See [13] for
an algorithm to find a max mean cycle.) It follows that there is a cycle of length
2 that has page-fault rate at most twice optimal: just pick a pair (i, j) of adjacent
vertices on a max mean cycle such that Hi,j is at least the mean. Note that in the case
that the chain is reversible, the mean hitting time around a cycle is independent of
direction around the cycle, so there must be a cycle of length 2 with optimal page-fault
rate.

The following theorem compares the optimal on-line fault-rate to the optimal
off-line fault-rate.

Theorem 2.4. The expected page-fault rate of the optimal on-line algorithm
(OPT) is at most O(log k) times the expected page-fault rate of the optimal off-line
algorithm (that sees the entire request string output by the Markov chain, then serves
it optimally).

This follows from the existence of an O(log k)-competitive randomized paging
algorithm [8], combined with the von Neumann minimax principle [16]. The bound
is the best possible: when the Markov chain is the random walk on the k + 1 node
complete graph Kk+1, any on-line algorithm has fault-rate Ω(log k) times that of the
optimal off-line algorithm [16].

3. Negative results. We begin this section by establishing that two algorithms
that have been proposed and found to fare poorly in practice are far from optimal in
Markov paging. Following this, we begin our quest for a simple, efficiently computable
paging algorithm that has page-fault rate within a constant multiple of the best
possible page-fault rate on every Markov chain. We show in this section that a number
of intuitively “obvious” algorithms for Markov paging fail to achieve this goal and pave
the way for our optimal algorithm in section 4. In all our negative results, n = k+1;
however, this is for simplicity of presentation only and can be generalized.

Remember that the hitting time hx,y from a state x in a Markov chain to another
state y is defined to be the expected number of steps taken to first reach y starting
from x, while the commute time Cx,y is the expected number of steps to reach y from
x and then return to x. We mention also that the commute time is related to the
resistance [4], and thus the hitting times in most examples used here can be easily
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computed by the electrically literate reader.

The RR paging algorithm will, on a fault, evict a random page in memory. Al-
though optimal in the competitive setting against an adaptive on-line adversary [17],
it performs relatively poorly in practice.

Theorem 3.1. There is a constant c such that for every k > 2, there is a Markov
chain M for which fRR(M,k) ≥ ckf∗(M,k).

Definition 3.2. For positive integers a, b, the lollipop graph L(a, b) is formed
by attaching one end of a path through b nodes to a complete graph Ka on a nodes.

Proof of Theorem 3.1. Let n = k+1, and let M be the Markov chain representing
the simple random walk on L(k − 1, 2). The maximum hitting time is Ω(k2), say
between nodes x and y. The algorithm that alternates its hole between x and y (as in
Theorem 2.3) thus has a fault rate of O(1/k2), since the expected fault rate is 1/Cx,y
by a result of renewal theory (see, for example, [7, p. 147]). Therefore f∗(M,k) is
O(1/k2). On the other hand, the expected time between faults incurred by RR is the
average over all pairs of nodes x, y in the graph of the hitting time from x to y. This
average is O(k).

The FC algorithm maintains, for each of the n pages, a count of the number of
times that page has been accessed. On a fault, it evicts the page in memory that
has been accessed least often. When every request is drawn independently from a
probability distribution, FC converges to the optimal algorithm. However, it performs
poorly in practice, since it ignores locality of reference. This is reflected by the fact
that it is far from optimal in Markov paging (Theorem 3.3).

Theorem 3.3. There is a constant c such that for every k > 2, there is a Markov
chain M for which fFC (M,k) ≥ ckf∗(M,k).

Definition 3.4. For positive integers a, b, the forked lollipop graph FL(a, b) is
formed from L(a, b− 1) by connecting two new nodes to the external end-node of the
(b− 1)-path.

Proof of Theorem 3.3. Let n = k+1, and let M be the Markov chain representing
the simple random walk on FL(k/2, k/2). The two prongs have lowest stationary
probability on this chain, so will eventually have the smallest frequency count in
any request sequence. Thus FC will eventually alternate the “hole” (the node not in
memory) between these two nodes. The expected time between faults incurred by FC
is O(k2) (which is the expected hitting time from one prong to the other), whereas
f∗(M,k) is O(1/k3) (obtained by alternating the hole between one prong and a node
in the clique).

Next, we show that many algorithms that intuitively should perform well in
Markov paging will in fact perform poorly on some Markov chains.

A class of on-line algorithms that one may expect to perform well are marking
algorithms. Marking algorithms use a notion of phases. A new page is one that wasn’t
requested in the previous phase. A new phase begins with a request to a new page.
When a page is requested, it is marked. As soon as k distinct pages are marked, the
phase ends, and all pages become unmarked. A marking algorithm has the property
that it never evicts a marked page.

It has been shown that there are optimal marking algorithms under competitive
analysis for paging with locality of reference [2] as well as randomized paging algo-
rithms (arbitrary request sequences) [8, 10]. Therefore, one might think that the
same would hold when reference strings are generated from a Markov chain. The
following theorem shows that our search for a good algorithm should exclude mark-
ing algorithms. The lower bound in the theorem cannot be improved, since there
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is a marking algorithm A which is O(log k)-competitive [8], and therefore there is a
constant c such that fA(M,k) ≤ c(log k)f∗(M,k) for any Markov chain M .

Theorem 3.5. There is a constant c such that for any k > 2, there is a Markov
chain M for which fA(M,k) ≥ c(log k)f∗(M,k) for any marking algorithm A.

Proof. Let M be the Markov chain corresponding to a simple random walk on the
lollipop graph L(k/2+1, k/2). Let y denote the node at the end of the path. A phase
starts with a request at some vertex of the graph and ends just before all nodes in the
graph have been requested. The last node to be requested starts a new phase. The
important property of this Markov chain that defeats any marking algorithm is that
once a node in the clique is requested, with high probability all the nodes in the clique
will be requested before the node y is requested. Hence on average, almost half the
phases will begin on y. By a standard argument, if a phase begins on y, any marking
algorithm will incur an expected Ω(log k) faults in the clique before the phase ends.
Thus any marking algorithm will incur Ω(log k) faults per phase on average. On the
other hand, the on-line algorithm that alternately evicts a node in the clique and y
will incur an average of one fault per phase.

The optimal off-line algorithm for any reference string is commonly called MIN.
MIN always replaces the page that will be requested furthest in the future. We
now consider various on-line algorithms that mimic MIN on a Markov chain. The
maximum hitting time (MHT ) algorithm replaces, on a fault, that page in memory for
which the expected time to the next request is the largest. Indeed, when the requests
are drawn independently from a probability distribution, this algorithm performs
well [9]; again, the locality of reference captured by Markov paging proves to be the
undoing of this algorithm.

Theorem 3.6. For every k > 10, there is a Markov chain M on k+1 nodes and
a constant c such that fMHT (M,k) ≥ ckf∗(M,k).

Proof. Consider the forked lollipop G = FL(2k/3, k/3). Suppose that the Markov
chain generating the reference string is the simple random walk on G.

If MHT is run on the reference string generated by this Markov chain, eventually
one of the two prongs at the end of the path will be evicted. From either prong,
the MHT is 4n2/9 to the other. On the other hand, the MHT from a prong to any
node in the clique is 2n2/9 + O(n). Thus the page not in memory (the “hole”) will
thereafter oscillate forever between the two prongs, so that fMHT (M,k) is Ω(1/k2).
The optimal algorithm will alternately evict a node in the clique and a prong with
fault-rate O(1/k3).

Let LAST be the algorithm that on a fault evicts the page that has the highest
probability of being the last of the k pages in memory to be requested. An attractive
variation on LAST is an algorithm we call max rank (MR) defined as follows. Suppose
that at the time of a fault, S is the set of pages in memory. Then there is some
permutation on S that describes the order in which these pages will subsequently be
seen. For each page i ∈ S, and 1 ≤ j ≤ k, let pi(j) be the probability that page i
is the jth page in S that will be seen. Define the expected rank of page i, Ri to be∑

j jpi(j). Then MR evicts the page p ∈ S such that Rp is maximum.

Theorem 3.7. There is a constant c such that for any k (i) there is a Markov
chain M such that fLAST (M,k) ≥ ckf∗(M,k) and (ii) there is a Markov chain M
such that fMR(M,k) ≥ ckf∗(M,k).

Proof. (i) Consider the Markov chain corresponding to the standard random walk
on an undirected k+1 node cycle: all nodes are equally likely to be visited last. The
following proof of this fact is credited by Broder [3], without further reference, to
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Avrim Blum, Ernesto Ramos, and Jim Saxe, independently. Consider a point a on
the cycle. Let its neighbors be b and c. Before visiting a, the walk will first visit one
of its neighbors, say b. Given this fact, the probability that a is last is the probability
that the walk will visit c, starting from b, before it visits a. This is clearly independent
of the position of a.

Consequently, on a fault, LAST might always evict the neighbor of the faulted
node. Therefore, LAST can have expected fault-rate O(1/k) (since the expected time
to hit a neighbor in a cycle isO(k)). On the other hand, the algorithm which alternates
the hole between two antipodal points has an expected fault-rate of O(1/k2).

(ii) Consider a directed cycle on k nodes, with an extra node z that has edges
to and from two antipodal nodes x and y. Let pxz = pyz = p = 5/k, and let
pzx = pzy = 1/2. We show that starting from any node w on the cycle, the node of
maximum rank is the node w− that precedes w on the cycle. Indeed, the probability
of avoiding half the cycle before hitting w− by going through z is p/2, since the
walk from w must reach z at the first chance (probability p), then can stay within
{x, y, z} for a while. The last time it leaves z before venturing outside {x, y, z}, it
must move to whichever of x and y is closer to w− (probability 1/2). The probability
of avoiding half the cycle before hitting z is just p. Hence Rw− ≥ k − 1 − p

2 (
k
2 − 1),

while Rz ≤ k − p(k2 − 1), and the former is larger for k > 20.

In contrast, the optimal on-line algorithm will evict z whenever there is a fault
on the cycle. In this case, MR incurs Ω(k) times as many faults as the optimal on-line
algorithm.

Finally, an algorithm which is very close in spirit to our nearly optimal on-line
algorithm of section 4 is the maximum commute time (MCT ) algorithm. On a fault
for page v, MCT evicts the page w in memory that maximizes the commute time
between v and w.

Theorem 3.8. For every k, there is a Markov chain M for which fMCT (M,k) ≥
kf∗(M,k).

Proof. Consider the Markov chain corresponding to a directed cycle k+ 1 nodes.
Then every pair of nodes in the graph has the same commute time (k+1). Therefore,
on a fault at some node v, MCT might always evict the successor of v, incurring a
fault on every request. Since the optimal on-line algorithm has a fault rate of 1/k,
the claim is proven.

4. A provably good algorithm.

4.1. Description of the algorithm. The commute algorithm (CA) operates
in phases. It keeps a window of the last k + i requested pages, for some 0 ≤ i ≤ k.
(We assume n ≥ 2k. For the case n ≤ 2k, a simpler algorithm in the same spirit
can be shown to have page-fault rate that is within a constant factor of optimal.)
At the beginning of a phase the window is just the k most recently requested pages;
these pages are resident in memory. When a “new” page p (one that hasn’t been
requested in the current or last phase) is requested, it is added to the window. The
phase ends (and the window shrinks back to size k) when the (k+1)st distinct page is
requested in the current phase. At that time, CA performs the minimum number of
swaps necessary to ensure that the k most recently requested pages are again resident
in memory, and the window again becomes the k most recently requested pages.

When the window contains k + i pages, CA maintains a partial matching of i
disjoint pairs of pages {(u1, v1), . . . , (ui, vi)}. The commute algorithm maintains the
following invariant:
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For each j, 1 ≤ j ≤ i, exactly one of uj and vj is in memory.
On a fault at uj the page vj is evicted, and vice versa. (Observe that CA is not a
marking algorithm.) When a new page p is added to the window, it is paired with a
page q that is in the window but not in the matching such that the commute time Cp,q
is maximized. The new pair is added to the partial matching, and may be involved
in a single “switch,” described below.

To describe the notion of a switch, we need some notation. For states a, b, u, v,
we define the relative distance of the pair (a, b) to u to be

d[(a, b), u] =
min{Ca,u, Cb,u}

Ca,b
.

Define also the relative distance of (a, b) to (u, v) to be

d[(a, b), (u, v)] = min{d[(a, b), u], d[(a, b), v]} = min{Ca,u, Cb,u, Ca,v, Cb,v}
Ca,b

.

Intuitively, if d[(a, b), u] is large, then both a and b are much further (in the commute
time metric) from u than they are from each other. Similarly, if d[(a, b), (u, v)] is large,
then both a and b are much further from both u and v than they are from each other.

When a new pair (p, q) is added to the matching, CA does the following:
Case 1. If d[(p, q), (uj , vj)] ≤ cs for all j, then there is no switch: we service the

fault at p by evicting q. Here cs, the “constant for switching,” is a suitably chosen
constant; the reader can verify during the proof below that by choosing cs = 2, all
inequalities involving cs hold.

Case 2 (switch). Otherwise, choose j so that d[(p, q), (uj , vj)] is maximized, and
replace the matched pairs (p, q) and (uj , vj) by (uj , p) and (q, vj). Service the fault at
p by evicting whichever of uj or vj is in memory. This restores the invariant mentioned
above.

In the upcoming proofs, we will distinguish one node in each pair, and therefore
we may need to reverse the roles of u� and v� for some pairs, whether or not a switch
has been done. The analysis below shows how this should be done.

As for the running time of CA, the complexity of computing the commute times
in a Markov chain is polynomial in n. Therefore, with an initial preprocessing step
that constructs the matrix of commute times, the complexity of running the algorithm
CA is O(k) per fault.

4.2. Analysis of the algorithm.
Theorem 4.1. There is a constant c such that for any Markov chain M and any

k,

fCA(M,k) ≤ cf∗(M,k).

We prove the theorem by establishing a strict relationship between the pairs in
the matching maintained by CA.

Consider one phase of the algorithm: let the rth subphase be the time when the
window size is k + r. Let Mr and Wr be the matching and the set of pages in the
window, respectively, during the rth subphase. Last, let VMr

be the pages involved in
Mr. Notice that W1 ⊂W2 ⊂ · · · ⊂Wk and VM1

⊂ VM2
⊂ · · · ⊂ VMk

. We will refer to
one node in each pair (ui, vi) in Mr as distinguished. Without loss of generality the
distinguished node will always be ui.

We say that Mr is a good matching if the following hold:
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1. For all pairs (ui, vi) and (uj , vj) ∈ Mr, i �= j, d[(ui, vi), uj ] ≤ cd. Here cd is
the maximum allowable distance to distinguished nodes. The fact that uj is
involved in this condition, rather than vj , is what makes uj distinguished.

2. For each pair (ui, vi) ∈ Mr and a ∈ Wr \ VMr , d[(ui, vi), a] ≤ cu. Here cu is
the maximum allowable distance to unmatched nodes.

The reader can verify during the proof that by choosing cu = 1 and cd = 6, all
inequalities involving these constants hold.

We will be using the following facts about commute times.
Lemma 4.2.
1. Commute times satisfy the triangle inequality.
2. d[(a, b), c] ≤ Ca,c

Ca,b
and d[(a, b), c] ≤ Cb,c

Ca,b
.

3.
Ca,c

Ca,b
≤ d[(a, b), c] + 1 and

Cb,c

Ca,b
≤ d[(a, b), c] + 1.

4. d[(a, b), c] ≤ d[(a, b), d] +
Cc,d

Ca,b
.

5. If d[(x, y), z] ≥ k0, d[(a, b), x] ≤ k1 and d[(a, b), z] ≤ k2, then

Cx,y ≤ (k1 + k2 + 1)

k0
Ca,b.

Proof. Parts 1 and 2 follow immediately from the definition of commute time and
relative distance. For part 3,

Ca,c
Ca,b

≤ min(Ca,c, Ca,c − Ca,b) + Ca,b
Ca,b

≤ min(Ca,c, Cb,c)

Ca,b
+ 1 ≤ d[(a, b), c] + 1,

where the second inequality follows from part 1. The other case is similar. For part
4,

d[(a, b), c] =
min(Ca,c, Cb,c)

Ca,b
≤ min(Ca,d, Cb,d) + Cd,c

Ca,b
= d[(a, b), d] +

Cd,c
Ca,b

.

Finally, part 5 follows from the application of part 2, part 1, and part 3 to give

Cx,y ≤ Cx,z
k0
≤ (min(Cx,a, Cx,b) + max(Ca,z, Cb,z))

k0
≤ (d[(a, b), x] + d[(a, b), z] + 1)

k0
Ca,b.

Finally, use the fact that d[(a, b), x] ≤ k1 and d[(a, b), z] ≤ k2.
Lemma 4.3. The matching maintained by CA is always good.
Proof. The proof is by induction. Consider first the matching M1 at the start of

a phase: there is a single matched pair (p, q), consisting of a page p, whose request
started the phase, and a page q that was chosen (out of the shrunk window of the k
most recently requested pages) to maximize Cp,q. In this base case, the distinguished
node can be chosen arbitrarily. Clearly, for a ∈Wr \ VM1 , we have d[(p, q), a] ≤ 1.

Now suppose that Mr is a good matching; we will show that Mr+1 is also good.
We take q to be the distinguished node in the new pair. By the choice of q (maximizing
Cp,q) and the assumption on Mr, Mr+1 satisfies the following goodness conditions:

1. d[(p, q), a] ≤ cu for any a ∈Wr+1 \ VMr+1
.

2. For any pairs (ui, vi), (uj , vj) ∈Mr, d[(ui, vi), uj ] ≤ cd, and for any (ui, vi) ∈
Mr and a �∈ VMr+1 , d[(ui, vi), a] ≤ cu.

3. For each pair (ui, vi) ∈ Mr, d[(ui, vi), q] ≤ cu since q was in the window but
not in the matching.

There are two cases to consider, which follow.
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Case 1. We did not switch. (d[(p, q), (uj , vj)] ≤ cs ∀j.)
Remember that d[(p, q), (ui, vi)] = min (d[(p, q), ui], d[(p, q), vi]). It might be
that d[(p, q), ui] > cd. But in this case, d[(p, q), vi] ≤ cs, otherwise we would
have switched. We show that for all pairs (uj , vj) in Mr, d[(uj , vj), vi] ≤ cd,
so vi can play the former distinguished role of ui.
Let (uj , vj) ∈Mr, j �= i. We have

d[(uj , vj), vi] ≤ d[(uj , vj), q] +
Cq,vi
Cuj ,vj

≤ cu +
(cs + 1)Cp,q

Cuj ,vj

,

where both inequalities follow from Lemma 4.2, the first from part 4 and the
second from part 3. However, from part 5 of Lemma 4.2, since d[(p, q), ui] ≥
cd, d[(uj , vj), q] ≤ cu, and d[(uj , vj), ui] ≤ cd, it follows that

Cp,q ≤ cu + cd + 1

cd
Cuj ,vj .

Substituting into the previous equation gives

d[(uj , vj), vi] < cu +
(cs + 1)(cu + cd + 1)

cd
≤ cd.

Case 2. We did switch the following.
Consider the new edges (p, uj) and (q, vj) (chosen so that d[(p, q), (uj , vj)] is
maximized). We show that p and q become distinguished vertices and that
for some other pairs (uk, vk), vk must become the distinguished vertex. The
detailed proof that Mr+1 is good follows.

We will need to use the following three inequalities:
• Since d[(p, q), (uj , vj)] > cs,

Cp,q <
min

{
Cp,uj , Cp,vj , Cq,uj , Cq,vj

}
cs

.(4.1)

• From Lemma 4.2, part 5, since d[(p, q), uj ] > cs (because we switched),
d[(uk, vk), q] ≤ cu, and d[(uk, vk), uj ] ≤ cd (both because Mr was good),
it follows that for any pair (uk, vk) ∈Mr, k �= j,

Cp,q < Cuk,vk

cu + cd + 1

cs
.(4.2)

• Last,

d[(p, q), (uk, vk)] ≤ d[(p, q), (uj , vj)].(4.3)

Many of the goodness conditions follow immediately from the goodness of
Mr. The ones that require proof are described below, each with a derivation.
1. d[(p, uj), q] ≤ cd, and d[(q, vj), p] ≤ cd. This follows from (4.1).
2. d[(p, uj), a] ≤ cu and d[(q, vj), a] ≤ cu for any unmatched a ∈ Wr+1.

For the first inequality, applying part 2 of Lemma 4.2, the fact that
Cp,q ≥ Cp,a for all unmatched a, and (4.1) gives

d[(p, uj), a] ≤ Cp,a
Cp,uj

≤ Cp,q
Cp,uj

≤ 1

cs
.
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Similarly, for the second inequality,

d[(q, vj), a] ≤ Cq,a
Cq,vj

≤ Cq,p + Cp,a
Cq,vj

≤ 2

cs
.

3. For each pair (uk, vk) ∈Mr, k �= j, d[(uk, vk), q] ≤ cd and d[(uk, vk), p] ≤
cd. The first inequality follows from the fact that Mr was good, so
d[(uk, vk), q] ≤ cu. As for the second inequality,

d[(uk, vk), p] ≤ d[(uk, vk), q] +
Cp,q

Cuk,vk

(by part 4 of Lemma 4.2),

≤ cu +
Cp,q

Cuk,vk

(since d[(uk, vk), q] ≤ cu)

≤ cu +
cu + cd + 1

cs
(by (4.2))

≤ cd.

4. For each pair (uk, vk) ∈Mr, either both d[(p, uj), uk] ≤ cd and d[(q, vj), uk] ≤
cd or vk can become distinguished.
To prove this, assume that d[(p, uj), uk] > cd. By assumption

Cp,uk
> cdCp,uj(4.4)

and from (4.1) above,

Cp,q < Cp,uj/cs.(4.5)

Combining these two facts with part 3 of Lemma 4.2, we obtain

d[(p, q), uk] ≥ Cp,uk

Cp,q
− Cp,q

Cp,q

>
cdCp,uj

Cp,q
− Cp,uj

csCp,q

> (cd − 1/cs)
Cp,uj

Cp,q
,

and thus

d[(p, q), uk] > d[(p, q), uj ].(4.6)

Therefore, by the choice of j,

d[(p, q), vk] < d[(p, q), (uj , vj)].(4.7)

Therefore

Cp,vk ≤ Cp,q(1 + d[(p, q), vk]) (by part 4 of Lemma 4.2)

≤ Cp,q(1 + d[(p, q), uj ]) (by (4.7))

≤ Cp,q + Cp,uj

≤ Cp,uj
(1 + 1/c2) (by (4.1))
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so d[(p, uj), vk] ≤ cd. The previous four lines of equations also establish
that d[(q, vj), vk] ≤ cd by substituting q for p and vj for uj .
Now let (ul, vl) ∈Mr. From (4.4) and (4.5) we have

Cq,uk
≥ Cp,uk

− Cpq

> (cd − 1/cs)Cp,uj

> (cd − cs/2)Cp,uj .

However,

Cq,uk
≤ Cul,vl(1 + d[(ul, vl), q] + d[(ul, vl), uk])

≤ Cul,vl(1 + cu + cd)

and thus

Cp,uj ≤
1 + cu + cd
cd − cs/2

Cul,vl .(4.8)

We have

d[(ul, vl), vk] ≤ d[(ul, vl), q] +
Cp,q(1 + d[(p, q), vk])

Cul,vl

≤ cu +
Cp,q(1 + d[(p, q), uj ])

Cul,vl

(by 4.7)

≤ cu +
3Cp,uj

2Cul,vl

(by 4.1)

≤ cd (by 4.8).

The following lemma shows why we are interested in relative distances.
Lemma 4.4. Let M be a Markov chain. Let u, v, h be three states in M , and let

γ = Pr(h visited during a (u, v) commute). Then

Cuv
Cuh

≥ γ ≥ Cuv
Cuv + Cuh

.

Proof. We use the following well-known proposition from renewal theory (see, for
example, [7, p. 147]): Consider a Markov chain started in state i. Let 0 < S <∞ be
a stopping time such that XS = i. Let j be an arbitrary state. Then

Ei(# of visits to j before time S) = πjEi(S),

where πj is the stationary probability of state j and Ei(X) is the expected value of
random variable X when the chain is started in state i.

Let u, v, h be three states in M . Using the proposition, we obtain that

Eu(# of visits to h during a (u, v) commute) = πh(Eu(Tv) + Ev(Tu)) = πhCuv.
(4.9)
Consider a random walk starting at u. Let p1 be the probability that h is visited
before v and let p2 be the probability that h is first visited after v, but before a (u, v)
commute has completed. Clearly γ = p1 + p2. Furthermore,

Eu(# of visits to h during a (u, v) commute)

= p1Eh(# of visits to h during the time it takes to go from h to v to u back to h)

+ p2Eh(# of visits to h during the time it takes to go from h to u and back to h).
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Once again using the proposition, we obtain

Eu(# of visits to h during a (u, v) commute)

= p1πh(Eh(Tv) + Ev(Tu) + Eu(Th)) + p2πh(Eh(Tu) + Eu(Th)).

Combining this with (4.9), we obtain

Cuv = p1(Eh(Tv) + Ev(Tu) + Eu(Th)) + p2Cuh.

Since (Eh(Tv) + Ev(Tu) + Eu(Th)) ≥ Cuh, we obtain

γ ≤ Cuv
Cuh

.

On the other hand, (Eh(Tv) + Ev(Tu) + Eu(Th)) ≤ Cuv + Cuh, and thus

γ ≥ Cuv
Cuv + Cuh

,

completing the proof of the theorem.
We are ready to prove the main theorem.
Proof of Theorem 4.1. We show that CA incurs an expected number of faults,

which is at most a constant times the expected number incurred by the OPT .
Let a hole of OPT be any page in Wr that OPT does not have in memory. We

maintain a 1:1 mapping from pairs in the matching to holes of OPT , satisfying the
following two properties:

• If hi is the OPT -hole associated with pair (ui, vi) for some i, then d[(ui, vi), hi]
= O(1).
• The mapping of pairs to holes is changed only when there is either an OPT -
fault or a new pair is added to the matching. In both cases, the association
changes for O(1) pairs.

Say that an (x, y) commute begins at time t if (x, y) is a pair in the matching at
time t (i.e., (x, y) = (ui, vi) or (x, y) = (vi, ui) for some i), CA had a fault on the
most recent request, and the most recent request was at x. Let T (x, y) be the set of
times t such that an (x, y) commute begins at time t. Define a new node to be a node
that is visited in the current phase but wasn’t one of the nodes visited in the previous
phase, and let G be the total number of new nodes seen in all phases in the request
sequence.

The number of faults incurred by CA during a page request sequence, denoted
C(CA), satisfies

C(CA) =


∑

(x,y)

∑
t∈T (x,y)

1


+O(G),

where the last term comes from ensuring that the last k requests are in memory at
the end of each phase.

Let h(x, y, t) be the OPT -hole associated with pair (x, y) at time t for t ∈ T (x, y).
Let Xx,y,t be the indicator random variable that is 1 if t ∈ T (x, y) and h(x, y, t) is
requested during the (x, y) commute beginning at time t.

For t ∈ T (x, y), let t ∈ Q(x, y) if either h(x, y, t) gets swapped to another pair or
the phase containing t ends before the (x, y) commute starting at time t completes.
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Otherwise let t ∈ R(x, y). Let C(OPT ) be the number of faults incurred by OPT .
For any page request sequence, we have

∑
(x,y)

∑
t∈R(x,y)

Xx,y,t ≤ 2C(OPT )

since each OPT -fault can be accounted for at most twice, namely by an (x, y) commute
and a (y, x) commute, for some pair (ui, vi).

The mapping of pairs to holes changes only if OPT incurs a fault or if a new
pair is added to the matching, and then only O(1) pairs are affected. A new pair is
added to the matching only when a new node is visited. At most 2g commutes are
in progress at the end of a phase, where g is the number of new nodes visited during
the phase. Thus we have

∑
(x,y)

∑
t∈Q(x,y)

Xx,y,t = O(C(OPT ) +G).

(Note that in fact
∑

(x,y)

∑
t∈Q(x,y) 1 = O(C(OPT ) +G).) Therefore,

∑
(x,y)

∑
t∈T (x,y)

Xx,y,t = O(C(OPT ) +G)

= O(C(OPT ) + k),

where k is the number of pages that can be held in memory, since it is known [8] that
any paging algorithm incurs Ω(G− k) faults.

Last, since d[(x, y), h(x, y, t)] = O(1), by Lemma 4.4 there is a constant p > 0
such that for all u, v, t such that t ∈ T (u, v),

E[Xx,y,t] ≥ p.

Putting all this together, we obtain by linearity of expectations that

E[C(CA)] = O(E[C(OPT )] + k),

so the fault rate of CA is at most a constant factor greater than that of OPT .
It remains only to describe the mapping of pairs to holes.
At the beginning of a phase, the single matched pair is associated with any OPT -

hole in the window—note that there is at least one. In general, if hj is the hole
associated with (uj , vj), we maintain the following invariant:

hj is unmatched, or is uj , vj , or {hj , hk} = {uk, vk}, for some k �= j.

Notice that the invariant remains unchanged when the distinguished node in a pair
changes. (In the case where {hj , hk} = {uk, vk}, for some k �= j, and the designated
node for pair {uk, vk} changes, swapping hj and hk ensures that the invariant remains
true.) The following procedure ensures that at any time hj is changed, it is set to an
unmatched node, or uj , vj , or uk for some k �= j, so d[(uj , vj), hj ] = O(1), as required.

The first case to consider is when no switch was performed, and the pair (p, q)
needs to find a hole h(p, q). We have the following cases.

1. If p = hj for some j and q = hk for some k, then p becomes h(p, q), hk
remains q, and we continue with (uj , vj) in place of (p, q).
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2. If only one of p or q is associated with a pair, say q = h(uk, vk), then q
becomes h(p, q), and we continue with (uk, vk).

3. At this point, there must be an OPT -hole that is unmatched because there
are at least i holes total and only i− 1 pairs are associated with a hole. We
consider three cases depending on what this unassociated OPT -hole is.
(a) If the OPT -hole is unmatched, or is p or q, set h(p, q) to this OPT -hole.
(b) If the OPT -hole is uk or vk such that hk ∈ {uk, vk}, set h(p, q) to uk

and hk to vk.
(c) If the OPT -hole is uk or vk such that hk �∈ {uk, vk}, set h(p, q) to hk

and hk to the unassociated OPT -hole.
The second case is when a switch was performed, producing pairs (p, uj) and

(q, vj). In this case, we first unmatch hj from (uj , vj) and then apply two steps
according to the directions in the no-switch case above—first for (uj , p) and then for
(q, vj).

When OPT incurs a fault at a hole hj , the page is loaded into memory, so it is
no longer a hole. The pair (uj , vj) then finds an unassociated OPT -hole as in the no-
switch case above. This scheme satisfies the two required properties of the mapping
from pairs to holes.
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ASYMPTOTIC BEHAVIOR OF THE HEIGHT IN A
DIGITAL SEARCH TREE AND THE LONGEST PHRASE

OF THE LEMPEL–ZIV SCHEME∗
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Abstract. We study the height of a digital search tree (DST) built from n random strings
generated by an unbiased memoryless source (i.e., all symbols are equally likely). We shall argue
that the height of such a tree is equivalent to the length of the longest phrase in the Lempel–Ziv
parsing scheme that partitions a random sequence into n phrases. We also analyze the longest phrase
in the Lempel–Ziv scheme in which a string of fixed length m is parsed into a random number of
phrases. In the course of our analysis, we shall identify four natural regions of the height distribution
and characterize them asymptotically for large n. In particular, for the region where most of the
probability mass is concentrated, the asymptotic distribution of the height exhibits an exponential
of a Gaussian distribution (with an oscillating term) around the most probable value k1 = �log2 n+√

2 log2 n − log2(
√

2 log2 n) +
1

log 2
− 1

2
� + 1. More precisely, we shall prove that the asymptotic

distribution of a DST is concentrated on either the one point k1 or the two points k1−1 and k1, which
actually proves (slightly modified) Kesten’s conjecture quoted in [Probab. Theory Related Fields, 79
(1988), pp. 509–542]. Finally, we compare our findings for DST with the asymptotic distributions
of the height for other digital trees such as tries and PATRICIA tries. We derive these results
by a combination of analytic methods such as generating functions, Laplace transform, the saddle
point method, and ideas of applied mathematics such as linearization, asymptotic matching, and the
WKB method. Our analysis makes certain assumptions about the forms of some of the asymptotic
expansions as well as their asymptotic matching. We also present detailed numerical verification of
our results.

Key words. digital search trees, Lempel–Ziv algorithm, height distribution, longest phrase
distribution, Laplace transform, saddle point method, matched asymptotics, linearization, WKB
method, elliptic theta function

AMS subject classifications. 68Q25, 68P05

PII. S0097539799356812

1. Introduction. The heart of some universal data compression schemes is the
parsing algorithm due to Lempel and Ziv [32] (cf. also [31]). It partitions a sequence
into phrases (blocks) of variable sizes such that a new block is the shortest substring
not seen in the past as a phrase. For example, the string 11001010001000100 is
parsed into (1)(10)(0)(101)(00)(01)(000)(100). This parsing algorithm plays a crucial
role in numerous applications such as efficient transmission of data discriminating
between information sources, test of randomness, estimating the statistical model of
individual sequences, and so forth. The parameters of interest in these applications
are the number of phrases, the number of phrases of a given size, the size of a phrase,
the length of a sequence built from a given number of phrases, the length of the longest
phrase, etc. Some of them have already been analyzed (e.g., number of phrases [2, 13],
the size of a typical phrase [15, 23]). Here we study the distribution of the longest
phrase.
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(1) (0)

(10) (00)X5(01)

(101) (100) (000)

X1 X3

X4X2

X5

Fig. 1. DST built from (left) five strings X1 = 11100 . . . , X2 = 11011 . . . , X3 = 00110 . . . , X4 =
00001 . . . , X5 = 001011 . . .; (right) eight Lempel–Ziv phrases of the string 11001010001000100 . . . ,
that is, (1)(10)(0)(101)(00)(01)(000)(100).

The Lempel–Ziv parsing scheme can be efficiently implemented by a special digital
tree called the digital search tree (DST). This finds myriad applications in computer
science and telecommunications such as dynamic hashing, partial match retrieval of
multidimensional data, searching and sorting, pattern matching, conflict resolution
algorithms for broadcast communications, data compression, coding, security, genes
searching, DNA sequencing, genome maps, and so forth. The DST is constructed
as follows (cf. Figure 1). We consider n, possibly infinite, strings of symbols from
a finite alphabet Σ (however, for simplicity we work only with the binary alphabet
Σ = {0, 1}). The empty string is stored in the root, while the first string occupies
the right or the left child of the root depending on whether its first symbol is “1” or
“0.” The remaining strings are stored in available nodes (that are directly attached
to nodes already existing in the tree). The search for an available node follows the
prefix structure of a string. The rule is simple: if the next symbol in a string is “1”
we move to the right; otherwise we move to the left. The resulting tree has n + 1
internal nodes. The details can be found in [17] and [24].

The parsing scheme according to Lempel–Ziv with a fixed number, n, of phrases
(cf. [11, 13, 23]) can be accomplished on the associated DST as follows: We consider
an infinite sequence of binary symbols and partition it until we create the first n
phrases. Assuming the first phrase is an empty one, we store it in the root of a DST,
and all other phrases are stored in internal nodes. When a new phrase is created, the
search starts at the root and proceeds down the tree as directed by the input symbols
exactly in the same manner as in the DST construction. For example, for the binary
alphabet, “0” in the input string means move to the left and “1” means proceed to
the right. The search is completed when a branch is taken from an existing tree node
to a new node that has not been visited before. Then an edge and a new node are
added to the tree. Phrases created in such a way are stored directly in the nodes of
the tree (cf. Figure 1).

We also study another model, called the Lempel–Ziv model, in which a string of
fixed length m is parsed according to the Lempel–Ziv algorithm. We can again use



HEIGHT OF DIGITAL SEARCH TREES 925

the associated DST to parse the string, but this time the number of phrases, Mm,
and hence the number of nodes in the DST, is random. It is known (cf. [2, 32]) that
the number of phrases Mm ∼ mh/ logm almost surely (a.s.) where h is the entropy
of the source.

In this paper, we consider DSTs built over n randomly and independently gener-
ated strings of binary symbols. We assume that every symbol is equally likely, and
thus we are within the framework of the so-called symmetric Bernoulli model. In
other words, the strings are emitted by an unbiased memoryless source. Our interest
lies in establishing the asymptotic distribution of the height, Hn, for random DST.
The height is the longest path in such trees, and its distribution is of considerable
interest for several applications (e.g., the length of the longest phrase in the Lempel–
Ziv scheme, maximum search time, and sorting).

We now summarize our main results. First of all, as a consequence of our anal-
ysis we prove that the average height of a DST built from n independent strings
is E[Hn] = log2 n +

√
2 log2 n − log2(

√
2 log2 n) + O(1). However, our main contri-

bution lies in establishing the asymptotic distribution Pr{Hn ≤ k} of the height
as n → ∞. In Theorem 2.1 we shall identify four natural regions of this distri-
bution and characterize them asymptotically as n and k become large. In partic-
ular, we show that for the region where most of the probability mass is concen-
trated, the asymptotic distribution of the height exhibits an exponential of a Gaus-
sian distribution (with an oscillating term) around the most probable value k1 =
	log2 n+

√
2 log2 n− log2(

√
2 log2 n) +

1
log 2 − 1

2
+1. In fact, we shall prove that the
asymptotic distribution of a DST is concentrated on either the one point k1 or the two
points k1−1 and k1. More precisely, we show the existence of certain subsequences of
n such that the asymptotic distribution of the height concentrates only on k1, or on
k1 and k1 − 1. This proves (slightly modified) Kesten’s conjecture quoted in Aldous
and Shields [2, p. 538]. Finally, we obtain the asymptotic distribution of the length
of the longest phrase in the Lempel–Ziv model (cf. Theorem 2.3).

Digital trees, that is, tries, PATRICIA tries, and DSTs, have been extensively
analyzed in the past (cf. [2, 5, 6, 7, 8, 13, 14, 16, 17, 20, 22, 23, 24, 26, 27, 29, 30]).
However, relatively little is known about the height of DSTs. An exception is the
paper by Pittel [26] who proved that the height Hn ∼ log2 n a.s. Later Aldous and
Shields [2] improved Pittel’s result to Hn ∼ log2 n+

√
2 log2 n a.s. No distributional

result for the height is known to us. We fill this gap by presenting a complete char-
acterization of the asymptotic distribution of the height.

Finally, we say a few words about our method of derivation and put our results
in a larger perspective. From a mathematical view point, we study a nonlinear re-
currence equation. The distribution hk

n = Pr{Hn ≤ k} satisfies recurrence (2.2) with
the initial condition (2.3). We shall solve asymptotically this recurrence by methods
of applied mathematics such as linearization, matched asymptotics, and the WKB
method (cf. section 5.2). In passing, we mention that in a companion paper [19] we
analyzed two similar recurrences: The so-called b-tries recurrence satisfies

hk+1
n = 2−n

n∑
i=0

(
n

i

)
hk
i h

k
n−i, k ≥ 0,

with the initial condition h0
n = 1 for n = 0, 1, 2, . . . , b and h0

n = 0 for n > b. For
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PATRICIA tries the distribution hk
n = Pr{HP

n ≤ k} of the height HP
n satisfies

hk+1
n = 2−n+1hk+1

n + 2−n
n−1∑
i=1

(
n

i

)
hk
i h

k
n−i, k ≥ 0,

with the initial conditions h0
0 = h0

1 = 1 and h0
n = 0 for n ≥ 2. Surprisingly enough,

although these recurrences resemble the DST recurrence, they lead to quite different
solutions. The reader is referred to [19] for details.

The paper is organized as follows. In the next section, we present our main re-
sults for DSTs (cf. Theorem 2.1) and the Lempel–Ziv model (cf. Theorem 2.3). In
section 3 we present detailed numerical results and discuss consequences of our find-
ings. The proofs of these results are relegated to sections 4 and 5. These make certain
assumptions about the forms of the asymptotic expansions and their matching.

2. Main results. We letHn be the height of a DST and we denote its probability
distribution by

hk
n = Pr{Hn ≤ k}.(2.1)

It satisfies the difference equation

hk+1
n+1 =

n∑
i=0

(
n

i

)
2−nhk

i h
k
h−i, k ≥ 0,(2.2)

with the initial condition

h0
0 = h0

1 = 1; h0
n = 0, n ≥ 2.(2.3)

This follows from Hn+1 = max{HLT
i ,HRT

n−i} + 1, where HLT
i and HRT

n−i denote, re-
spectively, the left subtree and the right subtree of sizes i and n − i, which happens
with probability 2−n

(
n
i

)
. The root contains one string (or an empty string).

We can easily show that hk
n = 0 for n ≥ 2k+1 (i.e., a balanced tree) and hk

n = 1
for k ≥ n− 1 (i.e., a skewed tree). It therefore suffices to consider the range k + 2 ≤
n ≤ 2k+1 − 1. We also note that the exponential generating function

Hk(z) =

∞∑
n=0

hk
nz

n

n!
=

2k+1−1∑
n=0

hk
nz

n

n!
=

k+1∑
n=0

zn

n!
+

2k+1−1∑
n=k+2

hk
n

zn

n!
(2.4)

satisfies

H ′k+1(2z) = H2
k(z), k ≥ 0,(2.5)

with H0(z) = 1 + z. Thus, for any k, the generating function Hk(z) is a polynomial
of degree 2k+1 − 1 and the leading k + 2 coefficients in this polynomial are the same
as those in the Taylor series of ez.

Below we give the exact expressions for hk
n for a few values of n that are close to

either k or 2k+1:

hn−2
n = 1− 2−n2/223n/22−1, n ≥ 2;(2.6)

hn−3
n = 1− (n− 2)2−n2/225n/22−3, n ≥ 4;(2.7)

hn−4
n = 1−

(
n2

2
− 5n

2
+

8

3
− 2

3
45−n

)
2−n2/227n/22−6, n ≥ 6;(2.8)
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and

hk
2k+1−1 = (2k+1 − 1)!2−k2k+1

42k−1
k∏

�=1

(
1

2�+1 − 1

)2k−�

, k ≥ 0,(2.9)

hk
2k+1−2 = ( 2k+1 − 2)!2−(2k+1)2k

23k+1(2.10)

×
k∏

�=1

1

1− 2−�

[
�−1∏
m=1

(1− 2−m−1)−2−m

]2�−1

, k ≥ 1.

We next consider the asymptotic limit n→∞. A singular perturbation analysis of
the problem (2.2) shows that there are four cases of k that lead to different asymptotic
expansions of hk

n: n → ∞ with n − k fixed; n, k → ∞ with 0 < k/n < 1; n, k → ∞
with ξ = n2−k fixed and 0 < ξ < 2; and n, k → ∞ with 2k+1 − n = O(1). We note
that the last limit is only possible if n is close to a power of 2.

Using ideas of applied mathematics, such as linearization and asymptotic match-
ing, we obtain the following results, listed in decreasing size of k/n. The derivation
of these results is presented in sections 4 and 5, where we make certain assumptions
about the forms of the asymptotic expansions, as well as the asymptotic matching be-
tween the various scales. In particular, the result in case (iii) (central regime) assumes
a WKB expansion in the form (5.31) (cf. section 5 and [18, 21]).
Theorem 2.1. The distribution of the height for DSTs built from n indepen-

dent strings generated by an unbiased memoryless source (and thus the length of the
longest phrase in the Lempel–Ziv algorithm with a fixed number, n, of phrases) has
the following asymptotic expansions:

(i) Far right-tail regime: n, k →∞, n− k = j = O(1), j ≥ 2,

Pr{Hn > k} = 1− hk
n ∼ 2−j2/22j/2

1

(j − 2)!
nj−22−n2/22(j−1/2)n.(2.11)

(ii) Right-tail regime: n, k → ∞, 0 < k/n < 1 or α ≡ 1/(1 − k/n) =
n/(n− k) ∈ (1,∞),

1− hk
n ∼ 2−k2/22−k/2F k

n ,(2.12)

where

F k
n =

nn

(n− k)n−kkk

√
πn(n− k)3/2√

2 k5/2
I(α),(2.13)

I(α) =
1

π

∞∑
m=0

(−1)m
(α− 1)m

[
m∏

�=1

(1− 2−�)

]−1

, α > 2,

=
1

2πi

∫ 1
2+i∞

1
2−i∞

ez log(α−1)

sin(πz)

∞∏
�=1

exp

(
1− 2�z

�(2� − 1)

)
dz, α > 1.(2.14)

(iii) Central regime: Under the WKB hypothesis discussed in section 5.2, for
n, k →∞, ξ = n2−k, ξ fixed and 0 < ξ < 2, we have

hk
n ∼ A(ξ)e−nΦ(ξ),(2.15)

A(ξ) = e−ξΦ′(ξ)−Φ(ξ)
√
1 + 2ξΦ′(ξ) + ξ2Φ′′(ξ).(2.16)
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By asymptotic matching (cf. section 5), we find that the function Φ(ξ) satisfies, for
ξ → 2−,

Φ(ξ) ∼ 1

2
log

(
e2

2C0

)
+

1

2
(2− ξ) log(2− ξ) +

1

4
(ξ − 2) log(2C0),(2.17)

C0 =

∞∏
�=1

(1− 2−�−1)−2−�

= 1.20675 . . . ,(2.18)

and for ξ → 0+

Φ(ξ) ∼ 2 −9/8 (log 2)
3/2

(log ξ)2
ξ1/2−1/ log 2 exp

(
− [log ξ − log(− log2 ξ)]

2

2 log 2

)
(2.19)

×Q∗

(
log2 ξ − log2(− log2 ξ) +

1

2

)
.

Here Q∗(z) is a periodic function of period one:

Q∗(z) =
1√
2π

∫ ∞
−∞

e−s2/2Q

(
z +

is√
log 2

)
ds,

where Q(z) has the Fourier series

Q(z) = 213/12
∞∏
�=1

(1−2−�)−1 exp

[
− π2

3 log 2
−
∞∑

m=1

cos(2mπz)

m sinh(2π2m/ log 2)
exp

(
−2π

2m

log 2

)]
.

(2.20)
An alternate representation is

Q(z) =
e−πiz

sin(πz)
ep(z),

where

ep(z) = e−(log 2)z2/2eπi(z+ 3
2 )21/8

[ ∞∏
�=1

(1− 2−�)−2

]
ϑ1

(
i

2
z log 2

)

and ϑ1(u) is the Jacobi theta function defined by (cf. [3])

ϑ1(u) = ϑ1(u|τ) = 2

∞∑
m=1

(−1)m+1q(m−1/2)2 sin((2m− 1)u)(2.21)

= 2q1/4 sin(u)

∞∏
m=1

(1− 2 cos(2u)q2m + q4m)(1− q2m),

where q = 1/
√
2 = eπiτ with τ = (i log 2)/(2π).

(iv) Left-tail regime: n→∞, 2k+1 − n = M = O(1), M ≥ 1,

hk
n ∼

2
√
π

(M − 1)!

(
2C0

e2

)2k

2(M−1/2)k,(2.22)

where C0 is defined in (2.18).
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Remark. We note that the leading term for hk
n or 1−hk

n is completely determined
for cases (i), (ii), and (iv). However, for case (iii) the result involves the function Φ(ξ).
We have not been able to determine Φ completely, except for its behaviors as ξ → 0
and ξ → 2. In section 3 we discuss the numerical computation of Φ and also give
a refinement of (2.19). Our analytical results predict that Φ is finite at ξ = 2, with
Φ(2) = 1−log(√2C0) = .559461 . . . , but Φ′ has a logarithmic singularity with Φ′(ξ) ∼
− log(√2− ξ) as ξ → 2. As ξ → 0+, (2.19) shows that Φ as well as all its derivatives
vanish. The dominant term in the right side of (2.19) is exp[−(log 2)(log2 ξ)

2/2]. It is
interesting to note that in [19] we obtained results analogous to (2.15) for b-tries and
for PATRICIA trees. For b-tries the corresponding Φ satisfies Φ(ξ) ∼ ξb/(b + 1)! as
ξ → 0, so that this function has a zero of order b at ξ = 0. For the PATRICIA model
the dominant term is the same as that for the DST model (i.e., log Φ has the same
leading term for the two models). More precisely, Φ in PATRICIA becomes

Φ(ξ) ∼ 1

2
ρ0e

ϕ(log2 ξ)ξ3/2 exp

(
− log2 ξ

2 log 2

)
, ξ → 0+,

where ρ0 ≈ 1.73137 and ϕ(·) is periodic with period one. However, by examining the
second terms for log Φ we see that Φ is flatter near ξ = 0 for the DST model. For
both DST and PATRICIA, the function Φ shows oscillatory behavior as ξ → 0, while
this is not the case for b-tries.

Since Φ(ξ) > 0 for 0 < ξ ≤ 2 (see also the numerical results in section 3), hk
n

is exponentially small for cases (iii) and (iv), while for cases (i) and (ii) 1 − hk
n is

exponentially small. For case (i) 1− hk
n is (roughly) O(2−n2/2), for case (ii) 1− hk

n =

O(2−k2/2), while for cases (iii) and (iv) hk
n = O(e−nΦ(ξ)). For a fixed large n, most

of the probability mass occurs in that range of k where hk
n changes from hk

n ≈ 0 to
hk
n ≈ 1. We think of plotting hk

n as a function of k so that (i) and (ii) apply in the
right tail of the distribution while (iii) and (iv) apply in the left tail. The mass must
thus be concentrated in the asymptotic matching region between cases (ii) and (iii).
If we let ξ → 0 sufficiently rapidly so that nΦ(ξ) → 0, then we can approximate
(2.15) by Ae−nΦ ∼ 1 − nΦ and then (ii) and (iii) asymptotically match, as is shown
in section 5. We can also consider a limit where n → ∞, ξ → 0 with nΦ bounded,
or even nΦ → ∞. Then (2.15) can be approximated by e−nΦ or by Ae−nΦ, with Φ
replaced by its expansion (2.19) as ξ → 0+.

We summarize our observations in the following corollary.
Corollary 2.2. The asymptotic distribution of DST height is concentrated

among the two points k1 − 1 and k1 where

k1 = k1(n) =

⌊
log2 n+

√
2 log2 n− log2(

√
2 log2 n) +

1

log 2
− 1

2

⌋
+ 1,

that is,

Pr{Hn = k1 − 1 or k1} = 1− o(1)

as n → ∞. More precisely, (i) there are subsequences ni for which Pr{Hni = k1} =
1− o(1) provided that

∆(ni) =
√
2 log2 ni

〈
log2 ni +

√
2 log2 ni − log2(

√
2 log2 ni) +

1

log 2
− 1

2

〉

−3
2
log2(

√
2 log2 ni)→∞



930 CHARLES KNESSL AND WOJCIECH SZPANKOWSKI

n=147562624

y
321-1-2-3

1

0.8

0.6

0.4

0.2

n=20256290

y
321-1-2-3

1

0.8

0.6

0.4

0.2

(a) (b)

Fig. 2. Asymptotic distributions for the heights of DSTs and their corresponding lower and
upper bounds.

as i→∞; (ii) there are subsequences ni for which Pr{Hni
= k1− 1 or k1} = 1− o(1)

provided that ∆(ni) = O(1).
Proof. To establish it we first simplify the expression in the matching region by

setting

k� =

⌊
log2 n+

√
2 log2 n− log2(

√
2 log2 n) +

1

log 2
− 1

2

⌋
+ �(2.23)

= log2 n+
√
2 log2 n− log2(

√
2 log2 n) +

1

log 2
− 1

2
− β(n) + �,

where � is an integer and

β(n) =

〈
log2 n+

√
2 log2 n− log2(

√
2 log2 n) +

1

log 2
− 1

2

〉
.(2.24)

Here 〈x〉 = x−	x
 is the fractional part of x. By using (2.23) in e−nΦ (with Φ replaced
by (2.19)) and simplifying the expression for n large, we are led to

hk
n ≈ exp

( −Q∗
2
√
log 2

eβ−�−1/ log 22
√

2 log2 n(β−�)−(β−�)2/2− 3
4 log2(2 log2 n)

)
,(2.25)

where Q∗ = Q∗(log2 n− log2(
√
2 log2 n)+1/2) and β = β(n) is as in (2.24). In (2.25)

we write ≈ rather than ∼ since we neglected a factor 1+O(1/
√
log n) in the exponent.

Also, we note that Q∗(z) is almost constant, with very small fluctuations, as explained
below (2.29).

Now examine (2.25) for � = 0 and � = 1. If 0, < β < 1 and � = 0, then hk
n

is small as n → ∞. If 0 < β < 1 and � = 1, hk
n is close to one. This shows that

for 0 < β(n) < 1 the mass becomes concentrated at a single point as n → ∞ (cf.
Figure 2), corresponding to � = 1 in (2.23). It also follows from our analysis that the
mean height is

E[Hn] = log2 n+
√
2 log2 n− log2(

√
2 log2 n) +O(1), n→∞.(2.26)
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Fig. 3. The function DELTA(n) = ∆(n) = β(n)
√

2 log2 n− 1.5 log2

√
2 log2(n) versus n.

In passing we recall that the first term of the above was already derived by Pittel [26],
while the second term was established by Aldous and Shields [2]. In both cases the
convergence is in probability sense.

We now show that one can find special sequences n(i) such that n(i) → ∞ as
i → ∞, and along these sequences there is probability mass concentrated at two
points, corresponding to � = 0 and � = 1 in (2.23). We define

∆(n) = β(n)
√
2 log2 n−

3

2
log2(

√
2 log2 n)(2.27)

and note that if ∆(n) is O(1), then hk
n in (2.25) is not asymptotically small at � = 0.

We show in Figure 3 and more precisely in section 3 that we can find sequences n(i)
such that ∆(n(i)) remains bounded, and in fact we can have ∆→ 0 for some of these
(cf. (3.13)). If we consider n(i) with ∆(n(i))→ 0, then as n→∞ for � = 0 the right
side of (2.25) asymptotically becomes

exp

[
− Q∗
2
√
log 2

exp

(
− 1

log 2

)]
.(2.28)

This does not approach a limit as n→∞ due to the oscillatory behavior of Q(z) and
hence Q∗(z). However, we show in section 4 that the nonconstant terms in the Fourier
series for Q (to be precise, the series for logQ) are numerically very small. Thus we
can use the approximation resulting by using only the constant term, which yields

Q(z) ≈ Q0 = 213/12

[ ∞∏
m=1

(1− 2−m)−1

]
exp

(
− π2

3 log 2

)
= .063716934676 . . . .(2.29)
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Fig. 4. (a) A plot of (Q(z) − 0.0637169346763735400492200) · 1024 over three periods. (b) A
plot of (Q∗(z)− 0.063716934676) · 1012 over three periods.

Here ≈ means that Q(z) is constant to the number of significant digits given in (2.29).

Now, Q∗(z) is not the same as Q(z). However, in Appendix A we derive the
following alternate representation for Q∗(z):

Q∗(z) = 2z
2/2

√
log 2

2π

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

(−1)m+12−m2/22m/2(2m−1/2 − 2−m+1/2)

2m−1/2 + 2−m+1/2 + 2z + 2−z
.

(2.30)
We tabulate both Q(z) and Q∗(z) in Table 1 (cf. section 3) and sketch these func-
tions in Figure 4. This shows that Q∗(z) is also nearly constant with Q∗(z) ≈ Q0

∗ ≈
.0637169, which agrees with (2.29) to the accuracy given. Here Q0

∗ is the constant
term of the Fourier series for Q∗(z). Using (2.29) in (2.28) gives an estimate of the
mass at � = 0 along sequences n(i) that have ∆(n(i))→ 0. Note that ∆→ 0 implies
that β → 0, in view of (2.27). In section 3 we test the accuracy of (2.28).

We are now in a position to compare our results to the corresponding results for
PATRICIA trees that we recently obtained in [19]. With regards to the average E[Hn]
given by (2.26) the first two terms are the same as for PATRICIA (see also Devroye
[5]), but the third term for PATRICIA is O(1), while for DST it is O(log log n).
Thus (2.26) shows that the improvement of the DST trees over the PATRICIA tries
appears only at the third term in the asymptotics of E[Hn]. Since the coefficient of
the log log n term in (2.26) is negative, E[Hn] is asymptotically smaller for DST. With
respect to the limiting distribution in the central regime, both are of an exponential
of a Gaussian type. However, the DST distribution function contains an additional
term O(log log n) in the double exponent. This additional term prohibits the limiting
distribution for DST to be concentrated in some cases on k1 and k1 + 1, which does
occur for PATRICIA height.

Finally, we shall discuss the Lempel–Ziv model in which a random string of fixed
length, m, is partitioned into a random number, Mm, of phrases. We shall use the
results of Theorem 2.1 to prove the asymptotic distribution of the longest phrase
among the Mm random phrases. Let us first introduce for any ε > 0

δm = Pr{Mm /∈ [(1− ε)µ(m), (1 + ε)µ(m)]},
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where µ(m) = m/ log2 m (i.e., the typical number of phrases). It is known that δm → 0
asm→∞ (cf. [2, 13, 32]). In fact, a stronger result is known. Jacquet and Szpankowski
[13] proved that δm = O(e−Rε

√
m) for some R > 0.

Now, we can formulate our second result.
Theorem 2.3. Consider the Lempel–Ziv model in which a fixed string of length m

is parsed according to the Lempel–Ziv algorithm. Let HLZ
m be the length of the longest

phrase (among random number, Mm, of phrases), while Hn is still the height of a
DST built from n independently generated strings, as studied in Theorem 2.1. Then
for all k ≥ 0 and ε > 0

Pr{H(1+ε)µ(m) ≤ k} − δm ≤ Pr{HLZ
m ≤ k} ≤ Pr{H(1−ε)µ(m) ≤ k}+ δm.(2.31)

In particular,

(2.32)

E[HLZ
m ] = log2(m/ log2 m) +

√
2 log2(m/ log2 m)− 1

2
log2 log2(m/ log2 m) +O(1),

and most of the probability mass is concentrated either at kLZ
1 or kLZ

1 − 1, where

kLZ
1 =

⌊
log2(m/ log2 m) +

√
2 log2(m/ log2 m)− 1

2
log2 log2(m/ log2 m) +

1

log 2
− 1

⌋
+1

for large m.
Proof. We proceed as follows

Pr{HLZ
m ≤ k} =

∑
n≥0

Pr{Hn ≤ k, Mm = n}

≤ δm +
∑

(1−ε)µ(m)≤n≤(1+ε)µ(m)

Pr{Hn ≤ k, Mm = n}

≤ δm + Pr{H(1−ε)µ(m) ≤ k},
where the last inequality is a consequence of the fact that HLZ

m is a nondecreasing
sequence with respect to m. The lower bound of (2.31) can be proved in a similar
manner. The rest is a simple consequence of (2.31).

3. Discussion and numerical results. We shall discuss the accuracy of the
various asymptotic results and also numerically calculate the hitherto undetermined
function Φ(ξ). We begin by making some general comments on how to use the asymp-
totic formulae.

It is most natural to view the problem as starting with a fixed (large) n and then
varying k. We let k∗ be the minimum integer such that 2k+1 − 1 ≥ n. More precisely,
we set

k∗ =
{

log2(n+ 1)− 1 if n+ 1 = power of 2,
	log2(n+ 1)
 if n+ 1 �= power of 2,

(3.1)

and note that hk
n is only nonzero for k ≥ k∗. If, say, n = 100, we have k∗ = 6.

Then 2k
∗+1 − n = 28 so that we are probably out of the range where the M -scale

expansion applies. For k = k∗ we have ξ = n2−k = 25/16, and this is well within
the range 0 < ξ < 2, where Theorem 2.1(iii) applies. By increasing k to k∗ + 1,
k∗ + 2, k∗ + 3, . . . , we obtain the values 25/32, 25/64, 25/128,. . . for ξ, so that ξ
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Table 1
Comparison of Q(z) and Q∗(z).

z Q(z) Q∗(z)

0 .06371693467637354004922003786 .0637169346763188
.05 . 3901 . 3215
.1 . 4234 . 3293
.15 . 4753 . 3414
.2 . 5406 . 3566
.25 . 6130 . 3735
.3 . 6854 . 3904
.35 . 7508 . 4056
.4 . 8026 . 4177
.45 . 8359 . 4255
.5 . 8474 . 4281
.55 . 8359 . 4255
.6 . 8026 . 4177
.65 . 7508 . 4056
.7 . 6854 . 3904
.75 . 6130 . 3735
.8 . 5406 . 3566
.85 . 4753 . 3414
.9 . 4234 . 3293
.95 . 3901 . 3215
1 . 3786 . 3188

becomes small rapidly and it thus may be desirable to use the WKB approximation
(cf. section 5) and further replace A and Φ by their small ξ expansions, which we have
derived explicitly. When k further increases to a significant fraction of n (e.g., k = 20),
then we should use the expansion (ii) of Theorem 2.1, which applies on the α-scale
(where α = n/(n − k) > 1). When k further increases to a value close to n, such as
95, we can use the expansion that applies for j = n− k fixed (cf. Theorem 2.1(i)). Of
course, for k ≥ n− 1, we have hk

n = 1.
If we start with n = 127, then k∗ = 6, which correspond toM = 1 and ξ = 127/64.

Thus for k = k∗ we can use the M -scale result (cf. Theorem 2.1(iv)), but increasing
k to k∗ + 1 = 7 puts us well within the region 0 < ξ < 2, where Theorem 2.1(iii)
applies. If n = 128, then k∗ = 7 and 2k

∗+1 − n = 128. This corresponds to M = 128
and ξ = 1, and this indicates the ξ-scale result should be used. Since ξ = 1 is not
close to either 0 or 2, we must use the numerical value of Φ(1).

We define k1 by (2.23) with � = 1. According to our analysis, as n → ∞ the
probability mass should be concentrating at the single point k1 or the two points
k1 − 1, k1 (with the former being more likely). If n = 100, we have k1(100) = 10 so
that k1 − k∗ = 4, and hence the “left-tail” really consists of only the four points with
k = 6− 9.

In using the asymptotic results that involve the periodic functionsQ(z) andQ∗(z),
we approximate them by the numerical value in (2.29), which is correct to 11 signif-
icant digits for both of them. Figure 4 and Table 1 show that the oscillations in Q∗
occur only in the 12th significant digit, while those in Q are even smaller, occurring
in the 25th digit. From the Fourier series for Q given by (2.20) we can analytically es-
timate the oscillations by using only the term with m = 1 and approximating sinh(a)
by ea/2, which yields
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Table 2
Left-tail comparison.

n k M hkn (exact) hkn (2.22)

7 2 1 7.81250(10−2) 8.06991(10−2)
6 2 2 .312500 .322796

15 3 1 1.27852(10−3) 1.29902(10−3)
14 3 2 1.02282(10−2) 1.03922(10−2)
13 3 3 4.09126(10−2) 4.15688(10−2)
31 4 1 2.36143(10−7) 2.38012(10−7)
30 4 2 3.77829(10−6) 3.80820(10−6)
29 4 3 3.02264(10−5) 3.04656(10−5)
28 4 4 1.61555(10−4) 1.62483(10−4)
63 5 1 5.62788(10−15) 5.65000(10−15)
62 5 2 1.80092(10−13) 1.80800(10−13)
61 5 3 2.88147(10−12) 2.89280(10−12)
60 5 4 3.07515(10−11) 3.08566(10−11)
59 5 5 2.46852(10−10) 2.46390(10−10)

Table 3
Far right-tail comparison.

n k j 1− hkn (exact) 1− hkn (2.11)

10 8 2 1.45519(10−11) 1.45519(10−11)
7 3 2.98023(10−8) 3.72529(10−8)
6 4 1.31922(10−5) 2.38419(10−5)
5 5 1.63566(10−3) 5.08626(10−3)

15 13 2 4.03897(10−28) 4.03897(10−28)
12 3 4.30134(10−23) 4.96308(10−23)
11 4 1.05258(10−18) 1.52446(10−18)
10 5 7.82575(10−15) 1.56125(10−14)

20 18 2 3.34096(10−52) 3.34096(10−52)
17 3 1.57646(10−45) 1.75162(10−45)
16 4 1.75253(10−39) 2.29589(10−39)
15 5 6.09591(10−34) 1.00309(10−33)

25 23 2 8.23609(10−84) 8.23609(10−84)
22 3 1.58906(10−75) 1.72723(10−75)
21 4 7.32182(10−68) 9.05568(10−68)
20 5 1.07178(10−60) 1.58259(10−60)

Q(z)

Q0
≈ 1− 2e−2a cos(2πz), a =

2π2

log 2
,

= 1− 3.678 . . . (10−25) cos(2πz).

We note that both Q and Q∗ are symmetric about the midpoint z = 1/2 and achieve
their maxima here.

We first discuss the accuracy of the expansion for M fixed, which corresponds to
case (iv) of Theorem 2.1, as defined in section 2. In Table 2, we consider values of n
that are of the form 2k+1 − 1, or slightly smaller, and various M in the range 1 to
5. From the table we see that the asymptotic formula is highly accurate and that for
larger k, we can allow M to be larger and still obtain good agreement. We recall that
the error term in (2.22) is O(2−k) = O(n−1). The results in Table 2 suggest that the
numerical coefficient of the correction term is fairly small.

We next consider the far right tail (cf. Theorem 2.1(i)), where hk
n is close to one.
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Table 4
Right-tail comparison.

n k α 1− hkn (exact) 1− hkn(2.12)
16 12 4 2.99991(10−22) 3.74045(10−22)
20 15 4 6.09591(10−34) 7.21250(10−34)
24 18 4 2.42022(10−48) 2.77231(10−48)
28 21 4 1.88363(10−65) 2.11079(10−65)
32 24 4 2.87538(10−85) 3.17143(10−85)

In Table 3 we consider 10 ≤ n ≤ 25 for 2 ≤ j ≤ 5. We tabulate the exact values of
1− hk

n and the result in (2.11). When j = 2 the agreement is excellent for all n, as it
should be since (2.6) shows that (2.11) is not only asymptotic but exact! However, for
j = 3 the error is about 25% when n = 10; it decreases to below 10% when n = 25.
The situation becomes worse when j increases.

The correction term to (2.11) is O(n−1). The data in Table 3 suggest that the
numerical coefficient in the correction term is fairly large, and increases with j. This
is certainly consistent with the exact results in (2.7) and (2.8), which show that the
correction factor is of the form 1− 2/n and 1− 5/n for j = 3 and j = 4, respectively.
Note also that if, say, n = 20 and j = 5, it is not a priori clear whether we should use
the j = O(1) result or that for α = n/j fixed.

In Table 4 we test the accuracy of (2.12). We fix α = n/(n− k) = 4 and consider
16 ≤ n ≤ 32. Note that since α > 2, we can use the infinite sum in (2.13) to calculate
the integral I, which yields I(4) = .17398 . . . . When n = 16 the error is about 25%
and decreases to 10% when n = 32. While this is consistent with a correction term of
O(n−1), the data again suggest that the coefficient in the error term is fairly large,
relative to one.

In obtaining the asymptotic results summarized in (2.11)–(2.22), we have written
them in the simplest possible form. However, from our analysis we can easily generate
results that are more uniform and more numerically accurate. By more uniform we
mean they apply to larger ranges of k than those in (2.11)–(2.22). For example, in
the right tail we find that

1− hk
n ∼ 2−k2/22−k/2F̃j(n),(3.2)

where F̃j(n) is given precisely by (4.15) of section 4. For j fixed and n → ∞ (4.15)
reduces to (2.11), for α = n/j > 1 and n → ∞ it reduces to (2.12), and the anal-
ysis in section 4 shows that it applies even for n → ∞ with k/n → 0 as long as
k/ log2 n = ν > 1. Thus, the approximation holds anywhere in the right tail and we

call 2−k2/22−k/2F̃j(n) the “uniform right tail” (URT) approximation for 1 − hk
n. In

Table 5 we consider n = 10, 20, 30, and 100 and various values of k = n − j. We
decrease k until the exact value of 1 − hk

n exceeds .5 (i.e., hk
n < .5). For n = 10,

Table 5 shows that for k = 8 and k = 7, the exact and URT results agree to 6 decimal
places. As k decreases from 6 to 4, the error slowly increases, but remains under 2%.
For k = 3 we have 1−hk

n > .5, but even then URT is accurate to within 12%. By now
we are well outside of the right tail. For n = 20 and k ≥ 6, URT is accurate to within
.3% and agrees with the exact result to 6 decimal places for k ≥ 10. When k = 5 we
have 1− hk

n becoming O(1), but still URT is accurate to within 5%. For k = 4 the
asymptotic result exceeds 1, but then we are clearly outside of the right tail. Similar
trends are apparent for n = 30 and n = 100. Here we need only consider relatively
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Table 5
Uniform right-tail approximation.

n k j 1− hkn (exact) 1− hkn (3.2)

10 8 2 1.45519(10−11) 1.45519(10−11)
7 3 2.98023(10−8) 2.98023(10−8)
6 4 1.31922(10−5) 1.31925(10−5)
5 5 1.63566(10−3) 1.63632(10−3)
4 6 6.09603(10−2) 6.13033(10−2)
3 7 .617309 .687647

20 18 2 3.34096(10−52) 3.34096(10−52)
16 4 1.75253(10−39) 1.75253(10−39)
14 6 7.43000(10−29) 7.43000(10−29)
12 8 5.87353(10−20) 5.87353(10−20)
10 10 1.09764(10−12) 1.09764(10−12)
8 12 5.19019(10−7) 5.19043(10−7)
6 14 5.92196(10−3) 5.93731(10−3)
5 15 .143413 .148697

4 16 .855618 >1

30 10 20 2.52277(10−10) 2.52278(10−10)
9 21 1.24549(10−7) 1.24553(10−7)
8 22 2.56647(10−5) 2.56706(10−5)
7 23 2.16191(10−3) 2.16562(10−3)
6 24 7.08821(10−2) 7.25828(10−2)
5 25 .668201 .920224

100 13 87 3.80919(10−13) 3.80919(10−13)
12 88 3.99988(10−10) 3.99991(10−10)
11 89 1.86584(10−6) 1.86592(10−6)
10 90 3.81030(10−5) 3.81128(10−5)
9 91 3.33434(10−3) 3.34291(10−3)
8 92 .115924 .122474

7 93 .866855 >1

small values of k/n, since even here URT is accurate to 6 decimal places. We also note
that in each data point in Table 5, URT overestimates 1 − hk

n. This suggests that it
may be an upper bound for 1−hk

n (thus a lower bound for hk
n) for points in the right

tail.
Now we test the accuracy of the asymptotics for points where there is appreciable

mass. According to our result, this corresponds to k − log2 n ≈
√
2 log2 n. Our ap-

proximation here is that in (2.15) with Φ(ξ) replaced by its small ξ expansion (2.19).
However, the analysis in section 4 shows that the error term in (2.19) is only smaller
than the leading term by a factor 1/ log ξ (with possibly some log(− log ξ) factors).
While we could compute these, it proves more efficient to use the full result in (4.34)

established in section 4. If we set n2−k = ξ in (4.34) we find that 2−k2/22−k/2× (4.34)
has the form n× [function of ξ], so that the matching condition in (5.40) may be
refined to

Φ(ξ) ∼ Φ0(ξ), ξ → 0+,(3.3)

where

Φ0(ξ) = πξ
1

2πi

∫ i∞

−i∞

2s(s−1)/2Q(s)

Γ(3− s)
e−s log ξds.(3.4)

While the error in (2.19) is only about 1 + O(1/| log ξ|), we believe that in (3.3) the
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error is about 1+O(ξ), though we have not explicitly calculated the correction. Now,
(3.4) is much less insightful than (2.19), but it is much more accurate asymptotically
and, as we show, numerically. The calculations in section 4 show that the leading
term in a saddle point expansion of (3.4) as ξ → 0+ yields precisely (2.19). We also
note that the integrand in (3.4) is an entire function of s, as both Q(·) and 1/Γ(·) are.

In Appendix B we obtain the following representation for Φ0 as an infinite sum:

Φ0(ξ) =
1

4ξ

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

(−1)m+12−m2/225m/2 exp(−2ξ2−m).(3.5)

For any fixed ξ > 0 this sum converges very rapidly as m→∞, and even more rapidly
as m→ −∞, due to the exponential factor. It is thus useful for numerical calculations.
The asymptotics as ξ → 0+ are difficult to obtain from (3.5), due to the alternating
sum. However, we can easily see that Φ0(ξ) = o(ξN ) for all N ≥ 1. Indeed, we expand
the exponent in Taylor series and exchange the order of the two summations. We have

∞∑
m=−∞

(−1)m+12−m2/225m/22−mL = 0(3.6)

for any integer L, as can be seen by the antisymmetry of the summand with respect
to the shift m→ 5− 2L−m. It thus follows that Φ0 vanishes to all algebraic orders
as ξ → 0+. A rough estimate of the leading behavior can be obtained by noting
that for ξ → 0+ the important terms in the sum are those where ξ2−m = O(1)

so that m ≈ log2 ξ. There the magnitude of the summand is roughly 2−m2/2 =
exp

[− 1
2 (log 2)(log2 ξ)

2
]
, which is the same as the dominant factor in (2.19).

For numerical calculations we use (3.5) to approximate Φ and A in (2.15), for
ξ → 0+. Setting z0 = Φ0(ξ),

(3.7)

z1 = (ξΦ0)
′(ξ) = −1

2

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

(−1)m+12−m2/223m/2 exp(−2ξ2−m)

and

(3.8)

z2 = ξ(ξΦ0)
′′(ξ) = ξ

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

(−1)m+12−m2/22m/2 exp(−2ξ2−m),

we thus obtain the asymptotic form of the (improved) WKB approximation as (cf.
(2.15))

√
1 + z2e

−nz0e−z1 .(3.9)

We denote the above “refined” approximation by REF. In Table 6 we compare (3.9)
to the exact values, for the few points where there is appreciable (numerical) mass.
We also give the values of ξ = n2−k, since (3.9) assumes that ξ → 0+. We consider n
in the range 30 ≤ n ≤ 100.

When n = 40 and k = 5 we have ξ = 1.25, and here (3.9) overestimates the true
value by a factor of about 3. However, here we would not expect to be able to use the
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Table 6
Refined approximation in the central regime.

n k ξ hkn (exact) hkn (3.9)

30 5 .938 .3318 .3921
6 .469 .9291 .9293
7 .234 .9978 .9979
8 .117 1.0000 1.0000

40 5 1.25 .0206 .0747
6 .625 .7134 .7220
7 .313 .9851 .9852
8 .156 .9997 .9997
9 .078 1.0000 1.0000

50 6 .781 .3723 .4086
7 .391 .9438 .9440
8 .195 .9985 .9986
9 .098 1.0000 1.0000

60 6 .938 .1051 .1541
7 .469 .8518 .8532
8 .234 .9948 .9948
9 .117 .9999 .9999

70 6 1.09 .0122 .0375
7 .547 .6972 .7035
8 .273 .9857 .9857
9 .137 .9998 .9998
10 .068 1.0000 1.0000

80 6 1.25 .0004 .0060
7 .625 .4950 .5114
8 .313 .9673 .9674
9 .156 .9993 .9993
10 .078 1.0000 1.0000

90 6 1.41 .0000 .0007
7 .703 .2902 .3177
8 .352 .9350 .9351
9 .176 .9984 .9984
10 .088 1.0000 1.0000

100 7 .781 .1331 .1644
8 .391 .8841 .8846
9 .195 .9967 .9967
10 .098 1.0000 1.0000

small ξ approximation to (2.15), but rather should compute Φ(1.25) numerically and
use this value instead. We will discuss the numerical computation of Φ shortly. When
k = 6 we have ξ = .625 which is certainly not small, but nevertheless (3.9) is accurate
to about 1%. For k = 7, 8, and 9 the two results agree to 3 or 4 decimal places. For
each n we increased k until hk

n is one to 4 decimal places. Note that by the time k
reaches this value, we are fairly well in the right tail, and there we showed that URT
is highly accurate.

As we increase n, Table 6 shows that REF is not accurate whenever ξ ≥ 1, but
gives reasonable approximations for ξ ≤ .8 and is very good for ξ ≤ .5. Thus the
small ξ approximation to (2.15) in (3.9) is quite robust. The numerical computation
of Φ is most difficult when ξ is small, so that the numerical and asymptotic methods
complement each other, as is often the case in applied problems.

We note that it was essential that we used the refined approximation in (3.9),
rather than the leading term result in (2.19), which we denote by ΦLT (ξ). In Table 7
we compare the values of Φ0 and ΦLT , starting at ξ = .1 and decreasing to ξ = 10−14.
When ξ = .1 we have ΦLT /Φ0 = 7.31 and even if ξ = 10−14, this ratio is 1.79, which
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Table 7
Different approximations of Φ(ξ).

ξ ΦLT (ξ) Φ0(ξ) ΦLT /Φ0

.1 3.99(10−6) 5.45(10−7) 7.31

10−2 3.58(10−15) 7.54(10−16) 4.75

10−3 6.62(10−28) 1.78(10−28) 3.72

10−4 2.95(10−44) 9.33(10−45) 3.16

10−6 1.26(10−87) 4.94(10−88) 2.55

10−8 5.12(10−145) 2.29(10−145) 2.23

10−10 2.81(10−216) 1.38(10−216) 2.03

10−12 2.62(10−301) 1.38(10−301) 1.89

10−14 4.89(10−400) 2.73(10−400) 1.79

is far from the theoretical value (=1) as ξ → 0+. When ξ = 10−14, both values are
about 10−400. By now we are so far in the right tail that we would never use the WKB
result in the first place.

Finally, we discuss the accumulation of the probability mass at one or two points
as n → ∞, as our results predict. We define � and β = β(n) as in (2.23). We clearly
have 0 ≤ β < 1. It proves easiest to discuss the limit n→∞ along subsequences n(i)
that correspond to β nearly constant.

If we take a fixed 0 < β < 1, then (2.25) predicts that the masses at � = 0, 1, 2
(corresponding to k = k1 − 1, k1, k1 + 1) are approximately

m0 ≈ exp

[
− Q∗
2
√
log 2

e−
1

log 2
2β
√

2 log2 n2−β2/2eβ

(2 log2 n)
3/4

]
,

m1 ≈ 1− Q∗
2
√
log 2

e−
1

log 2
2(β−1)

√
2 log2 n2−(β−1)2/2eβ−1

(2 log2 n)
3/4

,(3.10)

m2 ≈ Q∗
2
√
log 2

e−
1

log 2
2(β−1)

√
2 log2 n2−(β−1)2/2eβ−1

(2 log2 n)
3/4

.

Here m0 = hk1−1
n − hk1−2

n ∼ hk1−1
n , m1 = hk1

n − hk1−1
n ∼ hk1

n (∼ 1), and m2 =
hk1+1
n − hk1

n ∼ 1 −m1. Thus all the mass should concentrate at k = k1 as long as β
remains bounded from 0 and 1. Even as β → 1− we will have m2 → 0 and m1 → 1,
due to the factor (logn)−3/4 in m2 and 1−m1.

Next consider subsequences along which β → 0. As before, we define ∆(n) by
(2.27). Using (2.27) in (2.25) (or (3.10)) we find that if n → ∞ in such a way that
∆(n) is bounded, then hk1−1

n is O(1) and < 1. Thus, for such sequences there is mass
at two points, corresponding to k = k1 − 1 and k = k1.

To construct such sequences ∆(n) we consider the equation

N +
3

2

log2(
√
2 log2 n)√

2 log2 n
= log2 n+

√
2 log2 n− log2(

√
2 log2 n) +

1

log 2
− 1

2
,(3.11)

where N is an integer N ≥ 3. For any N we can solve (numerically) the implicit
relation (3.11) and generate a sequence of solutions, which we denote by n∗(N). In
view of the definition (2.24) of β(n) we see that when n = n∗(N) we have ∆(n) = 0.
Now, n∗(N) is generally not an integer, but 	n∗(N)
 or 	n∗(N)
+1 should correspond



HEIGHT OF DIGITAL SEARCH TREES 941

to a local minimum of the sequence |∆(n)|. In Table 8 we compute the first few n∗(N)
and also give the sequence of local minima of |∆(n)|. We see that min |∆(n)| is the
integer closest to n∗(N) for all 3 ≤ N ≤ 15. In Figure 4 we plot the sequence ∆(n).
From (2.27) and the figure we see that the upper envelope grows (roughly) like

√
log n

and the lower envelope like − log log n. The sequence increases, crosses zero, and then
jumps back down. The jump corresponds to the fractional part β changing from 1−

to 0+, which occurs by increasing n. The maxima of ∆(n) corresponds to β ≈ 1, while
the minima have β ≈ 0. Note also that β is small at the minima of |∆(n)|.

We can easily solve (3.11) asymptotically as N →∞, and this yields the estimate

n∗(N) = 2 N−√2N
√
2N23/2e−1(3.12)

×
[
1 +

log 2√
2N

(
1

2
log2(

√
2N)− 1

)
+O

(
logN

N

)]
.

Using (3.12) to compute β(n) and then ∆(n) for N → ∞, we find that for N → ∞
and n− n∗ = O(1)

∆(n) ∼ 1

n∗
(n− n∗)

{
3

4

log2(
√
2 log2 n∗)

log(n∗)
− 3

4 log 2

1

log(n∗)
(3.13)

+

√
2

(log 2)3/2

(√
log n∗ +

√
log 2

2
− 1

2
√
log n∗

)}
.

This shows that as n → ∞, ∆(n) is not only bounded but ∆(n) → 0 with (roughly)
∆(n∗(N)) = O(n−1). Thus, along sequences such as n = 	n∗(N)
 or n = 	n∗(N)
+1,
the mass m0 should be

exp

[
− Q∗
2
√
log 2

exp

(
− 1

log 2

)]
≈ .990998897 . . . .(3.14)

Even though this is asymptotically O(1) and < 1, the small value of Q∗ (cf. (2.29))
shows that numerically most of the mass will be at k1 − 1, with the remaining mass
at k1. Expression (3.14) has some fluctuations, but these are very small in view of
Table 1.

If we choose a sequence n(i) such that β(n) → 1−, then the mass becomes con-
centrated at � = 1 (k = k1), and the mass at � = 2 is

m2 ∼ Q∗
2
√
log 2

e−
1

log 2
1

(2 log2 n)
3/4

.(3.15)

The right side of (3.15) approaches zero slowly, but in view of the small numerical
value of Q∗e−1/(log 2) 2−1(log 2)−1/2 ≈ .009041857 . . . , m2 will be numerically small
even for moderate values of n. We also note that choosing n to make β ≈ 1 minimizes
the mass at � = 0 (k = k1−1). From an asymptotic point of view, the optimal way to
choose n(i) to get most rapid convergence to mass at the single point k1 is to minimize
|β(n)− 1/2|. This makes m0 and m2 both small. However, for moderate values of n,

it is preferable to choose β ≈ 1, in order that the factor 2
√

2 log2 n in the exponent in
m0 in (3.10) compensates for the numerically small value of Q∗. Thus for moderate n
it is more essential to minimize m0 rather than m2 to obtain m1 → 1. For very large
values of n it becomes desirable to minimize m2, which requires β ≈ 0 (but in such a
way that ∆(n)→ −∞).
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Table 8
Solutions n∗(M) of (3.11).

N n∗(N) min |∆(n)|
3 3.52 4

4 6.64 7

5 12.08 12

6 21.78 22

7 39.14 39

8 70.38 70

9 126.69 127

10 228.45 228

11 412.79 413

12 747.38 747

13 1355.94 1356

14 2464.88 2465

15 4489.33 4489

The numerical results in Table 6 show that for k = 40, 50, 60, 70, 80, 90, and
100, the most mass occurs, respectively, at k = 6, 7, 7, 7, 7, 8, and 8. The respective
masses, obtained from hk

n − hk−1
n , are about .69, .57, .75, .69, .49, .64, and .75. The

respective values of k1 are 8, 9, 9, 9, 9, 10, and 10, so that the most mass is at
k1 − 2, not k1! This apparent discrepancy, however, can easily be understood from
the asymptotic analysis. In order to make the mass for k ≤ k1 − 2 (� ≤ −1) about .1,
even with an optimal value of β ≈ 1, we need n large enough so that

.1 = exp

[
− Q∗
2
√
log 2

1

(2 log2 n)
3/4

22
√

2 log2 n2−2e2−1/ log 2

]

so that n ≈ 22, 123. To make this mass .01, we need n ≈ 252, 025. To make the mass
in the range k ≤ k1 − 1 (� ≤ 0) .1 and .01 we need to have n ≈ 1.364(1010) and
n ≈ 2.340(1012), respectively. This is well beyond the range of the values in Tables
2–6. Our asymptotic results predict that the mass should migrate from k1−2 to k1−1
and eventually to k1, at least for values of β bounded away from zero. Note, however,
that the numerical mass is well predicted by our asymptotic expansions, even for
moderate values of n.

To better see the convergence of mass to one or two points, it is best to consider
special subsequences n(i) in order to avoid the oscillations caused by the appearance
of β(n). In Table 9, we consider the first few n which correspond to local minima of
|∆(n)|, as given in Table 8. For these we give the exact masses m−1 = hk1−2

n −hk1−3
n ,

m0 and m1. As previously discussed the theory predicts that m0 and m1 will be close
to .991 and .009. From Table 9 we see only that there is a gradual migration of mass
from k1 − 2 to k1 − 1. However, even at n = 127 most of the mass is still at k1 − 2.

In Table 10 we choose a sequence n(i) so as to minimize 1 − β(n). This is the
optimal way to “push” the mass out of k = k1 − 2 and into k = k1 for moderate
n. The table clearly shows a gradual migration of mass from k1 − 2 into k1 − 1,
and an increase of mass at k1, though the latter is still below .05 when n = 264. Our
asymptotic results predict that the migration from k1−1 to k1 along this subsequence
would occur when n ≈ 1010, which is well beyond the range where it is feasible to do
numerical calculations.
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Table 9
Probability mass at k1 only.

n k1 m−1 m0 m1

7 5 .7715 .1455 .0049

12 6 .7301 .1530 .0067

22 7 .7235 .2122 .0110

39 8 .7120 .2446 .0124

70 9 .6849 .2885 .0141

127 10 .6345 .3461 .0162

Table 10
Probability mass at k0 and k1.

n k1 m−1 m0 m1

7 5 .7715 .1455 .0049

13 6 .7280 .2192 .0117

24 7 .6643 .3028 .0190

44 8 .5801 .3903 .0261

80 9 .4946 .4723 .0320

145 10 .4129 .5495 .0369

264 11 .3272 .6297 .0423

We conclude by discussing the numerical computation of Φ(ξ). We define

ΦNUM (ξ; k) ≡ − 1

n
log(hk

n), ξ = n2−k.

Our results predict that for each fixed 0 < ξ ≤ 2, ΦNUM (ξ; k) should approach Φ(ξ)
as k → ∞. In Figure 5 we sketch ΦNUM for k = 6. The limit function Φ(ξ) appears
smooth except at ξ = 0 and ξ = 2, where our analytic results apply.

When ξ = 2 we have the theoretical value exactly, as Φ(2) = 1 − log(
√
2C0) =

.55946 . . . . Note that n = 2k+1 − 1 corresponds to ξ = 2 − 2−k. In view of (2.17) we
should have, as k →∞,

Φ(2− 2−k) = Φ(2)− k

2
2−k − 1

4
log(2C0)2

−k + o(2−k).(3.16)

In Table 11 we give ΦNUM (2− 2−k; k) = − log(hk
2k+1−1)/(2

k+1− 1) for k in the range
[2,7]. We compare ΦNUM to both Φ(2) and the 3-term approximation in (3.16). This
shows that ΦNUM is indeed converging to the theoretical value.

To summarize, we have shown that the asymptotic results provide, on the whole,
very good approximations to hk

n. To achieve this, however, it is sometimes necessary
to obtain more uniform and/or higher order results than those in (2.11)–(2.22). The
accumulation of mass at k = k1 is not in good agreement with the numerical results,
but the asymptotics explain this and estimate the size of n necessary for the mass to
migrate to k1.

4. The right-tail analysis. In this section, we derive parts (i) and (ii) of The-
orem 2.1, that is, the far right-tail approximation (2.11) and the right-tail asymptotic
expansion (2.12).
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Fig. 5. The functions ΦNUM (ξ; k) versus ξ for k = 6.

Table 11
Numerical evaluation of Φ(2).

k ΦNUM (2− 2k) Φ(2) 3-term approx.

2 .3642 .5595 .2544

3 .4441 .5595 .3444

4 .4922 .5595 .4207

5 .5208 .5595 .4744

6 .5375 .5595 .5091

7 .5472 .5595 .5304

4.1. The far right-tail analysis. Since we analyze hk
n when the distribution is

asymptotically close to one, it is convenient to set j = n− k and

hk
n = 1−Hk

n,(4.1)

Hk
n = Hn−j

n = Lj(n).

Using (4.1) in (2.2) we obtain

2nLj(n+ 1) = 2

j−2∑
�=0

(
n

�

)
Lj−�(n− �)−

j−2∑
i=n−j+2

(
n

i

)
Li+j−n(i)Lj−i(n− i)(4.2)

for n ≥ j. Here we have multiplied (2.2) by 2n and used the fact that hk
n = 1 for

k ≥ n− 1, which is equivalent to Lj(n) = 0 for j ≤ 1. We also note that if k+ 1 ≥ n,
hk
n = 1 is an exact solution to (2.2), since every term in the sum lies in this range.

We have thus decomposed the nonlinear right side of (2.2) into a linear part and
a nonlinear part, corresponding to the two sums in (4.2). For n ≥ 2j − 3 the second
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sum is void and the equation is exactly linear. The initial condition (2.3) becomes

Lj(j) = 0, j = 0, 1,(4.3)

Lj(j) = 1, j ≥ 2.

From (4.2) we can compute Lj(n) exactly for small values of j ≥ 2. For example,
setting j = 2 we obtain from (4.2), subject to L2(2) = 1,

L2(n) = 2−n2/223n/22−1, n ≥ 2,(4.4)

and this proves (2.6). Letting j = 3 in (4.2) we find that

L3(n) =

(
n

8
− 1

4

)
2−n2/225n/2, n ≥ 4,(4.5)

which is equivalent to (2.7). Note that (4.5) remains valid if n = 3 since L3(3) = 1 by
(4.3).

Next we discuss the asymptotics as n→∞. For any fixed j and n→∞, we can
conclude that

Lj(n) ∼ 2−n2/22(j−1/2)nnj−2C(j).(4.6)

To compute C(j) we use (4.6) in (4.2) to obtain

2nC(j) · (n+ 1)j−22−n2/22−n2−1/22(j−1/2)n2j−1/2(4.7)

∼ 2

j−2∑
�=0

(
n

�

)
C(j − �)(n− �)j−�−22−(n−�)2/22(j−�−1/2)(n−�).

Noting that
(
n
�

)
n−� ∼ 1

�! and (n − �)j−�−2 ∼ nj−2n� as n → ∞ the leading terms in
(4.7) yield

2j−1C(j) = 2

j−2∑
�=0

C(j − �)

�!
2�

2/22�/22−�j , j ≥ 2.(4.8)

In view of (4.4) and (4.6) we have C(2) = 1/2. Solving (4.8) yields

C(j) = 2−j2/22j/2
1

(j − 2)!
,

which completes the derivation of the asymptotic formula for 1 − hk
n = Hk

n = Lj(n)
in (2.11).

4.2. The right-tail analysis. We next consider n and j = n−k simultaneously
large and such that 0 < k/n < 1, so that we are in the range of Theorem 2.1(ii). We
will show that the asymptotic relation (4.6) ceases to be valid if j is as large as O(n).
Note also that j = n−k can be as large as n− log2 n. From our consideration of small
values of j, it is easy to see that Fj(n) has the form

Fj(n) = F̃j(n) +O(ρn), n ≥ 2j − 3,(4.9)

where ρ < 1 and F̃j(n) is a polynomial of degree j − 2. The exponentially small term
corresponds to terms that are O(4−n, 8−n, 16−n, . . .), modulo some factors algebraic
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in n, as n → ∞. Our calculations also showed that F̃j(n) depends on the initial
conditions (4.3) only through the value L2(2) = 1. We then used the fact that
L3(3) = 1 to conclude that c1 = 0, which implies that there are no terms of order
O(2−n) in the exponentially small term. Then the terms proportional to 4−n are
completely determined by the value of c2, which follows from L4(4) = 1.

For the region n/j > 2 in the (j, n) plane the problem (4.2) is exactly linear. For
1 < n/j < 2 the nonlinear terms are present, but as long as Lj(n) is asymptotically
small (i.e., hk

n is asymptotically close to 1), the nonlinear term is small compared to
the linear term(s). Thus in the right tail we can drop the second sum in (4.2) and
replace = by ∼. Also, the exponentially small part of the solution Fj(n) depends on
the values of Fj(n) when n/j = 2, which in turn depends on the initial condition(s)
(4.3). The initial data propagates from n/j = 1 to the range n/j > 2 via the region
where the nonlinear term is present. However, these terms are exponentially small
compared to F̃j(n). This discussion shows that

Fj(n) ∼ F̃j(n)(4.10)

as long as j is such that Lj(n) is asymptotically small.

We next compute F̃j(n) for arbitrary j and use the result to obtain the asymp-
totics of Lj(n) (and hence hk

n) for n, j →∞ with n/j fixed and n/j > 1. This implies
that k, n→∞ at the same rate and 0 < k/n < 1.

Since F̃j(n) is a polynomial in n of degree j − 2 we can write

F̃j(n) =

(
n

j − 2

)
+ d1(j)

(
n

j − 3

)
+ d2(j)

(
n

j − 4

)
+ · · · ,(4.11)

where the sum truncates after a finite number of terms. Here we have set d0(j) = 1,
which follows from (4.6). For a fixed j and n→∞ the successive terms in (4.11) are
asymptotically smaller by factors of n−1. However, we will show that this is no longer
true if n and j are both large. Using (4.11) yields

2j−2

[(
n+ 1

j − 2

)
+ d1(j)

(
n+ 1

j − 3

)
+ d2(j)

(
n+ 1

j − 4

)
+ · · ·

]
(4.12)

=

j−2∑
�=0

(
n

�

) [(
n− �

j − �− 2

)
+ d1(j − �)

(
n− �

j − �− 3

)

+ d2(j − �)

(
n− �

j − �− 4

)
+ · · ·

]
.

Using the identities

(
n+ 1

m

)
=

(
n

m

)
+

(
n

m− 1

)
,

(
n

�

)(
n− �

j − �−m

)
=

(
n

j −m

)(
j −m

�

)

and comparing coefficients of
(

n
j−m

)
in (4.12) for m ≥ 2, we are led to the recurrences

2j−2[1 + d1(j)] =

j−3∑
�=0

d1(j − �)

(
j − 3

�

)
(4.13)
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and

2j−2[dm(j) + dm+1(j)] =

j−m−3∑
�=0

dm+1(j − �)

(
j −m− 3

�

)
, m ≥ 1.(4.14)

From (4.13) it follows that d1(j) = −2, which is independent of j. We then find
from (4.14) that dm(j) is independent of j for all m ≥ 1, and dm(j) = dm satisfies

dm + dm−1 = 2−mdm

so that dm = (−1)m ∏m
N=1

(
1− 2−N

)−1
and hence

F̃j(n) =

j−2∑
m=0

(−1)m
(

n

j − 2−m

) m∏
N=1

(1− 2N )
−1

.(4.15)

We can easily check that this agrees with our previous results for 2 ≤ j ≤ 4.
Now consider the binomial coefficient in (4.15) in the limit n, j →∞ with m and

α ≡ n/j fixed and α rational. Using Stirling’s formula we obtain

n!

(n+m− j + 2)!

1

(j − 2−m)!
∼ n!

(n− j + 2)!

1

(n− j)m
jm

(j − 2)!
(4.16)

∼ nn

(n− j)n−jjj
j3/2
√
n

(n− j)5/2

(
1

α− 1

)m
1√
2π

.

It follows that

F̃j(n) ∼ nn

(n− j)n−jjj
j3/2
√
nπ√

2(n− j)5/2
I(α),(4.17)

where

I(α) ≡ 1

π

∞∑
m=0

(−1)m
(α− 1)m

[
m∏

�=1

(1− 2−�)

]−1

.(4.18)

The sum in (4.18) is absolutely convergent for α > 2. We can extend its range of va-
lidity by writing the product as

∏m
�=1(· · ·) =

∏∞
�=1(· · ·)/

∏∞
�=m+1(· · ·) and subtracting∏∞

�=1(· · ·). The resulting sum will converge for α > 3/2, but we will need to know the

behavior of F̃j(n) as n→∞ for all α = n/j > 1. Thus we need to obtain a different

representation for F̃j(n), which will be more useful for asymptotic analysis.
We begin by considering the function

A(z) =
∞∏
�=1

exp

(
1− 2�z

�(2� − 1)

)
, �(z) < 1.(4.19)

From (4.19) we can easily show that A(·) satisfies the functional equation
A(z + 1) = A(z)[1− 2z],(4.20)

which can be used to analytically continue A(·) into the range �(z) > 1. Observe that

A(−m) =
m∏

N=1

(1− 2−N )−1 =

∞∏
�=1

exp

(
1− 2−m�

�(2� − 1)

)
.
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Indeed, the above follows from

∞∏
�=1

exp

(
1− 2−m�

�(2� − 1)

)
= exp

( ∞∑
�=1

1

�
2−� 1− 2−�m

1− 2−�

)

= exp

(
m∑

N=1

∞∑
�=1

2−N� 1

�

)

= exp

(
−

m∑
N=1

log(1− 2−N )

)
=

m∏
N=1

(1− 2−N )−1.

Then, we can rewrite the sum in (4.15) as

F̃j(n) =

j−2∑
�=0

(−1)�eπij

(
n

�

)
A(�+ 2− j)(4.21)

=
n!

2πi
(−1)n+j

∫ 1
2+i∞

1
2−i∞

Γ(z + j − n− 2)

Γ(z + j − 1)
A(z)dz,

where 0 < �(z) < 1 on the contour of integration. The last inequality is basically
Rice’s formula (cf. [7, 28]), but we can derive it directly. Indeed, in the region �(z) < 1
the integrand has simple poles at z = 0,−1, . . . ,−j + 1,−j + 2 and Res[z = −m] =
(−1)m−j+n

(j−m−2)!
A(−m)

(n+m−j−2)! , m ≥ 0, where Res[z = A] stands for the residue at A for the

function under the integral. Next, we close the contour in the left half-plane and the
integral is equal to the finite residue sum, which is the same as (4.15).

Noting that

∞∑
�=1

1− 2�z

�(2� − 1)
=
∞∑
�=1

2−�

�

∞∑
N=0

2−N� −
∞∑
�=1

2�(z−1)

�

∞∑
N=0

2−N�

= −
∞∑

N=0

log(1− 2−N−1) +

∞∑
N=0

log(1− 2z−N−1),

we find that the expression in (4.19) becomes

A(z) =

∞∏
�=1

(1− 2−�)−1
∞∏

m=1

(1− 2z−m),(4.22)

which applies for all z, and thus gives the analytic continuation of (4.19) into the
half-plane �(z) > 1. Expression (4.22) also shows that A(z) is an entire function,
with zeros at z = 1, 2, 3, . . . .

In order to find another representation for A(z), we define p(z) by the relation

A(z) = e−πiz2z
2/22−z/2ep(z)

∞∏
m=1

exp

(
2−mz

m(1− 2−m)

)
(4.23)

and we also note that for �(z) > 0

∞∏
m=1

exp

(
2−mz

m(1− 2−m)

)
=
∞∏

m=0

1

1− 2−z−m
.(4.24)
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Denoting the above product by g(z), it satisfies g(z+1) = g(z)(1−2−z) and g(z) ∼ 1
as z →∞ with �(z) > 0. Using (4.23) in (4.20) then shows that p(z + 1) = p(z).

We next identify explicitly the periodic function p(·) in terms of the Jacobi elliptic
theta function (cf. [3]):

ϑ1(u) = ϑ1(u|τ) = 2q1/4 sin(u)

∞∏
m=1

(1− 2 cos(2u)q2m + q4m)(1− q2m),

where eπiτ = q. Setting q = 1/
√
2 and u = (i log 2)z/2 the above becomes

ϑ

(
i

2
(log 2)z

)
= i27/8

[ ∞∏
m=1

(1− 2−m)

]
sinh

(
log 2

2
z

) ∞∏
m=1

[1− 2 cosh(z log 2)2−m + 4−m]

= i2−1/82z/2(1− 2−z)

∞∏
m=1

(1− 2−m)

∞∏
m=1

(1− 2z−m)

∞∏
m=1

(1− 2−z−m).(4.25)

Using (4.22), (4.24), and (4.25) in (4.23) we find that

ep(z) = 2−z2/2eπiz(−i)21/8

[ ∞∏
m=1

(1− 2−m)−2

]
ϑ1

(
i

2
(log 2)z

)
.(4.26)

The periodicity of p(z) in the real direction follows from the “quasi periodicity” of
the theta function in the imaginary direction.

We return to the discussion of the asymptotics of F̃j(n) (cf. 4.21) for n, j → ∞
with α > 1. For z fixed and n, j large we have

Γ(z + j − n− 2)

Γ(z + j − 1)
=

π

sin(πz)

(−1)n+j

Γ(n− j + 3− z)

1

Γ(z + j − 1)

∼ π

sin(πz)

(−1)n+j

Γ(n− j + 3)

1

Γ(j − 1)

(
n

j
− 1

)z

∼ (−1)n+j

sin(πz)

1

2

en

(n− j)n−jjj
j3/2

(n− j)5/2
(α− 1)z.

Here we used Γ(N + z) ∼ Γ(N)Nz for N →∞ and z fixed. Using the above in (4.21)
and approximating n! by Stirling’s formula yields

F̃j(n) ∼ nn

(n− j)n−jjj

√
nj3/2

(n− j)5/2

√
π√
2

1

2πi

∫ 1
2+i∞

1
2−i∞

(α− 1)z

sin(πz)
A(z)dz,(4.27)

which yields the second representation (2.14) for I(α) that appears in Theorem 2.1(ii).
For α > 2 we can close the integration contour in the left half-plane and recover (4.17).
However, (4.27) applies for all α > 1. To obtain (4.27) we took the large n limit of the
integrand in (4.21). This can be justified using a dominated convergence argument.

4.3. Asymptotic matching for α → 1+. For purposes of asymptotic match-
ing, we will need to know the behavior of the approximation in (4.27) as α → 1+.
We first observe that since A(z) is an entire function with zeros of z = 1, 2, 3, . . . , the
integrand in (4.27) is analytic for �(z) > 0. The asymptotics of the integral as α→ 1
will be obtained by shifting the contour to the right. Since there are no singularities in
the right half-plane, the asymptotics must be governed by a saddle point (cf. [4, 25]).
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We use the representation (4.23) for A(z) and note that the infinite product in (4.23)
is 1 + O(2−z) as z → ∞ in the right half-plane. We thus write the integral in (4.27)
as

J ≡ 1

2πi

∫
B
e−λz2z

2/22−z/2Q(z)[1 +O(2−z)]dz,(4.28)

where B is any vertical contour with �(z) > 0 and

Q(z) =
e−πiz

sin(πz)
ep(z), α− 1 = e−λ.(4.29)

The periodicity of p(·) implies that Q(z + 1) = Q(z) and α → 1+ corresponds to
λ→ +∞.

For λ→∞ the integrand in (4.28) has a saddle point where

d

dz

[
−λz + z2

2
log 2− z

2
log 2

]
= z log 2− λ− 1

2
log 2 = 0.

Thus the saddle is at z ≈ λ/ log 2 and we set

z =
λ

log 2
+

1

2
+ ζ.(4.30)

We now use (4.28)–(4.30) and obtain

J ∼ e−λ/2e−λ2/(2 log 2)2−1/8 1

2π

∫ ∞
−∞

2−t2/2Q

(
λ

log 2
+

1

2
+ it

)
dt(4.31)

for λ → ∞. By periodicity, the above integral is O(1) in this limit. We use (4.31)
in (4.27), set j = n − k, and expand the result for k/n → 0. Noting that e−λ/2 =√

k/(n− k) ∼√
k/n and λ = log(n/k) +O(k/n), we find that

F̃j(n) ∼ e k log n+k−k log k n
3/2

k2

2−9/8

√
log 2

Q∗

(
log2 n− log2 k +

1

2

)
(4.32)

× exp

[
− 1

2 log 2
(log n− log k)2

]
,

where

Q∗(z) =
1√
2π

∫ ∞
−∞

e−s2/2Q

(
z +

is√
log 2

)
ds.(4.33)

It is important to note that (4.32) was obtained by first taking n, j → ∞ with n/j
fixed and then expanding the result for n/j = α→ 1. Thus (4.32) applies for k/n→ 0,
but we will shortly show that we also need k/ log2 n→∞.

We next consider the limits n→∞ with k− log2 n = O(1) and then n→∞ with
k/ log2 n = ν > 1. The first limit has no significance to the distribution hk

n, since if
k = log2 n+O(1) we are no longer in the right tail and thus we cannot linearize (4.2).
However, the function (4.15) is defined for all k. In section 5 we will show that the
limit with k/ log2 n fixed > 1 is important for the asymptotic matching between the
left and right tails.
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We return to the representation of F̃j(n) in (4.21) and set z = n−j+s = k+s. For
k, n large and s = O(1) we use Γ(z+ j− 1) = Γ(n− 1+ s) ∼ Γ(n+1)n−2ns = n!ns−2

and the approximation for A(z) as z →∞. Then the asymptotic form of (4.21) is

F̃j(n) ∼ 1

2πi

∫ i∞

−i∞

πn2−s

Γ(3− s)
Q(s) exp

(
log 2

2
(k + s)(k + s− 1)

)
ds(4.34)

=
1

2πi
π2k

2/22−k/2n2

∫ i∞

−i∞

Q(s)

Γ(3− s)
2s

2/22−s/2e(k log 2−log n)sds,

where the integral is O(1) for k = log2 n+O(1). If we use (4.34), we would find that
Lj(n) = O(n), which corresponds to hk

n large and negative!

Next we show that (4.34) asymptotically matches to (4.32) in an intermediate
limit where n, k →∞ with k/n→ 0 but k − log2 n→∞. We also obtain an approx-
imation to F̃j(n) that applies for k/ log2 n ∈ (1,∞). We set k = ν log2 n with ν > 1
and expand (4.34) for n→∞. To leading order, the saddle point equation for (4.34)
is

d

ds

[
s2

2
log 2 + (ν − 1)s log n

]
= s log 2 + (ν − 1) log n = 0,

so the saddle is at s ≈ −(ν − 1) log2 n.

Since this is asymptotically large, the factor 1/Γ(3 − s) also affects the location
of the saddle. For s→ −∞ we thus approximate (cf. [1])

1

Γ(3− s)
= (−s)−5/2 1√

2π
es log(−s)−s

(
1 +O

(
1

s

))
.(4.35)

Using (4.35) in (4.34) and expanding the integrand near the saddle s = s0 ≡ −(ν −
1) log2 n yields

F̃j(n) ∼
√

π

2
2k

2/22−k/2n2 1

2πi

∫ i∞

−i∞
Q(s)eF (s0)eF

′(s0)(s−s0)eF
′′(s0)(s−s0)

2/2(4.36)

× (−s)−5/2

[
1 +O

(
1

s

)
+O

(
F ′′′(s0)(s− s0)

3
)]

ds,

where

F (s) = −s+ s log(−s) + log 2

2
s2 − log 2

2
s+ (ν − 1)s log n

so that

F ′(s) = log(−s) + (log 2)s− 1

2
log 2 + (ν − 1) log n,

and hence F ′(s0) = log(−s0) − (log 2)/2, F ′′(s0) = 1/s0 + log 2 ∼ log 2. Setting
s = s0 − log2(−s0) +

1
2 + it, the leading term for (4.36) becomes
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F̃j(n) ∼
√

π

2
2k

2/22−k/2n2(−s0)
−2eF (s0) exp

(
−1
2
(log 2)[log2(−s0)]

2

)
2−1/8

× 1

2π

∫ ∞
−∞

2−t2/2Q

(
s0 − log2(−s0) +

1

2
+ it

)
dt

=
2−9/8

√
log 2

(k − log2 n)
−2 exp

(
k log n− 1

2

log2 n

log 2
+

3

2
log n

)

× exp

[
−(k − log2 n) log(k − log2 n) + k − log2 n−

log2(k − log2 n)

2 log 2

]
(4.37)

× Q∗

(
log2 n− log2(k − log2 n) +

1

2

)
,

where Q∗(z) is given by (4.33). Expression (4.37) holds in the limit k, n → ∞ with
k/ log2 n fixed and > 1. We can easily show that it matches to (4.32) in the interme-
diate limit where k/n→ 0, k/ log2 n→∞. In this limit

−(k − log2 n) log(k − log2 n) + k − log2 n−
log2(k − log2 n)

2 log 2

= −k log k + k + (log2 n)(log k)−
log2 k

2 log 2
+O(1),

so that (4.37) becomes the same as (4.32). This also shows that (4.32) applies only
to the range where k/ log2 n → ∞. In order to asymptotically match the right and
left tails, we shall need to use (4.37). We also note that if we multiply (4.37) by

2−k2/22−k/2 (thus obtaining the corresponding approximation to 1 − hk
n = Hk

n), the
result has the form n× [function of (k − log2 n)]. This is precisely what is needed in
order to match to the WKB expansion that we will derive in section 5.

For k, n→∞ with k/ log2 n = ν > 1, we are still in the right tail. We can estimate
the value of k where there is appreciable mass by using (4.37). We argue that when

Hk
n = 2−k2/22−k/2Fj(n) becomes O(1) in n, then we are no longer in the tail. Since

Q∗ is clearly O(1), this condition is equivalent to

(4.38)

− k2

2
log 2− k

2
log 2 + k log n+

3

2
log n− 1

2

log2 n

log 2
− (k − log2 n) log(k − log2 n)

+ k − log2 n−
log2(k − log2 n)

2 log 2
− 2 log(k − log2 n) = O(1).

The largest terms in (4.38) are − log 2
2 (k − log2 n)

2 + log n, which balance when k −
log2 n ∼

√
2 log2 n. This gives a rough argument that the mean E[Hn] behaves as

E[Hn]− log2 n ∼
√
2 log2 n. A more careful analysis of (4.38) shows that the left side

is O(1) for

k = log 2n+
√
2 log2 n− log2(

√
2 log2 n) +

1

log 2
− 1

2
(4.39)

− 3

2

log2(
√
2 log2 n)√

2 log2 n
+O((log n)−1/2).

We discussed the condition in (4.39) in more detail in section 3.
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4.4. Another representation for Q(z). We next obtain another representa-
tion for the periodic function p(z) (and hence Q(z)), which involves a Fourier series
that we need in some computations. We let Ã(z) be a solution of (4.20) and set
Ã(z) = exp[B(z)]. Then B(z) satisfies

B(z + 1)−B(z) = log(1− 2z).(4.40)

Introducing the two-sided Laplace transform

B∗(s) =
∫ ∞
−∞

B(z)e−szdz,

we find that

(4.41)

(es − 1)B∗(s) =
∫ ∞
−∞

log(1− 2z)e−szdz

=

∫ 0

−∞
log(1− 2z)e−szdz +

∫ ∞
0

(±πi+ log(2z − 1))e−szdz

=

∫ ∞
0

esz log(1− 2−z)dz ± πi

s
+

log 2

s2
+

∫ ∞
0

e−sz log(1− 2−z)dz

= ±πi

s
+

log 2

s2
+

∞∑
m=−∞
m�=0

1

m

1

s−m log 2
,

where both integrals converge in the strip − log 2 < �(s) < log 2, and the left side is
analytic for 0 < �(s) < log 2. The standard inversion formula then yields

B(z) =
1

2πi

∫ 1
2+i∞

1
2−i∞

esz

es − 1

[
log 2

s2
± πi

s
+

π

s

(
cot

(
πs

log 2

)
− log 2

πs

)]
ds,(4.42)

where 0 < �(s) < log 2 on the contour of integration. Here we have used the partial
fractions expansion of cot(z) to evaluate the sum in (4.41).

The integrand h(s) in (4.42) has a triple pole at s = 0, simple poles at s = 2kπi,
k = ±1,±2, . . . , and simple poles where s = � log 2, � = ±1,±2, . . . . To evaluate B(z)
as z →∞ we shift the contour to the left. A lengthy calculation shows that the residue
at z = 0 is

Res[h(s); s = 0] = log 2

(
z2

2
− z

2
+

1

12

)
± πi

(
z − 1

2

)
− π2

3 log 2
.(4.43)

The residues along the imaginary axis combine with (4.43) to yield

B(z) =
log 2

2
(z2 − z)± iπ

(
z − 1

2

)
+

log 2

12
− π2

3 log 2
(4.44)

+
∞∑

m=−∞
m�=0

e2mπiz

[
± 1

2m
− 1

2m
coth

(
2π2m

log 2

)]
+O(2−z)

as z →∞. By shifting the contour to the right we find that B(z) ∼ −2z as z → −∞.
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We observe that Ã = eB and A in (4.19) (or (4.22)) are related by Ã(z)/Ã(0) =
A(z). For z real we have

∞∑
m=−∞
m�=0

1

m
e2mπiz = −2πi

(
〈z〉 − 1

2

)
,

where, to recall, 〈z〉 is the fractional part of z. By comparing (4.44) with (4.23) we
find that

Q(z) =
e−πiz

sin(πz)
ep(z) =

1

sin(πz)
21/12 exp

(
− π2

3 log 2
± iπ	z


) ∞∏
�=1

(1− 2−�)−1(4.45)

× exp


−

∞∑
m=−∞
m�=0

e2mπiz

2m
coth

(
2π2m

log 2

)

 .

By periodicity it suffices to consider 0 < z < 1. Writing

[sin(πz)]−1 = e− log(sinπz) = exp


log 2 + 1

2

∞∑
m=−∞
m�=0

sgn(m)
e2mπiz

m




(sgn(x) is 1 for x > 0, −1 for x < 0, and 0 for x = 0) and noting that

coth(am)− sgn(m) =
e−a|m|

sinh(am)
, a > 0,

we find from (4.44), (4.25), and (4.26) that

Q(z) = 213/12

[ ∞∏
�=1

(1− 2−�)−1

]
exp

[
− π2

3 log 2
−
∞∑

m=1

e−am

m sinh(am)
cos(2mπz)

]
(4.46)

=
2−z2/2+z/2(1− 2−z)

sin(πz)

∞∏
m=1

(1− 2−m)(1− 2z−m)(1− 2−z−m),

where

a =
2π2

log 2
.

This coincides with the representation of Q(z) given in Theorem 2.1(iii). From the
Fourier series we see that Q(z) is nearly constant since∣∣∣∣∣

∞∑
m=1

e−am

m sinh(am)
cos(2mπz)

∣∣∣∣∣ ≤
∞∑

m=1

e−am

m sinh(am)
= 3.678 . . . (10−25).

To summarize the calculations, we have obtained the leading term for 1− hk
n for

the limits (i) n→∞, n−k = j = O(1), (ii) n, k →∞ with 0 < k/n = 1−1/α < 1, and
(iii) k, n→∞ with k/ log2 n = ν > 1. The last corresponds to the “left-most” right-
tail region. The third region involves correction terms that are O(1/ log n), while the
first two had correction terms O(1/n). Thus we expect that the third case will result
in the worst numerical agreement (this was discussed in more detail in section 3).
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5. The left-tail and central-regime analyses. We analyze here the distribu-
tion when hk

n is asymptotically small. Then we can no longer linearize (2.2). Whereas
the right tail was treated using purely linear analysis, the left tail requires different
techniques such as the WKB method and matched asymptotics.

5.1. The left-tail analysis. We first prove part (iv) of Theorem 2.1. We set
2k+1 − n = M, M ≥ 1, and first show how to compute hk

n explicitly for small values
of M . Since the generating function in (2.4) is a polynomial of degree 2k+1 − 1 we
isolate the two leading coefficients by writing

Hk(z) = a(k)z2k+1−1 + b(k)z2k+1−2 + · · ·+ z + 1.(5.1)

It follows that

H2
k(z) = a2(k)z2k+2−2 + 2a(k)b(k)z2k+2−3 +O(z2k+2−4)(5.2)

and

H ′k+1(2z) =
1

2

[
a (k + 1)22k+2−1(2k+2 − 1)z2k+2−2(5.3)

+ b(k + 1)22k+2−2(2k+2 − 2)z2k+2−3 +O(z2k+2−4)
]
.

By using (2.5), (5.2), and (5.3) we obtain the recurrences

22k+2

(2k+2 − 1)a(k + 1) = 4a2(k), a(0) = 1,(5.4)

22k+2

(2k+2 − 2)b(k + 1) = 16a(k)b(k), b(0) = 1.(5.5)

Equation (5.4) is nonlinear but (5.5) is linear, once we compute a(k).
To solve (5.4) we set a(k) = eα(k) to get

α(k + 1)− 2α(k) = − log
[
1

4
22k+2

(2k+2 − 1)

]
.(5.6)

If α(k) = 2kα̃(k), then (5.6) becomes

α̃(k + 1)− α̃(k) = −2−k−1 log

[
1

4
22k+2

(2k+2 − 1)

]
.(5.7)

We solve (5.7) subject to α̃(0) = 0 to obtain

α(k) = −2k
k−1∑
�=0

2−�−1 log

[
1

4
22�+2

(2�+2 − 1)

]
.(5.8)

Exponentiating (5.8) and some rearrangement yields

a(k) =
k∏

�=1

(
4

22�+1(2�+1 − 1)

)2k−�

(5.9)

= 2−k2k+1

42k−1
k∏

�=1

(
1

2�+1 − 1

)2k−�

.
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We next obtain the asymptotics of a(k) as k →∞. We write

2k
k∑

�=1

2−� log(2�+1 − 1) = (3 · 2k − k + 3) log 2 + 2k
k∑

�=1

2−� log(1− 2−�−1)

so that

a(k) = 2−(2k+3)2k

22k+1+k+1

{
k∏

�=1

(1− 2−�−1)−2−�

}2k

(5.10)

= 2−(2k+1)2k

2k+1C2k

0 [1 +O(2−k)], k →∞,

where

C0 =

∞∏
�=1

(1− 2−�−1)−2−�

,(5.11)

whose numerical value was given in (2.18) of section 2.
Since hk

2k+1−1 = (2k+1 − 1)!a(k) = Γ(2k+1)a(k), we use Stirling’s formula to get

hk
2k+1−1 = 2

√
π2k/2

(
2C0

e2

)2k

[1 +O(2−k)], k →∞.(5.12)

Using our result for a(k) in (5.5) and solving the linear recurrence yields

b(k) =

k∏
�=1

8a(�− 1)

22�+1(2� − 1)
.(5.13)

Using the (exact) expression for a(k) in (5.10) in (5.13), and noting that

k∏
�=1

8 · 2�
22�+1(2� − 1)

2−(�+1/2)2�

22�

= 8k21−(2k+1)2k
k∏

�=1

(
1

1− 2−�

)
,

we obtain

b(k) = 2−(2k+1)2k

23k+1
k∏

�=1


 1

1− 2−�


�−1∏

j=1

(1− 2−j−1)−2−j




2�−1
 .(5.14)

We write the double product in (5.14) as

k∏
�=1

C2�−1

0

1

1− 2−�


 ∞∏

j=�

(1− 2−j−1)2
−j




2�−1

∼ C2k−1
0 C1, k →∞,(5.15)

where C0 is given in (5.11) and

C1 =

∞∏
�=1


 1

1− 2−�

∞∏
j=�

(1− 2−j−1)2
�−j−1


 .
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In view of (5.15) we have

b(k) ∼ 2−(2k+1)2k

23k+1C2k−1
0 C1, k →∞,(5.16)

and then hk
2k+1−2 = (2k+1 − 2)!b(k) has the expansion

hk
2k+1−2 ∼

C1

C0

√
π23k/2

(
2C0

e2

)2k

, k →∞.(5.17)

The constant C1 may be simplified by noting that

C1 =

∞∏
�=1

1

1− 2−�

[ ∞∏
m=1

(1− 2−m−�)2
−m

]

=

[ ∞∏
�=1

1

1− 2−�

] ( ∞∏
N=2

[
N−1∏
m=1

(1− 2−N )2
−m

])

=

[ ∞∏
N=2

(1− 2−N )1−21−N

] [ ∞∏
�=1

1

1− 2−�

]

= 2

∞∏
N=2

(1− 2−N )−21−N

= 2C0.

Hence, hk
n ∼ 2

√
π23k/2(2C0e

−2)2
k

for k →∞ if n = 2k+1 − 2.
Next we solve the recurrence (2.2) for M = O(1) and n → ∞, thus proving

Theorem 2.1(iv). We change variables from (n, k) to (M,k) with n = 2k+1 −M and

hk
n = G(M,k) = G(2k+1 − n, k).(5.18)

We replace k by k − 1 in (2.2) and note that

hk
n+1 = G(2k+1 − n− 1, k) = G(M − 1, k),

hk−1
i = G(2k − i, k − 1) = G

(
M

2
+

n

2
− i, k − 1

)
.

Thus (2.2) becomes, in terms of G and M,

G(M − 1, k) =
n∑

i=0

(
n

i

)
2−nG

(
M

2
+

n

2
− i, k − 1

)
G

(
M

2
− n

2
+ i, k − 1

)
.(5.19)

But G = 0 for M ≤ 0 (i.e., n ≥ 2k+1) so that the sum in (5.19) may be truncated
over the range (n−M)/2 < i < (n+M)/2. Then setting i = �+ (n−M)/2 we have

G(M − 1, k) =

M−1∑
�=1

(
n

�+ (n−M)/2

)
2−nG(�, k − 1)G(M − �, k − 1).(5.20)

The expression in (5.20) is still exact. For n, k →∞ with M = O(1), we have

(
n

i

)
2−n =

√
2

πn
[1 +O(n−1)] =

2−k/2

√
π

[1 +O(2−k)],
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so in this range we replace (5.20) by the asymptotic relation

G(M − 1, k) ∼ 2−k/2

√
π

M−1∑
�=1

G(�, k − 1)G(M − �, k − 1).(5.21)

Setting M = 1, replacing ∼ by =, and solving (5.21) for G(1, k) yields

G(1, k) ∼ 2
√
π2k/2A2k

0 ,(5.22)

where A0 is an undetermined constant. Setting M = 2 in (5.21) and using (5.22) leads
to

G(2, k)

G(2, k − 1)
∼ 2√

π
2−k/2G(1, k − 1) ∼ 2

√
2A2k−1

0 ,(5.23)

so that

G(2, k) ∼ 2
√
πB02

3k/2A2k

0 ,(5.24)

where B0 is another constant. We have scaled the factor 2
√
π out of the constant for

convenience. Proceeding inductively we find that for general M

G(M,k) ∼ 2
√
πBM−1

0 2(M−1/2)kA2k

0 G(M), k →∞.(5.25)

Using (5.25) in (5.21) we find that

G(M − 1) = 4 · 2−M
M−1∑
�=1

G(�)G(M − �)(5.26)

with G(2) = 1. Thus, G(M) = 1/(M − 1)!, which yields

G(M,k) ∼ 2
√
π

(M − 1)!
BM−1

0 2(M−1/2)kA2k

0 .(5.27)

It remains only to determine A0 and B0. But our exact analysis for M = 1 and M = 2
shows, in view of (5.10) and (5.17) (with C1/C0 = 2), that

A0 =
2C0

e2
, B0 = 1.(5.28)

We have thus derived the result in (2.22) of Theorem 2.1(iv). We conclude by noting
that the range M = O(1) corresponds to the “left-most” tail of the distribution, and
that for n → ∞ the condition M = O(1) can be satisfied only when n is close to a
power of 2.

5.2. The central-regime analysis. We next analyze the scale k, n→∞ with
k − log2 n = O(1). We thus set ξ = n2−k and

hk
n = F (ξ;n) = F (n2−k;n).(5.29)

We consider the range 0 < ξ < 2 and note that as ξ → 2− we are approaching
the scale M = O(1), which we just analyzed. We have k − log2 n = − log2 ξ so that
k − log2 n → ∞ corresponds to ξ → 0+. For any fixed ξ > 0 we are still in the left
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tail as the mass is concentrated where k − log2 n ∼
√
2 log2 n, which corresponds to

ξ ≈ 2−
√

2 log2 n, which is small.
We comment that the ξ-scale also arises in related models. We have previously

shown in [19] that for tries, b-tries, and PATRICIA trees, the limit n, k → ∞ with ξ
fixed is important to the asymptotic analysis. We note that

hk
n+1 = F ((n+ 1)2−k;n+ 1) = F

(
ξ +

ξ

n
;n+ 1

)

and

hk−1
i = F (i2−k+1; i) = F

(
2i

n
ξ; i

)
.

Using the above in (2.2), after replacing k by k − 1, we obtain

F

(
ξ +

ξ

n
;n+ 1

)
=

n∑
i=0

(
n

i

)
2−nF

(
2i

n
ξ; i

)
F

(
2

(
1− i

n

)
ξ;n− i

)
.(5.30)

We analyze (5.30) by a WKB-type expansion (cf. [10]). That is, we seek an
asymptotic solution of (5.30) in the form

F (ξ;n) = e−nΦ(ξ)

[
A(ξ) +

1

n
A(1)(ξ) +O(n−2)

]
.(5.31)

The above may be viewed as a generalized saddle-point expansion. For simpler mod-
els, such as tries and b-tries, we can obtain exact expressions for the corresponding
distributions. These usually involve Cauchy integrals that can be asymptotically eval-
uated by the saddle-point method. This then leads to an expansion of the form (5.31)
for fixed ξ. Note that for b-tries ξ takes on values in the range [0, b] and for PATRI-
CIA trees the range is [0, 1]. For more difficult models, which cannot be or have not
been solved exactly, we must try to obtain the asymptotic expansion directly from
the equations, such as (2.2). This generally requires making an ansatz, such as (5.31).

Setting x = i/n and y =
√
n(x − 1/2) =

√
n(i/n − 1/2) and using Stirling’s

formula, we have

(
n

i

)
2−n ∼ enf0(x)√

2πnx(1− x)
, 0 < x < 1,(5.32)

where f0(x) = − log 2−x log x− (1−x) log(1−x). For y fixed (5.32) simplifies to the
Gaussian

(
n

i

)
2−n =

√
2

πn
e−2y2

[1 +O(n−1)].(5.33)

We use (5.31) in (5.30) and expand for large n, which yields

e −nΦ(ξ) · e−(ξΦ)′(ξ)[A(ξ) +O(n−1)] =

n∑
i=0

enf0(i/n)

√
2πn

√
n2

i(n− i)

× exp

(
−n

[
i

n
Φ

(
2i

n
ξ

)
+

(
1− i

n

)
Φ

(
2

(
1− i

n

)
ξ

)])
A

(
2i

n
ξ

)
A

(
2

(
1− i

n

)
ξ

)
.
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Note that near the endpoints in the sum in (5.30), i and n − i may not be large so
that the expansion (5.31) does not apply. However, the major contribution to the sum
comes from the range i = n/2 + O(

√
n). We approximate the sum in (5.34) by an

integral via Euler–Maclaurin to get

(5.34)

e−nΦ(ξ) · e−(ξΦ)′(ξ)[A(ξ) +O(n−1)]

∼
√
n√
2π

∫ 1

0

enf0(x)√
x(1− x)

A(2xξ)A(2(1− x)ξ)e−n[xΦ(2ξx)+(1−x)Φ(2ξ(1−x))]dx.

By symmetry, the major contribution must come from the midpoint x = 1/2. Setting

g(t) = tΦ(2ξt) + (1− t)Φ(2ξ(1− t))

we have g(1/2) = Φ(ξ), g′(1/2) = 0, and

g′′
(
1

2

)
= 8ξΦ′(ξ) + 4ξ2Φ′′(ξ).

Setting x = 1/2 + y/
√
n and expanding the integral by Laplace’s method yields, to

leading order,

e−nΦ(ξ)e−(ξΦ)′(ξ)A(ξ) =
1√
2π

2
√
2π√

4 + g′′(1/2)
e−nΦ(ξ)A2(ξ).

Thus the exponential factors cancel and we have

A(ξ) = [1 + 2ξΦ′(ξ) + ξ2Φ′′(ξ)]1/2e−ξΦ′(ξ)−Φ(ξ).(5.35)

We have thus expressed A(·) in terms of Φ(·), though the latter remains undeter-
mined. By refining the approximation (5.33) to the “kernel” in (5.30) and obtaining
higher order terms in the Laplace expansion of the integral, we can obtain relations
between the terms A(j) in the series in (5.31). Using these we can express A(j+1)

in terms of Φ, A,A(1), . . . , A(j), but we can never determine Φ. For tries and b-tries
the corresponding Φ can be determined using a standard saddle-point expansion. For
PATRICIA trees we could only study Φ numerically and asymptotically, which we
proceed to do for the DST model.

Next we use asymptotic matching to determine the behaviors of Φ(ξ) as ξ → 2−

and ξ → 0+. We first require that the expansion on the M -scale matches that on
the ξ-scale. This amounts to assuming that both are valid on some intermediate scale
where M = 2k+1−n→∞ but ξ = n2−k = 2n/(n+M)→ 2. We write this condition
symbolically as

G(M,k)|M→∞ ∼ F (ξ;n)|ξ→2.(5.36)

To compare the two sides of (5.36) we expand G as M →∞, which simply amounts
to approximating (M − 1)! by Stirling’s formula in (5.27). Using (5.28) then yields

G(M,k) ∼
√
2M

(
2C0

e2

)n/ξ

eM
(
2k

M

)M

2−k/2.(5.37)
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Noting that n/ξ = 2k and M = n(2/ξ − 1) we rewrite (5.37) in terms of n and ξ.
According to (5.36) this should be the expansion of Ae−nΦ as ξ → 2. We then find
that the matching condition is satisfied provided that

Φ(ξ) =
1

2
log

(
e2

2C0

)
+

1

2
(2− ξ) log(2− ξ)(5.38)

+ (ξ − 2)

[
1

4
log

(
2C0

e2

)
+

1

2

]
+ o(2− ξ)

and for ξ → 2−

A(ξ) ∼
√
2(2− ξ).(5.39)

Thus the matching condition yields the behavior of both Φ and A. We show that
(5.38) and (5.39) are consistent with (5.35). From (5.38) we get Φ(ξ) ∼ Φ(2) =
−1− log(

√
2C0), Φ

′(ξ) ∼ − 1
2 log(2− ξ), and Φ′′(ξ) ∼ 1/[2(2− ξ)]. Using these results

in (5.35) yields A(ξ) ∼√
4Φ′′(ξ)e−2Φ′(ξ)e−Φ(2) ∼

√
2

2−ξ (2− ξ), which recovers (5.39).

To obtain the above we also used the second term in the expansion of Φ′(ξ) as ξ → 2.

Next we match the WKB expansion to the “left-most” right tail, which we derived
in section 4. We let ξ → 0 with k/ log2 n = ν → 1+. Furthermore we choose an
intermediate limit where n→∞, ξ → 0 so that nΦ(ξ)→ 0 and we can approximate

1− hk
n ∼ 1−Ae−nΦ ∼ 1− e−nΦ ∼ nΦ.

The expansion that applies for fixed k/ log2 n = ν > 1 is given by 1 − hk
n ∼

2−k2/22−k/2F̃j(n), where F̃j is given by (4.37). Expanding (4.37) for k/ log2 n = ν →
1+ amounts to doing nothing, since Q∗ is periodic and the rest of (4.37) is in the

simplest possible form. We have already observed that 2−k2/22−k/2× (4.37) can be
written as n× [function of (k − log2 n)] = n× [function of ξ]. Thus the matching
condition is satisfied if

(5.40)

nΦ(ξ)|ξ→0+ ∼ 2−9/8

√
log 2

n

(− log2 ξ)
2
Q∗

(
log2 ξ − log2(− log2 ξ) +

1

2

)

× exp

(
− log2 ξ

2 log 2
+ (log2 ξ) log(− log2 ξ) +

(
1

2
− 1

log 2

)
log ξ − [log(− log2 ξ)]

2

2 log 2

)
.

The above is equivalent to (2.19) and we have used the periodicity of Q∗.
Expression (5.40) represents the leading term for Φ and we may also view it as

representing the first six terms in the expansion of log Φ. These have respective orders
of magnitude O(log2 ξ), O(| log ξ| log | log ξ|), O(| log ξ|), O(log2 | log ξ|), O(log | log ξ|),
and O(1). The O(1) term involves the periodic function Q∗. The analysis in section 4
suggests that there is an error term in (5.40) of the form [1 + O(1/| log ξ|)]. It may
thus be desirable to compute higher order terms for Φ, which would involve higher
order matchings (cf. section 3). Finally we note that Φ and all its derivatives vanish
as ξ → 0+. This completes the analysis of the left tail. To summarize, we have
treated the M and ξ scales, determined the leading term completely for the former,
and obtained partial results for the latter.
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Appendix A. We derive the series representation (2.30) for the periodic function
Q∗(z). By using the series representation (2.21) for ϑ1(·), comparing it to the infinite
product form of ϑ1(·), and also using Q(z) = e−πizcsc(πz)ep(z) we obtain

Q(z) =
2−z2/22−z/2

sin(πz)

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

(−1)m+12−m2/22m/22mz.(A.1)

This yields a third representation for Q(z), which supplements the two in (4.46). We
evaluate

Q∗(z) =
1√
2π

∫ ∞
−∞

e−s2/2Q

(
z +

is√
log 2

)
ds(A.2)

=
1√
2π

∫ ∞
−∞

e−y2/2e−i
√

log 2zy2z
2/2Q

(
iy√
log 2

)
dy,

where we have shifted the contour by setting s = i
√
log 2z + y. Using (A.1) in (A.2)

and exchanging the orders of integration and summation, we obtain

Q∗(z) =
1√
2π

[ ∞∏
�=1

(1− 2−�)−2

]
2z

2/2
∞∑

m=−∞
(−1)m+12−m2/22m/2(A.3)

×
∫ ∞
−∞
�

[
e−iy
√

log 2/2e−i
√

log 2zy2miy/
√

log 2

i sinh(πy/
√
log 2)

]
dy,

where � denotes the real part. From tables of integrals we have

∫ ∞
−∞

sin(Ax)

sinh(Bx)
dx =

π

B
tanh

(
πA

2B

)
.(A.4)

Applying (A.4) to (A.3) with B = π/
√
log 2 and A =

(
m− z − 1

2

)√
log 2, we get

Q∗(z) =
√
log 2√
2π

[ ∞∏
�=1

(1− 2−�)−2

]
2z

2/2(A.5)

×
∞∑

m=−∞
(−1)m+12−m2/22m/2 tanh

(
log 2

2

(
m− z − 1

2

))
.

By changing m → 1 −m, we see that Q∗(z) = Q∗(−z). We can thus write Q∗(z) =
1
2 [Q∗(z) +Q∗(−z)]. Then we use

tanh

[
log 2

2

(
m− z − 1

2

)]
+ tanh

[
log 2

2

(
m+ z − 1

2

)]

=
2(2m−1/2 − 2−m+1/2)

2m−1/2 + 2−m+1/2 + 2z + 2−z

with which (A.5) becomes the same as (2.30).

Appendix B. We obtain a series representation for Φ0(ξ), defined in (3.4). We
use the series form of Q(z) found in (A.1) and exchange the order of summation and
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integration. This yields

Φ0(ξ) = π ξ

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

2−m2/22m/2(−1)m+1(B.1)

× 1

2πi

∫ 5
2+i∞

5
2−i∞

2−s2ms2∆s

Γ(3− s) sin(πs)
ds,

where ∆ = − log2 ξ. In (3.4) the contour of integration is any vertical contour, but in
(B.1) we restrict to �(s) > 2. Using Γ(3− s) sin(πs) = π/Γ(s− 2) (cf. [1]) we see that
the integral in (B.1) has simple poles at s = 2−N, N ≥ 0 and hence

1

2πi

∫ 5
2+i∞

5
2−i∞

Γ(s− 2)2(m+∆−1)sds =

∞∑
N=0

(−1)N
N !

2(2−N)(m+∆−1)(B.2)

= 22m+2∆−2 exp(−2−m−∆+1).

Using (B.2) in (B.1) and noting that 22∆ = ξ−2 yields

Φ0(ξ) =
1

4ξ

[ ∞∏
�=1

(1− 2−�)−2

] ∞∑
m=−∞

(−1)m+12−m2/225m/2 exp(−2ξ2−m),(B.3)

which establishes (3.5). The choice �(s) > 2 was somewhat arbitrary. However, if we
choose any vertical contour, then the value of the integral in (B.2) will differ from
the right side of (B.2) by the residues at a finite number of poles. Each such residue
will be proportional to 2−Nm, but this term will vanish after we evaluate the sum
over m, in view of (3.6) and the comments below it. Thus, the final result for Φ0 is
independent of the contour chosen.
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Abstract. We consider the problem of maintaining persistent lists subject to concatenation and
to insertions and deletions at both ends. Updates to a persistent data structure are nondestructive—
each operation produces a new list incorporating the change, while keeping intact the list or lists
to which it applies. Although general techniques exist for making data structures persistent, these
techniques fail for structures that are subject to operations, such as catenation, that combine two
or more versions. In this paper we develop a simple implementation of persistent double-ended
queues (deques) with catenation that supports all deque operations in constant amortized time. Our
implementation is functional if we allow memoization.
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1. Introduction. Over the last fifteen years, there has been considerable devel-
opment of persistent data structures, those in which not only the current version but
also older ones are available for access (partial persistence) or updating (full persis-
tence). In particular, Driscoll et al. [5] developed efficient general methods to make
pointer-based data structures partially or fully persistent, and Dietz [3] developed an
efficient general method to make array-based structures fully persistent.

These general methods support updates that apply to a single version of a struc-
ture at a time, but they do not accommodate operations that combine two different
versions of a structure, such as set union or list catenation. Driscoll, Sleator, and
Tarjan [4] coined the term confluently persistent for fully persistent structures that
support such combining operations. An alternative way to obtain persistence is to
use purely functional programming. We take here an extremely strict view of pure
functionality: we disallow lazy evaluation, memoization, and other such techniques.
For list-based data structure design, purely functional programming amounts to us-
ing only the LISP functions cons, car, cdr. Purely functional data structures are
automatically persistent, and indeed confluently persistent.

A simple but important problem in data structure design that makes the issue of
confluent persistence concrete is that of implementing persistent double-ended queues
(deques) with catenation. A series of papers [2, 4] culminated in the work of Kaplan
and Tarjan [11, 10], who developed a confluently persistent implementation of deques
with catenation that has a worst-case constant time and space bound for any deque
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operation, including catenation. The Kaplan–Tarjan data structure and its precursors
obtain confluent persistence by being purely functional.

If all one cares about is persistence, purely functional programming is unnecessar-
ily restrictive. In particular, Okasaki [14, 15, 16] observed that the use of lazy evalua-
tion in combination with memoization can lead to efficient functional (but not purely
functional in our sense) data structures that are confluently persistent. In order to
analyze such structures, Okasaki developed a novel kind of debit-based amortization.
Using these techniques and weakening the time bound from worst-case to amortized,
he was able to considerably simplify the Kaplan–Tarjan data structure, in particular
to eliminate its complicated skeleton that encodes a tree extension of a redundant
digital numbering system.

In this paper we explore the problem of further simplifying the Kaplan–Tarjan
result. We obtain a confluently persistent implementation of deques with catena-
tion that has a constant amortized time bound per operation. Our structure is
substantially simpler than the original Kaplan–Tarjan structure, and even simpler
than Okasaki’s catenable deques: whereas Okasaki requires efficient persistent deques
without catenation as building blocks, our structure is entirely self-contained. Fur-
thermore our analysis uses a standard credit-based approach. We give two alternative,
but closely related implementations of our method. The first uses memoization. The
second, which saves a small constant factor in time and space, uses an extension of
memoization in which any expression can replace an equivalent expression.

The remainder of the paper consists of five sections. In section 2, we introduce
terminology and concepts. In section 3, we illustrate our approach by developing a
persistent implementation of deques without catenation. In section 4, we extend our
approach to handle stacks with catenation. In section 5, we develop our solution
for deques with catenation. We conclude in section 6 with some remarks and open
problems. An extended abstract of this work appeared in [9].

2. Preliminaries. The objects of our study are lists. As in [11, 10] we allow the
following operations on lists:

makelist(x): return a new list containing the single element x.
push(x, L): return a new list formed by adding element x to the

front of list L.
pop(L): return a pair whose first component is the first ele-

ment on list L and whose second component is a list
containing the second through last elements of L.

inject(L, x): return a new list formed by adding element x to the
back of list L.

eject(L): return a pair whose first component is a list contain-
ing all but the last element of L and whose second
component is the last element of L.

catenate(L,R): return a new list formed by catenating L and R,
with L first.

We seek implementations of these operations (or specific subsets of them) on
persistent lists: any operation is allowed on any previously constructed list or lists
at any time. For discussions of various forms of persistence, see [5]. A stack is a list
on which only push and pop are allowed. A queue is a list on which only inject
and pop are allowed. A steque (stack-ended queue) is a list on which only push,
pop, and inject are allowed. Finally, a deque (double-ended queue) is a list on which
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all four operations push, pop, inject, and eject are allowed. For any of these
four structures, we may or may not allow catenation. If catenation is allowed, push
and inject become redundant, since they are special cases of catenation, but it is
sometimes convenient to treat them as separate operations because they are easier to
implement than general catenation.

We say a data structure is purely functional if it can be built and manipulated
using the LISP functions car, cons, cdr. That is, the structure consists of a set
of immutable nodes, each either an atom or a node containing two pointers to other
nodes, with no cycles of pointers. The nodes we use to build our structures actually
contain a fixed number of fields; reducing our structures to two fields per node by
adding additional nodes is straightforward. Various nodes in our structure represent
lists.

To obtain our results, we extend pure functionality by allowing memoization,
in which a function is evaluated only once on a node; the second time the same
function is evaluated on the same node, the value is simply retrieved from the previous
computation. In all our constructions, there are only a constant number of memoized
functions (one or two). We can implement memoization by having a node point to
the results of applying each memoized function to it. Initially each such pointer is
undefined. The first function evaluation fills in the appropriate pointer to indicate the
result. Subsequent evaluations merely follow the pointer to the result, which takes
O(1) time.

We also consider the use of a more substantial extension of pure functionality,
in which we allow the operation of replacing a node in a structure by another node
representing the same list. Such a replacement can be performed in an imperative
setting by replacing all the fields in the node, for instance, in LISP by using replaca
and replacd. Replacement can be viewed as a generalization of memoization. In our
structures, any node is replaced at most twice, which means that all our structures
can be implemented in a write-once memory. (It is easy to convert an algorithm
that overwrites any field only a fixed constant number of times into a write-once
algorithm, with only a constant-factor loss of efficiency.) The use of overwriting
instead of memoization saves a small constant factor in running time and storage
space and slightly simplifies the amortized analysis.

To perform amortized analysis, we use a standard potential-based framework.
We assign to each configuration of the data structure (the totality of nodes currently
existing) a potential. We define the amortized cost of an operation to be its actual
cost plus the net increase in potential caused by performing the operation. In our
applications, the potential of an empty structure is zero and the potential is always
nonnegative. It follows that, for any sequence of operations starting with an empty
structure, the total actual cost of the operations is bounded above by the sum of
their amortized costs. See the survey paper [17] for a more complete discussion of
amortized analysis.

3. Noncatenable deques. In this section we describe an implementation of
persistent noncatenable deques with a constant amortized time bound per operation.
The structure is based on the analogous Kaplan–Tarjan structure [11, 10] but is
much simpler. The result presented here illustrates our technique for doing amortized
analysis of a persistent data structure. At the end of the section we comment on the
relation between the structure proposed here and previously existing solutions.

3.1. Representation. Here and in subsequent sections we say a data structure
is over a set A if it stores elements from A. Our representation is recursive. It
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is built from bounded-size deques called buffers, each containing at most three ele-
ments. Buffers are of two kinds: prefixes and suffixes. A nonempty deque d over A
is represented by an ordered triple consisting of a prefix over A, denoted by pr(d); a
(possibly empty) child deque of ordered pairs over A, denoted by c(d); and a suffix
over A, denoted by sf(d). Each pair consists of two elements from A. The child deque
c(d), if nonempty, is represented in the same way. We define the set of descendants
{ci(d)} of a deque d in the standard way—namely, c0(d) = d and ci+1(d) = c(ci(d)),
provided ci(d) and c(ci(d)) exist.

The order of elements in a deque is defined recursively to be the one consistent
with the order of each triple, each buffer, each pair, and each child deque. Thus, the
order of elements in a deque d is first the elements of pr(d), then the elements of each
pair in c(d), and finally the elements of sf(d).

In general the representation of a deque is not unique—the same sequence of
elements may be represented by triples that differ in the sizes of their prefixes and
suffixes, as well as in the contents and representations of their descendant deques.
Whenever we refer to a deque d we actually mean a particular representation of d,
one that will be clear from the context.

The pointer representation for this representation is the obvious one: a node
representing a deque d contains pointers to pr(d), c(d), and sf(d). Note that the
pointer structure of d is essentially a linked list of its descendants, since ci(d) contains
a pointer to ci+1(d), for each i.

3.2. Operations. Implementing the deque operations is straightforward, except
for maintaining the size bounds on buffers. Specifically, a push on a deque is easy
unless its prefix is of size three, a pop on a deque is easy unless its prefix is empty,
and symmetric statements hold for inject and eject. We deal with buffer overflow
and underflow in a proactive fashion, first fixing the buffer so that the operation to
be performed cannot violate its size bounds, and then actually doing the operation.
The details are as follows.

We define a buffer to be green if it contains one or two elements, and red if it
contains zero or three. We define two memoized functions on a deque: gp, which
constructs a representation of the same list but with a green prefix; and gs, which
constructs a representation of the same list with a green suffix. We only apply gp (gs,
respectively) to a list whose prefix (suffix) is red and can be made green. Specifically,
for gp, if the prefix is empty, the child deque must be nonempty, and symmetrically
for gs. Below we give implementations of push, pop, and gp; the implementations
for inject, eject, and gs are symmetric. We denote a deque with prefix p, child
deque c, and suffix s by [p, c, s]. As mentioned in section 2, we can implement the
memoization of gp and gs by having each node point to the nodes resulting from
applying gp and gs to it; initially, such pointers are undefined.

PUSH(x, d): If |pr(d)| = 3, let e = gp(d); otherwise, let e = d. Push x onto pr(e) to
form p′ and return [p′, c(e), sf(e)].

POP(d): If pr(d) is empty and c(d) is not, let e = gp(d); otherwise, let e = d. If pr(e)
is nonempty, let (x, p) = pop(pr(e)) and return the pair (x, [p, c(e), sf(e)]). Otherwise
(c(e) must be empty), let (x, s) = pop(sf(e)) and return the pair (x, [∅, ∅, s]).
GP(d): If |pr(d)| = 3, let x, y, z be the three elements in pr(d). Let p be a prefix
containing only x, and let c′ = push((y, z), c(d)). Return [p, c′, sf(d)]. Otherwise
(pr(d) is empty and c(d) is not), let ((x, y), c′) = pop(c(d)) and let p′ be a prefix
containing x followed by y. Return [p′, c′, sf(d)].
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3.3. Analysis. The amortized analysis of this method relies on the memoization
of gp and gs. We call a node representing a deque secondary if it is returned by a
call to gp or gs and primary otherwise. If a secondary node y is constructed by a call
gp(x) (gs(x), respectively), the only way to access y later is via another call gp(x)
(gs(x), respectively): no secondary node is returned as the result of a push, pop,
inject, or eject operation. This means that gp and gs are called only on primary
nodes.

We divide the nodes representing deques into three states: such a node is rr if
both its buffers are red, gr if exactly one of its buffers is red, and gg if both its buffers
are green. We subdivide the rr and gr states: an rr node is rr0 if neither gp nor gs
has been applied to it, rr1 if exactly one of gp and gs has been applied to it, and
rr2 if both gp and gs have been applied to it; a gr node is gr0 if neither gp nor gs
has been applied to it, and gr1 otherwise. By the discussion above, every secondary
node is gr0 or gg. We define #rr0, #rr1, and #gr0 to be the numbers of primary
nodes in states rr0, rr1, and gr0, respectively. We define the potential of a collection
of nodes representing deques to be 4#rr0 + 2#rr1 + #gr0.

A call to push is either terminal or results in a call to gp, which in turn calls
push. Similarly, a call to pop is either terminal or results in a call to gp, which in
turn calls pop. We charge the O(1) time spent in a call to gp (exclusive of the inner
call to push or pop) to the push or pop that calls gp. A call to push results in
a sequence of recursive calls to push (via calls to gp), of which the bottommost is
terminal and the rest are nonterminal. A nonterminal push has one of the following
effects: it converts a primary rr0 node to rr1 and creates a new primary gr0 node
(the result of the push) and a new secondary gr0 node (the result of the call to gp);
it converts a primary rr1 node to rr2 and creates a new primary gr0 node and a
new secondary gr0 node; or, it converts a primary gr0 node to gr1 and creates a new
primary gg node and a new secondary gg node. In each case the total potential drops
by one, paying for the time needed for the push (excluding the recursive call). A
terminal push takes O(1) time, creates O(1) new nodes, and increases the potential
by O(1). We conclude that push takes O(1) amortized time. Analogous arguments
apply to pop, inject, and eject, giving us the following theorem.

Theorem 3.1. Each of the operations push, pop, inject, and eject defined
above takes O(1) amortized time.

3.4. Implementation using overwriting. With the memoized implementa-
tion described above, a primary rr node can give rise to two secondary gr nodes
representing the same list; a primary gr node can give rise to a secondary gg node
representing the same list. These redundant representations exist simultanously. A
gr representation, however, dominates an rr representation for performing deque op-
erations, and a gg representation dominates a gr representation. This allows us to
improve the efficiency of the implementation by using overwriting in place of memo-
ization: when gp is called on a node, it overwrites the contents of the node with the
results of the gp computation, and similarly for gs. Then only one representation of
a list exists at any time, and it evolves from rr to gr to gg (via one of two alternative
paths, depending on whether gp or gs is called first). Each node now needs only
three fields (for prefix, child deque, and suffix) instead of five (two extra for gp and
gs).

Not only does the use of overwriting save a constant factor in running time and
storage space, but it also simplifies the amortized analysis, as follows. We define
#rr and #gr to be the number of nodes in states rr and gr, respectively. (There



970 HAIM KAPLAN, CHRIS OKASAKI, AND ROBERT E. TARJAN

are now no secondary nodes.) We define the potential of a collection of nodes to be
3#rr +#gr. A nonterminal push has one of the following effects: it converts an rr
node to gr and creates a new gr node, or converts a gr node to gg and creates a
new gg node. In either case it reduces the potential by one, paying for the O(1) time
required by the push (excluding the recursive call). A terminal push takes O(1) time
and can increase the potential by O(1). We conclude that push takes O(1) amortized
time. Similar arguments apply to pop, inject, and eject.

3.5. Related work. The structure just described is based on the Kaplan–Tarjan
structure of [10, section 4], but simplifies it in three ways. First, the skeleton of our
structure (the sequence of descendants) is a stack; in the Kaplan–Tarjan structure,
this skeleton must be partitioned into a stack of stacks in order to support worst-case
constant-time operations (via a redundant binary counting mechanism). Second, the
recursive changes to the structure to make its nodes green are one-sided, instead of
two-sided: in the original structure, the stack-of-stacks mechanism requires coordina-
tion to keep both sides of the structure in related states. Third, the maximum buffer
size is reduced, from five to three. In the special case of a steque, the maximum size
of the suffix can be further reduced to two. In the special case of a queue, both the
prefix and the suffix can be reduced to maximum size two.

There is an alternative, much older approach that uses incremental recopying
to obtain persistent deques with worst-case constant-time operations. See [7] for a
discussion of this approach. The incremental recopying approach yields an arguably
simpler structure than the one presented here, but our structure generalizes to al-
low catenation, which no one knows how to implement efficiently using incremental
recopying. Also, our structure can be extended to support access, insertion, and dele-
tion d positions away from the end of a list in O(log d) amortized time, by applying
the ideas in [12].

4. Catenable steques. In this section we show how to extend our ideas to
support catenation. Specifically, we describe a data structure for catenable steques
that achieves an O(1) amortized time bound for push, pop, inject, and catenate.
The data structure is based on the same recursive decomposition of lists as that in
section 5 of [10]. The pointer structure that we need here is much simpler than that
in [10], and the analysis is amortized, following the framework outlined in section 2
and used in section 3.

4.1. Representation. Our structure is similar to the structure of section 3, but
with slightly different definitions of the component parts. As in section 3, we use
buffers of two kinds: prefixes and suffixes. Each prefix contains two to six elements
and each suffix contains one to three elements. A nonempty steque d over A is
represented either by a suffix sf(d) only, or by an ordered triple consisting of a prefix
pr(d) over A, a child steque c(d) of pairs over A, and a suffix sf(d) over A. In contrast
to section 3, a pair over A is defined to be an ordered pair containing a prefix and a
possibly empty steque of pairs over A. Observe that this definition adds an additional
kind of recursion (pairs store steques) to the structure of section 3. This extra kind
of recursion is what allows efficient catenation.

The order of elements in a steque is the one consistent with the order of each
triple, each buffer, each pair, each steque within a pair, and each child steque. As in
section 3, there can be many different representations of a steque containing a given
list of elements; when speaking of a steque, we mean a particular representation of it.

The pointer structure for this representation is straightforward. Each triple is
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represented by a node containing three pointers: to a prefix, a child steque, and a
suffix. Each pair is represented by a node containing two pointers: to a prefix and a
steque.

4.2. Operations. The implementation of the steque operations is much like the
implementation of the noncatenable deque operations presented in section 3.2. We
call a prefix red if it contains either two or six elements, and green otherwise. We call a
suffix red if it contains three elements, and green otherwise. The prefix in a suffix-only
steque is considered to have the same color as the suffix. We define two memoized
functions, gp and gs, which produce green-prefix and green-suffix representations of
a steque, respectively. Each is called only when the corresponding buffer is red and
can be made green. We define push, pop, and inject to call gp or gs when necessary
to obtain a green buffer. In the definitions below, we represent a steque with prefix
p, child steque c, and suffix s by [p, c, s].

PUSH(x, d):
Case 1. Steque d is represented by a triple. If |pr(d)| = 6, then let e = gp(d);

otherwise, let e = d. Let p = push(x, pr(e)) and return [p, c(e), sf(e)].
Case 2. Steque d is represented by a suffix only. If |sf(d)| = 3, create a prefix p

containing x and the first two elements of sf(d), create a suffix s containing the last
element of sf(d), and return [p, ∅, s]. Otherwise, create a suffix s by pushing x onto
sf(d) and return [∅, ∅, s].
INJECT(d, x):

Case 1. Steque d is represented by a triple. If |sf(d)| = 3, let e = gs(d); otherwise,
let e = d. Let s = inject(sf(e), x) and return [pr(e), c(e), s].

Case 2: Steque d is represented by a suffix only. If |sf(d)| = 3, create a suffix s
containing x, and return [sf(d), ∅, s]. Otherwise, create a suffix s by injecting x into
sf(d) and return [∅, ∅, s].
CATENATE(d1, d2):

Case 1. d1 and d2 are represented by triples. First, catenate the buffers sf(d1)
and pr(d2) to obtain p. Now, calculate c′ as follows: If |p| ≤ 5, then let c′ =
inject(c(d1), (p, c(d2))). Otherwise, 6 ≤ |p| ≤ 9. Create two new prefixes p′ and
p′′, with p′ containing the first four elements of p and p′′ containing the remaining
elements. Let c′ = inject(inject(c(d1), (p

′, ∅)), (p′′, c(d2))). In either case, return
[pr(d1), c

′, sf(d2)].
Case 2. d1 or d2 is represented by a suffix only. Push or inject the elements of

the suffix-only steque one by one into the other steque.

Note that both push and catenate produce valid steques even when their second
arguments are steques with prefixes of length one. Although such steques are not
normally allowed, they may exist transiently during a pop. Every such steque is
immediately passed to push or catenate, and then discarded, however. In order to
define the pop, gp, and gs operations, we define a naive-pop operation that simply
pops its steque argument without making sure that the result is a valid steque.

NAIVE-POP(d): If d is represented by a triple, let (x, p) = pop(pr(d)) and return the
pair (x, [p, c(d), sf(d)]). If d consists of a suffix only, let (x, s) = pop(sf(d)) and return
the pair (x, ∅) if |d| = 1 or (x, [∅, ∅, s]) if |d| > 1.

POP(d):
Case 1. Steque d is represented by a suffix only or |pr(d)| > 2. Return naive-

pop(d).
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Case 2. Steque d is represented by a triple, |pr(d)| = 2, and c(d) = ∅. Let x be
the first element on pr(d) and y the second. If |sf(d)| < 3, push y onto sf(d) to form
s and return (x, [∅, ∅, s]). Otherwise (|sf(d)| = 3), form p from y and the first two
elements on sf(d), form s from the last element on sf(d), and return (x, [p, ∅, s]).

Case 3. Steque d is represented by a triple, |pr(d)| = 2, and c(d) �= ∅. Return
naive-pop(gp(d)).

GP(d): If |pr(d)| = 6, then create two new prefixes p and p′ by splitting pr(d) equally
in two. Let c′ = push((p′, ∅), c(d)). Return [p, c′, sf(d)]. Otherwise (|pr(d)| = 2 and
c(d) �= ∅), proceed as follows. Inspect the first pair (p, d′) in c(d). If |p| ≥ 4 or d′ is
not empty, let ((p, d′), c′) = naive-pop(c(d)); otherwise, let ((p, d′), c′) = pop(c(d)).
Now inspect p.

Case 1. p contains at least four elements. Pop the first two elements from p to form
p′′ and inject these two elements into pr(d) to obtain p′. Let c′′ = push((p′′, d′), c′).
Return [p′, c′′, sf(d)].

Case 2. p contains at most three elements. Push the two elements in pr(d) onto
p to obtain p′. Let c′′ = catenate(d′, c′) if d′ is nonempty, or c′′ = c′ if d′ is empty.
Return [p′, c′′, sf(d)].

GS(d): (Steque d is represented by a triple with |sf(d)| = 3) Let p contain the first
two elements of sf(d) and s the last element on sf(d). Let c′ = inject(c(d), (p, ∅)).
Return [pr(d), c′, s].

4.3. Analysis. The analysis of this method is similar to the analysis in section
3.3. We define primary and secondary nodes, node states, and the potential function
exactly as in section 3.3: the potential function defined there is 4#rr0+2#rr1+#gr0,
where #rr0, #rr1, and #gr0 are the numbers of primary nodes in states rr0, rr1,
and gr0, respectively.

As in section 3.3, we charge the O(1) cost of a call to gp or gs (excluding the
cost of any recursive call to push, pop, or inject) to the push, pop, or inject that
calls gp or gs. The amortized costs of push and inject are O(1) by an argument
identical to that used to analyze push in section 3.3. Operation catenate calls push
and inject a constant number of times and creates a single new node, so its amortized
cost is also O(1).

To analyze pop, assume that a call to pop recurs to depth k (via intervening calls
to gp). By an argument analogous to that for push, each of the first k− 1 calls pays
for itself by decreasing the potential by one. The terminal call to pop can result in a
call to either push or catenate, each of which has O(1) amortized cost. It follows
that the overall amortized cost of pop is O(1), giving us the following theorem.

Theorem 4.1. Each of the operations push, pop, inject, and catenate defined
above takes O(1) amortized time.

We can improve the time and space efficiency of the steque data structure by
constant factors by using overwriting in place of memoization, exactly as described in
section 3.4. If we do this, we can also simplify the amortized analysis, again exactly
as described in section 3.4.

4.4. Related work. The structure presented in this section is analogous to the
Kaplan–Tarjan structure of [10, section 5] and the structure of [8, section 7], but
simplifies them as follows. First, the buffers are of constant-bounded size, whereas
the structure of [10, section 5] uses noncatenable steques as buffers, and the structure
of [8, section 7] uses noncatenable stacks as buffers. These buffers in turn must
be represented as in section 3 of this paper or by using one of the other methods
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mentioned there. In contrast, the structure of the present section is entirely self-
contained. Second, the skeleton of the present structure is just a stack, instead of
a stack of stacks as in [10] and [8]. Third, the changes used to make buffers green
are applied in a one-sided, need-driven way; in [10] and [8], repairs must be made
simultaneously to both sides of the structure in carefully chosen locations.

Okasaki [14] has devised a different and somewhat simpler implementation of
confluently persistent catenable steques that also achieves an O(1) amortized bound
per operation. His solution obtains its efficiency by (implicitly) using a form of path
reversal [18] in addition to lazy evaluation and memoization. Our structure extends to
the double-ended case, as we shall see in the next section; whether Okasaki’s structure
extends to this case is an open problem.

5. Catenable deques. In this section we show how to extend our ideas to
support all five list operations. Specifically, we describe a data structure for catenable
deques that achieves an O(1) amortized time bound for push, pop, inject, eject,
and catenate. Our structure is based upon an analogous structure of Okasaki [16],
but simplified to use constant-size buffers.

5.1. Representation. We use three kinds of buffers: prefixes, middles, and
suffixes. A nonempty deque d over A is represented either by a suffix sf(d) or by a
5-tuple that consists of a prefix pr(d), a left deque of triples ld(d), a middle md(d),
a right deque of triples rd(d), and a suffix sf(d). A triple consists of a first middle
buffer , a deque of triples, and a last middle buffer. One of the two middle buffers
in a triple must be nonempty, and in a triple that contains a nonempty deque both
middles must be nonempty. All buffers and triples are over A. A prefix or suffix in a
5-tuple contains three to six elements, a suffix in a suffix-only representation contains
one to eight elements, a middle in a 5-tuple contains exactly two elements, and a
nonempty middle buffer in a triple contains two or three elements.

The order of elements in a deque is the one consistent with the order of each
5-tuple, each buffer, each triple, and each recursive deque. The pointer structure is
again straightforward, with the nodes representing 5-tuples or triples containing one
pointer for each field.

5.2. Operations. We call a prefix or suffix in a 5-tuple red if it contains either
three or six elements and green otherwise. We call a suffix in a suffix-only representa-
tion red if it contains eight elements and green otherwise. The prefix of a suffix-only
deque is considered to have the same color as the suffix. We introduce two memoiz-
ing functions gp and gs as in sections 3.2 and 4.2, which produce green-prefix and
green-suffix representations of a deque, respectively, and which are called only when
the corresponding buffer is red but can be made green. Below we give the implemen-
tations of push, pop, gp, and catenate; the implementations of inject, eject, and
gs are symmetric to those of push, pop, and gp, respectively. We denote a deque
with prefix p, left deque l, middle m, right deque r, and suffix s by [p, l,m, r, s].

PUSH(x, d):
Case 1. Deque d is represented by a 5-tuple. If |pr(d)| = 6, then let e = gp(d);

otherwise, let e = d. Return [push(x, pr(e)), ld(e),md(e), rd(e), sf(e)].
Case 2. Deque d is represented by a suffix only. If sf(d) < 8, return a suffix-only

deque with suffix push(x, sf(d)). Otherwise, push x onto sf(d) to form s, with nine
elements. Create a new prefix p with the first four, a middle with the next two, and
a suffix s with the last three. Return [p, ∅,m, ∅, s].

As in section 4.2, the implementation of pop uses naive-pop.
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POP(d):

Case 1. Deque d is represented by a suffix only or |pr(d)| > 3. Return naive-pop(d).

Case 2. |pr(d)| = 3 and ld(d) ∪ rd(d) �= ∅. Return naive-pop(gp(d)).
Case 3. |pr(d)| = 3 and ld(d) ∪ rd(d) = ∅. Let x be the first element on pr(d). If

|sf(d)| = 3, create a new suffix s containing all the elements in pr(d), md(d), and sf(d)
except x, and return the pair consisting of x and the deque represented by s only.
Otherwise, form p from pr(d) by popping x and injecting the first element on md(d),
form m′ from md(d) by popping the first element and injecting the first element on
sf(d), form s from sf(d) by popping the first element, and return (x, [p, ∅,m′, ∅, s]).

GP(d): If |pr(d)| = 6, create two new prefixes p and p′, with p containing the first four
elements of |pr(d)| and p′ the last two; return [p,push((p′, ∅, ∅), ld(d)),md(d), rd(d),
sf(d)]. Otherwise (|pr(d)| = 3 and ld(d) ∪ rd(d) �= ∅); proceed as follows.

Case 1. ld(d) �= ∅. Inspect the first triple t on ld(d). If either the first nonempty
middle buffer in t contains three elements or t contains a nonempty deque, let (t, l) =
naive-pop(ld(d)); otherwise let (t, l) = pop(ld(d)). Let t = (x, d′, y) and assume that
x is nonempty if t consists of only one nonempty middle buffer. Apply the appropriate
one of the following two subcases.

Case 1.1. |x| = 3. Form x′ from x and p from pr(d) by popping the first element
from x and injecting it into pr(d). Return [p,push((x′, d′, y), l),md(d), rd(d),
sf(d)].
Case 1.2. |x| = 2. Inject both elements in x into pr(d) to form p. If d′ and y
are empty, return [p, l,md(d), rd(d), sf(d)]. Otherwise (d′ and y are nonempty)
let l′ = catenate(d′,push((y, ∅, ∅), l)) and return [p, l′,md(d), rd(d), sf(d)].

Case 2. ld(d) = ∅ and rd(d) �= ∅. Inspect the first triple t in rd(d). If either the first
nonempty middle buffer in t contains three elements or t contains a nonempty deque,
let (t, r) = naive-pop(rd(d)); otherwise, let (t, r) = pop(rd(d)). Let t = (x, d′, y) and
assume that x is nonempty if t consists of only one nonempty middle buffer. Of the
following two subcases, apply the appropriate one.

Case 2.1. |x| = 3. Form p, m′, and x′ from pr(d), m, and x by popping an
element from m and injecting it into pr(d) to form p, popping an element from
m and injecting the first element from x to form m′, and popping the first
element from x to form x′. Return [p, ∅,m′,push((x′, d′, y), r), sf(d)].
Case 2.2. |x| = 2. Inject the two elements in md(d) into pr(d) to form p. Let
r′ = r if d′ and y are empty or r′ = catenate(d′,push((y, ∅, ∅), r)) otherwise.
Return [p, ∅, x, r′, sf(d)].

CATENATE(d1, d2):

Case 1. Both d1 and d2 are represented by 5-tuples. Let y be the first element in
pr(d2), and let x be the last element in sf(d1). Create a new middle m containing x
followed by y. Partition the elements in sf(d1)− {x} into at most two buffers s′1 and
s′′1 , each containing two or three elements in order, with s′′1 possibly empty. Let ld′1 =
inject(ld(d1), (md(d1), rd(d1), s

′
1)). If s′′1 �= ∅, then let ld′′1 = inject(ld′1, (s

′′
1 , ∅, ∅));

otherwise, let ld′′1 = ld′1. Similarly, partition the elements in pr(d1) − {y} into at
most two prefixes p′2 and p′′2 , each containing two or three elements in order, with
p′2 possibly empty. Let rd′2 = push((p′′2 , ld(d2),md(d2)), rd(d2)). If p′2 �= ∅ let rd′′2 =
push((p′2, ∅, ∅), rd′2); otherwise, let rd′′2 = rd′2. Return [pr(d1), ld

′′
1 ,m, rd

′′
2 , sf(d2)].

Case 2. d1 or d2 is represented by a suffix only. Push or inject the elements of
the suffix-only deque one by one into the other deque.
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5.3. Analysis. To analyze this structure, we use the same definitions and the
same potential function as in sections 3.3 and 4.3. The amortized costs of push,
inject, catenate, and pop are O(1) by an argument analogous to that in section
4.3. The amortized cost of eject is O(1) by an argument symmetric to that for pop.
Thus we obtain the following theorem.

Theorem 5.1. Each of the operations push, pop, inject, eject, and catenate
defined above takes O(1) amortized time.

Just as in sections 3.4 and 4.3, we can improve the time and space constant factors
and simplify the analysis by using overwriting in place of memoization. Overwriting is
the preferred implementation, unless one is using a functional programming language
that supports memoization but does not easily allow overwriting.

5.4. Related work. The structure presented in this section is analogous to the
structures of [16, Chapter 11] and [8, section 9] but simplifies them as follows. First,
the buffers are of constant size, whereas in [16] and [8] they are noncatenable deques.
Second, the skeleton of the present structure is a binary tree, instead of a tree extension
of a redundant digital numbering system, as in [8]. Also, our amortized analysis uses
the standard potential function method of [17] rather than the more complicated debit
mechanism used in [16]. Another related structure is that of [10, section 5], which
represents purely functional, real-time deques as pairs of triples rather than 5-tuples,
but otherwise is similar to (but simpler than) the structure of [8, section 9]. It is
straightforward to modify the structure presented here to use pairs of triples rather
than 5-tuples.

6. Further results and open questions. If the universe A of elements over
which deques are constructed has a total order, we can extend the structures described
here to support an additional heap order based on the order on A. Specifically, we
can support the additional operation of finding the minimum element in a deque (but
not deleting it) while preserving a constant amortized time bound for every operation,
including finding the minimum. We merely have to store with each buffer, each deque,
and each pair or triple the minimum element in it. For related work, see [1, 2, 6, 13].

We can also support a flip operation on deques. A flip operation reverses the
linear order of the elements in the deque: the ith from the front becomes the ith from
the back, and vice versa. For the noncatenable deques of section 3, we implement flip
by maintaining a reversal bit that is flipped by a flip operation. If the reversal bit
is set, a push becomes an inject, a pop becomes an eject, an inject becomes a push,
and an eject becomes a pop. To support catenation as well as flip we use reversal bits
at all levels. We must also symmetrize the definition in section 5 to allow a deque
to be represented by a prefix only and extend the various operations to handle this
possibility. The interpretation of reversal bits is cumulative. That is, if d is a deque
and x is a deque inside of d, x is regarded as being reversed if an odd number of
reversal bits are set to 1 along the path of actual pointers in the structure from the
node for d to the node for x. Before performing catenation, if the reversal bit of
either or both of the two deques is 1, we push such bits down by flipping such a bit
of a deque x to 0, flipping the bits of all the deques to which x points, and swapping
the appropriate buffers and deques. (The prefix and suffix exchange roles, as do the
left deque and right deque; the order of elements in the prefix and suffix is reversed
as well.) We do such push-downs of reversal bits by assembling new deques, not by
overwriting the old ones.

We have devised an alternative implementation of catenable deques in which the
sizes of the prefixes and suffixes are between 3 and 5 instead of 3 and 6. We do this by
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memoizing the pop and eject operations and avoiding creating a new structure with
a green prefix (suffix, respectively) representing the original deque when performing
pop (eject, respectively). Using a more complicated potential function than the
ones used in earlier sections, we can show that such an implementation runs in O(1)
amortized time per operation.

One direction for future research is to find a way to simplify our structures fur-
ther. Specifically, consider the following alternative representation of catenable de-
ques, which uses a single recursive subdeque rather than two such subdeques. A
nonempty deque d over A is represented by a triple that consists of a prefix pr(d), a
(possibly empty) child deque of triples c(d), and a suffix sf(d). A triple consists of a
nonempty prefix , a deque of triples, and a nonempty suffix, or just of a nonempty pre-
fix or suffix. All buffers and triples are over A. The operations push, pop, inject, and
eject have implementations similar to their implementations in section 5. The major
difference is in the implementation of catenate, which for this structure requires a
call to pop. Specifically, let d1 and d2 be two deques to be catenated. catenate
pops c(d1) to obtain a triple (p, d′, s) and a new deque c, injects (s, c, sf(d1)) into d′

to obtain d′′, and then pushes (p, d′′, pr(d2)) onto c(d2) to obtain c′. The final result
has prefix pr(d1), child deque c′, and suffix sf(d2). It is an open question whether this
algorithm runs in constant amortized time per operation for any constant upper and
lower bounds on the buffer sizes.

Another research direction is to design a confluently persistent representation of
sorted lists such that accesses or updates d positions from either end take O(log d)
time, and catenation takes O(1) time. The best structure so far developed for this
problem has a doubly logarithmic catenation time [12]; it is purely functional, and
the time bounds are worst-case.

Acknowledgments. We thank Michael Goldwasser for a detailed reading of
this paper and Jason Hartline for discussions that led to our implementations using
memoization.
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Abstract. There are several results available in the literature dealing with efficient construction
of t-spanners for a given set S of n points in R

d. t-spanners are Euclidean graphs in which distances
between vertices in G are at most t times the Euclidean distances between them; in other words,
distances in G are “stretched” by a factor of at most t. We consider the interesting dual problem:
given a Euclidean graph G whose vertex set corresponds to the set S, compute the stretch factor of
G, i.e., the maximum ratio between distances in G and the corresponding Euclidean distances. It
can trivially be solved by solving the all-pairs-shortest-path problem. However, if an approximation
to the stretch factor is sufficient, then we show it can be efficiently computed by making only O(n)
approximate shortest path queries in the graph G. We apply this surprising result to obtain efficient
algorithms for approximating the stretch factor of Euclidean graphs such as paths, cycles, trees,
planar graphs, and general graphs. The main idea behind the algorithm is to use Callahan and
Kosaraju’s well-separated pair decomposition.

Key words. computational geometry, spanners, approximate shortest paths, well-separated
pairs
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1. Introduction. Let S be a set of n points in R
d, where d ≥ 1 is a small

constant, and let G be an undirected connected graph having the points of S as its
vertices. The length of any edge (p, q) of G is defined as the Euclidean distance |pq|
between the two vertices p and q. Such graphs are called Euclidean graphs. The length
of a path in G is defined as the sum of the lengths of all edges on this path. For any
two vertices p and q of G, we denote by |pq|G the distance in G between them, i.e.,
the length of a shortest path connecting p and q.

Let t > 1 be a real number. We say that G is a t-spanner for S if for each pair of
points p, q ∈ S, we have |pq|G ≤ t · |pq|, i.e., there exists a path in G between p and q
of length at most t times the Euclidean distance between these two points.

The smallest t such that G is a t-spanner for S is called the stretch factor of G
(also referred to as dilation [21] or distortion [19] in the literature). We will denote
the stretch factor by t∗. Note that

t∗ = max

{ |pq|G
|pq| : p, q ∈ S, p �= q

}
.

Most of the earlier research considered the problem of constructing or analyzing
geometric t-spanners for a given set of points. In this paper, we consider the interesting
dual problem, stated as follows.
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C
M

Fig. 1. A section of the Scandinavian rail network; C denotes Copenhagen and M denotes Malmö.

Problem. Given a set S of n points in R
d, and a connected Euclidean graph with

vertices from S, design an efficient algorithm to compute (exactly or approximately)
its stretch factor.

Spanners have applications in network design, robotics, distributed algorithms,
and many other areas and have been the subject of considerable research [1, 4, 8, 11,
14, 18, 24]. More recently, spanners have received a lot of attention by researchers with
the discovery of new applications for them in the design of approximation algorithms
for geometric optimization problems such as the Euclidean traveling salesperson prob-
lem [3, 23].

If the graph represents, say, a network of highways, then the stretch factor is a
measure of the maximum percentage increase in driving distance for using the network
of highways over the direct “as-the-crow-flies” distance. Thus the stretch factor of a
network is an important parameter to be considered when evaluating and analyzing
networks. Furthermore, determining the two vertices in the network for which this
increase is maximized helps to identify the “weakest” part of the network in terms of
distances.

Figure 1 shows a section of the Scandinavian rail network. It is clear that the
stretch factor in this network is determined by Copenhagen (marked C) and Malmö
(marked M). A link between these two cities would drastically reduce the stretch
factor.1

Let G = (S,E) be a Euclidean graph and let n := |S| and m := |E|. Clearly,
the time complexity of solving the all-pairs-shortest-path problem for G is an upper
bound on the time complexity of computing the stretch factor of G. Hence, running
Dijkstra’s algorithm—implemented with Fibonacci heaps—from each vertex ofG gives
the stretch factor of G in O(n2 log n+nm) time (cf. [10]). For some classes of graphs,
better running times can be obtained. For example, if G is a planar Euclidean graph,
Frederickson [15] has shown that the distances in G between all pairs of vertices can

1A 16-kilometer bridge across the Øresund connecting the two cities is currently being built.
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be computed in O(n2) total time. Therefore, the stretch factor of a planar Euclidean
graph can be computed in O(n2) time.

We are not aware of any algorithms that compute the stretch factor in sub-
quadratic time for any class of connected Euclidean graphs. (Exceptions are trivial
classes of graphs, such as complete graphs, which have stretch factor one.) For exam-
ple, we do not even know if the stretch factor of a Euclidean path can be computed
in o(n2) time. This leads to the question whether there are faster algorithms that
approximate stretch factors.

Let G be a connected Euclidean graph with stretch factor t∗, and let c1 ≥ 1,
c2 ≥ 1, and t ≥ 1 be real numbers. We say that t is a (c1, c2)-approximate stretch
factor of G if

1

c1
t ≤ t∗ ≤ c2t.

1.1. Our results. The results of this paper are as follows.
1. Using the well-separated pair decomposition of Callahan and Kosaraju [7],
we reduce the problem of approximating the stretch factor of any Euclidean
graph G to a sequence of O(n) approximate shortest path queries in G.

2. We prove that, in the algebraic computation tree model, any algorithm that
takes as input any connected Euclidean graph G with n vertices and computes
an approximation to the stretch factor of G takes Ω(n log n) time in the worst
case.

3. For any real constant ε > 0, we can compute in O(n log n) time a (1, 1 +
ε)-approximate stretch factor of any Euclidean path, cycle, or tree with n
vertices. By the previous result, this is optimal in the algebraic computation
tree model.

4. For any real constant ε > 0, we can compute in O(n
√
n ) time a (1, 1 + ε)-

approximate stretch factor of any planar Euclidean graph with n vertices.
5. For any integer constant β ≥ 1 and real constant ε > 0, we can compute in

O(mn1/β log2 n) expected time a (2β(1+ ε), 1+ ε)-approximate stretch factor
of any Euclidean graph with n vertices and m edges.

In our first algorithm (Algorithm A), the stretch factor is approximated by mak-
ing farthest pair queries on O(n) pairs of sets of points. Except for graphs such as
paths, cycles, trees, and planar graphs, it is not clear how such queries can be solved
efficiently. Our second algorithm (Algorithm B) is much simpler; it makes shortest
path queries for O(n) specific pairs of points. The time complexity of Algorithm B is
consequently improved over the corresponding one for Algorithm A.

It is interesting that O(n) approximate shortest path queries are sufficient to
approximate the stretch factor. It is also interesting to note the pairs of points on
which these O(n) shortest path queries are made. In Algorithm B, these linear number
of queries depend only on the positions of the vertices; they do not depend on the
edges of the graph G. Finally, our algorithms also determine two vertices for which
the stretch factor is approximately maximized.

1.2. Related work. As mentioned already, our reduction uses the well-separated
pair decomposition of [7], thus adding to the list of applications of this powerful
method. For other applications of this decomposition, see [4, 6, 7].

Some related research in the general direction of approximating stretch factors
include papers by Dobkin, Friedman, and Supowit [12] and Keil and Gutwin [17],
which showed that the Delaunay triangulation has a stretch factor bounded by a
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Fig. 2. Two planar point sets A and B that are well separated with respect to s. Both circles
have radius ρ; their distance is at least sρ.

small constant, and a paper by Eppstein [13], which showed that a certain class of
Euclidean graphs (called beta-skeletons) can have arbitrarily large stretch factors.
Note that these papers analyze the largest possible stretch factor of any Delaunay
triangulation or beta-skeleton. For example, Keil and Gutwin showed that for any
finite set of points in the plane, the stretch factor of its Delaunay triangulation is
bounded from above by 2π

3 cosπ/6 . Clearly, for some sets of points, the stretch factor

can be much smaller. The current paper represents the first attempt at devising
algorithms to efficiently approximate the stretch factor of a given Euclidean graph.

2. Well-separated pairs. Our algorithms use the well-separated pair decompo-
sition devised by Callahan and Kosaraju [7]. We briefly review this decomposition
and some of its relevant properties.

Definition 1. Let s > 0 be a real number, and let A and B be two finite sets
of points in R

d. We say that A and B are well separated with respect to s if there
are two disjoint d-dimensional balls CA and CB, having the same radius, such that
(i) CA contains all points of A, (ii) CB contains all points of B, and (iii) the distance
between CA and CB is at least equal to s times the radius of CA.

See Figure 2 for an illustration. In this paper, s will always be a constant, called
the separation constant. The following lemma follows easily from Definition 1.

Lemma 2. Let A and B be two finite sets of points that are well separated with
respect to s, let a and p be points of A, and let b and q be points of B. Then

1. |ab| ≤ (1 + 4/s)|pq|,
2. |pa| ≤ (2/s)|pq|.
Definition 3 (see [7]). Let S be a set of n points in R

d and s > 0 a real number.
A well-separated pair decomposition (WSPD) for S (with respect to s) is a sequence
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General Algorithm A
The algorithm takes as input a Euclidean graph G on a set S of points in R

d and
a real constant ε > 0.
Step 1: Using separation constant s = 4/ε, compute a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}
for the set S.
Step 2: For each i, 1 ≤ i ≤ k, compute two points ai and bi, where ai ∈ Ai and
bi ∈ Bi, such that

|aibi|G = max{|pq|G : p ∈ Ai, q ∈ Bi},
and compute ti := |aibi|G/|aibi|.
Step 3: Report the value of t, defined as t := max(t1, t2, . . . , tk). Also report
points ai and bi for which t = ti.

Fig. 3. The first general algorithm for approximating the stretch factor of a Euclidean graph.

of pairs of nonempty subsets of S,

{A1, B1}, {A2, B2}, . . . , {Ak, Bk},
such that

1. Ai ∩Bi = ∅ for all i = 1, 2, . . . , k,
2. for any two distinct points p and q of S, there is exactly one pair {Ai, Bi} in

the sequence, such that
(a) p ∈ Ai and q ∈ Bi, or
(b) p ∈ Bi and q ∈ Ai,

3. Ai and Bi are well separated with respect to s for all i = 1, 2, . . . , k.
The integer k is called the size of the WSPD.

Callahan and Kosaraju showed how such a WSPD of size k = O(n) can be
computed using a binary tree, called the fair split tree.

Theorem 4 (see [7]). Let S be a set of n points in R
d and s > 0 a separation

constant. In O(n log n+ αdsn) time, we can compute a WSPD for S of size at most
αdsn. The constant in the Big-Oh bound does not depend on s. Moreover, for a large
separation constant s, the value of αds is proportional to 2

ddd/2sd.

3. The first general algorithm. Let S be a set of n points in R
d, and let G

be a connected Euclidean graph having the points of S as its vertices. Recall that the
stretch factor t∗ of G is equal to

t∗ = max

{ |pq|G
|pq| : p, q ∈ S, p �= q

}
.

Consider a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}
for S. It follows from Lemma 2 that all Euclidean distances between a point of Ai
and a point of Bi are roughly equal. Hence, if we compute for each i, 1 ≤ i ≤ k, a
point ai ∈ Ai and a point bi ∈ Bi whose distance |aibi|G in G is maximum, then the
largest value of |aibi|G/|aibi| should be a good approximation to the stretch factor t∗
of G. This observation leads to our first general algorithm, which we denote by A.
See Figure 3. The following lemma proves the correctness of Algorithm A.

Lemma 5. The value of t reported by Algorithm A is a (1, 1 + ε)-approximate
stretch factor of G.
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Proof. Let t∗ be the stretch factor of the graph G. We have to show that t ≤
t∗ ≤ (1+ ε)t. Since t can be written as |pq|G/|pq| for some points p and q in S, p �= q,
it is clear that t ≤ t∗.

To prove the second inequality, let x and y be two points of S such that t∗ =
|xy|G/|xy|. Let i be the (unique) index such that (i) x ∈ Ai and y ∈ Bi or (ii) x ∈ Bi
and y ∈ Ai. Assume without loss of generality (w.l.o.g.) that (i) holds.

Consider the points ai ∈ Ai and bi ∈ Bi that were chosen in Step 2 of the
algorithm. Clearly, |xy|G ≤ |aibi|G. By Lemma 2, we have |aibi| ≤ (1 + 4/s)|xy| =
(1 + ε)|xy|. This gives

t∗ =
|xy|G
|xy| ≤

|aibi|G
|xy| ≤ (1 + ε)

|aibi|G
|aibi| = (1 + ε)ti ≤ (1 + ε)t.

This completes the proof.

4. An improved algorithm. The main problem with the general Algorithm A
presented in the previous section is that Step 2 is hard to implement efficiently. In
a preliminary version of this paper [20], we showed that Algorithm A can be used to
compute a (1, 1 + ε)-approximation to the stretch factor of Euclidean paths, cycles,
and trees in O(n log n), O(n log n), and O(n log2 n) time, respectively. Using results
from Arikati et al. [2], we were able to design an O(n5/3polylog(n))-time algorithm for
computing a (2, 1+ε)-approximation to the stretch factor of planar Euclidean graphs.

In this section, we give a much simpler approximation algorithm. Recall that in
Algorithm A we compute for each pair {Ai, Bi} in a WSPD for S, a point ai ∈ Ai and
a point bi ∈ Bi for which |aibi|G is maximum, and we use |aibi|G/|aibi| as a candidate
for the approximate stretch factor. Below, we prove that we can take arbitrary points
ai ∈ Ai and bi ∈ Bi and use |aibi|G/|aibi|, or an approximation to this quantity, as
a candidate. Note that this is counterintuitive because the distances in the graph G
between points of Ai and points of Bi can vary greatly.

Hence, the problem of approximating the stretch factor of a Euclidean graph
can be reduced to the problem of making O(n) (approximate) shortest path query
computations. Shortest path query computations can, in general, be implemented
more efficiently than the farthest pair (between sets of vertices) computations that
were required when implementing Algorithm A.

This improved algorithm, which we denote by B, will be given in section 4.1 below.
In section 5, we show that Algorithm B achieves, in subquadratic time, comparable
approximation ratios for various classes of Euclidean graphs, as compared to Algo-
rithm A.

4.1. The reduction. Let p and q be two distinct vertices of a connected Eu-
clidean graph G, and let c ≥ 1 be a real number. We say that the real number L(p, q)
is a c-approximation to the length of a shortest path in G between p and q if

|pq|G ≤ L(p, q) ≤ c · |pq|G.

Let G be a class of connected Euclidean graphs. We assume that we are given
an algorithm ASPc that takes as input (i) any graph G from the class G and (ii) any
sequence of pairs of vertices of G; the algorithm ASPc computes a c-approximation to
|ab|G for each pair (a, b) in this sequence.

Algorithm B is given in Figure 4. The following theorem bounds the performance
ratio of the output of Algorithm B.
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Improved Algorithm B
The algorithm takes as input a Euclidean graph G from the class G, on a set S
of points in R

d, and a real constant ε > 0.
Step 1: Using separation constant s = 4(1 + ε)/ε, compute a WSPD

{A1, B1}, {A2, B2}, . . . , {Ak, Bk}
for S. For each i, 1 ≤ i ≤ k, take an arbitrary point ai ∈ Ai, and an arbitrary
point bi ∈ Bi.
Step 2: Use algorithm ASPc to compute, for each i, 1 ≤ i ≤ k, a c-approximation
L(ai, bi) to the length |aibi|G of a shortest path in G between ai and bi. For each
i, 1 ≤ i ≤ k, let

ti :=
L(ai, bi)

|aibi|
.

Step 3: Report the value of t, defined as t := max(t1, t2, . . . , tk). Also report
points ai and bi for which t = ti.

Fig. 4. The improved algorithm for approximating the stretch factor of a Euclidean graph.

Theorem 6. Let G be a Euclidean graph from the class G on a set S of points in
R
d, let t∗ be the stretch factor of G, and let t be the value that is reported by Algorithm
B. Then

1

c
t ≤ t∗ ≤ (1 + ε)2t,

i.e., t is a (c, (1 + ε)2)-approximate stretch factor of G.
Proof. Let i be the index such that t = ti = L(ai, bi)/|aibi|. Then

t ≤ c
|aibi|G
|aibi| ≤ ct∗.

In the rest of the proof, we will prove the second inequality. To be more precise, we
will show that for all points p, q ∈ S, p �= q,

|pq|G
|pq| ≤ (1 + ε)2t.

This will prove that t∗ ≤ (1 + ε)2t.
The proof is by induction on the rank of the distance |pq| in the sorted sequence of(

n
2

)
distances in S. To start the induction, assume that p, q is a closest pair in S. Let i

be the index such that (i) p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai. Assume w.l.o.g.
that (i) holds. Since s > 2, it follows from Lemma 2 that Ai = {p} and Bi = {q}.
Hence, in Step 2 of the algorithm, we have computed the value ti = L(p, q)/|pq|. It
follows that

|pq|G
|pq| ≤

L(p, q)

|pq| = ti ≤ t < (1 + ε)2t.

Now assume that p, q is not a closest pair in S and, moreover, assume that
|xy|G/|xy| ≤ (1 + ε)2t for all pairs x, y of points of S such that x �= y and |xy| < |pq|.
Let i be the index such that (i) p ∈ Ai and q ∈ Bi or (ii) p ∈ Bi and q ∈ Ai. Again,
assume w.l.o.g. that (i) holds. Consider the point ai ∈ Ai and the point bi ∈ Bi that
were chosen in Step 2 of the algorithm. By the triangle inequality, we have

|pq|G ≤ |pai|G + |aibi|G + |biq|G.(4.1)
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We distinguish three cases, depending on whether |pai|G and |biq|G are smaller or
larger than (ε/2)|aibi|G, respectively.

Case 1. |pai|G > (ε/2)|aibi|G and |biq|G > (ε/2)|aibi|G.
First note that p �= ai, because |pai|G > 0. We may assume w.l.o.g. that |biq|G ≤

|pai|G. It follows from (4.1) that

|pq|G <
2(1 + ε)

ε
|pai|G.

Since s = 4(1 + ε)/ε, Lemma 2 implies that |pai| ≤ ε
2(1+ε) |pq|. Therefore,

|pq|G
|pq| <

2(1 + ε)

ε

|pai|G
|pq| ≤

|pai|G
|pai| .

Since |pai| < |pq|, the induction hypothesis implies that
|pq|G
|pq| <

|pai|G
|pai| ≤ (1 + ε)2t.

Case 2. |pai|G ≤ (ε/2)|aibi|G.
In this case, (4.1) implies that

|pq|G ≤ (1 + ε/2)|aibi|G + |biq|G.

Moreover, Lemma 2 implies that |biq| ≤ ε
2(1+ε) |pq| and |aibi| < (1 + ε)|pq|.

First assume that bi �= q. Then

|pq|G
|pq| ≤ (1 + ε/2)

|aibi|G
|pq| +

|biq|G
|pq|

< (1 + ε/2)(1 + ε)
|aibi|G
|aibi| +

ε

2(1 + ε)

|biq|G
|biq|

≤ (1 + ε/2)(1 + ε)
L(ai, bi)

|aibi| +
ε

2(1 + ε)

|biq|G
|biq| .

Since |biq| < |pq|, the induction hypothesis implies that |biq|G/|biq| ≤ (1+ε)2t. Hence,
|pq|G
|pq| < (1 + ε/2)(1 + ε) ti +

ε(1 + ε)

2
t ≤ (1 + ε)2t,

where the last inequality follows from the fact that ti ≤ t.
If bi = q, then basically the same calculation shows that

|pq|G
|pq| < (1 + ε/2)(1 + ε) ti < (1 + ε)2t.

Case 3. |biq|G ≤ (ε/2)|aibi|G.
This case is symmetric to Case 2.
In the following theorem, we summarize the result of this section. We denote by

T (n,m, k) the worst running time of algorithm ASPc, when given (i) a graph G ∈ G
having n vertices and m edges and (ii) a sequence of c-approximate shortest path
queries, consisting of k pairs of vertices of G.
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Theorem 7. Let S be a set of n points in R
d, let G be a Euclidean graph from

the class G, having the points of S as its vertices, and let ε be a real constant such
that 0 < ε ≤ 3. We can compute a (c, 1 + ε)-approximate stretch factor of G in time

O(n log n) + T (n,m, βdεn).

Here, βdε is a constant which is proportional to 24ddd/2(1/ε)d if ε ↓ 0.
Proof. Run Algorithm B with ε replaced by ε/3. Let t be the value that is

computed by this algorithm. By Theorem 6, we have t ≤ ct∗ and

t∗ ≤ (1 + ε/3)2t ≤ (1 + ε)t.

The bound on the running time follows immediately from the algorithm and Theo-
rem 4.

5. Applications of Algorithm B.
5.1. A lower bound. Before we start with the applications, we prove a lower

bound for approximating the stretch factor in the algebraic computation tree model.
(See Ben-Or [5] or Preparata and Shamos [22] for a description of this model.)

Theorem 8. Any algebraic computation tree algorithm that takes as input (i)
a Euclidean path or cycle on a set of n points in R

d and (ii) real numbers c1 ≥ 1
and c2 ≥ 1, and that computes a (c1, c2)-approximate stretch factor of this graph, has
worst-case running time Ω(n log n).

Proof. We give the lower bound proof for the case when the graph is a path. The
lower bound proof for the cycle is similar.

Let C be any algorithm that satisfies the hypothesis. We will show that C can be
used to solve the element-uniqueness problem, which is known to have an Ω(n log n)
lower bound in the algebraic computation tree model. (See [5, 22].)

Let x1, x2, . . . , xn be a sequence of n real numbers. We consider these numbers
as points on the x1-axis in R

d. Let M be the maximal element in the input sequence.
Define the path P by

P := (x1,M + 1, x2,M + 2, x3,M + 3, . . . , xn−1,M + n− 1, xn).
Note that each edge of P has a nonzero length. We choose arbitrary real numbers
c1 ≥ 1 and c2 ≥ 1 and run Algorithm C on the path P . Let t be the (c1, c2)-
approximate stretch factor of P that is computed. Then it is easy to see that t is
finite if and only if the input numbers x1, x2, . . . , xn are pairwise distinct.

Since the reduction takes O(n) time, it follows that Algorithm C has a worst-case
running time of Ω(n log n).

5.2. Paths, cycles, and trees. Let G be the class of Euclidean paths, cycles,
or trees. For any graph G in this class, we can, after an O(n)-time preprocessing,
answer exact shortest path queries in O(1) time, if G is a path or cycle, and in
O(log n) time, if G is a tree. (If we allow nonalgebraic operations, then we can even
answer shortest path queries in a tree in O(1) time; see [16].) Hence, we can apply
Theorem 7, with c = 1 and T (n,m, k) = O(n + k), if G is a path or cycle, and
T (n,m, k) = O(n+ k log n), if G is a tree, and get the following result.

Theorem 9. Let S be a set of n points in R
d; let G be a Euclidean path, cycle,

or tree, having the points of S as its vertices; and let ε be a real constant such that
0 < ε ≤ 3. In O(n log n) time, we can compute a (1, 1+ ε)-approximate stretch factor
of G.

It follows from Theorem 8 that the above result is optimal in the algebraic com-
putation tree model.
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5.3. Planar graphs. For the next application, let G be the class of planar
connected Euclidean graphs. Let G be a graph in this class, on a set of n points in
R
d. Arikati et al. [2] have shown that we can build a data structure, in O(n

√
n ) time,

that allows us to solve exact shortest path queries in O(
√
n ) time per query. Hence,

we can apply Theorem 7 with c = 1 and T (n,m, k) = O(n
√
n+k

√
n ). This gives the

following theorem.
Theorem 10. Let S be a set of n points in R

d, let G be a planar connected
Euclidean graph having the points of S as its vertices, and let ε be a real constant
such that 0 < ε ≤ 3. In O(n

√
n ) time, we can compute a (1, 1 + ε)-approximate

stretch factor of G.

5.4. General graphs. In our final application, we let G be the general class of
connected Euclidean graphs. Let G ∈ G be any graph with n vertices and m edges.
Note that m ≥ n − 1. Cohen [9] has shown that for any integer β ≥ 1 and any
constant ε such that 0 < ε ≤ 1/2, any sequence of (2β(1 + ε))-approximate shortest
path queries can be answered in expected time

O((m+ k)n1/ββ log2 n),

where k is the number of queries. Applying Theorem 7 gives the following result.
Theorem 11. Let S be a set of n points in R

d, let G be a connected Euclidean
graph having the points of S as its vertices and having m edges, let β ≥ 1 be an integer
constant, and let ε be a real constant such that 0 < ε ≤ 1/2. In

O(mn1/β log2 n)

expected time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.
By choosing different values for the integer constant β, Theorem 11 gives an

interesting trade-off between the running time and the approximation factor. For
example, by choosing β large enough, the running time in Theorem 11 is almost
linear in m, but then the approximation of the stretch factor is very weak (although
it is still bounded by a constant).

Theorem 11 implies the following result for sparse graphs, i.e., graphs having O(n)
edges.

Corollary 12. Let S be a set of n points in R
d, let G be a sparse connected

Euclidean graph having the points of S as its vertices, let β ≥ 1 be an integer constant,
and let ε be a real constant such that 0 < ε ≤ 1/2. In

O(n1+1/β log2 n)

expected time, we can compute a (2β(1 + ε), 1 + ε)-approximate stretch factor of G.

6. Conclusions. In this paper we showed how to efficiently compute a close
approximation to the stretch factors of Euclidean graphs. We showed that the problem
can be reduced either to a sequence of farthest pair queries on O(n) pairs of sets of
points or to a sequence of (approximate) shortest path queries for O(n) specific pairs
of points. It would be interesting to know whether o(n) shortest path queries are
sufficient for determining stretch factors approximately.

Except for trivial classes such as complete graphs, it is not known how to com-
pute the exact stretch factor of any class of Euclidean graphs in less time than that
required to solve the all-pairs-shortest-path problem. Hence, it is not evenknown if
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the exact stretch factor of simple Euclidean graphs, such as paths, can be computed
in subquadratic time.

Stretch factors can be thought of as a quantitative measure to compare distances
in two different metrics. In this paper, we demonstrated techniques to compute stretch
factors in order to compare a “graph metric” with the Euclidean metric. It would
be interesting to study stretch factors as a measure to compare two non-Euclidean
metrics. Our techniques cannot be used then, since no equivalent of the well-separated
pair decomposition is known for non-Euclidean metrics.
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[1] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares, On sparse spanners of
weighted graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[2] S. R. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis, Pla-
nar spanners and approximate shortest path queries among obstacles in the plane, in
Algorithms—ESA ’96, Fourth Annual European Symposium, Lecture Notes in Comput.
Sci. 1136, Springer-Verlag, New York, 1996, pp. 514–528.

[3] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn, A polynomial-time ap-
proximation scheme for weighted planar graph TSP, in Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 33–41.

[4] S. Arya, G. Das, D. M. Mount, J. S. Salowe, and M. Smid, Euclidean spanners: Short,
thin, and lanky, in Proceedings of the 27th Annual ACM Symposium on the Theory of
Computing, San Francisco, SIAM, Philadelphia, 1995, pp. 489–498.

[5] M. Ben-Or, Lower bounds for algebraic computation trees, in Proceedings of the 15th Annual
ACM Symposium on the Theory of Computing, 1983, pp. 80–86.

[6] P. B. Callahan and S. R. Kosaraju, Faster algorithms for some geometric graph problems in
higher dimensions, in Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, Austin, TX, SIAM, Philadelphia, 1993, pp. 291–300.

[7] P. B. Callahan and S. R. Kosaraju, A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields, J. ACM, 42 (1995), pp.
67–90.

[8] B. Chandra, G. Das, G. Narasimhan, and J. Soares, New sparseness results on graph
spanners, Internat. J. Comput. Geom. Appl., 5 (1995), pp. 125–144.

[9] E. Cohen, Fast algorithms for constructing t-spanners and paths with stretch t, SIAM J.
Comput., 28 (1998), pp. 210–236.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[11] G. Das and G. Narasimhan, A fast algorithm for constructing sparse Euclidean spanners,
Internat. J. Comput. Geom. Appl., 7 (1997), pp. 297–315.

[12] D. P. Dobkin, S. J. Friedman, and K. J. Supowit, Delaunay graphs are almost as good as
complete graphs, Discrete Comput. Geom., 5 (1990), pp. 399–407.

[13] D. Eppstein, Beta-Skeletons Have Unbounded Dilation, Technical Report 96-15, Department
of Information and Computer Science, University of California, Irvine, CA, 1996.

[14] D. Eppstein, Spanning trees and spanners, in Handbook of Computational Geometry, J.-R.
Sack and J. Urrutia, eds., Elsevier Science, Amsterdam, 1999, pp. 425–461.

[15] G. N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications,
SIAM J. Comput., 16 (1987), pp. 1004–1022.

[16] D. Harel and R. E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), pp. 338–355.

[17] J. M. Keil and C. A. Gutwin, Classes of graphs which approximate the complete Euclidean
graph, Discrete Comput. Geom., 7 (1992), pp. 13–28.

[18] C. Levcopoulos, G. Narasimhan, and M. Smid, Efficient algorithms for constructing fault-
tolerant geometric spanners, in Proceedings of the 30th Annual ACM Symposium on the
Theory of Computing, 1998, pp. 186–195.

[19] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some of its algorith-
mic applications, Combinatorica, 15 (1995), pp. 215–245.

[20] G. Narasimhan and M. Smid, Approximating the stretch factor of Euclidean paths, cycles and
trees, Report 9, Department of Computer Science, University of Magdeburg, Magdeburg,
Germany, 1999.



APPROXIMATING STRETCH FACTORS OF EUCLIDEAN GRAPHS 989
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Abstract. We investigate the computational complexity of the formula isomorphism problem
(FI): on input of two boolean formulas F and G decide whether there exists a permutation of the
variables of G such that F and G become equivalent. FI is contained in Σ2P, the second level of the
polynomial hierarchy.

Our main result is a one-round interactive proof for the complementary formula nonisomorphism
problem (FNI), where the verifier has access to an NP-oracle. To obtain this, we use a result
from learning theory by Bshouty et al. that boolean formulas can be learned probabilistically with
equivalence queries and access to an NP-oracle. As a consequence, FI cannot be Σ2P-complete
unless the polynomial hierarchy collapses.

Further properties of FI are shown: FI has and- and or-functions, the counting version, #FI, can
be computed in polynomial time relative to FI, and FI is self-reducible.
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theory
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1. Introduction. An interesting computational issue is to decide the equiva-
lence of two given programs with respect to some computational model. While the
problem is undecidable for computational models such as Turing machines, LOOP-
programs, or context-free languages (see [Hu79]), it is coNP-complete for LOOP(1)-
programs (no nested loops), circuits, branching programs, and boolean formulas.
Moreover, it can be efficiently solved for one-time-only branching programs by a ran-
domized algorithm [BCW80]. For deterministic finite automata it can be efficiently
solved deterministically (see [Hu79]).

We consider the following generalization of the equivalence problem: determine
(for some fixed model) whether there exists a bijective transformation of the inputs of
one program that makes the two given programs equivalent. Since we consider such
a transformation of the input intuitively as an easy operation, this captures the idea
of a notion of almost equivalence.

From a computational perspective, the graph isomorphism problem might be the
most studied problem of this kind. Here, the bijection is required to be an iso-
morphism, i.e., a permutation of the input vertices (see [Hof82] and [KST93] for a
comprehensive discussion of this problem).

From a combinatorial perspective, another such problem has been very well stud-
ied too: the boolean congruence problem. Mathematicians since the last century have
investigated the structure of the sets of boolean functions that are congruent to each
other. Here, the congruence is a bijective transformation in which a permutation of
the variables is composed with a negation mapping which maps each variable either
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to itself or to its complement. (The paper by Borchert, Ranjan, and Stephan [BRS98]
gives extensive background and provides a list of early references on this problem.)
To motivate the name, the boolean congruence relation can be seen as a geometrical
congruence: there are 2n assignments for a boolean function f over n variables that
form the nodes of an n-dimensional cube in Rn. Those assignments, where f evaluates
to one, constitute a subgraph of the cube, the n-dimensional geometrical cube that
represents f . Two functions f and g are congruent if and only if the n-dimensional
geometrical cubes that represent f and g are geometrically congruent, that is, there
is a distance-preserving bijection from one subgraph to the other.

In recent years, this and similar problems have been reconsidered from the com-
plexity perspective [BR93, BRS98, CK91]. Of course, one needs to fix a model for
representing boolean functions—the most popular of these are formulas and circuits.
For formulas, we can define the formula congruence problem (FC) as follows: given
two boolean formulas over n variables, determine whether they are congruent. One
can similarly define the formula isomorphism problem (FI) where, instead of a con-
gruence, we ask for an isomorphism. Although congruence is a broader notion than
isomorphism, FC is many-one equivalent to FI [BRS98].

It is straightforward to see that FI is coNP-hard but it is not known to be in
coNP. Therefore it is at least as difficult as the boolean formula equivalence problem.
As an upper bound on its complexity, it can be easily shown that FI is in the second
level of the polynomial hierarchy, Σ2P. It is posed as an open problem by Borchert,
Ranjan, and Stephan [BRS98] whether FI is complete for Σ2P. They conjectured that
it is not. In this paper we give an affirmative answer to this question in the following
sense: we show that FI is not complete for Σ2P unless the polynomial hierarchy
collapses.

We also give a lower bound for FI: we show that the problem to decide whether
a graph has a unique optimal clique—which is not known to be in the Boolean
Hierarchy—many-one reduces to it.

The FI problem shares many similarities with the graph isomorphism problem
(GI). Many of the results for GI carry over to FI with similar proofs (including the
noncompleteness one), although with some crucial differences.

One can also consider more general bijections than isomorphisms and congruences.
We can rewrite any permutation of n variables x = (x1, . . . , xn) as a product of a
permutation matrix P with x over GF(2). That is, an isomorphism can be written
as xP , and a congruence can be written as xP + c for a vector c ∈ {0, 1}n. A
natural generalization of the above notions is therefore to consider linear and affine
transformations xA and xA + c, respectively, where A has to be a bijection on
{0, 1}n. We call two formulas linear equivalent or affine equivalent if they become
equivalent after a linear or an affine transformation of the variables of one of the
formulas, respectively. As in the case of isomorphism and congruence, the formula
linear equivalence problem (FLE) and the formula affine equivalence problem (FAE)
are many-one equivalent [BRS98]. Also, FI many-one reduces to FAE [BRS98].

Considering circuits as representation of boolean functions instead of boolean
formulas, we get the corresponding problems CI, CC, CLE, and CAE. The latter is
the most complex problem we considered so far: all the other problems are many-one
reducible to it. The above mentioned result for FI holds in fact more generally for
CAE. That is, CAE is not complete for Σ2P unless the polynomial hierarchy collapses.

The paper is organized as follows. In section 3 we show that the formula noni-
somorphism (FNI) has a one-round interactive proof, where the verifier has access to
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an NP-oracle. From this we conclude the above mentioned noncompleteness result.
In section 4 we show that FI has and- and or-functions. This will provide us with a
lower bound for FI: the unique optimal clique problem (UOClique) can be many-one
reduced to it. In section 5 we show that the counting version of FI can be solved in
polynomial time relative to FI. This is a result that holds analogously for GI. Finally,
in section 6 we show that FI is self-reducible.

2. Preliminaries. For standard notions in complexity theory we refer the reader
to textbooks such as [BDG88, BDG91, Hu79]. We fix an alphabet Σ, for example,
Σ = {0, 1}. Complexity classes we use are P, NP, or RP. The class of polynomial-
time computable functions is FP. We also use relativized classes such as PNP. The
levels of the polynomial hierarchy (PH) are denoted by ΣkP. The boolean hierarchy
is the closure of NP under boolean operations. Its kth level consists of all sets that
can be expressed as the symmetric difference of at most k NP-sets. For any class C,
we denote the complement class by co C.

Set A is many-one reducible to set B (we write A ≤pm B for short) if there is a
function f ∈ FP such that for every x ∈ Σ∗

x ∈ A⇐⇒ f(x) ∈ B.

We write A ≡pm B if both sets are many-one reducible to each other. Truth-table
reductions generalize many-one reductions by allowing the function f(x) to compute
several strings of which we determine membership in B. On the outcome of these
membership queries a boolean predicate is applied which decides on the membership
of x in A. If the boolean predicate is simply a conjunction or disjunction, we talk of
a conjunctive or disjunctive truth-table reduction, respectively.

Our main results are based on interactive proof systems introduced by Goldwasser,
Micali, and Rackoff [GMR89] and Babai and Moran [BM88]. For completeness, we
give definitions of such classes.

2.1. Complexity classes. An interactive proof system [GMR89] for a set L
consists of a prover P and verifier V . The verifier is a randomized polynomial-time
algorithm that can communicate with the prover. The prover can make arbitrary
computations. After following some communication protocol, the verifier finally has
to accept or reject a given input x such that

x ∈ L =⇒ ∃ prover P : Prob(V, P )(x) accepts = 1,

x 	∈ L =⇒ ∀ prover P : Prob(V, P )(x) accepts ≤ 1/2,

where the probability is taken over the random choices of the verifier.

IP denotes the class of sets that have an interactive proof system. IP[k] is the
subclass of IP where the verifier and the prover exchange at most k messages on
every input.

A concept very similar to interactive proof systems was introduced by Babai
and Moran [BM88] and called Arthur–Merlin games. Here Arthur plays the role of
the verifier and Merlin that of the prover. The only difference is in the use of the
random bits: the verifier has its own random tape which is secret to the prover. In
contrast, Arthur and Merlin have a random tape available to both. The difference
between interactive proof systems and Arthur–Merlin games is therefore sometimes
pinpointed to private vs. public coins.
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If there are at most k message exchanges between Arthur and Merlin, the language
is in the class AM[k]. In contrast to the notation in interactive proof systems, AM
denotes the class AM[2].

In a series of surprising results it was shown that, for constant k ≥ 2, all the
above classes coincide [BM88, GS89], that is,

IP[k] = AM[k] = AM.

We also consider relativizations of these classes. Since the prover and Merlin have
unlimited computational power, they don’t need an oracle. Hence IPA denotes the
class of interactive proof systems where the verifier has access to oracle A. Analo-
gously, in AMA Arthur has access to oracle A. We note that the above collapse result
holds in presence of an oracle as well. In particular, we have IP[k]NP = AMNP.

AM can be expressed in terms of more standard complexity classes: for a class
of sets C, define BP · C as the class of sets L such that there exists a set A ∈ C and
a polynomial p such that for every x

x ∈ L =⇒ Prob(x, y) ∈ A ≥ 2/3,

x 	∈ L =⇒ Prob(x, y) ∈ A ≤ 1/3,

where y is chosen uniformly at random from Σp(|x|).
It is well known that AM = BP ·NP, because in an AM protocol, Arthur can be

replaced by a bounded error probabilistic polynomial-time machine that just passes
the result of the coin tosses to Merlin (see [GS89]). Relative to an NP-oracle, this
equation translates to AMNP = BP · Σ2P.

2.2. Isomorphism problems. The graph isomorphism problem (GI) is defined
as follows. Given two graphs G0 and G1 with n nodes V = {1, . . . , n}, decide whether
there is a permutation ϕ on V such that G1 becomes equal to G0 when the nodes
of G1 are permuted by ϕ. In other words, for all nodes i, j ∈ V , we have (i, j) is an
edge in G0 if and only if (ϕ(i), ϕ(j)) is an edge in G1. Clearly, GI is in NP. The
complementary graph nonisomorphism problem is denoted by GNI and is therefore in
coNP.

Two boolean formulas F0 and F1 with variables x1, . . . , xn are equivalent if they
have the same value for every assignment to their variables. The equivalence problem
for boolean formulas is known to be coNP-complete.

Two formulas F0 and F1 are isomorphic if there exists a permutation ϕ on
the set of variables {x1, . . . , xn}, such that F1 becomes equivalent to F0 when the
variables of F1 are permuted by ϕ, i.e., F0(x1, . . . , xn) is equivalent to F1 ◦ ϕ =
F1(ϕ(x1), . . . , ϕ(xn)). In this case, we call ϕ an isomorphism between F0 and F1.
The formula isomorphism problem (FI) is to decide whether two given formulas are
isomorphic. It follows directly from the definition that FI ∈ Σ2P, the second level of
the polynomial hierarchy. The complementary formula nonisomorphism problem is
denoted by FNI.

Iso(F0, F1) denotes the set of isomorphisms between F0 and F1. An automorphism
of a formula F is an isomorphism between F and F , Aut(F ) = Iso(F, F ). Aut(F ) is
a group with composition ◦ as group operation. It is a subgroup of the permutation
group (on n variables). Every formula has a trivial automorphism: the identity
mapping. The formula automorphism problem (FA) is to decide whether a formula F
has a nontrivial automorphism, i.e., whether |Aut(F )| > 1.
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A negation mapping on n variables is a function ν such that ν(xi) ∈ {xi, xi} for
1 ≤ i ≤ n. In other words, a negation mapping allows us to replace a variable by its
complement. Two formulas F0 and F1 are congruent if there exists a permutation ϕ
and a negation mapping ν on {x1, . . . , xn}, such that F0 and F1 ◦ν ◦ϕ are equivalent.
The formula congruence problem (FC) is to decide whether two formulas are congru-
ent. Congruence is a more flexible notion than isomorphism, however; FC is clearly
in Σ2P. Moreover, FI ≡pm FC [BRS98].

Formulas F0 and F1 are affine equivalent if there exists a nonsingular n × n
matrix A and a 1×n vector c over GF(2) such that for every x = (x1, . . . , xn), F0(x)
and F1(xA + c) are equivalent (here addition and multiplication are over GF(2)).
The formulas are linear equivalent if they are affine equivalent with vector c as the
zero vector. We use FAE and FLE to denote the set of pairs of formulas that are
respectively affine and linear equivalent.

The above definitions can be applied to circuits instead of formulas. We use CI,
CC, CLE, and CAE to denote the set of circuit pairs that are isomorphic, congruent,
linear equivalent, and affine equivalent, respectively. We note that the reductions
shown in [BRS98] carry over to circuits. That is, we have CI ≡pm CC ≤pm CLE ≡pm
CAE. Since a formula can easily be transformed to a circuit, each boolean formula
problem is many-one reducible to its corresponding circuit version. It follows that
CLE and CAE are the computationally hardest problems we have defined here.

3. An interactive proof for FNI. We show that there is a one-round inter-
active proof for FNI where the verifier has access to an NP-oracle. Our interactive
proof is based on the one for GNI [GMR89]. However, it differs from it in one crucial
aspect. In Figure 3.1 we first recall the protocol for GNI on input of two graphs
(G0, G1), both with nodes V = {1, . . . , n}.

V: The verifier randomly picks i ∈ {0, 1}, a random permutation ϕ on V , and permutes Gi with ϕ.
Let H be the graph obtained that way. The verifier sends H to the prover.

P: The prover answers by sending j ∈ {0, 1} to the verifier.
V: Finally, the verifier accepts if i = j, and rejects otherwise.

Fig. 3.1. Interactive protocol for GNI.

When the input graphs are not isomorphic, the prover can find out from which of
G0 or G1 the graph H was obtained by the verifier, and can therefore make the verifier
accept with probability one. On the other hand, when the graphs are isomorphic,
then no prover can find out the graph that was chosen by the verifier to construct H.
Therefore, the answer of any prover is correct with probability at most 1/2.

Unfortunately, the analogous protocol for FNI does not work. To see this, consider
the above protocol on input (F0, F1), where

F0 = x1 ∧ (x1 ∨ x2) and

F1 = x1 ∧ x2.

Note that F0 and F1 are isomorphic (exchange x1 and x2). The verifier randomly
picks i ∈ {0, 1}, obtains a formula G by randomly permuting Fi, and sends it to
the prover. However, even though F0 and F1 are isomorphic, the prover can easily
detect from which one G has been obtained because of the syntactic structure of G:
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any permutation of F0 will have three literals and any permutation of F1 will have
two literals.

It seems that what we need is a normal form for equivalent boolean formulas that
can be computed by the verifier. (Recall that the verifier has access to an NP-oracle.)
Then the verifier could map the formula G in the above protocol to its normal form
H, and then the prover could not distinguish whether H is coming from F0 or F1, if
the formulas are isomorphic.

Clearly, we cannot simply transform G into its disjunctive or conjunctive normal
form, because this might lead to formulas that are exponentially longer than G. An-
other obvious candidate for a normal form is the smallest equivalent boolean formula
(under some suitable total ordering). However, it requires a Σ2P-oracle to compute
this [Uma98], and our verifier only has an NP-oracle available.

To overcome this difficulty, we compute what can be called a randomized normal
form of a formula. It is obtained from an algorithm in learning theory by Bshouty et
al. [BCG+96]. We start by providing an informal description of the learning scenario
and then give a reformulation in pure complexity theoretic terms.

Let F be a boolean formula given in a black box. A probabilistic polynomial-time
machine, the learner, has to compute a formula that is equivalent to F , but without
seeing F . The learner can use an NP-oracle, and, furthermore, ask equivalence queries
of a teacher who knows F . That is, the learner can send a formula G to the teacher.
If F and G are equivalent, the learner has succeeded in learning F and the teacher
will answer “yes.” Otherwise, the teacher will send a counterexample to the learner,
namely an assignment a such that F (a) 	= G(a). The learner succeeds in learning F
if he outputs, with high probability, a formula that is equivalent to F . The learner
might sometimes fail to learn F , but only with small probability. In this case, he
makes no output. The result of Bshouty et al. [BCG+96] says that boolean formulas
can be learned in this setting.

How can we use this for our normal form problem? The crucial observation in
the learning process is that the output of the learner does not depend on the specific
syntactic form of the input formula F : because of the black box approach, the learner
has exactly the same behavior on every formula F ′ given as input that is equivalent
to F . Hence, we take the output of the learner as our normal form.

Note that this is not a normal form in the classical sense, because the learner
produces possibly different equivalent formulas for different random choices. However,
on each random path the output remains the same on any F ′ as input that is equivalent
to F . This will suffice for our purposes.

We want to reformulate the result in complexity theoretic terms. Our first step
is to throw out the teacher. She has to decide the equivalence of formulas and to
compute counterexamples. The latter can easily be done within PNP by a standard
prefix-search: extend, bit by bit, a partial assignment to the variables where the two
given formulas differ. Each bit can be obtained with a query to an NP-oracle.

In summary, we get one probabilistic algorithm that, with the help of an NP-
oracle, simulates the learner and the teacher. The output is, with high probability,
a formula equivalent to the input formula, and, with small probability, there is no
output. Moreover, the output does not depend on the syntax of the input formula.
More precisely, we have the following.

Theorem 3.1 (see [BCG+96]). There is a probabilistic polynomial-time algo-
rithm A that has access to an NP-oracle such that on input of a boolean formula F ,
algorithm A has the following properties.
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(1) A outputs a boolean formula that is equivalent to F with probability at least
3/4, and makes no output otherwise.

(2) If F ′ is a formula equivalent to F , then, for any choice of the random bits
used by A, it makes the same output on input F and on input F ′.

Now the idea should be clear. The verifier first transforms the randomly produced
formula G into the normal form via the above algorithm, and then sends it to the
prover. We give the full protocol below.

Theorem 3.2. FNI ∈ IP[2]NP.
Proof. The IP-protocol shown in Figure 3.2 accepts FNI. The inputs are two

formulas (F0, F1) , both in variables x1, . . . , xn, and without loss of generality (w.l.o.g.)
of the same length.

V: The verifier randomly picks i ∈ {0, 1} and a random permutation ϕ on the n variables. Let
G = Fi ◦ ϕ. Now, the verifier uses the algorithm of Theorem 3.1 on input G to obtain
an equivalent boolean formula H and sends H to the prover. On those paths where the
algorithm does not generate an output, the verifier directly accepts.

P: The prover answers by sending j ∈ {0, 1} to the verifier.
V: Finally, the verifier accepts if i = j, and rejects otherwise.

Fig. 3.2. Interactive protocol for FNI.

We show that the above protocol works correctly. If F0 is not isomorphic to F1,
a prover can determine which of F0 and F1 formula H is isomorphic to and tell it to
the verifier. Also, on the random paths where no equivalent formula is produced, the
verifier accepts. Therefore, the verifier accepts with probability one.

Now consider the case when F0 is isomorphic to F1. Assume the verifier picks
i = 0 (the case i = 1 is analogous). Then the verifier constructs G = F0 ◦ ϕ for some
randomly chosen permutation ϕ. Since F0 is isomorphic to F1, G is isomorphic to F1

too. Hence there is some permutation ϕ′ such that formula G′ = F1 ◦ϕ′ is equivalent
to G.

The next step of the verifier is to apply the algorithm of Theorem 3.1 to G and
to obtain the equivalent formula H (or no formula). Now observe that the random
bits of the verifier that lead to the construction of H on input G would also lead
to the construction of H on input G′. In other word, any formula H has the same
probability to be sent to the prover, irrespective of whether G was obtained from F0

or F1. Therefore the answer of any prover will be correct with probability 1/2.
In summary, the verifier accepts with probability 1/2 on those computations where

a formula H is produced and on all computations with no output. The latter occurs
with probability at most 1/4. Therefore, the verifier will accept with probability at
most 1/2 + 1/4 = 3/4.

The definition of an interactive proof system requires an error bound of at
most 1/2. There is a standard trick to achieve this now: execute the above pro-
tocol three times in parallel and accept only if all three executions lead to acceptance.
This doesn’t change the case when F0 is not isomorphic to F1. In the other case, the
error decreases to (3/4)3 < 1/2. This proves the theorem.

Corollary 3.3. FNI ∈ BP · Σ2P.
For readers familiar with cryptography we remark that the idea used to prove

Theorem 3.2 can be used to give a perfect zero-knowledge interactive proof for FI,
where the verifier has access to an NP-oracle.
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Schöning [Sch88] gives a direct proof that the graph isomorphism problem is in
AM by using hash functions. We remark that we can extend Schöning’s proof by our
technique to directly obtain Corollary 3.3.

Schöning [Sch89] showed that a Π2P-complete set cannot be in BP · Σ2P unless
the polynomial hierarchy collapses. Combined with Corollary 3.3, we obtain our main
result.

Corollary 3.4. If FI is Σ2P-complete, then PH = Σ3P.
The learning result of Bshouty et al. [BCG+96] holds as well for circuits instead

of formulas. Therefore we can adapt the interactive proof for FNI for the circuit
nonisomorphism problem (CNI). That is, we have CNI ∈ IP[2]NP, and consequently,
we have the following.

Corollary 3.5. If CI is Σ2P-complete, then PH = Σ3P.
We can extend the interactive proof for FI even further: to the affine equivalence

problem for circuits (CAE). To do so, we slightly modify the protocol in the proof
of Theorem 3.2. The only difference is the kind of transformation that is used: in
Theorem 3.2, the verifier randomly generates a permutation. Now, the verifier must
randomly generate an affine transformation. To achieve this, the verifier randomly
generates an n-bit vector and an n × n 0-1 matrix. To constitute an affine transfor-
mation, the matrix should be nonsingular. Our next lemma ensures that there are
enough nonsingular matrices for the verifier to find one with high probability.

Lemma 3.6. At least 1/4 of the n× n matrices over GF(2) are nonsingular.
Proof. We successively choose the column vectors of an n × n matrix such that

the next column vector is linearly independent of the previous ones. The first column
can be chosen arbitrarily, except that it can’t be zero. So there are 2n − 1 choices.

Any k linearly independent vectors in GF(2)n span a vector space of size 2k.
Therefore, when we choose the (k + 1)st column, we have 2n − 2k choices.

In total,
∏n−1
k=0(2

n − 2k) of the 2n
2

n × n matrices over GF(2) are nonsingular.
Thus, their proportion is

1

2n2

n−1∏
k=0

(2n − 2k) =

n∏
k=1

(
1− 1

2k

)

=
1

2

n∏
k=2

(
1− 1

2k

)
(for n ≥ 2)

≥ 1

2

n∏
k=2

(
1− 1

k2

)
(for n ≥ 6)

=
1

2

(
1

2

n+ 1

n

)

≥ 1

4
,

where the second line from bottom follows by induction on n. For values of n smaller
than 6, the above bound holds too, as can be checked directly.

Below we give the full protocol for the affine nonequivalence problem for circuits
(CANE).

Theorem 3.7. CANE ∈ IP[2]NP.
Proof. The interactive proof system for CANE is shown in Figure 3.3. The inputs

are two circuits (C0, C1) , both in variables x1, . . . , xn, and w.l.o.g. of the same length.
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V: The verifier randomly picks i ∈ {0, 1} and an n-bit vector r. Furthermore, the verifier makes up
to five trials to randomly get a nonsingular n× n 0-1 matrix.
If all trials fail, the verifier stops and accepts directly. Otherwise, let R be the (nonsingular)
random matrix, and let D = Ci(xR + r).
Next, the verifier produces the randomized normal form from D according to the algorithm
of Theorem 3.1, obtains the equivalent circuit E, and sends E to the prover. If the algorithm
fails to produce a normal form, the verifier accepts directly.

P: The prover answers by sending j ∈ {0, 1} to the verifier.
V: Finally, the verifier accepts if i = j, and rejects otherwise.

Fig. 3.3. Interactive protocol for CANE.

We show that the protocol works correctly. If (C0, C1) ∈ CANE, the honest
prover can always convince the verifier.

Now consider the case where (C0, C1) 	∈ CANE. It suffices to show that the prob-
ability that a specific circuit E is presented to the prover is independent of whether
it was produced from C0 or from C1. In this case, the acceptance probability of the
verifier is bounded by 1/2 for the right answer of the prover, plus (3/4)5 < 1/16
for not finding a nonsingular matrix, plus 1/4 for not getting a normal form. This
sums up to 13/16. By executing the protocol four times in parallel, we can bring the
acceptance probability down to (13/16)4 < 1/2.

It remains to argue that independent of whether i was chosen to be 0 or 1, we
have the same chance of getting circuit E. Let xA + c be the affine transformation
so that C1(xA + c) is equivalent to C0. For a random affine transformation, say
xR + r, applied to C0, we get D0 = C0(xR + r). The equivalent circuit via C1 is
D1 = C1(xAR + cR + r). Now note that x �→ xAR + cR + r is still a random
affine transformation for fixed A and c. Therefore we have the same probability to
get D0 when i = 0 and to get D1 when i = 1. Since D0 and D1 are equivalent, our
randomized normal form algorithm has an identical output distribution on input D0

and on input D1.
Corollary 3.8. If CAE is Σ2P-complete, then PH = Σ3P.

4. FI has and- and or-functions. In this section we show that the disjunctive
and conjunctive truth-table degrees of FI collapse to the many-degree of FI. This is a
consequence of FI having and- and or-functions. As an application we show that the
formula automorphism problem and the unique optimal clique problem are many-one
reducible to FI, thereby providing some lower bounds on the complexity of FI.

Definition 4.1. An and-function for a set A is a function and : Σ∗ ×Σ∗ �→ Σ∗

such that for any x, y ∈ Σ∗, we have x ∈ A and y ∈ A if and only if and(x, y) ∈ A.
similarly, an or-function or for A fulfills x ∈ A or y ∈ A if and only if or(x, y) ∈ A.

4.1. Some technical lemmas on labellings. Before we can define the and-
and or-functions for FI, we need some technical lemmas which provide us with some
marking or labelling mechanism for the variables of a boolean formula such that a
labelled variable is a fix point of any automorphism of the formula. It is not clear
whether there exist such labellings that are efficiently computable. However, the
following weaker labelling often suffices.

Definition 4.2. Let F = F (x1, . . . , xn) be a boolean formula. We call vari-
ables xi and xj equivalent with respect to F if, for any assignment a that satisfies
F , we have a(xi) = a(xj). By EF (xi) we denote the set of variables of F that are
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equivalent to xi.

Consider any automorphism ϕ ∈ Aut(F ). If ϕ maps xi to xk, then ϕ must map
all variables equivalent to xi to variables that are equivalent to xk, i.e., ϕ(EF (xi)) ⊆
EF (xk). Furthermore, any variable xj that is mapped by ϕ to a variable in EF (xk)
must belong to EF (xi). Therefore, ϕ(EF (xi)) = EF (xk). Since ϕ is a bijection, we
conclude that EF (xi) and EF (xk) must be of the same size.

By using this property, we can label variable xi by taking n new variables
z1, . . . , zn, and make them equivalent to xi as follows. Define

L(xi, z1, . . . , zn) =

n∧
j=1

(xi ↔ zj), and

F[i] = F ∧ L(xi, z1, . . . , zn).

The new variables zi of F[i] are referred to as labelling variables.

Any assignment that satisfies F[i] must assign the same value to xi and z1, . . . , zn.
Thus, xi has more equivalent variables (with respect to F[i]) than any other vari-
able xk 	∈ EF[i]

(xi). Hence any automorphism ϕ of F[i] maps EF[i]
(xi) onto itself.

We say that ϕ stabilizes EF[i]
(xi). Moreover, define ϕ′ to coincide with ϕ except for

the variables in EF[i]
(xi), where ϕ′ is defined to be the identity. Then the resulting

permutation is still an automorphism of F[i], with the additional property that it
pointwise stabilizes EF[i]

(xi).

Lemma 4.3. For all ϕ ∈ Aut(F[i]):

(1) ϕ(EF[i]
(xi)) = EF[i]

(xi);
(2) define ϕ′ to coincide with ϕ on all variables not in EF[i]

(xi) and to be the
identity on EF[i]

(xi). Then ϕ
′ ∈ Aut(F[i]).

Now let G = G(x1, . . . , xn) be a second formula. We label variable xj with the
same label as xi, namely, L(xj , z1, . . . , zn), and we define G[j] = G∧L(xj , z1, . . . , zn).
Then any isomorphism for (F[i], G[j]) must map all the variables equivalent to xj in
G[j] to the variables equivalent to xi in F[i].

Corollary 4.4. For all ϕ ∈ Iso(F[i], G[j]):

(1) ϕ(EG[j]
(xj)) = EF[i]

(xi);
(2) define ϕ′ to coincide with ϕ on all variables not in EG[j]

(xj) and to map xj
to xi, to be the identity on the labelling variables z1, . . . , zn, and an arbitrary
bijection on the remaining variables of EG[j]

(xj). Then ϕ
′ ∈ Iso(F[i], G[j]).

It follows that when two formulas F[i] and G[j] as above are isomorphic, we know
that there is an isomorphism that maps xj to xi and keeps the new variables from the
labelling process on themselves. We will therefore omit to explicitly mention the new
variables in a label and will simply write L(xi, n) when we label xi with n variables
that do not yet occur in the considered formula.

A more general task is to force automorphisms to stabilize a set of variables. Let
x = (x1, . . . , xn), y = (y1, . . . , ym), F = F (x,y), and suppose we want to consider
only automorphisms of F that map x- to x-variables and y- to y-variables. Clearly,
we could simply extend the technique from Lemma 4.3 and label variable yi with
L(yi,M) for i = 1, . . . ,m with M = max{n,m} + 1. Note that the formula we get
can increase quadratically in size with respect to F . However, later on we need to
apply the construction iteratively such that the resulting formula still has polynomial
size. In order to guarantee this, the size of the formula we obtain should increase only
linearly in size. Thus we need a new technique here. The following works: for a new
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variable s and a number M define formula S(x,y, s,M) as follows:

S(x,y, s,M) =

(
n∨
i=1

xi → s

)
∧
(

m∨
i=1

yi → s

)
∧ L(s,M).

Let S = S(x,y, s, n+m). S has the following property: let a be a satisfying assign-
ment of S. If a assigns a 1 to any of the x-variables, then a(s) = 1 which implies
that a(s) = 0, and therefore a must assign 0 to all the y-variables. Symmetrically, if
a assigns a 1 to any of the y-variables, then a(s) = 1 which implies that a(s) = 0,
and therefore a must assign 0 to all the x-variables.

Now consider F ∧ S. We claim that any automorphism of F ∧ S must map x- to
x-variables and y- to y-variables, unless they are equivalent.

Lemma 4.5. Let F = F (x,y) be a formula as above such that the all-zero as-
signment does not satisfy F . Let ϕ ∈ Aut(F ∧ S).

(1) ϕ maps x- to x-variables and y- to y-variables except, maybe, for variables xi
and yj which are set to zero by every satisfying assignment of F ∧ S.

(2) Define ϕ′ to coincide with ϕ on all variables that are set to 1 by at least
one satisfying assignment of F ∧ S, and to be the identity on the remaining
variables. Then ϕ′ ∈ Aut(F ∧ S), and it maps x- to x-variables and y- to
y-variables.

Proof. Any automorphism ϕ of F ∧ S must stabilize s (more precisely, EF∧S(s))
because of its label. Let a be an assignment that satisfies F ∧ S. By assumption, a
is not the all-zero assignment. So let xi be a variable such that a(xi) = 1 (the case
that a(yi) = 1 for some yi is analogous). Since xi → s, we have that a(s) = 1. Since
yj → s, we have that a(yj) = 0 for j = 1, . . . ,m. Therefore, ϕ cannot map xi to some
yj in order of ϕ(a) to satisfy F ∧ S. We conclude that ϕ must map xi to some xj .

It follows that whenever ϕ maps, say, xj to yk, then every satisfying assignment
of F ∧ S assigns zero to both, xj and yk, i.e., all such variables are in EF (xj). If we
modify ϕ to be the identity on EF (xj), we still have an automorphism for F ∧S. The
latter shows part 2 of the lemma.

We extend the lemma to isomorphisms. Let G = G(x,y). Then any isomorphism
of (F ∧ S,G ∧ S) must map x- to x-variables and y- to y-variables, unless they are
equivalent.

Corollary 4.6. Let F and G be formulas as above such that the all-zero assign-
ment does not satisfy F or G. If (F,G) ∈ FI, then there is a ϕ ∈ Iso(F ∧ S,G ∧ S)
that maps all the x- to x-variables and all the y- to y-variables.

For a last generalization step, consider again F = F (x,y), where n = m. Now we
want to allow automorphisms of F to map x- variables to y-variables in the following
way: either x-variables are only mapped to x-variables or x-variables are only mapped
to y-variables. We can achieve this as follows. For new variables s and t and a
number M define formula ST (x,y, s, t,M) :

ST (x,y, s, t,M) =

(
n∨
i=1

xi → s

)
∧
(

n∨
i=1

yi → s

)
∧ (s↔ t)

∧ L(s,M) ∧ L(t,M).

Let ST = ST (x,y, s, t, 2n). As above for S, a satisfying assignment of ST can
assign a 1 to either any of the x-variables or any of the y-variables, but not to both.
The difference to S is that now an automorphism of ST can interchange s and t
because they have the same label.



THE FORMULA ISOMORPHISM PROBLEM 1001

Now consider F ∧ ST . We claim that any automorphism of F ∧ ST
(i) either maps x- to x-variables and y- to y-variables, or
(ii) interchanges x- and y-variables,

unless they are equivalent.

Lemma 4.7. Let F be a satisfiable formula as above such that the all-zero assign-
ment does not satisfy F . For all ϕ ∈ Aut(F ∧ ST ),

(i) either ϕ(s) = s, and then we have that ϕ maps x- to x-variables and y- to
y-variables except, maybe, for variables xi and yj which are set to zero by
every satisfying assignment of F ∧ S, or

(ii) ϕ(s) = t, and then we have that ϕ interchanges x- and y-variables except,
maybe, for variables xi, xj or yi, yj which are set to zero by every satisfying
assignment of F ∧ S.

Furthermore, we can modify ϕ to an automorphism of F ∧ ST that keeps x- on x-
variables in case (i). Case (ii) is more subtle: if we have the same number of x-
and y-variables that have value zero in every satisfying assignment of F , then we can
modify ϕ to interchange all x- and y-variables in case (ii).

Proof. We have to distinguish two cases according to whether an automorphism
ϕ maps s to s or t. In the case that ϕ(s) = s, we can directly use the proof of
Lemma 4.5. Now let ϕ(s) = t, and let a be a satisfying assignment of F ∧ST . Let xi
be a variable such that a(xi) = 1. Because (xi → s) is a part of formula ST , we get
that a(s) = 1. Since s↔ t is part of the formula ST , we must have a(t) = 0.

Now consider formula (F∧ST )◦ϕ, which is satisfied by the assignment a◦ϕ. Since
ϕ maps s to t, we have a◦ϕ(s) = 0, and, correspondingly, a◦ϕ(t) = 1. Therefore a◦ϕ
must assign zero to all the x-variables. Hence ϕ must interchange x- and y-variables,
except, maybe, variables that have value zero in all satisfying assignments.

Let xi be a variable that has value zero in all satisfying assignments. Then all
such variables are precisely those that are equivalent to xi, i.e., that are in EF (xi).
Note that ϕ maps variables in EF (xi) again to EF (xi). Moreover, we can change ϕ
arbitrarily on EF (xi) and it still remains an automorphism for F ∧ ST . Therefore, if
there is the same number of x-variables as y-variables in EF (xi), we can modify ϕ to
interchange all x- with the y-variables.

Corollary 4.8. Let F and G be formulas as above such that the all-zero assign-
ment does not satisfy F or G. If (F,G)∈FI, then there is a ϕ∈ Iso(F∧ST,G∧ST ) that

(i) either maps x- to x-variables and y- to y-variables, or
(ii) interchanges x- and y-variables.

We therefore omit to explicitly mention the labelling variables in a label and
simply write L(xi, n) when we label xi with n variables that do not yet occur in the
considered formula.

In the above lemmas we assumed that the all-zero assignment does not satisfy a
given formula. In the following lemma we show that this no restriction when consid-
ering instances for FI.

Lemma 4.9. Let (F0, F1) be an instance for FI with n variables. Define Gi =
Fi ∧ z, for i = 0, 1, for a new variable z. Formulas G0 and G1 have the following
properties:

(a) 0n is not a satisfying assignment of G0 and G1, and
(b) (F0, F1) ∈ FI⇐⇒ (G0, G1) ∈ FI.

Proof. Property (a) is obvious. To see (b), let ϕ be an isomorphism for (G0, G1),
i.e., ϕ permutes the variables of G1 so that it becomes equivalent to G0. Note that
any satisfying assignment for G0 or G1 must set z to 1. Therefore ϕ must map z
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to itself or to a variable equivalent to z. In the latter case, we can modify ϕ to be
the identity on EG1(z) and we still have an isomorphism for (G0, G1). Now, ϕ is an
isomorphism for (F0, F1) as well (just ignore variable z).

4.2. The and- and or-functions for FI. In the previous section we have
established the technical tools for the construction of the and- and or-functions for FI.

Theorem 4.10. FI has and- and or-functions.

Proof. Let (F0, F1) and (G0, G1) be two instances for FI. The variables of F0 and
F1 are x1, . . . , xn, and the variables of G0 and G1 are y1, . . . , ym. By Lemma 4.9 we
can assume that the all-zero assignment does not satisfy any of these formulas.

And-function. In order to construct the and-function, we simply combine the
formulas by or-ing together F0 and G0 on one side, and F1 and G1 on the other side.
However, we have to make sure that we don’t get automorphisms that map x-variables
to y-variables. For this we use formula S = S(x,y, s,M) from above with M = n+m.
Define

and((F0, F1), (G0, G1)) = (C0, C1),

where formulas C0 and C1 are defined as follows:

C0 = (F0 ∨G0) ∧ S,

C1 = (F1 ∨G1) ∧ S.

If (F0, F1) ∈ FI and (G0, G1) ∈ FI, then clearly (C0, C1) ∈ FI. For the reverse
direction assume that (C0, C1) ∈ FI. By Corollary 4.6 there is an isomorphism ϕ that
maps x- to x-variables and y- to y-variables, i.e., ϕ can be written as ϕ = ϕx∪ϕy∪ϕS ,
where ϕx is a permutation on {x1, . . . , xn}, ϕy on {y1, . . . , yn}, and ϕS on the extra
variables from formula S.

We argue that ϕx is an isomorphism for (F0, F1) (an analogous argument shows
that ϕy is an isomorphism for (G0, G1)): consider the following partial assignments.

• ay assigns 0 to all the y-variables and
• aS assigns 1 to variable s and the labelling variables.

Then we have G0(ay) = 0, and G1(ϕy(ay)) = G1(ay) = 0. Furthermore, the second
item implies that, for any assignment ax of the x-variables, formula S evaluates to
one on a = (ax,ay,aS) and on ϕ(a). Now, since by assumption C0(a) = C1(ϕ(a),
we conclude that F0(ax) = F1(ϕx(ax). Therefore, ϕx is an isomorphism for (F0, F1).

Or-function. In order to construct the or-function, we need a copy of the variables
x = (x1, . . . , xn) and y = (y1, . . . , ym) used in the formulas F0, F1 and G0, G1,
respectively. Let u = (u1, . . . , un) and v = (v1, . . . , vm) be new variables. Define

or((F0, F1), (G0, G1)) = (D0, D1),

where formulas D0 and D1 are defined as follows:

D0 = ((F0(x) ∨G0(y)) ∨ (F1(u) ∨G1(v))) ∧ R,

D1 = ((F1(x) ∨G0(y)) ∨ (F0(u) ∨G1(v))) ∧ R,

where

R = S((x,u), (y,v), s0,M0) ∧ ST ((x,y), (u,v), s, t,M).
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Here we set M0 = n+m and M = 2M0. (The additional brackets for the variables in
formulas S and ST indicate the two groups of variables that occur in the definition
of these formulas.)

The rough idea of this definition is that if there is an isomorphism for either
(F0, F1) or (G0, G1), then we can construct an isomorphism for (D0, D1) from it: just
map the nonisomorphic formulas to themselves. Formula R will ensure that we don’t
get more isomorphisms than the ones just described. We give more details below.

Suppose first that (F0, F1) ∈ FI and let ϕx be an isomorphism. Let ϕu be ϕ−1
x

but on the u-variables. That is, define

ϕu(ui) = uj , if ϕ−1
x (xi) = xj .

Define ϕ as the union of ϕx and ϕu and the identity on all the other variables of D1.
Then it is straightforward to check that ϕ is an isomorphism of (D0, D1), which is
therefore in FI.

Now assume that (G0, G1) ∈ FI via isomorphism ϕy. Then we get an isomor-
phism ϕ for (D0, D1) as follows. Define

ϕ(xi) = ui,

ϕ(ui) = xi,

ϕ(vi) = yj , if ϕy(yi) = yj ,

ϕ(yi) = vj , if ϕ−1
y (yi) = yj ,

ϕ(s) = t,

ϕ(t) = s,

ϕ(s0) = s0.

The remaining variables that come from the labelling process are mapped according
to the variables they are equivalent to.

In summary, the isomorphisms we constructed have the following properties:
(i) either they map s and t to itself, respectively, and map x- to x-variables, u-

to u-variables, y- to y-variables, and v- to v-variables,
(ii) or they interchange s with t and interchange x- with u-variables and y- with

v-variables.
Conversely, if there is an isomorphism for (D0, D1) that fulfills property (i) or (ii),
then it is easy to see that we get an isomorphism for either (F0, F1) or (G0, G1) from it,
respectively. It remains to show that every isomorphism for (D0, D1) must satisfy one
of these two properties. The only exception from this might be equivalent variables.

Assume that (D0, D1) are isomorphic. We consider formula R. By Corollary 4.6,
its first part, S((x,u), (y,v), s0,M0), implies that there is an isomorphism ϕ of
(D0, D1) that can be written as a union of permutations ϕx,u on x- and u-variables,
ϕy,v on y- and v-variables, ϕs,t on s and t, and ϕL for the remaining variables from
the labelling. Combined with its second part, ST ((x,y), (u,v), s, t,M), we get by
Corollary 4.8 that ϕx,u, depending on ϕs,t, either maps all x-variables to x-variables
or interchanges x- and u-variables. The same holds analogously for ϕy,v. Thus we get
an isomorphism that fulfills property (i) or (ii) above.

We remark that we can extend the functions and and or to more than two argu-
ments: combine them in a binary-tree-like fashion with the above functions for two
arguments. The size of the output of our functions and and or is linear in the size
of the input formulas. Therefore we get a polynomial-size output when we combine
several instances as described above.
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Corollary 4.11. If a set L is disjunctively or conjunctively truth-table reducible
to FI, then L ≤pm FI.

We give two applications of Corollary 4.11. The formula automorphism problem
(FA) is disjunctively reducible to FI, because a formula F = F (x1, . . . , xn) is in FA if
and only if for some pair i, j ∈ {1, . . . , n}, i 	= j, we have that (F[i], F[j]) is in FI. It
follows that FA is many-one reducible to FI.

Corollary 4.12. FA ≤pm FI.
What else can we reduce to FI? Clearly, FI is coNP-hard: by truen we denote

a fixed formula over n variables that is a tautology (e.g.,
∧n
i=1(xi ∨ x̄i)). Then, for a

given formula F with n variables, F is a tautology as well if and only if (F, truen) ∈ FI.
Unique satisfiability (USat) [BG82] is the set of all boolean formulas that have

exactly one satisfying assignment. The function

F (x1, . . . , xn) �→ (F ∧ z) ∨
(

n∧
i=1

xi ∧ z
)

reduces unsatisfiable formulas to uniquely satisfiable ones. Therefore USat is coNP-
hard. Since USat can be written as the difference of two NP-sets, USat is in DP,
the second level of the boolean hierarchy. On the other hand, USat is not known to
be NP-hard. 1

The function

F (x1, . . . , xn) �→
(
F,

n∧
i=1

xi

)

reduces USat to FC. Since FI ≡pm FC [BRS98], USat can be reduced to FI.
A problem seemingly harder than USat is the unique optimal clique problem

(UOClique), that is, whether the largest clique of a given graph is unique. The
standard reduction from Sat to Clique also reduces USat to UOClique. An up-
per bound for the complexity of UOClique is PNP[log]: with logarithmically many
queries to an NP-oracle one can compute the size of the largest clique of a given
graph. Then, with one more query, one can find out whether there is more than one
clique of that size. Papadimitriou and Zachos [PZ83] asked whether UOClique is
complete for PNP[log]. This is still an open problem. Buhrman and Thierauf [BT96]
provide strong evidence that UOClique is not complete for PNP[log].

UOClique can be disjunctively reduced to USat [BT96]. To see this, let
UClique be the unique Clique version. That is, given a graph G and a in-
teger k, decide whether G has a unique clique of size k. Now, observe that
G ∈ UOClique ⇐⇒ ∃k : (G, k) ∈ UClique. Recall that the generic reduction
of an arbitrary NP-problem to Sat given by Cook is parsimonious. So in particular,
a graph with a unique clique of a certain size reduces to a formula with precisely
one satisfying assignment. Therefore we get a disjunctive reduction of UOClique
to USat. Combined with the reduction from USat to FI, we have that UOClique
can be disjunctively reduced to FI. By Corollary 4.11, this can be turned into a
many-one reduction.

Corollary 4.13. UOClique ≤pm FI.
As is the case for UOClique, it is not known whether FI is NP-hard. This is a

challenging open question.

1However, USat is NP-hard under randomized reductions [VV86].
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5. The counting version of FI. Mathon [Mat79] showed that the counting
version of GI can be (truth-table) reduced to the decision version. Thus GI behaves
differently than the known NP-complete problems. This was historically the first hint
that GI might not be NP-complete.

We will show an analogous result for FI. The proof follows essentially the same
outline as Mathon’s proof for GI, however, there is again a technical difficulty to
get around. First of all, it is enough to compute the number of automorphisms of a
graph G: if H is a graph isomorphic to G, the number of isomorphisms between G and
H is the same as the number of automorphisms of G (or H). We sketch the algorithm
to compute the number of automorphisms of G. See [Mat79] for more details.

In the beginning, label all nodes of G (with pairwise different labels),
so that the identity is the only automorphism of the resulting graph.
Then successively take away the labels. If i is the node where the
label was cancelled last, compute the orbit of i by asking queries of
GI. When all labels are taken away, the number of automorphisms of
G is the product of the orbit sizes constructed during this procedure.

In the above algorithm one needs to construct a graph G[I], where I ⊆ {1, . . . , n},
such that any automorphism of G[I] pointwise stabilizes the nodes in I. Correspond-
ingly, given a formula F in n variables, we need to construct a formula F[I] whose
set of automorphisms corresponds to the pointwise stabilizer of I in Aut(F ). More
precisely, F[I] must retain exactly those automorphisms of F that map variables in
EF (xi) to themselves for all i ∈ I.

Our formula S from section 4 is of no help for this: though it can stabilize a set of
variables, this will not be pointwise. Also, we cannot directly use the labels L defined
in section 4 as they take m new variables to label a variable in a formula with m
variables. Thus, starting with n variables, we would get n(2|I| − 1) new variables to
carry out the marking which is exponential in n when |I| = Θ(n). This is clearly too
much in general.

Here, we give a method to compute F[I] that works in FPNP. Recall that FI
is coNP-hard. Therefore we can in particular use this method when we have FI as
an oracle.

Lemma 5.1. F[I] is computable in FPNP.
Proof. Recall from section 4 that for any automorphism ϕ of F , we have

|EF (xi)| = |EF (ϕ(xi))| for any variable xi. The trick in Lemma 4.3 was to make
|EF (xi)| unique by appending several variables that are equivalent to xi. Now, with
an NP-oracle, we can actually compute the sets EF (xi): just ask the NP-oracle
whether F is equivalent with F ∧ (xi ↔ xj) for all j. Then, if we want to label xi,
we take the smallest label such that xi gets a unique number of equivalent variables.
This will keep the number of new variables needed small.

We construct formula F[I] by successively labelling the variables in I. Let F0 = F .
Suppose that we have already labelled the first k variables of I and obtained the
formula Fk for some k ≥ 0. Say that xi is the next variable to label for some i ∈ I.
That is, xi is not equivalent to any of the variables already labelled. Now, let t be
the smallest number such that, with respect to Fk, we have

|EFk
(xi)|+ t 	= |EFk

(xj)| for any xj 	∈ EFk
(xi),

and define Fk+1 = Fk ∧ L(xi, t). This ensures that any automorphism of the new
formula Fk+1 stabilizes the set EFk

(xi). Thus Fk+1 has the desired property.
The above process is carried out at most |I| ≤ n times. Observe also that the

number t is bounded by n in each iteration. Therefore, we introduce in total at most
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n2 new variables. It follows that F[I] has polynomial length and can be constructed
in polynomial time with the help of an NP-oracle.

Now we can compute the number of isomorphisms between two boolean formulas
in polynomial time relative to FI: simply copy the proof described above, which was
used by Mathon [Mat79] to prove the analogous result for graph isomorphism, but
with the labelling technique from Lemma 5.1.

Theorem 5.2. #FI ∈ FPFI.
We remark that the oracle queries in the algorithm to compute formula F[I] do

not depend on each other; they can be made in parallel.
Consequently, #FI can be computed efficiently with parallel queries to FI.
Mathon’s algorithm for computing the number of isomorphisms of two graphs

is an inductive process, where at each intermediate stage one knows the number of
isomorphisms of the labelled graphs that are considered. This observation led to the
result that GI ∈ LWPP [KST93] (see [FFK94] for definitions of PP and LWPP).
Since LWPP is low for PP, that is, PPLWPP = PP [FFK94], it follows that GI is
low for PP.

Using Lemma 5.1, an analogous argument shows that FI ∈ LWPPNP. Since

LWPP is low for PP relative to any oracle, i.e., PPLWPPNP

= PPNP [FFK94], we
get the following result for FI.

Theorem 5.3. PPFI = PPNP.

6. FI is self-reducible. A set A is self-reducible if, very informally, the decision
problem whether a given instance x is in A can be reduced to smaller instances for A
(under some order). Self-reducibility is a very useful property of a set. For example, if
an NP-set is self-reducible, then the (seemingly more complex) construction problem,
i.e., constructing a witness, can be reduced to the decision problem.

In this section we show that FI is self-reducible. We start by giving formal defi-
nitions of self-reducibility and the underlying partial order.

Definition 6.1. A partial order ≺ on Σ∗ is polynomially related if ≺ is decidable
in polynomial time and there is a polynomial p such that

(i) for any x, y ∈ Σ∗, we have x ≺ y =⇒ |x| ≤ p(|y|), and
(ii) any chain is polynomially length bounded: if x1 ≺ x2 ≺ · · · ≺ xk, then

k ≤ p(|xk|).
Definition 6.2. A set A is self-reducible if there is a polynomially related partial

order ≺ and a deterministic polynomial-time Turing machine M such that
(i) MA accepts A, and
(ii) on input x and any oracle B, MB queries only strings y such that y ≺ x.
The idea to show that FI is self-reducible is pretty simple: for two formulas F

and G, we have that

(F,G) ∈ FI⇐⇒ ∃i, j : (F[i], G[j]) ∈ FI.

Thus the self-reduction constructs the formulas F[i] and G[j] for all values of i and
j and queries the oracle. However, we need to define a polynomially related partial
order according to these queries. There are some subtle points that one has to take
care of.

• For labelling the variables we can use the scheme from Lemma 5.1, which
yields polynomially-sized formulas, even after several labellings. To ensure
polynomially-sized chains, the machine must check if some variables in F and
G are already labelled and, in this case, not relabel them. This is possible
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since a label is easily detectable: it is of the form x↔ y. We use the variable
with the smallest index as a representative for a label and call it a basic
variable of F . Note that the variables that don’t have a label are also basic
variables. By #basic(F ) we denote the number of basic variables of F . The
other variables we refer to as labelling variables. The label size of a basic
variable is the number of labelling variables that label it.
• When all the basic variables of F and G have a unique label size, they define a

permutation on the variables. Then we have to check whether the permuted
formula F is equivalent to G. This we accomplish via the standard self-
reduction for the equivalence problem: set the first variable of both formulas
to 0 and 1, respectively, and then verify that both pairs of the resulting
formulas are equivalent. (Note that all tests can be done with FI as an
oracle.)
Hence our partial order has to respect the order of this latter self-reduction
as well.

Theorem 6.3. FI is self-reducible.
Proof. We start by defining the underlying polynomially related partial order ≺.

By truen we denote a fixed formula over n variables that is a tautology (e.g.,
∧n
i=1(xi∨

x̄i)). In the following, we drop the subscript n and simply write true to denote such
a formula when the number of variables is clear from the context.

For formulas F,G, F ′, G′, we define (F,G) ≺ (F ′, G′) if the length of F is bounded
by a fixed polynomial in the length of F ′; the same holds for G and G′, and any one
of the following three conditions hold.

(i) #basic(F ) < #basic(F ′), and either G = true or #basic(G) ≤ #basic(G′).
(ii) #basic(G) < #basic(G′), and either F = true or #basic(F ) ≤ #basic(F ′).
(iii) #basic(F ) = #basic(F ′), #basic(G) = #basic(G′), and more basic variables in

F and G have unique label sizes than in F ′ and G′, respectively.
This finishes the description of the partial order. Note that it is polynomially related
in the sense of definition 6.1.

We now describe the self-reducing machine, M , in detail. In particular observe
that the queries of M will respect the partial order defined above. At several places,
M has to test whether a boolean formula T is a tautology. This is done by checking
that (T [0], true) and (T [1], true) belong to FI, where by T [b], b ∈ {0, 1}, we denote the
formula obtained from T by setting its first basic variable—and the labelled variables
associated with it—to the value b.

Let F and G be the input formulas over variables x1, . . . , xn. M first checks if
either of F and G equals true.

• If both of them do, then they are isomorphic and so M accepts.
• If exactly one of them, say G, is equal to true, then F and G are isomorphic if
F is a tautology too. This can be checked using the scheme described above.
M accepts if and only if F is a tautology.
• If neither F nor G equals true, then M does the following. It computes the

basic variables of F and G, and finds out if any two basic variables of F are
equivalent by checking if the formula TF,i,j is a tautology, where

TF,i,j = (F ∧ (xi ↔ xj))↔ F

for every pair of basic variables xi and xj of F . If TF,i,j is a tautology, then
xi and xj are equivalent in F ; otherwise, they are not.

– If there are xi and xj in F that are equivalent, thenM accepts if and only
if (F ′, G) ∈ FI, where F ′ is obtained from F by replacing all occurrences



1008 MANINDRA AGRAWAL AND THOMAS THIERAUF

of xj in F by xi and and-ing the formula xi ↔ xj to the resulting
formula. By this transformation, F and F ′ are equivalent and F ′ has
one less basic variable than F . If F has no equivalent basic variables,
then this is repeated for G instead of F .

– If no two basic variables of F or G are equivalent, M computes for
each basic variable its label size. It then checks whether these numbers
of F and G match, i.e., when the list of label sizes for F and G are
sorted, they must coincide. If not, then M rejects as there cannot be
any isomorphism between F and G.
So assume that these numbers match.
∗ If all basic variables of F are uniquely labelled, then M constructs

a permutation ϕ of variables of F such that ϕ(xi) = xj , where the
label size of xi in F and xj in G are the same. ϕ also maps labelled
variables associated with xi to those associated with xj . Now, M
permutes the variables of F using ϕ to obtain the formula F ◦ ϕ,
then checks whether F ◦ ϕ ↔ G is a tautology, and accepts in this
case.
∗ Finally, if there are some basic variables of F with identical label

sizes, for every such variable xi of F , and for every basic variable
xj of G that has the same label size, M queries the oracle whether
(F[i], G[j]) ∈ FI. It accepts if and only if at least one of these pairs
belong to FI.

It is straightforward to see that M respects the partial order defined above, works
in polynomial time, and that MFI accepts FI.

7. Open problems and related work. The hardest NP-problem of which we
know that reduces to FI is GI. We ask:

• Is FI NP-hard?

Let FN be the problem to decide whether two boolean formulas can be made
equivalent via negation mappings. That is, each variable is mapped to either itself or
its complement. FN is coNP-hard and can be many-one reduced to FI [BRS98] but
is not known to be many-one equivalent to FI. Because of the restricted nature of
the negation transformation (compared to congruence), we expect FN to be an easier
problem than FI.

• Can one show a stronger upper bound for FN than we have shown for FI?
For example, is FN in Σ2P ∩Π2P?

Because of the similarity of FI and GI, it might be tempting to think that FI ∈
NPGI. However, recall that FI is coNP-hard so that this would imply that coNP ⊆
NPGI which, in turn, would imply that Σ2P = NP · coNP ⊆ NP ·NPGI = NPGI.
Hence the polynomial hierarchy would collapse [Sch88]. But we don’t have such an
argument for the following:

• Is FI ∈ coNPGI?

As we mentioned already in the introduction, the equivalence of one-time-only
branching programs can be decided efficiently by randomized (Las Vegas type) al-
gorithms: the equivalence problem is in the class coRP. Hence, the corresponding
isomorphism problem is in NP · coRP. An obvious question now is whether it is
NP-hard. Thierauf [Thi98] showed that the isomorphism problem for one-time-only
branching programs is not NP-hard, unless the polynomial hierarchy collapses to the
second level.



THE FORMULA ISOMORPHISM PROBLEM 1009

Acknowledgments. We benefited from discussions with V. Arvind, Bernd
Borchert, Jin-yi Cai, Lance Fortnow, and Toni Lozano.

REFERENCES

[BM88] L. Babai and S. Moran, Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes, J. Comput. System Sci., 36 (1988), pp. 254–276.
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1. Introduction. The theory of representations of Lie groups has countless ap-
plications in mathematics and physics. In particular, it is an indispensable tool of
quantum mechanics. Let D : G→ GLd be an irreducible (finite dimensional) contin-
uous representation of the Lie group G. How fast can we compute the representation
matrix D(g) for a given g ∈ G? This question contains the problem of the efficient
evaluation of special functions and orthogonal polynomials, which can be interpreted
as matrix entries of some suitable representation D (see Vilenkin and Klimyk [22]).

In this paper, we investigate the above question for the general linear groups G =
GLm of complex m bym matrices. This includes the case of the unitary groups U(m),
which are of particular importance for physics, since all the continuous irreducible
representations of U(m) can be obtained from the rational irreducible ones of GLm
by restriction.

It is well known that the irreducible polynomial representations of the general
linear group GLm can be labeled by decreasing sequences λ ∈ N

m (cf. [3]). With
respect to some chosen basis, such a representation is a group morphism

Dλ : GLm −→ GLdλ , A �→ Dλ(A),

and the entries of Dλ are homogeneous polynomials of degree |λ| :=
∑

i λi in the
entries of A. The matrix Dλ(A) is usually called an invariant matrix when the
entries of A are interpreted as indeterminates. Littlewood [14, 15] found an ex-
plicit construction of invariant matrices. He obtained formulas for the polynomial
entries of Dλ(A) in terms of representations of the symmetric group. Grabmeier
and Kerber [10] gave a modern derivation of such formulas, and based on this,
they designed an algorithm for computing invariant matrices. This algorithm in fact
computes a sparse representation of the polynomial entries of the invariant matrix.
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However, the example of the m by m determinant already shows that this approach
cannot be efficient for evaluating Dλ(A) at specific entries A ∈ GLm for larger m:
the determinant polynomial has m! terms, but it can be computed with only O(m3)
arithmetic operations using Gaussian elimination.

As unitary representations of U(m) are important in quantum mechanics, it is not
astonishing that various explicit constructions of representations have been developed
by physicists. (See for instance the books by Biedenharn and Louck [2], where the
entries of invariant matrices are called boson polynomials.)

Gelfand and Tsetlin [9] derived explicit expressions for Dλ(A) for generators A
of GLm with respect to bases adapted to the chain of subgroups

GLm > GLm−1 × C
× > GLm−2 × (C×)2 > · · · > (C×)m.

Such symmetry adapted bases are also called Gelfand–Tsetlin bases. A very detailed
account of this can be found in the book by Vilenkin and Klimyk [22, Chapter 18]; in
section 2 we just present the most basic facts.

The main result of this paper (Theorem 4.1) is an efficient algorithm to evaluate
the representation Dλ with respect to a Gelfand–Tsetlin basis. It has a nonscalar cost
roughly proportional to m2dλ. Besides making optimal use of the symmetry (Schur’s
lemma), our algorithm uses several auxiliary algorithms: an efficient transformation
of matrices with the block structure of a Jordan block to a direct sum of Jordan
blocks, as well as the fast multiplication of Toeplitz matrices with vectors, based on
the fast Fourier transform. These auxiliary algorithms are described in section 3. We
remark that our algorithm was inspired by Clausen’s fast Fourier transform [7] for
the symmetric group, as well as Maslen’s extension to compact Lie groups (see the
survey [16]). Their techniques also rely heavily on symmetry adapted bases.

In section 5 we complement our algorithmic result by proving that dλ nonscalar
operations are indeed necessary for the computation of Dλ(A)v. This is easily ob-
tained by combining Burnside’s theorem with the dimension bound of algebraic com-
plexity. It shows that our algorithm is optimal up to a factor of m2 with respect to
nonscalar complexity.

Our algorithm provides already in the special case of GL2 new results. We obtain
a fast rational O( log ) algorithm for computing all the associated Legendre functions
Pµ
� (cos θ), |µ| ≤ , of degree  from cos θ and sin θ. (See section 6.)
For computing individual entries of the invariant matrix, the cost of our algorithm

may appear to be prohibitively high, mainly because the dimension dλ can be very
large. For instance, for λ = (m, 0, . . . , 0) ∈ N

m we have dλ = ( 2m−1
m ), which is

exponential in m. Is this inherent to the problem, or are there faster algorithms
running with a number of steps polynomially bounded in m?

For approaching this question, we do not focus on individual entries of the in-
variant matrix, but we study related functions having some invariant meaning. Let
λ be a partition of m (or a Young diagram with m boxes). We consider the function
sending A ∈ GLm to the sum of the diagonal entries of the invariant matrix Dλ(A)
corresponding to the weight (1, . . . , 1). This turns out to be the so-called immanant,

imλ(A) =
∑
π∈Sm

χλ(π)

m∏
i=1

Ai,π(i),

of the matrix A corresponding to λ, which was introduced by Littlewood (cf. [15]).
Here, χλ denotes the irreducible character of the symmetric group Sm belonging to λ
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(cf. [3] or [12]). Note that this notion contains the permanent and determinant as
special cases (χλ = 1 or χλ = sgn).

From our algorithm for evaluating representations of GLm we derive in section 7
an upper bound on the computational complexity of immanants which improves pre-
vious bounds due to Hartmann [11] and Barvinok [1] (see Theorem 7.2).

In a subsequent paper [4], we will complement this upper bound by intractabil-
ity results. Strictly speaking, we will prove the completeness of certain families of
immanants corresponding to hook or rectangular diagrams within the framework of
Valiant’s algebraic P-NP theory [20, 21, 5]. This means that these families of im-
manants cannot be evaluated by a polynomial number of arithmetic operations, unless
this is possible for the family of permanents.

2. Preliminaries on representations of GLm. We collect first some facts
about the representations of the complex general linear group GLm (see [3, 8]). Con-
sider GLm−1 as the subgroup of GLm fixing the last canonical basis vector em. A
polynomial representation Dλ : GLm → GL(V ) with highest weight λ ∈ N

m restricted
to GLm−1 splits according to the branching rule [3, section 5.6] into a direct sum of
representations with highest weights µ ∈ N

m−1, which satisfy the betweenness con-
ditions λj ≥ µj ≥ λj+1 for 1 ≤ j < m. It is important that each representation
corresponding to such µ occurs with multiplicity 1. Thus the decomposition of V into
corresponding submodules Vµ is unique. We note that this is also the decomposition
of V restricted to the subgroup GLm−1 ×C

×, as the diagonal matrix diag(1, . . . , 1, t)
operates on Vµ by multiplication with t

|λ|−|µ|. We recall that a vector v ∈ V is said
to be of weight w ∈ N

m iff Dλ(diag(t1, . . . , tm))v = tw1
1 · · · twm

m v.
If we restrict the representation Dλ successively according to the chain of sub-

groups

GLm > GLm−1 × C
× > GLm−2 × (C×)2 > · · · > (C×)m,(2.1)

we finally end up with a decomposition of V into one-dimensional subspaces of weight
vectors. This decomposition is unique, and bases of V adapted to this decomposition
are called Gelfand–Tsetlin bases. Thus Gelfand–Tsetlin bases are uniquely determined
up to a permutation of the basis elements and scaling. We remark that if V is a (finite
dimensional) Hilbert space and Dλ restricted to U(m) is unitary, then a Gelfand–
Tsetlin basis can be chosen to orthonormal.

The splitting behavior can be conveniently visualized by a layered graph G(λ),
whose nodes on level n (1 ≤ n ≤ m) are the occurring irreducible representations of
V restricted to GLn×(C×)m−n. These nodes can thus be uniquely described by pairs
(ν, w), where ν ∈ N

n is a partition and w ∈ N
m−n satisfies |ν| + |w| = |λ|. A node

on level n is connected in the graph G(λ) with a node on level n − 1 if the latter
appears in the decomposition of the former upon restriction to GLn−1 × (C×)m−n+1

(see Figure 2.1).
The number of paths in G(λ) between a node x = (ν, w) at level n and a node

x′ = (ν′, w′) at level n′ < n is just the multiplicity with which x′ occurs in x when
restricted to GLn′×(C×)m−n′

. We denote this multiplicity by mult(x, x′). We call the
maximum of mult(x, x′) taken over all pairs of nodes two levels apart the multiplicity
mult(λ) of the highest weight λ. (In Figure 2.1 we have mult(λ) = 2.)

The vectors of a Gelfand–Tsetlin basis can be labeled by paths in G(λ) going
from the top node λ to a node at level 1. Such paths can be encoded as semistandard
tableaus: for instance, in Figure 2.1 we have two vectors of weight (1, 1, 1) correspond-
ing to the tableaus 1 2

3
and 1 3

2
. The quantity mult(x, x′) can thus be alternatively
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Fig. 2.1. The graph G(λ) for λ = (2, 1, 0), m = 3.

described as the number of semistandard tableaus of the skew diagram ν \ν′ in which
j occurs exactly w′j times (n

′ < j ≤ n). These considerations also imply that the di-
mension dλ equals the number of semistandard tableaus of the diagram λ. Moreover,
the number of vectors of weight (1, . . . , 1) in a Gelfand–Tsetlin basis corresponding
to λ equals the number sλ of standard tableaus on the diagram of λ.

Remark 2.1. We have dλ ≥ m if λ = (λ1, . . . , λm) �= (m, . . . ,m). For hook
partitions λ = (m− i, 1, . . . , 1) we have mult(λ) ≤ 2.

By suitable scaling and ordering of the vectors of a Gelfand–Tsetlin basis, we can
obtain a basis of V , which is adapted to the chain (2.1) of subgroups in a strong sense:
the corresponding matrix representation D of GLm satisfies the following conditions
for all n.

1. The restriction D ↓ GLn × (C×)m−n is equal to a direct sum of matrix
representations of this subgroup.

2. Equivalent irreducible constituents of D ↓ GLn × (C×)m−n are equal.

These properties are crucial for our computational purpose. For convenience, we will
call such adapted bases also Gelfand–Tsetlin bases.

Consider now the matrix Bi,j(t) ∈ GLm with entries 1 in the diagonal, entry t at
position (i, j), and entries 0 elsewhere (i �= j). Let D : GLm → GL(V ) be a rational
representation. Then F = Fi,j : C → GL(V ), t �→ D(Bi,j(t)) is a one-parameter
subgroup: we have F (s + t) = F (s)F (t) for s, t ∈ C. Hence F ′(t) = F ′(0)F (t), and
therefore F (t) = etF

′(0). (Note that F ′(0) must be nilpotent.) Let εi ∈ N
m denote the

basis vector having components 0 except at position i, where the component equals 1.

Lemma 2.2. F ′i,j(0) maps a vector of weight w ∈ Z
m into one of weight w+εi−εj.

Proof. For a fixed vector v of weight w we may write

F (t)v =
∑
s≥0

tsus,

with vectors us ∈ V . We are going to show that us must be a vector of weight
w + s(εi − εj). Then we are finished, since F ′(0)v = u1.

We have gBi,j(t)g
−1 = Bi,j(gitg

−1
j ) for a diagonal matrix g = diag(g1, . . . , gm).

This implies

D(g)F (t) = D(g)D(Bi,j(t)) = D(gBi,j(t)g
−1)D(g) = F (gitg

−1
j )D(g).
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Therefore, as D(g)v = gw1
1 · · · gwm

m v, we obtain

∑
s≥0

tsD(g)us = D(g)F (t)v = gw1
1 · · · gwm

m F (gitg
−1
j )v = gw1

1 · · · gwm
m ·

∑
s≥0

(gitg
−1
j )sus.

By comparing the coefficients of t, we see that us is indeed a vector of weight w +
s(εi − εj).

3. Auxiliary fast linear algebra algorithms. We present some auxiliary al-
gorithms, which we will need as subroutines in our algorithm for evaluating represen-
tations.

The first one is a variant of Gaussian elimination.
Lemma 3.1. Any matrix A ∈ GLm can be factored as A = ANAN−1 · · ·A1∆,

where N ≤ 2m2, ∆ is a diagonal matrix, and all Ai are elementary matrices of the
form Bn−1,n(t) or Bn,n−1(t). Moreover, such a decomposition can be computed with
O(m3) arithmetic operations.

Proof. Recall that multiplying a matrix from the left by Bi,j(t) has the effect of
adding the t-fold of the jth row to the ith row. Also note the following: suppose the
jth row of A equals zero. Then multiplying A from the left by Bi,j(−1)Bj,i(1) has
the effect of interchanging the jth row with the ith row.

By a sequence of elementary row operations affecting only neighboring rows, we
can transform a given invertible matrix A ∈ GLm into diagonal form ∆. Hereby, we
first take care of the first column of A by working up from the bottom row, then we
deal with the second column in a similar way, and so forth. We will illustrate the
procedure in the case m = 4. Let the symbol Ci,j denote either Bi,j(−1)Bj,i(1) or
Bi,j(t) for some t ∈ C. We can obtain a decomposition of the form

(C3,4C2,3C1,2)(C2,3C1,2C4,3)(C1,2C3,2C4,3)(C2,1C3,2C4,3)A = ∆,

where ∆ is a diagonal matrix. (The parentheses indicate the treatment of columns.)
The number of occurring Ci,j matrices equals m(m − 1) in the general situation.
Moreover, the Ci,j and ∆ can be computed with O(m3) arithmetic operations from
A. This proves the lemma.

The next result is well known and relies on the fast Fourier transform (see, for
instance, [6, Corollary 13.13]).

Proposition 3.2. Suppose J ∈ C
r×r is a nilpotent Jordan block. Then etJ is a

Toeplitz matrix. Thus etJu can be computed from t ∈ C and u ∈ C
r with O(r log r)

arithmetic operations. For this, O(r) nonscalar operations are sufficient.
We remark that the computation of etJu is equivalent to the task of evaluating

the polynomial f(T ) =
∑r−1

j=0
uj

j! T
j and all its derivatives at t ∈ C.

The first part of the following lemma shows that a matrix having the block struc-
ture of a Jordan block can be efficiently transformed to a direct sum of Jordan blocks.
The second part follows then easily with Proposition 3.2.

Lemma 3.3. Let M ∈ C
m×m be a matrix decomposed into r2 blocks Mij in

C
mi×mj , m = m1+ · · ·+mr. Suppose that all block entries outside the lower diagonal

are zero; that is, Mij = 0 if i �= j + 1. Then the following is true.
1. There is an invertible block diagonal matrix S = [Sij ] ∈ C

m×m (Sij in
C
mi×mj , Sij = 0 for i �= j) and a permutation matrix P such that PSMS−1P−1

is a direct sum of nilpotent Jordan blocks of size at most r.
2. The product etMu can be computed with O(

∑r
ρ=1m

2
ρ + m log r) arithmetic

operations from t ∈ C and u ∈ C
m.
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Proof. For showing the first part, it is convenient to take a coordinate-free point
of view. Let V = V1 ⊕ · · · ⊕ Vr be a decomposition of vector spaces together with
linear maps ϕρ : Vρ → Vρ+1 for 1 ≤ ρ < r. Let ϕ : V → V be the linear map satisfying
ϕ(v) = ϕρ(v) if v ∈ Vρ, ρ < r, and ϕ(v) = 0 if v ∈ Vr. (Note that ϕ and ϕρ are
coordinate-free versions of M and Mρ+1,ρ, respectively.) By a ϕ-chain of length t we
understand an ordered set of vectors {v1, . . . , vt} such that ϕ(vτ ) = vτ+1 for 1 ≤ τ < t,
and ϕ(vt) = 0. (ϕ-chains correspond to nilpotent Jordan blocks.) The first claim of
the lemma amounts to showing the existence of a basis Eρ for each Vρ such that the
basis E1 ∪ · · · ∪Er of V is a disjoint union of ϕ-chains of length at most r.

For 1 ≤ ρ ≤ σ < r let Vρ,σ denote the kernel of the composition

ϕσ ◦ · · · ◦ ϕρ+1 ◦ ϕρ : Vρ → Vσ+1

and set Vρ,r = Vρ for 1 ≤ ρ ≤ r. Note that Vρ,σ ⊆ Vρ,σ+1 and ϕ
−1
ρ (Vρ+1,σ) = Vρ,σ. In

particular, ϕρ(Vρ,σ) ⊆ Vρ+1,σ.
Choose subsets E1,σ ⊆ V1,σ such that E1,1 ∪ . . . , E1,σ is a basis of V1,σ for all

1 ≤ σ ≤ r. (This means that E1,1 ∪ · · · ∪ E1,r is a basis of V1 adapted to the flag
V1,1 ⊆ · · · ⊆ V1,r of subspaces.)

By induction on ρ = 2, . . . , r we are going to construct finite subsets Eρ,σ ⊆ Vρ,σ
satisfying the following conditions for all ρ ≤ σ ≤ r:

(i)ρ Eρ,ρ ∪ · · · ∪Eρ,σ is a basis of Vρ,σ,
(ii)ρ ϕρ−1(Eρ−1,σ) ⊆ Eρ,σ.
Assume we have already constructed the Eρ−1,σ satisfying (i)ρ−1 and (ii)ρ−1. We

claim that the subset ϕρ−1(Eρ−1,σ) ⊆ Vρ,σ is linearly independent modulo Vρ,σ−1,
provided ρ ≤ σ. Indeed, if we had a nontrivial linear combination∑

v∈Eρ−1,σ

λvϕρ−1(v) ∈ Vρ,σ−1,

then we would have ∑
v∈Eρ−1,σ

λvv ∈ ϕ−1
ρ−1(Vρ,σ−1) = Vρ−1,σ−1.

By our inductive assumption (i)ρ−1, the set Eρ−1,ρ−1 ∪ · · · ∪ Eρ−1,σ−1 is a basis of
Vρ−1,σ−1 and Eρ−1,ρ−1 ∪ · · · ∪Eρ−1,σ is linearly independent. This is a contradiction!
We may now choose subsets Eρ,σ containing ϕρ−1(Eρ−1,σ) such that Eρ,σ is linearly
independent modulo Vρ,σ−1. Then the conditions (i)ρ and (ii)ρ are satisfied.

We have now constructed a basis Eρ := Eρ,ρ∪· · ·∪Eρ,r for each of the spaces Vρ.
We write the basis E := E1 ∪ · · · ∪Er as the disjoint union of the subsets

F :=
⋃
ρ<σ

Eρ,σ and G :=
⋃
ρ

Eρ,ρ.

By our construction, ϕ induces an injective map from F to F ∪ G, and we have
ϕ(G) = {0}. This abstract property easily implies that E is a disjoint union of
ϕ-chains. It is obvious that the length of these chains cannot be bigger than r.

We now provide the proof of the second part of the lemma. Let PSMS−1P−1 =
J = J1⊕· · ·⊕Js be as in the statement of the first part. The Jσ are nilpotent Jordan
blocks of size rσ ≤ r. We have

etM = S−1P−1etJPS, etJ =

s⊕
σ=1

etJσ .
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We can compute u′ = Su from a given u ∈ C
m with O(

∑r
ρ=1m

2
ρ) arithmetic opera-

tions, since S is a block diagonal matrix. The vectors u′σ ∈ C
rσ satisfying ⊕sσ=1u

′
σ =

Pu′ are obtained without further arithmetic operations. By Proposition 3.2, we can
compute each of the products etJσu′σ with O(rσ log rσ) arithmetic operations. Thus
we get u′′ := etJ ⊕σ u′σ from the u′σ with O(

∑s
σ=1 rσ log rσ) ≤ O(m log r) operations.

Summarizing, we have computed etMu from t and u using O(
∑r

ρ=1m
2
ρ + m log r)

arithmetic operations.

4. An algorithm for evaluating representations. The main result of this ar-
ticle is expressed in the following theorem. We call λ ∈ N

m constant iff its components
are all equal.

Theorem 4.1. Let Dλ be the matrix representation of GLm with respect to a
Gelfand–Tsetlin basis with highest weight λ ∈ N

m. We suppose that λ is not constant.
Then the map

GLm × C
dλ −→ C

dλ , (A, v) �→ Dλ(A)v

can be computed with O(m2(mult(λ) + log |λ|) dλ) arithmetic operations. The
nonscalar complexity is bounded by O(m2dλ +mλ1).

Remark 4.2.
1. We assume exact arithmetic of complex numbers.
2. In the above upper bound the cost for constructing the algorithm (precon-

ditioning) is not taken into account. However, the explicit formulas in Vilenkin and
Klimyk [22, Chapter 18] for invariant matrices evaluated at special generators of GLm
suggest that this can also be done very efficiently.

3. We need the assumption that λ is not constant. Otherwise, the determinant
could be evaluated with O(m2 logm) operations (take λ = (1, . . . , 1)).

Corollary 4.3. The invariant matrix with respect to a nonconstant λ ∈ N
m and

a Gelfand–Tsetlin basis can be evaluated at a matrix A ∈ GLm with O(m2(mult(λ) +
log |λ|) d2

λ) arithmetic operations.
Proof (of Theorem 4.1). We first factor the given matrix A ∈ GLm according

to Lemma 3.1 as A = ANAN−1 · · ·A1∆. Note that the cost for doing this is do-
minated by O(m2dλ), since dλ ≥ m for a nonconstant λ ∈ N

m by Remark 2.1. We
therefore have Dλ(A) = Dλ(AN )Dλ(AN−1) · · ·Dλ(A1)Dλ(∆). For given v ∈ C

dλ we
first compute v0 = Dλ(∆)v and then, successively, vi = Dλ(Ai)vi−1 for 1 ≤ i ≤ N .
Obviously, vt = Dλ(A)v.

As a Gelfand–Tsetlin basis consists of weight vectors, and the matrix Dλ(∆) is
diagonal with entries tw1

1 · · · twm
m , where wi ≤ λ1. Thus Dλ(∆)v can be certainly

computed with O(mdλ log λ1) ≤ O(mdλ log |λ|) arithmetic operations. (Note that
2 logwi multiplications are sufficient to obtain t

wi
i .)

It remains to show that we can compute each of the products Dλ(Ai)vi with
O((mult(λ) + log |λ|)dλ) arithmetic operations. We assume that Ai = Bn−1,n(t), the
case of Ai = Bn,n−1(t) being analogous. Let us write V = C

dλ and interpret V as a
GLm-module via Dλ. Recall the graph G(λ) introduced in section 2, which describes
the splitting behavior of V . We have

V ↓ GLn × (C×)m−n =
⊕
x

f(x)⊕
j=1

Vx,j ,(4.1)

where the first sum is over all nodes x of G(λ) at level n, f(x) equals mult(λ, x), and
Vx,j is an irreducible GLn × (C×)m−n-module of type x. Because of the symmetry
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adaptation, the decomposition (4.1) is compatible with our Gelfand–Tsetlin basis;
that is, subsets of this basis form a basis of each Vx,j . As Ai is contained in GLn, the
matrix Dλ(Ai) decomposes according to (4.1) into

Dλ(Ai) = ⊕x ⊕j Dx,j(Ai).

If we write vi = ⊕x⊕j vx,j according to (4.1) (this decomposition can be done for free),
we have Dλ(Ai)vi = ⊕x ⊕j Dx,j(Ai)vx,j . Now it is sufficient to show that each of the
products Dx,j(Ai)vx,j can be computed with O((mult(νx) + log |νx|) dνx) arithmetic
operations, where x = (νx, w), νx ∈ N

n, dνx = dimVx,j . Indeed, then Dλ(Ai)vi can
be computed with a number of arithmetic operations bounded by

∑
x

(mult(νx) + log |νx|) f(x)dνx ≤ (mult(λ) + log |λ|)
∑
x

f(x)dνx

= (mult(λ) + log |λ|) dλ
up to a constant factor. By symmetry adaptation, a subset of the original Gelfand–
Tsetlin basis forms a Gelfand–Tsetlin basis of Vx,j , and Dx,j is the corresponding
matrix representation. We may therefore continue our argumentation assuming that
n = m.

We have to prove now that we can compute the product Dλ(Bm−1,m(t))v with
O((mult(λ) + log |λ|) dλ) arithmetic operations. Put F (t) := Dλ(Bm−1,m(t)) and
Γ := F ′(0). Similarly as in (4.1), we have the decomposition

V ↓ GLm−2 × (C×)2 =
⊕
ν

|λ|−|ν|⊕
a=0

f(ν,a)⊕
j=1

Vν,a,j ,(4.2)

where the first two sums are over all ν, a such that the pair x := (ν, w) with w :=
(a, |λ| − |ν| − a)) is a node of G(λ) at level m− 2. The irreducible GLm−2 × (C×)2-
module Vν,a,j is of type x, and f(ν, a) = mult(λ, x). Note that f(ν, a) ≤ mult(λ).

F (t) commutes with GLm−2, and hence so does Γ. Therefore, Γ maps the isotyp-
ical components

Wν :=
⊕
a

⊕
j

Vν,a,j

of V ↓ GLm−2 into itself. Note that dimWν = g(ν)dν , where g(ν) :=
∑

a f(ν, a).
From Lemma 2.2 we know that Γ maps ⊕jVν,a,j into ⊕jVν,a+1,j . Now we decompose
Γ according to (4.2) into dν × dν-matrices Γ(ν′,a′,j′),(ν,a,j). From the observations
made just before, we see that these matrices vanish unless ν′ = ν and a′ = a + 1.
Such a matrix affords a GLm−2-module morphism Vν,a,j → Vν,a′,j′ . On the other
hand, the identity matrix affords as well a GLm−2-module morphism between these
spaces, since our basis is adapted to this subgroup. Schur’s lemma implies therefore
that Γ(ν,a′,j′),(ν,a,j) must be a multiple of the dν × dν identity matrix.

Let Γν denote the matrix [Γ(ν,a′,j′),(ν,a,j)](a′,j′),(a,j), that is, the matrix of Γ re-
stricted to Wν . It is not hard to see that Γ

ν equals, after some suitable permutation
of our basis of Wν , a direct sum of dν identical copies of a matrix Mν ∈ C

g(ν)×g(ν)

(see Figure 4.1). This matrix Mν has a decomposition into (|λ| − |ν| + 1)2 blocks
Mν

a′,a ∈ C
f(ν,a′)×f(ν,a), and all blocks outside the lower diagonal vanish: Mν

a′,a = 0
unless a′ = a+ 1.
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Γν =

x
x

y
y

z
z

w
w

�

x
y

z w

x
y

z w

=Mν ⊕Mν

Fig. 4.1. The matrix Γν for λ = (2, 1, 0, 0) and ν = (1, 0). We have f(ν, 0) = 1, f(ν, 1) = 2,
f(ν, 2) = 1, g(ν) = 4, and dν = 2.

From Lemma 3.3(2) we know that a product etM
ν

u can be computed from t ∈ C

and u ∈ C
g(ν) with a number of arithmetic operations bounded by∑

a

f(ν, a)2 + g(ν) log(|λ| − |ν|+ 1) ≤ g(ν)mult(λ) + g(ν) log(|λ|+ 1)

up to a constant factor. Therefore, a product F (t)v can be computed with

O

(∑
ν

dνg(ν)
(
mult(λ) + log(|λ|+ 1))

)

arithmetic operations, which proves the claim, as dλ =
∑

ν dνg(ν).
The estimation of the nonscalar complexity is similar.

5. A lower bound. The subsequent lower bound result shows that our algo-
rithm is optimal up to a factor of m2 with respect to the number of nonscalar opera-
tions.

Theorem 5.1. Let λ ∈ N
m be such that |λ| > 1, and let v ∈ C

dλ be nonzero. Let
Dλ denote a matrix representation of GLm with highest weight λ. Then any arith-
metic algorithm (formally, algebraic computation tree) computing the map GLm →
C
dλ , A �→ Dλ(A)v requires at least dλ nonscalar operations. The evaluation of the in-

variant matrix GLm → GLdλ , A �→ Dλ(A) requires at least d2
λ nonscalar operations.

Proof. The theorem of Burnside (cf. [13]) states that the linear hull of the image
of Dλ equals C

dλ×dλ , as Dλ is irreducible. Therefore, the entries of the invariant
matrix corresponding to λ are linearly independent polynomials of degree |λ| > 1.
The dimension bound in [6, (4.12)] easily implies the claims.

6. Fast evaluation of Legendre functions. The algorithm of section 4 can
be applied to evaluate many special functions and orthogonal polynomials (Legendre,
Jacobi, Gegenbauer polynomials, generalized Beta functions, etc.), since all these
are matrix entries of a suitable representation of GLm (compare [22]). We illustrate
this here by the simple example of the associated Legendre functions and obtain a
new result.

For the following facts about the representations of GL2 or the special unitary
group SU(2), see [22, section 6.2]. The natural operation of GL2 on the space V of
homogeneous bivariate polynomials of degree 2 in the indeterminates X,Y affords
an irreducible representation of highest weight λ = (2, 0) and dimension dλ = 2+1.
All irreducible representations of GL2 are obtained in this way for  ∈ 1

2N. Note that
mult(λ) = 1. In what follows, we will assume that  ∈ N. The basis (ψk)−�≤k≤� given
by the elements

ψk :=
X�−k Y �+k√
(− k)!(+ k)!
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is a Gelfand–Tsetlin basis having the additional property that the corresponding ma-
trix representation D� = [D�

µν ]−�≤µ,ν≤� restricted to SU(2) is unitary. Consider the
special unitary matrix

A(θ) :=

(
cos θ/2 i sin θ/2
i sin θ/2 cos θ/2

)
.

Theorem 4.1 yields an algorithm to compute a column of D�(A(θ)) from cos θ/2 and
sin θ/2 with O( log ) arithmetic operations. A closer look at this algorithm reveals
that the (rational) computation may start with cos θ and sin θ. Indeed, we have the
matrix factorization

A(θ) =

(
1 0
a 1

)(
1 b
0 1

)(
c 0
0 c−1

)
,

where a = i(1 − cos θ)/ sin θ, 2b = i sin θ, and c = cos θ/2. Moreover, note that
cw1(c−1)w2 = (c2)w1−� = ( 1+cos θ

2 )w1−� for all weights (w1, w2) of V .
In turns out that the middle column ofD�(A(θ)) just contains, up to some scaling,

the associated Legendre functions Pµ
� (cf. [22, section 6.3.7 (3)]: we have for |µ| ≤ 

D�
−µ,0(A(θ)) = i−µ

√
(− µ)!
(+ µ)!

Pµ
� (cos θ).

Corollary 6.1. All the associated Legendre functions Pµ
� (cos θ), |µ| ≤ , can

be computed from cos θ and sin θ by an algorithm using only rational operations with
O( log ) arithmetic operations. The nonscalar complexity is bounded by O().

Remark 6.2. One can give a direct proof of Corollary 6.1 as follows. The associ-
ated Legendre functions Pµ

� satisfy (0 ≤ µ ≤ )

Pµ
� (x) = (−1)µ(1− x2)µ/2

dµP�(x)

dxµ
,

where P�(x) denotes the Legendre polynomial of degree . (This again shows that
Pµ
� (cos θ) is a polynomial in cos θ and sin θ.) By Proposition 3.2, we can evaluate
P� and all its derivatives at x with O( log ) arithmetic operations (compare the
comment following this proposition). Moreover, we have for 0 ≤ µ ≤  that

P−µ� (x) = (−1)µΓ(− µ+ 1)
Γ(+ µ+ 1)

Pµ
� (x)

(cf. [22, section 3.5.8 (10)]; Γ stands for the Gamma function). This finishes the
alternative proof of Corollary 6.1.

7. Fast evaluation of immanants. The immanant of a matrix A ∈ C
m×m

corresponding to a partition λ of m is defined as (cf. [15])

imλ(A) =
∑
π∈Sm

χλ(π)

m∏
i=1

Ai,π(i),

where χλ denotes the irreducible character of the symmetric group Sm belonging to λ
(cf. [3] or [12]). Note that this notion contains the permanent and determinant as
special cases (χλ = 1 or χλ = sgn). The reader may find some algebraic properties of
immanants in Merris [17, 18].
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The following lemma reduces the evaluation of immanants to the evaluation of
invariant matrices. It states that immanants are in fact obtained as the sum of the
diagonal entries of invariant matrices corresponding to the weight (1, . . . , 1). The
proof of the lemma follows easily from Theorem 2.4 in [10].

Lemma 7.1. Let λ ∈ N
m be a partition of m. Suppose Dλ = [Di,j ] is an

irreducible matrix representation of GLm of type λ with respect to a basis of weight
vectors. Then we have for all A ∈ GLm that

imλ(A) =
∑
i

Di,i(A),

where the sum is over all i corresponding to basis vectors of weight (1, . . . , 1).
If we extend the above sum over all indices, we get the character of Dλ evaluated

at A. It is interesting that this value can always be computed with a polynomial
number of arithmetic operations in m. See Proposition 7.4 at the end of this section.

By combining Theorem 4.1 with the above lemma we get the following result.
Theorem 7.2. Let λ ∈ N

m be a nonconstant partition of m, and let sλ denote
the number of standard tableaus on the diagram of λ. One can compute imλ(A) from
A ∈ GLm with a number of arithmetic operations bounded by

O
(
m2(mult(λ) + logm) sλdλ

)
.

The nonscalar complexity is bounded by O(m2sλdλ).
Remark 7.3. Hartmann [11] proved the upper boundm6(m−s)+4 for the nonscalar

complexity to evaluate permanents corresponding to partitions with at most s parts.
Barvinok [1] showed the upper bound O(m3d4

λ) for the total complexity. Our bound
improves Barvinok’s, as sλ ≤ dλ and mult(λ) ≤ dλ.

To compare our bound with those of Hartmann, consider hook partitions λ =
(k, 1, . . . , 1) ∈ N

m. For such λ one can show that

sλ =
(
m−1
k−1

)
, dλ =

m+k−1
m

(
m+k−2

m−k, k−1, k−1

)
,

and hence m2sλdλ ≤ m218m. This is considerably smaller than Hartmann’s bound
m6k if k ≥ m/2.

For permanents, our Theorem 7.2 yields the bound O(m1.54m logm), which is not
too far away from the best-known upper bound O(m2m) due to Ryser [19].

In a subsequent paper [4], we will complement this upper bound by completeness
results within Valiant’s algebraic P-NP theory [20, 21]. (For a comprehensive account
of this theory, see [5].) In fact, we will prove the completeness of certain families of
immanants corresponding to hook or rectangular diagrams.

We close by showing that the characters of GLm can be evaluated very rapidly.
Let 2 ≤ ω < 3 denote the exponent of matrix multiplication (cf. [6]).

Proposition 7.4. Let ε > 0. Then for all m, the character Tr(Dλ(A)) can be
evaluated at a given matrix A ∈ GLm with O(max{λ1,m}ω+ε) arithmetic operations.

Proof. The Schur polynomial of λ is defined as Sλ = Tr(Dλ(diag(x1, . . . , xm))).
Let σi denote the ith elementary symmetric polynomial in m variables, and set σi = 0
if i < 0 or i > m. Moreover, let µ = (µ1, . . . , µλ1

) be the partition conjugate to λ.
Giambelli’s formula states that (cf. [8, section A.1 (A.6)])

Sλ = det[σµi+j−i]1≤i,j≤λ1 .
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Let Tm+
∑m

i=1(−1)ici(A)Tm−i be the characteristic polynomial of the matrix A with
eigenvalues x1, . . . , xm. Then we have ci(A) = σi(x) for all i. Therefore, we get from
Giambelli’s formula that

Tr(Dλ(A)) = Sλ(x) = det[cµi+j−i(A)]1≤i,j≤λ1
.

The algorithm is now as follows. First, compute the coefficients ci(A) of the character-
istic polynomial for given A with O(mω+ε) arithmetic operations (cf. [6, section 16.6]).
Then compute Tr(Dλ(A)) by evaluating the determinant using O(λ

ω+ε
1 ) operations

(cf. [6, section 16.4]).
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Abstract. Permanents and determinants are special cases of immanants. The latter are poly-
nomial matrix functions defined in terms of characters of symmetric groups and corresponding to
Young diagrams. Valiant has proved that the evaluation of permanents is a complete problem in both
the Turing machine model (#P-completeness) as well as in his algebraic model (VNP-completeness).
We show that the evaluation of immanants corresponding to hook diagrams or rectangular diagrams
of polynomially growing width is both #P-complete and VNP-complete.
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1. Introduction. The permanent per(A) of an n by n matrix A = [ai,j ] is
defined by

per(A) :=
∑
π

n∏
i=1

ai,π(i),

where the summation is over all permutations π in Sn. Note that in contrast to the
determinant, each term has a positive sign.

From the viewpoint of computational complexity, the determinant and permanent
have, in spite of the similarity in their definitions, very little in common. While there
are efficient polynomial time algorithms for the evaluation of the determinant, the
best-known algorithm for the evaluation of the permanent of an n by n matrix needs
O(n2n) arithmetic operations (Ryser [20]). A hypothesis due to Valiant in fact claims
that the permanent cannot be computed with a polynomial number of arithmetic
operations. This hypothesis is supported by Valiant’s famous result [23] stating that
the problem to evaluate the permanent of a matrix with entries in {0, 1} is #P-
complete, as well as his analogous VNP-completeness result [22] in a framework of
algebraic computations.

Both permanents and determinants are special cases of immanants introduced
by Littlewood [16]. To define these polynomial matrix functions, we have to rely on
some basic facts about the characters of the symmetric groups, which can be found for
instance in the books by Boerner [2], James and Kerber [13], or Fulton and Harris [9].

It is known that the irreducible characters of the symmetric group Sn can be
labeled by partitions of n, i.e., by decreasing sequences λ = (λ1, . . . , λs) of natural
numbers adding up to n. A partition will be identified with its (Young) diagram
{(i, j) | 1 ≤ j ≤ λi}, which can be visualized as a left-justified arrangement of λi
boxes in the ith row. (Compare Figure 3.1.) We call |λ| :=

∑
i λi the size and λ1

the width of λ and will use the notation λ � n to express that λ is a partition or a
diagram of size n. A diagram is called rectangular iff λ1 = · · · = λs.
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Let χλ : Sn → Z denote the irreducible character of the symmetric group Sn
corresponding to the diagram λ � n. The immanant of an n by n matrix A = [ai,j ]
corresponding to λ is defined by

imλ(A) :=
∑
π∈Sn

χλ(π)

n∏
i=1

ai,π(i).

For the “horizontal” diagrams given by λ = (n) we have χλ = 1, and the corresponding
immanants specialize to the permanents. In the case of the “vertical” diagrams given
by λ = (1, . . . , 1) we get χλ = sgn, and the immanants specialize to the determinants.
These diagrams are special cases of those described by (k, 1, . . . , 1), which are called
hook diagrams because of their shape. By hook immanants or rectangular immanants
we will understand the immanant polynomials corresponding to diagrams of the cor-
responding shape. The reader may find some algebraic properties of immanants in
Merris [17, 18].

Our interest for immanants stems from the fact that they constitute a natural
parameterized set of polynomials, which allows us to study the change of computa-
tional complexity from easy (polynomial time computable) to difficult (complete) as
the diagram λ of size n varies between the vertical and the horizontal diagram. To
make this more specific, think for instance of the set of hook diagrams (k, 1, . . . , 1) � n
as the parameter k varies between 1 and n.

In the previous paper [3] we have developed a fast algorithm to evaluate rep-
resentations of general linear groups. As a byproduct, we obtained an algorithm to
evaluate the immanant imλ at a matrix A with nonscalar cost proportional to n2sλdλ,
where sλ and dλ denote the number of standard tableaus and semistandard tableaus
on the diagram of λ, respectively. This upper bound improves previous bounds due
to Hartmann [11] and Barvinok [1].

In the present article we complement the upper bounds in [3] by completeness
results for certain families of immanants. The results will be formulated in Valiant’s
algebraic P-NP theory, centering around the notion of VNP-completeness. The main
features of this theory are recalled in section 2. Note that all VNP-completeness
statements in this article refer to a ground field of characteristic zero.

A sequence (λ(n)) of diagrams such that the size of λ(n) is polynomially bounded
in n will be called a p-sequence of diagrams. If, additionally, the width of λ(n) is
growing at least polynomially in the size of λ(n), then we call such a sequence to be
of polynomially growing width. The corresponding families of immanant polynomials
will also be called so.

We have the following conjecture.
Conjecture 1.1. Any family of immanant polynomials of polynomially growing

width is VNP-complete.
The achievement of this paper is the proof of this conjecture in two special sit-

uations: for hook and rectangular immanants. The statement for hook immanants
generalizes a result by Hartmann [11], while the claim for rectangular immanants
answers an open problem posed by Strassen [21, Problem 14.2].

Theorem 1.2. Any family of hook immanants or rectangular immanants of
polynomially growing width is VNP-complete.

For sequences of diagrams of bounded width we have so far no clear idea of the
complexity of the corresponding immanants. We raise the following question.

Problem 1.3. Is the family of rectangular immanants corresponding to rectangles
of width 2 VNP-complete?
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We remark that families of hook immanants of bounded width are p-computable.
This is an immediate consequence of the upper complexity bound in [3] mentioned
before.

Our proofs also yield #P-completeness results for the problem to evaluate im-
manants at matrices A with entries in {0, 1}. However, note that imχ(A) may be
negative, with absolute value bounded by n!nn ≤ n2n for A ∈ {0, 1}n×n. We will
therefore interpret the evaluation problem below as the modified problem to compute
imχ(A) + n2n from A ∈ {0, 1}n×n.

Corollary 1.4. Assume in Theorem 1.2 that the sequence of diagrams is poly-
nomial time computable. Then the problem to evaluate the corresponding immanant
at a given matrix with entries in {0, 1} is #P-complete.

The paper is organized as follows. In section 2 we recall the main features of
Valiant’s algebraic P-NP theory. The goal of section 3 is the proof of an auxiliary
result (Lemma 3.1) which is crucial for our completeness proofs. It expresses values
of characters corresponding to rectangular diagrams by characters of hook diagrams.
Section 4 is devoted to the proof that families of immanants are indeed p-definable.

In section 5, we provide the proof of Theorem 1.2 in several steps. The general
strategy is to identify alternating sums of immanants corresponding to smaller parti-
tions as a projection of a given immanant (Lemma 5.1), by applying the Murnaghan–
Nakayama rule for the characters of the symmetric group. In combination with
Lemma 3.1 we exhibit alternating sums of hook immanants as projections of rect-
angular immanants. This is then combined with technical results, which allows to
obtain permanents or Hamilton cycle polynomials as projections of linear combina-
tions of hook immanants.

2. Valiant’s algebraic model of NP-completeness. We briefly recall the
main features of Valiant’s algebraic P-NP theory. For detailed expositions we refer
to the survey by von zur Gathen [10] and the books by Bürgisser, Clausen, and
Shokrollahi [7, Chapter 21] and Bürgisser [6].

We will adopt the following useful convention: we denote matrix functions with
small letters, but the corresponding function evaluated at a matrix with distinct
indeterminate entries is written in capitals. For instance, per(A) is the permanent of
the n by n matrix A, and

PERn =
∑
π∈Sn

n∏
i=1

Xi,π(i)

denotes the permanent of an n by n matrix with indeterminate entries Xi,j . Likewise,
IMλ denotes the immanant polynomial corresponding to the diagram λ � n.

Throughout the paper, the discussion will refer to a fixed field k of characteristic
zero. (The reader may assume k = Q.) By a p-family we understand a sequence
(fn) of multivariate polynomials fn ∈ k[X1, . . . , Xv(n)] such that the number of vari-
ables v(n) as well as the degree deg fn are p-bounded functions of n, i.e., these func-
tions are majorized by a polynomial in n. Interesting examples are the permanent
family PER = (PERn), the determinant family DET = (DETn), and the family
HC = (HCn) of Hamilton cycle polynomials defined by

HCn =
∑
π

n∏
i=1

Xi,π(i),
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where the sum is over all cycles π ∈ Sn of length n. Note that the value of HCn at
the adjacency matrix of a digraph equals the number of its Hamilton cycles.

Let L(fn) denote the total complexity of fn ∈ k[X1, . . . , Xv(n)], that is, the mini-
mum number of arithmetic operations +,−, ∗ to compute fn from the variables Xi and
constants in k by a straight-line program. We call a p-family p-computable iff L(fn)
is p-bounded in n. The p-computable families constitute the complexity class VP.

A p-family (fn) is called p-definable iff there exists a p-computable family (gn),
gn ∈ k[X1, . . . , Xu(n)], such that for all n

fn(X1, . . . , Xv(n)) =
∑

e∈{0,1}u(n)−v(n)

gn(X1, . . . , Xv(n), ev(n)+1, . . . , eu(n)).

The set of p-definable families form the complexity class VNP.

We will employ a very simple notion of reduction. A polynomial fn is called a
projection of a polynomial gm ∈ k[X1, . . . , Xu], written fn ≤ gm, iff

fn(X1, . . . , Xv(n)) = gm(a1, . . . , au)

for some ai ∈ k ∪ {X1, . . . , Xv(n)}. That is, fn can be derived from gm through
substitution by indeterminates and constants. A p-family (fn) is called a p-projection
of a family (gm) iff there is a p-bounded function t : N→ N such that fn is a projection
of gt(n) for all n. Finally, a p-definable family (gm) is called VNP-complete iff any
(fn) ∈ VNP is a p-projection of (gm).

In [22] Valiant proved that the p-families PER of permanents and HC of Hamilton
cycles polynomials are VNP-complete (over fields k of characteristic different from
two, which is a general assumption in this paper). Thus PER is not p-computable iff
Valiant’s hypothesis VP �= VNP is true.

One can prove that the “generating functions” corresponding to several NP-
complete graph problems like cliques, graph factors, Hamilton cycles in planar graphs,
etc. yield VNP-complete families as well (see [6, Chapter 3]). In fact, Valiant’s hy-
pothesis can be considered as a nonuniform algebraic counterpart of the well-known
hypothesis P �=NP due to Cook [8]. For results relating these two hypotheses, see [4, 6].
We mention in passing that, by contrast with the classical P-NP theory, one knows
specific p-definable families over finite fields, which are neither VNP-complete, nor
p-computable, provided the polynomial hierarchy does not collapse (cf. [5, 6]).

For later use, we state some results going back to Valiant [24]; detailed proofs can
be found in [6]. The first result shows that the complexity class VNP is closed under
various natural operations.

Proposition 2.1. Let (fn) and (gn) be p-definable; say fn ∈ k[X1, . . . , Xv(n)].
Then the following hold.

(i) Sum and product. (fn + gn) and (fn · gn) are p-definable.
(ii) Substitution. (fn(g1, . . . , gv(n))) is p-definable.
(iii) Coefficient. If hn ∈ k[Xu(n)+1, . . . , Xv(n)] is the coefficient of some power

product Xi1
1 · · ·X

iu(n)

u(n) in fn for some u(n) ≤ v(n), then the family (hn) is p-definable.

The second result is a useful criterion for p-definability which connects the nonuni-
form counting complexity class #P/poly to the class VNP. Note that functions ϕ,
which are computable in polynomial time on a Turing machine, are clearly contained
in the class #P/poly. (For the definition of #P see [23]; a general definition of
nonuniform complexity classes like #P/poly can be found in Karp and Lipton [15].)
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Proposition 2.2. Suppose ϕ : {0, 1}∗ → N is a function in the class #P/poly.
Then the family (fn) of polynomials defined by

fn =
∑

e∈{0,1}n
ϕ(e)Xe1

1 · · ·Xen
n

is p-definable.

3. Character formulas for the symmetric group. We first recall some char-
acter formulas for the symmetric group for later use. These formulas are then applied
to derive Lemma 3.1, which is a crucial ingredient of our completeness proofs. More
information on the characters of the symmetric groups can be found in the books by
Boerner [2], James and Kerber [13], or Fulton and Harris [9].

We recall that λ � n means that λ = (λ1, . . . , λs) is a partition of n. The
irreducible character of Sn corresponding to λ is denoted by χλ.

To a partition λ we may assign the strictly decreasing sequence

� = [�1, . . . , �s] := (λ1, . . . , λs) + (s− 1, s− 2, . . . , 1, 0)

in N
s which satisfies

∑
�i = n +

(
s
2

)
. (We use square brackets to distinguish � nota-

tionally from a partition λ.) It is useful to index the irreducible characters of Sn by
such sequences, thus we set χ� := χλ. We can extend this definition to any � ∈ N

s

satisfying
∑

�i = n +
(
s
2

)
by requiring the function � → χ� to be alternating. In

particular, χ� vanishes if two components of � are equal. We also include the case
n = 0 by setting χ[s−1,...,0](1) := 1.

Conjugacy classes of permutations in Sn are described by their cycle format
(ρ1, . . . , ρn), where ρi denotes the number of i-cycles. Clearly,

∑
i iρi = n. It

will be convenient to write cycle formats in frequency notation ρ = 1ρ1 · · ·nρn , or
shorter ρ |= n in order to express that ρ is a cycle format of n. Moreover, we set
χ�(ρ) := χ�(π), where π is any permutation with cycle format ρ.

Let us,i := Zi
1 + Zi

2 + · · · + Zi
s denote the ith elementary power sum in the

indeterminates Z1, . . . , Zs, and let

∆s := det(Zs−j
i )1≤i,j≤s =

∏
i<j

(Zi − Zj)

be the discriminant. The characters of Sn are determined by the remarkable formula
of Frobenius (cf. [9, 4.10, p. 49]):

∆s · uρ1

s,1 · · ·uρn
s,n =

∑
�

χ�(ρ)Z�1
1 · · ·Z�s

s ,(3.1)

where the sum is over all � ∈ N
s satisfying

∑
�i = n +

(
s
2

)
. From this formula one

easily deduces Frobenius’ recursion formula for the characters of Sn (cf. [2, VI, section
3]): let 1 ≤ h ≤ n and ρ |= n−h. Then we have for all � ∈ N

s satisfying
∑

�i = n+
(
s
2

)

χ�(ρ · h) =
∑
i

χ[�1,...,�i−1,�i−h,�i+1,...,�s](ρ),(3.2)

where the sum is over all 1 ≤ i ≤ s such that �i ≥ h, and with the property that
�1, . . . , �i−1, �i − h, �i+1, . . . , �s are pairwise distinct numbers.

Sometimes it is convenient to use a recursion formula related to (3.2), the so-called
Murnaghan–Nakayama rule. We recall that a partition λ � n can be represented
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λ = (7, 6, 5, 5, 4, 3)

µ = (7, 4, 4, 3, 3, 3)

r(λ, µ) = 3

Fig. 3.1. A skew hook for the diagram of λ.

by its diagram {(i, j) | 1 ≤ j ≤ λi}, which should be visualized as a left-justified
arrangement of λi boxes in the ith row. A skew hook for λ is a connected region of
boundary boxes for its diagram such that removing them leaves a diagram for another
partition µ. We denote by r(λ, µ) the number of vertical steps in the skew hook, i.e.,
one less than the number of rows in the hook. For illustration see Figure 3.1.

The Murnaghan–Nakayama rule now reads as follows: For λ � n, 1 ≤ h ≤ n, and
ρ |= n− h, we have

χλ(ρ · h) =
∑
µ

(−1)r(λ,µ)χµ(ρ),(3.3)

where the sum is over all partitions µ � n−h that can be obtained from λ by removing
a skew hook containing h boxes (cf. [13, 2.4.7, p. 60] or [9, p. 59]).

As an example, let us compute the value of χλ on an n-cycle. The Murnaghan–
Nakayama rule implies immediately that χλ(n1) = (−1)i if λ equals a hook partition
(n− i, 1, . . . , 1), and that χλ(n1) = 0 otherwise.

For the rest of the paper, we will denote the characters corresponding to the
hook partitions (n − i, 1, . . . , 1) � n by χn,i and call them hook characters. The
corresponding hook immanant polynomials will be denoted by HIn,i for 0 ≤ i < n.
Note that HIn,i corresponds to a diagram of width n − i. For instance we have
HIn,0 = PERn and HIn,n−1 = DETn.

Now assume ρ |= n, ρ �= n1. The orthogonality relations (cf. [9, I, section 2.2])
and the above observation on the value of χλ on an n-cycle imply that

∑
λ	n

χλ(n1)χλ(ρ) =

n−1∑
i=0

(−1)iχn,i(ρ) = 0.

From this one easily concludes the following formula due to Merris [19]:

n−1∑
i=0

(−1)i HIn,i = nHCn.(3.4)

We illustrate Frobenius’ recursion formula (3.2) by computing the value χ(2,2,2,2)

for permutations in S8 of cycle format 24. To the rectangular partition (2, 2, 2, 2)
there corresponds the sequence � = [5, 4, 3, 2]. The recursive application of (3.2) can
be illustrated by the tree T2,2 in Figure 3.2. This tree has depth 4 and its nodes
carry a label � ∈ N

4 having distinct components. The meaning of the tree T2,2 is the
following: Consider a node with label � at level 1 ≤ t ≤ 4, and let �(1), . . . , �(M) be
the labels of the sons of this node. Then we have by (3.2) that

χ�(2
t) =

M∑
i=1

χ�(i)(2
t−1).
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❤❤❤❤❤❤❤❤❤
✭✭✭✭✭✭✭✭✭

✘✘✘✘✘✘


✧✧✧
❜❜❜

✏✏✏✏✏


✧✧✧
❜❜❜

[5,4,3,2]

[5,4,1,2] [5,4,3,0]

[5,4,1,0][3,4,1,2] [5,4,1,0]

[3,4,1,0]

[3,2,1,0]

[5,2,1,0][3,4,1,0]

[3,2,1,0] [3,2,1,0]

[5,2,3,0]

[5,2,1,0]

[3,2,1,0]

[3,4,1,0] [5,2,1,0]

[3,2,1,0] [3,2,1,0]

Fig. 3.2. The tree T2,2 illustrating the recursive application of Frobenius’ recursion formula.

From this it follows that χ[5,4,3,2](2
4) is the sum of χ[3,2,1,0](1) over all leaves of the

tree. Hence χ[5,4,3,2](2
4) = 6χ[3,2,1,0](1) = 6.

To simplify notation, we will write χms for the character corresponding to a
rectangular partition (m, . . . ,m) � sm, and IMms for the corresponding rectangular
immanant polynomial.

The technical lemma below generalizes the above computational example and
expresses certain values of χms by hook characters. The lemma will be crucial in our
completeness proof in section 5.

Lemma 3.1. Let s = qm + r, 1 ≤ r ≤ m, q ≥ 0. Then we have for all cycle
formats ρ |= m, ρ �= m1, that

χms(ms−1 · ρ) = γm,s

r−1∑
i=0

(−1)iχm,i(ρ)

and

χms(ms) = rγm,s + mβm,s,

where

γm,s =
(s− 1)!

q!m−r(q + 1)!r
, βm,s = qγm,s.

Proof. As in the above example (Figure 3.2), we can describe the recursive ap-
plication of Frobenius’ recursion formula (3.2) for computing χms(ms) by a labeled
tree Tm,s. This tree is built up as follows. The root carries the label

�(0) := [m + s− 1,m + s− 2, . . . ,m] = (m,m, . . . ,m) + (s− 1, s− 2, . . . , 0).

To an already constructed node with label �, we create a son for every �−mek which
has nonnegative and distinct components. Here ek ∈ {0, 1}s denotes the canonical
basis vector having a 1 at position 1 ≤ k ≤ s.

We will soon prove that all leaves of Tm,s carry the label [s − 1, . . . , 1, 0]. Using
this already, we see that the nodes one level above the leaves carry a label of the form
Lk := [s−1, . . . , 1, 0] +mek for 1 ≤ k ≤ m. Let αk denote the number of these nodes.
By a repeated application of the recursion formula (3.2), we obtain for all ρ |= m

χms(ms−1 · ρ) =

m∑
k=1

αkχLk
(ρ).
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A k-cycle transforms the sequence (m − k + 1, 1, . . . , 1, 0, . . . , 0) + (s − 1, . . . , 1, 0)
into Lk, and thus χLk

equals up to a sign a hook character: χLk
= (−1)k−1χm,k−1.

Now the point is that

α1 = · · · = αr, αr+1 = · · · = αm.(3.5)

Assuming this for the moment, we may conclude for ρ |= m, ρ �= m1, that

χms(ms−1 · ρ) = α1

r−1∑
i=0

(−1)iχm,i(ρ) + αr+1

m−1∑
i=r

(−1)iχm,i(ρ)

= (α1 − αr+1)

r−1∑
i=0

(−1)iχm,i(ρ),

where we have used formula (3.4) in the last equality. We also get (recall that
χm,i(m

1) = (−1)i)

χms(ms) = rα1 + (m− r)αr+1 = r(α1 − αr+1) + mαr+1.

So it remains to show (3.5) and to check that indeed α1 − αr+1 = γm,s and
αr+1 = qγm,s.

To a leaf of Tm,s there corresponds bijectively the path from the root to this leaf,
which can be uniquely described by the sequence of labels (�(0), . . . , �(s)) of the nodes
along this path. By assigning to �(i) the set Ai ⊆ B := {0, 1, . . . ,m + s − 1} of its
components, we get a sequence (A0, . . . , As) of subsets of B all having cardinality s,
and which satisfy

Ai+1 = (Ai \ {ai}) ∪ {ai −m}(3.6)

with some ai ∈ Ai such that ai ≥ m and ai − m �∈ Ai. It is easy to see that this
correspondence is in fact a bijection between the paths of Tm,s from the root to a
leaf and the sequences (A0, . . . , As) of subsets of B satisfying (3.6) and such that
A0 = {m,m + 1, . . . ,m + s− 1}.

Now consider the complements Ai := B \ Ai. They are all of cardinality m. By
induction on i one shows that the remainders modulo m of the elements of Ai are
pairwise distinct. Hence we may write

Ai = {p(i)
1 m, p

(i)
2 m + 1, . . . , p(i)

m m + m− 1}(3.7)

with a uniquely determined vector p(i) = (p
(i)
1 , . . . , p

(i)
m ) contained in

W := {0, 1, . . . , q + 1}r × {0, 1, . . . , q}m−r.

Let ai ∈ Ai be as in (3.6). As ai −m �∈ Ai, we have ai −m = p
(i)
µi m + µi − 1 for some

1 ≤ µi ≤ m. On the other hand, ai = (p
(i)
µi + 1)m + µi − 1 is by construction not

contained in Ai+1. This implies that

p(i+1) = p(i) + e′µi
,(3.8)

where e′µi
∈ {0, 1}m is the canonical basis vector having a 1 at position µi. We can

thus regard (p(0), . . . , p(s)) as a walk in W which starts in p(0) = 0 := (0, . . . , 0) and
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must end in the opposite corner p(s) = w := (q + 1, . . . , q + 1, q, . . . , q). In this walk,
a successor of a point is obtained by incrementing exactly one coordinate by 1.

It is now straightforward to check that we have found a bijection between the
leaves of Tm,s and the above-described walks in W from 0 to the opposite corner w.
In particular, all leaves of Tm,s carry the same label [s− 1, . . . , 1, 0] corresponding to
w, as was claimed at the beginning of the proof.

In what follows we will assume that q ≥ 1. (The case q = 0 can be checked
separately.) A node N of Tm,s one level above the leaves corresponds to a walk in W
ending in one of the points w− e′M , where 1 ≤M ≤ m. To such a walk in turn there
corresponds a sequence of sets (A0, . . . , As−1). Assume first that 1 ≤ M ≤ r. Then
it is easily checked that

As−1 = ({0, 1, . . . , s− 1} \ {qm + M − 1}) ∪ {(q + 1)m + M − 1}.

By comparing this with the set of components of Lk, we obtain qm + M − 1 = s− k,
and hence k = r −M + 1. We conclude that the node N carries the label Lr−M+1.
The number of nodes of level s− 1 carrying the label Lr−M+1 equals the number of
walks in W from 0 to w − e′M . Such a walk is uniquely described (cf. (3.8)) by a
sequence (M0,M1, . . . ,Ms−2) in {1, 2, . . . ,m}s−1, in which µ ∈ {M} ∪ {r + 1, . . . ,m}
occurs with frequency q, and µ ∈ {1, . . . , r} \ {M} occurs with frequency q + 1. The
number of these sequences equals the multinomial coefficient

α :=
(s− 1)!

q!m−r+1(q + 1)!r−1
.

This proves that α1 = · · · = αr = α.
In the case r < M ≤ m one can show similarly that N carries the label Lr−M+m+1

and that the number of nodes carrying this label equals

β :=
(s− 1)!

(q − 1)! q!m−r−1(q + 1)!r
,

which yields αr+1 = · · · = αm = β. A straightforward calculation shows that indeed
α− β = γm,s and β = qγm,s, where γm,s = (s− 1)!/(q!m−r(q + 1)!r).

4. P-definability of immanants. Frobenius’ formula (3.1) for the generat-
ing function of Sn-characters allows us to express immanants as coefficients of p-
computable families of polynomials. We will use this observation to prove the follow-
ing proposition.

Proposition 4.1. Any family of immanant polynomials corresponding to a p-
sequence of diagrams is p-definable.

Proof. Let the cycle format polynomial of ρ be defined as CFρ :=
∑

π

∏n
i=1 Xi,π(i),

where the sum is over all permutations π having cycle format ρ |= n.
We multiply Frobenius’ formula (3.1) for s = n with CFρ and take the sum over

all cycle formats ρ |= n. This yields

Fn := ∆n

∑
ρ|=n

uρ1

n,1 · · ·uρn
n,n CFρ =

∑
�

(∑
ρ|=n

χ�(ρ) CFρ

)
Z�1

1 · · ·Z�n
n .

The immanent IMλ =
∑

ρ χ�(ρ)CFρ appears in Fn as the coefficient of the power

product
∏

j Z
�j
j =

∏
j Z

λj+n−j
j . By Proposition 2.1(iii) it is therefore sufficient to
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prove that (Fn) is p-definable. Let Ti,j be further indeterminates for 1 ≤ i, j ≤ n,
and define

Gn :=
∑
ρ|=n

CFρ

∏
(i,j):j≤ρi

Ti,j .

By substituting Ti,j by un,i = Zi
1 + · · · + Zi

n in Gn and multiplying the resulting
polynomial with ∆n =

∏
i<j(Zi − Zj), we obtain Fn. By Proposition 2.1(i)–(ii) it is

therefore enough to show that the family (Gn) is p-definable. If we denote by ρi(π)
the number of i-cycles of π, we may write

Gn =
∑
π∈Sn


∏

α≤n
Xα,π(α)




 ∏

(i,j):j≤ρi(π)

Ti,j




=
∑

e,ε∈{0,1}n×n

ϕn(e, ε)
∏

1≤α,β≤n
X

eα,β

α,β

∏
1≤i,j≤n

T
εi,j
i,j

with a uniquely determined function

ϕn : {0, 1}n×n × {0, 1}n×n → {0, 1}.

It is obvious that the extension of all ϕn to a function ϕ : {0, 1}∗ → {0, 1} is com-
putable by a polynomial time Turing machine. Therefore, Proposition 2.2 implies
that (Gn) is p-definable.

We can alternatively deduce Proposition 4.1 from the following interesting result
due to Hepler [12], which shows that computing characters of the symmetric groups is
a #P-complete problem. This result should be contrasted with Proposition 7.4 of [3],
which shows that the evaluation of characters of GLn is possible in polynomial time.

Theorem 4.2. The function which assigns to λ � n, ρ |= n the value χλ(ρ) +nn

is #P-complete (n given in unary).
In fact, to deduce Proposition 4.1, we need only the easy part of this theorem

stating that the above function is contained in #P. Let a p-sequence of diagrams (λ(n))
be given. We can interpret λ(n) as a “polynomial advice” for n in the sense of Karp
and Lipton [15]. By Theorem 4.2, the function which assigns to the description π of
the power product

∏n
i=1 Xi,π(i) its coefficient in the polynomial IMλ(n) + nnPERn is

in the class #P/poly. Therefore, by Proposition 2.2, the family (IMλ(n) + nnPERn)n
is p-definable. This again implies Proposition 4.1.

5. Completeness proofs. This section is divided into five parts. We first de-
scribe the general strategy of our completeness proofs. Using this strategy and ap-
plying Lemma 3.1, we then provide a short proof of a special case of Theorem 1.2,
namely for rectangular diagrams satisfying a certain divisibility condition.

In order to settle the general case of Theorem 1.2, we develop in subsection 5.3
technical results which allow us to obtain permanents or Hamilton cycle polynomials
as projections of linear combinations of hook immanants. These technical results in
combination with the general strategy then allow us to prove Theorem 1.2 for hook
immanants. Finally, we are able to complete the proof of Theorem 1.2 for rectangular
immanants.

5.1. The general proof strategy. We introduce some notation and work out
the relationship between matrices and weighted digraphs.
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There is a canonical bijective correspondence between square matrices and (edge)
weighted digraphs. Namely, we can regard an n by n matrix A = [ai,j ] over some field
as the adjacency matrix of a weighted digraph G on n nodes, where ai,j �= 0 gives
the weight of the edge from node i to node j, and there is no such edge if ai,j = 0.
We define the weight wt(C) of a subgraph C of G as the product of the weights of all
its edges. The permutations π ∈ Sn with

∏n
i=1 ai,π(i) �= 0 correspond bijectively to

the cycle covers C of G, i.e., n-node subgraphs of G consisting of node-disjoint cycles.
Note that wt(C) =

∏
i ai,π(i) if C corresponds to π. A cycle cover C has a (cycle)

format ρ |= n, where ρi counts the number of i-cycles of C.
We define now the cycle format value cfρ(G) of a weighted digraph G as the sum

of the weights of all cycle covers of G having the format ρ. A special case of this
is the Hamilton cycle value hc(G) := cfn(G). (Recall our convention on notations
at the beginning of section 2.) The immanant imλ(G) of the weighted digraph G is
defined as

imλ(G) :=
∑
ρ|=n

χλ(ρ)cfρ(G).

If all the weights of G are either rationals, constants, or indeterminates, then imλ(G)
is obviously a projection of IMλ. Moreover, if DKn denotes the complete weighted
digraph DKn on n nodes with edge (i, j) carrying the indeterminate weight Xi,j ,
then imλ(DKn) = IMλ. Similarly, we define the cycle format polynomial by setting
CFρ := cfρ(DKn). Finally, we will denote the value of the hook immanant HIn,i on G
by hin,i(G).

We explain now our general strategy for proving completeness for a family of
immanants. Let 1 ≤ h ≤ n, and let G be the disjoint union of the complete weighted
digraph DKn−h on n−h nodes with a directed cycle Z of length h, all of whose edges
carry the weight 1. Every cycle cover C of G consists of a cycle cover C′ of DKn−h
and the h-cycle Z, and we have wt(C) = wt(C′). Therefore, we obtain for ρ |= n− h

cfρ·h1(G) = cfρ(DKn−h) = CFρ,

and all other cycle format values of G vanish. From this and the Murnaghan–
Nakayama rule (3.3), we obtain

imλ(G) =
∑

ρ|=n−h
χλ(ρ · h1) CFρ =

∑
ρ|=n−h

∑
µ

(−1)r(λ,µ)χµ(ρ) CFρ

=
∑
µ

(−1)r(λ,µ)
∑

ρ|=n−h
χµ(ρ) CFρ =

∑
µ

(−1)r(λ,µ)IMµ.

Let us summarize this important insight in slightly more general form.
Lemma 5.1. Let λ(1), . . . , λ(t) � n, α1, . . . , αt ∈ Q, and 1 ≤ h ≤ n. Then

the linear combination of immanants
∑t

i=1 αiIMλ(i) has as a projection the linear
combination of immanants

t∑
i=1

αi

∑
µ(i)

(−1)r(λ
(i),µ(i))IMµ(i) ,

where µ(i) runs over all partitions µ(i) � n − h which can be obtained from λ(i) by
removing a skew hook containing h boxes.



1034 PETER BÜRGISSER

5.2. Completeness of particular rectangular immanants. We present here
the proof of a special case of Theorem 1.2, namely for rectangular immanants satis-
fying a certain divisibility condition.

A rectangular diagram (m, . . . ,m) � sm is said to be of height s.
Proposition 5.2. Take a sequence of rectangular diagrams (λ(m)) of polynomi-

ally growing width such that the width of λ(m) is a divisor of the height of λ(m) for
all m. Then the corresponding family of rectangular immanants is VNP-complete.

Proof. By Proposition 4.1 we know already that the given family is p-definable,
so it suffices to show that the family of Hamilton cycle polynomials is a p-projection
of the given family.

Let us write λ(m) = (m, . . . ,m) � smm and sm = qmm + rm with 1 ≤ rm ≤ m,
qm ≥ 0. The height sm is p-bounded in m since (λ(m)) is a p-sequence of diagrams.
We will use the divisibility assumption rm = m only at the end of the proof, in order
to make the following reasonings reusable.

Let Gm be the disjoint union of the complete weighted digraph DKm with sm−1
directed cycles of length m, all of whose edges having weight 1. By applying our
general strategy explained in section 5.1, we obtain that

fm := immsm (G) =
∑
ρ|=m

χmsm (msm−1 · ρ) CFρ

is a projection of IMmsm . Lemma 3.1 implies that

fm = (rmγm,sm + mβm,sm)CFm +
∑
ρ|=m
ρ�=m

γm,sm

rm−1∑
i=0

(−1)iχm,i(ρ) CFρ

= mβm,smCFm +
∑
ρ|=m

γm,sm

rm−1∑
i=0

(−1)iχm,i(ρ) CFρ.

Therefore, we get

fm = mβm,smHCm + γm,sm

rm−1∑
i=0

(−1)i HIm,i.(5.1)

Since we assume that rm = m, we conclude with formula (3.4) that fm is a
nonzero scalar multiple of HCm. This shows that HC is a p-projection of IMmsm and
proves our proposition.

5.3. Projections of linear combinations of hook immanants. In order to
settle the general case of Theorem 1.2, we have to develop some technical results
which allow us to obtain permanents or Hamilton cycle polynomials as projections of
linear combinations of hook immanants.

The following lemma is proved similarly to Theorem 2 in Hartmann [11].
Lemma 5.3.

(i) Let 0 ≤ r < n and α0, . . . , αr, β ∈ Q. Put p := �n/(r + 1)� and write
γ :=

∑r
i=0(−1)iαi. Then βHCp + γPERp is a projection of βHCn +

∑r
i=0 αiHIn,i.

(ii) Let 1 ≤ r < n and α0, αr, . . . , αn−1, β ∈ Q. Put

p :=
⌊ n

n− r + δ

⌋
, R := n− p(n− r + δ), γ := (−1)n+R−1

n−1∑
i=r

(−1)iαi,
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where δ ∈ {0, 1}, δ ≡ n−r+1 mod 2. Then α0PERp+βHCp+γDETp is a projection

of α0PERn + βHCn +
∑n−1

i=r αiHIn,i.
Proof. We note first that by the Murnaghan–Nakayama rule we have for the hook

characters χn,i that χn,i(ρ) = (−1)i if the cycle format ρ does not contain cycles of
length at most i. This observation is crucial for the proof.

(i) For each i ∈ {2, . . . , p} we introduce a cycle of length r + 1 with edge weights
as indicated in the following figure.

❤ ❤ ❤ ❤ ❤. . .
i− i+

1 1 1

Xi,i

Analogously, we introduce a cycle of length n− (p−1)(r+1) for i = 1. Moreover,
we connect the node i+ with the node j− by a (directed) edge of weight Xi,j for
all distinct i, j ∈ {1, 2, . . . , p}. The resulting weighted digraph G has n nodes and
girth ≥ r + 1; that is, all cycles of G have length at least r + 1. A cycle cover C̃ of
G corresponds bijectively to a cycle cover C of the complete weighted digraph DKp.

Moreover, wt(C̃) = wt(C), and C̃ is a Hamilton cycle iff C is so.
By the observation at the beginning of the proof we have χn,i(C̃) = (−1)i for all

0 ≤ i ≤ r and cycle covers C̃ of G (which we identify with permutations in Sn). We
get therefore for 0 ≤ i ≤ r

hin,i(G) =
∑
C

χn,i(C̃)wt(C̃) = (−1)i
∑
C

wt(C) = (−1)i PERp,

and hc(G) = HCp; hence

(
β hc +

r∑
i=0

αihin,i

)
(G) = β HCp + γPERp.

This proves statement (i).
(ii) We assume that n − r is odd; thus δ = 0. (In the case where n − r is even

one can argue analogously.) As in the proof of (i) we construct a weighted digraph G
by introducing for each i ∈ {2, . . . , p} a cycle of length n− r, and for i = 1 a cycle of
length n−(p−1)(n−r) = n−r+R. Again, a cycle cover C̃ of G corresponds bijectively
to a cycle cover C of DKp. Note that an �-cycle of DKp which does not pass through 1
is assigned to a cycle of G having length �(n − r), and that � ≡ �(n − r) mod 2. To
an �-cycle of DKp passing through 1 there corresponds a cycle of DKp having length
�(n − r) + R, which is congruent to � + R modulo 2. From this we see that for any
cycle cover C of DKp

sgn(C̃) = (−1)Rsgn(C).
By interchanging rows and columns in the hook diagram (n − i, 1, . . . , 1) we get the
diagram of (i + 1, 1, . . . , 1). Therefore, the corresponding characters are conjugated:

χn,i(C̃) = sgn(C̃)χn,n−i−1(C̃)
(cf. [9, Ex. 4.4, p. 47]). On the other hand, we have for all r ≤ i < n and cycle covers
C̃ that χn,n−i−1(C̃) = (−1)n−i−1, since girth(G) ≥ n− r. From these observations we
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conclude that for all r ≤ i < n

hin,i(G) =
∑
C

χn,i(C̃)wt(C̃)

=
∑
C

(−1)Rsgn(C)χn,n−i−1(C̃)wt(C)

= (−1)n+R−1(−1)i
∑
C

sgn(C)wt(C)

= (−1)n+R−1(−1)i DETp.

Taking into account that hc(G) = HCp and per(G) = PERp, the claim follows now
readily.

Lemma 5.4. Let α, β ∈ Q, α �= 0. Then the following hold.
(i) PERn−1 is a projection of αPERn + βDETn.
(ii) HCn−2 is a projection of αHCn + βDETn.

Proof. (i) We concatenate the matrix [Xi,j ]1≤i,j<n of indeterminates with the
column [0, . . . , 0, (2α)−1]T and repeat in the resulting matrix the last row. In this
way we get an n by n matrix M having determinant zero. By expanding along
the last column we get per(M) = 2(2α)−1per([Xi,j ]i,j<n) = α−1PERn−1. Hence
(α per + β det)(M) = PERn−1.

(ii) Consider the n by n matrix

M :=




0 0 1 X1,2 . . . X1,n

α−1 0 0 0 . . . 0

0 0 1 X1,2 . . . X1,n

0 X2,1 0 X2,2 . . . X2,n

...
...

...
...

...

0 Xn,1 0 Xn,2 . . . Xn,n



.

As the first and third row of M coincide, we have det(M) = 0. We claim that hc(M) =
α−1HCn−2. This is best seen by considering the weighted digraph with adjacency
matrix M which is built up as follows from DKn−2. Assume that {1, 2, . . . , n− 2} is
the set of nodes of DKn−2. We delete the loop (1, 1) and split the node 1 into nodes
1− and 1+. The edges (i, 1) of DKn−2 are thus replaced by edges (i, 1−), and the
edges (1, i) of DKn−2 are replaced by edges (1+, i) for 2 ≤ i ≤ n. Now we introduce
a new node O, an edge (1−, O) of weight α−1, an edge (O, 1+) of weight 1, a loop
(1+, 1+) of weight 1, and edges (O, i) of weight X1,i for 2 ≤ i ≤ n. The reader may
easily verify that the resulting weighted digraph G has indeed the adjacency matrix
M . On the other hand, it is clear from the construction that every Hamilton cycle
of G passes through the edges (1−, O) and (O, 1+). This shows that indeed hc(G) =
α−1hc(DKn−2) = α−1HCn−2. Altogether, we have (α hc+β det)(G) = HCn−2, which
proves the claim.

We call a p-family (fn) monotone iff fn is a projection of fn+1 for all n. The above
lemma in particular shows that PER is monotone. Also, HC is monotone, which can
be demonstrated similarly as part (ii) of the above lemma.

5.4. Completeness of hook immanants. The technical results of the previous
section in combination with our general strategy allow us to provide the proof of
Theorem 1.2 for hook immanants, stated explicitly below.
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in
in inm

m

Fig. 5.1. The hook diagram (n− in, 1, . . . , 1) when q = 2.

Proposition 5.5. Any family of hook immanants of polynomially growing width
is VNP-complete.

Proof. The following notation will be useful: we write ϕ(n) � ψ(n) for functions
ϕ,ψ : N→ (0,∞) iff lim infn→∞ ϕ(n)/ψ(n) ≥ 1.

Let ε > 0, and let (in) be a sequence of natural numbers satisfying n − in ≥
nε. We have to prove that (HIn,in) is VNP-complete. As we already know from
Proposition 4.1 that (HIn,in) is p-definable, it is sufficient to prove that PER is a
p-projection of this p-family. We distinguish several cases.

Case 1. in ≤
√
n.

Let pn := � n
in+1�. Then pn � √n and Lemma 5.3(i) implies that (−1)inPERpn

is a projection of HIn,in .
Case 2. in >

√
n.

Put m := n − in − 1 and let m = qin + m, where 0 ≤ m < in. By applying
Lemma 5.1 with h = in we obtain that f1 := HIn−in,in + (−1)in−1HIn−in,0 is a
projection of HIn,in (cf. Figure 5.1). Again applying this lemma with h = in yields
that

f2 := HIn−2in,in + (−1)in−1HIn−2in,0 + (−1)in−1HIn−2in,0

is a projection of f1. If we continue in this way, we see that with n := n − qin =
m + in + 1, the polynomial

fq := HIn,in + q(−1)in−1PERn

is a projection of HIn,in .
Subcase 2.1. m ≥ n1/4.
We apply Lemma 5.1 with h = in to fq and get that (q+ 1)(−1)in−1PERm+1 is a

projection of HIn,in . (Recall that m < in.) Note that the coefficient (q + 1)(−1)in−1

is nonzero!
Subcase 2.2. m < n1/4 and q ≥ 1.
We apply Lemma 5.3 (ii) to fq and obtain

gn := γnDETpn + q(−1)in−1PERpn

as a projection of fq for some γn ∈ {−1, 1} and some

pn ≥
⌊ n

n− in + 1

⌋
≥
⌊ in
m + 2

⌋
� n1/4.

By invoking Lemma 5.4(i), we see that PERpn−1 is a projection of gn and thus of
HIn,in .

Subcase 2.3. q = 0.
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As in subcase 2.1, we apply Lemma 5.1 with h = in to fq = HIn,in and get that
(−1)in−1PERm+1 is a projection of HIn,in . But m + 1 = n− in ≥ nε by assumption.

To summarize, let δ := min{ε, 1/4}. We have shown the existence of a sequence
Nn � nδ of natural numbers such that PERNn is a projection of HIn,in for all suffi-
ciently large n. Taking into account that PER is monotone, this implies that PER is
a p-projection of (HIn,in)n and finishes the proof.

5.5. Completeness of rectangular immanants. The proof of Theorem 1.2
will be achieved by identifying either a hook immanant or a Hamilton cycle polyno-
mial as a projection of a rectangular immanant. This will be sufficient to establish
completeness according to the following little observation.

Lemma 5.6. Let f = (fn) and g = (gn) be VNP-complete families and assume f
to be monotone. Moreover, let I ⊆ N and define the corresponding mixture h = (hn)
of f and g as

hn :=

{
fn if n ∈ I,

gn otherwise.

Then h is VNP-complete as well.
Proof. The p-family (f1, g1, f2, g2, f3, g3, . . . ) is obviously p-definable and h is a

p-projection of it; hence h is also p-definable.
Let ϕ = (ϕn) be any p-definable family. Since f is complete, there is a p-bounded

function n → t1(n) such that ϕn is a projection of ft1(n): ϕn ≤ ft1(n) for all n. We
put D(n) := max{deg gi | 1 ≤ i ≤ n} and consider the p-definable family

Φn := ϕn + Z1+D(t1(n)),

where Z is a new variable. As g is complete, there is a p-bounded n → t2(n) such
that Φn ≤ gt2(n) for all n. In particular,

D(t1(n)) < deg Φn ≤ deg gt2(n),

which implies t2(n) > t1(n). By substituting Z → 0 we see that ϕn ≤ gt2(n). On the
other hand, we also have ϕn ≤ ft2(n), as f is monotone. From this it immediately
follows that ϕn ≤ ht2(n) for all n. This shows that h is a complete family.

We remark that the monotonicity assumption is necessary. Namely, if (fn) is
complete, then the families (f1, 0, f2, 0, . . . ) and (0, f1, 0, f2, . . . ) are both complete as
well, but their mixture with respect to I = {2, 4, 6, 8, . . . } equals the zero sequence.

Finally, we present the proof of Theorem 1.2 in the general situation.
Proof. Suppose that (sm) is a p-bounded sequence of natural numbers. We wish

to show that the sequence of rectangular immanants IMmsm is VNP-complete. We
write sm = qmm + rm with 1 ≤ rm ≤ m, qm ≥ 0.

As in the proof of Proposition 5.2, (5.1), we find that

fm = mβm,smHCm + γm,sm

rm−1∑
i=0

(−1)i HIm,i

is a projection of IMmsm .
We distinguish now two cases.
Case 1. 1 ≤ rm ≤ m−√m.
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We apply Lemma 5.1 with h = 1 and obtain that

gm := γm,sm

(
HIm−1,0 +

rm−1∑
i=1

(−1)i [HIm−1,i + HIm−1,i−1]

)

is a projection of γm,sm

∑rm−1
i=0 (−1)i HIm,i. Recall that this is shown by adding to

DKm−1 an isolated vertex with a loop (of weight 1). The resulting digraph does not
have a Hamilton cycle. From this one easily sees that gm is also a projection of fm.
The formula for gm simplifies to (telescoping sum)

gm = γm,sm(−1)rm−1HIm−1,rm−1.

If rm > m−√m, then we define gm := HIm−1,0. The family (gm) of hook immanants
is complete by Proposition 5.5.

Case 2. m−√m < rm ≤ m.

By using relation (3.4) we can rewrite fm as follows:

fm = mβm,smHCm + γm,sm

(
mHCm −

m−1∑
i=rm

(−1)i HIm,i

)

= κmHCm + γm,sm

m−1∑
i=rm

(−1)i+1HIm,i,

where κm := m(βm,sm + γm,sm) > 0. Lemma 5.3(ii) shows that

ϕm := κmHCpm + cmDETpm

is a projection of fm for some cm ∈ Q and some

pm ≥
⌊

m

m− rm + 1

⌋
≥
⌊

m√
m + 1

⌋
≥ �√m� − 1.

Lemma 5.4(ii) together with the fact that HC is monotone implies that the Hamilton
cycle polynomial hm := HC�√m�−3 is a projection of ϕm and thus of fm. The family
(hm) is monotone and complete, as HC has these properties.

To summarize, we have proved that some mixture of the families (gm) of hook
immanants and (hm) of Hamilton cycle polynomials is a p-projection of (fm), and
thus of (IMmsm ). Hence the family of rectangular immanants (IMmsm ) is complete
by Lemma 5.6.

Finally, we remark that in order to obtain Corollary 1.4 from Theorem 1.2, one can
check that the projections fn ≤ gm occurring in the proof of this theorem actually yield
relations Nnfn(X) = gm(a), where the components of a are either indeterminates, 0,
or 1, and the factor Nn is a nonzero integer. Moreover, m, Nn, and a are computable
in polynomial time from n. Thus we get “weakly parsimonious”reductions (cf. [14,
p. 107]) between the corresponding problems to evaluate fn, gm at 0, 1-values. More-
over, one can obtain from Theorem 4.2 that the problem to compute imλ(n)(A) +n2n

from A ∈ {0, 1}n×n is in contained in #P for any polynomial time computable map
n → λ(n).
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Abstract. In this paper, we will consider the problem of designing an efficient algorithm that
finds an ε-regular partition of an l-uniform hypergraph.
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1. Introduction. The regularity lemma of Szemerédi [12] is a powerful tool used
in extremal combinatorics and graph theory. The lemma states that the vertex set
of any graph can be partitioned into subsets that meet certain regularity conditions.
The original proof of the lemma is not constructive, but recently, Alon, et al. [1]
found a way to convert it into an efficient algorithm. The algorithm is based on
the characterization of regularity which states that a pair of subsets of vertices is
irregular if and only if either the degrees of “many” vertices are “far from average”
or the cardinality of the intersection of neighborhoods of many pairs of vertices is
“far from the average case.” The algorithmic version of the lemma has already been
applied to design the algorithms for various combinatorial problems. Applications
include the max-cut problem [7], the tournament ranking problem [3], or the fast
algorithm for computing the frequency of a subgraph [4]. Many of these problems
have appealing generalizations to hypergraphs, which leads us to a natural question:
Can the regularity lemma be extended to hypergraphs?

In the hypergraph case regularity can be measured in a few different ways. The
most straightforward and perhaps natural approach defines the density and regularity
in the same way as for graphs. The corresponding hypergraph regularity lemma can be
then proved along the lines of Szemerédi’s proof for graphs (see [11]). In this paper we
consider an algorithmic version of this regularity lemma. Note that other versions of
regularity lemma were considered in [2], [5], [6], and recently in [10]. In a proof of the
regularity lemma it is necessary to distinguish between bipartite graphs which have
uniformly distributed edges (say, which are ε-regular) from these which are not. For
an algorithmic proof we need to have an efficient algorithm. It was proved, however,
in [1] that it is co-NP complete to decide if a bipartite graph is ε-regular. Authors of
[1] got around this difficulty by finding another polynomial checkable characterization
which distinguishes between bipartite graphs which fail to be ε1/5-regular and those
which are ε-regular. Note that in the hypergraph case we were unable to find even
such a simple characterization.

We found it convenient to consider a slightly more general weighted version
(l = 2 and ω : [V ]l → {0, 1} gives the original Szemerédi version). Let H = (V, ω)
be an l-uniform hypergraph with nonnegative weights ω : [V ]l → Z+ ∪ {0}, and let
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K = max{v1,...,vl}∈[V ]l ω(v1, . . . , vl) + 1 (for technical reasons we require that K is
strictly larger than max{v1,...,vl}∈[V ]l ω(v1, . . . , vl)). For l subsets V1, . . . , Vl of V such
that Vi ∩ Vj = ∅ if i �= j define

dω(V1, . . . , Vl) =

∑{ω(v1, . . . , vl) : (v1, . . . , vl) ∈ V1 × . . .× Vl}
K|V1| . . . |Vl| .(1.1)

An l-tuple (V1, . . . , Vl) of subsets of V with Vi ∩ Vj = ∅ is called (ε, ω)-regular if for
every Wi ⊂ Vi , i = 1, . . . , l, with |Wi| ≥ ε|Vi| we have

|dω(V1, . . . , Vl)− dω(W1, . . . ,Wl)| < ε.(1.2)

An l-tuple (W1, . . . ,Wl) that violates (1.2) is called a witness. A partition
V0 ∪ V1 ∪ · · · ∪ Vt of V is called (ε, ω)-regular if

1. |V0| ≤ ε|V |,
2. |Vi| = |Vj | for all i, j ∈ [t],
3. all but at most εtl l-tuples (Vi1 , . . . , Vil) with {i1, . . . , il} ⊂ [t]l are (ε, ω)-

regular.
The regularity lemma for hypergraphs states that for every ε > 0 and every integer m
there exist M = M(ε,m) and N = N(ε,m) such that every hypergraph H = (V, ω)
with |V | ≥ N admits an (ε, ω)-regular partition V0 ∪ V1 ∪ · · · ∪ Vt with m ≤ t ≤ M .
We show the following theorem.

Theorem 1.1. For every l, K, m, and ε there existM , L, and an algorithm which
for any l-uniform weighted hypergraph H = (V, ω) with K = maxω(v1, · · · , vl)+1 and
|V | = n ≥ L finds in O(n2l−1 log2 n) time an (ε, ω)-regular partition V0 ∪V1 ∪ . . .∪Vt
of H with m ≤ t ≤M .

Similar results were obtained in Frieze and Kannan [8] (compare also [7]). In
particular, [8] contains a randomized algorithm which for every ε > 0 and every δ > 0
finds a subset which with probability 1− δ contains all of the information necessary
to construct an ε-regular partition. Also, [7] and [9] contain many applications of
the constructive graph and hypergraph regularity lemma. The approach taken by
Frieze and Kannan in [7], [8], and [9] is different from ours. In addition to (1.1), the
following density function will be used. Let (V1, . . . , Vl) be an l-tuple of subsets with
Vi ∩ Vj = ∅, and let 1 ≤ k ≤ l − 1. For x ∈ Vk+1 × · · · × Vl define

dω(x, V1, . . . , Vk) =

∑{ω(v1, . . . , vk, x) : (v1, . . . , vk) ∈ V1 × · · · × Vk}
K|V1| . . . |Vk| .

For an l-tuple (V1, . . . , Vl) of pairwise disjoint sets and for 1 ≤ k ≤ l − 1 define

indk(V1, . . . , Vl) =
∑

x∈Vk+1×...×Vl

(dω(x, V1, . . . , Vk))2

|Vk+1| . . . |Vl|(1.3)

and

indl(V1, . . . , Vl) =
∑

x∈Vl−1

(dω(x, V1, . . . , Vl−2, Vl))
2

|Vl−1| .(1.4)

Note that

indl−1(V1, . . . , Vl−2, Vl, Vl−1) = indl(V1, . . . , Vl−1, Vl).(1.5)
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Finally, define an index of a partition P = V0 ∪ V1 ∪ · · · ∪ Vt of V as follows:

ind(P ) =
1

ltl

∑
(Vi1

,...,Vil
)

(
l∑

k=1

indk(Vi1 , . . . , Vil)

)
.

Clearly, ind(P ) is always less than or equal to 1. In the same way as in [1] and
[12], if a partition of V is (ε, ω)- irregular, then one can construct a subpartition

P ′ such that ind(P ′) ≥ ind(P ) + δ17

16·l , where δ = 1
96

ε2l+1

2(2l+1)(l−1) . Then, iterating our

“improvement” process 16·l
δ17 + 1 times, we obtain an (ε, ω)-regular partition of the

hypergraph. The rest of the paper is organized as follows. In section 2 we prove
some facts about hypergraph densities. Sections 3 and 4 contain two procedures that
construct “witness sets” for irregular l-tuples. Both procedures are applied in section
5, where we give the description of the algorithm that constructs an (ε, ω)-regular
partition of a hypergraph. Section 6 contains the analysis of the algorithm. In section
7, we outline two applications of Theorem 1.1. Finally, it should be noted that there
was no attempt made to optimize the constants.

2. Preliminary facts. Let us first observe the following property of densities;
compare with [12]. Note that l is a fixed constant independent of n and 1 ≤ i ≤ l.

Fact 2.1 (continuity of densities).
1. Let G = (X,Y, ω) be a weighted bipartite graph. For δ ∈ (0, 1), let X ′ ⊂ X,
Y ′ ⊂ Y be such that |X ′| ≥ (1− δ)|X| and |Y ′| ≥ (1− δ)|Y |. Then

|dω(X ′, Y ′)− dω(X,Y )| ≤ 2δ

and

|(dω(X ′, Y ′))2 − (dω(X,Y ))2| ≤ 4δ.

2. Let (V1∪· · ·∪Vl, ω) be an l-uniform hypergraph with Vi∩Vj = ∅. For δ ∈ (0, 1),
let V̄1 ⊂ V1, . . . , V̄i ⊂ Vi be such that |V̄j | ≥ (1 − δ)|Vj |, where j = 1, . . . , i.
Then for x ∈ Vi+1 × · · · × Vl,

|dω(x, V̄1, . . . , V̄i)− dω(x, V1, . . . , Vi)| ≤ iδ
and

|(dω(x, V̄1, . . . , V̄i))
2 − (dω(x, V1, . . . , Vi))

2| ≤ 2iδ.

In many places of the proof, we will use the following defect form of the Schwarz
inequality (see [12]).

Fact 2.2. If for some m < n,
∑m
k=1Xk = m

n

∑n
k=1Xk + ρ, then

n∑
k=1

X2
k ≥

1

n

(
n∑
k=1

Xk

)2

+
ρ2n

m(n−m)
.

Let X = {x1, x2, . . . , xN} and U = {u1, u2, . . . , uM} be two disjoint sets. Let G =
(X,U, ω) be a bipartite graph with nonnegative weights on edges ω(x, u) < K. For
i = 1, 2, . . . ,M , j = 1, 2, . . . , N set

deg(xj) =

M∑
i=1

ω(xj , ui),
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dj =
deg(xj)

MK
,

deg(ui) =

N∑
j=1

ω(xj , ui),

∆i =
deg(ui)

NK
.

We also set

d = dω(X,U) =

∑M
i=1

∑N
j=1 ω(xj , ui)

MNK
=

∑N
j=1 dj

N
=

∑M
i=1 ∆i

M

and T = dMNK for the total weight of all edges. For xi ∈ X consider the vector

−→xi = (ω(xi, uk))Mk=1.

Definition 2.3. A graph G = (X,U, ω) is called δ-vector regular if |〈−→xi ,−→xj〉 −
didjMK2| < δMK2 for all but at most δ

(
N
2

)
pairs {xi, xj}.

Lemma 2.4. For ε, δ ∈ (0, 1), suppose G = (X,U, ω) is δ-vector regular and
|X| ≥ 1/δ. Then for every U ′ ⊂ U with |U ′| ≥ ε|U |

|dω(X,U ′)− dω(X,U)| < ε,

provided ε3 ≥ 3δ.
Proof. Suppose the lemma is false and consider U ′ ⊂ U such that m = |U ′| ≥ ε|U |

and

|dω(X,U ′)− dω(X,U)| ≥ ε.(2.1)

Without loss of generality, assume that U ′ = {u1, . . . , um}, where m ≥ εM . Equation
(2.1) is equivalent to

∣∣∣∣∣
m∑
i=1

∆i − dm
∣∣∣∣∣ ≥ εm.(2.2)

From Fact 2.2 (applied with ρ = εm and n = M), we infer that

M∑
i=1

∆2
i ≥M

(
d2 +

ε3

1− ε
)
,(2.3)

which implies

M∑
i=1

(
deg(ui)

2

)
=

M∑
i=1

(
∆iNK

2

)
=

M∑
i=1

∆iNK(∆iNK − 1)

2

≥ 1

2
N2MK2

(
d2 +

ε3

1− ε
)
− NK

2

M∑
i=1

∆i =
1

2
N2MK2

(
d2 +

ε3

1− ε
)
− T

2
.(2.4)
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On the other hand, we have

M∑
i=1

(
deg(ui)

2

)
=

M∑
i=1

(∑N
j=1 ω(xj , ui)

2

)
=

1

2

M∑
i=1


 N∑
j=1

ω(xj , ui)

(
N∑
k=1

ω(xk, ui)− 1

)


≤ 1

2


 ∑
j,k∈[N ]

(
M∑
i=1

ω(xk, ui)ω(xj , ui)

)
− T


 =

1

2


 ∑
j,k∈[N ]

〈−→xj ,−→xk〉 − T

 .(2.5)

By assumption, we know that for all but at most δ
(
N
2

)
of pairs {xi, xj}, 〈−→xi ,−→xj〉 ≤

(didj+δ)MK2, and we can bound the scalar product for the remaining pairs: 〈−→xi ,−→xj〉 <
MK2. Therefore,

∑
j,k∈[N ]

〈−→xj ,−→xk〉 <
∑

j,k∈[N ]

(djdk + δ)MK2 +

N∑
j=1

〈−→xj ,−→xj〉+ δN2MK2

≤
∑

j,k∈[N ]

(djdk + δ)MK2 + 2δN2MK2

≤
(

N∑
i=1

di

)2

MK2 + 3δN2MK2 ≤ (d2 + 3δ)N2MK2.(2.6)

By combining (2.5) and (2.6), we see that

M∑
i=1

(
deg(ui)

2

)
<

1

2
((d2 + 3δ)N2MK2 − T ).(2.7)

Comparing (2.4) and (2.7) gives

(d2 + 3δ)N2MK2 > N2MK2

(
d2 +

ε3

1− ε
)
,

which gives 3δ > ε3

1−ε . This contradicts our assumption that ε3 ≥ 3δ.
Let V1, . . . , Vk be pairwise disjoint sets and let (V1 ∪ · · · ∪ Vk, ω) be a weighted

k-uniform hypergraph. We consider a bipartite graph (U,X, ω), where U = V1,
X = {x1, . . . , xN} = V2 × · · · × Vk, and where ω(u, x) = ω(v1, v2, . . . , vk) if u = v1
and x = (v2, . . . , vk). The next lemma shows that irregularity of an l-tuple can be
reduced either to vector irregularity or to irregularity of an (l−1)-tuple, with weights
appropriately defined.

Lemma 2.5. If (X,U) is the bipartite graph defined above which moreover satisfies
the conditions

1. |〈−→xi ,−→xj〉 − didjMK2| < δMK2 for all but at most δ
(
N
2

)
pairs {xi, xj},

2. |dω(V1, V
′
2 , . . . , V

′
k) − dω(V1, V2, . . . , Vk)| < ε

2 for every V ′i ⊂ Vi with |V ′i | ≥
ε
2 |Vi|,
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then for every V ′i ⊂ Vi with |V ′i | ≥ ε|Vi|
|dω(V ′1 , V

′
2 , . . . , V

′
k)− dω(V1, V2, . . . , Vk)| < ε,

provided 48δ ≤ ε2k+1.
Proof. The triangle inequality and the second condition imply that for every

V ′i ⊂ Vi with |V ′i | ≥ ε|Vi|

|dω(V ′1 , V
′
2 , . . . , V

′
k)−dω(V1, V2, . . . , Vk)| ≤ ε

2
+|dω(V ′1 , V

′
2 , . . . , V

′
k)−dω(V1, V

′
2 , . . . , V

′
k)|.

Let X ′ = V ′2 × · · · × V ′k. Observe that for at most δ
(
N
2

) ≤ δN
2

2 ≤ δ
ε2(k−1)

|X′|2
2 ≤

2δ
ε2(k−1)

(|X′|
2

)
of the pairs {xi, xj}

|〈−→xi ,−→xj〉 − didjMK2| ≥ δMK2,

and so Lemma 2.4 (applied to X ′) implies that

|dω(V ′1 , X
′)− dω(V1, X

′)| < ε

2

as 6 δ
ε2(k−1) ≤ ( ε2 )3. Clearly, dω(Y,X ′) = dω(Y, V ′2 , . . . , V

′
k), which shows that

|dω(V ′1 , V
′
2 , . . . , V

′
k)− dω(V1, V2, . . . , Vk)| < ε.

Let ω′(v2, . . . , vk) =
∑
v1∈V1

ω(v1, v2, . . . , vk) and K ′ = K|V1|. Then from Lemma
2.5 we see that if a k-tuple (V1, V2, . . . , Vk) is (ε, ω)- irregular, then either |〈−→xi ,−→xj〉 −
didjMK2| > δMK2 for at least δN2 pairs {xi, xj}, with δ = ε2k+1/48, or the (k−1)-
tuple (V2, . . . , Vk) is ( ε2 , ω

′)-irregular.

3. Finding witnesses of vector irregularity. Let (X,U, ω) be a weighted
“vector irregular” bipartite graph with X = {x1, . . . , xN} and U = {u1, . . . , uM}.
In this section we will show how to construct sets X ′ ⊂ X and U ′ ⊂ U such that
dω(X ′, U ′) essentially differs from dω(X ′, U).

Theorem 3.1. Let δ ≤ 1
3 and assume that for at least δ

(|X|
2

)
of the pairs {xi, xj}

we have |〈−→xi ,−→xj〉 − didjMK2| ≥ δMK2. Then there is an O(N2M log2K) algorithm

that finds sets X ′ ⊂ X with |X ′| > δ7

2 |X| and U ′ ⊂ U with |U ′| > δ6|U | such that

|dω(X ′, U ′)− dω(X ′, U)| > δ2.

Proof. Set ε = δ3 (we will assume that 1/ε is an integer), and partition the set X
into sets Xr in the following way:

Xr = {x ∈ X : εrKM ≤ deg(x) < ε(r + 1)KM}(3.1)

for r = 0, . . . , 1
ε − 1. Since at least δ

(|X|
2

)
of the pairs {xi, xj} satisfy |〈−→xi ,−→xj〉 −

didjMK2| ≥ δMK2, we can find x0 ∈ X such that for at least δ
2N of the xj ’s

〈−→x0,−→xj〉 − d0djMK2 ≥ δMK2,(3.2)

or

−(〈−→x0,−→xj〉 − d0djMK2) ≥ δMK2.(3.3)
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We assume (3.2) and note that in the case of (3.3) the proof can be repeated with
minor changes. Then, we can find r ∈ {0, . . . , 1

ε −1} such that for at least εδ
2 N of xj ’s

in Xr, 〈−→x0,−→xj〉−d0djMK2 ≥ δMK2. Set X̄ = {xj ∈ Xr : 〈−→xj ,−→x0〉 ≥ (d0dj+δ)MK2},
and observe that |X̄| ≥ εδ

2 N . In addition to the partition X =
⋃
Xr, we compute a

partition of U =
⋃
Us, where

Us = {u ∈ U : εsK ≤ ω(x0, u) < ε(s+ 1)K}(3.4)

with s = 0, . . . , 1
ε − 1.

Claim 3.2.
∑1/ε−1
s=0 (s+ 1)εK|Us| ≤ (d0 + ε)MK.

Proof.

1/ε−1∑
s=0

(s+1)εK|Us| =
∑

sεK|Us|+εK
∑
|Us| ≤ deg(x0)+εMK = (d0+ε)MK.

Claim 3.3. For every xj ∈ X̄
∑

s;|Us|>ε2M
(s+ 1)εK

∑
ui∈Us

ω(xj , ui) ≥ (d0dj + δ − ε)MK2.

Proof. In view of the definition of X̄, for every xj ∈ X̄ the following holds.

(d0dj + δ)MK2 ≤ 〈−→x0,−→xj〉 ≤
1/ε−1∑
s=0

(s+ 1)εK
∑
ui∈Us

ω(xj , ui)

≤
∑

s;|Us|>ε2M
(s+ 1)εK

∑
ui∈Us

ω(xj , ui) + ε3K2M
∑
s

(s+ 1)

≤
∑

s;|Us|>ε2M
(s+ 1)εK

∑
ui∈Us

ω(xj , ui) + εK2M.

Next, we will show the following claim.
Claim 3.4. Fix xj0 ∈ X̄ (arbitrarily). Then there exists s̄ ∈ {0, . . . , 1

ε − 1} such
that

(i) |Us̄| ≥ ε2M , and
(ii)

∑
ui∈Us̄

ω(xj , ui) ≥ |Us̄|(dj0 + δ2 + ε)K holds for at least ε|X̄| of the xj ∈ X̄.
Proof. First, we show that for every xj ∈ X̄ there is s ∈ {0, . . . , 1

ε − 1} such that

|Us| > ε2M(3.5)

and

∑
ui∈Us

ω(xj , ui) ≥ |Us| (d0dj + δ − ε)K
d0 + ε

.(3.6)

Indeed, assume that there exists j such that for every |Us| > ε2M we have

∑
ui∈Us

ω(xj , ui) < |Us| (d0dj + δ − ε)K
d0 + ε

.
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Then

∑
s;|Us|>ε2M

(s+ 1)εK
∑
ui∈Us

ω(xj , ui) <
∑
s

(s+ 1)εK|Us| (d0dj + δ − ε)K
d0 + ε

,

which by Claim 3.2 is less than or equal to (d0dj + δ − ε)MK2. This, however,
contradicts Claim 3.3.

Since ε = δ3 and δ ≤ 1
3 , one can further simplify the right-hand side of (3.6) to

infer that for every xj ∈ X̄ there exists s such that

|Us| > ε2M

and ∑
ui∈Us

ω(xj , ui) ≥ |Us|K(dj + δ2 + 2ε).(3.7)

It follows from the definition of Xr that for every xj1 , xj2 ∈ X̄, |dj1 − dj2 | ≤ ε, which
implies that

∑
ui∈Us

ω(xj , ui) ≥ |Us|(dj0 + δ2 + ε)K,(3.8)

if xj0 is chosen arbitrarily from X̄. Therefore, for every xj0 ∈ X̄ and every xj ∈ X̄
there is an s ∈ {0, . . . , 1

ε − 1} such that

|Us| > ε2M

and ∑
ui∈Us

ω(xj , ui) ≥ |Us|(dj0 + δ2 + ε)K.

In order to prove (i) and (ii) we need to “reverse” the quantifiers of j and s. We know
that for every j there is a “big” set Us such that (3.8) holds. Since there are at most
1
ε choices of s, there exists s̄ ∈ {0, . . . , 1

ε − 1} such that Us̄ is “big” and for at least
ε|X̄| of the xj ’s (3.8) holds. More precisely, there exists s̄ ∈ {0, . . . , 1

ε − 1} such that
(i) |Us̄| ≥ ε2M , and
(ii)

∑
ui∈Us̄

ω(xj , ui) ≥ |Us̄|(dj0 + δ2 + ε)K holds for at least ε|X̄| of the xj ∈ X̄,
which proves the claim.

Let U ′ = Us̄, and let X ′ be the set of those ε|X̄| vertices from X̄ that satisfy

(3.8). Observe that |U ′| ≥ δ6|U | and |X ′| ≥ δ7

2 |X|. We have

dω(X ′, U ′) =

∑
xj∈X′,ui∈U ′ ω(xj , ui)

K|X ′||U ′| ≥ |U
′||X ′|(dj0 + δ2 + ε)K

K|X ′||U ′| = (dj0 + δ2 + ε)

and

dω(X ′, U) =

∑
x∈X′ deg(x)

K|X ′||U | ≤ |X
′|(deg(xj0) + εKM)

K|X ′||U | = dj0 + ε.

Therefore,

dω(X ′, U ′)− dω(X ′, U) ≥ (dj0 + δ2 + ε)− dj0 − ε = δ2.(3.9)
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The above proof gives an efficient algorithm: First compute scalar products to find
x0 and partitions of X and U . Then check all sets Us to find one that satisfies Claim
3.4. The main computational task is to compute O(N2) scalar products 〈−→xi ,−→xj〉 =∑M
l=1 ω(xi, ul)ω(xj , ul). Since ω(xj , ul) < K, the multiplication ω(xi, ul)ω(xj , ul) can

be done in O(log2K) time. Thus the total number of steps is O(N2M log2K).

4. Finding a witness of irregularity in a weighted bipartite graph. Let
G = (X,Y, ω) be a bipartite graph with nonnegative weights on edges ω(x, y) < K.
In this section, we will show how to find X ′ ⊂ X and Y ′ ⊂ Y such that

|dω(X ′, Y ′)− dω(X,Y )| > δ2.

Unlike in the previous section neither X nor Y will be products of other sets. Note
that the algorithm of this section is a generalization of the algorithm of [1] to weighted
graphs. Let M = |X| = |Y | and let d = dω(X,Y ). We first observe the following fact.

Fact 4.1. For ρ ∈ (0, 1), let X∗ = {x ∈ X : |deg(x) − dMK| ≥ ρMK}. If
|X∗| ≥ ρM , then there is X∗∗ ⊂ X∗ with |X∗∗| ≥ ρ

2M such that

|dω(X∗∗, Y )− dω(X,Y )| ≥ ρ.

Proof. Let X∗∗ = {x ∈ X∗ : deg(x)− dMK ≥ ρMK}. Without loss of generality

we can assume that |X∗∗| ≥ |X∗|
2 . Then,

dω(X∗∗, Y )− dω(X,Y ) =

∑
x∈X∗∗ deg(x)− d|X∗∗|MK

|X∗∗|MK
≥ ρ.

Lemma 4.2. For ε, δ ∈ (0, 1), δ2 < ε, M ≥ 1
δ , let X

∗ = {x ∈ X : |deg(x) −
dMK| > δ2MK}. If both of the following conditions are satisfied

1. |X∗| < δ2M ,
2. for all but at most δ

(
M
2

)
of the pairs {xi, xj} of vertices from X, |〈−→xi ,−→xj〉 −

d2K2M | < δK2M ,

then for every X ′ ⊂ X with |X ′| ≥ εM and every Y ′ ⊂ Y with |Y ′| ≥ εM we have

|dω(X ′, Y ′)− dω(X,Y )| ≤ 2
δ2

ε
+

√
5δ

ε2 − εδ2 .

Proof. Fix X ′ ⊂ X and Y ′ ⊂ Y with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |. Let X ′′ =

X ′ \X∗. Note that |X ′′| > (1 − δ2

ε )|X ′|. Without loss of generality, we can assume
that X ′′ = {x1, . . . , xm} and Y ′ = {y1, . . . , yn}. For i = 1, . . . ,m, we consider vectors
−→ai = −→xi − (dK, . . . , dK) and hence −→ai = (ai1, . . . , aiM ), where

aij = ω(xi, yj)− dK.(4.1)

Then, due to the fact that

||−→a1 + · · ·+−→am||2 =

m∑
i=1

||−→ai ||2 +
∑
i �=j
〈−→ai ,−→aj〉

and from the form of ai’s, we see that
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〈−→ai ,−→aj〉 = 〈−→xi ,−→xj〉 − dK
M∑
l=1

ω(xi, yl)− dK
M∑
l=1

ω(xj , yl) + d2K2M

≤ 〈−→xi ,−→xj〉 − 2dK(dKM − δ2KM) + d2K2M ≤ 〈−→xi ,−→xj〉+ 2δ2dK2M − d2K2M.

Therefore, for all but at most δ
(
M
2

)
of {xi, xj}

〈−→ai ,−→aj〉 ≤ δK2M + 2δ2dK2M ≤ 3δK2M

and always

〈−→ai ,−→aj〉 ≤ K2M.

We infer that

||−→a1 + · · ·+−→am||2 ≤
m∑
i=1

||−→ai ||2 + 3δK2M3 + δK2M3

≤ K2M2 + 4δK2M3 ≤ 5δK2M3,

as M ≥ 1/δ. On the other hand, we have ||−→a1 + · · · + −→am||2 = ξ21 + · · · + ξ2M , where
ξi = a1i + · · ·+ ami. Then ξ21 + · · ·+ ξM

2 ≥ ξ21 + · · ·+ ξ2n ≥ 1
n (ξ1 + · · ·+ ξn)2, which

implies

(ξ1 + · · ·+ ξn)2 ≤ 5δK2M3n ≤ 5δK2M4.

We infer that

|ξ1 + · · ·+ ξn| ≤
√

5δKM2,(4.2)

and by (4.1) we can write (4.2) as follows:

∣∣∣∣∣∣
∑

x∈X′′,y∈Y ′
ω(x, y)− |X ′′||Y ′|dK

∣∣∣∣∣∣ ≤
√

5δKM2.

Therefore,

|dω(X ′′, Y ′)− d| ≤
√

5δM2

|X ′′||Y ′| ,

and, since |X ′′| ≥ (1− δ2

ε )|X ′|, we infer by continuity of density (Fact 2.1) that

|dω(X ′, Y ′)− d| ≤ |dω(X ′′, Y ′)− d|+ |dω(X ′′, Y ′)− dω(X ′, Y ′)|

≤ 2
δ2

ε
+

√
5δM2

|X ′′||Y ′| .(4.3)
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Now, since |Y ′| ≥ εM and |X ′′| ≥ (1− δ2

ε )εM , we can further estimate the right-hand
side of (4.3) to obtain

|dω(X ′, Y ′)− d| ≤ 2
δ2

ε
+

√
5δ

ε2 − εδ2 .

Theorem 4.3. Let G = (X,Y, ω) be a weighted bipartite graph with M = |X| =
|Y | and 0 ≤ ω(x, y) < K. For ε < 1/10 and δ = ε7, if M > 1

δ , then there exists an

O(M3 log2K) algorithm such that if (X,Y ) is (ε, ω)-irregular, then it finds X ′ ⊂ X,
with |X ′| > δ4|X| and Y ′ ⊂ Y , with |Y ′| > δ4|Y | such that

|dω(X ′, Y ′)− dω(X,Y )| > δ2.

Proof. First observe that due to the assumptions about δ and ε, 2 δ
2

ε +
√

5δ
ε2−εδ2 ≤ ε.

Since (X,Y ) is (ε, ω)-irregular, we can infer from Lemma 4.2 that either
(i) |X∗| ≥ δ2M , or
(ii) for at least δ

(
M
2

)
pairs {xi, xj}, |〈−→xi ,−→xj〉 − d2K2M | ≥ δK2M .

In case (i), set X ′ = X∗∗ from Fact 4.1, and Y ′ = Y . Then, by Fact 4.1,

|dω(X ′, Y ′)− dω(X,Y )| ≥ δ2.
Observe that constructing the set X∗∗ requires computing the degrees of xj ∈ X
which can be done in O(M2 logK) time. Hence, in this case we are done. Next, we
will show how to construct the witness sets X ′ and Y ′ if (ii) holds while (i) is false.
Assume that for at least δ

(
M
2

)
of pairs {xi, xj}, |〈−→xi ,−→xj〉−d2K2M | > δK2M and that

|X∗| < δ2M . Then for at least (δ − 2δ2)
(
M
2

)
of pairs {xi, xj}, where xi, xj ∈ X \X∗,

we have |〈−→xi ,−→xj〉 − d2K2M | > δK2M . Therefore, we can find x0 ∈ X \X∗ such that

for at least δ−2δ2

2 M of xj ∈ X, either

〈−→x0,−→xj〉 − d2K2M > δK2M,(4.4)

or

−(〈−→x0,−→xj〉 − d2K2M) > δK2M.(4.5)

We assume (4.4) and set ρ = δ2. Let X̄ = {xj ∈ X\X∗ : 〈−→x0,−→xj〉−d2K2M > δK2M}.
We partition the set Y as follows:

Ys = {y ∈ Y : sρK ≤ ω(x0, y) ≤ (s+ 1)ρK},(4.6)

where s = 0, . . . , 1
ρ − 1.

Fact 4.4.
1.
∑1/ρ−1
s=0 (s+ 1)ρK|Ys| ≤ (d+ 2ρ)KM.

2. For every xj ∈ X̄∑
s;|Ys|≥ρ2M

(s+ 1)ρK
∑
y∈Ys

ω(xj , y) ≥ (d2 + δ − ρ)K2M.(4.7)

Proof. From (4.6) and the fact that for any x0 ∈ X \X∗, deg(x0) ≤ (d+ ρ)KM
we infer that

1/ρ−1∑
s=0

(s+ 1)ρK|Ys| =
∑

sρK|Ys|+ ρK
∑
|Ys| ≤ deg(x0) + ρKM ≤ dKM + 2ρKM,
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which shows the first part. To prove the second part, we observe that

〈−→x0,−→xj〉 =
∑
y∈Y

ω(x0, y)ω(xj , y) ≤
1/ρ−1∑
s=0

(s+ 1)ρK
∑
y∈Ys

ω(xj , y)

≤
∑

s;|Ys|≥ρ2M
(s+ 1)ρK

∑
y∈Ys

ω(xj , y) + ρ3MK2
∑

(s+ 1)

≤
∑

s;|Ys|≥ρ2M
(s+ 1)ρK

∑
y∈Ys

ω(xj , y) + ρMK2.(4.8)

Comparing (4.4) and (4.8), we infer the inequality (4.7).
We will first show that for every xj ∈ X̄ there is s such that

|Ys| ≥ ρ2M(4.9)

and

∑
y∈Ys

ω(xj , y) ≥ |Ys| (d
2 + δ − ρ)K
(d+ 2ρ)

.(4.10)

Indeed, assume that there exists j such that for every s such that |Ys| ≥ ρ2M we have∑
y∈Ys

ω(xj , y) < |Ys| (d
2+δ−ρ)K
(d+2ρ) . Then averaging over all “big” Ys we see that

∑
s;|Ys|≥ρ2M

(s+ 1)Kρ
∑
y∈Ys

ω(xj , y) <
∑

s;|Ys|≥ρ2M
(s+ 1)ρK|Ys| (d

2 + δ − ρ)K
(d+ 2ρ)

,

which by Fact 4.4 part (1) is less than or equal to (d2 + δ − ρ)K2M . This however
contradicts part (2) of Fact 4.4.

Since δ = ε7 < 1/107, the right-hand side of (4.10) can be simplified:

∑
y∈Ys

ω(xj , y) ≥ |Ys|K
(
d+

δ

2

)
.(4.11)

Thus for every xj ∈ X̄ there is s ∈ {0, . . . , 1
ρ − 1} such that |Ys| ≥ ρ2M and (4.11)

holds. Similarly as in section 3 we use the simple pigeonhole principle to “reverse”
the quantifiers of j and s to obtain the existence of s̄ ∈ {0, . . . , 1

ρ − 1} that satisfies

(i) |Ys̄| ≥ ρ2M and
(ii) for at least ρ|X̄| of xj ’s from X̄,

∑
y∈Ys̄

ω(xj , y) ≥ |Ys̄|K(d+ δ
2 ).

Let Y ′ = Ys̄ and let X ′ be the set of those xj ’s that satisfy (ii). Then

dω(X ′, Y ′)− d =

∑
y∈Y ′,xj∈X′ ω(xj , y)

K|X ′||Y ′| − d ≥ |X
′||Ys̄|K(d+ δ

2 )

K|X ′||Y ′| − d =
δ

2
> δ2.

In order to construct X ′ and Y ′ we must compute the scalar products to check (4.4),
compute the partition (4.6), and check condition (ii). Since ω(xj , y) < K this can be
done in O(M3 log2K) time.
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5. The main algorithm. In this section, we will describe the main algorithm
which finds a refinement of an (ε, ω)-irregular partition such that the value of the
index of the refined partition is closer to one. Let us first outline the idea in the case
l = 3. For each (ε, ω)-irregular triple (V1, V2, V3) we either find (using the algorithm
from Theorem 3.1) V ′1 ⊂ V1 and X ′ ⊂ V2 × V3 such that

|dω1(X ′, V ′1)− dω1
(X ′, V1)| ≥ δ1,

or using the algorithm from Theorem 4.3, we find V ′2 ⊂ V2 and V ′3 ⊂ V3 such that

|dω2(V ′2 , V
′
3)− dω2(V2, V3)| ≥ δ2,

where ω1, ω2, δ1, δ2 are defined below. In the first case, only V ′1 is used to refine
a given partition; in the second case both V ′2 and V ′3 are used. Let (V,H, ω) be an
l-uniform weighted hypergraph with K = max |ω(v1, v2, . . . , vl)| + 1. We introduce
some additional notation: For an l-tuple (V1, . . . , Vl)

ω1(v1, . . . , vl) = ω(v1, . . . , vl), K1 = K,

ω2(v2, . . . , vl) =
∑
v1∈V1

ω1(v1, v2, . . . , vl), K2 = |V1|K1.

In general,

ωi(vi, . . . , vl) =
∑

vi−1∈Vi−1

ωi−1(vi−1, vi, . . . , vl), Ki = |Vi−1|Ki−1.(5.1)

Also, we set

εk =
ε

2k−1

and

δi =
1

48
ε
2(l−i+1)+1
i .

Also, set Xk = Vk+1 × · · · × Vl. Note that for every i ∈ [l],

δi ≥ 1

48

ε2l+1

2(2l+1)(l−1)
.(5.2)

We can now describe the procedure that “improves” a given partition P . For each
(ε1, ω1)-irregular l-tuple, (V1, . . . , Vl) consider the weighted bipartite graph (V1, X1, ω1),
where X1 = V2 × · · · × Vl and for x = (v2, . . . , vl), ω1(v, x) = ω1(v, v2, · · · , vl). Set
M = |V1| and N = |X1|. The algorithm is illustrated in Figure 5.1: Lemma 2.5
implies that if (V1, . . . , Vl) is (ε1, ω1)-irregular, then either (X1, V1) is vector irregular
and for at least δ1

(
N
2

)
of pairs {xi, xj} of vertices in X1

|〈−→xi ,−→xj〉 −K2
1Mdidj | > δ1K

2
1M,(5.3)

or the (l − 1)-tuple (V2, . . . , Vl) is (ε2, ω2)-irregular. If (5.3) holds, then we can use

the algorithm from Theorem 3.1 to find X ′1 ⊂ X1 with |X ′1| ≥ δ71
2 |X1| and V ′1 ⊂ V1

with |V ′1 | ≥ δ61 |V1| such that

|dω1(X ′1, V
′
1)− dω1

(X ′1, V1)| > δ21 .(5.4)
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Profit on ind1

Profit on ind

Profit on ind Profit on ind

Special witness case
(X ,V )

Special witness case
(X ,V )

1 1

2 2

(V ,...,V ) irregular

(V ,...,V ) irregular

1

2

2

l

l

ll-1

(V  , V ) irregularll-1

Theorem 3.1

Theorem 3.1

Theorem 4.3

Fig. 5.1. Proof of Theorem 1.1.

Note that X ′1 will not be used as a witness when improving the partition P ; only V ′1
will. In case (5.3) does not hold, we continue to apply Lemma 2.5 to the (l− i)- tuples
(Vi, . . . , Vl) until i = l − 2. Finally, if we haven’t found a witness set so far, we apply
Theorem 4.3 to the pair (Vl−1, Vl); in this case we find two subsets V ′l−1 ⊂ Vl−1 and
V ′l ⊂ Vl with |V ′l−1| ≥ δ4l−1|Vl−1| and |V ′l | ≥ δ4l−1|Vl| such that

|dωl−1
(V ′l−1, V

′
l )− dωl−1

(Vl−1, Vl)| > δ2l−1.

Both V ′l−1 and V ′l will be used as witness sets to improve P . More precisely, the
following algorithm can be used to improve the partition P .

Algorithm Improve
1. For every l-tuple (V1, . . . , Vl) in the partition P do:

2. For i = 1 to l − 2 successively
3. Apply the procedure from Theorem 3.1 to search for X ′i ⊂ Xi = Vi+1 ×

· · · × Vl and V ′i ⊂ Vi such that

|dωi(X
′
i, V

′
i )− dωi

(X ′i, Vi)| > δ2i .(5.5)

4. If (5.5) is satisfied for some i ≤ l− 2, then V ′i is a witness set and we move
to the next l-tuple.

5. If there is no i ≤ l − 2 for which (5.5) holds, then we apply the procedure
from Theorem 4.3 to search for V ′l−1 ⊂ Vl−1 and V ′l ⊂ Vl such that

|dωl−1
(V ′l−1, V

′
l )− dωl−1

(Vl−1, Vl)| > δ2l−1.(5.6)

6. In the case of (5.6), both V ′l−1 and V ′l are witness sets for the l-tuple.

7. If the number of l-tuples for which witness sets were found is at least εtl, then
compute a subpartition P ′ (described below) of P that respects all the witness sets
found in steps 3 and 5. Otherwise the partition P is (ε, ω)-regular.

Let us conclude this section with the following fact which shows what sets were
found by the algorithm Improve.
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Fact 5.1. If an l-tuple (V1, . . . , Vl) is (ε, ω)-irregular, then Improve either finds

X ′k ⊂ Xk and V ′k ⊂ Vk with |X ′k| ≥ δ7k
2 |Xk| and |V ′k| ≥ δ6k|Vk| such that (5.5) holds for

some 1 ≤ k ≤ l − 2, or it finds V ′l−1 ⊂ Vl−1 and V
′
l ⊂ Vl with |V ′l−1| ≥ δ4l−1|Vl−1| and

|V ′l | ≥ δ4l |Vl| such that (5.6) holds.
Proof. For every k = 1, . . . , l − 2, Lemma 2.5 implies that if an (l − k + 1)-

tuple (Vk, . . . , Vl) is (εk, ωk)-irregular, then either the (l − k)-tuple (Vk+1, . . . , Vl) is
(εk+1, ωk+1)-irregular or at least δk|Xk|2 of the pairs {xi, xj} of vertices from Xk
satisfy

|〈−→xi ,−→xj〉 −K2
kMdidj | > δkK

2
kM.(5.7)

If (5.7) is satisfied, then the algorithm of Theorem 3.1 finds X ′k ⊂ Xk and V ′k ⊂ Vk
such that (5.5) holds. If (5.7) does not hold for any 1 ≤ k ≤ l − 2, then a pair
(Vl−1, Vl) is (εl−1, ωl−1)-irregular and the algorithm of Theorem 4.3 finds V ′l−1 ⊂ Vl−1

and V ′l ⊂ Vl such that (5.6) holds.

6. The analysis of the main algorithm. In this section, we will analyze the
algorithm Improve. Although a little bit technical, the philosophy of the analysis is
the same as the Szemerédi’s proof of the regularity lemma [12]. We will show that for
a subpartition P ′ computed by the algorithm the value of the index ind(P ′) is bigger
than the value of the index of the original partition ind(P ). In addition, we will show
that the size of the exceptional class does not increase in any significant way. The
proof is divided into five rather technical facts. In Fact 6.1, we will show that the size
of the exceptional class does not increase too much. Fact 6.2 shows that the value
of the index associated with each (ε, ω)-regular l-tuple will remain about the same
after the refinement of the original partition. In Fact 6.3, we will show that we get a
“profit” on the index if an (ε, ω)-irregular l-tuple is reduced to the vector irregularity.
Fact 6.4 shows that the index will increase in case an (ε, ω)-irregular l-tuple is reduced
to the irregularity of the weighted bipartite graph. Lemma 6.5 combines Fact 6.3 and
Fact 6.4 to show that the value of the index of the refined partition is greater than
the value of the original one.

Similarly as in the original proof of the regularity lemma [12], we consider a
subpartition P ′ of P into atoms of size

m =

⌊ |Vi|
22tl

⌋

that respects the Venn diagram of witness sets found for each (ε, ω)-irregular l-tuple.
For j = 1, . . . , p, denote by Wi(j) the jth atom in Vi (that is, the jth subset in the
partition of Vi), and let

V̄i =

p⋃
j=1

Wi(j).

Observe that for every i

||V̄i| − |Vi|| ≤ |Vi|
2tl

.(6.1)

We first observe the following fact.
Fact 6.1. The size of the exceptional class V ′0 increases by at most

n

2tl
from the

size of V0.
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Proof. Indeed, there are at most 2t
l

equivalence classes of atoms and so in the
process of refining P we increase |V0| by at most

t2t
l |Vi|
22tl
≤ n

2tl
.

Fact 6.2. For every l-tuple (V1, . . . , Vl) and every i ∈ [l]

1

pi

∑
j1,...,ji

∑
x∈V̄i+1×···×V̄l

(dω(x,W1(j1), . . . ,Wi(ji)))
2

|V̄i+1| . . . |V̄l| ≥ indi(V1, . . . , Vl)− 3l

2tl
.

Proof. For every x ∈ Vi+1 × · · · × Vl,

1

pi

∑
j1,...,ji

(dω(x,W1(j1), . . . ,Wi(ji)))
2 ≥


 1

pi

∑
j1,...,ji

dω(x,W1(j1), . . . ,Wi(ji))




2

= (dω(x, V̄1, . . . , V̄i))
2.

Since |V̄i| ≥ (1− 1

2tl
)|Vi|, by the continuity of density (Fact 2.1) we have

(dω(x, V̄1, . . . , V̄i))
2 ≥ (dω(x, V1, . . . , Vi))

2 − 2l

2tl
,(6.2)

and so

1

pi

∑
j1,...,ji

∑
x∈V̄i+1×···×V̄l

(dω(x,W1(j1), . . . ,Wi(ji)))
2

|V̄i+1| . . . |V̄l|

≥
∑

x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2 − 2l

2tl

|V̄i+1| . . . |V̄l|

≥
∑

x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2

|Vi+1| . . . |Vl| − 2l

2tl
.(6.3)

Using (6.1) and the fact that dω(x, V1, . . . , Vi) ≤ 1,

∑
x∈Vi+1×···×Vl

(dω(x, V1, . . . , Vi))
2 −

∑
x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2

≤
l∑

k=i+1

∑
{(dω(x, V1, . . . , Vi))

2, x ∈ Vi+1 × · · · × Vk−1 × (Vk \ V̄k)× Vk+1 × · · · × Vl}

≤ l

2tl
|Vi+1| . . . |Vl|.(6.4)
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By (6.3) and (6.4),

1

pi

∑
j1,...,ji

∑
x∈V̄i+1×···×V̄l

(dω(x,W1(j1), . . . ,Wi(ji)))
2

|V̄i+1| . . . |V̄l|

≥
∑

x∈Vi+1×···×Vl

(dω(x, V1, . . . , Vi))
2

|Vi+1| . . . |Vl| − 3l

2tl

= indi(V1, . . . , Vl)− 3l

2tl
.

Suppose that an l-tuple (V1, . . . , Vl) is (ε, ω)-irregular and that for some 1 ≤ i ≤
l − 2, we found two sets V ′i ⊂ Vi with |V ′i | > δ6i |Vi| and X ′i ⊂ Xi with |X ′i| > δ7i

2 |Xi|
such that

|dωi(X
′
i, V

′
i )− dωi

(X ′i, Vi)| > δ2i .(6.5)

Then we have the following fact.
Fact 6.3. Assume that an l-tuple (V1, . . . , Vl) is (ε, ω)-irregular and for some

1 ≤ i ≤ l − 1, we found two sets V ′i ⊂ Vi with |V ′i | > δ6i |Vi| and X ′i ⊂ Xi with

|X ′i| > δ7i
2 |Xi| such that |dωi

(X ′i, V
′
i )− dωi

(X ′i, Vi)| > δ2i . If δ
8
i ≥ l

2tl−2
, then

1

pi

∑
j1,...,ji

∑
x∈V̄i+1×···×V̄l

(dω(x,W1(j1), . . . ,Wi(ji)))
2

|V̄i+1| . . . |V̄l|

≥ indi(V1, . . . , Vl) +
δ17i

8(1− δ6i )
− 4l

2tl
.

Proof. First observe that for Z ⊂ Xi = Vi+1 × · · · × Vl, Y ⊂ Vi

dωi(Z, Y ) =

∑
z∈Z,y∈Y ωi(y, z)
Ki|Z||Y | =

1

|Z|
∑
z∈Z

∑
y∈Y

∑
v1,...,vi−1

ω(v1, . . . , vi−1, y, z)

K|V1| . . . |Vi−1||Y |

=
1

|Z|
∑
z∈Z

dω(z, V1, . . . , Vi−1, Y ).(6.6)

We may assume that for the witness V ′i ,

V̄ ′i =

q⋃
ji=1

Wi(ji).

Then

||V ′i | − |V̄ ′i || ≤
|V ′i |
2tlδ6i

.
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For every x ∈ Xi, define

αx =
1

pi

∑
j1,...,ji∈[p]

dω(x,W1(j1), . . . ,Wi(ji))

− 1

qpi−1

∑
j1...,ji−1∈[p]

∑
ji∈[q]

dω(x,W1(j1), . . . ,Wi(ji)).

Observe that ∑
j1...,ji−1∈[p]

∑
ji∈[q]

dω(x,W1(j1), . . . ,Wi(ji))

=
q

p

∑
j1,...,ji∈[p]

dω(x,W1(j1), . . . ,Wi(ji))− qpi−1αx,

and using the defect form of Schwarz inequality (Fact 2.2), we infer that

1

pi

∑
j1,...,ji

(dω(x,W1(j1), . . . ,Wi(ji)))
2

≥

 1

pi

∑
j1...,ji

dω(x,W1(j1), . . . ,Wi(ji))




2

+
(αxqp

i−1)2pi

piqpi−1(pi − qpi−1)

= (dω(x, V̄1, . . . , V̄i))
2 +

α2
xq

p− q ,

due to the fact that
∑
j1,...,ji

dω(x,W1(j1), . . . ,Wi(ji)) = dω(x, V̄1, . . . , V̄i) and since

q ≥ δ6i p, we have

1

pi

∑
j1,...,ji

(dω(x,W1(j1), . . . ,Wi(ji)))
2 ≥ (dω(x, V̄1, . . . , V̄i))

2 + α2
x

δ6i
1− δ6i

.(6.7)

Since |V̄i| ≥ (1 − 1

2tl
)|Vi| and |V̄ ′i | ≥ (1 − 1

2tlδ6
i

)|V ′i |, by the continuity of density

(Fact 2.1), we have

dω(x, V1, . . . , Vi)− dω(x, V1, . . . , Vi−1, V
′
i ) ≤ dω(x, V̄1, . . . , V̄i)− dω(x, V̄1, . . . , V̄i−1, V̄

′
i )

+|dω(x, V1, . . . , Vi)−dω(x, V̄1, . . . , V̄i)|+|dω(x, V̄1, . . . , V̄i−1, V̄
′
i )−dω(x, V1, . . . , Vi−1, V

′
i )|

≤ dω(x, V̄1, . . . , V̄i)− dω(x, V̄1, . . . , V̄i−1, V̄
′
i ) +

2l

2tlδ6i
= αx +

2l

2tlδ6i
,(6.8)

as αx = dω(x, V̄1, . . . , V̄i)− dω(x, V̄1, . . . , V̄i−1, V̄
′
i ).
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Applying (6.6) with Z = X ′i, Y = Vi (or V ′i , respectively) combined with (6.8)
yields

|dωi
(X ′i, Vi)− dωi

(X ′i, V
′
i )| = 1

|X ′i|

∣∣∣∣∣∣
∑
x∈X′

i

(dω(x, V1, . . . , Vi)− dω(x, V1, . . . , Vi−1, V
′
i )

∣∣∣∣∣∣

≤ 1

|X ′i|

∣∣∣∣∣∣
∑
x∈X′

i

αx

∣∣∣∣∣∣+
2l

2tlδ6i
.

Since |dωi
(X ′i, Vi)− dωi(X

′
i, V

′
i )| ≥ δ2i , we have

1

|X ′i|

∣∣∣∣∣∣
∑
x∈X′

i

αx

∣∣∣∣∣∣ ≥ δ
2
i −

2l

2tlδ6i
.(6.9)

Thus,

1

|Xi|
∑
x∈Xi

α2
x ≥

1

|Xi|
∑
x∈X′

i

α2
x ≥

1

|Xi||X ′i|


∑
x∈X′

i

αx




2

≥ |X
′
i|

|Xi|
(
δ2i −

2l

2tlδ6i

)2

.(6.10)

Since |X ′i| ≥ δ7i
2 |Xi| and δ2i − 2l

2tlδ6
i

≥ δ2i
2 ,

1

|Xi|
∑
x∈Xi

α2
x ≥

δ11i
8
.(6.11)

Therefore, by (6.7),

1

pi

∑
j1,...,ji

∑
x∈V̄i+1×···×V̄l

(dω(x,W1(j1), . . . ,Wi(ji)))
2

|V̄i+1| . . . |V̄l|

≥
∑

x∈V̄i+1×···×V̄l

(dω(x, V̄1, . . . , V̄i))
2 + α2

x
δ6i

1−δ6
i

|V̄i+1| . . . |V̄l| .

By (6.2),

∑
x∈V̄i+1×···×V̄l

(dω(x, V̄1, . . . , V̄i))
2 + α2

x
δ6i

1−δ6
i

|V̄i+1| . . . |V̄l|

≥
∑

x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2 + α2

x
δ6i

1−δ6
i

− 2l

2tl

|V̄i+1| . . . |V̄l| .
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Since |V̄j | ≤ |Vj |, we have

∑
x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2 + α2

x
δ6i

1−δ6
i

− 2l

2tl

|V̄i+1| . . . |V̄l|

≥
∑

x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2 + α2

x
δ6i

1−δ6
i

− 2l

2tl

|Vi+1| . . . |Vl|

=
∑

x∈V̄i+1×...×V̄l

(
(dω(x, V1, . . . , Vi))

2

|Vi+1| . . . |Vl| +
δ6i

1− δ6i
α2
x

|Xi|
)
− 2l

2tl
.

Clearly dω(x, V1, . . . , Vi) ≤ 1 and
δ6i

1−δ6
i

αx ≤ 1. Thus, using the same argument as in

(6.4) we have

∑
x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2

|Vi+1| . . . |Vl| ≥
∑

x∈Vi+1×···×Vl

(dω(x, V1, . . . , Vi))
2

|Vi+1| . . . |Vl| − l

2tl

and

∑
x∈V̄i+1×···×V̄l

δ6i
1− δ6i

α2
x

|Xi| ≥
∑

x∈Vi+1×···×Vl

δ6i
1− δ6i

α2
x

|Xi| −
l

2tl
.

Therefore,

∑
x∈V̄i+1×···×V̄l

(dω(x, V1, . . . , Vi))
2 + α2

x
δ6i

1−δ6
i

− 2l

2tl

|V̄i+1| . . . |V̄l|

≥
∑

x∈Vi+1×···×Vl

(
(dω(x, V1, . . . , Vi))

2

|Vi+1| . . . |Vl| +
δ6i

1− δ6i
α2
x

|Xi|
)
− 4l

2tl
.(6.12)

Using (6.11) we further estimate the right-hand side of (6.12) from below by

∑
x∈Vi+1×···×Vl

(dω(x, V1, . . . , Vi))
2

|Vi+1| . . . |Vl| +
δ17i

8(1− δ6i )
− 4l

2tl

= indi(V1, . . . , Vl) +
δ17i

8(1− δ6i )
− 4l

2tl
.

Fact 6.4. For an 0 < ε < 1 let δ = 1
96

ε2l+1

2(2l+1)(l−1) . Suppose that an l-tuple is
(ε, ω)-irregular and we found sets V ′l−1 ⊂ Vl−1 with |V ′l−1| ≥ δ4l−1|Vl−1| and V ′l ⊂ Vl
with |V ′l | ≥ δ4l−1|Vl| such that

|dωl−1
(V ′l−1, V

′
l )− dωl−1

(Vl−1, Vl)| > δ2l−1.
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Then either

1

pl−1

∑
j1,...,jl−1

∑
x∈V̄l

(dω(x,W1(j1), . . . ,Wl−1(jl−1)))2

|V̄l|

≥ indl−1(V1, . . . , Vl) +
δ17

8(1− δ6)
− 4l

2tl
,

or

1

pl−1

∑
j1,...,jl−2,jl

∑
x∈V̄l−1

(dω(x,W1(j1), . . . ,Wl−2(jl−2),Wl(jl)))
2

|V̄l−1|

≥ indl(V1, . . . , Vl) +
δ17

8(1− δ6)
− 4l

2tl
.

Proof. If

|dωl−1
(V ′l−1, V

′
l )− dωl−1

(Vl−1, Vl)| > δ2l−1,(6.13)

then either

|dωl−1
(V ′l−1, Vl)− dωl−1

(Vl−1, Vl)| >
δ2l−1

2
,(6.14)

or

|dωl−1
(V ′l−1, V

′
l )− dωl−1

(V ′l−1, Vl)| >
δ2l−1

2
.(6.15)

Set δ = 1
96

ε2l+1

2(2l+1)(l−1) and note that by (5.2),
δ2l−1

2 ≥ δ2.
In the case of (6.14), we apply Fact 6.3 to (V1, . . . , Vl−2, Vl−1, Vl) with i = l − 1,

X ′i = Vl, and V ′i = V ′l−1 to conclude that

1

pl−1

∑
j1,...,jl−1

∑
x∈V̄l

(dω(x,W1(j1), . . . ,Wl−1(jl−1)))2

|V̄l|

≥ indl−1(V1, . . . , Vl) +
δ17

8(1− δ6)
− 4l

2tl
.

In the case of (6.15), we apply Fact 6.3 to (V1, . . . , Vl, Vl−1) with i = l− 1, X ′i = V ′l−1,
and V ′i = V ′l to conclude that

1

pl−1

∑
j1,...,jl−2,jl

∑
x∈V̄l−1

(dω(x,W1(j1), . . . ,Wl−2(jl−2),Wl(jl)))
2

|V̄l−1|

≥ indl−1(V1, . . . , Vl−2, Vl, Vl−1) +
δ17

8(1− δ6)
− 4l

2tl
,
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which by (1.5) is equal to

indl(V1, . . . , Vl−1, Vl) +
δ17

8(1− δ6)
− 4l

2tl
.

We have the following lemma.

Lemma 6.5. For every ε ≤ 1/2 and δ = 1
96

ε2l+1

2(2l+1)(l−1) , let P = V0 ∪ V1 ∪ · · · ∪ Vt
be an (ε, ω)-irregular partition of an l-uniform hypergraph and let 4l

2tl
≤ δ17

16·l . If we
use algorithm Improve to construct the subpartition P ′, then

ind(P ′) ≥ ind(P ) +
δ17

16 · l .

Proof. Assume that each Vi has been partitioned into Wi(j) for j = 1, . . . , p, and
let P ′ be the resulting subpartition. Then

P ′ = W0 ∪W1(1) ∪ · · · ∪W1(p) ∪ · · · ∪Wt(1) ∪ · · · ∪Wt(p).

To simplify the notation we will also write

P ′ = W0 ∪W1 ∪ · · · ∪Wt′ ,

where t′ = tp. Then

ind(P ′) =
1

l(tp)l

∑
(Wi1 ,...,Wil

)

(
l∑

k=1

indk(Wi1 , . . . ,Wil)

)
,

and so

ind(P ′) ≥ 1

ltl

∑
(i1,...,il)∈[t]l


 1

pl

∑
j1...jl∈[p]

(
l∑

k=1

indk(Wi1(j1), . . . ,Wil(jl))

)
 .

For every 1 ≤ k ≤ l,
1

pl

∑
j1,...,jl∈[p]

indk(Wi1(j1), . . . ,Wil(jl))

=
1

pl

∑
j1,...,jl∈[p]

∑
x∈Wik+1

(jk+1)×···×Wil
(jl)

(dω(x,Wi1(j1), . . . ,Wik(jk)))2

|Wik+1
(jk+1)| . . . |Wil(jl)|

=
1

pl

∑
j1,...,jk

∑
x∈V̄ik+1

×···×V̄il

(dω(x,Wi1(j1), . . . ,Wik(jk)))2

|Wik+1
(jk+1)| . . . |Wil(jl)|

=
1

pk

∑
j1,...,jk

∑
x∈V̄ik+1

×...×V̄il

(dω(x,Wi1(j1), . . . ,Wik(jk)))2

|V̄ik+1
| . . . |V̄l| ,(6.16)

as |V̄il | = p|Wil(jl)|. Fact 6.2 implies that for every 1 ≤ k ≤ l,
1

pl

∑
j1,...,jl∈[p]

indk(Wi1(j1), . . . ,Wil(jl)) ≥ indk(Vi1 , . . . , Vil)−
2l

2tl
.

If an l-tuple (Vi1 , . . . , Vil) is (ε, ω)-irregular, then by Fact 5.1, we can find either



AN ALGORITHMIC REGULARITY LEMMA FOR HYPERGRAPHS 1063

• V ′k0 ⊂ Vk0 and X ′k0 ⊂ Xk0 that satisfy the assumptions of Fact 6.3 for some
1 ≤ k0 ≤ l − 2, or
• V ′l−1 ⊂ Vl−1 and V ′l ⊂ Vl that satisfy the assumptions of Fact 6.4.

If the former holds, we combine (6.16) and Fact 3.6 to infer that for some 1 ≤ k0 ≤ l−2,

1

pl

∑
j1,...,jl∈[p]

indk0(Wi1(j1), . . . ,Wil(jl)) ≥ indk0(Vi1 , . . . , Vil) +
δ17k0

8(1− δ6k0)
− 4l

2tl
.

If the latter holds, then by Fact 6.4 for k0 = l − 1 or for k0 = l,

1

pl

∑
j1,...,jl∈[p]

indk0(Wi1(j1), . . . ,Wil(jl)) ≥ indk0(Vi1 , . . . , Vil) +
δ17

8(1− δ6)
− 4l

2tl
.

Since the partition P is (ε, ω)-irregular, at least εtl of l-tuples (Vi1 , . . . , Vil) are (ε, ω)-

irregular. Thus, (by (5.2) δk0 ≥ 1
48

ε2l+1

2(2l+1)(l−1) > δ, 1− δ ≤ 1)

ind(P ′) ≥ ind(P ) +
δ17

8 · l −
4l

2tl
,

and since t satisfies 4l

2tl
≤ δ17

16·l by assumption, we have

ind(P ′) ≥ ind(P ) +
δ17

16 · l .

Proof of Theorem 1.1. Set δ = 1
96

ε2l+1

2(2l+1)(l−1) , and partition the vertex set of a
hypergraph into t subsets (arbitrarily), but such that

1

2tl
≤ εδ17

16 · l + δ17
.

Invoke the procedure Improve 16·l
δ17 + 1 times. By Lemma 6.5 (note that 1

2tl
≤ δ17

16·l )
after at most 16·l

δ17 +1 iterations we find a partition Q with less than εtl (ε, ω)-irregular
l-tuples, otherwise ind(Q) > 1, which is not possible. Also, by Fact 6.1 the size of the
exceptional class

|V0| ≤
(

16 · l
δ17

+ 1

)
n

2tl
≤ εn.

Next we will argue that the complexity of the algorithm is O(n2l−1 log2 n). First
observe that we iterate the algorithm Improve a constant number of times. Since
l is constant and the number of partition classes is constant, the complexity of Im-
prove depends only on the algorithms of Theorem 3.1 and Theorem 4.3. Recall
that the complexity of the algorithm of Theorem 3.1 is O(N2M log2Kk), where
N = |Vk+1 × · · · × Vl| and M = |Vk|. Since 1 ≤ k ≤ l− 1 and by (5.1), Kk ≤ Knl (K
is constant by an assumption), the complexity of the algorithm from Theorem 3.1 is
O(n2l−1 log2 n). The complexity of the algorithm of Theorem 4.3 is O(M3 log2Kl−1),
where M = |Vl−1| = |Vl|. Therefore, in this case, the complexity is O(n3 log2 n). The
total complexity of Improve is O(n2l−1 log2 n).
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7. Applications. In this section, we outline the applications of Theorem 1.1 to
the max-cut problem for hypergraphs and to the problem of estimating the chromatic
number of a hypergraph. Let H = (V,E) be an l-uniform hypergraph and let n = |V |.
We consider the unweighted case ω : [V ]l → {0, 1}, and to simplify the notation we
write d(V1, . . . , Vl) instead of dω(V1, . . . , Vl). In the max-cut problem one wants to
find a partition of V into l subsets which is such that the number of hyperedges
that intersect each partition class (have nonempty intersection with each class) is
maximized. Case l = 2 gives the max-cut problem for graphs and its “dense case”
was considered in [7]. Let OPT (H) = max|{e ∈ E : |e ∩ Vi| = 1; i = 1, . . . , l}|, where
the maximum is taken over all partitions V1 ∪ · · · ∪ Vl of V .

Theorem 7.1. Let H = (V,E) be an l-uniform hypergraph and let n = |V |. For
every ε > 0, there is an O(n2l−1 log2 n) algorithm that finds a partition V1 ∪ · · · ∪ Vl
of V which is such that the number of hyperedges that intersect each Vi, i = 1, . . . , l
is at least OPT (H)− εnl.

Proof. The following algorithm finds the postulated partition. The constant ε′

depends on ε and can be computed explicitly.
1. Find an ε′-regular partition of H: W0, . . . ,Wt.
2. Check exhaustively all partitions V1, . . . , Vl in which for every i ∈ [l] and every
j ∈ [t] we have if Wj ∩ Vi �= ∅, then Wj ⊂ Vi. Choose a partition V1, . . . , Vl
that maximizes

∑
Wjk
⊂Vk

d(Wk1 ,Wk2 , . . . ,Wkl)|Wk1 | . . . |Wkl |.

Note that since there are lt partitions that are checked in the second step of the
algorithm, the complexity of the procedure is O(n2l−1 log2 n).

For a partition U1, . . . , Ul of V define

f(U1, . . . , Ul) = max|{e ∈ E : |e ∩ Ui| = 1, i = 1, . . . , l}|

and

f∗(U1, . . . , Ul) =
∑

Wjk
⊂Uk

d(Wj1 ,Wj2 , . . . ,Wjl)|U1 ∩Wk1 | . . . |Ul ∩Wkl |.

One can verify that f∗ is maximized for a partition U1, . . . , Ul which is of the form
considered in the second step of the algorithm, i.e., if Wj ∩ Ui �= ∅, then Wj ⊂ Ui.
Also, choosing ε′ appropriately, one can show that for every partition U1, . . . , Ul

|f(U1, . . . , Ul)− f∗(U1, . . . , Ul)| ≤ ε

2
nl.

Let V1, . . . , Vl be a partition found by the algorithm, and let U1, . . . , Ul be an optimal
partition. Then

f(V1, . . . , Vl) ≥ f∗(V1, . . . , Vl)− ε

2
nl ≥ f∗(U1, . . . , Ul)− ε

2
nl

≥ f(U1, . . . , Ul)− εnl = OPT (H)− εnl.

Our second application concerns the chromatic number of a hypergraph. The chro-
matic number χ(H) is defined as the minimum number of colors needed to color the
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vertices of H so that there is no hyperedge of H that contains more than one vertex
of the same color. Define

χε(H) = min{χ(H \ E′) : E′ ⊂ E; |E′| ≤ εnl}.

We define a hyperedge {v1, . . . , vl} to be crossing in an l-tuple (V1, . . . , Vl) if for every
i = 1, . . . , l, vi ∈ Vi.

Theorem 7.2. Let H = (V,E) be an l-uniform hypergraph and let n = |V |. For
every ε > 0 there is an O(n2l−1 log2 n) time algorithm that finds a number k satisfying

χε(H) ≤ k ≤ χ(H).

Proof. Sketch. Set ε′ = ε
4 and find an ε′-regular partition W0, . . . ,Wt. Construct

a subhypergraph H ′ of H by deleting all the hyperedges adjacent to W0, hyperedges
that are crossing in ε′-irregular l-tuples, and the hyperedges that are crossing in
the ε′-regular l-tuples that have densities not greater than ε′. In this process we
delete at most 3ε′nl hyperedges. Construct a subhypergraph H ′′ of H ′ as follows.
Group (arbitrarily) classes W0,W1, . . . ,Wt into t′ = 1

ε′ sets V1, . . . , Vt′ (say, Vi =⋃iε′t
j=(i−1)ε′tWj), and delete the hyperedges that contain at least two vertices from

the same Vi. In this process we delete at most ε′nl hyperedges. Let Aux(H ′′) be
an l-uniform hypergraph with vertex set {W0, . . . ,Wt} and with {Wi1 , . . . ,Wil} ∈
E(Aux(H ′′)) if and only if there is at least one hyperedge of H ′′ contained in Wi1 ∪
· · · ∪Wil .

Claim 7.3. χ(Aux(H ′′)) = χ(H ′′).
Proof. Clearly, χ(Aux(H ′′)) ≥ χ(H ′′), as a proper coloring of Aux(H ′′) induces

the proper coloring of H ′′. Assume that χ(H ′′) < χ(Aux(H ′′)). Let W̄i ⊂ Wi be
a set of vertices colored in the most frequent color of Wi in a χ(H ′′)-coloring of H ′′

(ties are resolved arbitrarily). Consider the coloring of Aux(H ′′) induced by these
“most frequent” colors. Then there exists a hyperedge of Aux(H ′′), {Wi1 , . . . ,Wil}
such that at least two of Wij have the same color. We next show that there must be
a crossing hyperedge in (W̄i1 , . . . , W̄il). From the construction of H ′′ it follows that
χ(Aux(H ′′)) ≤ 1

ε′ , and so for every i = 1, . . . , t

|W̄i| ≥ ε′|Wi|.(7.1)

Since {Wi1 , . . . ,Wil} is a hyperedge of Aux(H ′′), we have d(Wi1 , . . . ,Wil) > ε′, and
by the ε′-regularity of (Wi1 , . . . ,Wil)

d(W̄i1 , . . . , W̄il) > 0.(7.2)

Therefore, there is at least one crossing hyperedge in (W̄i1 , . . . , W̄il) which contradicts
the fact that H ′′ was properly colored.

Since Aux(H ′′) has t vertices, χ(Aux(H ′′)) can be found in a constant time
by exhaustive search, and so we found k = χ(Aux(H ′′)) = χ(H ′′) satisfying k ≥
χε(H).
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suggestions.



1066 ANDRZEJ CZYGRINOW AND VOJTECH RÖDL
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Electron. J. Combin., 6 (1999), http://www.combinatorics.org./Volume-6/PDF/v6i1r1.pdf.
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Abstract. In the minimum fill-in problem, one wishes to find a set of edges of smallest size,
whose addition to a given graph will make it chordal. The problem has important applications in
numerical algebra and has been studied intensively since the 1970s. We give the first polynomial
approximation algorithm for the problem. Our algorithm constructs a triangulation whose size is
at most eight times the optimum size squared. The algorithm builds on the recent parameterized
algorithm of Kaplan, Shamir, and Tarjan for the same problem.

For bounded degree graphs we give a polynomial approximation algorithm with a polylogarithmic
approximation ratio. We also improve the parameterized algorithm.

Key words. approximation algorithms, parameterized algorithms, graph algorithms, minimum
fill-in, chordal graphs, chain graphs, chordal completion, chain completion

AMS subject classifications. 68W25, 68W99, 05C85, 05C99

PII. S0097539798336073

1. Introduction. A chord in a cycle is an edge between nonconsecutive vertices
on the cycle. A chordless cycle is a cycle of length greater than 3 that contains no
chord. A graph is called chordal or triangulated if it contains no chordless cycle. If
G = (V,E) is not chordal and F is a set of edges such that (V,E∪F ) is chordal, then F
is called a fill-in or a triangulation of G. If |F | ≤ k, then F is called a k-triangulation
of G. We denote by Φ(G) the size of the smallest fill-in of G.

The minimum fill-in problem is to find a minimum triangulation (fill-in) of a
given graph. The importance of the problem stems from its applications to numerical
algebra. In many fields, including VLSI simulation, solution of linear programs, signal
processing, and others (cf. [7]), one has to perform a Gaussian elimination on a sparse
symmetric positive-definite matrix. During the elimination process zero entries may
become nonzeros. Different elimination orders may introduce different sets of new
nonzero elements into the matrix. The time of the computation and its storage needs
are dependent on the sparseness of the matrix. It is therefore desirable to find an
elimination order such that a minimum number of zero entries is filled in with nonzeros
(even temporarily). Rose [21] proved that the problem of finding an elimination order
for a symmetric positive-definite matrix M , such that fewest new nonzero elements
are introduced, is equivalent to the minimum fill-in problem on a graph whose vertices
correspond to the rows of M and in which (i, j) is an edge if and only if Mi,j �= 0.

In 1979, Garey and Johnson [9] posed the complexity of the minimum fill-in
problem as a major open problem. Yannakakis subsequently proved that the minimum
fill-in problem is NP-complete [23]. Due to its importance the problem has been
studied intensively [2, 11, 13, 22], and many heuristics have been developed for it
[5, 12, 20, 21]. None of those gives a performance guarantee with respect to the size
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of the fill-in introduced. Note that in contrast, the minimal fill-in problem (finding a
triangulation of G which is minimal with respect to inclusion) is polynomial [19].

Approximation attempts succeeded only for the related minimum triangulated
supergraph problem (MTS). In MTS the goal is to add edges to the input graph
in order to obtain a chordal graph with minimum total number of edges. While
as optimization problems MTS and minimum fill-in are equivalent, they may differ
drastically as approximation problems. For example, if the input graph has Ω(n2)
edges and fill-in of size o(n2), then one can trivially achieve a constant approximation
ratio for MTS by making the graph an n-clique (a complete graph), while no such
approximation guarantee exists for the minimum fill-in problem. (Throughout we
use n and m to denote the number of vertices and edges, respectively, in a graph.)
The approximation results regarding MTS use the nested dissection heuristic first
proposed by George [10] (see [13] for details). Gilbert [14] showed that for a graph
with maximum degree d there exists a balanced separator decomposition such that a
nested dissection ordering based on that decomposition yields a chordal supergraph,
in which the number of edges is within a factor of O(d log n) of optimal. The result
was not constructive as one has yet to find such a decomposition. Leighton and
Rao [17] gave a polynomial approximation algorithm for finding a balanced separator
in a graph of size within a factor of O(log n) of optimal. Agrawal, Klein, and Ravi [1],
using Gilbert’s ideas and the result of [17], obtained a polynomial approximation
algorithm with ratio O(

√
d log4 n) for MTS on graphs with maximum degree d. They

also gave a polynomial approximation algorithm for MTS on general graphs, which
generates for an input graph G a chordal supergraph with total number of edges
O((m+Φ(G))3/4

√
m log3.5 n).

In the parametric fill-in problem the input is a graph G and a parameter k. The
goal is to find a k-triangulation of G, or to determine that none exists. Clearly this
can be done in nO(k) time by enumeration. For fixed k and growing n, an algorithm
with complexity 2O(k)nO(1) is superior. Parameterized complexity theory, initiated by
Downey and Fellows (cf. [6]), studies the complexity of such problems. Parameterized
problems that have algorithms of complexity O(f(k)nα) (with α a constant) are called
fixed parameter tractable. Kaplan, Shamir, and Tarjan [16] and later independently
Cai [3] proved that the minimum fill-in problem is fixed parameter tractable, by giving
an algorithm of complexity 2O(k)m for the problem. Both used the same algorithm,
with the time bound in [3] being slightly tighter. Kaplan, Shamir, and Tarjan also
gave a more efficient 2O(k)+O(k2nm)-time algorithm (henceforth, the KST algorithm)
for the problem.

In this paper we give the first polynomial approximation algorithm for the mini-
mum fill-in problem. Our algorithm builds on ideas from [16]. For an input graph G
with minimum fill-in of size k, our algorithm produces a triangulation of size at most
8k2, i.e., within a factor of 8k of optimal. The approximation is achieved by identify-
ing in G a kernel set of vertices A of size at most 4k, such that one can triangulate G
by adding edges only between vertices of A. Our algorithm produces the triangulation
without prior knowledge of k. Let M(n) denote the number of operations needed to
multiply two integer matrices of order n × n. (The current upper bound on M(n)
is O(n2.376) [4].) The algorithm works in time O(knm + min{n2M(k)/k, nM(n)}),
which makes it potentially suitable for practical use.

Our algorithm is particularly attractive for small fill-in values. Note that if k =
Ω(n), then our algorithm guarantees only the trivial bound of fill-in size O(n2), but if,
for example, the fill-in size is constant, then the approximation guarantee is a constant.
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This type of approximation result is uncommon. It opens the question of obtaining
polynomial approximation algorithms with performance guarantees depending on the
optimal value for other important problems, even in the presence of hardness-of-
approximation results.

We also obtain better approximation results for bounded degree graphs. For
graphs with maximum degree d we give a polynomial algorithm which achieves an
approximation ratio of O(d2.5 log4(kd)). Since k = O(n2), this approximation ratio is
polylogarithmic in the input size.

In order to compare our results to the approximation results regarding MTS,
we translate the latter to approximation ratios in terms of the fill-in obtained. We
assume throughout that m > n. For general graphs the algorithm in [1] guar-
antees that the number of edges in the chordal supergraph obtained is O((m +
k)3/4

√
m log3.5 n). In terms of the fill-in obtained, the approximation ratio achieved

is O(m1.25 log3.5 n/k +
√
m log3.5 n/k1/4). We obtain a better approximation ratio

whenever k = O(m5/8 log1.75 n). For graphs with maximum degree d, the algorithm
in [1] achieves an approximation ratio of O(((nd + k)

√
d log4 n)/k). We provide a

better ratio when k = O(n/d). When any of these upper bounds on k is satisfied, our
algorithm also achieves a better approximation ratio than [1] for the MTS problem.

Kaplan, Shamir, and Tarjan posed in [16] an open problem of obtaining an
algorithm for the parametric fill-in problem with time 2O(k) + O(km). The moti-
vation is to match the performance of the 2O(k)m algorithm for all k. We make
some progress towards solving that problem by providing a faster 2O(k) + O(knm +
min{n2M(k)/k, nM(n)})-time implementation of their algorithm. We also give a
variant of the algorithm which produces a smaller kernel. Finally, we apply our ap-
proximation algorithm to the chain completion problem and obtain an approximation
ratio of 8k, where k denotes the size of an optimum solution.

The paper is organized as follows. Section 2 contains a description of the KST
algorithm and some background. Section 3 improves the complexity of the KST
algorithm and reduces the size of the kernel produced. Section 4 describes our ap-
proximation algorithm for general graphs. Section 5 gives an approximation algorithm
for graphs with bounded degree. Section 6 gives further reduction of the kernel size,
and section 7 gives an approximation algorithm for the chain completion problem.

2. Preliminaries. Let G = (V,E) be a graph. We denote its set V of vertices
also by V (G) and its set E of edges also by E(G). For U ⊆ V we denote by GU the
subgraph induced by the vertices in U . For a vertex v ∈ V we denote by N(v) the set
containing all neighbors of v in G. We let N [v] = N(v) ∪ {v}. A path with l edges is
called an l-path and its length is l. A single vertex is considered a 0-path. We call a
cycle with l edges an l-cycle.

Our polynomial approximation algorithm for the minimum fill-in problem builds
on the KST algorithm [16]. In the following we describe this algorithm. Our presenta-
tion generalizes that in [16] in order to allow succinct description of the approximation
algorithm in section 4.

Fact 2.1. A minimal triangulation of a chordless l-cycle consists of l−3 edges.
Lemma 2.2 (see [16, Lemma 2.5]). Let C be a chordless cycle and let p be an

l-path on C, 1 ≤ l ≤ |C|−2. If l = |C|−2, then in every minimal triangulation of C
there are at least l−1 chords incident with vertices of p. If l < |C|−2, then in every
minimal triangulation of C there are at least l chords incident with vertices of p.

Let 〈G = (V,E), k〉 be the input to the parametric fill-in problem. The algorithm
has two main stages. In the first stage, which is polynomial in n,m, and k, the
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algorithm produces a partition A,B of V and a set F of nonedges in GA, such that
|A| = O(k3) and no chordless cycle in G′ = (V,E ∪F ) intersects B. We shall call this
stage the partition algorithm.

In the second stage, which is exponential in k, an exhaustive search is applied
to find a minimum triangulation F ′ of G′A. F ∪ F ′ is then proved to be a minimum
triangulation of G. The search procedure can be viewed as traversing part of a search
tree T , which is defined as follows. Each tree node v corresponds to a supergraph
G(v) of G. For the root r, G(r) = G. Each leaf of T corresponds to a chordal
supergraph of G. At an internal node v, a chordless cycle C in G(v) is identified.
For each minimal triangulation FC of C, a node u is added as a child of v, and its
corresponding graph G(u) is obtained by adding FC to G(v). The algorithm visits
only nodes v of T for which |E(G(v))\E| ≤ k. If such a node is a leaf, then the search
terminates successfully. Otherwise, no k-triangulation exists for G.

The partition algorithm applies sequentially the following three procedures. All
three maintain a partition A,B of V and a lower bound cc on the minimum number
of edges needed to triangulate G. Initially A=∅, B=V , and cc=0.

(i) Procedure P1(k). Extracting independent chordless cycles. Search repeatedly
for chordless cycles in GB and move their vertices from B to A. For each chordless
l-cycle found, increment cc by l − 3. If at any time cc > k, stop and declare that the
graph admits no k-triangulation.

(ii) Procedure P2(k). Extracting related chordless cycles with independent paths.
Search repeatedly for chordless cycles in G containing at least two consecutive vertices
from B. Let C be such a cycle, |C| = l. If l > k + 3, stop with a negative answer.
Otherwise, suppose that C contains j ≥ 1 disjoint maximal subpaths in GB , each of
length at least 1. Move the vertices of those subpaths from B to A. Denote their
lengths in nonincreasing order by l1, . . . , lj . If j = 1, we increase cc either by l1−1 if
l1= l−2, or by l1 if l1<l−2. Otherwise, cc is increased by max{ 1

2

∑j
i=1 li, l1}. If at

any time cc > k, stop and declare that the graph admits no k-triangulation.

Definition 2.3. For every x, y ∈ A such that (x, y) �∈ E, denote by Ax,y the set
of all vertices b ∈ B such that x, b, y occur consecutively on some chordless cycle in
G. If |Ax,y| > 2k, then (x, y) is called a k-essential edge.

(iii) Procedure P3(k). Adding k-essential edges in GA. For every x, y ∈ A such
that (x, y) �∈ E compute the set Ax,y. If (x, y) is k-essential, then add it to G.
Otherwise, move all vertices in Ax,y from B to A.

Denote by Ai, Bi the partition obtained after procedure Pi is completed for i =
1, 2, 3. We shall omit the index i when it is clear from the context. Denote by cci the
value of cc after procedure Pi is completed for i = 1, 2. The size of A

2 is at most 4k
since k ≥ cc2 = cc1 + (cc2 − cc1) ≥ 1

4 |A1| + 1
2 |A2 \ A1| ≥ 1

4 |A2|. The size of A3 is
O(k3) since there are O(k2) nonedges in GA2 and the number of vertices moved to A
due to any such nonedge is at most 2k.

The partition algorithm is summarized in Figure 2.1. Let G′ denote the graph
obtained after the execution of procedure P3. Kaplan, Shamir, and Tarjan prove

Execute procedure P1(k).
Execute procedure P2(k).
Execute procedure P3(k).

Fig. 2.1. The KST partition algorithm.
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that every k-essential edge must appear in any k-triangulation of G [16, Lemma 2.7],
and that in G′ no chordless cycle intersects B [16, Theorem 2.10]. Therefore, by the
following theorem it suffices to search for a minimum triangulation of G′A.

Theorem 2.4 (see [16, Theorem 2.13]). Let A,B be a partition of the vertex set
of a graph G, such that the vertices of every chordless cycle in G are contained in
A. A set of edges F is a minimal triangulation of G if and only if F is a minimal
triangulation of GA.

The complexity of the partition algorithm is O(k2nm) [16]. The complexity of

finding a minimum triangulation of a given graph is O( 4k

(k+1)3/2m) [3]. Since G
′
A

contains O(k6) edges, a minimum triangulation of G′A can be found in O(k4.54k)
time. Hence, the complexity of the KST algorithm is O(k2nm+ k4.54k).

3. Improvements to the partition algorithm. In this section we show
some improvements to the KST partition algorithm. We assume throughout that
the input is 〈G = (V,E), k〉. We first show how to implement procedure P3 in
O(nm + min{n2M(k)/k, nM(n)})-time. We then prove that the size of A3 is only
O(k2). These results imply that the KST algorithm can be implemented in O(knm+
min{n2M(k)/k, nM(n)}+ k2.54k)-time.

Lemma 3.1. There is an O(nm+min{n2M(k)/k, nM(n)})-time implementation
of procedure P3.

Proof. Let S = {(x, y) �∈ E : x, y ∈ A2}. The bottleneck in the complexity of P3

is computing the sets Ax,y for every (x, y) ∈ S. To this end, we find for every b ∈ B
all pairs (x, y) ∈ S such that b ∈ Ax,y. We then construct the sets Ax,y. This is done
as follows.

Fix b ∈ B. Compute the connected components of Gb = G \ N [b]. This takes
O(m) time. Denote the connected components of Gb by Cb1, . . . , C

b
l . For each x ∈

A2 ∩N(b) compute a binary vector &vx = (vx1 , . . . , vxl ) such that vxj = 1 if and only if
Cbj contains a neighbor of x, 1 ≤ j ≤ l. Each vector can be computed in O(n)-time.

Let k′ = |A2 ∩N(b)|, and number the vertices in A2 ∩N(b) arbitrarily according to
some 1-1 mapping σ : {1, . . . , k′} → A2 ∩ N(b). Define a k′ × l boolean matrix M
whose ith row is the vector &vσ(i), 1 ≤ i ≤ k′. Note that k′ = O(k) and l ≤ n. Let
M∗ = MMT . It can be seen that for every pair (i, j) such that 1 ≤ i < j ≤ k′ and
(σ(i), σ(j)) ∈ S, M∗i,j ≥ 1 if and only if b ∈ Aσ(i),σ(j). Since k

′, l ≤ n we can compute
M∗ in O(M(n))-time. If k = o(n), then we can compute M∗ in O(nM(k)/k)-time by
partitioning M and MT into �n/k′� submatrices of order at most k′× k′, multiplying
corresponding pairs of submatrices, and summing the results. Hence, the computation
of M∗ takes O(min{nM(k)/k,M(n)}) time.

After the above calculations are performed for every b ∈ B, it remains to compute
the sets Ax,y. We can do that in O(min{k2n, n3})-time. The total time is therefore
O(nm+min{n2M(k)/k, nM(n)}).

Observation 3.2. Let x, y ∈ A2, (x, y) �∈ E. If Ax,y �= ∅, then for any triangula-
tion F of G, either (x, y) ∈ F , or for every b ∈ Ax,y, F contains an edge incident on
b.

Lemma 3.3. Assume that G admits a k-triangulation and that in procedure P3

all sets Ax,y moved into A are of size at most d. Then |A3 \ A2| ≤ Mk, where
M = max{d, 2}.

Proof. Let the nonedges in GA2 be (x1, y1), . . . , (xl, yl). We process the sets
Ax1,y1 , . . . , Axl,yl in this order. Let A

(0) = A2. Let A(i) be the set A right after Axi,yi

was processed, and let ∆i = Axi,yi \A(i−1) for 1 ≤ i ≤ l.
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Let t be a lower bound on the minimum number of edges needed to triangulate G.
Initially P3 starts with t = 0. Let ti be the value of t right after Axi,yi was processed
(t0 = 0). If ∆i �= ∅, then by Observation 3.2, t should increase by min{1, |∆i|/2}. We
must maintain t ≤ k. If ti−ti−1=0, then |∆i| = 0. If ti−ti−1=1/2, then |∆i| = 1. If
ti−ti−1≥1, then |∆i| ≤ d. Therefore for all 1 ≤ i ≤ l, |∆i| ≤M(ti − ti−1). Now,

|A3 \A2| = |A(l) \A(0)| =
l∑
i=1

|A(i) \A(i−1)|

=

l∑
i=1

|∆i| ≤M

l∑
i=1

(ti − ti−1) =M(t− t0) ≤Mk .

Corollary 3.4. If G has a k-triangulation, then the partition algorithm termi-
nates with |A| ≤ 2k(k + 2).

Proof. Let us assume that all k-essential edges were added to G, and denote the
new set of edges of G by E′. For all x, y ∈ A2, (x, y) �∈ E′, we know that |Ax,y| ≤ 2k.
By Lemma 3.3, |A3 \A2| ≤ 2k2. Since |A2| ≤ 4k, the corollary follows.

Theorem 3.5. There is an O(knm + min{n2M(k)/k, nM(n)} + k2.54k)-time
implementation of the KST algorithm.

Proof. By the analysis in [16], P1 takes O(km) time, and P2 takes O(knm)
time. By Lemma 3.1, the complexity of P3 is O(nm+min{n2M(k)/k, nM(n)}). By
Corollary 3.4, if G admits a k-triangulation, then the size of A3 is O(k2). Hence, a
minimum triangulation of G′A can be found in O(k

2.54k)-time [3]. The complexity
follows.

4. The approximation algorithm. Let G = (V,E) be the input graph. Let
kopt = Φ(G). The key idea in our approximation algorithm is to find a set of vertices
A ⊆ V , such that |A| = O(kopt) and, moreover, one can triangulate G by adding
edges only between vertices of A. Since there are O(k2

opt) nonedges in GA, we achieve
an approximation ratio of O(kopt).

In order to find such a set A we use ideas from the partition algorithm. If we knew
kopt, we could execute the partition algorithm and obtain a set A, with |A| = O(k2

opt)
(by Corollary 3.4), such that G can be triangulated by adding edges only in GA. This
would already give an O(k3

opt) approximation ratio.
Before describing our algorithm we analyze the role of the parameter k given to

the partition algorithm. If k<kopt, then the algorithm might stop during P1 or P2 and
declare that no k-triangulation exists. Moreover, k-essential edges are not necessarily
kopt-essential. If k>kopt, then the size of A may be ω(k

2
opt). The algorithm is shown

in Figure 4.1.
Procedures P ′1 and P

′
2 execute P1 and P2, respectively, without bounding the size

of the triangulation implied. Procedure P ′3 takes advantage of the fact that we no

Algorithm APPROX
Procedure P ′1: Execute P1(∞).
Procedure P ′2: Execute P2(∞).
Procedure P ′3: Execute P3(0).
Let G′ be the resulting graph.
Procedure P ′4: Find a minimal triangulation of G

′
A.

Fig. 4.1. The approximation algorithm.
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longer seek a minimum triangulation but rather a minimal one. In order to obtain our
approximation result we want to keep A as small as possible. Hence, instead of moving
new vertices to A we add new 0-essential edges accommodating for those vertices. By
the same arguments as in [16] and section 2, the size of A after the execution of P ′2
is at most 4kopt. Since P

′
3 does not add new vertices to A, its size remains at most

4kopt throughout. The size of the triangulation found by the algorithm is therefore
at most 8k2

opt. The correctness of Algorithm APPROX is established in what follows.
We need the following lemma which is implied by the proof of [16, Lemma 2.9]. The
subsequent theorem is a generalization of [16, Theorem 2.10].

Lemma 4.1. Let G = (V,E) be a graph and let v ∈ V . Let F be a set of nonedges
in G \ {v}, such that each e = (x, y) ∈ F is a chord in a chordless cycle Ce =
(x, ze, y, . . . , x) in G, where ze is not an endpoint of any edge in F . Let G

′ = (V,E ∪
F ). If there exists a chordless cycle C in G′ with v1, v, v2 occurring consecutively on
C for some v1, v2 ∈ N(v), then either there exists a chordless cycle in G on which
v1, v, v2 occur consecutively, or there exists a chordless cycle in G, on which v and ze
occur consecutively for some e ∈ F .

Theorem 4.2. Let G = (V,E) be a graph. Let A,B be a partition of V such
that no chordless cycle in G contains two consecutive vertices from B. Let S =
{(x, y) �∈ E : x, y ∈ A,Ax,y �= ∅}. Then for any choice of F ⊆ S no chordless cycle in
G′ = (V,E ∪ F ) intersects B′ = B \ (⋃(x,y)∈S\F Ax,y).

Proof. Suppose to the contrary that C is a chordless cycle in G′ intersecting B′.
Let v ∈ C ∩ B′. Let v1 and v2 be the neighbors of v on C. Since v ∈ B′, it is not
an endpoint of any edge in F . Every edge e = (x, y) ∈ F is a chord in a chordless
cycle Ce = (x, ze, y, . . . , x) of G, where ze ∈ B. Applying Lemma 4.1, we find that
two cases are possible.

1. There exists a chordless cycle in G on which v1, v, v2 occur consecutively. If
v1 ∈ B or v2 ∈ B, we arrive at a contradiction. Hence, v1, v2 ∈ A and v ∈ Av1,v2 . We
conclude that either (v1, v2) ∈ F or v �∈ B′, a contradiction.

2. There exists a chordless cycle in G on which v and ze occur consecutively
(for some e ∈ F ), a contradiction.

Theorem 4.3. Let G be a graph and let kopt = Φ(G). The algorithm finds
a triangulation of G of size at most 8k2

opt and can be implemented to run in time
O(koptnm+min{n2M(kopt)/kopt, nM(n)}).

Proof. Correctness. By Theorems 4.2 and 2.4 a minimal triangulation of G′A is a
minimal triangulation of G′. Therefore at the end of the algorithm G is triangulated.
Throughout the algorithm the only edges added to G are between vertices of A. Since
|A| ≤ 4kopt, the size of the triangulation is at most 8k2

opt.
Complexity. The complexity analysis of procedures P1 and P2 in [16] implies that

P ′1 and P
′
2 can be performed in O(koptnm)-time. By Lemma 3.1 the complexity of P

′
3

is O(nm + min{n2M(kopt)/kopt, nM(n)}). Procedure P ′4 requires finding a minimal
triangulation of G′A. Since |A| = O(min{kopt, n}) and |E(G′A)| = O(min{k2

opt, n
2}),

this requires O(min{k3
opt, n

3}) time [19]. Hence, the complexity of the approximation
algorithm is O(koptnm+min{n2M(kopt)/kopt, nM(n)}).

Note that, although our analysis uses an upper bound of
(
t
2

)
for the triangulation

size of a t-vertex graph, replacing G′A by the complete graph is not guaranteed to
produce a triangulation of G.

5. Bounded degree graphs. In order to improve the approximation ratio for
bounded degree graphs, we improve P ′4. Instead of simply finding a minimal trian-
gulation of G′A, we use the triangulation algorithm of Agrawal, Klein, and Ravi [1].
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This alone does not suffice to prove a better approximation ratio, since adding 0-
essential edges (in P ′3) might not be optimal. In other words, if we denote by F the
set of 0-essential edges added to G by P ′3, then it might be that |F |+Φ(G′) > Φ(G).
To overcome this difficulty we use the KST partition algorithm with k = ∞ as its
input parameter, which implies that no new edge will be added to GA by P3. The
approximation algorithm is as follows:

(i) Execute the KST partition algorithm with parameter k =∞.
(ii) Find a minimal triangulation of GA using the algorithm in [1].
Assume that the input graph G has maximum degree d, and let k = Φ(G). We will

show that the algorithm achieves an approximation ratio of O(d2.5 log4(kd)). Since
k = O(n2), this is in fact a polylogarithmic approximation ratio. It improves over the
O(k) approximation ratio obtained in the previous section, when k/ log4 k = Ω(d2.5).

Theorem 5.1. The algorithm finds a triangulation of G of size within a factor
of O(d2.5 log4(kd)) of optimal.

Proof. Correctness. By the correctness of the KST partition algorithm, we obtain
a partition A,B of V (G) for which no chordless cycle in G intersects B. By Theo-
rem 2.4 a minimal triangulation of GA is a minimal triangulation of G. Therefore,
the algorithm correctly computes a minimal triangulation of G.

Approximation ratio. When executing P3, the size of each set Ax,y is at most d.
By Lemma 3.3, |A3 \A2| = O(kd). Since |A2|=O(k), the size of A when the partition
algorithm terminates is O(kd). Setting the parameter value to ∞ in P3 guarantees
that no new edge is added to GA, and therefore its maximum degree is at most d and
|E(GA)| = O(kd2). Using the algorithm in [1] we can produce a chordal supergraph
of GA with O((kd

2+k)
√
d log4(kd)) edges. The size of the fill-in obtained is therefore

within a factor of O(d2.5 log4(kd)) of optimal.

6. Reducing the kernel size. We now return to the parametric fill-in problem.
Let 〈G = (V,E), k〉 be the input instance. By modifying procedure P3 in the KST
partition algorithm we shall obtain a partition A,B of V and a set of nonedges F ,
such that no chordless cycle in G′ = (V,E ∪ F ) intersects B and |A| = O(k). In fact
we shall obtain at most 2k such pairs (A,F ) and prove that if G has a k-triangulation,
then at least for one of those pairs G′A admits a (k − |F |)-triangulation. Reducing
the size of A results in improving the complexity of finding a minimum triangulation
of G′A to O(

√
k4k), although the total time of the algorithm increases, since we have

to handle up to 2k pairs. We include this result, since it gives further insight on the
problem and presents ideas that may help resolve the open problem posed in [16].

As in the original algorithm we start by executing procedures P1(k) and P2(k).
We also compute the sets Ax,y for all x, y ∈ A2, (x, y) �∈ E. If (x, y) is k-essential, we
add it to G. Otherwise, we do nothing. Let Ê be the set of k-essential edges, and let
e = |Ê|. Define P := {(x, y) �∈ E ∪ Ê : x, y ∈ A2, Ax,y �= ∅}, and let p = |P |.

The algorithm now enumerates subsets F ⊆ P . For a given set F , every (x, y) ∈ F
is added as an edge in the triangulation, and for every (x, y) ∈ P \ F , the vertices
in Ax,y are moved from B to A (which was initialized to A2). Instead of directly
enumerating each set F , we branch and bound. We construct these sets incrementally
and stop when a lower bound for the size of the triangulation implied by F exceeds
k.

Specifically, the algorithm considers pairs in P one at a time in an arbitrary order
(x0, y0), . . . , (xp−1, yp−1). For the current pair (xi, yi) it distinguishes between three
cases as follows. Let t = |Axi,yi \ A| with respect to the current A. Let cc denote
a lower bound for the size of the triangulation implied by the set F constructed so
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far (cc is initialized to e). If t = 0, then the algorithm does nothing. If t = 1, it
updates A to A∪Axi,yi and increases cc by 1/2. Finally, if t ≥ 2, then the algorithm
branches into two cases. In the first case, (xi, yi) is added to the triangulation and cc
is increased by 1. In the second case, the vertices in Axi,yi are moved from B to A,
and cc is increased by t/2. The algorithm is implemented by the recursive procedure
shown in Figure 6.1 and is invoked by calling BRANCH(e, ∅, 0, A2).

Procedure BRANCH(cc, F, r, A)
If cc > k then return.

If r = p then save the pair (A,F ∪ Ê) and return.
Let t = |Axr,yr \A|.
If t = 0 then
Call BRANCH(cc, F, r + 1, A).

Else if t = 1 then
Call BRANCH(cc+ 1/2, F, r + 1, A ∪Axr,yr ).

Else /* t ≥ 2 */
Call BRANCH(cc+ 1, F ∪ {(xr, yr)}, r + 1, A).
Call BRANCH(cc+ t/2, F, r + 1, A ∪Axr,yr ).

Return.

Fig. 6.1. Algorithm BRANCH.

Lemma 6.1. The algorithm terminates after at most p2k+1+1 calls to procedure
BRANCH.

Proof. Denote by T (i, j) the number of recursive calls invoked by BRANCH
when called with parameters cc = i, r = j (including this first call). Since always
i ≥ 0 and 0 ≤ j ≤ p in the following, we consider these ranges only. Clearly,
T (i, j) ≤ 1 +max{T (i, j + 1), T (i+ 1/2, j + 1), 2T (i+ 1, j + 1)} for all j < p, i. Also,
T (i, j) = 1 for all i > k, j, and T (i, p) = 1 for all i. It follows that T (0, 0) ≥ T (i, j)
for all i, j. Hence, it suffices to compute an upper bound for T (0, 0).

We prove that T (i, j) ≤ (p− j)2k+1−i+1 by induction on i, j. For i > k or j = p
the claim is true. Suppose the claim holds for all i, where i′ ≤ i ≤ k + 1, and for all
j, where j′ < j ≤ p. Then for i = i′ and j = j′ we have

T (i, j) ≤ 1 + max{T (i, j + 1), T (i+ 1/2, j + 1), 2T (i+ 1, j + 1)}
≤ 2 + max{(p− j − 1)2k+1−i, (p− j − 1)2k+ 1

2−i, (p− j − 1)2k+1−i + 1}
≤ 3 + (p− j − 1)2k+1−i ≤ (p− j)2k+1−i + 1 .

It follows that T (0, 0) ≤ p2k+1 + 1.

Lemma 6.2. The number of pairs saved by the algorithm is at most 2k.

Proof. The proof is analogous to that of Lemma 6.1. Denote byN(i, j) the number
of pairs saved by procedure BRANCH, when invoked with parameters cc = i, r = j.
Since always i ≥ 0 and 0 ≤ j ≤ p, in the following we consider these ranges only.
Clearly, N(i, j) ≤ max{N(i, j + 1), N(i+ 1/2, j + 1), 2N(i+ 1, j + 1)} for all j < p, i.
Also, N(i, j) = 0 for all i > k, j, N(k, j) ≤ 1 for all j, and N(i, p) ≤ 1 for all i. It
follows that N(0, 0) ≥ N(i, j) for all i, j. Thus, it suffices to compute an upper bound
for N(0, 0).
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We prove that N(i, j) ≤ 2k−i by induction on i, j. If i ≥ k or j = p, then the
claim holds. Suppose the claim holds for all i, where i′ ≤ i ≤ k, and for all j, where
j′ < j ≤ p. Then for i = i′ and j = j′ we have

N(i, j) ≤ max{N(i, j + 1), N(i+ 1/2, j + 1), 2N(i+ 1, j + 1)}
≤ max{2k−i, 2k− 1

2−i, 2k−i}
= 2k−i .

It follows that N(0, 0) ≤ 2k.
As usual, for a set A ⊆ V saved by the algorithm, B denotes V \A. The following

two claims establish the correctness of our partition algorithm.
Lemma 6.3. For every pair (A,F ) saved by the algorithm, |A| ≤ 6k, and no

chordless cycle in G′ = (V,E ∪ F ) intersects B.
Proof. Whenever a partition is saved, cc ≤ k. By definition of BRANCH, 1

2 |A \
A2| ≤ cc. Hence, at most 2k new vertices were added to A2 in any partition obtained.
Since |A2| ≤ 4k, we conclude that |A| ≤ 6k. By Theorem 4.2 no chordless cycle in G′
intersects B.

Definition 6.4. A pair (A,F ) saved by BRANCH is called good if Φ(G) =
Φ(G′) + |F |, where G′ = (V,E ∪ F ).

Proposition 6.5. If Φ(G) ≤ k, then at least one pair saved by the algorithm is
good.

Proof. Let T be the tree of recursive calls of BRANCH. The nodes of T correspond
to invocations of BRANCH. The root of T corresponds to the first invocation of
BRANCH. The leaves of T correspond to invocations of BRANCH in which either a
pair was saved, or cc was found to exceed k. In nodes at level i of T , 0 ≤ i < p, the
pair (xi, yi) ∈ P is processed. Let ccv, Fv, rv, and Av denote the parameters of the
invocation of BRANCH which correspond to node v of T .

Let F ∗ denote a minimum triangulation of G. The proof will identify a root-leaf
path in T which corresponds to F ∗, and trace the changes to cc, A, and F along that
path. We use the following notation:

Pv := {(x0, y0), . . . , (xrv−1, yrv−1)} ,
F ∗v := Pv ∩ F ∗,
A∗v := A2 ∪

⋃
(x,y)∈Pv\F∗

v

Ax,y ,

cc∗v := e+ |F ∗v |+
1

2
|A∗v \A2| .

Lemma 6.6. For every node v of T , cc∗v ≤ k.
Proof. Let v be any node of T . Let cc∗ = e + |P ∩ F ∗| + 1

2 |
⋃

(x,y)∈P\F∗ Ax,y|.
Since Pv ⊆ P , it follows that cc∗v ≤ cc∗. By Observation 3.2, for every pair (x, y) ∈ P ,
either (x, y) ∈ F ∗, or for every b ∈ Ax,y, F ∗ contains an edge incident on b. Hence,
cc∗ ≤ |F ∗| ≤ k, where the last inequality follows from the fact that F ∗ is a k-
triangulation.

We now return to the proof of Proposition 6.5. We shall prove that T has a leaf
in which a good pair is saved. To this end, we show that for every 0 ≤ i ≤ p, T
contains some vertex v at level i for which Fv ⊆ F ∗v and ccv ≤ cc∗v. In particular, this
claim implies that T has a leaf z at level p for which Fz ⊆ F ∗z and ccz ≤ cc∗z. By
Lemma 6.6, ccz ≤ cc∗z ≤ k. Hence, the pair (Az, Fz ∪ Ê) is saved at z. By [16, Lemma
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2.7], Ê ⊆ F ∗. In addition, Fz ⊆ F ∗z ⊆ F ∗. Therefore (Az, Fz ∪ Ê) is a good pair,
since Fz ∪ Ê ⊆ F ∗ and, by definition, F ∗ \ (Fz ∪ Ê) triangulates G′ = (V,E ∪Fz ∪ Ê).

We prove the claim by induction on i. The base of the induction is obvious, and
as for the root r at level 0, Fr = ∅ and ccr = e. We assume that the claim is true for
level i− 1 (i > 0) and prove its correctness for level i. By the induction hypothesis T
contains a node v at level i− 1 < p for which Fv ⊆ F ∗v and ccv ≤ cc∗v. By Lemma 6.6
ccv ≤ cc∗v ≤ k, and therefore v is not a leaf. Thus, v has either one or two children in
T . There are two cases to examine.

1. Suppose that (xi, yi) ∈ F ∗. Then for any child w of v, cc∗w = cc∗v+1 ≥ ccv+1.
If v has a single child w, then Fw = Fv ⊆ F ∗v ⊂ F ∗w and ccw ≤ ccv + 1/2 < cc∗w.
Otherwise, let w be the child of v for which (xi, yi) ∈ Fw. Then clearly Fw ⊆ F ∗w and
ccw = ccv + 1 ≤ cc∗w.

2. Suppose that (xi, yi) �∈ F ∗. Since Fv ⊆ F ∗v and Av = A2 ∪⋃(x,y)∈Pv\Fv
Ax,y,

it follows that A∗v ⊆ Av. Let w be the child of v for which (xi, yi) �∈ Fw. Then
Fw = Fv ⊆ F ∗v = F ∗w and

ccw = ccv +
1

2
|Axi,yi \Av| ≤ cc∗v +

1

2
|Axi,yi \A∗v| = cc∗w .

Theorem 6.7. If Φ(G) ≤ k, then the new partition algorithm produces at least
one pair (A,F ) for which |A| ≤ 6k and Φ(G) = Φ(G′A) + |F |, where G′ = (V,E ∪F ).
The complexity of the algorithm is O(knm+min{n2M(k)/k, nM(n)}+ k32k).

Proof. Correctness. By Lemma 6.3 for each pair (A,F ) saved by the algorithm,
|A| ≤ 6k and no chordless cycle in G′ intersects B. Therefore, by Theorem 2.4 for
each such pair Φ(G′) = Φ(G′A). Since Φ(G) ≤ k, by Proposition 6.5 the algorithm
saves some pair (A,F ) for which Φ(G) = Φ(G′) + |F |. Correctness follows.

Complexity. By [16] P1 and P2 take O(knm) time. By Lemma 3.1, computing
the sets Ax,y for all x, y ∈ A2, (x, y) �∈ E takes O(nm + min{n2M(k)/k, nM(n)})
time. By Lemma 6.1 and the fact that |P | = O(k2), the number of calls to BRANCH
is O(k22k). By Lemma 6.3 and since Φ(G) ≤ k, the parameters A and F to each
invocation of BRANCH satisfy |A| = O(k) and |F | ≤ k. Also, for all (x, y) ∈ P ,
|Ax,y| ≤ 2k. Thus, each call can be carried out in O(k) time. The total work done by
BRANCH is therefore O(k32k).

7. An approximation algorithm for the chain completion problem. A
bipartite graph G = (P,Q,E) is called a chain graph if there exists an ordering π of P ,
π : P → {1, . . . , |P |}, such that N(π−1(1)) ⊆ N(π−1(2)) ⊆ · · · ⊆ N(π−1(|P |)). This
class of graphs was introduced by Yannakakis [23], and independently by Golumbic
(cf. [15, page 260]). The chain completion problem is defined as follows: Given
a bipartite graph G = (P,Q,E), find a minimum set of nonedges F such that
(P,Q,E ∪ F ) is a chain graph. We call |F | the chain fill-in. Yannakakis proved
that the chain completion problem is NP-complete and used this result to show that
the minimum fill-in problem is NP-complete [23]. Chain graphs have been also inves-
tigated in [8], where a similar graph modification problem arises.

Theorem 7.1. There exists a polynomial approximation algorithm for the chain
completion problem, achieving an approximation ratio of 8k, where k denotes the
minimum chain fill-in. The complexity of the algorithm is O(kn3).

Proof. Let G = (U, V,E) be an input bipartite graph with chain fill-in k. We
apply the following reduction given by Yannakakis [23] from the chain completion
problem to the minimum fill-in problem. Build a graph G′ = (U ∪ V,E′), where
E′ = E ∪ {(u, v) : u, v ∈ U} ∪ {(u, v) : u, v ∈ V }. Observe that G is a chain graph
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if and only if G′ is chordal. Hence, a set of edges F triangulates G′ if and only if
(U, V,E ∪ F ) is a chain graph.

Approximation ratio. By the above argument, k equals Φ(G′). Using our approx-
imation algorithm for the minimum fill-in problem, we can find a triangulation of G′

of size at most 8k2. Adding these edges to G produces a chain graph. The number of
new edges is within a factor of 8k of optimal.

Complexity. G′ can be computed in O(n2) time. Due to the reduction, |E(G′)| =
Θ(n2). Therefore the complexity of the approximation algorithm is O(kn3).
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Abstract. Computations with Toeplitz and Toeplitz-like matrices are fundamental for many
areas of algebraic and numerical computing. The list of computational problems reducible to Toeplitz
and Toeplitz-like computations includes, in particular, the evaluation of the greatest common divisor
(gcd), the least common multiple (lcm), and the resultant of two polynomials, computing Padé
approximation and the Berlekamp–Massey recurrence coefficients, as well as numerous problems
reducible to these. Transition to Toeplitz and Toeplitz-like computations is currently the basis for
the design of the parallel randomized NC (RNC) algorithms for these computational problems.

Our main result is in constructing nearly optimal randomized parallel algorithms for Toeplitz
and Toeplitz-like computations and, consequently, for numerous related computational problems
(including the computational problems listed above), where all the input values are integers and all
the output values are computed exactly. This includes randomized parallel algorithms for computing
the rank, the determinant, and a basis for the null-space of an n×n Toeplitz or Toeplitz-like matrix
A filled with integers, as well as a solution x to a linear system Ax = f if the system is consistent.
Our algorithms use O((logn) log(n log ‖A‖)) parallel time and O(n logn) processors, each capable of
performing (in unit time) an arithmetic operation, a comparision, or a rounding of a rational number
to a closest integer. The cost bounds cover the cost of the verification of the correctness of the
output. The computations by these algorithms can be performed with the precision of O(n log ‖A‖)
bits, which matches the precision required in order to represent the output, except for the rank
computation, where the precision of the computation decreases. The algorithms involve either a
single random parameter or at most 2n− 1 parameters.

The cited processor bounds are less by roughly factor n than ones supported by the known
algorithms that run in polylogarithmic arithmetic time and do not use rounding to the closest
integers.

Technically, we first devise new algorithms supporting our old nearly optimal complexity esti-
mates for parallel computations with general matrices filled with integers. Then we decrease dramat-
ically, by roughly factor n1.376, the processor bounds required in these algorithms in the case where
the input matrix is Toeplitz-like. Our algorithms exploit and combine some new techniques (which
may be of independent interest, e.g., in the study of parallel and sequential computation of recursive
factorization of integer matrices) as well as our earlier techniques of variable diagonal (relating to
each other several known algebraic and numerical methods), stream contraction, and the truncation
of displacement generators in Toeplitz-like computations; our development and application of these
techniques may be of independent interest.

Key words. parallel algorithms, randomized algorithms, Toeplitz matrix computations, Toeplitz-
like matrices, polynomial gcd, displacement rank, computational complexity, block Gauss–Jordan
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1. Introduction.

1.1. Toeplitz and Toeplitz-like matrices and some applications. The fast
version of Euclidean algorithm [AHU74], [BGY80] computes the greatest common di-
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visor (gcd) of two polynomials of degrees at most n by using O(n(log n)2) arithmetic
or field operations (that is, additions, subtractions, multiplications, and divisions),
but to yield substantial parallel acceleration, one has to reduce the problem to the so-
lution of the associated (possibly singular) Toeplitz-like (resultant or subresultant) or
Toeplitz linear system of O(n) equations, Tx = f [BGH82], [G84], [BP94]. (The con-
cepts of Toeplitz and Toeplitz-like matrices are well known (see [KKM79], [CKL-A87],
[BP94], pp. 47–48, 138–141, 148–151), but for the reader’s convenience, we recall their
definitions below. (Also see Definitions 2.18 and 13.2 in sections 2 and 13.))

The gcd computation is only one (though celebrated) example of various major
problems of algebraic and numerical computing whose solution is reduced to solv-
ing Toeplitz or Toeplitz-like linear systems of equations. The list of such problems
includes the computation of the resultant, the Sturm and subresultant sequences,
and the least common multiple (lcm) for a pair of univariate polynomials ([BT71],
[BGY80], [BP94], sections 2.8–2.10), as well as the shift register synthesis and linear
recurrence computation [Be68], [Ma75], inverse scattering [BK87], adaptive filter-
ing [K74], [H91], modelling of stationary and nonstationary processes [KAGKA89],
[KVM78], [K87], [L-AK84], [L-AKC84], numerical computations for Markov chains
[Ste94], Padé approximation of an analytic function [BGY80], polynomial interpola-
tion and multipoint evaluation [PSLT93], [PZHY97], solution of partial differential
and integral equations [Bun85], [C47/48], [KLM78], [KVM78], parallel computations
with general matrices over an arbitrary field of constants [P91], [P92], [KP91], [KP92],
approximating polynomial zeros [P95], [P96a], [P97], and the solution of polynomial
systems of equations [EP97], [MP98], [BMP98].

Furthermore, the general reduction techniques of [P90] enable us to extend the
algorithms available for Toeplitz and Toeplitz-like computations to computations with
some other major classes of structured matrices, such as Cauchy-like and Vandermonde-
like matrices, also highly important in many areas of computing [PSLT93], [H95],
[GKO95], [PZHY97], [OP98], [OP99], [P00], [P00a].

The design of new effective algorithms for parallel solution of Toeplitz and Toeplitz-
like linear systems will be our major goal. For the reader’s convenience, we will next
briefly recall the definitions and some basic properties of Toeplitz and Toeplitz-like
matrices. (See section 13 and Definition 2.18 of section 2 for more details.)

T = (ti,j) is an n× n Toeplitz matrix if

ti,j = ti+1,j+1 for i, j = 0, 1, . . . , n− 2,(1.1)

that is, if the entries of T are invariant in their shifts into the diagonal direction.
Toeplitz matrices are easy to store, since such an n × n matrix is fully represented
by the 2n− 1 entries of its first column (or row, respectively) and its last column (or
row). Multiplication of an n× n Toeplitz matrix by a vector can be reduced to three
fast Fourier transforms (FFTs) (e.g., via its reduction to polynomial multiplication
modulo x2n−1 (see [BP94], p. 133)) and can be performed by using O(n log n) arith-
metic operations. Hereafter, arithmetic operations, as well as comparisons of pairs
of rational numbers and the rounding of a rational number to a closest integer, are
referred to as ops.

Due to the structural properties of Toeplitz matrices, one may solve a nonsingular
Toeplitz linear system of n equations by using O(n(log n)2) ops [BGY80], [Morf80],
[BA80], [Mu81], [dH87], [AGr88], [K95]. (Note that we would need storage space
n2 + n and 2n2 − n ops to multiply a general matrix by a vector and order of nd ops
with d > 2 to solve a general nonsingular linear system of n equations.)
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The above properties are extended to the class of n × n Toeplitz-like matrices,
that is, ones represented in the form

T =

�∑
i=1

LiUi,(1.2)

where Li and UTi are n×n lower triangular Toeplitz matrices, UTi is the transpose of
Ui, and � is bounded by a fixed constant, � = O(1). (Note that any n× n matrix can
be represented in the form (1.2) for � ≤ n.) It suffices to store the 2�n entries of the
first columns of Li and UTi for i = 1, . . . , � in order to represent T . These 2� columns
form a pair of n× � matrices called a displacement generator of T of length �.

Representation (1.2) for a Toeplitz-like matrix enables us to manipulate with O(n)
entries of its displacement generator (rather than with its n2 entries). Furthermore,
we may immediately multiply a matrix T of (1.2) by a vector by using O(�n log n) ops,
and also we may solve a linear system Tx = f in O(�2n(log n)2) ops if T is nonsingular
[Morf80], [BA80], [Mu81].

We have � ≤ 2 in (1.2) for Toeplitz matrices, their inverses, and resultant ma-
trices, and � ≤ g + h for g × h block matrices with Toeplitz blocks. Furthermore,
the transposition of a matrix leaves � invariant, whereas � may grow only slowly in
multiplication and addition/subtraction of pairs of matrices and stays unchanged or
grows only nominally in the inversion of a nonsingular matrix (see section 13).

1.2. NC and RNC solutions (some background). Due to their reduction
to Toeplitz/Toeplitz-like linear systems, several computational problems listed in the
previous section, including the gcd, lcm, and resultant computation and Padé ap-
proximation, can be solved by using O(n(log n)d1) ops, where n is the input size, and
d1 ≤ 3. (We may need to allow d1 = 3 in order to handle singular Toeplitz/Toeplitz-
like linear systems; we reduce their solution to computing the rank of the coefficient
matrix and to the subsequent solution of a nonsingular Toeplitz-like linear system.)
Like the Euclidean algorithm, however, such solution algorithms require an order of
n parallel steps.

The known alternative algorithms yield NC or randomized NC (RNC) solutions
of all the cited computational problems [BGH82], [G84], [BP94], that is, yield their
solution by using t(n) = O((log n)c) time and p(n) = O(nd) arithmetic processors, for
two fixed constants c and d, under the customary exclusive read exclusive write ran-
dom access machine (EREW PRAM) arithmetic model of parallel computing [KR90],
[J92]. (Alternatively, we may define the NC and RNC solutions as the families of
arithmetic, Boolean, or arithmetic-Boolean circuits for the above problems having
depths O((log n)c) and sizes O(nd) for two fixed constants c and d [G86].) Indeed,
the NC/RNC solution of a linear system of n equations can be computed over any field
of constants [Cs76], [Be84], [Ch85], [KP91], [KP92]. These algorithms, however, leave
open the important problem of processor efficiency of (R)NC Toeplitz and Toeplitz-
like computations, that is, of having the ratios p(n)/T+(n) or even p(n)/T−(n) at
the level O((log n)c1) for a constant c1, where T+(n) and T−(n) denote the record
upper and lower bounds on the sequential time of the solution, respectively. Indeed,
on the one hand, we have already cited the bound T+(n) = O(n(log n)3), and, clearly,
T−(n) ≥ n. On the other hand, p(n) has order nd for d > 3 in [Cs76], [Be84], [Ch85]
and for d > 2 in [KP91], [KP92], for solving general linear systems in NC/RNC,
whereas p(n) has order nd for d ≥ 2 for the known NC/RNC Toeplitz/Toeplitz-like
solvers over any field of constants [P92], [KP94], [P96], [P96b]. To yield NC/RNC
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and processor efficiency, we must decrease d to the optimal level 1. An approach
toward this goal was outlined in [BP94, p. 357], incorporating various nontrivial tech-
niques developed earlier for computations with general and dense structured matrices
[Morf80], [BA80], [P85], [P87], [P92], [P92b], [P93], [P93a], and our objective in the
present paper is to show in detail how this can be done, under certain assumptions
on the model of computing.

1.3. The model of computing. Our main assumption is that the input con-
sists of integers (for the reduction from a real input, one may use binary or decimal
chopping followed by scaling) and that rounding a rational number to a closest inte-
ger, as well as an arithmetic operation or comparison of two rationals, are allowed as
unit cost operations. The bit-precision of these computations will be bounded at the
optimal level of the output precision, so that we achieve solution at a low Boolean
cost.

Stating our estimates for the computational cost, we will let OA(t, p) and OB(t, p)
denote the simultaneous bounds O(t) on the parallel time and O(p) on the number
of arithmetic or Boolean processors, respectively. We will routinely decrease the
processor bounds slightly, by exploiting the B-principle of parallel computing, which
is a variant of Brent’s principle and according to which O(s) time-steps of a single
arithmetic or Boolean processor may simulate a single time-step of s arithmetic or,
respectively, Boolean processors [KR90], [PP95]. According to the B-principle, the
bound OA(t, kp) implies the bound OA(tk, p), and similarly OB(t, kp) implies the
bound OB(tk, p) for a parameter k ≥ 1. (For p = 1, we arrive at sequential time
bounds OA(tk, 1) and OB(tk, 1).) By applying the well-known technique based on the
B-principle, one may slow down the computations at the stages requiring too many
processors. In many cases this increases the time bound only by a constant factor
but more substantially decreases the processor bound; a celebrated example is the
summation of n values, where application of the B-principle decreases the asymptotic
cost bound from OA(log n, n) to OA(log n, n/ log n) (cf. [Q94, pp. 44–46]; [BP94,
pp. 297–298]). (The converse trade-off of time and processor bounds is not generally
possible, but for almost all matrix computations that we consider and, more generally,
for any task of the evaluation of a set of multivariate polynomials, one may always
transform an NC/RNC algorithm into one using O(log2 n) time and O(nd) arithmetic
processors for some finite but generally quite large constant d [VSBR83], [MRK88].
We will not use the latter result as we are concerned about processor bounds.)

Remark 1.1. Our algorithms for Toeplitz/Toeplitz-like computations are es-
sentially reduced to computing the convolutions (which can be performed via FFT,
assuming that the 2hth roots of 1 are available) and the inner products of pairs of vec-
tors. These basic operations (for vectors of a dimension n) can be performed at the
cost OA(log n, n) and OA(log n, n/ log n), respectively, under both the EREW PRAM
model and more realistic models such as hypercube, butterfly and shuffle-exchange pro-
cessor arrays [Le92], [Q94]. Thus, it is possible to implement our algorithms efficiently
assuming the latter models.

1.4. Our main results. The algorithms of this paper extend our previous work
on parallel computations with general matrices [P85], [P87], [P93a], [BP94] (cf. also
[PR91], [P92a], [P93b], [PR93]) by means of incorporation of some techniques de-
veloped in [P90], [P92], [P92b], [P93], [P93a] for computations with Toeplitz and
Toeplitz-like matrices. As a result, we arrive at RNC algorithms for the most funda-
mental computations with the latter classes of matrices filled with integers (such as
the computation of their ranks, null-spaces and determinants and solving linear sys-
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tems of equations). These algorithms yield optimal (up to polylogarithmic factors)
time and processor bounds, which improves by factor n the processor bounds of the
known RNC algorithms. By using the known reduction to Toeplitz and Toeplitz-like
computations, we also extend our results to yield similar nearly optimal upper bounds
on the time and processor complexity (also achieving order of n improvement versus
the known RNC algorithms) for many other related computations (e.g., the compu-
tation of polynomial gcd and lcm and Padé approximation), where the input values
are integers.

We will emulate the historic line, by first treating the case of general matrices
and then improving the algorithms in the Toeplitz/Toeplitz-like case. We will start
with recalling the record parallel complexity bounds of [P85], [P87] for computations
with a general n × n input matrix; we will give their alternative derivation. Stating
these bounds in Theorem 1.1 below, we will use the value ω satisfying 2 ≤ ω < 2.376
and such that a pair of n × n matrices can be multiplied at the arithmetic cost
OA(log n, n

ω). We note that the magnitudes of det A and the integer entries of adj
A = A−1 det A can be as large as ||A||n or ||A||n−1, which means the output precision
of an order of n log ||A||. We ensure that the precision of the computations by our
algorithms does not exceed this level. Furthermore, we compute the rank of A by
using even a lower precision, which enables some decrease of the Boolean cost of the
computation of the rank.

Technically, we will largely follow the cited outline, given by us in [BP94, chapter
4], and combine a variety of the known techniques, in particular ones developed in
[P85], [P87], [P92b], [P93], [P93a], and some new ones (such as the combination of
primal and dual recursive decompositions of an integer matrix with the objective to
bound the magnitude of the intermediate and output values). The required combi-
nation of all these techniques is highly nontrivial and never was presented in either
complete or accessible form.

The main purpose of our paper is to give such a presentation or, formally speak-
ing, to give complete and accessible proofs of the two theorems below. The first of
them only handles the case of general integer input matrices (in this case our paral-
lel complexity results repeat ones of [P85], [P87], except for the presently improved
Boolean cost of the rank computation), but we use distinct alternative proof, which
should be technically interesting in its own right and is fully used in our subsequent
relatively simpler extension to the Toeplitz/Toeplitz-like case, handled by our second
theorem.

Theorem 1.1. Let A be a k × h matrix and let f be an h-dimensional vector,
both matrix and vector filled with integers that range from −2a to 2a for some a > 1.
Let k + h = O(n). Then, with an error probability of at most n−c for a fixed positive
constant c, one may compute r, the rank of A, at a randomized computational cost
bounded by OA((log n) log(n log a), n

ω) and by

OB((log n)(log(n log a))
2 log log(n log a), nω+1 log(na)).

Furthermore, one may compute the determinant of A and, if A is nonsingular, then
also the inverse of A and the solution to a linear system Ax = f , all of them at a
randomized computational cost bounded by OA((log n) log(na), n

ω) and by

OB((log n)(log(na))
2 log log(na), (log n)(a+ log n)nω+1/ log(na)).

If A is an n×n singular matrix, the latter bounds also apply to the computation of n−r
basis vectors of a null-space of A and a solution x to a linear system Ax = f provided
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that this system is consistent. The same cost bounds apply to testing correctness
of the computed value of r=rank A as well as of all other output values. In these
computations, 2n− 1 random parameters are used for computing rank A, detA, and
the null-space of A, and a single random parameter is used for all other tasks including
the computation of |detA|. The above complexity estimates do not cover the cost of
generation of the random parameters.

In the case of a k × h Toeplitz or Toeplitz-like input matrix (defined in section
1.1 and also in sections 2 (Definition 2.18) and 13 (Definition 13.2)), an extension
of our approach yields much smaller (by factor nω−1/ log n) upper bounds on the
processor complexity of the same computations (with no increase of the asymptotic
time-bounds).

Theorem 1.2. Under the assumptions of Theorem 1.1, let the input matrix A be a
Toeplitz matrix or a Toeplitz-like matrix. Then all the processor complexity estimates
of Theorem 1.1 can be decreased by factor nω−1/ log n, preserving the time bounds,
to yield the randomized parallel complexity bounds OA((log n) log(n log a), n log n),
OB ((log n)(log(n log a))2 log log(n log a), (n2 log n) log(na)), and OA((log n) log(na),
n log n), OB((log n)(log(na))

2 log log(na), (a+ log n)(n log n)2/ log(na)), respectively.
Here, the inverse of A and the basis matrix for the null-space of A are assumed to be
output in the form of their displacement generators.

We refer the reader to Remark 12.2 on possible minor refinement of the estimates
of both theorems.

Due to substantial economization of computational resources in our algorithms for
Toeplitz/Toeplitz-like computations, they may become practically efficient provided
that they are supported by subroutines for multiprecision parallel computations with
integers and polynomials and by the development of the interface between algebraic
and numerical computing, both required in our algorithms. Such a development is
motivated by various potential benefits, our algorithms is but one of many examples.
The practical implementation of our algorithms for general n × n matrices faces a
harder problem of the storage of n2 long integers in the computer memory (versus
2n−1 in the Toeplitz case), and this task becomes practically infeasible at some point
as n increases.

Our algorithms do not improve the known sequential algorithms for Toeplitz and
Toeplitz-like computations [BGY80], [Morf80], [BA80], [Mu81], [dH87], which run in
nearly optimal arithmetic time of O(n log2 n), but some of our techniques may be
of practical and theoretical interest for sequential computations too. In particular,
our Toeplitz–Newton iteration techniques are effective for rapid practical improve-
ment of approximate solution of Toeplitz and Toeplitz-like linear systems of equa-
tions [PBRZ99], and our study of integral version of recursive decomposition as well
as our bounds on the growth of the auxiliary integers (particularly, of the auxiliary
determinants) is a natural but nontrivial extension of the Bareiss version of Gaus-
sian elimination (cf. [B68]). Even our simple idea of the precision decrease in the
randomized computation of the rank (by performing the computation modulo a fixed
prime) leads to a substantial decrease of the sequential Boolean time bounds (for
both general and Toeplitz/Toeplitz-like matrices). The latter trick also applies to the
closely related problem of the computation of the degree of the gcd and lcm of two
polynomials with integer coefficients.

1.5. Extensions. We already cited [BGY80], [G84], [P92], [P96b], and [BP94]
on the reduction of the computation of the gcd, the lcm, and the resultant of two poly-
nomials as well as Padé approximation of a formal power series or of a polynomial—to
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the computation of the rank of a Toeplitz/Toeplitz-like matrix and solving a nonsin-
gular Toeplitz/Toeplitz-like linear system of equations. The integrality of the input
can be preserved in this reduction, and the input size may grow by a factor of at most
2. Therefore, the computational complexity estimates of Theorem 1.2 are immediately
extended to the listed problems of the gcd, lcm, resultant and Padé computations (as-
suming the restrictions on the size and integrality of the input), as well as to various
computational problems reducible to the latter ones.

Furthermore, we refer the reader to [P90], on the general techniques that immedi-
ately enable extension of our results of Theorem 1.2 to computations with Cauchy-like
and Vandermonde-like input matrices, to [BP93], [BP94] on the extension to the case
of matrices represented as the sums of Hankel-like and Toeplitz-like matrices, and
to [BGY80], [BP94], [P96b], [PSLT93], [PZHY97], and other references cited in the
beginning of this paper on various applications of the computations with Toeplitz-like
and other structured matrices (see also Remark 14.1).

Among possible extensions of Theorem 1.1, consider the case where the inte-
ger matrix A is symmetric positive definite, sparse, and associated with an s(n)-
separatable graph given with its s(n)-separator family (cf. [LRT79], [P93b], [PR93]).
If such a matrix A is well conditioned (even if its entries are not integers but any real
numbers), then, at the arithmetic cost OA((log n)

3, (s(n))ω/ log n), the parallel algo-
rithm of [P93b], [PR93] numerically computes both recursive factorization of such a
matrix and its determinant, as well as a solution x = A−1f to a linear system Ax = f
(if detA �= 0). Numerical approximation is involved in this algorithm at the auxiliary
stages of matrix inversions, where a parallel algorithm of [PR89] is applied. If A is
filled with integers, then this stage can be performed exactly, by using the algorithms
of [P85], [P87]. Then, the exact recursive factorization of A, detA, and A−1f can
be computed at the arithmetic cost OA((log n)

3, (s(n))ω + n). By employing the al-
gorithm of this paper for recursive decomposition and inversion of a general integer
matrix, one may improve the latter bounds a little, to yield OA((log n)

2, (s(n))ω+n).

The results of Theorems 1.1 and 1.2 can be further extended to various other
matrix computations by using the known reduction techniques of [BP94], [P96],
[P96b]. For demonstration, consider the computation of the characteristic polynomial
cA(x) = det(xI−A) of the above sparse n×n matrix A. Such a polynomial has degree
n. We may first concurrently compute cA(x) at n + 1 distinct points x0, . . . , xn and
then obtain its coefficients by interpolation. If the chosen values of xi are larger than
n‖A‖, then the matrices xiI−A are positive definite, and we may compute cA(xi) for
i = 0, 1, . . . , n, at the overall computational cost OA((log n)

2, ((s(n))ω + n)n). These
bounds dominate the cost of the subsequent interpolation producing the polynomial
det(xI −A).

As another example, the algorithms of [BP94, p. 357], for Padé approximation
and polynomial gcd have been used in [P95] and [P96a] in order to obtain the record
parallel arithmetic complexity estimates for approximating polynomial zeros. Our
present improvement of these results of [BP94] in Theorem 1.2 immediatley implies
the respective minor improvement of the results of [P95] and [P96a].

Corollary 1.3. Given a positive b and the coefficients of an nth degree monic
polynomial with zeros z1, . . . , zn satisfying maxi|zi| ≤ 1, one may compute approxima-
tions z∗1 , . . . , z

∗
n to z1, . . . , zn satisfying |z∗i −zi| < 2−b, i = 1, . . . , n; the computation is

randomized; its arithmetic cost is bounded by OA((log n)
3((log n)2+log(b+2)), n

log n ).

1.6. Outline of the method. A major ingredient of our approach is the vari-
able diagonal method of [P85], [P87], which combines several algebraic and numerical
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techniques to yield effective parallel inversion of a matrix A filled with integers. The
method includes Newton’s iteration, which effectively solves the latter problem pro-
vided that a good initial approximation to A−1 is available. Such an approximation is
not available, however, for a general integer matrix A. The recipe of [P85], [P87] is to
invert at first the auxiliary matrix F = V −apI, where V = A mod p, I is the identity
matrix of an appropriate size, p is a prime, p ≥ n, and a is a sufficiently large integer.
(We follow this recipe and show that it suffices to choose a = 10pn2 in our case.)
Then the matrix −I/(ap) is a good initial approximation to F−1, which we rapidly
improve by Newton’s iteration, until F−1 is approximated closely enough. Since F is
an integer matrix, detF and the entries of adj F = (detF )F−1 are integers, which
can be recovered by rounding their approximations within absolute errors less than
1/2. This gives us (detA) mod p, (adj A) mod p, and A−1 mod p. Then the algebraic
technique of p-adic (Newton–Hensel’s) lifting is applied. In � steps, for a sufficiently
large �, the matrix A−1 mod p is lifted to A−1 mod pL, L = 2l. Then the lifting of
A−1 mod p is extended to lifting similarly (det A) mod p and (adj A) mod p. Finally,
det A and adj A are easily recovered from (detA) mod pL and (adj A) mod pL.

The remaining ingredient is the approximation of detF . In [P85], [P87], this is
achieved as a by-product of solving the more general task of computing det(xI − F ),
the characteristic polynomial of F . In the present paper, we employ a more routine
approach, based on the computation of recursive (block) decomposition (RD) of F
(cf. [St69], [Morf74], [Morf80], [BA80], [P87]) or, equivalently, on the computation
of nested Schur’s complements, also called Gauss transforms (cf. [C74], [F64]). A
single recursive step of this approach is the decomposition of the input matrix (rep-
resented as a 2× 2 block matrix) into the product of a block diagonal matrix and two
block triangular matrices (see (2.3)). Such a decomposition can be obtained by block
Gauss–Jordan elimination and can be reduced to a few matrix multiplications (their
parallel implementation is simple) and inversions (they are made simple by Newton’s
iteration, since good initial approximations are given by matrices −I/(ap)). As in
[P85], [P87], random choice of a large prime p in a fixed large interval enables us to
avoid degeneration and singularities (with a high probability).

An important point, as in [P85], [P87], is that in spite of computing all the
matrix inverses approximately, we finally recover them exactly (as well as all the
other matrices involved in the RDs) by exploiting the representation of their entries
as the ratios of integers. To emplasize this point, we called the resulting RDs the
integral RDs (IRDs). The only remaining nontrivial problem in the computation of
the IRD of F and det F is to bound the magnitudes of the integers involved. In the
present paper, this problem is solved based on the computation of the dual RD, that is,
the RD of F−1. (The celebrated techniques of [B68] do not suffice, and their extension
to our case is nontrivial not just because we deal with recursive block decomposition,
rather than with the more customary Gaussian elimination, but also because we need
to control the magnitudes of the determinants of the matrices involved in the RD,
which is a much harder problem, and we use the dual RD in order to solve it.)

As soon as the IRDs of F and F−1 are available, we obtain the RDs modulo p
of A and A−1. Now, we apply the techniques of p-adic (Newton–Hensel’s) lifting not
only to A−1 mod p but to the entire RDs modulo p of A and A−1, in order to obtain
the RDs modulo pL of A and A−1 for L = 2l and a sufficiently large l. (detA) mod
pL is recovered from such an RD of A. As det A is an integer, we recover easily det
A and then the matrix adj A = A−1 detA, whose entries are integers.

This approach only gives us an alternative derivation of the estimates of [P85],
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[P87] for parallel complexity of some fundamental computations with general matri-
ces. The new algorithms, however (unlike ones of [P85], [P87]), have an advantage
of allowing their effective extension to Toeplitz/Toeplitz-like cases. Indeed, manip-
ulation with displacement generators, rather than with matrices themselves, enables
the decrease of the processor complexity of the RNC algorithms outlined above to the
optimal level linear in n.

The nontrivial problem in such a Toeplitz/Toeplitz-like extension is the control of
the length of the displacement generators in the process of Newton’s iteration. (Un-
controlled growth of the length would immediately imply the growth of the processor
bounds by factor nω−1/ log n for ω > 2.375.) We solve this problem by applying two
techniques of truncation of generators (TG), which we borrow from [P92] and [P92b],
[P93], [P93a], respectively.

The above outline was essentially given by us in [BP94, chapter 4]. Presently, we
also add the technique of stream contraction specified in section 10 (and, essentially,
being the pipelining of the two processes of RD and Newton’s iteration) borrowed from
[PR91]. Stream contraction enables additional acceleration of our algorithms by factor
log n. (Using the technique of stream contraction for the acceleration of Toeplitz-like
computations was also proposed in [R95], though the algorithms of [R95] did not give
any improvement of the processor bounds in the Toeplitz/Toeplitz-like case versus
the much larger bounds known in the case of general input matrices (see our Remarks
6.1, 11.1, and 14.2 and our similar comments in [P96b])).

1.7. Organization of the paper. The order of our presentation will slightly
differ from the one outlined above. After some preliminaries in section 2, we will
introduce the RD and extended RD (ERD) of a matrix in section 3. In section 4,
we define the IRD and show the transition from RD to IRD. We recall an algorithm
for approximate matrix inversion via Newton’s iteration in section 5 and apply it in
order to approximate the RD and the IRD of an integer matrix in section 6. We
estimate the errors and parallel complexity of these computations in sections 7–9. We
apply pipelining (stream contraction) to achieve acceleration by factor logn in section
10, extend the results of sections 6 and 10 to computing the ERD modulo a fixed
prime in section 11, and use p-adic lifting to recover (from the ERD) the inverse, the
determinant, the rank, and the null-space of an integer matrix (thus proving Theorem
1.1) in section 12. In section 13, we recall some known definitions and properties for
computations with Toeplitz and Toeplitz-like matrices. In section 14, we apply these
properties to improve the results of section 12 in the Toeplitz and Toeplitz-like cases
(thus proving Theorem 1.2). Section 15 is left for a brief discussion.

2. Some definitions and auxiliary results for matrix computations. We
will next recall some customary definitions and well-known basic properties of general
matrices.

Definition 2.1 (matrix notation). I and 0 denote the identity and null matrices,
of appropriate sizes. WT is the transpose of a matrix or vector W . diag (wi)

n−1
i=0 =

diag (w0, . . . , wn−1) is the diagonal matrix whose diagonal is filled with w0, . . . , wn−1;
D(W ) = diag (W ) = diag (wi,i)

n−1
i=0 for a matrix W = (wi,j). rank W is the rank of

W . det W is the determinant of a square matrix W . adj W is the adjoint (adjugate)
matrix of W , equal to W−1 det W for a nonsingular matrix W .

In our error analysis, we will use the customary vector and matrix norms [GL89/96].
Definition 2.2 (vector and matrix norms). ‖ v ‖=‖ v ‖1=

∑
i |vi|, ‖ v ‖2=

(
∑
i v

2
i )

1/2 for a real vector v = (vi). ‖ W ‖g= max‖v‖g=1 ‖ Wv ‖g, g = 1, 2;
‖W ‖=‖W ‖1 for a matrix W .
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Proposition 2.3 (norm bounds). ‖ W ‖=‖ W ‖1= maxj
∑
i |wi,j | for a matrix

W = (wi,j). Furthermore, if W is a k × k matrix and V is its submatrix, then

||V ||g ≤ ||W ||g, g = 1, 2;

||W ||/k1/2 ≤ ||W ||2 ≤ ||W ||k1/2.

Proof. To prove the bound ||V ||g ≤ ||W ||g, note that ||Ww||g ≥ ||V v||g if v is
a subvector of w and if w has zero components corresponding to the columns of W
that are not in V . Other claimed relations can be found in [GL89/96].

We will also use the following known fact (cf. [GL89/96] or [BP94]).
Proposition 2.4 (bounds on the determinant and the entries of the adjoint

matrix). Let W be a k × k matrix. Then |det W | ≤ (‖ W ‖g)k, and furthermore,
|v| ≤ (‖W ‖g)k−1 for every entry v of adj W , where g = 1, 2.

Definition 2.5 (column-diagonally dominant (c.-d.d.) matrices). d(W ) =
‖ WD−1(W ) − I ‖. A matrix W is column-diagonally dominant (hereafter, we will
use the abbreviation c.-d.d.) if d(W ) < 1.

Definition 2.6 (leading principal submatrix (l.p.s.) and its Schur complement).
For a k× k matrix W , let W (q) denote its q× q northwestern or l.p.s., formed by the
intersection of the first q rows and the first q columns of W , q = 1, 2, . . . , k. If B is
a nonsingular l.p.s. of W and if

W =

(
B C
E G

)
,(2.1)

then the matrix

S = S(W,B) = G− EB−1C(2.2)

is called the Schur complement of B in W .
The Schur complement S of (2.2) can be obtained by Gaussian or block Gaussian

elimination applied to the matrix W , provided that the elimination process can be
carried out (cf. [GL89/96, P3.2.2, p. 103]). In particular, it is easily verified that
for k > q the Schur complement of B = W (q) in a k × k matrix W is the (k − q) ×
(k− q) matrix obtained from W in q steps of Gaussian elimination (without pivoting)
provided that these steps can be carried out (with no division by 0). The latter
assumption holds, in particular, if W is a c.-d.d. matrix.

By applying block Gauss–Jordan elimination to the 2 × 2 block matrix W of
(2.1), with a nonsingular block B, we obtain the following decomposition, which will
be fundamental for our study:

W =

(
I 0

EB−1 I

) (
B 0
0 S

) (
I B−1C
0 I

)
.(2.3)

If a matrix W is nonsingular, then (2.3) implies that the matrix S is also nonsin-
gular. By inverting the matrices on both sides of (2.3), we obtain that

W̃ = W−1 =

(
I −B−1C
0 I

) (
B−1 0
0 S−1

) (
I 0

−EB−1 I

)
.(2.4)

Equation (2.4) immediately implies the following proposition.
Proposition 2.7. Under (2.1)–(2.4), the matrix S−1 is the trailing principal

(that is, southeastern) submatrix of W̃ = W−1.
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Our algorithms will rely on the decompositions of (2.3), (2.4), recursively applied
to the matrices B,B−1, S, and S−1, which we will call RDs. The next definitions
and results will cover the nonsingularity properties required for the existence of such
recursive extension of (2.3), (2.4) and some other relevant properties of l.p.s.’s and
Schur complements (the s.p.d. matrices will be used only at the very end of section
12).

Definition 2.8 (strongly nonsingular matrices). A matrix W is strongly non-
singular if all its leading principal submatrices are nonsingular.

Definition 2.9 (symmetric positive definite (s.p.d.) matrices). A real matrix
M is s.p.d. if it can be represented as the product AAT for a nonsingular matrix A.

The next proposition (cf. [BP94, exercise 4c, p. 212]), extends strong nonsingu-
larity and the s.p.d. property to an l.p.s. and a Schur complement.

Proposition 2.10. If a matrix W of (2.1) is strongly nonsingular (respectively,
if W is s.p.d.), then so are its every l.p.s., including the matrix B of (2.1), and the
Schur complement S of B, defined by (2.2).

Corollary 2.11. Any s.p.d. matrix is strongly nonsingular.
By recursively applying block Gaussian elimination at first to the block matrix

W of (2.1) with B = W (r) and then to W (r), with the l.p. (that is, leading principal
or northwestern) block W (q), q < r, we obtain the following.

Proposition 2.12 (transitivity of Schur’s complementation). If r > q and if
W (r) and W (q) are nonsingular matrices, then S(W,W (q)) = S(S(W,W (r)),
S(W,W (r))(r−q)).

We also easily deduce the following.
Proposition 2.13 (transitivity of the c.-d.d. property). If d(W ) < 1 for a

matrix W of (2.1), then B, S, and W are nonsingular matrices, d(B) ≤ d(W ) < 1,
d(S) ≤ d(W ) < 1, and (2.3)–(2.4) hold.

The following result, together with Propositions 2.4 and 2.12, will be basic for
our bounds on the values involved in recursive decompositions.

Proposition 2.14. Assuming (2.1)–(2.2), every entry of the matrix S det B is
a subdeterminant (that is, the determinant of a submatrix) of the matrix W .

Proof. Let B = W (q). Consider the l.p. (that is, northwestern) entry s0,0 of S.
By Proposition 2.12, it is the Schur complement of B in the submatrix W (q+1) of
W . By Proposition 2.7, s−1

0,0 = detB/detW (q+1). Therefore, s0,0 detB = detW (q+1),
which proves the proposition for s0,0. To extend this result to any entry si,j of S,
interchange the ith and 0th rows and the jth and 0th columns of S and the respective
pairs of rows and columns of W .

Clearly, the matrix adj B = B−1 det B is filled with integers ifW is. Proposition
2.14 (or, alternatively, (2.2)) implies the similar property of the matrix S det B. We
summarize these observations for future references.

Proposition 2.15 (integrality of adjoints and scaled Schur complements). If a
matrix W of (2.1) is filled with integers, then so are the matrices adj B = B−1det B
and S det B.

Recursive application of the next result enables us to recover detW from recursive
decomposition of W .

Proposition 2.16 (factorization of the determinants and submatrices implied
by matrix decomposition). Matrix equation (2.3) implies that det W = (det B) det
S and, furthermore, that

W (t) =

(
I 0

EB−1 I

)(t) (
B 0
0 S

)(t) (
I B−1C
0 I

)(t)

for t = 1, . . . , k ,
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and det W (t) = (det B) det S(t−q) for t = q + 1, . . . , k, provided that W is a k × k
matrix.

In section 12, we will also use the following definitions and known results.
Definition 2.17 (the null-space of a matrix; cf. [GL89/96] or [BP94]). The

null-space N(A) of a matrix A is the linear space formed by all vectors x satisfying
the vector equation Ax = 0.

Fact 2.1. Two vector equations, Ax = f and Ay = f , together imply that
x − y ∈ N(A), or, equivalently, any solution x to a consistent linear system Ax = f
can be represented in the form x = x0 + z, where x0 is a fixed specific solution and
z ∈ N(A).

Toeplitz matrix computations will be studied in sections 13 and 14, but also the
proposition below involves Toeplitz matrices and is needed in section 12.

Definition 2.18 (Toeplitz matrices). T = (ti,j) is a k × k Toeplitz matrix if
ti+1,j+1 = ti,j for i, j = 0, 1, . . . , k − 2 (cf. (1.1)), that is, if the entries of T are
invariant in their shifts in the diagonal direction. (Such a matrix is defined by its
two columns (or rows)—the first one and the last one.) A square lower triangular
Toeplitz matrix is defined by its first column u and is denoted L(u). Z = Zk = (zi,j)
is a k × k lower triangular Toeplitz matrix with the first column (0, 1, 0, . . . , 0)T , so
that zi+1,i = 1 for i = 0, 1, . . . , k − 2, zi,j = 0 if i �= j + 1.

Proposition 2.19 ([KS91], (cf. [BP94, Lemmas 1.5.1 and 2.13.1])). Let S be
a fixed finite set of cardinality |S|. Let A, L, and U be n × n matrices, let rank
A = r, let L and UT be unit lower triangular Toeplitz matrices, each defined by the
n − 1 entries of its first columns. Let these entries be chosen from S at random,
independently of each other, under the uniform probability distribution on S. Then
the matrix (UAL)(r) is strongly nonsingular with a probability at least 1−(r+1)r/|S|.

3. RD and ERD of a c.-d.d. matrix. With minor deviation from the order
of our outine of section 1.6 but in accordance with section 1.7, we will next study the
RD, then, in section 4, the integral RD (IRD), and in section 5, matrix inversion.

Hereafter, for convenience, let log stand for log2, let n = 2h for an integer h =
log n, and let V be a fixed n× n c.-d.d. matrix.

We will define an RD of such a matrix W = V based on its representation in the
form (2.3) for q = n/2. We will first apply (2.3) to W = V and then, recursively, to
W = B and W = S, and so on, though in fact, we will mostly care about the diagonal
blocks V, V0 = B, V1 = S, and so on, which we will identify with the nodes of a
binary tree, T . Similarly, we define the dual RD of W̃ = W−1 based on the recursive
application of (2.4) to W̃ = B−1 and W̃ = S−1. (We will study such a dual RD in
section 11 and will use it in section 12.)

The node of T associated with a binary strings α of length |α| is a k × k matrix,
denoted by Vα, where k = n/2|α|. The root of the tree is the n × n matrix V = VΛ,
associated with the empty string Λ. For a string β of length less than h, we let β0
and β1 denote the two strings obtained by appending 0 and 1 to β, respectively.
(We use the two characters α and β to distinguish between the two classes of binary
strings—of length at most h and less than h, respectively.) We will assume that the
matrix equations (2.1)–(2.4) are satisfied for W = Vβ , B = Vβ0, S = Vβ1, and for any
binary string β of length |β| < h. The resulting RD of the matrix V continues up to
the level h, where it reaches its leaves-matrices Vα = (vα) of size 1× 1, where |α| = h,
and where vα denotes the single entry of Vα.

Proposition 3.1. All the nodes Vα of the tree T are c.-d.d. matrices; moreover,
d(Vα) ≤ d(V ) < 1 for all binary strings α.
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Proof. Recall that V is a c.-d.d. matrix and recursively apply Proposition
2.13.

Let us formalize the computation of the RD of V by extending the notation
(2.1)–(2.2) to Vα. We will write

Vβ =

(
Bβ Cβ
Eβ Gβ

)
,(3.1)

Vβ0 = Bβ , Vβ1 = Sβ = Gβ − EβB
−1
β Cβ ,(3.2)

for all binary strings β of length less than h.
Then, computation of the RD of a c.-d.d. matrix V amounts to recursive compu-

tation of Vβ1 of (3.2) for all binary strings β of length increasing from 0 to h−1. As a
by-product, the computation produces the matrices V −1

β0 = B−1
β for all binary strings

β of length less than h. By appending these inverse matrices V −1
β0 to the nodes Vβ0

of the tree T (and, consequently, to the RD of V ), we arrive at the ERD of V . The
set of the matrices V −1

β0 will be called the extending set of the RD of V .
The RD and the ERD of any matrix V can be defined as long as all the involved

nodes-matrices Vβ0 for all the binary strings β of length less than h are nonsingular.
Recursive application of Proposition 2.10 and Corollary 2.11 yields the following.

Proposition 3.2. There exists the RD and the ERD of any strongly nonsingular
(in particular, of any s.p.d.) matrix.

Remark 3.1. As soon as we have the RD of a c.-d.d. matrix V , we immediately
obtain the RD of V −1 based on recursive application of (2.4). Having such an RD
available, we may compute the solution x = V −1f of a linear system V x = f , at a
lower computational cost OA((log n)

2, n2/(log n)2).

4. IRD of a c.-d.d. matrix filled with integers. Suppose that the input
matrix V is filled with integers. Then, for all binary strings α, the matrices Vα are
filled with rationals, and there exist integer multipliersmα such thatmαVα are integer
matrices. We will next specify a particular choice of such integer multipliers mα.

We will use the notation W (q) of Definition 2.6 and the following definition.
Definition 4.1. (α)2 denotes the binary value represented by a binary string α

(of length at most h). α(q) denotes the binary string that represents a nonnegative
binary value q, so that (α(q))2 = q. H(α) denotes 2h−|α| = n/2|α|. Q(α) denotes
(α)2H(α).

By applying Proposition 2.12, we obtain the following.
Proposition 4.2. Let a binary string α end with bit 1 and have length at most

h. Then the matrix Vα is the Schur complement of V (Q(α)) in V (Q(α)+H(α)).
By combining this proposition with Proposition 2.14, we obtain the following.
Proposition 4.3. For any binary string α = β1γ of length at most h with γ

being a string of zeros, let

mα = det V (Q(β1)).(4.1)

Then the entries of the matrix Vαmα are the subdeterminants (that is, the determi-
nants of some submatrices) of the matrix V . In particular, if V is filled with integers,
then so are the matrices Vαmα for all α, |α| ≤ h.

Now we replace the matrix Vαγ by the pair of the scalar mα = mαγ and the
matrix mαVαγ , in the binary tree T , for every pair of binary strings α and γ such that
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α ends with 1, |α|+ |γ| ≤ h, and γ consists only of zeros. This gives us the IRD of a
c.-d.d. integer matrix V . By definition, we will also include into the IRD of V the two
sets, {detV (k), k = 1, . . . , n} and {detVα, |α| ≤ h}, of the determinants associated to
the RD of V . Clearly, having the IRD of V available, we may immediately compute
the RD of V . Later in this section, we will specify a simple transition from the RD to
the IRD. In section 12, we will also compute a dual IRD by similarly extending the
dual RD.

By combining Propositions 2.4 and 4.3, we obtain that for all binary strings
α, |α| ≤ h, we have

|mα| ≤‖ V ‖n, ||mαVα|| ≤ n||V ||n.(4.2)

For a c.-d.d. integer matrix V given together with its RD, we will seek its IRD.
We recall that vα for |α| = h denotes the single entry of the 1×1 leaf-matrix Vα of the
tree T of the RD. Recursive application of Propositions 2.12 and 2.16 immediately
yields the two following results.

Proposition 4.4. For every binary string α of length at most h, we have

det Vα =
∏
β

vβ ,

where
∏
β denotes the product in all binary strings β of length h that have α as their

prefix; that is, the associated nodes Vβ are both leaves of the tree T and descendants
of the node Vα in the tree T.

Proposition 4.5. det V (q) =
∏

(α)2<q
vα, where

∏
(α)2<q

denotes the product

in all binary strings α of length h for which (α)2 < q.

By applying the well-known parallel prefix algorithm [EG88], [KR90], we deduce
the following result from Propositions 4.2–4.5 and 2.15.

Corollary 4.6. Given the RD of a c.-d.d. n× n matrix V filled with integers,
one may compute the IRD of V at the cost OA(log n, n/ log n).

Due to the latter result and to matrix equations (2.1)–(2.3), the computation of
the IRD of V can be reduced to a sequence of multiplications, inversions, and subtrac-
tions of integer matrices, and we obtain the following parallel arithmetic complexity
estimates:

tIRD(n) ≤ tI(n/2) + tIRD(n/2) + 2tM (n/2) + 1,(4.3)

pIRD(n) ≤ max{pI(n/2), 2pIRD(n/2), 2pM (n/2), n2},(4.4)

whereOA(tIRD(k), pIRD(k)), OA(tI(k), pI(k)), andOA(tM (k), pM (k)) denote the time
and processor bounds for the computation of the IRD, the inverse and the product of
k × k matrices, respectively, where

(OA(tM (k), pM (k)) = OA(log k, k
ω), 2 ≤ ω < 2.376(4.5)

[BP94], and where we also use the obvious complexity bounds OA(tS(k), pS(k)) =
OA(1, k

2) for the subtraction of k × k matrices.

As the computation of the IRD is our major goal, relations (4.3)–(4.5) motivate
the next subject of our study, that is, matrix inversion.
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5. Approximate matrix inversion via Newton’s iteration.

Algorithm 5.1. Newton’s iteration for approximate matrix inversion.
Input: a nonsingular k × k matrix B, two positive scalars b and c, b > c, and a

matrix X0 (a rough initial approximation to −B−1) such that

c = − log ‖ BX0 + I ‖ .(5.1)

Output: a matrix X such that

‖ BX − I ‖≤ 2−b(5.2)

and, consequently,

‖ X −B−1 ‖≤ 2−b ‖ B−1 ‖ .(5.3)

Computations:
1. Compute

g = �log(b/c)�.(5.4)

2. Recursively compute the matrices

Xi = Xi−1(2I +BXi−1) , i = 1, . . . , g.(5.5)

3. Output the matrix X = −Xg.
To prove correctness of Algorithm 5.1, deduce from (5.5) that

I +BXi = (I +BXi−1)
2 , i = 1, 2, . . . , g,

and, consequently,

I +BXi = (I +BX0)
2i

,

‖ I +BXi ‖≤‖ I +BX0 ‖2i

,(5.6)

for i = 1, 2, . . . , g. In particular, for i = g, we have

‖ I +BXg ‖≤‖ I +BX0 ‖2g

= 2−c2
g ≤ 2−b

due to (5.1) and (5.4). This gives us (5.2) and (5.3) for X = −Xg.
To estimate the overall computational cost of performing Algorithm 5.1, observe

that the ith step (5.5) amounts to two matrix multiplications and to adding, at the
cost OA(1, k), the matrix 2I to the matrix BXi−1. Summarizing, we obtain the
following result.

Proposition 5.1. For g of (5.4), g steps (5.5) of Newton’s iteration, performed
at the overall cost OA(gtM (k), pM (k)) = OA(g log k, k

ω) for ω of (4.5), 2 ≤ ω < 2.376,
suffice in order to compute a matrix X = −Xg satisfying (5.2) and (5.3).

Remark 5.1. Proposition 5.1 enables us to estimate the complexity of approxi-
mate matrix inversion in terms of a scalar b and a matrix X0. Their choice depends
on the input matrix B and is critical for estimating the approximation errors and the
number of iterations. We will elaborate this choice in the next sections. Here are some
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preliminary comments on the choice of X0. If B is a c.-d.d. matrix so that d(B) < 1,
then (5.1) holds for X0 = −D−1(B) and c = − log d(B); that is, ||BX0 + I|| ≤ d(B).
This gives us a good policy for the choice of X0 and c over the class of c.-d.d. matrices
B. In this paper, however, we will only need to invert the c.-d.d. matrices B that
are close to the scaled identity matrices −mI for a fixed large integer m. The inverse
of such a matrix B is well approximated by the scaled identity matrices X0 = −I/m
satisfying

||BX0 + I|| < 1/(5n2), c > 2 log n.(5.7)

In fact our algorithms and complexity estimates will remain valid under some assump-
tions that are weaker than (5.7). Say, the bound

c = − log ||BX0 + I|| > θ > 0(5.8)

for a fixed constant θ would suffice. The choice of X0 = D−1(B) also satisfies the
error bound of (5.7), but X0 = −I/m is a Toeplitz matrix (see Definition 2.18), which
will be a crucially important advantage for the proof of Theorem 1.2 in sections 13
and 14.

6. Approximate RD of an integer matrix and its extension to the exact
evaluation of the IRD. Algorithm 5.1 is intended as matrix inversion block in the
algorithms of sections 3–4 for computing the ERD, IRD, and the associated determi-
nants of a c.-d.d. integer matrix V . Then, the matrices Vα and the values of det V (q)

and det Vα for all q and α are computed approximately, even where we still perform
all arithmetic operations over the rationals, with infinite precision and no errors. Our
next goal is to yield the exact IRD, assuming that we fixed a sufficiently large b and
defined X0 and c according to Remark 5.1.

Let us write Ṽα, d̃et V
(q), and d̃et Vα for the computed approximations to Vα,

det V (q), and det Vα, respectively. Then we extend the relations (3.1), (3.2), (5.1),
(5.4), and (5.5) by writing

Ṽβ =

(
B̃β C̃β
Ẽβ G̃β

)
,(6.1)

Ṽβ0 = B̃β , Ṽβ1 = G̃β − ẼβXβC̃β ,(6.2)

for all binary strings β of length less than h, where the policy of defining Xβ,0 (in
accordance with Remark 5.1) will be specified later on, and where

c(β) = − log ‖ B̃βXβ,0 + I ‖,(6.3)

g(β) = log(b/c(β)),(6.4)

Xβ,i = Xβ,i−1(2I + B̃βXβ,i−1) , i = 1, . . . , g(β),(6.5)

Xβ = −Xβ,g(β),(6.6)

and I is the identity matrix of an appropriate size.
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Algorithm 6.1. Approximating the RD of a c.-d.d. matrix.
Input: a positive integer h, n = 2h, a positive b, positive integers g(α) for all

binary strings α of length at most h, and an n× n c.-d.d. matrix V = ṼΛ.
Output: a set of matrices Ṽα for all binary strings α of length at most h, satis-

fying (6.1)–(6.6), and the values d̃et Vα for all α and d̃et V (q), q = 1, . . . , n, defined
according to Proposition 4.5 with det and v replaced by d̃et and ṽ, respectively.

Computations: Starting with V = ṼΛ for the empty string Λ, recursively apply
(6.1)–(6.6) and a fixed policy of defining Xβ,0, in order to compute Ṽβ0 and Ṽβ1 for
all binary strings β of length less than h. (For binary strings β of length h − 1, the
matrices Ṽβ0 and Ṽβ1 have size 1 × 1, so Ṽβ0 is inverted immediately, and then the

matrix Ṽβ1 is computed based on (2.1) and (2.2) for W = Ṽβ .) Finally, compute

d̃et Vα and d̃et V (q) for all α and q by applying Propositions 4.4 and 4.5, under the
above modification of the notation.

Correctness of the algorithm is immediately verified, provided that the value
b is chosen sufficiently large so that all matrices B̃β—which approximate the c.-d.d.
matrices Bβ—still have the property of being c.-d.d. and that the matrices X0 = Xβ,0
are chosen satisfying (5.8) for B = B̃β for all binary strings β. We note that (5.6)

and (6.4) together imply that ||I + B̃αXα|| ≤ 2−b and, consequently,

||Xα − B̃−1
α || ≤ 2−b||B̃−1

α ||,(6.7)

which extends (5.3).
The computational cost is bounded by OA((log n)

2g, nω) for g = max|β|<h g(β)
and for ω of (4.5). (Recursively apply (4.3)–(4.5) and Proposition 5.1.) A desired
upper bound on g (and, consequently, on the parallel time) will be ensured by (5.8),
(6.3), (6.4), and appropriate choice of b. Such a choice and its analysis will be shown
in the next sections. g(β) will in fact be independent of β, that is, we will choose
g(β) = g for all β.

Next, for a c.-d.d. matrix V filled with integers, we will apply Algorithm 6.1
for a sufficiently large b, and then we will apply the techniques of integer rounding
(compare [P85], [P87], and [BP94, p. 252]), to extend the resulting approximate RD
of V to the evaluation of the IRD of V . To yield this extension, we will choose b in
Algorithm 6.1 sufficiently large to ensure the following bounds:

|d̃et V (q) − det V (q)| < 1/2 , q = 1, . . . , n ,(6.8)

‖ Ṽβ1 − Vβ1 ‖<‖ V ‖−n /2 for all binary strings β, |β| < h,(6.9)

where d̃et V (q) and Ṽβ1 denote the approximations to det V (q) and Vβ1, respectively,
computed by Algorithm 6.1 for the fixed value of b.

Under (6.8) and (6.9), we recover the IRD of V as follows.
Algorithm 6.2.
Input: a set {d̃et V (q), q = 1, . . . , n} of approximations to det V (q) for all q and

an approximate RD of an n × n matrix V filled with integers, such that (6.8) and
(6.9) hold.

Output: the IRD of V .
Computations:
1. Round the values det Ṽ (q) to the closest integers; output the resulting integer

values of det V (q), q = 1, . . . , n.
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2. Compute the matrices W̃β1 = Ṽβ1 det V (Q(β1)) and round their entries to the
closest integers; output the resulting integer matrices Wβ1 = Vβ1 det V (Q(β1)

for all binary strings β of length less than h.
3. For all binary strings β of length less than h and all binary strings γ filled with

zero bits and satisfying |β1γ| ≤ h, output the matricesWβ1γ = Vβ1γ detV
(Q(β1))

(cf. (4.1) and Definition 4.1).

Correctness of Algorithm 6.2 follows since, clearly, the values det V (q) are integers
for all q and since the matrices Wβ1 = Vβ1 det V (Q(β1)) are filled with integers for
all β (due to Proposition 4.3). The computational cost of performing the algorithm is
bounded by OA(1, n

2).

Remark 6.1. Instead of choosing the multipliers mβ1 based on Proposition 4.3,
one may follow the more straightforward recipe of [R95] and recursively define mβ by
using induction on |β| and by writing mβ1 = mβ det Vβ0. Then, however, the order
of log |mβ | grows from |β| (compare our bounds (4.2)) to |β|2, and the bit-precision
and the bit-complexity of the computations grow by the extra factor n. (The statement
of Proposition 5.1 of [R95] is false. Its proof relies on an erroneous claim that if a
matrix mA is filled with integers, then so is the matrix m adj A; this claim is false,
say, for m = 3 and the matrix A = diag (1/3, . . . , 1/3).)

7. Errors of the approximation of the RD and the transition from the
RD to the IRD for a c.-d.d. matrix. We are going to implement the next step
of the outline of section 1.6 by specifying a c.-d.d. matrix V , whose IRD will give us
the IRD of A modulo a prime p. We recall that, according to Definition 2.1, we write
I to denote the identity matrices of appropriate sizes. We will next specify (in terms
of n and ‖V ‖) a choice of the input parameter b of Algorithm 6.1 that will enable us
to satisfy the relations (6.8) and (6.9), where V is an n × n matrix of the following
class.

V = F −mI.(7.1)

F is an n× n matrix filled with nonnegative integers that are less than a fixed prime
p ≥ n (we will work with F = A mod p for an input matrix A), and

m = 10p2n2.(7.2)

Remark 7.1. The choice of a larger m would have made V more strongly diag-
onally dominant (which is what we would like to have) but would have involved larger
integers, which would have increased the Boolean cost of the resulting computations,
so we choose only a moderately large m. In fact, our construction allows us to choose
even a little smaller m.

Next, let us prove that the entries of the matrices V of this class and of all
matrices Vα of their RDs satisfy the following rough estimate, which will suffice for
our purpose.

Proposition 7.1. The entries of the matrices Vα +mI lie in the range between
−1/2 and p− 1/2 for all binary strings α of length at most h = log n.

Proof. By the definition of the matrix V , the entries of the matrix F = V +mI
range from 0 to p−1. By Proposition 4.2, it suffices to prove that the entries of every
Schur complement S of an l.p.s. B = V (q) in V range from −1/2 to p − 1/2. Since
S = G− EB−1C (assuming (2.1) for W = V ) and since the entries of the submatrix
G+mI of F range from 0 to p− 1, it suffices to prove that the entries of the matrix
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EB−1C range between −1/2 and 1/2. Since the matrices F (q) = B +mI, C, and E
are submatrices of F , their entries also range from 0 to p− 1. Therefore,

||C|| < (p− 1)n, ||E|| < (p− 1)n,

−mB−1 = (I − F (q)/m)−1 =

∞∑
i=0

(F (q)/m)i,

||B−1|| ≤ (1/m)(1/(1− a)), a = ||F (q)||/m < (p− 1)n/m < 0.03.

Consequently, ||B−1|| < 2/m, ||EB−1C|| ≤ 2(p− 1)2n2/m < 1/2.
Hereafter, we will write

w = m+ (p− 1)n.(7.3)

Here are three corollaries of Proposition 7.1; the first and the third of them are
immediate.

Corollary 7.2. Let |α| = h, so that Vα = (vα) is a 1× 1 matrix. Then we have

|vα| < m+ p.

Corollary 7.3. ‖ V −1
β0 ‖< 1.1/m for all binary strings β of length at most

h− 1.
Proof. Write Fβ0 = Vβ0 + mI. Due to Proposition 7.1, we have ‖ Fβ0 ‖<

(p− 1)n < m/(10np). On the other hand,

V −1
β0 =

1

m
(I − Fβ0/m)−1 =

(
1

m

) ∞∑
i=0

(
Fβ0
m

)i
.

Therefore,

‖ V −1
β0 ‖≤

(
1

m

) ∞∑
i=0

(‖ Fβ0 ‖
m

)i
<

(
1

m

) ∞∑
i=0

1

(10np)i
=

10np

(10np− 1)m
<

1.1

m
.

Corollary 7.4. 2cβ = ||Vβ0Xβ,0 + I|| < 1/(10pn) ≤ 1/(10n2) for Xβ,0 = −I/m
and for all binary string β of length at most h− 1.

Hereafter, we will assume that n > 1 and that the matrices Xβ,0 for all β are
chosen as in Corollary 7.4, so that the relations (5.8) and even (5.7) hold. Our next
task is to estimate the desired range for b, which would enable us to recover the IRD.
In this section we will prove the following basic proposition.

Proposition 7.5. Under (7.1)–(7.3), both requirements (6.8) and (6.9) are satis-
fied if the matrices Vβ1 for all binary strings β of length less than h are approximated
by Algorithm 6.1 within an error norm bound

σ = 0.5/wn.(7.4)

Proof. We deduce from (7.1) and (7.3) that

‖ V ‖≤ m+ (p− 1)(n− 1) < w.
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Therefore, we will satisfy (6.9) if we approximate the matrices Vβ1 within the error
norm bound (7.4). To prove that (6.8) is satisfied too, we need the next lemma.

Lemma 7.6. The requirement (6.8) is satisfied if the values vα for all binary
strings α of length h are approximated within an error bound

δ ≤ w1−n/(2n+ 2), w = m+ p < w.(7.5)

Proof of the lemma. By the virtue of Proposition 4.5, det V (q) is the product of
exactly q values vα for α denoting binary strings of length h. Under the assumptions
of Lemma 7.6, the maximum error of computing det V (q) may only increase if we
assume that q = n, that vα = w, and that the approximations to vα equal w + δ for
all α. Then, det V = wn is approximated by (w + δ)n, with an approximation error

E = (w + δ)n − wn = wn((1 + (δ/w))n − 1) = wn−1δ

n∑
i=1

(δ/w)i−1

(
n
i

)
.

We have (n1 ) = n, (ni ) < 2n for all i, and δ/w < 1. Therefore, E < (n + (δ/w)
(n− 1)2n)δwn−1.

Equations (7.2) and (7.5) together imply that

w > (n− 1)2nδ ,

and we may rewrite our bound on E as follows:

E < (n+ 1)δwn−1 .

Substitute (7.5) and obtain that E < 1/2.
To complete the proof of Proposition 7.5, we observe that

σ = 0.5/wn < w1−n/(2n+ 2) < w1−n/(2n+ 2)

(compare (7.5)), and the values vα for all binary strings α of length h (except for
the string α(0) consisting of h zeros) are among the entries of the matrices Vβ1 for
|β| ≤ h − 1. vα(0) is an entry of V and is known exactly without any computation.
Therefore, the assumptions of Lemma 7.6 and, consequently, the requirement (6.8)
are satisfied too.

8. Estimating the error accumulation and the precision of the approx-
imation of the matrix inverse. In this section, we will extend Proposition 7.5 by
estimating the parameter b of Algorithm 6.1 (which expresses the precision of the
matrix inversion) to ensure (7.4) and, consequently, (6.8) and (6.9).

Proposition 8.1. Under some choice of b = O(n log p), the bounds (6.8) and
(6.9) can be satisfied in all applications of Newton’s iteration (6.5) within Algorithm
6.1, which is in turn applied to approximate the RD of a matrix V satisfying (7.1)
and (7.2).

The remainder of this section is devoted to the proof of Proposition 8.1. Due
to the bound (5.6), it is actually quite clear that we would ensure (7.4) if we choose
sufficiently large values b = O(n log p), g(α) of (6.4), and m of (7.1), but we will
deduce (7.4) already for m of (7.2) and g(α) = O(log(n log p)) for all α. As usually
in the proofs involving error analysis, some tedious estimates are required. The idea
of our proof is to condense estimating the error propagation into a single step, which
will allow its recursive extension to cover all the nodes Vα of the tree representing the
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RD. This basic step of our analysis will be given in the form of Proposition 8.2. (We
will first give some preliminaries, then will state and prove this proposition, and then
will show that its conclusion enables us to extend recursively its assumptions (and,
consequently, its conclusion too) and thus to extend the error estimates recursively
to all the descendants of the current node Vα of the tree.)

Proof of Proposition 8.1. Consider a path in the tree T from the root V to a leaf
Vα = (vα), |α| = h. Algorithm 6.1 follows such a path by recursively proceeding from
matrices Vβ to Vβ0 and Vβ1. For given Vβ and Vβ0, the algorithm approximates the
matrices V −1

β0 within the error norm bounds 2−b ‖ V −1
β0 ‖ and then extends such an

approximation to approximating Vβ1. The errors of the computed approximations to
Vβ are accumulated in computation of all descendands of Vβ along the paths in T .
We need to estimate the resulting overall errors in all the output matrices along all
such paths, assuming that b is large though of order O(n log p).

We will next analyze a single recursive step along such a path; that is, we will
first bound the matrix ∆(Vβ) of the initial errors of the approximation of W = Vβ ,
and then we will estimate the propagated errors of the approximation of S = Vβ1
caused by the combined errors due to the initial ones, given by ∆(Vβ), and ones of
Newton’s iterates for the inversion of Vβ0.

Hereafter, we will write M̃ to denote the approximations to matricesM computed
by Algorithm 6.1, for M denoting Vα (for any binary string α), a submatrix of Vα, or
any other auxiliary matrix involved. We will also write

∆(M) = M̃ −M .(8.1)

We will first estimate ‖ ∆(Vα1) ‖ in terms of ‖ ∆(Vα) ‖. For convenience, we write
W = Vα, S = Vα1, recall (2.1), (2.2), and estimate the error propagation in the
transition from W to B and S. From Proposition 7.1 and Corollary 7.3, we obtain
that

max{‖ B ‖, ‖ C ‖, ‖ E ‖, ‖ G ‖} ≤‖W ‖≤ w ,(8.2)

‖ B−1 ‖< 1.1/m .(8.3)

We also write (cf. (8.1))

W̃ =

(
B̃ C̃

Ẽ G̃

)
, ∆(W ) =

(
∆(B) ∆(C)
∆(E) ∆(G)

)
,

S̃ = G̃− ẼLC̃,

where L denotes the computed approximation to B̃−1. Then, clearly,

max{‖ B̃ ‖, ‖ C̃ ‖, ‖ Ẽ ‖, ‖ G̃ ‖} ≤‖ W̃ ‖,(8.4)

max{‖ ∆(B) ‖, ‖ ∆(C) ‖, ‖ ∆(E) ‖, ‖ ∆(G) ‖} ≤‖ ∆(W ) ‖ .(8.5)

We will assume that the errors of the approximations obtained via Algorithm 6.1 are
sufficiently small so that the following inequalities hold (also cf. the bound ||B−1|| <
1.03/m obtained in the proof of Proposition 7.1):

‖ L− B̃−1 ‖≤ ν ‖ B̃−1 ‖, ν ≤ 1/(4000m2),(8.6)
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‖ B̃−1 ‖< 1.11/m, ‖ L ‖≤ (1 + ν) ‖ B̃−1 ‖< 1.11(1 + ν)/m.(8.7)

Remark 8.1. The inequalities of (8.6) are reconciled with (5.3) for ν ≤ 2−b, L
replacing X, and B̃ replacing B.

In the next proposition we will bound approximation errors for Vβ0 and Vβ1 in
terms of a single positive parameter ∆ = ∆(β) defined by the errors of the approxi-
mation of Vβ and by the parameter ν, which is in turn defined by the error exponent

b of Newton’s iteration for the approximation of B̃−1.
Proposition 8.2. Suppose that the inequalities (8.2)–(8.7) hold and that a posi-

tive ∆ = ∆(β) satisfies the following bounds:

||∆(W )|| ≤ ∆, 40νm ≤ ∆ < 0.01 w,(8.8)

where W = Vβ and β is a binary string of length less than h. Then, we have
(a) ‖ ∆(B) ‖=‖ ∆(Vβ0) ‖≤ ∆,
(b) ‖ ∆(S) ‖=‖ ∆(Vβ1) ‖≤ 5∆.
Proof. Part (a) of the proposition follows immediately since Vβ0 is a submatrix of

Vβ . To deduce part (b), we will use the following bound (implied by (8.2) and (8.8)):

‖ W̃ ‖< 1.01 w,(8.9)

as well as the next proposition.
Proposition 8.3. For any 4-tuple of k× k matrices, X, X̃, Y , and Ỹ , we have
(a) ‖ ∆(X ± Y ) ‖≤‖ ∆(X) ‖ + ‖ ∆(Y ) ‖,
(b) ‖ ∆(XY ) ‖≤‖ ∆(X) ‖ ‖ Y ‖ + ‖ ∆(Y ) ‖ ‖ X ‖ + ‖ ∆(X) ‖ ‖ ∆(Y ) ‖,

and if X and X̃ are nonsingular matrices, then also
(c) ‖ ∆(X−1) ‖≤‖ X−1 ‖ ‖ X̃−1 ‖ ‖ ∆(X) ‖.
Proof. The parts (a)–(c) follow immediatley from the next simple equations:
(a) ∆(X ± Y ) = ∆(X)±∆(Y ),
(b) ∆(XY ) = ∆(X)Y +X∆(Y ) + ∆(X)∆(Y ),
(c) ∆(X−1) = X−1∆(X)X̃−1 = −X̃−1∆(X)X−1.
Since S = G − EB−1C under (2.2), we will next recursively extend the bound

||∆W || on the error norms of G,E,B, and C to yield some bounds on the error norms
of B−1, EB−1, EB−1C, and S.

We first apply part (c) of the latter proposition for X = B and ∆(X−1) =
B̃−1 −B−1 and obtain that

‖ ∆(B−1) ‖≤‖ B−1 ‖ ‖ B̃−1 ‖ ‖ ∆(B) ‖ .

Substitute (8.3) and (8.7) into the latter bound and obtain that

‖ ∆(B−1) ‖< 1.221 ‖ ∆(W ) ‖ /m2.

Combine the relations (8.6) and (8.7) to obtain that ||L − B̃−1|| ≤ 1.11ν/m ≤
(1.11)∆/(4000m3). Combine the latter bounds on the norms, recall (8.8), and deduce
that

‖ L−B−1 ‖≤‖ ∆(B−1) ‖ + ‖ L− B̃−1 ‖< (1.221 + (1.11)/(4000m))∆/m2

< 1.3∆/m2 .(8.10)
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Apply part (b) of Proposition 8.3 for X = E, Y = L, and deduce that

‖ ∆(EL) ‖≤‖ ∆(E) ‖ ‖ L ‖ + ‖ L−B−1 ‖ (‖ E ‖ + ‖ ∆(E) ‖) .
Recall from (7.2) and (7.3) that w/m ≤ 1.02. By combining the two latter

inequalities with our bounds on ‖ L ‖, ‖ L − B−1 ‖, ‖ E ‖, and ‖ ∆(E) ‖ (see
(8.4)–(8.10)), obtain that

‖ ∆(EL) ‖≤
(
1.11

m
(1 + ν) +

(
1.3

m2

)
1.01w

)
∆ ≤ 2.5

m
∆ .(8.11)

Then again, we apply part (b) of Proposition 8.3, this time for X = EL, Y = C,
and obtain that

‖ ∆(ELC) ‖≤‖ ∆(EL) ‖ ‖ C̃ ‖ + ‖ ∆(C) ‖ ‖ EL ‖ .
Substitute our previous estimates (8.2), (8.4)–(8.9), and (8.11) into the latter

inequality and deduce that

‖ ∆(ELC) ‖≤
((

2.5

m

)
1.01w +

1.11

m
(1 + ν)w

)
∆ ≤ 3.7∆w/m.

Now, since w/m ≤ 1.02, we have

‖ ∆(ELC) ‖≤ 4∆.

We obtain ‖ ∆(G) ‖≤ ∆ from (8.5) and (8.8). By applying part (a) of Proposition
8.3 for X = G, Y = ELC, we deduce that

‖ ∆(S) ‖≤‖ ∆(ELC) ‖ + ‖ ∆(G) ‖≤ 5∆,

which proves Proposition 8.2.
Now, we observe that the assumptions of Proposition 8.2 are satisfied for W = V ,

W̃ = V , and ∆ = 40νm, and we extend them to W = Vα for all α. The extension
from W = Vβ to W = Vβ0 for any β is trivial. We will comment on the extension to
W = V1, which will be our sample for the extension from W = Vβ to W = Vβ1 for any

β. We write B̃ = B = V0, L = −X1,g, X1,0 = −I/m, g ≥ 4, and define by (6.5) the

matrices X1,i for all i. Now, observe that ||I +X1,0W || = ||F ||/m, ||I +X1,0W̃ || ≤
||F ||/m+∆/m ≤ (∆ + (p− 1)n)/m < 1/(10pn) < 1/m1/2.

Therefore, (5.6) implies that

‖ Xi +B−1 ‖≤‖ B−1 ‖ /m2i−1

, i = 1, . . . , g,

and, consequently, since L = −Xg for g ≥ 4, we have

‖ L−B−1 ‖≤ ν ‖ B−1 ‖ for ν ≤ 1/m8 < 1/(4000m2n12),

thus satisfying (8.6). The remaining assumption (8.7) of Proposition 8.2 is also easily
verified (by using (8.5) and (8.8) and by following the line of the proof of Corollary
7.3).

Now, we are ready to extend Proposition 8.2 recursively, which will give us the
desired upper bound on ||∆(Vα)|| in terms of b. By applying this proposition recur-
sively, we extend its assumptions toW = V0,W = V1, ∆ = 40νm. (In the subsequent
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recursive extension from W = Vβ1 to W = Vβ for any binary string β of length at
most h− 1, we will choose ν depending on α but satisfying (8.6) for all α.)

Apply the bounds of parts (a) and (b) of Proposition 8.2 recursively and obtain
that

‖ ∆(W ) ‖≤ ∆

|α|∑
i=0

5i < n3∆

for W = Vα and all α (with |α| ≤ h = log n). Let us choose a b that enables us
to reconcile the initial choice of ∆ = 40νm and the latter bound on ||∆(W )|| with
(8.6)–(8.8). Recall Remark 8.1, recall that the choice of g according to (6.4) implies
the bound (6.7) on the output approximation to the inverse, substitute ν = 2−b, and
obtain the desired estimate:

‖ ∆(Vα) ‖< (40mn3∆)2−b < 22−bw2n(8.12)

for all α.

Let us choose b of order n log p satisfying the bound

b ≥ 3 + log n+ (n+ 2) logw,

which is compatible with the choice of b = log(1/ν) and with (8.6). Substitute this
bound on b into the preceding upper bound on ‖ ∆(Vα) ‖ and obtain that

‖ ∆(Vα) ‖< 0.5 w−n

for all α. This satisfies the requirement (7.4) of Proposition 7.5 and completes the
proof of Proposition 8.1.

Remark 8.2. By Corollary 7.4, c(β) = O(log n) for all binary strings β of length
at most h − 1. Furthermore, (6.4) and the above choice of b are compatible with the
choice of g = g(β) of order log b = log(n log p) for all β.

9. Computations with rounding-off: Estimates for the finite precision
and computational cost. So far, we assumed the infinite precision of computing
the RD and IRD by means of Algorithms 6.1 and 6.2. Next, we will show that this
is not necessary for obtaining the result of Proposition 8.1; that is, we will prove the
following.

Proposition 9.1. The estimates of Proposition 8.1 hold even if the computa-
tions by Algorithms 6.1 and 6.2 are performed with a precision of b̃ bits, for some
b̃ = O(n log p) provided that a single extra Newton’s step (6.5) is performed in each
application of Algorithm 6.1.

Proof. Let us first assume the computations of Newton’s step (6.5) with the
infinite precision, but in the transition from W = Vα to S = Vα1 for all binary
strings α, |α| < h, let the computations be performed with rounding to the b̃-bit
precision. Assuming B−1 available, the latter transition involves two multiplications
and a subtraction of k × k matrices for k = 2h−|α| (compare (2.2)). By applying
the techniques of backward error analysis [W65], [BL80], we bound the norm of the
matrix ε(S) of the errors of the approximation to S caused by rounding:

‖ ε(S) ‖≤ nO(1)2−b̃ ‖W ‖ (1+ ‖ L ‖ ‖W ‖)
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for L denoting the computed approximation to B−1 (cf. (8.6), (8.7)). By applying
the relations (8.2), (8.7), (7.2), (7.3), and Proposition 7.1, we obtain that

‖ ε(S) ‖≤ mO(1)2−b̃ .

By choosing b̃ of order n log p, we make ‖ ε(S) ‖ less than 2 ‖ ∆(W ) ‖ for W = Vα
and for all α. This is less than 40% of the upper bound that we have in part (b) of
Proposition 8.2. Combining both of these bounds gives us cumulative upper bound
7 ‖ ∆(W ) ‖, which shows the overall impact of the above rounding errors. This enables

us to preserve the validity of the bound (8.12) (since
∑h
i=0 7

i ≤ n3 for h = log n) and,
consequently, of the entire proof of Proposition 8.1.

It remains to estimate the impact of rounding to b̃-bit precision when we perform
Newton’s steps (6.5). Then again, we deal with two matrix multiplications (we ignore
the errors caused by the simple addition step 2I + (WXi−1)). By applying backward
error analysis again, we estimate that

‖ ε(Xi) ‖≤ nO(1)2−b̃ ‖ Xi−1 ‖ (2+ ‖W ‖ ‖ Xi−1 ‖) ,(9.1)

where ε(Xi) denotes the matrix of the errors of approximation of Xi due to rounding
in performing iteration (6.5).

Our next goal is to prove the bound

‖ Xi−1 ‖≤ 1.1(1 + 1/m̃)/m < 1.21/m for i ≥ 1,(9.2)

ignoring for simplicity the terms of order 2−2b̃ or less.
We have from Corollary 7.4 that ‖I + BX0‖ < 1

m̃ for m̃ = 10pn ≥ 20p and for
X0 = −I/m. Then we obtain from (5.6) that

‖ I +BXi−1 ‖≤ 1/m̃2i−1

.

Therefore,

‖ Xi−1 +B−1 ‖≤‖ B−1 ‖ /m̃2i−1

.

Consequently,

‖ Xi−1 ‖≤‖ B−1 ‖
(
1 +

1

m̃2i−1

)

for i = 1, 2, . . .. Substitute (8.3) and arrive at inequality (9.2).
Substitute bound (9.2) on ‖ Xi−1 ‖ and the bound ‖W ‖≤ w of (8.2) into (9.1),

recall (7.2) and (7.3), and obtain that

‖ ε(Xi) ‖≤ (np)O(1)2−b̃ for all i .

By choosing a sufficiently large b̃, though of order n log p, we easily ensure that

‖ ε(Xi) ‖< 2−b/ ‖ B ‖ .

Therefore,
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‖ I +B(Xi + ε(Xi)) ‖≤‖ I +BXi ‖ + ‖ B ‖ ‖ ε(Xi) ‖

≤‖ I +BXi−1 ‖2 +2−b .

Since Newton’s iteration (6.5) stops if ‖ I +BXi−1 ‖≤ 2−b, we may assume that
‖ I +BXi−1 ‖> 2−b, so that the rounding may at worst change (6.7) into the bound

‖ I +B(Xi + ε(Xi)) ‖≤ 2 ‖ I +BXi ‖≤ 2σ ‖ I +BX0 ‖2i

< 2(2 ‖ I +BX0 ‖)2i

,

where σ =
∑i
s=0 2

s < 2i+1. Since ‖ I + BX0 ‖≤ 1/m, the impact of the rounding
on the residual norm of the output approximation computed by Newton’s iteration
is more than compensated by a single extra step (5.5), (6.5), and this completes the
proof of Proposition 9.1.

Let us next summarize our current complexity extimates for the computation of
the IRD before we improve them slightly in the next section. Choose b and b̃ of order
n log p and choose g of order log(n log p), which is consistent with (6.4) under (5.7) or
(5.8). Now, by combining the results of Corollaries 4.6 and 7.3 and Propositions 8.1
and 9.1 with Remark 8.2 and the estimates for the arithmetic parallel complexity of
performing Algorithms 6.1 and 6.2 and by using the B-principle, obtain the following
corollary.

Corollary 9.2. Algorithm 6.2 computes the IRD of a matrix V satisfying (7.1)
and (7.2) at the cost OA((log n)

2 log(n log p), nω/ log n) for ω of (4.5). Furthermore,
b̃-bit precision suffices in these computations for some b̃ of order n log p.

10. Pipelined computation of the IRD. Our next goal is a modification of
Algorithm 7.1, which, as we claimed in section 1.6, will enable us to improve by factor
log n the asymptotic time-complexity bounds of Corollary 9.2, without increasing
the processor bound by more than a constant factor. To achieve this goal, we will
incorporate into our construction the techniques of pipelining along the lines of [PR91]
(where such techniques were called stream contraction and applied to computing the
RD of a matrix over semirings of a certain class). Here are our informal underlying
observations.

Algorithm 6.1 is not fully efficient because it spends substantial time and work
on refining the approximations to the inverses of the matrices B̃β = Ṽβ0 (cf. (6.5));
this delays the subsequent use of such approximations in the inversion of the matrices
Ṽβ10 = B̃β1, which anyway starts with a much cruder approximation −I/m. Next, we

will modify Algorithm 6.1. We will start the Newton process of the inversion of B̃β1
by relying on the available rough approximations to B̃−1

β , and then we will recursively
produce a stream of better approximations when the process progresses.

In other words, we are going to pipeline the recursion on α (decomposition) and
the Newton one (inversion). To approximate the matrix Vβ1 of the RD and ERD, we
will start using the intermediate approximations to the inverse V −1

β0 , as soon as they
are computed by Newton’s iteration. We will update the resulting approximation to
Vβ1 as soon as the approximation to V −1

β0 is refined; that is, in the process of the

computation of the matrix Ṽβ1, we will keep refining every step of the computations
as soon as we refine its input.

More precisely, we will initialize this process by fixing some natural g, to be
specified later on. As before, α and β will denote binary strings, |α| ≤ h, |β| < h, and
γ will denote the unary strings consisting of zero bits. u(α) will denote the number
of bits one in a binary string α. t will denote integers in the range from t0 to g + h.
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Here, t0 = u(α) in (10.1) and (10.3) (where α is fixed), t0 = u(β) + 1 in (10.4)–(10.7)
(where β is fixed), and t0 = 0 elsewhere, that is, in (10.2).

We will now define the following matrices whose subscripts α, β, γ, and t range
as specifed above:

Vα,t =

(
Bα,t Cα,t
Eα,t Gα,t

)
,(10.1)

Vγ,t = Vγ(10.2)

(cf. Definition 2.6),

Vαγ,t = (Vα,t)
(q) for |αγ| ≤ h, q = 2h−|αγ|,(10.3)

Xβ,t,0 =

{ −I/m for t = u(β) + 1,
−Xβ,t−1 for t > u(β) + 1,

(10.4)

Xβ,t,i+1 = Xβ,t,i(2I + Vβ0,tXβ,t,i), i = 0, 1, 2, 3, 4,(10.5)

Xβ,t = −Xβ,t,4,(10.6)

Vβ1,t+1 = Gβ,t − Eβ,tXβ,tCβ,t.(10.7)

Now, we are ready to specify our pipelined algorithm.
Algorithm 10.1. Stream contraction for approximating the RD.
Input: natural g, h, and n = 2h; an n× n matrix V .
Output: for all binary strings α of length at most h, matrices Vα,g+u(α) satisfying

the equations (10.1)–(10.7) and approximating the matrices Vα, respectively.
Computations:
Stage 0. Apply (10.2) for t = 0 to define the matrices Vγ,0 , |γ| = 0, . . . , h.
Stage t, t = 1, . . . ,g + h.
Concurrently in all binary strings β of length less than h with u(β) < t, compute

successively:
(a) Xβ,t,0, based on (10.4),
(b) Xβ,t,i+1 for i = 0, 1, 2, 3, 4, based on (10.5),
(c) Xβ,t, by (10.6),
(d) Vβ1,t+1 = Gβ,t − Eβ,tXβ,tCβ,t, based on (10.1) and (10.7),
(e) Vβ1γ,t+1, by (10.3) where α = β1.

These rules are complemented by the following.
Stopping criterion: Output the matrices Vα,g+u(α) for all binary strings α of

length at most h and cancel all the subsequent computations involving these matrices.
For the reader’s convenience, we will next list the matrices computed at stages 1,

2, and 3, letting γ0, γ1, γ2, γ3 denote unary strings filled with zeros.
Stage 1:
Xγ0,1,0 = −I/m,
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Xγ0,1,i+1 = Xγ0,1,i(2I + Vγ00Xγ0,1,i), i = 0, 1, 2, 3, 4,

Xγ0,1 = −Xγ0,1,4,
Vγ01,2 = Gγ0 − Eγ0Xγ0,1,Cγ0 for Gγ0 , Eγ0 , Cγ0 of (3.1), |γ0| < h,

Vγ01γ1,2 = V
(q)
γ01,2

for q = 2h−1−|γ0γ1|, |γ0γ1| < h.

Stage 2: Xγ0,2,0 = −Xγ0,1,
Xγ0,2,i+1 = Xγ0,2,i(2I + Vγ00,2Xγ0,2,i), i = 0, 1, 2, 3, 4,

Xγ0,2 = −Xγ0,2,5,
Vγ01,3 = Gγ0 − Eγ0Xγ0,2Cγ0 for |γ0| < h,

Vγ01γ1,3 = V
(q)
γ01,3

for q = 2h−1−|γ0γ1|, |γ0γ1| < h,

Xγ01γ1,2,0 = −I/m,

Xγ01γ1,2,i+1 = Xγ01γ1,2,i(2I + Vγ01γ10,2Xγ01γ1,2,i), i = 0, 1, 2, 3, 4,

Xγ01γ1,2 = −Xγ01γ1,2,5,
Vγ01γ11,3 = Gγ01γ1,2 − Eγ01γ1,2Xγ01γ1,2Cγ01γ1,2 for Gγ01γ1,2, Eγ01γ1,2, Cγ01γ1,2 of

(10.1), with α = γ01γ1, t = 2, |γ0γ1| < h− 1,

Vγ01γ11γ2,3 = V
(q)
γ01γ11,3

for q = 2h−2−|γ0γ1γ2|, |γ0γ1γ2| < h− 1.

Stage 3: Xγ0,3,0 = −Xγ0,2,
Xγ0,3,i+1 = Xγ0,3,i(2I + Vγ00Xγ0,3,i), i = 0, 1, 2, 3, 4,

Xγ0,3 = −Xγ0,3,5,
Vγ01,4 = Gγ0 − Eγ0Xγ0,3Cγ0 for |γ0| < h,

Vγ01γ1,4 = V
(q)
γ01,4

for q = 2h−1−|γ0γ1|, |γ0γ1| < h,

Xγ01γ1,3,0 = −Xγ01γ1,2,
Xγ01γ1,3,i+1 = Xγ01γ1,3,i(2I + Vγ01γ10,3Xγ01γ1,3,i), i = 0, 1, 2, 3, 4,

Xγ01γ1,3 = −Xγ01γ1,3,5,
Vγ01γ11,4 = Gγ01γ1,3 − Eγ01γ1,3Xγ01γ1,3Cγ01γ1,3 for Gγ01γ1,3, Eγ01γ1,3, Cγ01γ1,3 of

(10.1) with α = γ01γ1, t = 3, |γ0γ1| < h− 1,

Vγ01γ11γ2,4 = V
(q)
γ01γ11,4

for q = 2h−2−|γ0γ1γ2|, |γ0γ1γ2| < h− 1,

Xγ01γ11γ2,3,0 = −I/m,

Xγ01γ11γ2,3,i+1 = Xγ01γ11γ2,3,i(2I + Vγ01γ11γ20,3Xγ01γ11γ2,3,i), i = 0, 1, 2, 3, 4,

Xγ01γ11γ2,3 = −Xγ01γ11γ2,3,5,
Vγ01γ11γ21,4 = Gγ01γ11γ2,3−Eγ01γ11γ2,3Xγ01γ11γ2,3Cγ01γ11γ2,3 forGγ01γ11γ2,3, Eγ01γ11γ2,3,

Cγ01γ11γ2,3 of (10.1), with α = γ01γ11γ2, t = 3, |γ0γ1γ2| < h− 2,

Vγ01γ11γ21γ3,4 = V
(q)
γ01γ11γ21,3

, q = 2h−3−|γ0γ1γ2γ3|, |γ0γ1γ2γ3| < h− 2.

Correctness of Algorithm 10.1 is immediatley verified. It remains to specify the
choice of natural g, which would satisfy the requirements of Proposition 7.5, and then
to estimate the resulting compuational cost.

As in section 8, we assume infinite precision computations in Algorithm 10.1,
but the same techniques of backward error analysis as in section 9 enable relatively
simple transition to the case of computations with rounding to finite precision of order
n log p bits.

The analysis of the approximation errors and of the computation precision given
in section 8 is easily extended. In particular, the extension of Proposition 8.2 and its
proof is immediate provided that in its statement Vβ , Vβ0, and Vβ1 are replaced by
Vβ,t, Vβ0,t+1, and Vβ1,t+1, t > u(β). Furthermore, the assumptions of this proposi-
tion are extended recursively with each increase of t and the length |β| by 1. Such
an extension is analyzed as in section 9. (The transition from Vβ,t to Vβ1,t+1 involves
five Newton steps (10.5), versus four steps used in section 8; an extra step compen-
sates us for the impact of the rounding errors; this suffices according to the analysis
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in section 9.) The small factor 5 of the error propagation bound of part (b) of Pro-
postion 8.2 (even when it increases to 7 due to the rounding errors) is immediately
suppressed by Newton’s steps (10.5). To accomodate the factors 5 or 7, we also should
increase the upper bound on ||V −1

β0,tXβ,t,0 + I|| obtained in Corollary 7.4; the increase

is from 1/(10n2) to 1/(2n2) or to 7/(10n2), respectively. This, however, implies only
a nominal increase of g, which we may set equal to

g = 1 + �log(b/(2 log n))�,(10.8)

say. (2 log n in the denominator replaces log(10n2), which more than compensates
us for the error propagation factors 5 or 7.) The computation of every Vα,g+u(α)

involves at least 5g Newton steps (10.5), so that the output error norm bound 2−b is
guaranteed under (10.8). Therefore, to satisfy the requirement (7.4) of Proposition
7.5, it is sufficient to choose b of order n log p. Then, by (10.8), we have

g = O(log(n log p)).(10.9)

Now, let us estimate the computational cost of performing Algorithm 10.1.
For any t, Stage t amounts essentially to ten steps of multiplication of at most

n/k pairs of k × k matrices for k = 2�, � = 1, 2, . . . , h. All these multiplications
for k = 2� and for all � are performed concurrently. Their overall cost is bounded by
OA(log n, n

ω), 2 ≤ ω < 2.376 (compare (4.5) and observe that
∑h
�=1 2

�(n/2�)ω = O(nω)
for ω > 1). Summarizing these bounds for all stages t, t = 1, . . . , g+ h, we obtain the
following proposition.

Proposition 10.1. Algorithm 10.1 supports approximating the RD of a
c.-d.d. n × n matrix V of (7.1) within the error norm bound 2−b, at the overall
cost OA((log n)(log n+ g), nω) for g of (10.8) and ω of (4.5).

By combining Algorithms 10.1 and 6.2, summarizing the estimates for the com-
putational cost of their performance, given in particular in (10.9) and Proposition
10.1, and extending the rounding error analysis applied in the proof of Proposition
9.1, we obtain the following corollary.

Corollary 10.2. The IRD of a c.-d.d. n × n matrix V of (7.1) can be exactly
computed at the computational cost OA((log n) log(n log p), n

ω) for ω of (4.5), 2 ≤
ω < 2.376; moreover, this computation can be performed by only involving operations
with b̃-bit precision numbers for b̃ = O(n log p).

11. Computing modulo a fixed prime of the ERD of an integer matrix.
Our next goal is probabilistic extension of Corollary 10.2 from the class of matrices
V of (7.1) to the class of all strongly nonsingular integer matrices A. In this section,
we will compute the IRD and even the ERD of A modulo a fixed prime p; in the next
section we will shift to the IRD of A.

Let A = (ai,j) be a strongly nonsingular n × n matrix filled with integers ai,j .
Then by virtue of Proposition 3.2, there exists the RD of A. Let p be a fixed prime,
let 0 ≤ fi,j = ai,j mod p < p for all i, j, and let

F = (fi,j) = A mod p .(11.1)

(Here and hereafter, we assume that 0 ≤ a mod p < p for any integer a.)
We will compute modulo p the ERD of the matrix F as an auxiliary stage of

computing the ERD of A. At first, we should examine if there exists the ERD modulo
p of F .
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Lemma 11.1 (see [IR82]). Let f(n) be a function defined on the set of positive
integers such that f(n) > 0 and limn→∞ f(n) = ∞. Then there exist two positive
constants C and n0 such that, for any n > n0, the interval

J = {p : f(n)/n < p < f(n)}(11.2)

contains at least f(n)/(C log f(n)) distinct primes.
Lemma 11.2. Let f(n), hq(n), and kq(n), q = 1, . . . , Q be some functions in n

such that hq(n) are integer valued, hq(n) �= 0,

0 < (hq(n))
1/kq(n) ≤ f(n)/n, kq(n) > 0, limn→∞f(n) =∞(11.3)

for q = 1, . . . , Q. Let p be a random prime in the interval J of (11.2). Then for
the positive constants C and n0 of Lemma 11.1 and for any fixed n > n0, we have
hq(n) �= 0 mod p for q = 1, . . . , Q with a probability at least 1−(CK(n) log f(n))/f(n),

where K(n) =
∑Q
q=1 kq(n).

Proof. Let lq(n) primes lying in the interval J divide hq(n). Then their product
also divides hq(n) and, therefore, cannot exceed hq(n). As these primes lie in the
interval J , each of them exceeds f(n)/n, and their product exceeds (f(n)/n)lq(n).
Hence, (f(n)/n)lq(n) < hq(n). Compare this inequality with the assumed bound
hq(n) ≤ (f(n)/n)kq(n) and obtain that lq(n) < kq(n). This holds for all q. Therefore,
the number of primes lying in J and dividing at least one of the integers hq(n) (for any

q) is at most
∑Q
q=1 lq(n) <

∑Q
q=1 k(n) = K(n). Compare this number with the overall

number of primes in J estimated in Lemma 11.1 and obtain the desired probability
estimate.

Proposition 11.3. Let ρ > 2 be a fixed scalar, let A be a strongly nonsingular
n × n integer matrix, where n > 1, ‖A‖ > 1, and let p be a prime chosen randomly
(under the uniform probability distribution) in the interval J = {p : nρ−1 log ‖ A ‖<
p < nρ log ‖ A ‖}. Then p ≥ n, and the matrix F of (11.1) is strongly nonsingular
modulo p with a probability at least 1−Pρ,n for Pρ,n < (n+1)Cn1−ρ and for a positive
constant C of Lemmas 11.1 and 11.2.

Proof. Apply Lemma 11.2 for f(n) = nρ log ||A||, hq(n) = |detA(q)|, Q = n, and

kq(n) = (q log ||A||)/ log (nρ−1 log ||A||),
q = 1, . . . , n. Recall from Proposition 2.4 that |detA(q)| ≤ ||A(q)||q ≤ ||A||q for all
q, q ≤ n, and deduce that (11.3) holds for all q ≤ n. We immediately deduce that
K(n) =

∑n
q=1 kq(n) = ((n+1)n log ||A||)/(2 log(nρ−1 log ||A||)) and (log f(n))/f(n) =

(log(nρ log ||A||))/(nρ log ||A||). Substitute these expressions forK(n) and (log f(n))/f(n)
into Lemma 11.2 and obtain that (detA(q)) mod p �= 0 for q = 1, . . . , n with a proba-
bility at least 1− Pρ,n, where

Pρ,n <
(n+ 1)nC log (nρ log ||A||)
2nρ log (nρ−1 log ||A||) =

(n+ 1)C

2nρ−1

(
1 +

log n

log (nρ−1 log ||A||)
)

for all k. By assumption, we have ||A|| ≥ 2, ρ > 2, n ≥ 2, and it follows that
log(nρ−1 log ||A||) > log n. Combine this bound with the above bound on Pρ,n and
obtain the claimed estimate of Proposition 11.3.

Now, we will assume that a prime p has been chosen in the interval J of Proposi-
tion 11.3 and the matrix F of (11.1) is strongly nonsingular modulo p and, therefore,
possesses its ERD modulo p.
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The next algorithm computes modulo p such an ERD, representing each auxiliary
or output rational value as a pair of its numerator and denominator given as two
integers reduced modulo p. (This enables us to avoid the costly stage of computing
integer reciprocals modulo p.) The RD modulo p of A is computed already at Stage
1 of the algorithm. Subsequent stages yield the extending set of the RD modulo p via
the computation of the dual RD modulo p (see the definitions of the extending set
and the dual RD in section 3).

Algorithm 11.1. Computing the ERD modulo a fixed prime.
Input: a prime p and a pair of strongly nonsingular n×n matrices A and F = A

mod p filled with integers.
Output: the (common) ERD modulo p of A and F .
Computations:
Stage 0. Compute m = 10(np)2 and the c.-d.d. matrix V = F −mI (cf. (7.1),

(7.2)).
Stage 1. Compute modulo p the IRD of V by applying Algorithms 10.1 and

6.2. Then, compute modulo p the RD of V , by dividing modulo p all the computed
matrices mαVα of the IRD by the computed multipliers mα for all α; represent the
result of each division by a pair of an entry ofmαVα reduced modulo p andmα mod p.
Output the computed RD modulo p of V , which is also the RD modulo p of F = V
mod p.

Stage 2. Recall Proposition 4.5 and compute det V .
Stage 3. Recall from Proposition 2.4 that | det V | ≤‖ V ‖n and apply Newton’s

iteration (5.5) for B = V in order to compute an approximation X to V −1 satisfying
(5.3) for B = V and for b satisfying

2−b/m <‖ V ‖−n /2.2 .(11.4)

Then, compute the entries of the matrix X det V and round them to the closest
integers, which gives us adj V .

Stage 4. Compute the matrix Ŵ = (adj V ) mod p − mI. Apply Algorithms
10.1 and 6.2 to compute modulo p the IRD of Ŵ (we will prove that this is the dual
IRD modulo p of A, V, and F ). Then compute modulo p the matrices Ŵβ0 of the

RD of Ŵ for all binary strings β of length less than h. Output this set of matrices,
to be denoted {(Ŵβ0/det V ) mod p}. Their entries are the pairs of integers, each

reduced modulo p; one integer of each pair is an entry of Ŵβ0 mod p and another is
(detV ) mod p. (This set of matrices defines the extending set {V −1

β0 mod p} of the
RD modulo p of the input matrix F .)

To verify correctness of Algorithm 11.1, first extend Corollary 7.3 to obtain that
‖ V −1 ‖≤ 1.1/m. Together with (11.4), this implies the bound

‖ X det V − adj V ‖< 1/2

for the matrix X computed at Stage 3 of Algorithm 11.1. Therefore, the rounding at
this stage correctly defines adj V .

Furthermore, the matrices Ŵα mod p (see Stage 4) represent the RD modulo
p of adj V . Therefore, the set {(Ŵα/det V ) mod p} represents the RD modulo p
of V −1. To complete the correctness proof, it remains to observe that the set of
matrices {(Ŵβ0/det V ) mod p, |β| < h} is nothing else but the extending set {B−1

β0

mod p, |β| < h} of the (common) RD modulo p of the three matrices A, V , and F = V
mod p = A mod p. This follows from the next simple result.
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Proposition 11.4. Let {Vα} and {Wα} denote the RD and the dual RD of a
pair of n×n matrices V and W = V −1, respectively. Then, V −1

α = Wα for all binary
strings α of length at most h.

Proof. Compare (2.3) and (2.4) to obtain that V −1
0 = W0, V

−1
1 = S−1 =

W1. Recursively extend this observation to all binary strings α, to complete the
proofs of both of Proposition 11.4 and, consequently, of the correctness of Algorithm
11.1.

Similarly to deducing Corollary 10.2, we estimate the complexity of performing
Algorithm 11.1. We arrive at the following proposition.

Proposition 11.5. The ERD modulo a fixed prime p of an n × n matrix A
filled with integers and strongly nonsingular modulo p (that is, such that (det A(q))
mod p �= 0 for all q), as well as detA(q) mod p for all q can be computed at the cost
OA((log n) log(n log p), n

ω) for ω of (4.5), 2 ≤ ω < 2.376; moreover, this computation
can be performed by computing with the b̃-bit precision operands for b̃ = O(n log p).

Remark 11.1. One can be tempted to simplify Algorithm 11.1 and to compute
modulo p the extending set {V −1

α0 } of the RD of the matrix V via a more straightfor-
ward application of the techniques of sections 3–10. In particular, one may proceed
by following the recipe of [R95]: first approximate the matrices V −1

α0 closely enough,
then multiply the approximations by appropriate integer multipliers Mα to arrive at
approximations (within an error norm bounded by less than 1/2) to integer matrices
MαV

−1
α0 , and then recover the matrices MαV

−1
α0 via rounding and V −1

α0 via divisions
by Mα. The problem with this approach is in bounding the size of the multipliers
Mα. We need to have log |Mα| = Õ(n) in order to support the bit-precision bounds
of Proposition 11.5, but if we follow the cited recipe, we would only reach the bounds
of order Õ(n2) on log |Mα|, which would imply involving extra factor n in the bit-
precision and the bit-complexity bounds. Here, the notation Õ(s) should be read as
O(s logc s) for a constant c independent of s.

12. p-adic lifting of the ERDs and the recovery of the inverses, deter-
minants, and ranks of integer matrices. In the previous section, we computed
the ERD modulo p of an integer matrix A, which is strongly nonsingular modulo p.
We will now compute its p-adic (Newton–Hensel’s) lifting, that is, the ERD modulo
p2g

of A for a fixed natural g ≥ h = log n. We will achieve this by incorporating
the known techniques [MC79] for p-adic lifting of matrix inverses into our Algorithm
10.1. In this application we will slightly simplify the algorithm by replacing the four
steps of Newton’s iteration of (10.4)–(10.6) by a single step of the computation of the
matrix

Xβ,t = Xβ,t,0(2I − Vβ0,tXβ,t,0),(12.1)

where

Xβ,t,0 =

{
V −1
β0,t mod p for t = u(β) + 1,

Xβ,t−1 for t > u(β) + 1,
(12.2)

and all matrices V −1
β0,t mod p are supplied as an input to the p-adic lifting algorithm.

(The latter expression for Xβ,t,0 replaces (10.4).) The only other change versus Al-
gorithm 10.1 is that all the arithmetic operations in (10.7) and (12.1) are performed
modulo p2s

for s = t− 1− u(β) and for u(β) denoting (as in section 10) the number
of bits one in a binary string β. Hereafter we refer to the resulting algorithm as
Algorithm 12.1.
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Correctness of the resulting algorithm follows because (12.1) and the inductive
assumption that Xβ,t−1 = V −1

β0,t−1 mod p2s

, s = t− 2− u(β), together imply that

(I − Vβ0,tXβ,t − (I − Vβ0,tXβ,t,0)
2) mod p2s+1

= 0 ,

and, therefore,

Xβ,t = V −1
β0,t mod p2s+1

(12.3)

(compare [MC79] or [BP94, Fact 3.3.1, p. 244]).
The arithmetic complexity estimates OA((g+ log n) log n, nω) of Proposition 10.1

are extended to the case of Algorithm 12.1, where g denotes a fixed natural input
value, g ≥ h = log n.

We will keep assuming that p is a prime fixed in the interval J of Proposition 11.3,
‖A‖ > 1, n > 1, and the matrix F of (11.1) is strongly nonsingular. Furthermore,
hereafter we will assume that

g = 1 +

⌊
log

1 + n log ‖A‖
log p

⌋
.(12.4)

Then, we have

4‖A‖2n ≥ p2g

> 2‖A‖n.(12.5)

Therefore, by the virtue of Proposition 2.4, the value 0.5p2g

exceeds |detA| as
well as the maximum absolute value of any entry of adj A. We observe that

q =

{
q mod p if q mod p < 0.5q,
(q mod p)− p otherwise,

provided that q is an integer and 2|q| < p. These observations, Corollary 4.6, and
relations (12.5) together enable us to recover det A from (det A) mod p2g

and adj A
from (adj A) mod p2g

, as the p-adic lifting of the ERD is completed. Then, we may
immediately compute A−1 = (adj A)/det A, since A is a nonsingular matrix.

Remark 12.1. We may control the computational precision at the last lifting
stage (where the precision is the largest) simply by performing this stage modulo pq,
where q = �log(2‖A‖n)�+ 1, so that 2‖A‖n ≤ pq ≤ 2p‖A‖n.

Summarizing the algorithms and the complexity estimates of this and the previous
sections, we arrive at the following proposition.

Proposition 12.1. Let A be a strongly nonsingular n×n matrix filled with inte-
gers. Let n > 1, let ‖A‖ > 1, and let p be a prime from the interval J of Proposition
11.3 for a fixed ρ > 2. Furthermore, let the matrix A be strongly nonsingular modulo
p too. Then, one may compute A−1 and det A(k), k = 1, 2, . . . , n, in two stages that
amount essentially to application of Algorithms 11.1 and 12.1, respectively, and are
performed at the arithmetic cost bounded by OA((log n) log(n log p), n

ω), at the first
stage (compare Proposition 11.5) and OA((log n) log(n log ||A||), nω), at the second
stage, for ω of (4.5), 2 ≤ ω < 2.376.

Assuming p chosen from the interval J of Proposition 11.3, we obtain that log p =
O(log(n log ||A||)), so that the overall arithmetic cost is dominated by the cost of the
second stage.

Corollary 12.2. Under the assumptions of Proposition 12.1, one may compute
A−1 and det A(k) for k = 1, 2, . . . , n, at arithmetic cost OA((log n) log(n log ‖A‖), nω)
for ω of (4.5).



PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1113

Let us extend Proposition 12.1 and Corollary 12.2 to estimate at first the bit-
precision and then the Boolean complexity of the same computations.

We immediately recall the bound O(n log p) on the bit-precision required in
Algorithm 11.1, that is, at the first stage of the computations of Proposition 12.1.
At the second stage (that is, essentially for Algorithm 12.1), we revisit the derivation
of Proposition 10.1, where we estimated the complexity of the stage of numerical
approximation of the RD and ERD of V , and recall or estimate again that this stage
is essentially reduced to at most g+h substages for g of (12.4) and for h = log n, such
that the cost of performing each substage is dominated by the cost of ten steps of
multiplication of at most n/k pairs of k×k matrices for k = 2� and � = 0, 1, . . . , h−1.
At the stage of the application of Algorithm 12.1, only four (instead of ten) steps
are needed. At each of such four steps, all the matrix multiplications are performed
concurrently, as in the case of the derivation of Proposition 10.1. Furthermore, at
every step of Substage t of the second stage, t = 1, . . . , g + h, at most n/2l pairs of
matrices of the sizes 2l×2l are encountered for l = n−|β|−1, u(β) < t. Such matrices

are pairwise multiplied together modulo p2t−u(β)

,

t− u(β) ≤ λ(t) = min {t, g}.(12.6)

The above bounds on the modulo imply some bit-precision bounds since compu-
tation modulo � can be performed with 2�log ��-bit-precision. Furthermore, we recall
the known estimates OB((log k) log log k, k) for the Boolean complexity of performing
an arithmetic operation modulo 2k− 1 (see [AHU74], [BP94], [CK91], [RT90]), which
can be extended to our computations whenever we perform them with k-bit-precision.

By combining the latter estimates with estimates for the arithmetic cost and
for the bit-precision of our computations, we bound the Boolean cost of performing
Algorithm 11.1, that is, the first stage of the computations supporting Proposition
12.1 (cf. Corollary 10.1) by

OB((log n)(log(n log p))
2 log log(n log p), nω+1 log p),

and we bound the Boolean cost of performing the tth stage of Algorithm 12.1 by

OB((log n)(log(2
λ(t) log p)) log log(2λ(t) log p), nω2λ(t) log p), t = 1, . . . , g + h.

(Compare (12.6) and recall that the tth stage of Algorithm 12.1 is the tth substage
of the second stage of the computations of Proposition 12.1.)

By summarizing all these estimates, for p lying in the interval J of Proposition
11.3 and for g satisfying (12.4), (12.5), we estimate the Boolean complexity of our
computations. To simplify the expressions for the resulting estimates, we write

A = (ai,j), a = logmax
i,j
|ai,j |(12.7)

and obtain that g = O(log(na)), g+ h = O(log(na)), 2g log p = O(na) for g of (12.4),
log p = O(log(na)), log(n log p) = O(log(n log a)). Then, we rewrite our Boolean cost
bounds as follows:

OB((log n)(log(n log a))
2 log log(n log a), nω+1 log(na))

for performing Algorithm 11.1,

OB((log n)(log(na)) log log(na), n
ω+1a)
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for performing the tth stage of Algorithm 12.1 for t = g+1, . . . , g+h, where λ(t, g) =
g + 1, and

OB((log n)(t+ log log(na)) log(t+ log log(na)), nω2t log p)

for performing the tth stage of Algorithm 12.1 for t = 1, . . . , g, where λ(t, g) = t.
By applying the B-principle, we bound the overall cost of performing the first g =
O(log(na)) stages of Algorithm 12.1 by

OB((log n)(log(na))
2 log log(na), nω+1a/ log(na)),

and we bound the overall cost of performing its last h = log n stages by

OB((log n)
2(log(na)) log log(na), nω+1a).

Then again, we apply the B-principle to yield the same parallel Boolean time bound,
O((log n)(log(na))2 log log(na)), in all the three estimates (for Algorithm 11.1, for the
first g stages of Algorithm 12.1, and for its last h stages), which gives us the Boolean
processor bounds

O((nω+1(log(n log a))2 log log(n log a))/(log(na) log log(na)))

= O(nω+1(log(n log a))2/ log(na)),

O(nω+1a/ log(na)),

and

O((nω+1a log n)/ log(na))

for these three groups of computations, respectively. We note that the sum of the
three latter bounds gives us O((log n)(a+ log n)nω+1/ log(na)).

By using the Boolean cost bounds of Proposition 11.5 for computing detA(k) mod
p for all k, and by combining the cited Boolean time bound and the latter processor
bound, we obtain the following proposition.

Proposition 12.3. Under the assumptions of Proposition 12.1, one may compute
the inverse matrix A−1 mod p and detA(k) mod p, k = 1, . . . , n, at the Boolean cost

OB((log n)(log(n log a))
2 log log(n log a), nω+1 log(na)),

and one may compute the matrix A−1 and detA(k), k = 1, . . . , n, at the Boolean cost
OB((log n)(log(na))

2 log log(na), (log n)(a+ log n)nω+1/ log(na)) for ω of (4.5) and a
of (12.7).

Remark 12.2. Our choice of a prime p and our complexity estimates rely on the
bounds of Proposition 2.4 on |detW |. For a large class of matrices W , such bounds
can be refined a little (e.g., by using Hadamard’s upper bound on |detA|) and so can
our complexity estimates. Likewise, by expressing the estimates of Proposition 12.3
in terms of ||A|| rather than a, one may obtain some slightly refined (though more
complicated) estimates. Finally, our estimates for parallel Boolean cost can be slightly
improved if, instead of the bounds OB((log k) log log k, k) on the cost of an arithmetic
operation, we will rely on the bounds OB(log k, k log log k), which hold for the cost of
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an addition, a subtraction and a multiplication (see, e.g., [BP94, p. 297]). We may
rely on the latter bound because the ops of the latter three classes are most numerous
among all the ops in our algorithms. Similar observations apply to the estimates of
Theorems 1.1 and 1.2.

It remains to work out the strong nonsingularity issue in order to extend the com-
plexity estimates of Corollary 12.2 and Proposition 12.3 to estimates of Theorem 1.1.
(Note that, in terms of a, the bounds of Corollary 12.2 turn into OA((log n) log(na),
nω), as required in Theorem 1.1.)

We will first assume that A is a nonsingular matrix. In this case, AAT is an
s.p.d. matrix and, consequently, a strongly nonsingular matrix, by Corollary 2.11.
Consequently, AAT is strongly nonsingular modulo p, with a probability 1− Pρ,n for
Pρ,n bounded according to Proposition 11.3. Therefore, we may apply the results of
this section to compute at first (AAT )−1 and then A−1 = AT (AAT )−1 and x = A−1f
satisfying Ax = f . (Strong nonsingularity (modulo p) of AAT is tested as a by-product
of computing (AAT )−1.) We may also immediately compute det(AAT ) = (detA)2,
though this does not give us the sign of detA. The matrix A is singular (that is, det
A = 0) if and only if application of the same approach to a matrix A requires us to
invert a singular matrix at some step.

Next, we will apply randomization to relax the assumptions about (strong) non-
singularity of A when we compute rank A and the sign of det A. Towards this goal,
we fix ρ > 2, a sufficiently large finite set of integers, S, and two matrices U and
L, as specified in Proposition 2.19; we compute the matrix Ã = UAL (cf. Remark
12.3 at the end of this section), fix a random prime p in the interval J of Proposition
11.3, and extend Algorithm 11.1 to compute (det Ã(k)) mod p for k = 1, . . . , n, and
r(p) = max{k, (det Ã(k)) mod p �= 0}. Let us write r̃ = max{k, det Ã(k) �= 0},
so that rank A ≥ r̃ ≥ r(p). Furthermore, r̃ = rank A with a probability at least
Pr = 1 − (r̃ + 1)r̃/|S| (due to Proposition 2.19), and r̃ = r(p), with a probability
1 − Pρ,n, estimated in Proposition 11.3. Thus, we output r(p) as rank A and arrive
at the estimate of Theorem 1.1 for the randomized cost of computing rank A. (Note
that in this case, the computations modulo p suffice; thus, in our computation of
rank A, we omit the p-adic lifting stage and rely on the first Boolean cost estimate of
Proposition 12.3.)

Let us extend this technique to the computation of the sine of det A. If r(p) < n,
then (det A) mod p = 0, and we output detA = 0, which is correct with a probability
at least 1 − Pρ,n. Otherwise, that is, if r(p) = n, then we have n ≥ rank A ≥
r(p) = n; that is, A is nonsingular. Furthermore, by using the randomization based
on Proposition 2.19, we may compute detA = det(UAL), because UAL is strongly
nonsingular, with a probability at least 1−(n+1)n/|S| if A is nonsingular. By letting
|S| = n4, say, and by applying Propositions 11.5 and 12.3 to the matrix UAL, we
arrive at the desired algorithm for detA, supporting Theorem 1.1.

Now, assume that r(p) < n and that the r(p)× r(p) leading principal submatrix

B = Ã(r(p)) of Ã is nonsingular. Let us write Ã = (BD
C
E ), G = ( I0

−B−1C
I ), and

observe that ÃG = (BD
0
Q ), where Q = 0 if and only if r(p) = rank A. (Compare

[KP91] and [BP94, pp. 110 and 333].) This gives us an algorithm for verification
whether r(p)=rank A (at the cost within the asymptotic cost bounds of Theorem 1.1).
If so, then the n−r columns of the matrix LG( 0

I ), where I denotes the (n−r)×(n−r)
identity matrix, give us a basis for the null-space, N(A), of A (compare Definition
2.17). We recall from Fact 2.1 that if there exists a solution x to a linear system
Ax = f , then it can be represented as x = x0 + z, x0 being a fixed specific solution
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and z being a vector from N(A).
Let g be the r-dimensional prefix-subvector of f , made by the first r components

of f . Let y = B−1g be the solution to the nonsingular system By = g. Then, a
specific solution x0 to the system UAx = U f is given by x0 = LG(y

0 ) if the latter
linear system is consistent, and we have UAx0 �= U f otherwise. This completes our
proof of Theorem 1.1.

Remark 12.3. Our computations supporting Theorem 1.1 include some n × n
matrix multiplications (of A by AT , L, and U). Their cost bound is dominated by
the complexity bounds of Theorem 1.1, and a similar argument applies to yield the
extension of this theorem to Theorem 1.2, to be shown in section 14 (cf. Proposition
14.1). The increase of the matrix norm in the transition from A to AAT and Ã = UAL
may cause the increase only by a constant factor in the estimate for the precision of
the computations and their Boolean complexity (if we choose, say, S = {1, 2, . . . , |S|}
and |S| = nO(1)).

13. Some definitions and auxiliary results on computations with struc-
tured matrices. Our next goal is to show that the computational cost of our algo-
rithms supporting Theorem 1.1 decreases dramatically, to the level of the estimates
of Theorem 1.2, provided that the input matrix has Toeplitz-like structure. In this
section we will recall some definitions and some simple and/or well-known facts on
Toeplitz-like matrices, which we will use in the next section towards the stated goal
(cf. (1.1) and (1.2) of section 1.1, Definition 2.18, and [BP94], [CKL-A87], [KKM79],
[P92]).

Proposition 13.1. The product of a k × k Toeplitz matrix (cf. Definition 2.18)
and a vector of dimension k can be computed at the cost OA(log k, k) (via reduction
to three FFTs, each on O(k) points, or to convolution of two vectors of dimension
O(k)).

Definition 13.2. For a k× k matrix A and for the matrix Z of Definition 2.18,
write F+(A) = A−ZAZT , F−(A) = A−ZTAZ. If F (A) = GHT for a pair of k× �
matrices G and H and for F = F+ or F = F−, then the pair of G, H is called an
F -generator of A of length �. (Note that, in this case, the pair H, G is an F -generator
of AT of the same length.) The minimum length � of an F -generator of A, for fixed
A and F , is called the F -rank of A, is denoted by rF (A), and is equal to rank F (A).
A k × k matrix A is called a Toeplitz-like matrix if it is given with its F -generator
(for F = F+ or F = F−) having a length bounded by a constant independent of k.
F -generators and F -ranks, for both F = F+ and F = F−, are also called displacement
generators and displacement ranks (following the original definitions of [KKM79]).

Proposition 13.3. rF (T ) ≤ 2 if T is a Toeplitz matrix, and rF (T ) ≤ 1 if T is
a triangular Toeplitz matrix for F = F+ and F = F−. In particular, rF (I) = 1.

The correlation to (1.2) is given by the following result.
Proposition 13.4. G, H is an F+-generator (respectively, F−-generator) of A

having a length �, G = (g1, . . . ,g�), H = (h1, . . . ,h�), if and only if

A =
∑�
s=1 L(gs) L

T (hs) (respectively, if and only if A =
∑�
s=1 LT (gs) L(hs)).

Based on the latter results, we will operate with the F -generators of Toeplitz-like
matrices, rather than with the matrices themselves. Such a representation is memory
space efficient and also enables us to use less sequential time and fewer processors in
Toeplitz-like computations, due to the following corollary (cf. Propositions 13.1 and
13.4).

Corollary 13.5. The product of a k × k Toeplitz-like matrix by a vector of
dimension k can be computed at the cost OA(log k, k).
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The next result gives us more specific estimates—the cost bound of Toeplitz-like
matrix multiplication is proportional to the square of the sum of the lengths of the
F -generators of the input matrices, and such a length is roughly doubled in a matrix
addition or multiplication.

Proposition 13.6. Given F -generators, GA, HA of length �A and GB , HB of
length �B, of k×k matrices A and B, respectively (for F = F+ or F = F−), one may
compute an F -generator GAB , HAB of AB of length at most �A + �B + 1 at the cost
OA(log k, (�A + �B)

2k), whereas an F -generator of A + B of length at most �A + �B
is immediately available cost-free.

In view of the latter results, we will study various bounds on the F -ranks and the
length of F -generators, in particular regarding the matrices involved in the RD and
Newton’s iteration with Toeplitz-like input.

Proposition 13.7.

(a) rF+(A) ≤ rF−(A)+2, rF−(A) ≤ rF+(A)+2 for any matrix A. Furthermore,
an F+-generator (respectively, F−-generator) of a length � for any matrix A can be
immediately transformed (at the cost OA(log n, n) of performing O(1) convolutions or
FFTs) into an F−-generator (respectively, F+-generator) of length at most � + 2 for
A.

(b) If A is nonsingular, then rF+(A
−1) = rF−(A).

The next result is immediately verified (compare Definition 2.6).

Proposition 13.8. Let GHT = F+(W ) for a k×k matrix W . Then (GHT )(i) =
F+(W

(i)) for i = 1, 2, . . . , k; furthermore, rF+(C) ≤ rF+(W )+1, rF+(E) ≤ rF+(W )+
1, under (2.1), and rF+(T ) ≤ rF+(W ) + 2 for any submatrix T of W formed by
contiguous sets of row and columns of W .

It follows that rF+(B) ≤ rF+(W ), under (2.1).

We observe similar relations for trailing principal submatrices and the operator
F−. By Proposition 2.7, S−1 is a trailing principal submatrix of W−1. Therefore,
rF−(S

−1) ≤ rF−(W
−1). By applying Proposition 13.7 (b) for A = S and A = W , we

obtain that rF+(S) ≤ rF+(W ).

Proposition 13.9. Let (2.1) and (2.2) hold, where B, S, and W are nonsingular
matrices. Then max{rF+

(B), rF+
(S)} ≤ rF+

(W ).

By applying the latter proposition recursively, we bound the F+-rank throughout
the RD.

Corollary 13.10. Let Vα be a matrix of the RD of a matrix A. Then, rF+(Vα) ≤
rF+(A).

So far, we have no tools yet to counter the growth of the length of the F -generators
in the process of Newton’s iteration. Developing such tools (which we call the tech-
niques for the truncation of a generator (TG)) is our next task. Namely, we will next
(in Proposition 13.11) show how to compute a shorter F -generator of a matrix having
small F -rank but given with its longer F -generator. This is our first technique of TG.
It will be used to refine p-adic (Newton–Hensel’s) lifting to bound the length of the F -
generators of the matrices involved there. We will prove easily, based on Propositions
13.7 and 13.9, that such matrices have small F -rank if so has the input matrix. For
Newton’s iteration of Algorithm 5.1, such a property does not hold, and the F -rank
of the computed approximations to the Toeplitz-like inverses may grow quite rapidly.
These approximations, however, always have matrices with small F -rank nearby, and
we will periodically shift to the latter matrices and then restart Newton’s process.
Our tool for such a shift will be Algorithm 13.1 (see [PBRZ99] on some alternative
tools).
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Proposition 13.11. Let an F -generator of a k × k matrix A of length � (for
F = F+ or F = F−) and an upper bound r∗ < l on the F -rank rF (A) be given. Then
an F -generator of A of length at most r∗ can be computed at the cost OA(l, kl).

Proof. Apply the proof of Proposition A.6 of [P92] or the solution of Problem 2.11
of [BP94, pp. 111–112]. Verify that all the computations (including the computation
of the LSP factorization or, alternatively, the PLU factorization) can be performed
at the claimed overall cost.

Let us next show the promised alternative algorithm for controlling the length of
F -generators of matrices involved in Newton’s process. The algorithm relies on the
SVD truncation of F -generator, which is our second TG technique.

Algorithm 13.1 ([P92b], [P93], [P93a]).
Input: F = F+ or F = F−, an F -generator G, H of a k × k matrix A of length

l, and a natural r′ < l.
Output: an F -generator G′, H ′ of a k × k matrix A′ of length at most r′ such

that

‖A′ −A‖2 ≤ 2(1 + 2(rF (A)− r′)k)min
Y
‖Y −A‖2 ,(13.1)

where the minimum is over all k × k matrices Y of F -rank at most r′.
Computations:
Stage 1. Compute the singular value decomposition (SVD) of the matrix GHT =

F (A); that is, compute a pair U and V of unitary k× l matrices and an l× l diagonal
matrix Σ = diag(σ1, . . . , σl) for positive σ1, . . . , σl satisfying

GHT = F (A) = UΣV T .

Stage 2. Compute and output an F -generator G′, H ′ of A′ of length at most r′

as follows:

G′ = UΣr′ , H ′ = V Ir′,l,

where Σr′ = diag(σ1, . . . , σr′ , 0, . . . , 0) and Ir′,l = diag(1, . . . , 1, 0, . . . , 0) are l × l
matrices of rank r′.

On the correctness proof of this algorithm, on the bound OA(log k, k/ log k) for
l = O(1), and on the computational cost of its performance, see [P92b], [P93], [P93a].

Remark 13.1. Bound (13.1) is proved in [P92b], [P93], [P93a], based on approx-
imate computation of the SVD at Stage 1 of the algorithm. Any improvement of the
approximation of the SVD would decrease the factor 2 of (13.1), which turns into 1 if
the SVD is computed exactly.

Remark 13.2. If r′ ≥ rF (A), then (13.1) implies that ‖A′ − A‖2 = minY ‖Y −
A‖2 = 0, and then Algorithm 13.1 is an alternative to the algorithm supporting Propo-
sition 13.11, except that the latter algorithm is rational (it can be performed with no
errors over the rational), whereas Algorithm 13.1 has a nonrational, though numeri-
cally stable stage of computing the SVD. This suggests that the algorithm supporting
Proposition 13.11 should be applied in Algorithm 12.1, at the p-adic lifting stage,
whereas Algorithm 13.1 is a better candidate to use in numerical applications of Al-
gorithm 11.1, performed with rounding.

14. Improvement of the algorithms for the ERD, IRD, inverse, deter-
minant, and rank in the Toeplitz and Toeplitz-like cases. Let us apply the
techniques and the results of the previous section to reexamine the computation of
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the ERD and IRD of a strongly nonsingular n×n matrix A filled with integers in the
case where A is a Toeplitz or Toeplitz-like matrix given with its F+-generator G, H
of length r = rF+(A) = O(1).

We recall that rF+(Vα) ≤ r for all matrices Vα of the RD of A (compare Corol-
lary 13.10), and we will apply either the algorithm supporting Proposition 13.11 or
Algorithm 13.1 in order to decrease (to a level at most r) the length of the computed
F -generators of these matrices, in all cases where this length exceeds r. Likewise, we
will obtain from Propositions 13.6–13.8 that the computation of Vβ1,t+1, according
to (10.1)–(10.7), only involves matrices whose F -ranks are bounded from above by
3r + rF+(Xβ,t) + 6.

According to our analysis, the matrixXβ,t approximates B−1
β0 for all binary strings

β of length at most h−1, and since rF+(Bβ0) ≤ r, we have rF−(B
−1
β0 ) ≤ r, rF+(B

−1
β0 ) ≤

r+ 2 (compare Proposition 13.7). We will apply Algorithm 13.1 in order to compute
an F+-generator of length at most r + 2 for a matrix X ′β,t approximating Xβ,t and,

therefore, also V −1
β0 . (The approximation of V −1

β0 by X ′β,t deteriorates slightly, versus
the approximation by Xβ,t, but since X

′
β,t still closely approxiamtes the matrix Vβ0,

we more than compensate ourselves for such a deterioration by performing an extra
Newton step in (10.5).) Then, all matrices involved in the computation of the ERD
and the IRD of A will be represented by their F+-generators of length O(r).

A similar argument is applied to the computation of the p-adic lifting of the ERD
of A, except that this argument is simplified since (12.3) and Proposition 13.7 together
imply that

rF+(Xβ,t+1 mod p2t−u(β)

) ≤ rF−(Xβ,t+1 mod p2t−u(β)

) + 2

= rF+(B
−1
β0 mod p2t−u(β)

) + 2 ≤ r + 2.

Thus, to keep the length of the associated F+-generators bounded, we just apply the
rational algorithm that supports Proposition 13.11, instead of applying Algorithm
13.1. In fact, we may also apply other alternative techniques for bounding the length
of an F -generator of Xα,i+1; such techniques may rely on using distinct operators F ,
such as F+(A) = AZ − ZA (see [BP94, p. 189]) or operators using some f -circulant
matrices instead of Z (see [PBRZ99], [P00]).

Finally, it is easily verified (cf. [P96b]) that the computation (of section 12) of
a basis for the null-space of A also involves only matrices represented by their F+-
generators of length O(r) for a matrix A given with its F+-generator of length r.

Let us now turn to estimating the computational cost, in the case of Toeplitz or
Toeplitz-like input. There are two new features versus the case of a general integer
input matrix A.

(1) Performing every matrix multipication, we operate with F+-generators of
Toeplitz-like matrices involved in these multiplications and apply Propositions 13.4,
13.6, and Corollary 13.5.

(2) Some of these matrix multiplications are followed by the application of the
algorithms supporting Proposition 13.11 or Algorithm 13.1.

The manipulation with the F+-generators enables us to decrease the arithmetic
processor bound of Corollary 12.2 from nω to n log n, because concurrent multiplica-
tions of O(2t) pairs of (n/2t)×(n/2t) Toeplitz-like matrices for t = 1, . . . , h, h = log n
are performed at the overall cost bounded by OA(log n, n log n) (versus OA(log n, n

ω)
in the case of general integer input matrices). The estimated overall cost of the re-
quired computations (of A−1, det A, and so on ) is dominated by the estimated cost of
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all Toeplitz-like matrix multiplications involved, because, according to section 13, the
estimated cost of such a multiplication dominates the estimated cost of the application
of both Algorithm 13.1 and the algorithm supporting Proposition 13.11.

Summarizing, we obtain the following result.

Proposition 14.1. If the n× n input Toeplitz-like matrix A is strongly nonsin-
gular and is filled with integers, then one may modify the randomized computation of
its ERD and IRD according to the algorithms of sections 6–12 in order to perform all
these computations at the overall cost OA((log n) log(n log ‖A‖), n log n).

The cost bounds of Proposition 14.1 are immediatley extended to the solution
of all the computational problems listed in Theorem 1.1, where now we assume a
Toeplitz-like input matrix A and represent its inverse or the basis matrix for its null-
space by their short F -generators. (Verifying the correctness of the computation of the
rank and the inverse, we should also deal with short F -generators and use Proposition
13.11 to avoid processing n2 entries of n×n matrices, which would have required order
of n2 ops.)

To obtain a similar extension of the Boolean complexity bounds of Proposition
12.3 and Theorem 1.1, let us examine the precision of the computations by our algo-
rithms simplified in the Toeplitz-like case. We recall that our Toeplitz-like computa-
tions can be ultimately reduced to vector convolutions (Propositions 13.1, 13.4, and
13.6). Thus, we will bound the cost of our computations at the p-adic lifting stage
based on the following estimate.

Proposition 14.2. Given two vectors of dimension n filled with integers lying
in the range from 0 to 2k − 1, the convolution of these vectors can be computed at the
Boolean cost OB((log(kn), kn log log(kn)).

Proof. The well-known binary segmentation techniques (see, e.g., [BP94, section
3.9]) reduces our convolution problem to the multiplication of two integers lying in
the range from 0 to 2kn− 1, and the known algorithms solve this task at the required
cost.

The resulting Boolean cost bounds for performing the p-adic lifting stage will
repeat the bounds of section 12, except that the Boolean (like arithmetic) processor
bounds will decrease by factor nω−1/ log n.

Let us show that this holds also for the Boolean cost of the rest of our computation.

When we approximate the ERD of an input Toeplitz-like matrix, we will effec-
tively reduce the computations to performing FFTs (see Propositions 13.1 and 13.4)
and will recall Corollary 3.4.1 on pp. 255–256 of [BP94], which shows a numerically
stable implementation of FFT. We also recall that the known algorithms for the com-
putation of the SVD of a matrix are numerically stable (see [GL89/96], [P93]). From
these observations, we deduce that we may perform the computations with the same
bit-precision (up to a constant factor independent of n), no matter whether we apply
our original Algorithm 11.1 for an arbitrary n × n input matrix or its Toeplitz-like
modification. Since in the latter case we use by factor nω−1/ log n fewer arithmetic
processors, we will also use by factor nω−1/ log n fewer Boolean processors, thus re-
placing nω for ω of (4.5) by n log n in the Boolean cost estimates of section 12.

This enables us to extend Theorem 1.1 to arrive at Theorem 1.2.

Remark 14.1. Inspection of our algorithms shows immediately that Proposition
14.1 and Theorem 1.2 can be extended to the case where the input matrix A is given
with its F -generator of length r, provided that both time and processor bound increase
by factor r. It is possible to confine the cost increase to processor bound (increasing it
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by factor r2). The only nontrivial stage is the decrease of the length of F -generators
(cf. Proposition 13.11 and Algorithm 13.1). The algorithm supporting Proposition
13.11, however, can be modified by extending the probabilistic techniques of the proof
of Theorem 1.1 (this would include, in particular, application of Proposition 2.19
using n + r extra random parameters), whereas Algorithm 13.1 should be replaced by
an alternative approach of [PBRZ99].

Remark 14.2. It may seem that Theorems 1.1 and 1.2 can be supported by a
substantially simpler construction, and simplified construction has indeed been pro-
posed in [R95]. Unfortunately, however, the construction of [R95] has no power for
supporting the claimed results. In particular, the construction relies on the two “sim-
plifying” recipes cited in our Remarks 6.1 and 11.1, and each of the recipes invalidates
the resulting algorithm. (See [P96c] for more details on these and some other of the
many mishaps of [R95], and note also that the main result of the paper [R93], cited
in [R95], is a rediscovery of some results of [BT90] and [BP91].) It is instructive, for
getting better insight, to discuss two other major gaps of the construction of [R95] and
of its analysis presented in [R95]. Both gaps are in area of Toeplitz-like computations,
where [R95] becomes particularly prone to serious errors. In [R95], an algorithm of
[BA80] is used in order to decrease the length of an F-generator of a matrix A to the
level r =rank F (A). Unlike our Algorithm 13.1 for the SVD truncation and our algo-
rithm supporting Proposition 13.11, the algorithm of [BA80] only works if (F (A))(r),
the r×r l.p.s of F (A), is nonsingular. Furthermore, to support the algorithm of [R95],
one must have matrix (F (A))(r) well-conditioned. Actually, to salvage the algorithm
of [R95] at this point, one would have had to use some techniques that are absent
from [R95] and are substantially more advanced than ones used in [R95]. Likewise,
some techniques are required to prevent the F -ranks of the computed approximations
to A−1 from their disturbing growth (from the desired constant level to the level n)
in less than log n Newton’s steps, and then again, such techniques are absent from
[R95] and are substantially more advanced than ones used in [R95]. The growth of the
F -ranks immediately implies the growth by the extra factor nω−1 log n (for ω of (4.5))
of both arithmetic and Boolean processor complexity bounds, versus the ones claimed
in [R95].

15. Discussion. Our paper leaves as a major open question of theoretical im-
portance whether the level of our parallel complexity estimates of Theorem 1.2 for
Toeplitz and Toeplitz-like computations can be reached by means of purely algebraic
approach, using no rounding to the closest integers. This question is also of practical
interest because the algorithms of this paper involve the exact computation of detA
and, therefore, at some stage require us to use the precision of computation of order
log |detA|, which generally means the order of n log ||A||, even if we only need the
output with a much lower precision. Historically, a similar open problem had arisen
for computations with general integer matrices, after the appearance of [P85], [P87].
In that case (for general integer matrices), the subsequent works of [KP91], [KP92],
[P91], and [P92] gave us an alternative randomized algebraic solution that involved
no rounding. Will this be eventually done also in the Toeplitz-like case or at least in
the Toeplitz case?
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Abstract. We investigate how static store-and-forward routing algorithms can be transformed
into efficient dynamic algorithms, that is, how algorithms that have been designed for the case that all
packets are injected at the same time can be adapted to more realistic scenarios in which packets are
continuously injected into the network. Besides describing specific transformations for well-known
static routing algorithms, we present a black box transformation scheme applicable to every static,
oblivious routing algorithm. We analyze the performance of our protocols under a stochastic and an
adversarial model of packet injections.

One result of our specific transformations is the first dynamic routing algorithm for leveled
networks that is stable for arbitrary admissible injection rates and that works with packet buffers of
size depending solely on the injection rate and the node degree, but not on the size of the network.
Furthermore, we prove strong delay bounds for the packets. Our results imply, for example, that
a throughput of 99% can be achieved on an n-input butterfly network with buffers of constant size
while each packet is delivered in time O(logn), with high probability.

Our black box transformation ensures that if the static algorithm is pure (i.e., no extra packets
apart from the original packets are routed), its dynamic variant is stable up to a maximum possible
injection rate. Furthermore, in the stochastic model, the routing time of a packet depends on local
parameters such as the length of its routing path, rather than on the maximum possible path length,
even if the static algorithm chosen for the transformation does not provide this locality feature and
is not pure. In the adversarial model, the delay bound of the packets is closely related to the time
bound given for the static algorithm.
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1. Introduction. Many static routing protocols have been developed in recent
years (see, e.g., [6, 8, 9, 10, 12, 13]). These protocols aim to route as quickly as
possible some initially given set of packets along predetermined paths in a network.
In practice, however, networks are rarely used in this static fashion, but packets are
injected dynamically into the network. Since much less is known in the area of dynamic
routing (see, e.g., [5, 15, 17]) than in the area of static routing, it would be highly
desirable to transfer the results gathered for static routing to dynamic routing.

In this paper we present transformations for oblivious algorithms; i.e., the path of
a packet is already fixed when the packet is injected into the system. We investigate
how static, oblivious routing algorithms can be transformed into dynamic routing
algorithms that are stable and efficient under a stochastic or adversarial model of
packet injections. In particular, we will show that the ghost packet protocol [8, 14] and
the growing rank protocol [10, 11] can be transformed into dynamic routing protocols
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that are stable up to a maximum possible injection rate. Furthermore, we will present a
simple and elegant scheme that transforms almost any static protocol into an efficient
dynamic protocol that is also stable up to a maximum possible injection rate. Besides
showing the stability of these protocols, we will prove bounds on the routing time of the
packets. For the protocols derived by the black box transformation we further prove
that they recover quickly from any worst-case scenario; that is, packets generated a
certain amount of time after a bad event are not influenced by this event anymore.

1.1. Models and problems. We consider arbitrary network topologies modeled
as undirected graphs of n nodes. The nodes represent switches, and the edges represent
bidirectional communication links, unless otherwise stated, with buffers for incoming
packets on either side. These buffers are called edge buffers, and bounds on the buffer
size always refer to the maximum number of packets that these buffers can hold.
Additionally, every node contains an injection buffer in which the initial packets, in
the case of static routing, or the newly injected packets, in the case of dynamic routing,
are stored. Routing is performed in a synchronous “store-and-forward” manner; that
is, in every step, each edge can be crossed by at most one packet in each direction.
(For simplicity, we assume that time proceeds in discrete time steps.) Once a packet
reaches its destination, it is discarded.

We present routing protocols in which the nodes locally decide which packets to
move forward in each step; i.e., a decision only depends on the routing information
carried by the packets and on the local history of the execution. These algorithms
are called local control or on-line algorithms. In general, a packet routing scheme
consists of two (not necessarily independent) parts: the first part is responsible for
selecting a path for each packet, and the second part is responsible for scheduling the
packets along their chosen paths. We assume that some suitable strategy for the path
selection is given. Hence, in the following we concentrate only on the question of how
to schedule the packets along their fixed paths. We use the following models.

1.1.1. Static packet routing. Here we assume that a fixed collection of paths
is given with congestion C and dilation D; that is, C denotes the maximum number
of paths crossing an edge, and D denotes the maximum length of a path. Along each
of these paths a packet has to be sent. Further, let M denote the complexity of the
routing problem; i.e., M is defined to be the maximum of the number of edges, the
number of paths, and the dilation. Let us give some examples of known results on the
routing time for static packet routing, i.e., the time needed to deliver all packets.

• C ·D: trivial upper bound for any greedy protocol in case of unlimited buffers,
i.e., protocols in which a packet is only delayed because other packets move
along the next edge on the packet’s routing path;
• (1 + κ) ·C +O(D · logM), w.h.p.1, for any constant κ > 0: upper bound for

arbitrary paths in arbitrary networks with unbounded buffers [9];
• O(C + D + logM), w.h.p.: upper bound in leveled networks with bounded

buffers of constant size, where D is the depth of the network [14, 8], and upper
bound for routing along shortest paths in arbitrary networks with unbounded
buffers [10, 11];
• (1+κ) ·C+(log∗M)O(log∗ M)D+O((logM)6), w.h.p., for any constant κ > 0:

upper bound for routing along simple paths, i.e., paths without cycles, in

1Throughout this paper, the term “w.h.p.” means “with high probability,” i.e., with probability
at least 1−M−α, where α > 0 is an arbitrary constant term and M denotes the complexity of the
routing problem.
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arbitrary networks with unbounded buffers [13];
• O(C+D+log1+κM), w.h.p., for any constant κ > 0: upper bound for routing

along simple paths in arbitrary networks with unbounded buffers [12].

We will come back to some of these results when using our black box transformations.

1.1.2. Dynamic packet routing. The most commonly used injection models
in the dynamic setting are the stochastic and the adversarial injection model.

The stochastic model. Here the packets are injected by a set of generators, each
of them mapped to one of the nodes in the network. We allow any relationship between
the number of generators and the number of nodes in the network. Furthermore, we
place no restrictions on the distribution of the generators among the nodes. That is,
one node could have several generators, whereas another node may have none. So a
generator may represent a user thread or process, whereas a node may represent a
processor. In each time step, each generator g placed on a node v injects a packet
with some probability pg. This probability is called the injection rate of g. For each
packet, the generator randomly selects a destination and a routing path from v to
this destination according to an arbitrary, fixed probability distribution. We assume
that each generator is operating independently of other generators, and the injection
of a packet and its routing path is independent of injections in previous time steps.
Note that we do not demand that the destinations are chosen uniformly from the set
of all nodes, or that packets with the same source and destination node follow the
same routing path. Finally, we define the (overall) injection rate, which is denoted by
λ. Define λe to be the expected number of messages generated in a time step that
contain the edge e in their routing paths. Then λ is defined to be the maximum λe

over all edges.

The adversarial model. An adversary is allowed to demand network bandwidth
up to a prescribed injection rate. For any w, λ > 0, an adversary is called a bounded
adversary of rate (w, λ) if for all edges e and all time intervals I of length w, it injects
no more than λ · w packets during I that contain edge e in their routing paths. As
in the stochastic model, λ is defined to be the injection rate. (We use the adversarial
model as defined by Andrews et al. [1] rather than the original model introduced by
Borodin et al. [3] because this model avoids calculating with floors and ceilings. Apart
from minor changes in constants, however, all our results hold in the original model
of Borodin et al. too.)

For both injection models, a protocol is called stable for a given injection rate λ if
the number of packets stored in injection or edge buffers does not grow unboundedly
with time. We are interested in protocols that are stable for high injection rates. Of
course, since an edge can transport at most one packet per step, λ can be at most 1.
Our aim is to construct algorithms that are stable under injection rates that are close
to 1. Additionally, we are interested in short delays for the packets; i.e., we aim to
minimize the time from injection to service for each packet.

Apart from the stability and the routing time, we will consider another property
of dynamic routing protocols, the recovery from worst-case scenarios. Although our
bounds on the routing time guarantee that bad configurations are very unlikely, they
eventually occur from time to time when the routing protocol runs for an infinite
number of time steps. Let a worst-case scenario denote an arbitrarily bad configuration
of the network. Then the recovery time with regard to some property P of the routing
protocol is defined as the time that has to pass by after the occurrence of a worst-case
scenario until P holds again. (In our case, we are interested in properties such as the
expected routing time of a packet and time bounds that hold w.h.p.)
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As in the static model we define the complexity of a dynamic routing problem to
be a value capturing all relevant parameters. In particular, the complexity is defined
to be the maximum of the number of edges, the number of generators, the maximal
possible length of a routing path, and 1/(1 − λ). (The number of generators in the
adversarial model is defined to be w times the number of edges, which corresponds to
the maximum number of packets that can be injected in a single step.)

In the following sections, we will prove results for both the stochastic and the
adversarial injection model.

1.2. Previous results. In the last two years a new model called adversarial
queuing theory emerged. This approach was introduced by Borodin et al. in [3]. Most
research in this model focuses on the stability of routing protocols and networks.
For example, Borodin et al. [3] show several stability results for greedy protocols on
directed acyclic graphs (DAGs) and directed cycles. Andrews et al. [1] extend their
results by showing that there exist simple greedy protocols (such as longest-in-system,
shortest-in-system, and farthest-to-go protocols) that are stable against any adversary
for all networks. However, the delay of the packets and the number of packets stored
in a queue might get exponential in the length of the longest path.

Furthermore, Andrews et al. [1] present a transformation of the static protocol
presented in [9] into a dynamic protocol that is stable for any injection rate < 1 and
fulfills the following constraint on the buffer size: For any fixed time step t, at most
(D · logm)k packets are stored in any queue at time t, w.h.p., where D denotes the
longest routing path, m the number of edges, and k is a suitable constant. Note that
this result implies that the delay of the packets is also bounded by (D · logm)k, w.h.p.
However, as the bound on the buffer size does not hold deterministically, any buffer
of fixed size will overflow eventually.

Rabani and Tardos [13] present a transformation scheme which yields much better
routing times. Assuming there is a static algorithm that delivers all packets in (1 +
κ)C + g(M)D + f(M) steps for some constant κ > 0, their tansformation yields
a dynamic algorithm that delivers each packet to its destination, w.h.p., in O(w +
g(N)D + f(N) + logN) against an adversary of rate (w,Θ(κ)), where M and N
denote the complexity of the static and dynamic routing problems, respectively. The
stability of the dynamic algorithms, however, is not shown. In fact, although most
packets will be delivered fast, some packets will never reach their destination and
queues will grow to infinity assuming either the stochastic model or the adversarial
model in combination with a randomized, static algorithm.

Broder, Frieze, and Upfal [4] introduce a general approach to dynamic packet
routing with bounded buffers in the stochastic and adversarial models. They show
sufficient conditions for the stability of dynamic packet routing algorithms and in-
vestigate how some well-known static routing protocols for the butterfly network can
be transformed into dynamic algorithms that fulfill these conditions. In particular,
they present a dynamic routing algorithm for the butterfly that is stable for a small
constant injection rate, and they show that the expected routing time for each packet
is O(log n), with n denoting the number of nodes on a level.

Andrews et al. [2] investigate another, more restrictive dynamic routing model. In
contrast to the stochastic and adversarial models, the packets are injected regularly in
“sessions.” For each session i, packets are injected at a rate ri to follow a fixed path of
length di. They describe a schedule that delivers each packet in a time depending only
on local parameters; that is, each packet reaches its destination in time O(di + 1/ri),
which is worst-case optimal. We will see that similar local properties, i.e., the routing
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time depends on di, can be achieved also in the stochastic model.

1.3. New results. In this paper, we present specific transformations of well-
known routing protocols and introduce a powerful black box transformation scheme
applicable to every static, oblivious routing protocol.

In the following, N denotes the complexity of the routing problem (as defined in
section 1.1), D denotes the maximum length of a routing path, and ε = 1− λ, where
λ denotes the injection rate. Further, we define ε∗ = a · εb, for suitable constants
a, b > 0. For simplicity, we state our results only for networks of constant degree. For
more detailed results the reader is referred to the following sections.

In this paper, we give three specific transformations of well-known routing proto-
cols.

• In section 2, we present a dynamic variant of the ghost packet protocol [8, 14]
for leveled networks that is stable for any λ < 1 in the stochastic model and
λ ≤ 1 in the adversarial model, given a sufficiently large but fixed buffer size
of 1/ε∗ in the stochastic model and 2λ · w + 2 in the adversarial model. In
the stochastic model, each individual packet is delivered in expected time
L/ε∗, and in time (L + logN)/ε∗, w.h.p., where L denotes the depth of the
network. In the adversarial model, each packet reaches its destination in at
most L+ λ · w · L− 1 time steps.
For example, the tuned ghost packet protocol achieves a throughput of 1− ε,
for any ε > 0, on an n-input butterfly network with buffers of size 1/ε∗ if we
place two generators on each node of level 0, each of which injects packets that
are sent to randomly selected nodes of level log n, using a rate of λ = 1 − ε.
Furthermore, the algorithm delivers each individual packet in time logn/ε∗,
w.h.p.
Previous results on routing with bounded buffers in leveled networks obtain
stability only for constant injection rates λ � 1 [4, 16] (stochastic model)
or require buffers whose size is exponential in the depth of the network [1]
(adversarial model).
• In section 3, we present a dynamic routing protocol for arbitrary networks

that is stable for any injection rate λ < 1, assuming buffers of fixed size D/ε∗.
We prove an expected routing time of (D2+w)/ε∗, and (D2+D·logN+w)/ε∗,
w.h.p., for every individual packet. These bounds hold both for the adversarial
model and for the stochastic model (with w = 0).
To the best of our knowledge, this is the first protocol that is stable for
buffers of small fixed size under any injection rate λ < 1. Previous results in
the stochastic model with bounded buffers require λ� 1 and besides assume
that packets can be dropped and reinjected in later time steps [16]. Previous
results in the adversarial model require buffers whose size is exponential (or
polynomial, w.h.p.) in D [1]. Note that a bound on the buffer size that does
not hold with certainty leaves open the question of what to do in the rare
case of a buffer overflow (e.g., dropping or blocking incoming packets), and
hence does not guarantee stability for networks with a fixed buffer size.
• In section 4, we describe a dynamic variant of the growing rank protocol

[10] for shortest paths in arbitrary networks. The dynamic protocol is stable
for any λ < 1 if unbounded buffers are given. In the stochastic model, each
individual packet p with a routing path of length dp is delivered in time dp/ε

∗,
expected, and (dp + logN)/ε∗, w.h.p. In the adversarial model, the dp in the
time bound has to be replaced by D + w.
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Previously, similar results have been shown only for λ < 1/e in the stochastic
model [16].

Furthermore, in section 5, we present a powerful black box transformation scheme
that is applicable to every static, oblivious routing algorithm in networks with un-
limited buffers. Basically, we combine the ideas of Rabani and Tardos [13] for the
fast delivery of packets with the universal stability of the shortest-in-system protocol
originally shown by Andrews et al. [1] for the adversarial model. The major problem
that we solve is merging these two approaches so that we obtain dynamic protocols
that are stable up to some injection rate depending on the static protocol without
any significant slowdown due to the inefficiency of the shortest-in-system protocol.

Let S denote any set of paths, e.g., the set of all simple or all shortest paths in
the network. Suppose we are given a static routing algorithm that routes all packets
in γ ·C + δ ·D +O(logαM) steps, w.h.p. (or even with certainty), for any collection
of paths or subpaths in S with congestion C, dilation D, and complexity M . Assume
that in the dynamic setting only paths in S are allowed to be generated. Then our
black box transformation yields a dynamic variant of this protocol with the following
properties. (In the following overview, we describe only the results for the case that
γ and δ do not depend on C or D and α ≥ 1 is a constant. Similar results will be
shown for other choices of α, γ, and δ.)

• If the given static protocol is pure (i.e., no control messages or copies of
packets are allowed), the dynamic algorithm is stable for any injection rate
λ < 1. Otherwise, it is stable for any injection rate λ < 1/γ.
• If λ < 1/γ, then the algorithm guarantees that any packet p that has to travel

a distance of d is delivered in time O(δ · d+ logαN), w.h.p., in the stochastic
injection model, and in time O(δ ·D+w+ logαN), w.h.p., in the adversarial
injection model.
• The algorithm recovers from any worst-case scenario in O(δ ·D+w+logαN)

time steps (with w = 0 in the stochastic model).
The bound on the routing time implies that it might be important for static routing
protocols to know the exact factor γ in front of the C since this can be decisive
for the performance of their dynamic counterparts. Interestingly, in the stochastic
injection model, the dynamic variant is able to exploit locality, whereas the static
algorithm does not need to provide this feature. For example, the transformation of
a well-known static routing algorithm (see, e.g., [9]) that delivers all packets in time
(1+ κ) ·C +O(D · logM), w.h.p., for any constant κ > 0 yields a dynamic algorithm
that delivers each packet p in time O(d · logN), w.h.p., for any constant injection rate
λ < 1/(1 + κ), where d is the length of p’s path.

1.4. Tools. We will frequently apply the following Chernoff bounds.
Lemma 1.1 (Chernoff). Let X1, . . . , Xn be n independent random variables with

Xi ∈ {0, 1} for all i ∈ {1, . . . , n}. Furthermore, let X =
∑n

i=1Xi and µ ≥ E[X]. Then
it holds for all ε ≥ 0 that

Pr[X ≥ (1 + ε)µ] ≤
(

eε

(1 + ε)1+ε

)µ

.

This can be simplified to

Pr[X ≥ (1 + ε)µ] ≤
{

e−ε2µ/3 if ε ∈ [0, 1],
e−εµ/3 otherwise.
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2. Routing in leveled networks with bounded buffers. In this section, we
consider the problem of routing packets in a leveled network with bounded buffers.
In a leveled network, the nodes can be partitioned into levels 0, . . . , L such that each
link in the network leads from some node at level i to some node at level i + 1 for
0 ≤ i ≤ L− 1. L is called the depth of the network.

The routing proceeds in discrete time steps, starting with step 0. In each step,
each link can forward at most one packet. The links are assumed to be directed; that
is, packets can cross them only in the direction leading to the higher level. Packet
injections and arrivals are assumed to happen at the beginning of a time step, so that
a packet may leave a node at the end of the time step in which it is injected or arrives
at the node. The packets’ routing paths may start on any level k ≥ 0 and end on any
level k′ with k < k′ ≤ L. Each node has a buffer for each of its incoming edges and
a buffer for newly injected packets. Each of the edge buffers has space for storing at
most q packets.

Static batches of packets can be routed efficiently on leveled networks by a pro-
tocol known as Ranade’s, or the ghost packet, protocol [7, 8, 14]. The disadvantage
of the static ghost packet protocol is that each node is allowed to forward only one
data packet at each time step, rather than forwarding data packets along all outgoing
edges in parallel. All edges that are not passed by a data packet in a step are used
to exchange control packets that are called ghost packets. As a consequence, most of
the transmitted packets are ghost packets, which shows that a simple transformation
of the static ghost packet protocol into a dynamic protocol cannot yield stability for
injection rates close to 1. In order to achieve stability for any injection rate λ < 1, we
introduce a tuned variant of the ghost packet protocol that uses only a very limited
number of ghost packets.

The tuned ghost packet protocol. The packets are assigned ranks in order to decide
which packet is preferred in case of contention. For each packet p, let birth(p) denote
the time step at which p was injected. The rank of p is set to birth(p) plus some
small value x from the interval [0, κ) for some κ < 1, where x is chosen such that
each packet has its own unique rank (e.g., based on the identification number of the
generator that injected the packet). Packets with smaller ranks, i.e., older packets,
are always preferred against packets with higher rank, i.e., younger packets. As in the
static ghost packet protocol, special ghost packets help the algorithm to maintain the
following invariant: A packet is routed along an edge only after all the other packets
with lower ranks that must pass through the edge have done so. The nodes on level
k start working in step k for 0 ≤ k ≤ L. In order to give time for initializing the
network, we assume that packet injections on level k do not start before time step k.
Figure 1 describes the rules for contention resolution in detail.

Ghost packets are discarded as soon as they are delayed in a step. Thus, they
never block the buffer for following packets. The role of the ghost packets is to slow
down packets that are too fast in order to avoid that a relatively old packet is blocked
because younger packets occupy the slots in the next buffer. Note that each outgoing
link on level k transmits one packet in each time step t ≥ k: either a ghost or a real
packet. This mechanism ensures that each link transmits packets and ghost packets
in the order of increasing rank. (Obviously, this property holds for the links on level
0. For higher levels the property follows by induction.) We will see that this property
is crucial for the analysis. Analyzing the performance of a variant of the protocol
described above that does not use ghost packets is an interesting open problem, even
in the static case.
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The following algorithm is executed for each outgoing link e of a node v on

level k in each time step t ≥ k. Each edge buffer can hold up to q packets.

• Let r denote the minimum rank of a packet that is stored in one of

v’s buffers and aims to pass edge e. If there is no such packet, then

r =∞.

• Let g denote the minimum over all ranks of packets or ghost

packets that arrived on v at the beginning of step t. If there is no

such packet (as v is a node without incoming edges, e.g., on level 0),

then g is set to t+ κ.

• If r < g, then

if the buffer of e contains less than q packets at the beginning of

step t, then

forward the (unique) packet with rank r along e;

else

send a ghost packet with rank r along e;

else

send a ghost packet with rank g along e.

Fig. 1. Contention resolution in the tuned ghost packet protocol.

The following analysis shows that the tuned ghost packet protocol is stable for
any injection rate λ ≤ 1 in the adversarial model, and λ < 1 in the stochastic model,
provided that the edge buffer size is sufficiently large.

Theorem 2.1. Let L denote the depth of the network, ∆ the maximum node
degree, and q the size of the edge buffers.

• Suppose the packets are injected according to the adversarial model with in-
jection rate (w, λ) for any w ≤ (q − 2)/(2λ) and 0 ≤ λ ≤ 1. Then the tuned
ghost packet protocol is stable, and each packet reaches its destination in at
most L+ λ · w · L time steps.
• Suppose the packets are injected according to the stochastic model with injec-
tion rate λ ≤ 1 − ε for a suitably chosen ε = Θ(log(q∆)/q). Then the tuned
ghost packet protocol is stable, and the routing time for each individual packet
is O(L·log(∆/ε)/ε+log(1/ε)/ε2), expected, and O(L·log(∆/ε)/ε+(logN)/ε2),
w.h.p., where the probability is with respect to the stochastic packet injections.

Proof. We use a “delay sequence argument” to analyze the tuned ghost packet
protocol. Our analysis is similar to the one for the static ghost packet protocol given
in [8]. A delay sequence witnesses that a packet needs many time steps to reach its
destination. For the adversarial model, we will show that a delay sequence witnessing
a long routing time does not exist, so that every packet reaches its destination within
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the time bound given in the theorem. For the stochastic model, we will show that
“large” delay sequences are very unlikely so that each packet needs only limited time,
w.h.p., to reach its destination.

The ghost packet protocol uses fractional ranks. The only reason for the fractional
additive is to define a total order among all packets such that a packet p or a ghost
packet corresponding to p (i.e., a ghost packet that has the same rank as p) that delays
a packet p′ in a step cannot be delayed by packet p′ or a ghost packet corresponding
to p′ in another time step. In the following, however, we mainly use integral ranks,
i.e., the integral values of the fractional ranks, which, in the case of the ghost packet
protocol, are equal to the birth date of the corresponding packet.

Definition 2.2 ((p, s, ', r)-delay sequence). Let p denote a packet, and let
s, ', r ≥ 1 denote integers. Then a (p, s, ', r)-delay sequence consists of the follow-
ing:

• A path of length ' starting at the destination node of packet p. This path is
called the delay path. Let v0, . . . , v� denote the nodes on the delay path. The
delay path may include edges in both directions and, hence, follows a course
going up and down the levels of the network.
• ' delay edges e1, . . . , e� such that ei is incident to vi for 1 ≤ i ≤ '. These
edges are not necessarily included in the delay path.
• ' nonempty intervals of integral ranks r1, . . . , r� such that

∑�
i=1 |ri| = r, where

|ri| denotes the length of interval ri. The maximum integral rank in r1 is equal
to the birth date of packet p, and, for 2 ≤ i ≤ ', the maximum integral rank
in ri is equal to the minimum in ri−1.

A (p, s, ', r)-delay sequence is called active if the adversary or the stochastic gen-
erators inject s packets p1, . . . , ps (different from p) such that, for every 1 ≤ i ≤ s,
packet pi has an integral rank in rj and its routing path includes edge ej for some
1 ≤ j ≤ '. These packets are called delay packets.

The following lemma shows that a long routing time of a packet p0 is always
accompanied by an active (p0, s, ', r)-delay sequence with relatively large s and small
' and r.

Lemma 2.3. Suppose a packet p0 takes L+T or more steps to reach its destination
for any T > 0. Then there is an active (p0, s, ', r)-delay sequence with s ≥ T + r +
( q
2 − 2) · '− ( q

2 − 1) · L′, where L′ denotes the difference between the level of the first
node, v0, and the level of the last node, vs, of the delay path.

Proof. We will construct a sequence of packets or ghost packets p0, . . . , ps′ and
nodes v′0, v

′
1, . . . , v

′
s′ such that v′0 denotes the destination of p0, and packet pi or a

ghost packet corresponding to this packet delays packet pi−1 at node v′i for 1 ≤ i ≤ s′.
(Ultimately, s will be set either to s′ or to s′−1.) There are two reasons why a packet
may be delayed: It is delayed either by a packet or ghost packet with lower rank that
wants to traverse the same link, or it is delayed by q other packets with lower ranks
occupying the next edge buffer on its path. The first kind of delay is called m-delay;
the second kind of delay is called f-delay.

The active delay sequence is constructed incrementally. Suppose we have already
fixed the packets p0, . . . , pj−1 and nodes v′1, . . . , v

′
j−1. Starting from the time step in

which pj−1 delayed pj−2 on node v′j−1 or, if j = 1, the time step in which pj−1 = p0

reached its destination node v′0, we follow the course of the packet pj−1 backwards
in time. If pj−1 is a ghost packet whose generation was caused by the arrival of
another packet, then we identify pj−1 with that packet and continue the trace. We
stop following when we reach a node on which pj−1 either was delayed, was injected
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as a nonghost packet, or was injected as a ghost packet on a node without incoming
edges. The node on which this event happened is called v′j . If we stop because of
an m-delay, then the packet that caused the delay is called pj . If we stop because
of an f -delay, then the q packets that occupy the corresponding buffer are called
pj , . . . , pj+q−1, in decreasing order of ranks. Moreover we set v′j+1, . . . , v

′
j+q−1 = v′j .

In both of these cases we can continue our construction. In the other cases, however,
our construction ends with a packet pj that was injected at node v′j , and we define
s′ = j.

The path from the destination of p0 to the source of ps′ recorded by this process
is called the delay path. The nodes on this path are defined to be v0, . . . , v�. Note that
these nodes are not necessarily identical to v′0, . . . , v

′
s′ , but {v′0, . . . , v′s′} ⊆ {v0, . . . , v�}.

The edges on which the recorded delays of the packets p0, . . . , ps′−1 take place are
defined to be the delay edges. We have to show that the number of these edges is
at most '. (Note that the delay edges are not necessarily included in the delay path.
Consider, for example, the following scenario. Suppose packet pj is delayed in step t
on level k by an f -delay caused by the packets pj+1, . . . , pj+q stored in a buffer on
level k + 1. Suppose the next event recorded by the delay sequence is an m-delay of
packet pj+q caused by packet pj+q+1 moving along an edge e to level k + 2 in step
t− 1, and suppose this packet arrived on level k+1 coming from level k in step t− 2.
Then the delay path goes from level k to level k + 1 and then back to level k, and
hence skips the delay edge e.)

Although not every delay edge is included in the delay path, each of these edges is
incident to a node of the delay path, and the number of different delay edges is at most
', which can be shown as follows. All delay events in a sequence of consecutive m-
delays recorded by the construction above in consecutive time steps, i.e., not separated
by packet movements or f -delays, take place at the same edge. Further, an f -delay
following immediately after a sequence of m-delays takes place at the same edge,
too. (Note that these properties are not given for the original ghost packet protocol.)
Hence, considering the incremental construction of the delay sequence, the delay edge
changes only in those incremental steps in which the delay path is increased by at
least one node. Consequently, every node vi of the delay path can be assigned one
delay edge, which is called ei for 1 ≤ i ≤ '.

The ghost packet protocol ensures that the ranks in the delay sequence are de-
creasing. In particular, the ranks of the packets traversing edge ei are larger than the
ranks of the packets traversing edge ei+1 for 1 ≤ i ≤ ' − 1. Hence, we can define
consecutive intervals of integral ranks r1, . . . , r� in such a way that every neighboring
pair of intervals has one integral rank in common (i.e., overlap by one) and the pack-
ets that are delayed at edge ei have an integral rank in ri for 1 ≤ i ≤ '. We define
r′ =

∑ |ri| = birth(p0) − birth(ps′) + '. (Ultimately, r will be set either to r′ or to
r′ − 1.)

Next we investigate the relationship between the parameters of the delay sequence.
Define t to be the number of time steps covered by the construction, i.e., the time
from the birth of the packet ps′ to the arrival of the packet p0 at its destination. Then

t ≥ birth(p0) + L+ T − birth(ps′)

= L+ T + r′ − '.(1)

The delay path is enlarged by one node in each of those time steps that do not
represent an m-delay. Let m denote the number of m-delays. Then we can conclude
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that t = m+ ' or m = t− '. Applying the bound in (1) to this equation yields

m ≥ L+ T + r′ − 2'.(2)

Let f be the number of f -delays. Since each f -delay enlarges the delay path by two
edges, we have ' = L′ + 2 · f, where L′ denotes the difference between the level of v0
and the level of vs. Hence,

f =
'− L′

2
.(3)

Further, each m-delay adds one packet to the active delay sequence, and each f -delay
adds q packets. As a consequence,

s′ = m+ q · f
(2,3)

≥ L+ T + r′ − 2'+ q
2 · '− q

2 · L′
≥ T + r′ +

(
q
2 − 2

) · '− ( q
2 − 1

) · L′,
where the last estimation holds because L′ ≤ L.

Finally, we fix the parameters s and r. For 0 ≤ i ≤ s′ − 1, every packet pi is
delayed by packet pi+1. As ghost packets are never delayed, p1, . . . , ps′−1 must be
nonghost packets. The definition of s and r depends on whether or not ps′ is a ghost
packet. If it is not, then we set s = s′ and r = r′ so that p1, . . . , ps′ are the packets of
the active (p0, s, ', r)-delay sequence. Otherwise, if ps′ is a ghost packet, then we set
s = s′ − 1. In this case, the packets p1, . . . , ps′−1 are the delay packets. Since ps′ is a
ghost packet with rank birth(ps′) + κ and ps′ is preferred against ps = ps′−1, we have
birth(ps) ≥ birth(ps′) + 1. (Recall that the increment in the rank for ghost packets,
i.e., κ, is larger than the increment in the rank for other packets, i.e., some x ∈ [0, κ).)
As a consequence, we can set r = r′ − 1, and the constructed delay sequence fulfills
all desired requirements. Hence, Lemma 2.3 is proven.

Analysis for the adversarial model. We assume an adversary that injects packets
at rate (w, λ) for any w ≤ (q − 2)/(2λ) and 0 ≤ λ ≤ 1; that is, the adversary injects
no more than λ · w packets for the same edge during every time interval of length w.

Suppose the routing time of a packet p0 is L+T or more. Then we can construct
a (p0, s, ', r)-delay sequence with parameters as described in Lemma 2.3. The delay
sequence specifies edges e1, . . . , e� such that ei is traversed by packets with integral
ranks from the interval ri. On the one hand, the adversary is allowed to inject at
most λ · (|ri|+w−1) packets with an integral rank in ri that traverse ei for 1 ≤ i ≤ '.
(Recall that the integral rank of a packet corresponds to its birth date.) Hence, the
number of packets that traverse one of the delay edges and have the corresponding
integral rank is at most

�∑
i=1

λ · (|ri|+ w − 1) = λ · (r + ' · (w − 1)).

On the other hand, we conclude from Lemma 2.3 that the total number of packets
needed for an active delay sequence corresponding to a routing time of L+ T steps is
at least s ≥ T + r +

(
q
2 − 2

) · '− ( q
2 − 1

) · L′. This yields the constraint

λ · (r + ' · (w − 1)) ≥ T + r +
(
q
2 − 2

) · '− ( q
2 − 1

) · L′
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and, therefore,

T ≤ λ · (r + ' · (w − 1))− (r +
(
q
2 − 2

) · '− ( q
2 − 1

) · L′)
= (λ− 1) · (r − ') +

(
λ · w − ( q

2 − 1)
) · '+ ( q

2 − 1
) · L′.

This upper bound on T can be simplified as follows. First, (λ−1) · (r− ') ≤ 0 because
λ ≤ 1 and r ≥ '. Second,

(
λ · w − ( q

2 − 1)
) · ' ≤ (λ · w − ( q

2 − 1)
) · L′ because ' ≥ L′

and w ≤ (q − 2)/(2λ), so that the factor in front of the ' is negative or 0. Applying
these two equations to the above bound on T yields

T ≤ (λ · w − ( q
2 − 1)

) · L′ + ( q
2 − 1

) · L′
≤ λ · w · L′ ≤ λ · w · L.

Consequently, each packet takes at most L+λ ·w ·L time steps to reach its destination
and the tuned ghost packet protocol is stable for any injection rate λ ≤ 1.

Analysis for the stochastic model. Now we assume that the packets are injected
at random by independent generators at a rate of λ = 1 − ε with ε > 0. Again we
use a delay sequence argument. The major difference between our analysis and the
analysis for the static ghost packet protocol given in [8] is that we have to deal with
an arbitrarily long history of packet delays. Further, we have to use Chernoff bounds
(see Lemma 1.1) instead of simple counting methods in order to prove stability results
for injection rates arbitrarily close to 1.

Let L denote the depth of the network, ∆ the maximum node degree, and q the size
of the edge buffers. We will show that each individual packet reaches its destination
within L+ T time steps with probability 1− 2−Ω(ε2·T )/ε2, provided that q and T are
chosen sufficiently large, i.e., q ≥ 2(k + 1) and T ≥ k · L for some k = Θ(log(∆/ε)/ε)
which will be specified during the proof.

Fix an arbitrary packet p0. Suppose that p0 needs more than L + T time steps
to reach its destination. Then Lemma 2.3 yields that a (p0, s, ', r)-delay sequence is
active, with

s ≥ T + r +
(
q
2 − 2

) · '− ( q
2 − 1

) · L′
≥ k · L+ r + (k − 1) · '− k · L′
≥ r + (k − 1) · '.(4)

We assume k ≥ 1. Then at least r packets are needed for an active (p0, s, ', r)-delay
sequence. However, we will show that the expected number of packets that pass the
delay edges and have the corresponding integral rank is at most (1 − ε) · r. Hence,
this event is very unlikely.

Suppose that the delay edges and the range of integral ranks for each delay edge
are fixed. Define R = r1 ∪ · · · ∪ r�. For each integral rank j ∈ R, let the binary
random variable Xg

j be one if and only if generator g generates a packet that has
integral rank j ∈ ri and traverses delay edge ei. (The integral rank j may fall in two
or more rank intervals corresponding to different delay edges.) Let X =

∑
j,g X

g
j .

Every active (p0, s, ', r)-delay sequence of length s with fixed delay edges and a fixed
rank assignment has at least one choice for the Xg

j ’s such that X ≥ s, because each
of the packets p1, . . . , ps traverses one of the delay edges ei and has an integral rank
in ri. (Note that s distinct packets are needed to have an active sequence, regardless
of whether a packet traverses more than one delay edge responsible for its integral
rank.) Hence, if a delay sequence of length s can be constructed, then X ≥ s.
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Consequently, the probability that a fixed delay sequence becomes active is bounded
above by Pr[X ≥ s].

Because the integral rank of a packet corresponds to its birth date and the ex-
pected number of packets injected in a time step that include delay edge ei in their
path is at most λ = 1− ε,

E[X] ≤
�∑

i=1

(1− ε) · |ri|

≤ (1− ε) · r(5)

(4)

≤ (1− ε) · s(6)

for k ≥ 1. The binary random variables in the sum ofX are stochastically independent,
because each generator is operating independently of other generators and previous
time steps. Therefore, the probability for a deviation from the expectation can be
estimated by using a Chernoff bound (see Lemma 1.1). We define δ = s/((1−ε)·r)−1.
Then

Pr[X ≥ s] = Pr [X ≥ (1 + δ) · (1− ε) · r]
(5)

≤ e−min{δ,δ2}·(1−ε)·r/3.

A further bound, solely depending on s and ε, can be derived as follows:

Pr[X ≥ s] = Pr

[
X ≥

(
1 +

ε

1− ε
)
· (1− ε) · s

]

(6)

≤ e
−min

{
ε

1−ε ,(
ε

1−ε )
2
}
·(1−ε)·s/3

≤ e−ε2·s/3.

Up to now we have calculated only the probability that a fixed delay sequence
becomes active. It remains to sum over all delay sequences that possibly caused the
delay of packet p0. The number of different (p0, s, ', r)-delay sequences can be bounded
as follows. The maximum node degree in the network is ∆. Hence, the number of
possibilities to determine the delay path starting at the destination of p0 is at most
∆�. Once the path is fixed, the number of possibilities to choose the delay edges is at
most ∆�, too, because edge ei is incident to node vi for 1 ≤ i ≤ '. Further, the number
of different ways of specifying the rank intervals is equivalent to the number of binary
strings of length r with exactly ' − 1 ones. This number is

(
r

�−1

)
. As a consequence,

the probability that there exists an active (p0, s, r, ')-delay sequence for a fixed set of
parameters s, ', and r fulfilling the equation in Lemma 2.3 is at most

(
r

'− 1

)
·∆2� · Pr[X ≥ s] ≤

(
e∆2 · r
'− 1

)�

·
√

e−min{δ,δ2}·(1−ε)·r/3

︸ ︷︷ ︸
=: Y

·
√

e−ε2·s/3

≤
√

e−ε2·s/3.(7)

The last inequality assumes Y ≤ 1, which holds if k is chosen sufficiently large in
Θ(log(∆/ε)/ε). We defer the corresponding calculations to the end of this proof.
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Let t(p0) denote the routing time of packet p0. If t(p0) > L+T for any T > 0, then
we can construct an active delay sequence as described in Lemma 2.3. Consequently,
the probability that t(p0) > L + T is bounded above by the probability for the
existence of an active (p0, s, ', r)-delay sequence whose parameters fulfill the following
constraints. Equation (4) yields r ≤ s and ' ≤ s/(k− 1) ≤ s, assuming k ≥ 2. Lemma
2.3 yields s ≥ T . Now applying the bound in (7), which holds for T ≥ k ·L, we obtain

Pr[t(p0) > L+ T ] ≤
∞∑

s=T

s∑
�=1

s∑
r=1

√
e−ε2·s/3

≤ 2−β·ε2·T

ε2
(8)

for some suitable constant β. This term is at most N−α for any constant α > 0 if
T ≥ α′ logN/ε2 for a suitably large constant α′. (Recall that N ≥ 1/ε.) Therefore,

t(p0) ≤ max

{
L · (k + 1),

α′ logN
ε2

}
= O

(
L · log(∆/ε)

ε
+

logN

ε2

)
,

w.h.p. It remains to prove the bound on the expected routing time of p0. In general,
for any integer Z ≥ 0,

E[t(p0)] =

∞∑
i=1

Pr[t(p0) ≥ i] ≤ Z +

∞∑
i=Z+1

Pr[t(p0) ≥ i].

Applying (8), we obtain that
∑∞

i=Z+1 Pr[t(p0) ≥ i] ≤ 2 · Z for Z ≥ max{L · (k +
1), L+ 4 · log(1/ε)/ε2}. In this case,

E[t(p0)] ≤ 3 · Z = O

(
L · log(∆/ε)

ε
+

log(1/ε)

ε2

)
,

which corresponds to the bound on the expected routing time given in Theorem 2.1.
Deferred calculations. Finally, we show that Y ≤ 1 if k is chosen sufficiently large

in Θ(log(∆/ε)/ε). First, we estimate δ.

δ =
s

(1− ε) · r − 1
(4)

≥ r + (k − 1) · '
(1− ε) · r − 1 ≥ ε+

(k − 1) · '
r

.

Depending on the value of δ, we distinguish two cases. Consider the case δ ≤ 1.
Assume Y > 1. Then (

e∆2 · r
'− 1

)�

· e−δ2(1−ε)·r/6 > 1.

Applying δ ≥ ε, that is, substituting ε for δ, and solving the resulting equation for r/'
yields r/' = O

(
log(∆/ε)/ε2

)
. We assume that k is chosen in such a way that

k ≥
√
r

'
· 6

(1− ε) · log
(

e∆2 · r
'− 1

)
+ 1 = O

(
log(∆/ε)

ε

)

for all possible choices of r and '. Now applying δ ≥ (k − 1) · '/r yields

Y ≤
(

e∆2 · r
'− 1

)�

· e−( (k−1)·�
r )

2·(1−ε)·r/6 ≤ 1.

Similarly, we get Y ≤ 1 for the case δ > 1, too, already for k = O(log(∆/ε)). This
completes the proof of Theorem 2.1.
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3. Dynamic routing in arbitrary networks with bounded buffers. The
tuned ghost protocol can be used to construct an efficient routing algorithm for ar-
bitrary paths in an arbitrary (nonleveled) network G with bounded buffers. In this
section, we consider only the stochastic model. In section 6, we will show how the re-
sults obtained in this model can be adapted to the adversarial model. In the stochastic
model, our approach yields a dynamic routing protocol that is stable for any injec-
tion rate λ < 1 and requires only small edge buffers. The dynamic protocol uses the
following simulation technique.

Suppose the maximum length of a routing path is D. Define L = �D · (1 + 1/ε)�
with ε = 1−λ. G simulates the tuned ghost protocol on a leveled network G′ of depth
L under a maximum injection rate of λ′ ≤ 1 − ε2. G′ is defined as follows. On each
level, it contains a node for every node in G. A node u from level i and a node v from
level i+1 for 0 ≤ i ≤ L− 1 are connected by an edge if and only if the corresponding
nodes in G are connected by an edge.

Each edge of the leveled network is simulated by its respective counterpart in G.
Hence, every edge in G has to simulate L edges of G′ and, therefore, the buffer size
in G has to be L times the buffer size of the simulated network G′. The simulation
works in a round-robin fashion; that is, in each time step t, the edges of G simulate
the edges of G′ between the nodes of level i and level i + 1 with i = t mod L. For
each injected packet p, the generator chooses an offset κp uniformly at random from
the range 0 to �D/ε� − 1. The routing path in the leveled network starts from level
κp and simply follows the course prescribed by the original path until it reaches the
packet’s destination on level κp + dp ≤ L, where dp denotes the length of the routing
path.

Next we calculate the virtual injection rate λ′ in the simulated network G′. On
the one hand, the virtual rate at which each generator injects packets into G′ is L
times larger than the actual rate in G, because each edge in G is activated only every
Lth step. On the other hand, the probability that an injected packet that traverses
an edge e in G also traverses a fixed edge e′ in G′ that corresponds to e is at most
1/�D/ε� because of the randomly selected offset. Therefore,

λ′ ≤ λ · L
�D/ε� =

(1− ε) · �D · (1 + 1/ε)�
�D/ε� ≤ (1− ε) · (1 + ε) = 1− ε2.

Substituting this injection rate into Theorem 2.1 and applying L = Θ(D/ε) yields the
following result.

Corollary 3.1. The simulation of the tuned ghost packet protocol yields a
dynamic routing algorithm that is stable for any injection rate λ ≤ 1 − ε for any
ε > 0, provided that buffers of sufficiently large size O(D · log(∆/ε)/ε3) are used.
Furthermore, each packet is delivered in time O(D2 · log(∆/ε)/ε4 +D · log(1/ε)/ε5),
expected, and O(D2 · log(∆/ε)/ε4 +D · (logN)/ε5), w.h.p.

4. Routing along shortest paths in arbitrary networks. In this section,
we assume that each buffer has space for an unlimited number of packets. The goal
is to achieve a better routing time than in the previous section, in which we assumed
buffers of limited size. We assume that packets do not make detours, that is, all routing
paths are shortest paths. Initially, we investigate the stochastic model. In section 6,
we will show how the results obtained in this model can be adapted to the adversarial
model.

We investigate a dynamic variant of the growing rank protocol that was introduced
for static routing in [10, 11]. We have introduced this dynamic variant before in [16],
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but the analysis we give there holds only for injection rates λ < 1/e. In the following,
we show that the results can be extended to hold for any constant injection rate λ < 1.

The dynamic growing rank protocol works as follows. Define the initial rank of
a packet to be the time step in which the packet is injected. Whenever the packet
traverses a link, its rank is increased by some fixed integer m ≥ 1, which will be
specified later on. If several packets want to traverse the same link at the same time,
then the packet with minimal rank is chosen. (In order to break ties, if there are
several packets with the same rank, the packet with minimum generator id is taken.)

The following theorem summarizes the results of our analysis of the dynamic
growing rank protocol. Note that neither the maximum injection rate for which the
protocol is stable nor the routing time depends on the degree of the network.

Theorem 4.1. Suppose all routing paths are shortest paths. Then the growing
rank protocol is stable for any injection rate λ up to some 1−ε with ε = Θ((logm)/

√
m).

Furthermore, the routing time for each individual packet p that has to travel along a
routing path of length dp is O(m · dp), expected, and O(m · (dp + logN)), w.h.p.

We point out that similar results can be obtained by applying the black box
transformation scheme presented later in section 5. The direct transformation of the
growing rank protocol, however, is more natural and more elegant, as it does not
require to partition the time into fixed size blocks in which the static protocol is exe-
cuted. Further, the expected routing time guaranteed by the specific transformation
is slightly better, i.e., O(dp) rather than O(dp + logN).

Proof. We use a delay sequence argument that is similar to the one for the ghost
packet protocol. A (p, s, ', r)-delay sequence is defined as in Definition 2.2 except for
the following changes. The delay edges are the edges on the delay path rather than
edges that are only incident on that path. The intervals of ranks do not overlap.
Instead, the smallest rank in ri is equal to the maximum rank in ri+1 plus m; that
is, neighboring intervals are separated by a gap of m − 1 (integral) ranks. As an
additional component, the delay sequence includes ' integers s1, . . . , s� such that s =
(
∑�

i=1 si) − ' + 1. In an active delay sequence, each delay edge ei must be traversed
by si packets with a rank from ri.

Lemma 4.2. Suppose a packet p0 that has a routing path of length dp0 takes
m · dp0 +T or more steps to reach its destination. Then there is an active (p0, s, ', r)-
delay sequence with s ≥ T + r + (m− 2) · '.

Proof. The construction of the active delay sequence is analogous to the one used
in section 2 for the ghost packet protocol. In fact, the construction becomes slightly
simpler as we have to consider neither delays because of blocked edges nor delays
due to ghost packets. The shortest path restriction ensures that all recorded delay
packets are distinct. (For a proof, see [11, Lemma 2.3.]) Neighboring intervals of
ranks are separated by a gap of m − 1 ranks because the rank of a packet increases
by m whenever the packet moves along an edge.

It remains to prove the bound on the parameters of the delay sequence. Recall
that r =

∑�
i=1 |ri| with |ri| denoting the length of the interval of ranks assigned to

delay edge ei. The highest rank in the recorded sequence is birth(p0) + (dp0 − 1) ·m,
which is the rank of p0 on the last edge of its routing path, and the lowest rank is
birth(ps), which is the rank of ps on the first edge of its routing path. As neighboring
intervals of ranks are separated by a gap of m− 1 ranks, we get

r = birth(p0)− birth(ps) + (dp0
− 1) ·m− ('− 1) · (m− 1) + 1

= birth(p0)− birth(ps) + dp0 ·m− ' · (m− 1).(9)
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Define t to be the number of time steps covered by the construction, i.e., the time
from the birth of the packet ps to the arrival of the packet p0 at its destination. Then

t ≥ birth(p0)− birth(ps) + dp0 ·m+ T

(9)
= r + (m− 1) · '+ T.(10)

Each of the t time steps recorded in the delay sequence is either one of s delays or
one of ' packet movements. Therefore, t = s+ ', and we can conclude

s = t− '
(10)

≥ r + (m− 2) · '+ T,

which completes the proof of Lemma 4.2.
Now fix an arbitrary packet p0, and suppose that p0 needs more than dp0 ·m+ T

time steps to reach its destination. Then Lemma 4.2 yields that a (p0, s, ', r)-delay
sequence is active with

s ≥ r + (m− 2) · ' ≥ r + '(11)

for m ≥ 3. Hence, at least r + ' packets are needed for an active (p0, s, ', r)-delay
sequence. However, we will show that the expected number of packets that pass the
delay edges and have the corresponding rank is at most (1− ε) · r. Hence, this event
is very unlikely.

Suppose that the delay edges and the range of ranks for each delay edge are fixed.
For j ∈ r1 ∪ · · · ∪ r� and 1 ≤ i ≤ ', let the binary random variable Xg

j,i be one if
and only if generator g generates a packet that has rank j ∈ ri at delay edge ei. Let
X =

∑
j,i,g X

g
j,i. Then the probability that a fixed delay sequence becomes active is

bounded by Pr[X ≥ s].
The expected number of packets traversing a fixed edge e with some fixed rank

r is at most λ = 1 − ε because the rank of a packet p at edge e corresponds to its
injection time plus an offset that depends on the distance between e and the source
node of p. Therefore,

E[X] ≤
�∑

i=1

(1− ε) · |ri|

≤ (1− ε) · r
(11)

≤ (1− ε) · s.(12)

Thus, applying a Chernoff bound (see Lemma 1.1) yields

Pr[X ≥ s] = Pr

[
X ≥

(
1 +

ε

1− ε
)
· (1− ε) · s

]

(12)

≤ e
−min

{
ε

1−ε ,(
ε

1−ε )
2
}
·(1−ε)·s/3

≤ e−ε2·s/3.(13)

So far, we have only calculated the probability that a fixed delay sequence becomes
active. It remains to multiply this probability with the number of possible delay
sequences. The number of possibilities to choose the ri’s is

(
r

�−1

)
. The number of
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possibilities to choose the si’s is
(
s+�−1
�−1

)
. Enumerating explicitly all possible delay

paths, as we have done for the ghost packet protocol, would give us another factor
of ∆�. However, we can avoid this factor in the case of the growing rank protocol
because the delay path is fixed when the delay packets and the si’s are specified.

The technical problem with the last assumption is that we supposed before, when
estimating the probability for X ≥ s, that the delay path is fixed whereas we assume
here that the delay packets and, hence, the random variables Xg

j,i are fixed. This
dilemma can be solved by constructing the delay path iteratively. Suppose we have
specified the delay path up to the dth edge for some d ≥ 0 starting from the destination
of packet p0. At this point only some of the Xg

j,i random variables above are well
defined, namely, those variables with i ≤ d. The specification of the outcome of these
variables, however, gives us the delay packets p0, . . . , pk for k =

∑d
i=1 si, and following

the path of packet pk backwards for one edge gives us the next edge on the delay path.
In this way, the delay path and the outcome of the Xg

j,i variables can be determined
alternately. Note that the fact that the definition of some random variables depends
on the outcome of other variables does not affect the applicability of the Chernoff
bounds because their outcome remains independent.

Combining all these results, the probability that a (p0, s, ', r)-delay sequence for
a fixed set of parameters p0, s, ', and r is active is bounded above by(

r

'− 1

)
·
(
s+ '− 1

'− 1

)
· Pr[X ≥ s]

(11)(13)

≤
(es

'

)2�

· e−ε2·s/3.

Now we can bound the probability that packet p0 has a long routing time. If
this packet takes dp0

· m + T steps, then a (p0, s, ', r)-delay sequence is active with
s ≥ T + r+(m− 2) · '. This constraint yields s ≥ T, ' ≤ s/(m− 2), and r ≤ s. Hence,
the probability for this event is bounded above by

∞∑
s=T

s/(m−2)∑
�=1

s∑
r=1

(es

'

)2�

· e−ε2·s/3 (11)

≤
∞∑

s=T

s2 · (e(m− 2))
2s/(m−2) · e−ε2·s/3

=
2−Ω(ε2·T )

ε2

if m is chosen appropriately, that is, if we set m ≥ k · log(1/ε)/ε2 +2 for a sufficiently
large constant k. From this result the bounds on the routing time given in Theorem
4.1 can be derived analogously to the calculations for the ghost packet protocol in
section 2.

5. The black box transformation. In this section, we present a black box
transformation scheme for arbitrary static, oblivious routing protocols using the stochas-
tic injection model. In section 6, we will show that the results for the stochastic model
can be adapted to the adversarial model, too.

In the adversarial model, the bounds on the routing time obtained by our trans-
formation are almost equivalent to the results achieved by Rabani and Tardos [13].
However, in addition we prove the stability of the dynamic protocols. Furthermore,
in the stochastic model, we show an interesting extra feature: the dynamic protocol
delivers each packet in a time corresponding to its individual path length even if the
transformed static protocol does not provide that property. Moreover, we show that
our black box transformation ensures a fast recovery from any worst-case scenario.

Our transformation scheme is especially simple and efficient if the given static
protocol is pure. A protocol is called pure if it does not use any control packets and
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does not duplicate any of its packets; that is, every packet crosses one edge after the
other on its routing path, and no other messages are sent. The main results of this
section are listed in the following theorem.

Recall that the congestion C of a static routing problem is the maximum number
of paths in a path collection crossing the same edge, the dilation D is the maximum
length of a path in a path collection, and the complexityM of a static routing problem
is the maximum of the number of edges in the network and paths in the path collection.
Further, the complexityN of a dynamic routing problem is defined to be the maximum
of the number of generators, the number of edges, and 1/(1− λ).

Theorem 5.1. Let S denote any set of paths in an arbitrary network. Consider
any static routing protocol P that sends packets along every collection of paths or
subpaths from S in at most γC + δD +O(logαM) time steps, w.h.p. Then P can be
transformed into a dynamic routing protocol P ′ possessing the following properties in
the stochastic model. Suppose packets are injected at rate λ and are to be routed solely
along paths or subpaths from S. Then the expected routing time of a packet following
a path of length d is at most

(1) O(ε−2(δd + logαN)) if α ≥ 1, γ ≥ 1 are constants, δ = Θ(logβ N) for some
constant 0 ≤ β ≤ 1 and λ = (1− ε)/γ for some ε > 0;

(2) O((ε/2)−
2

1−β (d logαβ N + logαN)) if α ≥ 1, γ ≥ 1 are constants, δ = Cβ for
some constant 0 < β < 1 and λ = (1− ε)/γ for some ε > 0;

(3) O(ε−2(d logN + log2N)) if the bound on the runtime of P is C · D and
λ = (1− ε)/ logN for some ε > 0.

All time bounds also hold w.h.p. Furthermore, the recovery time in all three cases is
equal to the respective time bound with d replaced by D(S), the length of the longest
path in S. If P is pure, then P ′ is stable for any λ < 1.

Notice that the bounds on the expected routing time of a packet imply stability
up to the specified injection rate, depending on the parameters of the static protocol.
The stability of pure protocols, however, is independent of these parameters, although
the delay of a packet might become exponential in its path length if the injection rate
is too high.

Certainly, more than the three cases stated in the theorem can be solved with
the techniques below, but we believe that these cases are the most natural ones. Case
1 covers the case in which γ, δ, and α are constants, which we believe is the most
important case. Let us apply Theorem 5.1 to some of the static protocols mentioned
in section 1.1.1.

• Routing along simple paths in arbitrary networks. The static protocol of Os-
trovsky and Rabani [12] with runtime O(C +D+ log1+κM), w.h.p., for any
constant κ > 0 can be transformed into a dynamic protocol that guarantees
a routing time of O(d+log1+κN), w.h.p., for any λ up to some constant < 1.

• Routing along arbitrary paths in arbitrary networks. The simple static proto-
col with runtime (1 + κ) · C + O(D logM), w.h.p., for any constant κ > 0,
presented by Leighton, Maggs, and Rao in [9], can be used to obtain a dy-
namic protocol that guarantees a routing time of O(d logN), w.h.p., for any
constant λ < 1.
• Greedy routing along simple paths in arbitrary networks. Any greedy routing

protocol can be transformed into a dynamic protocol that delivers each packet
in time O

(
d logN + log2N

)
, w.h.p., for any constant λ < 1/ logN . We point

out that the dynamic protocol is greedy, too.

The first and second examples follow from case 1 of the theorem, whereas the last
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example follows from case 3. Since all of these protocols are pure, their dynamic
counterparts are stable for any λ < 1.

In the following we show how to transform P into a dynamic protocol P ′ so that
Theorem 5.1 holds.

5.1. Description of P ′. Let P be any static, oblivious routing protocol, and
let the injection rate λ be 1 − ε for some ε > 0. Consider the time to be partitioned
into consecutive intervals of length T . Let cT and dT denote suitable integers. (These
parameters will be specified later.) Every newly injected packet waits until the begin-
ning of the next T -interval. Afterwards it tries to traverse dT edges of its path in each
T -interval until it reaches its destination. Whenever it manages to traverse dT edges
within a T -interval, it waits for the next T -interval. If it fails to traverse dT edges in
some T -interval, it is declared a failed packet for the rest of the routing.

P ′ now works as follows: At the beginning of each T -interval, P is started with
parameters cT , used as a bound for the congestion, and dT , used as a bound for the
dilation. All packets that have not failed yet are allowed to participate in P. After
(1−ε2/2)T time steps of the T -interval, P is halted. (All packets that did not manage
to traverse dT edges up to this point fail.) The remaining T · ε2/2 time steps are
reserved for the failed packets. To the failed packets, a contention resolution rule
called shortest-in-system (SIS) is applied. SIS always gives precedence to the packet
most recently injected (i.e., of youngest age) in case several packets contend for the
same edge.

If P is pure, then we can improve P ′ so that it becomes greedy; i.e., a packet
only has to wait because the next edge on its path is used by another packet. In the
pure case, we use SIS as a primary contention resolution rule but we manipulate the
age of the nonfailed packets as follows. (As before, a packet that has not traversed
i · dT edges by the end of its ith T -interval is declared a failed packet for the rest of
its life.) Every newly injected packet gets an initial age of ∞ until the beginning of
the next T -interval. Afterwards, as long as it has not failed or reached its destination
yet, its age is set to 0 at the beginning of each T -interval. Whenever it traverses i · dT
edges before the end of the ith T -interval in which it participates, its age is set back
to ∞ for the rest of that interval. The age of a failed packet is defined by its injection
time. In each time interval, the packets with age 0 are scheduled according to protocol
P. Notice that packets that participate in P always have a lower age than the other
packets. Hence, if we use SIS as primary contention resolution rule, we can allow the
failed packets to be routed together with the other packets without disturbing the
schedule of P.

In order to analyze the performance of P ′, we need to study the behavior of SIS.
Bounding the routing time for shortest-in-system. In this section we bound the

routing time for SIS, given the following model.
Suppose that packets are injected with rate λ, using our standard stochastic

model. A packet is said to be old if the difference between the actual time step and
its injection time is more than K. Otherwise it is called young. As long as a packet
is young, it is allowed to set its age to an arbitrary value in each step. The age of an
old packet is determined by its injection time. The probability that a packet becomes
old before it reaches its destination is assumed to be at most pf (which denotes its
failure probability). The event that a packet is old may influence the probability that
another packet may also be old. We model these dependencies via a dependency graph
G = (V,E). Each node V represents a (generator, time step)-pair. Edges are chosen
in G such that for any independent set {(g1, t1), . . . , (gk, tk)} ∈ V with k ∈ N, under
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the assumption that gi injects a packet Pi at step ti, the probability that Pi becomes
old for all i ∈ {1, . . . , k} is at most pkf . That is, for a proof of an upper bound on the
number of old packets, any independent set of (g, t)-pairs can be viewed as having
independent failure probabilities.

For this model we show the following lemma.

Lemma 5.2. For any 0 < ε < 1 and K ≥ 0, the SIS protocol ensures that, under
the above model with injection rate λ = 1− ε, failure probability pf and a dependency
graph G of maximum degree b, the expected routing time of a packet following a path
of length d is at most

(1) O((d/ε) · (d(ε−1 + b2) +K)) if pf ≤ ε/(2(4d+ 1)), and
(2) O((K + d) · d/ε2d) otherwise.
Proof. We start by proving item 2. Suppose that there is a packet P that has a

routing time of more than
∑d

i=1 τ/ε
2i steps for some τ ≥ 2K. In this case there must

exist an i ∈ {1, . . . , d} for which P was delayed for at least τ/ε2i steps at the ith edge
of its path. Consider the minimum i for which this holds. Let e be the ith edge on P ’s
path. Then the time interval I from the injection of P till the time when P waited at
e for the τ/ε2ith time consists of at most

t =

i∑
j=1

τ/ε2j ≤ τ · 1

ε2
· (1/ε)

2i − 1

(1/ε)2 − 1

= τ · (1/ε)
2i − 1

1− ε2

time steps. Let the random variable X denote the number of (young and old) packets
generated during I with paths containing e. Since P is allowed to choose its age in an
arbitrary way only during the first K steps of its life, it holds that if P had to wait
for at least τ/ε2i steps at e, then X ≥ τ/ε2i −K. Clearly,

E[X] ≤ (1− ε) · t = 1

1 + ε
· τ((1/ε)2i − 1)

≤
(
1− ε

1 + ε

)
(τ/ε2i −K).

This is less than the number of packets generated in I that have to delay P at e.
Because of the independence assumptions in our stochastic injection model we can
apply Chernoff bounds (see Lemma 1.1) to show that for any 0 < ε ≤ 1 the probability
that p is delayed by at least τ/ε2i packets at e is at most

Pr
[
X ≥ (1 + ε)

(
1− ε

1+ε

)
(τ/ε2i −K)

]
≤ e−ε2·(1− ε

1+ε )·(τ/ε2i−K)/3

≤ e−ε2·(1/2)·(τ−K)(1/ε2i)/3 ≤ e−τ ·(1/ε)2(i−1)/12 .

Hence the probability that the routing time of P exceeds
∑d

i=1 τ/ε
2i is at most

d∑
i=1

e−τ ·(1/ε)2(i−1)/12 ≤ d · e−τ/12 .
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Thus the expected routing time of P is at most

d∑
i=1

2K/ε2i +
∑

τ≥2K

(
d∑

i=1

(τ + 1)/ε2i

)
· d · e−τ/12

≤ d · 2K/ε2d +
∑

τ≥2K

(d(τ + 1)/ε2d) · d · e−τ/12

= O
(
(K + d) · d/ε2d) .

Next we prove item 1. Suppose that there is a packet P that has a routing time
of more than K + d · 4τ/ε steps for some τ ≥ K. In this case there must exist an
i ∈ {1, . . . , d} for which P was delayed for at least 4τ/ε time steps at the ith edge
of its path while it was already old. Let I be a time interval covering 4τ/ε of these
steps. Furthermore, let the random variable X denote the number of young packets
that delayed P in I, and let the random variable Y denote the number of old packets
that delayed P in I. It clearly holds that

Pr[X + Y = 4τ/ε] ≤ Pr[X ≥ τ(4/ε− 1)] + Pr[Y ≥ τ ].

We first bound the probability that X ≥ τ(4/ε− 1). It holds that

E[X] ≤ λ(|I|+K) = (1− ε)(4τ/ε+K).

Because of the independence assumptions in our stochastic injection model, it follows
that

Pr[X ≥ (1 + ε
2(1−ε) )(1− ε)(4τ/ε+K)] ≤ e−min{( ε

2(1−ε) )
2, ε

2(1−ε)}(1−ε)(4τ/ε+K)/3

≤ e−c1·ε·τ

for some constant c1 > 0. Since (1 + ε
2(1−ε) )(1− ε) = 1− ε/2 and

4τ

ε
− (1− ε

2 )

(
4τ

ε
+K

)
≥ 2τ −K ≥ τ ,

we also have

Pr[X ≥ τ(4/ε− 1)] ≤ e−c1·ετ .

Next we bound the probability that Y ≥ τ . Since P can be delayed in I only by old
packets that are younger than P, we get with pf ≤ ε/(2(4d+ 1)) that

E[Y ] ≤
(
K +

d · 4τ
ε

)
· pf ≤ τ

2
.

In order to prove a tail estimate for Y, we need the following claim which is due to
Rabani and Tardos [13]. (We present their result in a slightly improved form.)

Claim 1. If X1, . . . , Xn are binary random variables with a dependency graph of
degree at most d and E[Xi] ≤ p for all i, then for any δ > 0,

Pr[S ≥ (1 + 2δ)pn] ≤ 4d

(
eδ

(1 + δ)1+δ

)p·n/(2d)

.
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Proof. Any graph of degree d ≥ 1 can be partitioned into at most d+1 indepen-
dent sets, and therefore into m ≤ c · d+(d+1) independent sets, each of size at most
n/(c · d) for any c ∈ N. Let us choose c = 2, and let the corresponding set sizes be
n1, . . . , nm. Let Si denote the sum of the variables in set i. Since set i is independent
and E[Xi] ≤ p for all i,

Pr[Si ≥ p · ni + δpn/(2d)] ≤ Pr[Si ≥ (1 + δ)pn/(2d)] ≤
(

eδ

(1 + δ)1+δ

)p·n/(2d)

according to the Chernoff bounds. Thus we obtain

Pr[S ≥ (1 + 2δ)pn] ≤ Pr


 ∨

i∈[m]

Si ≥ p · ni + δpn/(2d)




≤ 4d

(
eδ

(1 + δ)1+δ

)p·n/(2d)

.

Using this claim, we obtain that

Pr[Y ≥ τ ] ≤ 4b · e−c2·τ/b

for some constant c2 > 0.
The probability bounds for X and Y and the fact that there are d possibilities to

select an edge where P experiences a high delay imply that the probability that the
routing time of P exceeds K + d · 4τ/ε is at most

d
(
e−c1·ετ + 4b · e−c2·τ/b

)
.

Thus the expected routing time of P is at most

(
K +

d∑
i=1

4K/ε

)
+
∑
τ≥K

(K + d · 4(τ + 1)/ε) · d
(
e−c1·ετ + 4b · e−c2·τ/b

)

≤ d · 5K/ε+
∑
τ≥K

d · 5(τ + 1)/ε · d · e−c1·ετ +
∑
τ≥K

d · 5(τ + 1)/ε · d · 4b · e−c2·τ/b

= O

(
K · d
ε

+
d2

ε2
+
d2 · b2
ε

)
= O

(
d
ε (d(

1
ε + b2) +K)

)
.

5.2. Analysis of P ′ for nonpure P. First let us introduce some notation.
Given a time interval I, |I| denotes its size, i.e., the time range it includes. A packet
p is called a P-packet in a T -interval I if P is applied to p in I, i.e., p was generated
before I and has not failed nor reached its destination yet.

Bounding the routing time of successful packets. To prove bounds on the routing
time of successful packets, we show the following lemma.

Lemma 5.3. Let S denote any set of paths, and let φ be any constant greater than
0. Consider any static routing protocol P that sends packets along any path collection
(consisting of paths from some specified set) with congestion C and dilation D in at
most γC + δD + O(logαN) time steps, with probability at least 1 − N−φ/2, where
α, γ, δ ≥ 1. Then the following hold for each T -interval I.
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(1) If γ = Θ(1), δ = Θ(logβ N) for some constant 0 ≤ β ≤ 1, λ = (1 − ε)/γ
for some ε > 0, dT = (logN)α−β , and T = Θ(ε−2(φ logN + logαN)) is
sufficiently large, then with probability at least 1−N−φ, P ′ requires at most
(1− ε2/2)T time steps in I to send any fixed P-packet along dT edges.

(2) If γ = Θ(1), δ = Cβ for some constant 0 < β < 1, λ = (1 − ε)/γ for

some ε > 0, dT = (logN)α(1−β), and T = Θ((ε/2)−
2

1−β (φ logN + logαN)) is
sufficiently large, then with probability at least 1−N−φ, P ′ requires at most
(1− ε2/2)T time steps in I to send any fixed P-packet along dT edges.

(3) If the runtime of P is at most C · D, λ = (1 − ε)/ logN for some ε > 0,
dT = logN, and T = Θ(ε−2φ log2N) is sufficiently large, then with probability
at least 1−N−φ, P ′ requires at most (1− ε2/2)T time steps in I to send any
fixed P-packet along dT edges.

Proof. First, we bound the expected number of P-packets that participate in a
T -interval. Consider any fixed edge e. Let the random variable Xe

t denote the num-
ber of packets generated at time step t that intend to cross e. Clearly, E[Xe

t ] ≤ λ.
Furthermore, let the binary random variable Xg

t,k be 1 if and only if generator g gen-
erates at time step t a packet that has to cross e as kth edge. Then it holds that
Xe

t =
∑

g,kX
g
t,k. Now, let us consider some fixed T -interval I that starts at time t0.

Since we require each packet to traverse i · dT edges till the end of the ith T -interval
in which it participates, the expected number of P-packets that intend to cross e in
I is given by

∑
g

∑
i≥0

T−1∑
j=0

dT−1∑
k=0

E[Xg
t0−(i+1)T+j,i·dT +k] =

∑
g

∑
i≥0

dT−1∑
k=0

T · E[Xg
t0,i·dT +k]

=
∑
g

∑
d

T · E[Xg
t0,d

]

≤ T · λ,
because Pr[Xg

t1,d
= 1] = Pr[Xg

t2,d
= 1] for any t1, t2, since the injection of packets is

independent of the time step.
Now we bound T so that with probability at least 1−N−φ the P-packets partic-

ipating in some T -interval I are successful in I. Let us assume that λ = (1− ε)/γ for
some ε > 0 (resp., λ = (1− ε)/ logN in case 3). We now consider the three cases for
the choice of γ and δ given in Lemma 5.3.

Case 1. γ = Θ(1) and δ = Θ(logβ N) for some constant 0 ≤ β ≤ 1.
From above we know that the expected number of P-packets participating in a

T -interval that cross some fixed edge is at most λT .
Suppose that ε ≤ 7/8. Since the injection of a packet is independent of the in-

jection of other packets, we can use a Chernoff bound to show that the probability
that the congestion caused by P-packets exceeds (1 + ε)λT at some fixed edge is at

most e−ε2λT/3. Hence, for every φ > 0 there is a t(ε, φ) = Θ( φ
ε2 logN) such that for

all T ≥ t(ε, φ), the probability is at least 1 − N−φ/2 that the congestion caused by
P-packets in I is at most (1 + ε)λT . Assume in the following that T ≥ t(ε, φ). Set
cT = (1 + ε)λT and dT = logψ N . According to the assumptions of Lemma 5.3, the
runtime of P, given a path collection with congestion cT and dilation dT , is at most
γcT + δdT +O(logαN) with probability at least 1−N−φ/2. Hence, the time required
by any fixed P-packet participating in I to be successful is at most

γ · (1 + ε)λT + δ logψ N +O(logαN) = (1− ε2)T + δ logψ N +O(logαN)
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with probability at least 1 − N−φ. This time bound is at most T (1 − ε2/2) if T ≥
2
ε2 (δ logψ N +O(logαN)). (The remaining T · ε2/2 time steps will be important when
considering the failed packets.)

Now suppose that ε > 7/8. In this case, λ < 1/(8γ). Thus, according to the
Chernoff bounds the probability that the congestion caused by P-packets exceeds
T/(4γ) can be made as small as N−φ for any constant φ > 0 if T = Θ(φ logN)
is chosen large enough. Set cT = T/(4γ) and dT = logψ N . Analogous to above, the
routing time required by the P-packets participating in I to be successful can be made
as small as T (1−ε2/2) with probability of at least 1−N−φ if T = Θ(δ logψ N+logαN)
is chosen large enough.

In both cases for ε, the bound for T is (asymptotically) minimal for β+ψ = α. So
altogether T = Θ( 1

ε2 (φ logN + logαN)) suffices to guarantee that any fixed P-packet
successfully manages a T -interval with probability at least 1−N−φ.

Case 2. γ = Θ(1) and δ = Cβ for some constant 0 < β < 1.
If ε ≤ 15/16, we set cT = (1+ε)λT and dT = logψ N . As in Case 1, the probability

is at most N−φ/2 that the congestion in I exceeds cT if T = Θ( φ
ε2 logN) is sufficiently

large. In this case, the time required by any fixed P-packet participating in I to be
successful is at most

γ · (1 + ε)λT + δ logψ N + logαN ≤ (1− ε2)T + T β logψ N + logαN

with probability at least 1−N−φ. It holds that

logαN ≤ ε2

4
· T if T ≥ 4

ε2
· logαN

and

T β logψ N ≤ ε2

4
· T if ψ = α(1− β) and T ≥ (ε/2)−2/(1−β) logαN.

Thus, if T = Θ((ε/2)−2/(1−β) logαN) is sufficiently large, then

(1− ε2)T + T β logψ N + logαN ≤ (1− ε2/2)T.

Hence T = Θ((ε/2)−2/(1−β)(φ logN + logαN)) suffices to ensure that any fixed P-
packet successfully manages a T -interval with probability at least 1−N−φ.

If ε > 15/16, we set cT = T/(8γ) and dT = logψ N . Similar to Case 1, the
probability is at most N−φ/2 that the congestion in I exceeds cT if T = Θ(φ logN) is
sufficiently large. In this case, the time required by any fixed P-packet participating
in I to be successful is at most

γ · T/(8γ) + δ logψ N + logαN ≤ T/8 + T β logψ N + logαN,

with probability at least 1−N−φ. This is at most (1− ε2/2)T if

T β logψ N ≤ T/4 and logαN ≤ T/8,

which is true if ψ = α(1 − β) and T = Θ((ε/2)−2/(1−β) logαN) is sufficiently large.
Hence, if T = Θ((ε/2)−2/(1−β)(φ logN + logαN)), then also in this case any fixed
P-packet successfully manages a T -interval with probability at least 1−N−φ.

Case 3. The runtime of P is at most C ·D.
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Assume that λ = 1−ε
log N . If ε ≤ 7/8, we set cT = (1 + ε)λT and dT = logN . As

above, it can be shown that the probability is at most N−φ that the congestion in I
exceeds cT if T = Θ( φ

ε2 log2N) is sufficiently large. In this case, the time required by
any fixed P-packet participating in I to be successful is at most

(1 + ε)λT · logN = (1− ε2)T
with probability at least 1−N−φ.

If ε > 7/8, then we set cT = T/(2 logN) and dT = logN . If T = Θ(φ log2N)
is sufficiently large, the probability is at most N−φ that the congestion in I exceeds
cT . In this case, the time required by any fixed P-packet participating in I to be
successful is at most

T

2 logN
· logN ≤ (1− ε2/2)T

with probability at least 1−N−φ.
It follows for Lemma 5.3(1) that if a packet following a path of length d successfully

manages all T -intervals, its runtime is bounded by

O

((
d

logψ N
+ 1

)
1

ε2
logαN

)
= O

(
1

ε2
(δd+ logαN)

)
.

Similarly, for Case 2, the runtime of a packet following a path of length d that suc-
cessfully manages all T -intervals is bounded by

O

((
d

logψ N
+ 1

)
(ε/2)−

2
1−β logαN

)
= O

(
(ε/2)−

2
1−β

(
d logαβ N + logαN

))
,

and for Case 3 the runtime of the packet is bounded by

O

((
d

logN
+ 1

)
1

ε2
log2N

)
= O

(
1

ε2
(
d logN + log2N

))
.

These time bounds match the time bounds given in Theorem 5.1 if a packet never
fails. According to Lemma 5.3, the probability that a packet fails in some T -interval
can be made polynomially small in N if λ is sufficiently small. Hence, in this case all
time bounds hold w.h.p. It remains to bound the runtimes of failed packets to be able
to compute the expected time a packet needs to reach its destination.

Bounding the routing time of failed packets. Next we bound the runtime of failed
packets under the assumption that the injection rate is sufficiently small, that is, each
individual packet is successful in every T -interval, w.h.p. For this, we will show how
to apply Lemma 5.2 to bound the expected routing time of a failed packet by N c for
some constant c. Combined with the upper bound of N−φ on the probability that
a packet fails, this will result in an expected routing time not much larger than the
time that the packet requires if it does not fail in any of its T -intervals, provided
that φ ≥ c. This yields the bounds for the expected routing time in Theorem 5.1 and
implies that P ′ is stable.

Now we show how to apply Lemma 5.2. First, we change the situation that only
every 2

ε2 th step can be used by a failed packet to a situation in which every time
step can be used by a failed packet. For this, we replace each generator g by 2/ε2

generators g1, . . . , g2/ε2 , where gi is responsible for the simulation of the behavior of
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g at time steps t with (t mod 2/ε2) + 1 = i. Furthermore, we assume each time step
to represent now 2/ε2 time steps in the original situation. Let us consider some fixed
edge e. For any generator g and time step t in the new situation, let the binary random
variable Y g

t be 1 if and only if g generates a packet at step t that intends to cross e
and that fails in some T -interval of the original situation. From Lemma 5.3 we know
that Pr[Y g

t = 1] can be made as small as N−φ for any constant φ > 0.

If the probabilities Pr[Y g
t = 1] were independent for different Y g

t , we could model
the injection of failed packets as a simple stochastic injection model with injection
rate λ = Pr[Y g

t = 1] · 2/ε2. For Pr[Y g
t = 1] · 2/ε2 ≤ 1/D(S), it would follow directly

from Lemma 5.2 (choose K = 0 and λ = 1/D(S)) that the routing time of a failed
packet is less than Nφ if φ is sufficiently large.

Coping with the dependencies. Unfortunately, there can be high dependencies
among failures of packets. In order to incorporate these dependencies in the model of
Lemma 5.2, we construct a dependency graph G = (V,E) that has a node (g, t) for
each random variable Y g

t , and in which two nodes (g, t) and (g′, t′) are connected in
G if and only if t−2T ·(D(S)+1) ·(ε2/2) ≤ t′ ≤ t+2T ·(D(S)+1) ·(ε2/2). Since there
are 2N/ε2 generators, the maximum degree of G is at most (4T ·(D(S)+1)+2/ε2) ·N,
which is polynomial in N . In order to apply Lemma 5.2, we need to show that for
any independent set S ⊆ V, the probability that Y g

t = 1 for all (g, t) ∈ S is at most
N−φ|S| for any constant φ > 0 (depending on T ).

Recall that the proof of Lemma 5.3 bounds the failure probability of a packet
within a T -interval I solely by considering the injection events of packets that could
have still been successful at the beginning of I and the behavior of P within I. Further
recall that the proof of Lemma 5.3 only uses the congestion (which is upper bounded
by the injection events) in I to obtain a probability bound for the success of P. Hence
the space Ωg,t of relevant outcomes that need to be considered to obtain a probability
of at most N−φ for the random variable Y g

t to be 1 can be limited to contain solely
injection events of packets that can participate in P in some T -interval together with
the packet generated by g at step t. Since a packet can be alive without a failure for at
most T ·(D(S)+1)·(ε2/2) time steps, the outcome spaces of any two random variables

Y g
t and Y g′

t′ with either t′ < t−2T ·(D(S)+1) ·(ε2/2) or t′ > t+2T ·(D(S)+1) ·(ε2/2)
must be disjoint (that is, they do not contain a common injection event (g′′, t′′)). Thus,
using the proof of Lemma 5.3, the probability that both of these random variables
are 1 can be shown to be at most N−2φ. The same argument extends to any set of
random variables that form an independent set in G.

In order to set the remaining parameters in the model of Lemma 5.2, we set λ
equal to the given injection rate and K = 0. (Successful packets cannot interfere with
failed packets.) According to Lemma 5.2, for these parameters the expected routing
time of any failed packet is at most Nφ if φ is large enough. This completes the proof
that for a small enough λ, even when considering failures, the expected routing time
of any fixed packet is within the time bounds given in Theorem 5.1.

Recovery. We show that P ′ recovers very quickly from any worst-case scenario.
Clearly, the SIS rule instantly recovers from any worst-case scenario because younger
packets are always preferred. Similar, we show for P ′ that after a certain amount of
time any configuration of the network has no influence on the runtime of the newly
generated packets anymore, concerning our probability bounds.

Consider any worst-case scenario for the injection of packets that ends at time step
t0. Since each packet has to traverse dT edges in each T -interval in order to remain

successful, R = (�D(S)
dT
�+ 1) · T time steps after t0 there can be no successful packet



FROM STATIC TO DYNAMIC ROUTING 1153

anymore that was generated at time step t0 or earlier. This implies that afterwards
the congestion in a T -interval is based only on packets injected after the worst-case
scenario, which according to our stochastic injection model is independent of whatever
happened during or before a worst-case scenario. Since in the proof of Lemma 5.3 we
used the worst-case assumption that all packets have been successful so far to upper
bound the congestion in a T -interval, all probability bounds in Lemma 5.3 are again
valid R steps after the worst-case scenario. That is, the probability of a packet to fail
in a T -interval is again polynomially small in N . This ensures that sufficiently few
packets fail. Once a packet fails, its age is determined by its injection time. Since SIS
is used for the failed packets, a failed packet generated at a time step t > t0 cannot be
blocked by the packets generated during the worst-case scenario. Hence P ′ recovers
after (�D(S)

dT
�) + 1) · T time steps. Substituting the right T for each of the three cases

(see Lemma 5.3) yields the recovery time given in Theorem 5.1.

5.3. Analysis of P ′ for pure P. The analysis for the successful packets is
the same as above. However, since we do not have reserved time slots for the failed
packets, we need a different analysis for them if P is pure.

Bounding the routing time of failed packets. Suppose that the injection rate is
sufficiently small, that is, each individual packet is successful in every T -interval,
w.h.p. For this, we will show how to apply Lemma 5.2 to bound the routing time of
a failed packet by N c for some constant c. Combined with the bound of N−φ on the
probability that a packet fails, this will result in an expected routing time not much
larger than the time that the packet requires if it does not fail in any of its T -intervals,
provided that φ ≥ c. This would yield the bounds for the expected routing time in
Theorem 5.1 and would imply that P ′ is stable.

Now we show how to apply Lemma 5.2. Let us consider some fixed edge e. For
any generator g and time step t, let the binary random variable Y g

t be 1 if and only
if g generates a packet at step t that intends to cross e and that fails in some T -
interval. From Lemma 5.3 we know that Pr[Y g

t = 1] can be made as small as N−φ for
any constant φ. Furthermore, similar to the case that P is nonpure, the event Y g

t = 1

causes at most (4T ·(D(S)+1)+1)·N other random variables Y g′
t′ to have a probability

of Pr[Y g′
t′ = 1] > N−φ, namely, those with t−2T ·(D(S)+1) ≤ t′ ≤ t+2T ·(D(S)+1).

In order to incorporate these dependencies in the model of Lemma 5.2, we again
construct a dependency graph G = (V,E) that has a node (g, t) for each random
variable Y g

t , and in which two nodes (g, t) and (g′, t′) are connected in G if and only
if t − 2T · (D(S) + 1) ≤ t′ ≤ t + 2T · (D(S) + 1). Thus the maximum degree of G is
(4T · (D(S) + 1) + 1) · N . Furthermore, in the model of Lemma 5.2 we set λ equal
to the given injection rate and K = D(S) · T . (Successful packets live for at most
D(S) ·T time steps.) According to Lemma 5.2, in this case the expected routing time
of any failed packet is at most Nφ if φ is large enough. This completes the proof that,
also for a pure P, for a small enough λ the expected routing time of any fixed packet
is within the time bounds given in Theorem 5.1.

Stability for any λ < 1. Next we consider the case that λ is arbitrarily close to
1. In this situation P might not be good enough to ensure that a packet manages
its T -interval with high probability. However, from Lemma 5.2 (set K = D(S) · T )
it directly follows that nevertheless P ′ remains stable for any λ < 1, although the
runtime of a packet might get exponential in the length of its path.

6. Adapting our results to the adversarial model. Consider any bounded
adversary of rate (w, λ). Set ε = 1−λ. For each injected packet p we choose uniformly
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and independently at random an initial delay of δp from the set {0, . . . ,K−1}, where
K = (k ·D+w)/ε2 and D is the length of a longest possible path. k will be specified
later, as it depends on the routing protocol for which we want to adapt the results.
After waiting δp time steps in its injection buffer, p chooses the actual time step as
its new injection time and participates in whatever routing protocol chosen. We say
that every packet with new injection time t touches an edge e at step t′ if e is the ith
edge on the routing path of p and t′ = t+ k · i. Let λ′ denote the maximum, over all
edges and time steps, of the expected number of packets that touch an edge in a time
step. Then the following lemma holds.

Lemma 6.1. λ′ ≤ 1− ε/2.
Proof. Consider some fixed edge e and time step t. The maximum number of

packets that touch edge e at step t is at most

(1− ε)w ·
⌈
k ·D +K

w

⌉
≤ (1− ε) · (k ·D + w) · (1 + 1/ε2).

Since each of these packets chooses a random initial delay out of a range of [(k ·D +
w)/ε2], it holds that

λ′ ≤ (1− ε) · (k ·D + w) · (1 + 1/ε2)

(k ·D + w)/ε2

≤ (1− ε) · (1 + ε2) ≤ 1− ε/2
for any ε ∈ [0, 1].

As is not difficult to verify, this lemma can be used to transfer all results presented
in this paper to the adversarial model. For the ghost packet protocol on general
networks, we choose k = 0. Then it follows from Lemma 6.1 that the expected number
of packets with a fixed rank r that traverse an edge e is at most 1− ε/2. Hence, the
analysis for the ghost packet protocol on general networks holds without any further
change also for the adversarial model. We have to add only w/ε2 to the delay bound
of the packets to include the random initial delay.

For the growing rank protocol we choose k = m. Then it follows from Lemma 6.1
that, for any edge e and rank r, the expected number of packets with rank r that
traverse e is at most 1− ε/2. This allows us to use the same analysis as that for the
proof of Theorem 4.1 to show that the delay of any packet is bounded by O( 1

ε2 (m ·
D + w) +m · logN) = O(m2 ·D +m · (w + logN)), w.h.p.

For the black box transformation it suffices to choose k = T (1/dT + 1/D). Then
we get that, for any edge e and T -interval I, the expected number of packets that
intend to cross e in I is at most T (1 − ε/2). In this case, the same analysis as in
section 5 can be used to show that, for instance, for γ = Θ(1) and δ = Θ(logβ N), the
delay of any packet is bounded by O( 1

ε2 (
1
ε2 δD+w+logαN)), w.h.p., if λ ≤ (1− ε)/γ.

7. Open problems. In this paper, we presented transformations of well-known
static routing algorithms (such as the ghost packet protocol and the growing rank
protocol) into efficient dynamic routing algorithms. We obtained, for instance, a
dynamic routing algorithm for arbitrary leveled networks that requires only buffers
of size depending on the injection rate and the maximum degree of the network to
be stable up to a maximum possible injection rate. This algorithm, however, uses
ghost or control packets. Although our analysis implicitly shows that these packets
are sent very rarely, the question arises whether or not control packets can be avoided
completely.



FROM STATIC TO DYNAMIC ROUTING 1155

Furthermore, we presented a black box transformation scheme applicable to every
static, oblivious routing algorithm. Our results show that it might be important for
static routing protocols to know the exact constant in front of the C in the runtime
bound, since this determines up to which injection rate the resulting dynamic protocol
ensures a small delay for the packets. It is an interesting question how large this
constant is for the known static routing protocols, and whether there exist static
routing protocols with runtime C +O(D + logN).
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Abstract. Conditions on a shared object type T are given that are both necessary and sufficient
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proof of the robustness of the consensus hierarchy for read-modify-write and readable objects.
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1. Introduction. A shared-memory distributed system consists of a number of
processes that communicate with one another by performing operations on shared
data objects. This paper studies asynchronous systems where processes take steps
at arbitrarily varying speeds. The wait-free model of fault tolerance is used: each
nonfaulty process must complete its task correctly even if any number of processes
experiences halting failures. The power of a system to solve problems depends on
the types of shared data objects that are available. Determining whether a given
collection of object types can be used to solve a given problem is therefore of great
importance in the design of distributed systems. A problem may, itself, be modelled
as a shared object type: processes pass their input to the object, and the object
returns the desired output. Thus, a question about computability may be formulated
as a question about implementations: Can one object type be implemented using a
given set of primitive object types? Herlihy [10] showed that the consensus problem,
in which each process begins with an input and all nonfaulty processes must agree on
one of the input values, plays a central role in the study of the power of object types.
He proved that objects that solve the consensus problem for n processes can be used,
along with read/write registers, to obtain a wait-free implementation of any object
for n or fewer processes. This leads to the idea of classifying object types according
to their consensus number [10, 14]. An object type T has consensus number n if n-
process consensus can be solved by using objects of type T and read/write registers,
but (n+ 1)-process consensus cannot. If there is no such n, the consensus number of
T is ∞. Similarly, the consensus number of a set S of types is the largest n for which
n processes can solve consensus using objects whose types are in S ∪ {register}, or ∞
if no such n exists.
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This paper addresses the problem of determining whether a given deterministic
object type has consensus number n. Two important classes of objects that include
most of the objects considered as primitives for distributed systems are studied: read-
modify-write (RMW) objects [16] and readable objects. It is reasonable to assume
that processes will be able to access the information stored in the data object in
some simple way. If processes may read the information directly, without altering
the object’s state, then the object is called readable. If the operation that reads the
information in the data object is combined with an update operation, so that the read
and update occur as a single atomic action, the object may be modelled as an RMW
object.

A readable object O is modelled by an I/O automaton whose state set is the

Cartesian product Q =×k∈Γ
Qk, where Γ is an index set and Qk is a set for each

k ∈ Γ. Neither Γ nor Qk must be finite. For each k ∈ Γ, processes may execute the
operation readk, which returns component k of the current state of O. In addition
to the read operations, the object may have an arbitrary set of other (deterministic)
operations defined on it. Each operation can update any set of components of the
state, and the set of components that are updated by an operation may depend on
the current state of the object. Any object type with a read operation that returns
the entire state of the object is readable; in this case, |Γ| = 1. An array of m 1-bit
registers is a readable object, with Γ = {1, . . . ,m} and Qk = {0, 1} for all k ∈ Γ.
Readable objects include arrays of registers whose elements can be read, copied, or
swapped atomically. An array of unbounded registers that can be read or used for
indirect addressing is another example of a readable object; in this case the state set

would be Q =×k∈N
N and an indirect write to component i updates the component

indexed by the number stored in component i.

An RMW object type allows various kinds of RMW operations to be performed
on it. Let V be the state set of the RMW object. Any function f : V → V defines
an RMW operation, denoted RMW f , that reads the current value, x, of the RMW
object, updates the value to f(x), and returns x. For example, a fetch&increment
operation applies the function f(x) = x+1, and a read operation applies the identity
function. An RMW object type is defined by the set F of functions mapping V to
itself that may be applied by the RMW operations. This class of objects includes
compare&swap, test&set, and fetch&add variables.

Previously, ad hoc arguments have been used to determine whether particular
object types can be used along with registers to solve n-process consensus. An excep-
tion was Herlihy’s proof [10] that 2-process consensus can be solved using registers
and RMW objects, where the RMW operations apply functions from the set F if and
only if F contains a function different from the identity. Herlihy also gave a necessary
condition on the set F to describe when RMW objects can be used with registers to
solve 3-process consensus. In this paper, a decision procedure is developed to deter-
mine whether given readable and RMW types with finite specifications can be used to
solve n-process consensus for any n. Jayanti and Toueg [15] showed that this question
is undecidable for arbitrary object types that are allowed to have infinite state sets.
It will be shown here that an RMW or readable type T can be used together with
registers to solve the consensus problem among n processes if and only if T satisfies
certain conditions which are decidable for types that have finite specifications. An
object type that satisfies the conditions is called n-discerning. This characterization
has been useful for studying the consensus numbers of multi-objects and transactional
objects, where processes can access more than one object in an atomic action [21, 22].
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Some work has been done on deciding whether a given task can be solved using
some particular types of shared objects. Biran, Moran, and Zaks [4] showed that one
can decide whether a given task can be solved in a message-passing system if at most
one process may fail. Chor and Moscovici [7] gave a decidable characterization of
tasks that can be solved by randomized algorithms that use registers only. Gafni and
Koutsoupias [9] showed that there is no algorithm which determines whether a given
task for three processes can be solved by read/write registers in a wait-free manner.
Herlihy and Rajsbaum [11] gave decidability results for the question of whether a
given task can be solved using various types of objects (registers, consensus objects,
and set consensus objects) in the presence of t process failures.

The proof that the property of being n-discerning is sufficient for the solvability of
n-process consensus will also provide upper bounds on the resources required to solve
the consensus problem. If an RMW or readable object type T can be used together
with registers to solve consensus among n processes, then there is a consensus protocol
that uses at most n− 1 objects of type T and 2(n− 1) registers. Furthermore, if T is
an RMW object type, each process takes O(n) steps in this protocol. It also follows
from the construction of the protocol that n-process consensus can be solved using
2(n− 1) registers and n− 1 objects, X2, . . . , Xn, where Xi’s type is i-discerning, for
each i.

The characterization of n-discerning types will be used in section 5 to obtain a
clear proof that the consensus hierarchy is robust [14] for RMW and readable objects.
This means that if n-process consensus can be solved using RMW and readable objects
of types T1, . . . , Tr and registers, then n-process consensus can also be solved using
only registers and objects of type Ti for some i. This robustness property allows the
consensus number of a set of RMW and readable types to be determined by finding
the consensus number of each type separately. Borowsky, Gafni, and Afek [5] claimed
that the consensus hierarchy is robust for all deterministic objects. A full version of
their paper is not yet available.

The n-discerning conditions for readable objects will also be used to generalize
a result about atomic snapshot objects. A snapshot object can be thought of as a
finite array of registers with an additional scan operation that reads the entire array
at once. It is known that the addition of the scan operation does not increase the
power of an array of registers to solve consensus, since the snapshot object can be
implemented from ordinary registers [1, 2, 3]. Here, it will be shown that the addition
of an atomic scan operation does not increase the power of any readable object type
to solve consensus.

2. Preliminaries. An object type is defined using a sequential specification,
which describes the operations that may be performed on the object and the responses
the object should return if the operations are performed sequentially. Formally, an
object can be specified as an I/O automaton (see [18]). Each operation causes a
state transition and returns a response. If the state transition and response are
uniquely determined by the current state of the object and the operation applied,
then the object is deterministic. When an object is accessed by more than one process
concurrently, its behavior can be specified by insisting that operations appear to occur
instantaneously at some time between their invocations and their responses. Such an
object is called linearizable [12]. This paper deals only with deterministic, linearizable
objects. For simplicity, it is assumed that all objects are oblivious: every process can
invoke every operation, and, for any operation, the state transition and response do
not depend on the process that invokes the operation.
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It is assumed that the designer of a consensus protocol may choose the initial
states of the shared objects. There is no real loss of generality in this assumption;
Borowsky, Gafni, and Afek [5] showed that if consensus can be solved when the initial
states are chosen by the programmer, then consensus can be solved using objects
initialized to a particular state, assuming there is some sequence of operations that
will move the object from the given initial state into any other state.

The systems studied here are completely asynchronous, so that algorithms must
exhibit correct behavior regardless of the way in which the steps of different processes
are interleaved by a scheduler. Algorithms are required to be wait-free [10]. This
means that the algorithm executed by each nonfaulty process must work correctly
even if other processes experience halting failures.

An implementation of an object of type T from objects O1, . . . , Om is a protocol
that uses only the shared objects O1, . . . , Om. This protocol consists of an algorithm
apply(op) for each process that can simulate every operation op on an object of type T .
The protocol should also specify the initial states for O1, . . . , Om to be used for any
possible initial state of the simulated object. If each process performs the apply routine
repeatedly, the responses returned should appear as if the operations were carried out
atomically on an object of type T . All implementations are assumed to be wait-free.

The consensus number of a set of object types is defined in terms of its ability
to solve the consensus problem. For the n-consensus problem, n processes each begin
with a private input value, and each nonfaulty process outputs a value in a wait-free
manner. The output values must all be the same, and every output must be the
input value of some process. These two conditions are called consistency and validity,
respectively.

The proofs that the property of being n-discerning is necessary for the solvability
of n-consensus are bivalency arguments. This type of proof was introduced by Fischer,
Lynch, and Paterson [8]. The following terminology will be used in the bivalency
arguments. The configuration of a protocol at any moment in its execution consists
of the state of every shared object, together with the internal state of every process.
Two configurations are indistinguishable to process P if the state of each shared object
and the internal state of P is the same in the two configurations. A configuration of
a consensus protocol is x-valent if all nonfaulty processes decide on the value x in all
executions continuing from that configuration. A configuration is called univalent if
it is x-valent for some x, and multivalent otherwise. A configuration is critical if it is
multivalent and the next step by any process will move the system into a univalent
configuration. The value that would be decided if a particular process takes the next
step after a critical configuration is called the critical value of that process.

3. Solving consensus with RMW objects. Consider an RMW type T with
state set V whose RMW operations can apply functions from the set F . This section
describes the power of a distributed system with n ≥ 2 processes, P1, . . . , Pn, to solve
consensus using objects of type T and registers. The sets V and F need not be finite.

Let v0 be a value in V . Partition the set of processes {P1, . . . , Pn} into two
nonempty teams, A and B. Associate a function fi ∈ F with each process Pi. The
functions fi need not be distinct. The type T is called n-discerning if there exist
choices for v0, A,B, f1, . . . , fn so that, in any schedule in which each process Pi applies
the single operation RMWfi to an object X which initially has value v0, every process
can determine (from the value returned by its operation) whether a process from team
A or a process from team B was the first process to take a step in the schedule. Such
a type T is called n-discerning since processes can easily use an object of type T to
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discern the difference between schedules that start with a process on team A from
those that begin with a process on team B. This description is formalized in the
following definition. The notation f ◦ g is used to denote functional composition:
(f ◦ g)(x) = f(g(x)).

Definition 1. Let n ≥ 2. The RMW type defined by the state set V and the
set F of functions is n-discerning if there exist
• v0 ∈ V ,
• a partition of the set of processes {P1, . . . , Pn} into two nonempty teams A and

B, and
• a function fi ∈ F for each process Pi

such that
I. for all j ∈ {1, . . . , n}, VA,j ∩ VB,j = ∅,
II. for all Pj ∈ B, v0 /∈ VA,j, and
III. for all Pj ∈ A, v0 /∈ VB,j, where

VA,j = {(fiα ◦· · ·◦fi1)(v0) | Pi1 ∈ A, α ≥ 1, and i1, . . . , iα are distinct process indices,
not including j}, and VB,j = {(fiα ◦ · · · ◦ fi1)(v0) | Pi1 ∈ B, α ≥ 1, and i1, . . . , iα are
distinct process indices, not including j}.

Suppose each process performs its assigned operation to the object X, which is
initialized with the value v0. Consider a process Pj on team A. The set VA,j contains
the values that Pj can see when it accesses object X if some other process on team
A performs the first step. (The set VA,j will be empty if Pj is the only process on
team A. It may be the case that v0 is in VA,j .) The set VB,j is the set of responses
that Pj can receive if a process from team B takes the first step. Thus, condition
I ensures that Pj can distinguish, using the response it receives, executions starting
with another process on team A from those in which a process on team B takes the
first step. Condition III ensures that Pj can distinguish executions in which Pj itself
takes the first step from those executions in which a process from team B takes the
first step. (Similarly, if the process Pj is on team B, conditions I and II guarantee
that it can tell which team took the first step.)

It will be shown in Theorems 3 and 9 that RMW objects of type T can be used
with registers to solve n-consensus if and only if T is n-discerning.

Lemma 2. If S0 is a critical configuration of an n-process consensus protocol
where the next step of every process accesses the same RMW object X of type T , then
T is n-discerning.

Proof. Suppose each process Pi applies the operation RMWfi to X during its first
step after S0. Let v0 be the value of X in the configuration S0. Let a be the critical
value of one of the processes. Let A be the set of processes with critical value a, and
let B contain the rest of the processes. Team A is nonempty by construction. Since
S0 is multivalent, team B must also be nonempty.

Condition I of Definition 1 must hold for these values of v0, A,B, f1, . . . , fn. Oth-
erwise, let j be a process index such that VA,j ∩ VB,j is nonempty. Then, X has
the same value in two configurations that can be reached from S0 by sequences of
steps in which each process takes at most one step, process Pj takes no steps, and
the first steps in the two sequences are taken by processes on opposite teams. These
two configurations are indistinguishable to Pj . A solo execution by Pj from either
of these configurations would therefore lead to the same decision value, contradicting
the definitions of teams A and B.

Condition II must also hold. Otherwise, let j be the index of a process on team B
such that v0 ∈ VA,j . Then, some sequence of processes, not including process Pj ∈
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B and starting with a process on team A, could each take a step to arrive at a
configuration that Pj cannot distinguish from S0. A solo execution of Pj from these
two configurations would then lead to the same decision, contradicting the fact that
Pj ∈ B.

The argument that condition III holds is symmetric.

This lemma can be combined with a bivalency argument to prove that the condi-
tions for being n-discerning are necessary for solving n-process consensus using RMW
objects.

Theorem 3. If the n-process consensus problem can be solved using registers and
RMW objects of type T , then T must be n-discerning.

Proof. Suppose there is some protocol for n-process consensus using registers and
RMW objects of type T . If only one process is scheduled to take steps in an execution,
the process must output its own input value. Thus, any initial configuration where
processes begin with different input values is multivalent. It follows that there is a
critical configuration S0 of the protocol. Otherwise, one could produce an execution of
infinite length by always scheduling a process whose next step produces a multivalent
configuration. No process would ever output a decision in this execution, since any
configuration in which some process has produced an output is univalent. This is
impossible in a wait-free protocol.

A bivalency argument (see [10]) may be used to show that the next operation
performed by any process when the system is in the configuration S0 must be an
operation on the same object, say X, and that X cannot be a register. It follows from
Lemma 2 that T is n-discerning.

The following lemma and Propositions 5 and 6 will be used first in the proof of
Theorem 9, which provides a converse to Theorem 3, and again in section 4.

A set O of objects is said to be capable of solving team-restricted n-consensus if
there is a partition of the n processes P1, . . . , Pn into two nonempty teams A and B
such that the consensus problem can be solved using only the objects in the set O,
provided all processes on the same team have the same input value.

Lemma 4. If a set O of objects can be used to solve team-restricted (n + 1)-
consensus, then O can be used to solve team-restricted n-consensus.

Proof. Any consensus protocol for team-restricted (n + 1)-consensus may be
viewed as a protocol for team-restricted n-consensus by thinking of one of the processes
on a team with at least two processes as having failed before executing any of its
steps.

Proposition 5. Let n ≥ 2. Suppose Oi is a shared object that can be used
along with k registers to solve team-restricted i-consensus for all i, 2 ≤ i ≤ n. Then
n-consensus can be solved using objects O2, . . . , On and k(n− 1) registers.

Proof. The proposition will be proved by induction on n. For n = 2, the team-
restricted form of the consensus problem is identical to the general problem of con-
sensus for two processes.

Let n > 2. Suppose the claim holds when the number of processes is less than n.
This means that, for all m < n, O2, . . . , Om can be used, along with k(m−1) registers,
to solve m-consensus. Divide the n processes into two nonempty teams A and B as
described in the definition of team-restricted n-consensus. The processes of team A
first execute a consensus protocol to agree on one of their input values. If |A| = 1,
no shared objects are used. Otherwise, team A can agree on an input value using
k(|A| − 1) registers and the shared objects O2, . . . , O|A|, by the induction hypothesis.
Similarly, the processes of team B agree on one of their input values. If |B| = 1, no
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shared objects are used. Otherwise, it can be done using k(|B| − 1) registers and the
shared objects O|A|+1, . . . , On−1. This is possible, since Oi+|A|−1 can be used with k
registers to solve team-restricted i-consensus for 2 ≤ i ≤ |B|, by Lemma 4.

Next, the processes agree on which team’s value should be used as the common
decision value. The processes execute the team-restricted n-consensus protocol, with
each process using the decision value of its team as its input. This can be done using
On and an additional k registers for a total of k(n− 1) registers.

By the inductive hypothesis, the agreement within each team is wait-free. The
team-restricted n-consensus protocol used to decide between the two teams’ values is
also wait-free. So, the entire consensus protocol is wait-free. The protocol satisfies
the validity condition, since the value agreed upon by the winning team must be one
of the input values of a process on that team, by the inductive hypothesis. The proto-
col satisfies the consistency condition, since the team-restricted n-consensus protocol
must satisfy the consistency condition.

Proposition 6. Suppose that one object of type T and k registers can be used
to solve team-restricted n-consensus. Then, n-consensus can be solved using n − 1
objects of type T and k(n− 1) registers.

Proof. This follows immediately from Lemma 4 and Proposition 5.

Lemma 7. An RMW object of type T and two registers can be used to solve
team-restricted n-consensus if T is n-discerning.

Proof. Divide the processes into two nonempty teams A and B, assign a function
fi to each process Pi, and choose v0 to satisfy the conditions of Definition 1. An
algorithm will be constructed for the team-restricted n-consensus problem. The algo-
rithm uses an object X of type T that initially has state v0 and two registers called
RA and RB .

Each process Pj first writes its team’s common input value into the register RA,
if it belongs to team A, or into the register RB , if it belongs to team B. The process
Pj then performs its assigned operation RMWfj on X and uses the result of this
operation to determine whether a process from team A or from team B was the first
to access X.

Without loss of generality, suppose that process Pj belongs to team A. If Pj ’s
RMW operation returns the value v0, then a process from team A was the first to
accessX. To see why this is true, suppose some processes, starting with a process from
team B, did access X before Pj . Let i1, . . . , iα be the indices of these processes. Then
(fα ◦ · · · ◦ f1)(v0) = v0 and Pi1 ∈ B, violating condition III. If Pj ’s RMW operation
returns a value different from v0, the process must be able to deduce which team
accessed X first by checking whether the value belongs to VA,j or VB,j . These two
finite sets are disjoint (by condition I), and contain all possible values of the object X
that can be observed by process Pj in this protocol. Once Pj decides whether team A
or team B accessed X first, it returns the value in RA or RB , respectively.

Each process performs only O(1) steps, so wait-free termination is guaranteed.
The protocol satisfies the validity condition, since the winning team’s value is written
into the team’s register before any process from that team can access the object X.
The protocol also satisfies the consistency condition: all processes agree on the winning
team and return the value of that team’s register (which never changes after it is first
written, since all processes on the same team have the same input value).

The following theorems follow immediately from Lemma 7 and Propositions 5
and 6.

Theorem 8. The RMW objects X2, . . . , Xn can be used, with 2(n− 1) registers,
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to solve n-consensus if the type of Xi is i-discerning for each i.
Theorem 9. If T is an n-discerning RMW type, then there is a protocol for

n-consensus that uses n− 1 objects of type T and 2(n− 1) registers.
Theorems 3 and 9 show that an RMW type can be used with registers to solve

n-consensus if and only if it is n-discerning. The remainder of this section discusses
some consequences of this characterization.

The constructive proof of Theorem 9 provides upper bounds on the complex-
ity of solving the consensus problem using RMW objects and registers. If objects
of an RMW type T and registers can be used to solve n-consensus at all, then T
is n-discerning by Theorem 3, and the tournament-style algorithm in the proof of
Proposition 5 can solve n-process consensus in O(n) steps per process, using n − 1
objects of type T and 2(n− 1) registers.

Corollary 10. RMW objects of type T can be used, with registers, to implement
any type of object in a system of n processes if and only if T is n-discerning.

Proof. This follows from Theorems 3 and 9 and the fact that n-consensus objects
can be used to obtain an implementation of any shared object in a system of n
processes [10].

Corollary 11. For RMW types with finite state sets, the following question is
decidable: “Given an integer n and an RMW type T , can n-consensus be solved using
registers and RMW objects of type T?”

Proof. The conditions of Definition 1 can be checked for each of the finite number
of possible choices of v0, A,B, f1, . . . , fn in a finite amount of time.

For every value of n, there is an RMW object type with consensus number ex-
actly n. This can be shown by considering an RMW object that behaves like a sticky
bit [20] that gets reset after n accesses.

Proposition 12. Let n ≥ 2. Let V = {⊥} ∪ ({A,B}× {1, . . . , n− 1}). Let T be
the RMW type with state set V whose operations can apply the functions fA and fB,
where

fteam(x) =




(team, 1) if x = ⊥,
⊥ if x = (team′, n− 1),
(team′, z + 1) if x = (team′, z) and z < n− 1.

Then T is n-discerning but not (n+ 1)-discerning.
Proof. First, it is shown that T is n-discerning. Let v0 = ⊥, A = {P1}, B =

{P2, . . . , Pn}, f1 = fA, and f2 = · · · = fn = fB . Then, each value in Vteam,j is
an ordered pair whose first component is team. The conditions of Definition 1 are
therefore clearly satisfied.

Next, it is shown that T is not (n + 1)-discerning. Consider any choice of
v0, A,B, f1, . . . , fn+1.

If v0 is an ordered pair, let z be the second component of v0. Let Pj be any
process. Both VA,j and VB,j contain the element ⊥, since any sequence of n − z
functions applied to v0 will result in the value ⊥. This violates condition I in the
definition of (n+ 1)-discerning.

If v0 = ⊥, let Pj be a process in team B. The set VA,j contains v0, since any
sequence of n functions when applied to ⊥ results in the value ⊥. This violates
condition II of the definition of (n+ 1)-discerning.

4. Solving consensus with readable objects. Let T be a readable object

type with state set Q = ×k∈Γ
Qk. Consider a distributed system with n ≥ 2

processes, called P1, . . . , Pn, which communicate via shared objects of type T and
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registers. The ability of such a system to solve the consensus problem will be studied
in this section.

A readable type T is defined to be n-discerning if the set {P1, . . . , Pn} can be
partitioned into two nonempty teams and a single operation can be assigned to each
process so that if processes from some subset of {P1, . . . , Pn} each perform their own
operation on an appropriately initialized object X of type T , then each one could
determine which team accessed X first, provided that it could see the final state of X.
The operation assigned to each process cannot be a read operation: it must be possible
for the operation to update the state of the readable object. This is formalized as
follows.

Definition 13. The readable type T is called n-discerning if there exist
• a state q0 ∈ Q,
• a partition of the set of processes {P1, . . . , Pn} into two nonempty teams A and

B, and
• an update operation opi for 1 ≤ i ≤ n

such that RA,j ∩RB,j = ∅, for all j ∈ {1, . . . , n}, where RA,j is the set of pairs (r, q)
for which there exist distinct process indices i1, . . . , iα including j with Pi1 ∈ A such
that if Pi1 , . . . , Piα each perform their operations (in that order) on an object of type T
that is initially in state q0, Pj gets the result r, and the object ends in state q. The set
RB,j is defined similarly as the set of pairs (r, q) for which there exist distinct process
indices i1, . . . , iα including j with Pi1 ∈ B such that if Pi1 , . . . , Piα each perform their
operations (in that order) on an object of type T that is initially in state q0, Pj gets
the result r, and the object ends in state q.

It will be shown in Theorems 15 and 18 that readable objects of type T can be
used, along with registers, to solve the consensus problem for n processes if and only
if T is n-discerning. First, the conditions are shown to be necessary.

Lemma 14. If S0 is a critical configuration of an n-process consensus protocol
and the next step by every process is an operation on a readable object X of type T ,
then T is n-discerning.

Proof. This proof is similar to the proof of Lemma 2. Let q0 be the state of X in
S0, and let opi be the operation performed by Pi in its first step after S0. Partition
the processes into two teams A and B according to their critical values.

To derive a contradiction, suppose these choices for q0, A,B, op1, . . . , opn do not
satisfy Definition 13. Then, there is a pair (r, q) ∈ RA,j ∩ RB,j for some j. There
is some sequence i1, . . . , iα of distinct process indices, including j, such that Pi1 ∈ A
and if processes Pi1 , . . . , Piα each perform their next operation, in that order, starting
from S0, process Pj will receive the result r, and the system will end in a configuration
SA where X is in state q. There is some other sequence k1, . . . , kβ of distinct process
indices, including j, such that Pk1 ∈ B and if processes Pk1 , . . . , Pkβ each perform
their next operation, in that order, starting from S0, process Pj will again receive
the result r, and the system will end in a configuration SB where X is in state q.
The configurations SA and SB are indistinguishable to Pj , so a solo execution by Pj
from either of these two configurations would lead to the same decision value. This
contradicts the fact that SA and SB are univalent configurations that lead to different
decision values.

The operation performed by each process must be an update operation; otherwise
the configuration obtained from S0 by allowing the process to perform its operation
could not be distinguished from S0 by any process on the opposite team.

Combining this lemma with a bivalency argument yields the following theorem.
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Theorem 15. If n-process consensus can be solved using registers and objects of
a readable type T , then T is n-discerning.

Proof. A bivalency argument, as in the proof of Theorem 3, shows that any
n-consensus protocol that uses registers and objects of type T must have a critical
configuration S0, and that the next operation by each process will be applied to the
same object of type T . The theorem then follows from Lemma 14.

Theorem 15 may be used to establish an upper bound on the consensus number
of any (deterministic) type T , whether it is readable or not. If, for some n, the update
operations that are permitted for type T do not satisfy Definition 13, then type T
cannot be used with registers to solve n-consensus. This is because the addition of a
read operation to the specification of type T would create a readable type T ′ that is
at least as powerful as type T but has consensus number less than n, by Theorem 15.

The team-restricted n-consensus problem will now be used to provide a converse
to Theorem 13.

Lemma 16. Let T be an n-discerning readable object type. An object of type T
and two registers can be used to solve team-restricted n-consensus.

Proof. Choose q0, A,B, op1, . . . , opn to satisfy Definition 13. A protocol will be
developed for team-restricted n-consensus that uses one register for each team and
one shared object X of type T , initialized to the state q0. Each process Pj writes its
team’s common input value into its team’s register. It then applies the operation opj
to X and attempts to read the state of X to determine which team accessed X first.

The state set of T has the form Q =×k∈Γ
Qk. Since Γ may be an infinite

set, it will first be shown that process Pj can determine the winning team from the
values of a finite number of the components. Let RA,j and RB,j be the disjoint sets
defined in Definition 13. These sets are finite, since the number of ways to choose
α, i1, . . . , iα in the definitions of RA,j and RB,j is bounded by n ·n!. For (r, q) ∈ RA,j
and (r′, q′) ∈ RB,j , let k(q, q

′) be an element of Γ that indexes some state component
where q and q′ differ, if such a component exists. Let ∆j be the set of such indices
k(q, q′) for all possible choices of (r, q) and (r′, q′). The number of such choices is
finite, so ∆j is a finite set. Let πj be the projection function from Q to the set×k∈∆j

Qk. This projection function discards all components of the state, except for

the finite number of components indexed by the elements of ∆j .

Suppose the sets {(r, πj(q)) : (r, q) ∈ RA,j} and {(r′, πj(q′)) : (r′, q′) ∈ RB,j} have
an element in common. Then there are two distinct pairs (r, q) ∈ RA,j and (r, q′) ∈
RB,j such that q �= q′ and πj(q) = πj(q

′). This is impossible, since k(q, q′) ∈ ∆j .
Thus, process Pj can discern executions in which team A performed the first update
from executions in which team B performed the first update, using only the response
to its own update operation and the projection πj(q) of the state q of X at any time
after Pj ’s update has been performed.

After performing its update operation, the process Pj reads, one by one, the
components of the state that are indexed by ∆j . The state of X may be updated
by other processes while process Pj is performing this scan of the components. Each
scan produces a view of the image of the state of X under the projection πj . Such a
view is called accurate if it correctly reflects the state of X at some moment during
the execution of the scan. If another process performs an update operation during a
scan, the resulting view may not be accurate, but any scan that is not interrupted by
an update will produce an accurate view.

To ensure that Pj can correctly determine which team accessed X first, the scan
of the components of X is repeated 2n− 1 times. An update of X can occur during
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at most n− 1 of these scans, so at least n of the scans will return an accurate view of
the state of X. By Definition 13, Pj can correctly determine which team accessed X
first using the information from any accurate scan and the result of its operation opj .
Since a majority of the scans are accurate, Pj can correctly determine which team
accessed X first. Process Pj then decides on the value stored in the register belonging
to the team that accessed X first.

The validity condition for the consensus problem is satisfied, since every process
must agree on the team that accessed X first. The consistency condition is also
satisfied, since a process from the winning team must have written its value to its
team’s register before accessing X. The protocol is wait-free, since each of the 2n− 1
scans reads only a finite number of components of X.

The following theorems follow immediately from Lemma 16 and Propositions 5
and 6.

Theorem 17. Let Ti be an i-discerning readable object type for 2 ≤ i ≤ n. Then
the n-consensus problem can be solved using one object Oi of each type Ti, together
with 2(n− 1) registers.

Theorem 18. If T is an n-discerning readable object type, then there is a protocol
for n-consensus that uses n− 1 objects of type T and 2(n− 1) registers.

This completes the proof that a readable type T can be used with registers to solve
n-consensus if and only if T is n-discerning. This characterization has the following
consequences.

Corollary 19. Readable objects of type T can be used, along with registers, to
implement every other type of object in a system with n processes if and only if T is
n-discerning.

Proof. This follows from Theorems 15 and 18 and the fact that n-consensus
objects can be used to obtain an implementation of any shared object in a system of
n processes [10].

Corollary 20. If the state set of object type T and the set of possible operations
on object type T are both finite, then the following question is decidable: “Given a
positive integer n and a readable type T , can n-consensus be solved using only objects
of type T and registers?”

Proof. The conditions of Definition 13 can be checked for each of the finite number
of choices of q0, A,B, op1, . . . , opn in a finite amount of time.

It will now be shown that the addition of a scan operation, which reads the entire
state atomically, to any readable type T does not increase its power to solve consensus.

Corollary 21. Let T be a readable type. Let T ′ be a type that is the same as
T , except that it allows an additional scan operation that reads the entire state of T .
Then T and T ′ have the same consensus number.

Proof. Let n be the consensus number of T ′. Clearly, the consensus number of T is
at most n. By Theorem 15, T ′ is an n-discerning readable type. Let q0, op1, . . . , opn, A
and B be chosen to satisfy Definition 13 for T ′. None of the operations can be a scan,
since scan operations never update the state of an object. Therefore, the choice of
q0, op1, . . . , opn, A and B will also satisfy Definition 13 for type T . By Theorem 18,
it is possible to solve n-consensus using objects of type T and registers.

It can be shown that, for each n > 1, there is a readable object type, analogous
to the RMW object defined in Proposition 12, that has consensus number n. (See
[23] for a detailed description of this object.)

5. Robustness for RMW and readable objects. Jayanti [14] formalized
Herlihy’s notion of a hierarchy [10] of shared object types and defined a number
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of desirable properties for hierarchies, including robustness. A wait-free hierarchy
classifies object types according to their power to implement one another. Formally,
it is a mapping h of object types to the set of levels N ∪ {∞}, where a type T is in
level n only if objects of type T , together with registers, can be used to implement
any other type of object in a system of n processes. If h(T ) = ∞, then objects of
type T and registers can be used to implement any other type of object in a system
of n processes for all n. A wait-free hierarchy is tight if every object type is mapped
to the highest level possible. Thus, if type T is mapped to level n of a tight wait-free
hierarchy, there is some type that cannot be implemented using objects of type T and
registers in a system of n + 1 processes. A wait-free hierarchy is robust if no object
in any level of the hierarchy can be implemented using a finite number of types of
objects from lower levels. In the consensus hierarchy, hrm, the level of a type T is
the consensus number of T . Jayanti showed that hrm is the (unique) tight wait-free
hierarchy [14].

Chandra et al. [6] showed that the consensus hierarchy is not robust, if nonde-
terministic, nonoblivious objects are allowed. Schenk [24] proved that the consensus
hierarchy is not robust, even for oblivious objects, if objects with unbounded non-
determinism are allowed. Lo and Hadzilacos [17] improved this, showing that the
hierarchy hrm restricted to oblivious objects is not robust even when nondeterminism
is bounded. Moran and Rappoport [19] showed that the consensus hierarchy is not
robust for deterministic nonoblivious objects using the restricted hard-wired binding
model. (See Jayanti’s survey [13] for a description of binding models, which restrict
the ways that processes can access nonoblivious objects.)

Borowsky, Gafni, and Afek [5] claimed that the consensus hierarchy is robust
for deterministic objects using a less restrictive binding model. Their paper is quite
complex. Here, the characterizations of RMW and readable objects that can solve
n-process consensus will be used to provide a concise proof of the robustness of the
hierarchy when restricted to deterministic RMW and readable objects.

Theorem 22. Let T be a readable or RMW object type. Let S be a finite set of
readable and RMW object types such that hrm(T

′) < hrm(T ) for each T ′ ∈ S. Then an
object of type T cannot be implemented using objects whose types are from the set S.

Proof. Let n = max{hrm(T ′) | T ′ ∈ S} + 1. This quantity is finite, since hrm(T
′)

is less than hrm(T ) and therefore finite for each T ′ ∈ S, and S is a finite set.

To derive a contradiction, suppose the claim is false. Then, since hrm(T ) ≥ n,
there is a protocol using objects whose types are from the set S that solves consensus
among n processes. A bivalency argument [10] shows that this protocol has a critical
configuration, S0, and that the next operation taken by any process when the system
is in this configuration must be an operation on the same object, X. Let TX be the
type of object X.

First, suppose that TX is an RMW type. Then TX is n-discerning, by Lemma 2.
It follows from Theorem 9 that hrm(TX) ≥ n, contradicting the definition of n.

Now suppose that TX is a readable type. The type TX is n-discerning, by
Lemma 14. By Theorem 18, hrm(TX) ≥ n, which again contradicts the definition
of n.

This theorem allows the decidability results of Corollaries 11 and 20 to be ex-
tended to finite sets of object types. If S is any finite set of finitely-specified RMW
and readable object types, then one can decide whether objects whose types are in
S ∪ {register} can be used to solve n-process consensus, by checking whether any of
the types in S are n-discerning.
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Abstract. In most communication networks, pairs of processors communicate by sending mes-
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The protocols presented here are asynchronously early terminating since they are time optimal
both in terms of D and of δ. Previous communication-efficient solutions were slow in the case where
δ � D. We observe that this is the most typical case.

It is suggested that the time complexity measure introduced, as well as the notion of asyn-
chronously early-terminating, can be useful when evaluating protocols for other tasks in communi-
cation networks. The model introduced can be a useful step towards a formal analysis of real-time
systems.

Our protocols have O(n logn) worst-case communication complexity. We show that this is the
best possible for protocols that send immediately any acknowledgment they ever send. Then we show
an early-terminating protocol which uses timing and delay to reduce the communication complexity
in the typical executions where the number of failures is small and δ � D. In such executions, its
message complexity is linear, as is the complexity of nonfault tolerant protocols.
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1. Introduction. In this paper, we introduce a complexity measure of time
complexity for asynchronous networks for which there exists an upper bound on the
delivery time of a message over a link. It is suggested that this can be a useful step
toward improving the analysis of actual communication networks, as well as a step
toward the formal analysis of real-time systems. Using this complexity measure, we
develop optimal protocols for dealing with the task of managing end-to-end commu-
nication sessions.

The end-to-end delivery of information from source to destination is a basic com-
munication task. The most communication-complexity-efficient method for delivering
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information is to send it along a fixed (short) path between two processors. There
are also some other reasons that make this method the most common (e.g., as used
in [Tan81, BGJ+85, MRR80]). For example, “first-in first-out” (FIFO) service for
messages is then guaranteed, without the need for expensive hardware or for software
intervention to restore the order of the messages.

Of course, this requires that all the links and the processors along the path are
operational. When a link or a processor fails (which does not happen very often,
compared to the rate of message traffic), a different fixed path is established instead
of the disconnected one. For that, additional mechanisms are used to detect and
locate failures. These mechanisms are based on acknowledgments and use a time-out
value D, which is a bound on the transmission delay over one link. Often fail-stop
failures are detected by hop-by-hop acknowledgments, which are control messages sent
by a processor to its neighbor upon receiving a data message from that neighbor. If
processor u does not receive an acknowledgment from neighbor v within D since u
sent a data message to v, then either v or link (u, v) failed.

There are some failures which are not detected by the hop-by-hop acknowledg-
ments mechanism. A simple example is a malicious failure, where v “intentionally”
sends an acknowledgment without forwarding the data message toward the destina-
tion. A similar outcome may result without malicious intent, i.e., when a processor
breaks down after sending the acknowledgment but before succeeding in forwarding
the data message. (A more likely case is that a processor did forward the message
before it failed, but the message got lost over the link; the failed processor cannot
now retransmit the message.) This kind of failure is usually dealt with by an end-to-
end acknowledgment mechanism. This is an acknowledgment message which is sent
from the destination to the source when the destination receives a data message. If
the source does not receive an acknowledgment within 2(n − 1)D since it sent the
data message, where n is the number of processors along the path, then a failure has
occurred.

For a given execution of the protocol, and for any f , let δf denote the maximal
transmission delay over a link in this execution, when not counting the worst f links.
Moreover, δf ≤ D is not any bound (even unknown) but rather the actual maximal
delay as could be observed had there been some outside observer. Intuitively, when f
is the number of faults in an execution, δf is the maximum delay over nonfaulty links
(and between two nonfaulty neighboring processors). However, this definition makes
sense also when there are no “real faults” (or at least no faults can be detected, since
the delay on all links is still smaller than D); some links just happened to be slower
than others. For simplicity, we prefer to use δf rather than the actual delay (in the
execution) over each link separately. In addition, since our protocols can deal even
with malicious faults of processors, most of the paper uses this meaning of f . Thus,
f is clear from the context, and we shall use the notation δ instead of δf . In section
7, we analyze briefly the meaning of the results in the case where no faults occur.

Network designers usually choose a boundD which is much larger than the typical
transmission delay. This is due to the unpredictability of the actual delay, and to the
huge overhead of disconnecting a link (see, e.g., [GSK87]). Therefore, in typical
executions, δ � D holds. This motivates an analysis of the time complexity which
considers both D and δ; intuitively, one would like to derive a bound on the time
complexity that will depend, as much as possible, on the (usually small) value of δ,
rather than on the value of D.

We call a protocol asynchronously early-terminating if its time complexity is op-
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Table 1
Parameters.

Typical Initially
Parameter Meaning value known?

n Number of processors < 20 Yes

f Number of faulty processors and links 0 or 1 No

D Bound on the delay on a nonfaulty link 1 sec. Yes

δ Actual delay on a nonfaulty link 10 msec. No

timal for any selection of the number of faults f , of D, and, of δ. (We shorten it to
early-terminating, when there is no ambiguity with the “early-stopping” synchronous
Byzantine agreement protocols discussed in many papers [DRS86].) We present early-
terminating detection protocols, with time complexity O(fD + nδ), where f is the
number of faults. This improves substantially over the common end-to-end mecha-
nism, which requires 2(n − 1)D, for typical executions where f � n and δ � D.
Typical values of the parameters n, f , D, and δ are shown in Table 1.

Another way to see the improvement is when considering the competitiveness
of the protocols. Consider the time complexity TC(P ) of a protocol P for a given
configuration C, that is, given the set F of faulty processors (where |F | = f) and
the values of D and δ. Define the competitive ratio of a protocol P1 with respect to

protocol P2 and the given configuration as TC(P1)
TC(P2)

. The competitive ratio of P1 with

respect to P2 is maxC
TC(P1)
TC(P2)

. Clearly, the competitive ratio of the common end-to-

end mechanism with respect to our protocols is Ω(n), where the maximum ratio is
achieved when δ approaches zero.

To compute the distributed competitiveness of a protocol P1, one needs to com-
pare it to the “best” distributed algorithm, rather than to any other. To rephrase
the recent definition of [AADW94], for a given configuration C, one divides TC(P1)
by the complexity (for configuration C) of a distributed protocol OPTC that achieves
the best time complexity for configuration C. It is required that OPTC will perform
correctly in any case. The distributed competitiveness of P1 is the maximum (over
all the configurations) of such ratio. It can be shown that early-terminating protocols
for our problem are distributively competitive (i.e., have constant competitive ratios).
Thus, our protocols are also distributively competitive.

The protocols presented in this paper allow early-terminating and communication-
efficient detection of arbitrary faults, while forwarding information from the source to
the destination. Our protocols also provide fault location, i.e., when a failure occurs,
the source learns of a specific link such that either the link or one of its endpoints is
faulty. This is useful for most recovery actions. Both detection and location are done
in optimal time for any value of D and δ. (Recall that we analyze the time complexity
as a function of D and δ.)

Table 2 summarizes our results and previous results. Note that all of our protocols
provide fault location, which was achieved previously only with O(n2) communication
complexity.

Our main contribution is the measure of time complexity as depending on D
and δ, with the concept that one should strive to obtain time complexity bounds
that depend as much as possible on δ rather than on D. Other contributions are
communication-efficient early-terminating protocols. The immediate-Acks protocol,
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Table 2
Protocols.

Protocol Time Communication Remarks

ISO 8072/3, CCITT x.224 O(nD) O(n) Not locating

[Per88, section 3.5] O(nD) O(n2) Locating

End-to-end (section 4.1) O(nD) O(n) Locating

Hop-by-hop (section 4.2) O(fD + nδ) O(n2) Locating

Immediate-Acks (section 6.1) O(fD + nδ) O(n log(n)) Locating

Adaptive (section 6) O(fD + nδ) O(n log(f + nδ
D
)) Locating

presented in section 6.1, has O(n log n) communication complexity. We present in
sections 6.3 and 6.4 an early terminating protocol which is adaptive, in the sense
that the number of acknowledgment messages sent depends on the delays and the
behavior of the adversary in the particular execution. Its communication complexity
is O(n log(2+ f + nδ

D )). We argue that in typical applications of this type of protocol,
the number of failures f is zero or very small; otherwise the network designer will avoid
transmission of messages over a fixed path. The term nδ

D is also usually small. Hence,
in practice, this communication complexity is close to the optimal communication
complexity (O(n)).

We show that for other kinds of protocols (i.e., those that are message-driven,
except for the decision to disconnect a link that may be time-driven), a lower bound
of Ω(n log n) exists. The proof of the lower bound shows collections of paths of total
length Ω(n log n) that any protocol must use for sending message (acknowledgments).
Our adaptive protocol mentioned economizes on message-sending by avoiding using
some of these paths when the delays and number of faults are small. However, there
are some executions in which this protocol must utilize all the paths in its collections.
It is an open problem whether there exists an optimal time, early terminating protocol
whose worst-case message complexity is better (in order of magnitude). An interesting
corollary from the proof of the lower bound is that such a protocol (if it exists) will not
have an execution that sends messages over every path that is used in some execution.

Related works. The asynchronous model with bounded delay was previously
studied in [AE86, CCGZ88, DHSS84] without considering early termination.

Communication via a fixed path was studied in [SJ86]. Detection of failures was
addressed in accepted and in proposed standards [Sta87]. Recovery from (detected)
errors during such communication was studied in [Gro82]. Detection, location, and
recovery from arbitrary transmission failures were studied by Perlman [Per88], who
introduced the notions of communication failure detection in the environment of ma-
licious processors, and that of failure location in this context.

Many works presented end-to-end communication protocols which do not depend
on a single path [CR87, Fin79, Per88, AG88, AAGMRS97, AGH90]. The goal of
these works is to increase reliability. In the extreme, these works achieve communi-
cation even if there is no moment when there is a nonfaulty path from the source to
the destination [AE86, AG88, AAGMRS97]. These methods are useful for source-to-
destination communication only in applications where the increased reliability com-
pensates for the much higher communication complexity, storage requirements, and
local processing.
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We permitted the processors to fail in an arbitrary manner. However, we assumed
that the links are “well-behaved”; namely, the links either work correctly or their
failure is detected. The justification for this assumption is the known link protocols
[BS88, GHM89, Zim80].

Our adaptive protocol (section 6) is based on the idea that a processor i can
“piggyback” its acknowledgment on an acknowledgment of another processor j. This
raises the question: How long should processor i wait for the acknowledgment of pro-
cessor j before it gives up the idea of piggybacking (and sends its acknowledgment)?
A similar problem was studied in [AAPS87, AS87, BYKWZ87, K88].

Our protocols can be viewed as being competitive (especially in the time com-
plexity measure). Competitive distributed algorithms were studied further in later
papers, e.g., [AKP92, AADW94].

Finally, this work should be viewed in the context of the important work published
later dealing with formal approach and modeling of distributed real-time systems. A
paper with a strong impact is [ADLS91], which suggests a more detailed model, and
gives an algorithm for agreement whose time depends mostly on δ, and only minimally
on D. This work was extended by [Pon91] to handle omission and Byzantine faults. In
[AL89], formal analysis of timing uncertainties and time bounds is done with respect
to another task.

Organization. In the next two sections, we define the communication model
and the problem. In section 4, we present two natural, simple protocols that solve the
problem. The two protocols are presented mainly in order to demonstrate the problem
and the model. One (which is similar to the x.244 protocol [Sta87]) is communication-
optimal, but is not early-terminating. (The difference between this protocol and that
of x.244 is that our protocol also locates the faults.) The other is early-terminating,
but has high communication complexity. This protocol is similar to that of [Per88].
In section 5, we present a high level design of a fault isolator. This design is imple-
mented by all the protocols in this paper and the protocols previously published. In
section 6.1, we give an implementation which is early-terminating and with message
complexity which is O(n log n). This message complexity is achieved by optimizing a
certain combinatorial cover problem introduced in that section. We also show that
every early-terminating protocol sends messages over paths that are included in such
a cover. In sections 6.3–6.5, we present an early-stopping protocol that economizes
on messages by avoiding sending messages over some of these paths in favorable exe-
cutions. We conclude and discuss open problems in section 7.

2. The model. Our model is a modification of the standard model of dynamic
networks [AE86, AAG87]. Since we are interested in detecting failures, we do not
include recoveries. We assume some synchronization, namely, a known bound D on
the transmission time over a nonfaulty link. We also introduce some new notations
and assumptions, since we discuss communication only along a fixed path.

Denote the path as processors 1, . . . , n. Even though the task of our protocols is
to deal with a message from processor 1 to processor n, our protocols send additional
messages from intermediate nodes and to intermediate nodes. Consider a message φ
(e.g., an acknowledgment) that was sent by processor 1 ≤ j ≤ n (the sender of φ) to
another processor 1 ≤ k ≤ j (the recipient of φ). If k is not a neighbor of j, then
message Φ needs to be received and resent by processors on the path between j and
k. We use the following (somewhat “visual”) notation to emphasize that in this case
k ≤ j: The protocol in processor i for (k ≤ i ≤ j) interacts with the links by the
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events Sendk←ji [φ], and Receive
k←j
i [φ]. Similarly, in the case that k is larger than j:

Send
j→k
i [φ], Receivej→ki [φ]. The events have their natural meanings.

In actual networks, following a message sent by i to i + 1, the lower layer link
level protocol will deliver a faili+1 event to i (i.e., the failure of the link from i to
i + 1) when more than 2D time passed without an acknowledgment whose sender
is processor i + 1, being received at i. For simplicity, we do not use such an event.
Our protocol will detect a fault in such a case anyhow. We do not distinguish here
between faults of links and those of processors except that when i detects a fault in
the communication with i+1, we call it a failure of link (i, i+1) (although it may be
just the fault of processor i+ 1), and similarly in the case when i+ 2 detects a fault
in its communication with processor i+ 1, we speak of a failure of link (i+ 1, i+ 2).
Since we do not allow recoveries, we assume that each link fails at most once.

We assume that whenever processor i receives a message, the message was in-
deed issued by the sender and later forwarded by every processor between the sender
and i, and moreover that processor i is between the sender and the recipient. This
assumption holds if the failures are nonmalicious, and otherwise can be enforced by
cryptographic techniques.

Axiom 1. If Receivej→ki [φ] occurs, then j < i ≤ k and for every p between j and
i, previously Receivej→kp [φ] and Sendj→kp (as well as Sendj→kj ) occurred. Similarly,

if Receivej←ki [φ] occurs, previously Receivej←kq [φ] and Sendj←kp (and Send
j←k
k ) oc-

curred.

The major deviation of our model from the standard dynamic network model is
the addition of synchronization assumptions. Intuitively, these assumptions imply
that the lower layer guarantees that it takes at most D time units from a Send

j→k
i [φ]

(respectively, Sendj←ki [φ]) event till the corresponding Receive
j→k
i+1 [φ] (respectively,

Receive
j←k
i−1 [φ]) event occurs, unless the link (or one of the processors) failed. For

simplicity of exposition, we use global time terminology and assume that all of the
clocks have the same rate. We model the clocks by an “alarm clock” that generates
an event every D time units. Namely, a “ticker” that sends interrupts every D time
actually suffices for our protocols. We express this a little more formally in the
following axiom.

Axiom 2. For every processor i, a TICK event occurs exactly once every D time
units.

Faulty processors whose number, f , is unknown are chosen by the adversary. In
section 7, we discuss other meanings of f (and of the time complexity) in the cases in
which there are no faults. A faulty link is one that is adjacent to a faulty processor.
(This is a simplification. As mentioned above, in reality, it is possible that a processor
will continue to function, and its other links will thus not be faulty.) The time for
message delivery over faulty links is bounded by D, after which we say that a fault
has occurred. Note that the adversary can choose to deliver messages over faulty links
very quickly (e.g., in less than δ) or very slowly (e.g., even more than D). However,
if a message is sent over a link at a time t and no acknowledgment arrives at time
t + 2D, a fault has occurred, and an algorithm is permitted to announce a detected
fault. Axiom 3 bounds the message delivery time to δ over nonfaulty links.

Axiom 3. Assume that at time t, a Sendj→ki [φ] (Sendj←ki [φ]) event occurs. Then,
before t + δ ≤ t +D, if the link (i, i + 1) (respectively, (i − 1, i) is nonfaulty, then a

Receive
j→k
i+1 [φ] (respectively, Receivej←ki−1 [φ]) event occurs.
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3. The task. Intuitively, we want to deliver a message from a source processor to
a destination processor. The protocol should detect any failure of links or processors
which may delay (or disable) the transmission along the path. Both the transmission
and the detection should be done in minimal time.

In our model, processor 1 is the source and processor n is the destination. The
path consists of processors 1, . . . , n and the links connecting them. We discuss only
the transmission of a single message. There are standard methods to extend the
results when many messages are transmitted, e.g., appending counters.

The operation of the protocol is based on transmitting the message and additional
(control) information between the processors. Therefore, the protocol accepts a mes-
sage from the higher layer in the source, and delivers a message to the higher layer in
the destination; and for this purpose, it sends and receives (other) messages between
processors along the path. Whenever confusion arises, we use the term data message
(recall that in this paper we discuss only the case of a single data message, though,
of course, multiple data messages can be handled by the same protocols) to refer to
the message accepted from and delivered to the higher layer, and the term control
messages to refer to the messages transmitted over the links (by the protocol). Note
that some of the “control messages” that we use contain the “data message.” (Some
papers instead make the distinction between “messages” that arrive at the sender
from a higher layer and delivered to a higher layer at the receiver, and “packets” that
are sent in the network.)

In the protocols, we use two kinds of control messages (in addition to those that
carry the data to be delivered): acknowledgments and disconnection notifications
Disci. A disconnection notification Disci means that processor i detected a failure
in processor i + 1 or in the link (i, i + 1). Such messages are normally flooded in
the network, and therefore we assume that the protocol terminates when a nonfaulty
processor sends Disci.

Loosely speaking, the protocols are resilient to a strong “adversary,” which
“knows” the state of every processor and every link, and “controls” the transmis-
sion delays of every link (up to D), the actual failures of the faulty links (delay larger
than D), and the entire behavior of the faulty processors. However, the nonfaulty
links never fail (always deliver messages in less than D) and the nonfaulty processors
always operate according to the protocol. This resilience is formally stated in the
following definition.

Definition 1. A protocol (P1, . . . , Pn) is a resilient forwarding faults detector
if for every selection of faulty processors and links, in every execution where every
nonfaulty processor i executes Pi, the following conditions are kept.

Detection: If the source and the destination are nonfaulty, then within a bounded
time from the time the source accepts the message, either the message is
delivered or a Disci message is sent by some nonfaulty processor.

Location: If a Disci message is sent by a nonfaulty processor, the link (i, i+1) is
faulty (that is, either processor i or processor i+ 1 is faulty).

Note that in the detection condition we do not require that the Disci message be
issued by a nonfaulty processor i.

In fact, a correct protocol should also guarantee the following.

Safety: If the source and the destination are nonfaulty, then the destination
delivers a message only if this message was the one accepted at the source.

However, from Axiom 1 we assume that when a message is delivered to a processor
it indeed knows who was its initiator.
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Complexity measures. The complexity measure given here is the main differ-
ence between the model in the paper and the ones in previous works.

We consider time and communication complexities. Both measures are stated
as functions of n, f , D, and δ, where the parameters are defined in Table 1. The
complexities are the worst-case values for any execution over paths of length n with
the actual (unknown) number f of faulty processors, boundD on the delay, and actual
delay δ over nonfaulty links whose endpoints are also nonfaulty.

The time complexity is the maximum over all executions of the time since the
source accepts the (data) message and until either the destination delivers that mes-
sage or a failure is detected. To compute the time complexity, we consider only exe-
cutions where the source and the destination processors are nonfaulty, since otherwise
it is impossible to guarantee termination.

The communication complexity is the maximum number of transmissions of mes-
sages by nonfaulty processors. Messages transmitted by faulty processors are not
counted.

4. Simple solutions. To demonstrate the problem, this section contains two
simple protocols. The first, presented in section 4.1, is communication-optimal but
has high time complexity. We point out the cause of the high time complexity. This
weakness is removed in the protocol presented in section 4.2. The protocol of section
4.2 is early-terminating but has high communication complexity.

4.1. End-to-end fault detector. This protocol resembles the time-out mech-
anism of the data link. The data message φ is forwarded towards the destination (by
Send1→n

i [φ] events). When the destination accepts the data message (Receive1→n
n [φ]),

it sends an acknowledgment backward (Send1←n
n [Ack ]). Every processor i < n checks

whether i + 1 is faulty. Namely, processor i expects to receive the acknowledgment
(Receive1←n

i [Ack ]) after 3(n−i) or less TICK i events since Send
1→n
i [φ]. If neither the

acknowledgment nor the disconnection message is accepted, then i disconnects link
(i, i+ 1). Processor i forwards φ at most one TICK i−1 event after i− 1 forwarded it
(assuming i, i− 1, and (i− 1, i) are nonfaulty). Hence, and from the synchronization
axioms, processor i − 1 will accept either the acknowledgment or the disconnection
from i at most 3(n − (i − 1)) TICK i−1 events since forwarding φ. This means that
nonfaulty processors will not be accidentally disconnected.

The communication complexity of the end-to-end detector is optimal (3(n− 1)).
The time complexity is 3(n−1)·D. (This is the complexity in the case that processor 2
is faulty.) When δ � D, this time complexity is much inferior to the early-terminating
time complexity O(fD + nδ), achieved by the protocols presented later.

4.2. Hop-by-hop detector. The end-to-end detector suffers from O(nD) time
complexity. We now describe a detector with time complexity O(nδ + fD), which is
later shown to be optimal. We do this by extending the use of the acknowledgments.
In the end-to-end detector, we use only one acknowledgment message, which signals
the completion of the transmission. The idea is to use additional acknowledgments,
which signal that the transmission is progressing properly.

In the hop-by-hop fault detector, we carry this idea to the extreme, thereby ob-
taining optimal time complexity. Namely, each processor sends an acknowledgment
towards the source immediately upon receiving the message φ en route to the desti-
nation.

The improvement in time complexity is obtained by a tighter time-out check in the
processors. Consider an arbitrary processor i. In the end-to-end detector, processor i
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Constants of processor i:
Ai (integer)): array of integer; (different for each protocol)
(If Ai(t) �=⊥, then after tD since processor i accepts φ, it sends Ack to processor Ai(t).)

Variables of processor i:
{
donei : logical (init: FALSE); (True after i terminated (φ delivered or failure detected))
timei : integer; (The current time, i.e., number of TICK i events since start)
AckSeti : set of intervals (init: ∅); (Intervals of Ack which i received or sent)
}

Fig. 1 Design of forwarding faults detector: declarations.

disconnects from i+1 if it does not receive the acknowledgment from the destination
n after more than 3(n− i) TICK i events since i forwarded φ toward the destination.
(In fact, for this specific protocol we could have written 2(n− i), but 3(n− i) is used
for compatibility with protocols presented later.) In essence, i waits the time needed
in the worst case for the data message to reach its final destination n and for an
acknowledgment to arrive from n to i. Consider the case that i + 1 never forwards
the message to i+ 2. Intuitively, this can be detected by i (using another protocol in
which i+2 sends an acknowledgment to i) with O(D) time. However, the end-to-end
protocol detects the disconnection only in Ω((n− i)D) time.

In the hop-by-hop detector, processor i disconnects from i+1 if it does not receive
any of the acknowledgments from k = i+2, i+3, . . . , n after more than 3(k−i) TICK i

events. Intuitively, this mechanism guarantees that every 3D time unit the message
processes toward the destination over an additional link (if this link is faulty; otherwise
traversing the link costs δ time).

5. A design of resilient detectors. Both simple detectors presented in section
4 are extremely inefficient in one measure (either time or communication) and optimal
in the other measure. In the rest of the paper, we present detectors which are efficient
in both measures by providing reasonable trade-offs between them. In particular,
the detectors are time-optimal up to a constant factor. It is also easy to present
implementations of the design which are communication-optimal but with suboptimal
time complexity.

Instead of presenting each detector “from scratch,” we regard them all as imple-
mentations of a common “design.” The end-to-end and the hop-by-hop detectors may
also be regarded as implementations of this design. We prove that every implementa-
tion of this design, which satisfies a simple condition, is a resilient forwarding faults
detector. Furthermore, we give a simple yet useful bound on the time complexity
of implementations. In particular, these general results are used to prove that the
detectors of section 4 are resilient and that the hop-by-hop detector is time-optimal.

The design is presented in Figures 1 and 2, and the explanations are given below.
Different implementations are defined by different selections of values for the array

Anode(time). Basically, if Anode(time) �=⊥, then processor node will send an acknowl-
edgment to processor Anode(time) after time events of type Dnode (i.e., additional D
time units elapsed) occurred since node entered the protocol. The detectors of section
4 are implemented by using Ai(t) =⊥, except for the following.

For the end-to-end detector : use An(0) = 1.
For the hop-by-hop detector : for every 1 < i ≤ n, use Ai(0) = 1.
That is, in the end-to-end detector, only processor n initiates an acknowledgment
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Algorithm for the source i = 1:

〈B1〉 On accepting φ:

〈B2〉 { Send1→n
1 [φ];

〈B3〉 repeat WORKLOOP() until donei;}
Algorithm for the destination i = n;

〈C1〉 On Receive1→n
n [φ] : { deliver φ; Send1←n

n [Ack ]; donen ← TRUE ;}
Algorithm for intermediate processors 1 < i < n:

〈D1〉 On Receive1→n
i [φ]:

〈D2〉 { Send1→n
i [φ]; (forward message)

〈D3〉 if Ai(0) �=⊥ then

〈D4〉 { Send
Ai(0)←i
i [Ack ] ;

〈D5〉 AckSeti ← {[Ai(0), i]}; }
〈D6〉 repeat WORKLOOP() until donei; }
Procedure WORKLOOP():{
〈E1〉 On Receive

j←l
i [Ack ] such that

((∃t)Al(t) = j) ∧ ((∀[j′, l′] ∈ AckSeti)(j < j′) ∨ (l′ < l)) :

〈E2〉 { if j = 1 and l = n then donei ← TRUE ;

〈E3〉 if j < i then Send
j←l
i [Ack ] ; (Forward Ack if i is not its destination)

〈E4〉 AckSeti ← AckSeti ∪ {[j, l]}; }
〈F1〉 On TICK i :

〈F2〉 { increment timei;

〈F3〉 if (Ai (timei) �=⊥) ∧ ((∀[j′, l′] ∈ AckSeti)Ai (timei) < j′) then
〈F4〉 { Send

Ai(timei)←i
i [Ack ] ; AckSeti ← AckSeti ∪ {[Ai(timei), i]} }

〈F5〉 if ∃l > i and (∃t)t < timei − 3(l − i) such that i ≥ Al(t) �=⊥ and

(∀[j′, l′] ∈ AckSeti)(Al(t) < j′ ∨ l′ < l) then DISCONNECT() ;}
〈G1〉 On faili : DISCONNECT() ;

〈H1〉 On Receive
1←j
i [Discj ] :

〈H2〉 { donei ← TRUE ; Send1←j
i [Discj ] ; }

}
Procedure DISCONNECT() ; (Disconnect processor i from i+ 1)

〈I1〉 { Send1←i
i [Disci] ;

〈I2〉 donei ← TRUE ; }

Fig. 2 Design of a forwarding faults detector for processor i.

(thus Ai(0) =⊥ for every i �= n). Moreover, processor n sends the acknowledgment to
processor 1, and after 0 time, i.e., immediately on receiving the message. In the hop-
by-hop detector, every processor sends an acknowledgment to processor 1 immediately
upon receiving the message. For now, it will be easier to think of the more intuitive
case that Ai(t) =⊥ for every t > 0. The usefulness of the case that Ai(t) �=⊥ for t > 0
is demonstrated in subsection 6.3.

The operation begins when the source (processor 1) accepts the message φ from
the higher layer. Each processor i > 1 begins operating when receiving φ from i− 1.
When the message is received, every processor i (except for the destination) forwards
it to the next processor i + 1. If i = n, the message is delivered to the higher layer,
an Ack is sent to the source, and the protocol terminates. In the other processors
(i < n), an Ack is sent to Ai(0) (provided that Ai(0) �=⊥) and i starts executing its
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WORK LOOP procedure. The WORK LOOP is executed repeatedly, terminating
only if a failure is detected or the Ack from n is accepted.

Processor i may also issue Ack later, sometime after it started operating. This
is done according to the protocol-dependent Ai(t) array. The value of Ai(t) is the
identity of the processor to which i should send an Ack at t·D after i began executing.
We say that processor Ai(t) is the recipient of this Ack message.

Some economizing is done at that point. (This economizing does not occur in the
hop-by-hop and the end-to-end implementation; however, it proves very useful in the
implementations of section 6.) Assume that t1D time units after i started operating,
it forwarded some Ack whose destination is some node k, and later, after t2D time
units, it is supposed to send an Ack to some j > k. (That is, Ai(t2) = j.) Intuitively,
this later Ack is no longer necessary, since the earlier Ack (that of time t1D) was
already supposed to tell j (as well as k) that processor i received the message.

Thus, the Ack is sent only if its recipient Ai(t) is farther from i than the most
distant recipient of some previous Ack which i already forwarded. The set AckSet i
holds all the intervals of Ack which i already forwarded. Processor i checks every
TICK i event while in WORK LOOP, if it should issue an Ack. The time since i
began executing is approximated (in the variable timei) by counting the number of
TICK i events since i began executing.

The Ack messages are forwarded to their recipients by the nodes along the path.
Namely, when processor i receives an Ack (from i + 1) then i sends this Ack to
processor i−1. There are three exceptions. First, if i is the recipient, then, of course,
it does not forward the Ack any further. Second, processor i checks that this Ack is
not “bogus,” namely, that for some t and some l > i the value of Al(t) is j. This
prevents Ack messages from “maliciously” increasing message complexity.

The third exception is that the Ack is forwarded only if it may give some processor
new information about the progress of the protocol. When a processor i receives an
Ack which cannot give new information about the progress of the protocol, we say
that the Ack is redundant and i does not forward it toward the recipient. Formally,
an Ack from l to j is redundant when received by i if i already sent an Ack from some
l′ ≥ l to some j′ ≤ j.

Let us comment about nonredundant Acks. Note that for i to forward l’s Ack
it is unnecessary for i to learn anything new from that Ack. For example, it may
be the case that i already received an Ack from l + 1, and thus i already “knows”
that l received the messages. Still, it may be the case that this Ack of l + 1 was not
forwarded to j, and that j does not “know” that the message arrived at l+1, or even
at l. Thus, this Ack may be nonredundant.

In every TICK i event, processor i checks for time-out of any expected Ack. A
time-out is a failure of i + 1 to deliver the acknowledgment in time or to disconnect
from i+2. Note that if i does not receive an Ack on time from any processor l > i+1
that is supposed to send an Ack to i, then i+ 1 has the opportunity to discover that
before i does. In this case, if i+ 1 is not faulty, it must detect a disconnection of its
link to i + 2 and tell it to i. If this did not happen, then i concludes that i + 1 is
faulty.

Let us now elaborate on instruction 〈F5〉, where the mentioned check is done.
Processor i checks if there exists some processor l > i that was supposed to send an
Ack to be received by i. That is Al() equals some j that is either i or smaller than i.
As mentioned above, such an Ack message should pass i. If such an Ack was supposed
to be sent, it may have not been sent yet, since the original message did not have time
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to reach l yet. Alternatively, the Ack may have already been sent by l, but did not
have enough time to reach i. That is why in instruction 〈F5〉 i also checks that there
was enough time for the Ack to reach it if there were no disconnections. This is the
meaning of the check on t in instruction 〈F5〉. Finally, it could be the case that the
Ack was redundant, and thus was never sent or was omitted. Processor i verifies that
this did not happen, by checking that other Ack messages it received or forwarded
were not sent over intervals that contained l and j.

The check is done using the values of Ai() of the different processor j > i, and
the fact that timei+1 ≥ timei − 2. This fact follows from the synchronization axioms
and the fact that φ is forwarded immediately. If the check fails, procedure DISCON-
NECT() is used to disconnect processor i from i+1 (since processor i+1 or the link
to it, or both, are faulty).

5.1. Resilience of the design. In this subsection, we prove that every imple-
mentation of the design, which satisfies a simple condition, is a resilient forwarding
faults detector. Most of the effort is required to prove the location property, which
shows that a nonfaulty link (i, i + 1) between nonfaulty processors i, i + 1 will not
be disconnected. We begin with several simpler observations regarding such a link.
First, we show that if i + 1 finishes operating, then i will also finish operating after
at most δ.

Lemma 1. Consider an execution in which link (i, i + 1) and processors i and
i + 1 are nonfaulty. Processor i sets donei ← TRUE at most δ after processor i + 1
sets donei+1 ← TRUE.

Proof. Processor i + 1 sets donei+1 ← TRUE only after Send1←n
i+1 [Ack ] or

Send
1←j
i+1 [Discj ]. In any case, the corresponding Receive will occur at most

after δ, by Axiom 3. Either message will cause donei ← TRUE unless it is already
TRUE.

We now prove that until processors i and i + 1 finish, they are “nearly synchro-
nized” in the values of the variable time.

Lemma 2. Consider an execution in which link (i, i + 1) and processors i and
i+ 1 are nonfaulty. Whenever donei+1 = FALSE, then timei − 2 ≤ timei+1.

Proof. Processor i performs Send1→n
i [φ] immediately upon starting operation.

From Axiom 3, processor i+ 1 accepts φ at most δ < D later. As long as donei+1 =
FALSE , the value of timei+1 is the number of TICK i+1 events since i + 1 began
executing. Similarly, the value of timei is at most the number of TICK i events since
i began executing. The claim follows from Axiom 2.

We now prove that if i + 1 sends an Ack to i, then this Ack will not be ignored
by (statement 〈E1〉 of the design) processor i.

Lemma 3. Consider an execution in which link (i, i + 1) and processors i and

i+1 are nonfaulty. Assume that a Send
j←l
i+1 [Ack ] occurs at time τ for j ≤ i, l ≥ i+1,

while donei = donei+1 = FALSE. Then, at time τ + δ, either donei = TRUE or
(∃[j′, l′] ∈ AckSet i)(j′ ≤ j < l ≤ l′).

Proof. From Axiom 3, event Receivej←li [Ack ] will occur before time τ+δ. Assume
that at time τ + δ, the following holds: donei = FALSE . Therefore, statement 〈E1〉
is executed in i upon Receive

j←l
i [Ack ]. However, since i + 1 is nonfaulty, it also

used statement 〈E1〉, 〈D3〉, or 〈F3〉 before Send
j←l
i+1 [Ack ]. Hence (∃t)Al(t) = j. This

proves the claim, since if the other check of statement 〈E1〉 fails, then the claim holds
trivially; and if both checks succeed, then statement 〈E4〉 is executed and the claim
follows.
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We now prove the core of the location property. This claim is still slightly weaker
than the location property, since it deals only with the case that i sends the Disci
message.

Lemma 4. Consider an execution in which link (i, i + 1) and processors i and
i+ 1 are nonfaulty. Then the execution does not contain a Send1←i

i [Disci].
Proof. The proof is by contradiction. Assume that Send1←i

i [Disci] occurs at
time τ . By definition, a faili event does not occur. Therefore, statement 〈F5〉 in
the design caused the Send1←i

i [Disci] event at τ . Namely, while donei = FALSE , a
TICK i event occurs where for some l > i and t < timei− 3(l− i) holds i ≥ Al(t) �=⊥
and (∀[j′, l′] ∈ AckSet i)(Al(t) < j′ ∨ l′ < l).

The proof is based on considering the state of i + 1 at τ − D. From Lemma 1,
if donei+1 is TRUE at τ − D, then donei is TRUE at τ − D + δ < τ . Assume,
therefore, that donei+1 = FALSE at τ −D. From Axiom 2, a TICK i event occurred
at τ − D with timei less by one than at τ ; namely, at time τ − D the following
holds: timei = t + 3(l − i). (Recall that t, l, i are integers.) From Lemma 2, the
maximum value of timei− timei+1 until τ −D is 2 (since donei+1 is FALSE ). Hence,
the TICK i+1 event in which timei+1 ← t+ 1+ 3(l− (i+ 1)) is before τ −D. Denote
the time of this TICK i+1 event by τ ′. We derive a contradiction from considering the
state of i+ 1 at τ ′. Consider the two cases: l > i+ 1 and l = i+ 1.

We first deal with the case l > i + 1, i.e., processor i + 1 failed to forward to i
the Ack from l (to some Al(t) ≤ i) or to disconnect from i+ 2. At τ ′, since donei+1

is FALSE, then (∃[j′, l′] ∈ AckSet i+1)(j
′ ≤ Al(t) ≤ i < l ≤ l′). (Otherwise, processor

i + 1 would have invoked statement 〈F5〉.) An interval [j′, l′] is added to AckSet i+1

only by one of statements 〈F4〉, 〈D5〉, or 〈E4〉. Since j′ < i + 1, exactly before any

of these statements is executed, a Send
j′←l′
i+1 [Ack ] occurs (see Figure 2). Hence, at (or

before) τ−D a Sendj
′←l′
i+1 [Ack ] occurs with j′ ≤ Al(t) < l ≤ l′. From this follows, using

Lemma 3, that at τ there must be some [x′, y′] ∈ AckSet i such that x′ ≤ j′ < l′ ≤ y′.
This contradicts the assumption that statement 〈F5〉 was invoked at τ .

We now deal with the case l = i+1. First, assume t = 0. Namely, Sendj←i+1
i+1 [Ack ]

occurs when i+1 starts operating, i.e., at most δ after i starts operating. Hence, from
Lemma 3, there will be some [j′, l′] ∈ AckSet i such that j′ ≤ j and i + 1 ≤ l′, after
at most an additional δ (i.e., 2δ since i started). From Axiom 2 and the design, the
value of timei at 2δ since i started is at most 2. Hence, when timei > 3 statement
〈F5〉 is not invoked by i with l = i+ 1 and t = 0.

Assume, therefore, that t > 0 and l = i + 1. Recall that donei+1 = FALSE at
τ ′. Processor i + 1 checks, at τ ′, the condition of statement 〈F3〉. If the condition
holds, then statement 〈F4〉 is executed, i.e., a Send

j←i+1
i+1 [Ack ] occurs at τ ′, and the

contradiction again follows from Lemma 3.
Assume that the condition of 〈F3〉 does not hold, namely, (∃[j′, l′] ∈ AckSet i+1)

j′ ≤ j. Then, previously one of statements 〈F4〉, 〈D5〉, or 〈E4〉 was executed, adding
[j′, l′] to AckSet i+1. Since j

′ < i+1, exactly before any of these statements is executed,

a Send
j′←l′
i+1 [Ack ] occurred (see Figure 2). Hence, at or before τ ′, a Send

j′←l′
i+1 [Ack ]

occurs with j′ ≤ j. The contradiction follows from Lemma 3.
We now complete the proof that every implementation of the design, which sat-

isfies a simple condition, is a resilient forwarding faults detector.
Theorem 5. Every implementation A() of the design such that An(0) = 1 is a

resilient forwarding faults detector.
Proof. The safety property follows immediately from the design and Axiom 1.

To prove the detection property, consider an execution where no message is delivered,
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and the source and destination are nonfaulty. Since the destination is nonfaulty and
no message is delivered, there will be no Send1←n

n [Ack ] event. From Axiom 1, there
will be no Receive1←n

1 [Ack ] event. We assumed that An(0) = 1. Hence, after time1 =
3(n− 1), statement 〈F5〉 sets done1 ← TRUE (unless done1 = TRUE already). But
since processor 1 did not accept Ack from n, when it sets done1 ← TRUE it also did
Send1←1

1 [Discj ].
We now prove the location property. Consider an execution where Disci is sent

by a nonfaulty processor j, and i is nonfaulty. The only event in which j sends,
according to the design, a Disci message, is by a Send1←i

j [Disci] event. From Figure 2,

a nonfaulty processor j �= i sends Disci only if a Receive1←i
j [Disci] occurred. Since

j �= i, it follows from Axiom 1 that j < i and that before the Send1←i
j [Disci] event,

a Send1←i
i [Disci] event occurred. From Lemma 4, either i+ 1 or the link (i, i+ 1) or

both are faulty.
Since both detectors of section 4 are implementations of the design withAn(0) = 1,

we conclude with the following corollary.
Corollary 6. The end-to-end and the hop-by-hop detectors are both resilient

forwarding faults detectors.

5.2. A bound on time complexity. In this subsection, we show a bound on
the time complexity of implementations of the design. This bound suffices to show
that the implementations we present later, as well as the hop-by-hop detector, are
early-terminating.

Let TA(n, f, δ,D) (respectively, Topt(n, f, δ,D)) be the maximal time since an
execution of implementation A starts (respectively, since an execution of a time-
optimal implementation starts) and until the destination receives the message φ or

an error is detected. We want a bound for the worst ratio TA(n,f,δ,D)
Topt(n,f,δ,D) over every

selection of n, f , δ, and D.
Obviously, we can bound TA by the time required to reach from 1 to any processor

i, plus the time required to reach from i to n. Likewise, we bound TA by the sum of
times required to reach from 1 to 2, from 2 to 3, and so on. Also, if some processor
k between j and l is nonfaulty, then the time to reach from j to l is bounded by
the time to reach from j to k plus the time to reach from k to l. Note that if every
processor and link from j to l is nonfaulty, then it takes exactly (l− j)δ to reach from
j to l. Therefore, we can bound the time complexity by regarding the worst ratio of
the times required to reach from processor j to l when all of the processors between
j and l are faulty.

The best time to reach from j to l is achieved if j expects l to acknowledge
immediately; then the delay is 3D(l− j). The time of a specific implementation A is
the minimal value of 3D(l′− j)+ t, where l′ is a processor after l which sends at time
t, according to A, an acknowledgment whose recipient is j′ ≤ j. We call this ratio the
covering factor of the interval [j, l].

Definition 2. Let j, l be processors such that 1 ≤ j < l ≤ n. The covering
factor of [j, l] with respect to Ai(t) is denoted F[j,l](A()) and defined as follows:

(1) F[j,l](A())
def
= min

t′,j′,l′

{
(3(l′ − j) + t′)|(Al′(t′) = j′) ∧ (j′ ≤ j < l ≤ l′)

3(l − j)
}
.

Note that Ai(t) is a set of intervals. The covering factor F[j,l](C) for any set of
intervals C (called a cover) is defined similarly.
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We now define the covering factor of an implementation, which is the worst cov-
ering factor of any interval.

Definition 3. The covering factor with respect to Ai(t) is denoted F (A()) and
is defined as follows:

(2) F (A())
def
= max

1≤j<l≤n
F[j,l](A()).

The covering factor F (C) for a cover C is defined in a similar way.
The covering factor of an implementation gives an upper bound on the time

complexity of this implementation, as follows.
Theorem 7. The time complexity of every implementation A() of the design is

O(nδ + f · F (A()) ·D).
Proof. For simplicity, we ignore link failures, which may be emulated by corre-

sponding processor failures. Also, we assume that the source accepted the message
from the higher layer at time 0. Finally, we assume that the source and the destina-
tion are nonfaulty, since the time complexity is defined under this assumption. We
use the following notations.

Notations. Let fi be the number of faulty processors before processor i. Also, let
τi denote the time when processor i received the message and entered the protocol,
i.e., the time of Receive1→n

i [φ].
We prove the following claim for every processor i: if i is nonfaulty, then before

time iδ+8D ·F (A()) ·fi one of the following happens: either some nonfaulty processor
sent Discj for some j, or processor i received the message and entered the protocol.
The theorem follows by considering i = n.

The claim is trivial for i = 1. We now prove the claim for processor i assuming
that it holds for every processor before i. If processor i is faulty, then the claim holds
trivially. If both processors i and i − 1 are nonfaulty, then the claim holds since
processor i− 1 forwards the message to processor i immediately.

Assume, therefore, that processor i is nonfaulty, but processor i−1 is faulty. Let i′
be the last nonfaulty processor before i, i.e., i′ < i and every processor in [i′+1, i−1]
is faulty. By the induction hypothesis, before time i′ · δ + 8D · F (A()) · fi′ , either
some nonfaulty processor sent Discj , for some j, or processor i′ received the message.
In the first case, where some nonfaulty processor sent Discj , the claim for i holds
trivially.

Assume, hence, that processor i′ received the message before i′ ·δ+8D ·F (A())·fi′ .
Denote by τ the time when the 1 + 3 · (i − i′) · F (A())th event of the kind TICK i′

occurs since i′ received the message. From Axiom 2, time τ is not more than 3 · (i−
i′) · F (A()) ·D + 2D time units since processor i′ received the message, namely,

τ ≤ i′ · δ + 8D · F (A()) · fi′ + 3(i− i′) · F (A()) ·D + 2D.

Since fi = fi′ + (i− i′ − 1) and i′ + 1 < i, then

τ < i · δ + 8D · F (A()) · fi.
Hence, it suffices to show that at time τ , either processor i received the message or
processor i′ sent Discj for some j. We now consider two cases, depending on the state
of processor i′ at τ . The first case we consider is that at time τ holds donei′ = TRUE ;
later we deal with the other case.

Since at τ holds donei′ = TRUE , then previously either statement 〈H2〉 of pro-
cedure DISCONNECT() or statement 〈E2〉 was executed at processor i′. If procedure
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DISCONNECT() was executed, then Send1←i′
i′ [Disci′ ] occurred already, and the claim

for i follows. Similarly, if statement 〈H2〉 was executed, then Send
1←j
i′ [Discj ] occurred

already for some j, and the claim for i follows.
If statement 〈E2〉 was executed, then statement 〈E3〉 was also executed, since

j = 1 < i′. Hence, Send1←n
i′ [Ack ] occurred. This happens only if i previously received

the message, and then the claim for i follows.
Consider now the second case, where at time τ it holds that donei′ = FALSE .

Hence, at τ processor i′ executes 〈F2〉, after which timei′ = 1 + 3 · (i− i′) · F (A()).
By Definition 3, F (A()) ≥ F[i′,i](A()). By Definition 2, there are l, t such that

Al(t) ≤ i′ and i ≤ l and

F[i′,i](A()) =
3(l − i′) + t

3(i− i′) .

Hence, when processor i′ executes 〈F5〉 at time τ , then

timei′ = 1 + 3 · (i− i′) · F (A())
> 3 · (i− i′) · F[i′,i](A())

= 3 · (i− i′) · 3 · (l − i
′) + t

3(i− i′)
= 3 · (l − i′) + t.

Hence, t < timei′ −3 · (l− i′) at time τ . Namely, at time τ , either Sendj
′←l′
i′ [Ack ],

Receive
j′←l′
i′ [Ack ] occurred with j′ ≤ Al(t) ≤ i′ < l ≤ l′, or processor i′ executes pro-

cedure DISCONNECT() due to 〈F5〉. If processor i′ executes procedure DISCONNECT(),
then Send1←i′

i′ [Disci′ ] occurs and the claim follows. On the other hand, from Axiom 1,

if Receivej
′←l′
i′ [Ack ] occurred, then Send

j′←l′
i [Ack ] occurred before, and this happens

only after i entered the algorithm.
We now observe that the optimal time complexity is bounded by (n− f)δ + fD.
Lemma 8. Every forwarding faults detector has a run with time complexity at

least (n− f)δ + fD.
Proof. Consider the execution where processors 2, . . . , 2 + f − 1 are faulty. The

fault merely causes the delay upon forwarding the message through these processors
to be D instead of δ.

We deduce the following.
Corollary 9. A detector that implements the design such that F (A()) is

bounded by a constant is early-terminating. In particular, the hop-by-hop detector
is early-terminating.

Proof. The general claim follows from Theorem 7 and Lemma 8. The hop-by-hop
detector has Al(t) = 1. By definition, for every j, l, F[j,l](A()) = 1; hence, F (A()) = 1.
The claim follows.

6. Optimal time and communication-efficient implementations. In this
section we present three implementations of the design, which ensure early termi-
nation (time complexity O(nδ + fD)) and efficient (O(n log n) in the worst case)
communication. Each implementation is a refinement of the previous one.

Throughout this section, we make the simplifying assumption that n − 1 is an
even power of 2. This at most quadruples the complexities of the solutions, when
applied to paths were n − 1 is not an even power of 2. In these cases, the source
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processor may “play the rule” of a sufficient number of processors to extend n so that
n− 1 will become an even power of 2.

6.1. The immediate acknowledgments implementation. We begin by con-
sidering implementations where every acknowledgment is sent immediately upon re-
ceiving the message. For such an implementation A(), the covering factor of an interval
[j, l], as defined in (1), has the following simplified form:

(3) F[j,l](A()) = min
j′,l′

{
l′ − j | (Al′(0) = j′) ∧ (j′ ≤ j < l ≤ l′)

l − j
}
.

We are interested in implementations which are early-terminating. From Corollary 9,
such are the implementations where F (A()) is bounded by a constant. Namely, for
every [j, l] where j < l there is some interval [j′, l′] such that Al′(0) = j′ and j′ ≤ j <
l ≤ l′ and l′−j

l−j is bounded by a constant.

A natural selection of A() is to send acknowledgments over intervals of lengths
which are powers of two, i.e., 1, 2, 4, . . . , (n − 1). Let us describe the set of intervals
used (see also a definition below). For every length 2k ≤ (n− 1) there are two types
of intervals. Intervals of the first type start at every processor in a position of the
form r · 2k +1 for every r for which such a processor exists. For example, if 2k = n−1

2
one such interval starts at processor 2k + 1 (for r = 1) and the other starts at n. All
acknowledgment intervals of length 2k that start at a processor, i, end at processor
i − 2k. For example, the interval that starts at processor 2k + 1 ends at processor
1. Note, for example, that a subpath (of the message path) of length L such that
n
4 < L < n

2 is covered with a covering factor of less than 2 if and only if it is contained
in one of the two acknowledgment intervals (described above) of length n

2 . However,
if it partially intersects with both, then only the end-to-end acknowledgment interval
covers it. This effect becomes more damaging to the covering factor when we consider
a shorter subpath.

To alleviate this effect, we introduce the second type of acknowledgment interval
used. A subpath not covered (with a covering factor of 2 or less) by an interval of
the first type will be covered (with a covering factor of 4 or less) by an interval of the
second type. The intervals of the second type (still of length 2k) start at (r+ 1

2 ) ·2k+1
for every r > 0 for which there is such a processor. For example, for 2k = n−1

2 there is
only one interval of the second type, and it starts at 3

4 (n−1)+1. The acknowledgment
intervals which are “shifted,” and start at (r+ 1

2 ) ·2k+1, are needed to cover intervals
which span over the connection between the acknowledgment intervals of the first
kind, e.g., intervals which include processor n−1

2 +1. This selection of acknowledgment
intervals ensures that every interval [j, l] is covered by an acknowledgment interval
which is not “much larger,” as we now formalize.

We specify this implementation in (4). We now prove that F (A()) is bounded by
a constant, and hence that it is early-terminating.
(4)

A
(1)
i (0)

def
= i− max

k≥0

{
2k
∣∣∣∣ (∃r ∈ N)

(
(i = 2k · r + 1) or

(
i = 2k ·

(
r +

1

2

)
+ 1

))}
.

(No acknowledgment interval is defined for the case that t > 0.)
Lemma 10. The implementation A(1)() is early-terminating.
Proof. From Corollary 9, it suffices to show that F (A(1)()) is bounded by a

constant. The proof is by showing that every interval [j, l] is “covered” by an interval
in A(1)() whose length is at most four times l − j + 1.
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Consider an interval [j, l] such that 1 ≤ j < l ≤ n. Without loss of generality,

assume that l − j < n−1
4 . Let k be the minimal such that l − j < 2k

4 , i.e., k
def
=

�log2(4 · (l − j + 1))�. Let r be the minimal such that l < 2k · r + 1. Namely,
2k · (r − 1) + 1 ≤ l.

If 2k · (r − 1) + 1 < j, then [j, l] is covered by the acknowledgment interval

[A
(1)

2k·r+1
(0), 2k · r + 1]. From (3), F[j,l](A

(1)()) ≤ 4.

Assume, therefore, that j ≤ 2k · (r − 1) + 1. In this case, 2k · (r − 3
2 ) + 1 < j ≤

l < 2k · (r − 1
2 ) + 1, since l − j < 2k−2 and 2k · (r − 1) + 1 ≤ l. Again, from (3), [j, l]

is covered by the acknowledgment interval whose last processor is 2k · (r − 1
2 ) + 1.

Hence, again F[j,l](A
(1)()) ≤ 4.

To complete the analysis of this implementation, we note that the communication
complexity is obviously the total length of the intervals, which is O(n log(n)).

6.2. A tight lower bound for oblivious protocols. We consider protocols
whose operations include forwarding the message, computing, using time-outs, and
sending acknowledgments. It is natural to classify such protocols by the way they
handle the acknowledgments. An important subset, termed oblivious protocols, sends
any acknowledgments they wish to send immediately, without delaying it. Similarly,
if they receive an acknowledgment to be forwarded, they forward it immediately. All
the previously published protocols, as well as all the protocols up to this point in this
paper, are oblivious. In the design, this family of protocols is captured by having
Ai(t) = 0 for every t �= 0.

Theorem 11. An oblivious protocol is time-optimal if and only if F (A()) is a
constant in it.

Proof. The “if” part follows from Corollary 9. For the “only if” part, consider
an oblivious protocol for which F (A()) is some f(n). (Notice that for an oblivi-
ous protocol F (A()) does not depend on t.) Let j, l be two processors such that
F[j,l](A()) = f(n) (see Definitions 2 and 3) and let l′ be the one mentioned in Defini-
tion 2. Consider the case that all the processors in the closed interval [j, l] are faulty,
but no other processor is faulty. Consider the state of knowledge (see, e.g., [HM90])
of processor j′ at any time before (l′ − j)D. Clearly there is a run where it did not
receive any message from a nonfaulty processor p > l. Thus, the state of knowledge
of processor j at such a time is the same as in the case that all the processors in the
interval [j, l′] are faulty. The theorem now follows from Lemma 8.

We now prove that the set of intervals used by the previous implementation is
optimal in the sum of the lengths of the intervals. Note that this sum determines the
message complexity of the protocol. Let an interval c = [i, j] for 1 ≤ i < j ≤ n be
the set {i, i + 1, . . . , j}. The length of interval c, denoted L(c), is j − i. An interval
cover C of an interval [1, n] is a set of intervals that includes interval [1, n].

The claim is that for an interval cover C, if F (C) is a constant, then L(C) =
Θ(n log n), where L(C) =

∑
c∈C L(c).

Intuitively, to cover long intervals, the cover must contain some long intervals. In
fact, a few long intervals in the cover suffices to cover every long interval. The main
observation in the proof is that a long interval cannot cover too many short intervals.
Thus, additional intervals must be introduced into the cover. These intervals may be
short and thus, it may seem that the contribution of each of them to L(C) is small.
However, many short intervals are needed in the cover to cover all the short intervals.
Thus, the total contribution of the short intervals to L(C) is large.

Theorem 12. For every interval cover C such that F (C) is a constant, the total
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length L(C) is Ω(n log n).
Proof. Without loss of generality, assume (∃k)n − 1 = 2(F (C))k. (Otherwise,

prove for n′ > n for which there exists such k; this adds only a constant factor.)
Let Ix be the set of intervals of path [n, 1] that contain (each) exactly x links. The

key observation is that any single interval in C (even a very long one) can cover at
most (F (C)−1)x+1 ≤ (F (C)−1)x+x ≤ F (C)x intervals in Ix with covering factor of
F (C). Consider the sets Ix(i), where x(i) =

n−1
2F (C)i+1 for 1 ≤ i ≤ −1 + logF (C)(

n−1
2 ).

Clearly |Ix(i)| ≥ n−1
2 . Thus, the observation implies that C must contain at least

|Ix(i)|
F (C)x(i) ≥ (n−1)2F (C)i+1

2(n−1)F (C) ≥ F (C)i intervals, the length of each at least n−1
2F (C)i+1 .

We now partition C into sets of intervals and give a lower bound for the total
sum of each set. The sum of these bounds will later give us a lower bound for the
total sum of C. Let C0 ⊂ C include the interval [n, 1]. For i = 1 we have that
x(i) = n−1

2F (C)2 . To cover Ix(1) cover C must include F (C) intervals, the length of

each is at least x(1) = n−1
2F (C)2 . One of them can be the [n, 1] interval, but additional

F (C)− 1 intervals are needed. Let C1 ⊂ C be a set of such additional intervals. Note

that C1 ∩ C0 = ∅. The total sum of C1 is at least (F (C)−1)(n−1)
2F (C)2 . We continue to

construct the Ci’s inductively. For intervals in Ix(i), C must include at least F (C)i,

where the length of each is at least n−1
2F (C)i+1 . As before, F (C)i−1 such intervals are

already included in the sets C0, C1, C2, . . . , Ci−1. Thus, we can construct a set Ci ⊂ C
such that ∀1≤j<iCi ∩ Cj = ∅ and the cardinality of Ci is F (C)

i − F (C)i−1. Thus,

the total sum of Ci is at least F (C)i−1(F (C)−1)(n−1)
2F (C)i+1 = (n−1)(F (C)−1)

2F (C)2 . Since we can

construct r(logF (C) n) such disjointed sets, the total length of C is Ω( n
F (C) logF (C) n).

Since F (C) is a constant, the theorem follows.

6.3. The ideas behind the adaptive implementations. The immediate-
Ack implementation sends r(n log n) messages even in executions where there are no
faults (f = 0) and δ is small. We next present implementations of the design which
are early-terminating but use less messages when f and δ are small. The worst-case
communication complexity remains O(n log n).

Recall that in the design (Figure 2), processor i does not forward an Ack from
processor l to processor j if this Ack is redundant, namely, if i already forwarded an
Ack from some l′ ≥ l to some j′ ≤ j. However, in the immediate-Ack implementation,
each processor sends its acknowledgments upon beginning execution. Therefore, the
immediate-Ack implementation of the design sends all of its acknowledgments in every
execution (without failures).

However, if some of the processors delay issuing their acknowledgments, then it
is possible that a delayed acknowledgment will become “redundant.” For example,
suppose that each of the processors delay all their acknowledgments by D except for
the destination. If Ack from the destination n reaches the source 1 before D since the
source started the protocol, then all of the other acknowledgments become redundant.

Obviously, the delay until the acknowledgments are sent increases the maximal
time until the protocol terminates. For example, if the processors i s.t. 1 < i < n
delay their acknowledgments by 2Dn, then the resulting implementation has the same
time complexity, up to a constant, as the end-to-end fault detector.

The decrease in message complexity comes, therefore, at the cost of an increase
in the time complexity. The implementations presented in this section are early-
terminating, since the delay is bounded by twice the time required for the immediate-
Ack implementation. In fact, the adaptive implementations, presented in the rest of
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this section, are modifications of the immediate-Ack implementation.

The first adaptive implementation saves messages mainly if there are no faulty
processors. The number of acknowledgments sent is a function of the time complexity,
which is lowest when there are no faults. The second adaptive implementation saves
messages when there are faulty processors. In the following subsections we explain
each of these implementations and analyze their properties.

6.4. Send Ack only when really needed. The first idea is to wait, as long as
possible, before sending intermediate acknowledgments (i.e., Ack from l < n to j ≥ 1).
The longer the delay in sending an intermediate acknowledgment, the larger the hope
that the acknowledgment from n to 1 will make the intermediate acknowledgment
redundant. In this subsection, we study how much any specific processor can wait
without increasing the time complexity “too much.” By implementing the idea of this
subsection, the communication complexity is reduced to O(n log(1+ nδ

D )) if f = 0. In
the next subsection, we show how to keep the communication complexity low, even
when f > 0.

To demonstrate the idea, let us first investigate the case that there is exactly
one faulty processor i (although the algorithm must still be early-terminating for any
number of faults). Early termination is assured in the immediate-Ack implementation
since i is covered by the interval [i − 1, i + 1] of length two in A(1)(). Note that an
Ack from i+ 1 to i− 1 is allowed to take at least D times if i is faulty. (Recall also
that time complexity in the presence of one fault is Ω(D).) Hence, if i + 1 waits D
times before sending the Ack, it at most doubles the protocol’s time complexity in
executions with one fault. In executions with no faults, no acknowledgment is needed
(although acknowledgments must be sent, since the number of faults is not known).
Thus, a delay in any acknowledgment does not increase the time complexity in such
executions. Finally, in executions with more than one fault, the acknowledgments
over intervals of length 2 do not help, so any delay in them cannot increase the time
complexity.

The adaptive detector sends the acknowledgments of the intervals of length 2 of
A(1)(), but only after waiting O(D) for Ack from n. Early termination is always
obtained, as explained above. However, in executions with exactly one fault (and a
small δ), this achieves both early termination and optimal message complexities. The
optimal message complexity is achieved, in this case, since the acknowledgment from
processor n arrives at every other processor before it sends any acknowledgment of
its own. Thus, all the other acknowledgments become redundant and are not sent.

In general, if there are at most f faults, then the time complexity with f faulty
processors is at least O(f · D). Hence, the adaptive implementation delays sending
the acknowledgments of intervals of length f by f ·D.

We now formally present the implementation of this subsection. It is easy to
see that the covering factor is bounded by a constant. Hence, by Corollary 9, the
implementation is early-terminating; we later show this formally. For simplicity, we
assume that n − 1 is an even power of 2. For 1 < i ≤ n and 0 ≤ t < n − 1, define

A
(2)
i (t) as follows:

(5) A
(2)
i (t)

def
=




1 if i = n,

i− t if (∃k)t = 2k ∧ (∃r ∈ N) i = rt+ 1,

i− t if (∃k)t = 2k ∧ (∃r ∈ N) i = (r + 1
2 )t+ 1,

⊥ otherwise.
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The implementation of this subsection achieves communication complexity
O(n log(nδD )) if f = 0. We do not prove this here, since it is a corollary of a the-
orem presented in what follows.

6.5. Saving acknowledgments. In this section, we improve the previous imple-
mentation to save messages in a particular bad scenario. This improves the worst-case
message complexity for f > 0.

Recall that acknowledgments are sent (in the previous implementation) at times
2k · D for k = 0, 1, 2, . . .. At first glance, this seems to imply that the communica-
tion complexity is O(n) times the logarithm of the time complexity divided by D,
i.e., O(n log(f + nδ

D )). However, there is a bad scenario in which the complexity is
Ω(nf). Indeed, in this scenario, the number of acknowledgments sending (and for-
warding) events until the message is delivered at processor n (at time that is O(fD))
is just O(n log f). However, additional acknowledgments are sent after the message
is delivered.

Put differently, what we did prove (regarding time complexity) is that if there are
f faults, then the message must be delivered at node n at time that is O(fD) (if δ is
small). However, we did not prove that the acknowledgment from n to 1 is delivered
in such a time. In fact, for the implementation of the previous subsection, one can
show a case where for f = O(log n) faults the time for delivering n’s acknowledgment
in that implementation is Ω(2fD). The way the time complexity is defined (only until
the delivery of the message, or the disconnection of a link), we do not care about the
time it takes the acknowledgment to arrive after the message is delivered. Still, this
increases the message complexity of the previous implementation, since its message
complexity is, actually, in the order of n multiplied by the logarithm of the time
until all protocol-related communication ceases. The improvement of the message
complexity in this section is obtained by shortening that ceasing time.

Let us demonstrate a bad scenario. Assume that processor n− 1 is faulty; more
specifically, assume that a message over any link of processor n−1 is delivered exactly
after D time (rather than after δ time). Processor n − 2 expects (and receives)
an Ack from n within 4D time after n − 2 forwarded the message to n − 1. By
that time, processor n− 2 already sent a length 2 interval acknowledgment to n −
4. Thus, the next acknowledgment that n − 4 is waiting for is a length 4 interval
acknowledgment, expected to arrive after a time that is double that of the length 2
acknowledgment.

Carrying this argument further, when a length 2i interval acknowledgment Ack i
arrives at its destination, j, the next acknowledgment expected by processor j − 1 is
a length 2i+1 interval acknowledgment Ack i+1, that is expected in double the time.
Even if both Acki and Ack i+1 arrive at j at the same time, processor j can delay
Ack i+1 without j − 1 noticing a fault and disconnecting the link. Let fj be the
number of faults in the interval [j, n]. The state of knowledge of j − 1 at this point
is the same as in the case that the number of faults is 2fj . Thus, the length n − 1
interval acknowledgment from n to 1 (i.e., the end-to-end acknowledgment) can also
be delayed 2fj without causing j − 1 to detect the fault.

Let us now describe the improvement to the previous implementation. The idea
is to send (a few) other acknowledgments for “long” intervals. Acknowledgments sent
quickly over “long” intervals which do not contain faults will reach every processor in
the interval quickly. Therefore, many “short” acknowledgments whose intervals are
contained in the “long” interval will become redundant, and therefore, these “short”
acknowledgments will not be sent.
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A natural selection is the set of intervals whose length is
√
n− 1. Let us comment

that using only this set, without using the shorter acknowledgments, we could obtain
O(nδ + f

√
nD) time with O(n) communication, which is a communication optimal

but time suboptimal solution. However, to achieve time-optimality, we do combine
this set with the “short” intervals.

Furthermore, as we now explain, we need also to send “quickly” acknowledgments
over “long” intervals, i.e., intervals whose length is more than

√
n− 1. By sending

acknowledgments over the intervals of length
√
n− 1 immediately upon forwarding

the message, we prevent scenarios as described above for intervals whose length is
less than

√
n− 1, except for the few intervals of length

√
n− 1 which contain faulty

processors. However, we still have to deal with the intervals whose length is more
than

√
n− 1.

Recall that the “short acks,” as defined in (5), are sent in order of increasing
length. Namely, the Ack of interval of length l is sent after lD. The “long acks” are
acknowledgments sent in the reverse order, from the longest to the shortest. Namely,
the “long ack” of interval of length n−1

l is sent after lD. (The length of the intervals
divide n− 1.) The reason the “long” intervals are sent in this order is similar to the
idea behind the intervals of length

√
n− 1: a single successful longer interval may

make many relatively shorter intervals redundant. Note that the intervals which we
want to become redundant as a result of the “long” intervals are not really short;
their lengths are more than

√
n− 1.

Formally, the implementation of this subsection is presented in (6) below. For
simplicity, we assume that n−1 is an even power of 2. For 1 < i ≤ n and 0 ≤ t < n−1
define A

(3)
i (t) as follows:

(6) A
(3)
i (t)

def
=




1 if i = n,

i−√n− 1 if (∃r ∈ N)i = r
√
n− 1 + 1,

i−√n− 1 if (∃r ∈ N)i = (r + 1
2 )
√
n− 1 + 1,

i− n−1
t if (∃k)t = 2k ∧ (∃r ∈ N)i = rn−1

t + 1,

i− n−1
t if (∃k)t = 2k ∧ (∃r ∈ N)i = (r + 1

2 )
n−1
t + 1,

i− t if (∃k)t = 2k ∧ (∃r ∈ N)i = rt+ 1,

i− t if (∃k)t = 2k ∧ (∃r ∈ N)i = (r + 1
2 )t+ 1,

⊥ otherwise.

Note that the first, sixth, and seventh lines correspond to acknowledgments that
are sent also by the previous implementation. We term the acknowledgments defined
in the sixth and seventh lines “short” acknowledgments. The new acknowledgments
defined in the fourth and fifth lines are termed “long” acknowledgments. The new
acknowledgments defined in the second and third lines are termed “medium” acknowl-
edgments.

Intuitively, this helps since “long” intervals which contain no faulty processors are
“almost unaffected” by the faults “outside.” For example, if all the processors from
1 till (

√
n− 1 + 1) are nonfaulty, they send only O(n log(nδD )) messages.

6.6. Complexities of the adaptive implementations. We begin by showing
that the time complexity has not deteriorated significantly.

Lemma 13. The implementations A(2)() and A(3)() are early-terminating.
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Proof. We state the proof for A(3)(), but all of our arguments hold for A(2)() as
well. From Corollary 9, it is sufficient to bound F (A(3)()) by a constant. We use the
similarity between A(3)() and A(1)().

From Lemma 10 we know that F (A(1)()) is bounded by a constant. For every j,
l such that 1 ≤ j < l ≤ n, we show that F[j,l](A

(3)()) ≤ 1
3 + F[j,l](A

(1)()). Let j′, l′

be such that j′ ≤ j < l ≤ l′ and A(1)
l′ (0) = j′ and [j′, l′] is the “best cover” of [j, l] in

A(3)(), namely,

F[j,l](A
(1)()) =

l′ − j
l − j .

By the definition of A(3)() there is some t′ ≤ (l − j), such that A
(3)
l′ (t′) = j′. Hence,

F[j,l](A
(3)()) ≤ 3(l′ − j) + t′

3(l − j)

≤ 3(l′ − j) + (l − j)
3(l − j)

≤ 1

3
+

3(l′ − j)
3(l − j)

≤ 1

3
+ F[j,l](A

(1)()),

which completes the proof.
We now turn to the proof of the communication complexity. We begin by showing

a simple necessary condition for sending a particular “short acknowledgment.”

Lemma 14. Let j, i be processors such that 0 < i − j <
√
n−1
2 . If Sendj←ii [Ack ]

occurs, then either there is a faulty processor in [i, i+
√
n− 1 ] or in i−j ≤ √n− 1· 2δD .

Proof. Since i − j <
√
n−1
2 and from (6), there is some processor l such that

A
(3)
l (0) �=⊥ and l − A(3)

l (0) =
√
n− 1 and A

(3)
l (0) ≤ j < i ≤ l. If there is a faulty

processor in [i, l], then the claim holds. Assume, therefore, that there is no faulty
processor in [i, l].

Since every nonfaulty processor forwards the message and the acknowledgments

immediately, then Receive
A

(3)

l
(0)←l

i [Ack ] occurs not later than 2
√
n− 1 · δ after pro-

cessor i entered the protocol. From the second condition of 〈F3〉, processor i does not
issue the acknowledgment to j after Receive

A
(3)

l
(0)←l

i [Ack ]. Hence, Sendj←ii [Ack ] may

occur only before Receive
A

(3)

l
(0)←l

i [Ack ] occurs, i.e., before 2
√
n− 1 ·δ since processor

i started.
On the other hand, from (6) and since i − j <

√
n−1
2 , then Send

j←i
i [Ack ] occurs

only when timei > i − j. From 〈F2〉 and Axiom 2 holds i − j < timei only after
at least (i − j) · D since processor i started. Hence, Sendj←ii [Ack ] occurs only if
(i− j) ·D ≤ 2 · √n− 1 · δ.

Lemma 14 shows that a “short acknowledgment” is issued only if it is one of the
very short ones which are required since δ is not negligible, or if it is “close” to a
faulty processor. We now bound the maximal number of “short” acknowledgments
issued due to “close” faulty processors.

Lemma 15. For every k such that
√
n− 1 · 2δ

D < 2k <
√
n−1
2 , there are at most

f · 2 ·
√
n−1+1
2k events of type Send

(i−2k)←i
i [Ack ].
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Proof. From Lemma 14, if Send
(i−2k)←i
i [Ack ] occurs as specified, then there is a

faulty processor in [i, i +
√
n− 1 ]. From (6), for some integer r either i = r2k + 1

or i = (r + 1
2 )2

k + 1 holds. Hence, for every faulty processor l, there are at most

2 ·
√
n−1+1
2k intervals [i− 2k, i] such that l ∈ [i, i+

√
n− 1 ].

Lemma 15 bounds the communication due to acknowledgment intervals shorter

than
√
n−1
2 . In order to bound the entire communication complexity, we have to

consider also longer acknowledgment intervals. We begin by bounding the maximal
number of intervals either containing, or “near to,” faulty processors.

Lemma 16. For every k ∈ N, there are at most 5 · f processors i such that

for some t holds A
(3)
i (t) = i − 2k and the interval [i − 2k, i + 2k] contains a faulty

processor.
Proof. From (6), and since we assumed that

√
n− 1 is a power of 2, it follows

that if A
(3)
i (t) = i−2k, then (∃r ∈ N)(i = r ·2k+1)∨ (i = (r+ 1

2 ) ·2k+1). Hence, for

any faulty processor l, there are at most five processors i such that A
(3)
i (t) = i − 2k

and l ∈ [i− 2k, i+ 2k].
All that remains is to bound the communication in “long” intervals that do not

contain, and are not near, a faulty processor.

Lemma 17. Consider k such that
√
n− 1 < 2k. If Send

(i−2k)←i
i [Ack] occurs, then

either there is a faulty processor in [i, i+ 2k] or in 2k >
√

D·(n−1)
8·δ .

Proof. Assume that Send
(i−2k)←i
i [Ack ] occurs. Since

√
n− 1 < 2k, from subsec-

tion 6.4 we know that processor i+2k is to send an acknowledgment over an interval
of length 2k+1 (if 2k+1 ≤ n− 1). That is,

A
(3)

i+2k

(
n− 1

2k+1

)
= (i+ 2k)− 2k+1 = i− 2k.

Assume that there is no faulty processor in [i, i + 2k]. Every nonfaulty processor
forwards the message immediately. Hence, processor i + 2k receives the message
and starts executing at most 2k · δ after processor i started executing. After at
most n−1

2k+1TICK i+2k events, processor i + 2k either sends its own length 2k+1 inter-
val acknowledgment, or this acknowledgment is already redundant since it already
performed some other Send

j←l
i+2k [Ack ] such that j ≤ i − 2k < i < i + 2k ≤ l. From

Axiom 2, this occurs after at most ( n−1
2k+1 +1) ·D since processor i+2k started. Since

every processor in [i, i+ 2k] is nonfaulty, it follows that Receivej
′←l′
i [Ack ] occurs at

most 2k · δ after Send
j←l
i+2k [Ack ] with j′ ≤ j < l ≤ l′. Namely, Receivej

′←l′
i [Ack ]

occurs after at most 2 · 2k · δ + ( n−1
2k+1 + 1) ·D since processor i started.

From (6) and since
√
n− 1 < 2k, it follows that Send

(i−2k)←i
i [Ack ] occurs only af-

ter timei ≥ n−1
2k . From Axiom 2, this occurs at least n−1

2k ·D since processor i starts ex-

ecuting. However, Send
(i−2k)←i
i [Ack ] does not happen after Receivej

′←l′
i [Ack ] where

j′ ≤ i − 2k < i < l′. Since we assumed that Send
(i−2k)←i
i [Ack ] does occur, it follows

that

n− 1

2k
·D < 2 · 2k · δ +

(
n− 1

2k+1
+ 1

)
·D

from which the claim follows.
We now use Lemmas 14–17 to compute the communication complexity.
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Theorem 18. The communication complexity of implementation A(3)() is
O(n log(f + nδ

D )).
Proof. It is immediate that the communication complexity due to the data mes-

sage and to the disconnection messages is O(n). Therefore, we consider only acknowl-
edgments.

Let nk be the number of Send
(i−2k)←i
i [Ack ] events during the execution. The

communication complexity due to acknowledgments is at most

(7) CAck ≤
log(n−1)∑
k=0

nk · 2k

directly from (6) and since
√
n− 1 is a power of 2, nk ≤ n−1

2k · 2.
By substituting this bound for nk in (7), we obtain

(8) CAck = O(n log(n)).

The rest of the proof is needed to refine this bound. Let us first outline the proof.

Lemma 15 gives tighter bounds of nk for
√
n−1·2δ
D < 2k <

√
n−1
2 . Lemmas 16 and 17

give tighter bounds of nk for
√
n− 1 < 2k ≤

√
D·(n−1)

8·δ . We combine these tighter

bounds with the simple bound of (n−1)·2
2k for other values of k and obtain the desired

bound on the communication complexity.
Directly, since nk ≤ n−1

2k · 2, i.e., nk · 2k ≤ (n− 1) · 2, it follows that

(9)

log
√

n−1·2δ
D �∑

k=0

nk · 2k ≤
log

√
n−1·2δ

D �∑
k=0

2(n− 1) = O

(
n log

nδ

D

)
,

(10)

log
√
n−1∑

k=(log
√
n−1)−1

nk · 2k ≤
log
√
n−1∑

k=(log
√
n−1)−1

2(n− 1) = O(n),

(11)

log(n−1)∑
k=log

√
D(n−1)

8δ �

nk · 2k ≤
log(n−1)∑

k=log
√

D(n−1)
8δ �

2(n− 1)

≤ 2(n− 1) · log
√

8δ(n− 1)

D
= O

(
n log

nδ

D

)
,

(12)

log(n−1)∑
k=log 2(n−1)

5f �
nk · 2k ≤

log(n−1)∑
k=log 2(n−1)

5f �
2(n− 1)

≤ 2(n− 1) · log 5f

2
= O(n log(f)).

From Lemmas 16 and 17, if
√
n− 1 < 2k ≤

√
D·(n−1)

8·δ , then nk ≤ 5 · f . Therefore,

the following holds:

(13)

log
√

D·(n−1)
8δ �−1∑

k=1+log
√
n−1

nk · 2k ≤
log 2(n−1)

5f �∑
k=1+log

√
n−1

5f · 2k +
log(n−1)∑

klog 2(n−1)
5f �

nk · 2k.
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Obviously,

(14)

log 2(n−1)
5f �∑

k=1+log
√
n−1

5f · 2k ≤ 5f · 2(n− 1)

5f
· 2 = O(n).

From inequalities (12), (13), and (14), we obtain

(15)

log
√

D·(n−1)
8δ �−1∑

k=1+log
√
n−1

nk · 2k ≤ O(n) +O(n log(f)) = O(n log(f)).

From Lemma 15, it follows that if
√
n−1·2δ
D < 2k <

√
n−1
2 , then nk ≤ 2f ·

√
n−1+1
2k .

Hence,

(16)

(log
√
n−1)−2∑

k=1+log
√

n−1·2δ
D �

nk · 2k ≤
(log
√
n−1)−2∑

k=1+log
√

n−1·2δ
D �

2f ·
√
n− 1 + 1

2k
· 2k

= O(
√
n · f · log(n)).

From inequalities (7), (9), (10), (11), (15), and (16), we obtain

(17) CAck ≤
log(n−1)∑
k=0

nk · 2k = O

(
n log

nδ

D

)
+O(n log(f)) +O(

√
n · f · log(n)).

For f ≥ n
1
4 the claim follows from (8), since CAck = O(n log n), and in this case

O(n log(f)) = O(n log(n)). For the case that f < n
1
4 the claim follows from (17)

since then O(
√
n · f · log(n)) ≤ O(n).

7. Conclusions. We have observed that the actual delivery time in asynchronous
bounded networks is much shorter than the known bound on the delivery time. We
introduced a way to model and take advantage of that fact and the notion of early ter-
mination for protocols in the asynchronous bounded network. Following [AADW94],
we observed that early termination is a form of distributed competitiveness.

The protocols presented ensure early-terminating detection of arbitrary failures
in forwarding a message along a fixed route. The protocols are quite simple and
need only finite memory. The penalty in message complexity is acceptable for most
applications. The message complexity is at most O(n log n), where n is the length
of the path, compared to O(n) for the trivial protocol which cannot overcome faults
other than those detectable by the link protocol. The message complexity of our
adaptive detector is O(n log(f + nδ

D )), where δ
D is the ratio between the actual delay

and the a priori bound on the delay, and f is the number of faults. Since usu-
ally δ

D � 1 and f = 0 (or f = O(1)), the communication complexity is nearly
optimal. Theorems 5 and 7 may be used to achieve other trade-offs by different im-
plementations of the design, some of which may be better in practical applications.
For example, it is easy to keep the communication complexity optimal (i.e., O(n))
while still improving the time complexity from the O(nD) of the trivial protocol to
(O(nδ +

√
n · f ·D)).

Further work is needed to find the best communication complexity for early-
terminating protocols, possibly generalizing our lower bound to hold for a general
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protocol. Let us list some additional open problems: generalizing our results to
networks and rings (rather than a path), considering probabilistic protocols, dealing
with clock drifts, and efficient handling of many messages. Additional further work
is needed in order to understand the implications of the model for other tasks and,
possibly, to generalize the model further. As mentioned in the introduction, some of
this further research has meanwhile already taken place.
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Abstract. Given a real number α < 1, every language that is weakly ≤P
nα/2−T-hard for E or

weakly ≤Pnα−T-hard for E2 is shown to be exponentially dense. This simultaneously strengthens the
results of Lutz and Mayordomo (1994) and Fu (1995).
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1. Introduction. In the mid-1970s, Meyer [16] proved that every ≤P
m-complete

language for exponential time—in fact, every≤P
m-hard language for exponential time—

is dense. That is,

E �⊆ Pm(DENSE
c),(1.1)

where E = DTIME(2linear), DENSE is the class of all dense languages, DENSEc

is the complement of DENSE, and Pm(DENSE
c) is the class of all languages that

are ≤P
m-reducible to nondense languages. (A language A ∈ {0, 1}∗ is dense if there

is a real number ε > 0 such that |A≤n| > 2nε

for all sufficiently large n, where
A≤n = A∩{0, 1}≤n.) Since that time, a major objective of computational complexity
theory has been to extend Meyer’s result from ≤P

m-reductions to ≤P
T-reductions, i.e.,

to prove that every ≤P
T-hard language for E is dense. That is, the objective is to prove

that

E �⊆ PT(DENSE
c),(1.2)

where PT(DENSE
c) is the class of all languages that are ≤P

T-reducible to nondense
languages. The importance of this objective derives largely from the fact (noted by
Meyer [16]) that the class PT(DENSE

c) contains all languages that have subexponen-
tial circuit-size complexity. (A language A ⊆ {0, 1}∗ has subexponential circuit-size
complexity if, for every real number ε > 0 and for every sufficiently large n, there is an
n-input, 1-output Boolean circuit that decides that the set A=n = A∩{0, 1}n and has
fewer than 2n

ε

gates. Otherwise, we say that A has exponential circuit-size complex-
ity.) Thus a proof of (1.2) would tell us that E contains languages with exponential
circuit-size complexity, thereby answering a major open question concerning the rela-
tionship between (uniform) time complexity and (nonuniform) circuit-size complexity.
Of course (1.2) also implies the more modest, but more famous, conjecture that

E �⊆ PT(SPARSE),(1.3)
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where SPARSE is the class of all sparse languages. (A language A ⊆ {0, 1}∗ is sparse
if there is a polynomial q(n) such that |A≤n| ≤ q(n) for all n ∈ N.) As noted by Meyer
[16], the class PT(SPARSE) consists precisely of all languages that have polynomial
circuit-size complexity, so (1.3) asserts that E contains languages that do not have
polynomial circuit-size complexity.
Knowing (1.1) and wanting to prove (1.2), the natural strategy has been to prove

results of the form

E �⊆ Pr(DENSEc)

for successively larger classes Pr(DENSE
c) in the range

Pm(DENSE
c) ⊆ Pr(DENSEc) ⊆ PT(DENSE

c).

The first major step beyond (1.1) in this program was the proof by Watanabe [18]
that

E �⊆ PO(log n)−tt(DENSE
c),(1.4)

i.e., that every language that is ≤P
O(log n)−tt-hard for E is dense. The next big step

was the proof by Lutz and Mayordomo [11] that, for every real number α < 1,

E �⊆ Pnα−tt(DENSE
c).(1.5)

This improved Watanabe’s result from O(log n) truth-table (i.e., nonadaptive) queries
to nα such queries for α arbitrarily close to 1 (e.g., to n0.99 truth-table queries).
Moreover, Lutz and Mayordomo [11] proved (1.5) by first proving the stronger result
that for all α < 1,

µp(Pnα−tt(DENSE
c)) = 0,(1.6)

which implies that every language that is weakly ≤P
nα−tt-hard for E or for E2 =

DTIME(2poly) is dense. (A language A is weakly ≤P
r -hard for a complexity class C

if µ(Pr(A) | C) �= 0, i.e., if Pr(A) ∩ C is a nonnegligible subset of C in the sense
of the resource-bounded measure developed by Lutz [10]. A language A is weakly
≤P
r -complete for C if A ∈ C and A is weakly ≤P

r -hard for C. See [13] or [2] for a
survey of resource-bounded measure and weak completeness.) It is now known that
the set of ≤P

nα−tt-hard languages for E2 has measure 0 in E2 [7], while the set of
weakly ≤P

nα−tt-hard languages for E2 has measure 1 in E2 [3]. Thus almost every
language in E2 is weakly ≤P

nα−tt-hard, but not ≤P
nα−tt-hard, for E2, so the result of

Lutz and Mayordomo [11] for E2 is provably much more general than the fact that
every ≤P

nα−tt-hard language for E2 is dense. We conjecture that this also holds for E.
A word on the relationship between hardness notions for E and E2 is in order

here. It is well known that a language is ≤P
m-hard for E if and only if it is ≤P

m-hard
for E2; this is because E2 = Pm(E). The same equivalence holds for ≤P

T-hardness.
It is also clear that every language that is ≤P

nα−tt-hard for E2 is ≤P
nα−tt-hard for E.

However, it is not generally the case that Pm(Pnα−tt(A)) = Pnα−tt(A), so it may well
be the case that a language can be ≤P

nα−tt-hard for E but not for E2. These same
remarks apply to ≤P

nα−T-hardness.
The relationship between weak hardness notions for E and E2 is somewhat dif-

ferent. Juedes and Lutz [9] have shown that weak ≤P
m-hardness for E implies weak
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≤P
m-hardness for E2, and their proof of this fact also works for weak ≤P

T-hardness.
However, Juedes and Lutz [9] also showed that weak ≤P

m-hardness for E2 does not
generally imply weak ≤P

m-hardness for E, and it is reasonable to conjecture (but has
not been proven) that the same holds for weak ≤P

T-hardness. We further conjecture
that the notions of weak ≤P

nα−tt-hardness for E and weak ≤P
nα−tt-hardness E2 are in-

comparable, and similarly for weak ≤P
nα−T-hardness. In any case, (1.6) implies that,

for every α < 1, every language that is weakly ≤P
nα−tt-hard for either E or E2 is dense.

Shortly after, but independently of [11], Fu [8] used very different techniques to
prove that, for every α < 1,

E �⊆ Pnα/2−T(DENSE
c)(1.7)

and

E2 �⊆ Pnα−T(DENSE
c).(1.8)

That is, every language that is ≤P
nα/2−T

-hard for E or ≤P
nα−T-hard for E2 is dense.

These results do not have the measure-theoretic strength of (1.6), but they are a
major improvement over previous results on the densities of hard languages in that
they hold for Turing reductions, which have adaptive queries.
In the present paper, we prove results which simultaneously strengthen results of

Lutz and Mayordomo [11] and the results of Fu [8]. Specifically, we prove that, for
every α < 1,

µp(Pnα/2−T(DENSE
c)) = 0(1.9)

and

µp2(Pnα−T(DENSE
c)) = 0.(1.10)

These results imply that every language that is weakly ≤P
nα/2−T

-hard for E or weakly

≤P
nα−T-hard for E2 is dense. The proof of (1.9) and (1.10) is not a simple extension
of the proof in [11] or the proof in [8], but rather combines ideas from both [11] and
[8] with the martingale dilation technique introduced by Ambos-Spies, Terwijn, and
Zheng [3].
Our results also show that the strong hypotheses µp(NP) �= 0 and µp2

(NP) �=
0 (surveyed in [13] and [2]) have consequences for the densities of adaptively hard
languages for NP. Mahaney [14] proved that

P �= NP⇒ NP �⊆ Pm(SPARSE),(1.11)

and Ogiwara and Watanabe [17] improved this to

P �= NP⇒ NP �⊆ Pbtt(SPARSE).(1.12)

That is, if P �= NP, then no sparse language can be ≤P
btt-hard for NP. Lutz and

Mayordomo [11] used (1.6) to obtain a stronger conclusion from a stronger hypothesis;
namely, for all α < 1,

µp(NP) �= 0⇒ NP �⊆ Pnα−tt(DENSE
c).(1.13)

By (1.10) and the known fact that µp(NP) �= 0 iff µp2(NP) �= 0 [3], we now have, for
all α < 1,

µp(NP) �= 0⇒ NP �⊆ Pnα−T(DENSE
c).(1.14)

Thus, if µp(NP) �= 0, then every language that is ≤P
n0.99−T-hard for NP is dense.
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2. Preliminaries. The Boolean value of a condition ψ is

[[ψ]] =

{
1 if ψ,
0 if not ψ.

The standard enumeration of {0, 1}∗ is s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . . This
enumeration induces a total ordering of {0, 1}∗ which we denote by <.
All languages here are subsets of {0, 1}∗. The Cantor space is the set C of all

languages. We identify each language A ∈ C with its characteristic sequence, which
is the infinite binary sequence

[[s0 ∈ A]][[s1 ∈ A]][[s2 ∈ A]] · · · ,

where s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . . is the standard enumeration of {0, 1}∗.
For w ∈ {0, 1}∗ and A ∈ C, we write w � A to indicate that w is a prefix of (the
characteristic sequence of) A. The symmetric difference of the two languages A and
B is AB = (A−B) ∪ (B −A).
The cylinder generated by a string w ∈ {0, 1}∗ is the set

Cw = {A ∈ C|w � A}.

Note that Cλ = C.
In this paper, a set X ⊆ C that appears in a probability Pr(X) or a conditional

probability Pr(X|Cw) is regarded as an event in the sample space C with the uniform
probability measure. Thus, for example, Pr(X) is the probability that A ∈ X when
the language A ⊆ {0, 1}∗ is chosen probabilistically by using an independent toss of
a fair coin to decide membership of each string in A. In particular, Pr(Cw) = 2

−|w|.
The complement of a set X ⊆ C is the set Xc = C−X.
Let d ∈ N and t : N → N. A function f : Nd × {0, 1}∗ → Q is exactly t(n)-time-

computable if there is an algorithm that, on input (k1, . . . , kd, w) ∈ N
d×{0, 1}∗, runs

for at most O(t(k1, . . . , kd, |w|)) steps and outputs an ordered pair (a, b) ∈ Z×Z such
that f(k1, . . . , kd, w) =

a
b . A function f : N

d ×{0, 1}∗ → R is t(n)-time-computable if

there is an exactly t(n)-time-computable function f̂ : Nd+1 × {0, 1}∗ → Q such that,
for all r, k1, . . . , kd ∈ N and w ∈ {0, 1}∗,

|f̂(r, k1, . . . , kd, w)− f(k1, . . . , kd, w)| ≤ 2−r.

We briefly review those aspects of martingales and resource-bounded measure
that are needed for our main theorem. The reader is referred to [2], [10], [13], or [15]
for more thorough discussion.
A martingale is a function d : {0, 1}∗ → [0,∞) such that, for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2
.

If t : N→ N, then a t(n)-martingale is a martingale that is t(n)-time-computable, and
an exact t(n)-martingale is a (rational-valued) martingale that is exactly t(n)-time-
computable. A martingale d succeeds on a language A ∈ C if, for every c ∈ N, there
exists w � A such that d(w) > c. The success set of a martingale d is the set

S∞[d] = {A ∈ C|d succeeds on A}.
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The unitary success set of d is

S1[d] =
⋃

w ∈ {0, 1}∗
d(w) ≥ 1

Cw.

The following result was proved by Juedes and Lutz [9] and independently by
Mayordomo [15].

Lemma 2.1 (exact computation lemma). Let t : N → N be nondecreasing with
t(n) ≥ n2. Then, for every t(n)-martingale d, there is an exact n·t(2n+2)-martingale
d̃ such that S∞[d] ⊆ S∞[d̃].
A sequence

∞∑
k=0

aj,k (j = 0, 1, 2, . . . )

of series of terms aj,k ∈ [0,∞) is uniformly p-convergent if there is a polynomial
m : N2 → N such that, for all j, r ∈ N,

∑∞
k=mj(r)

aj,k ≤ 2−r, where we write mj(r) =

m(j, r). The following sufficient condition for uniform p-convergence is easily verified
by routine calculus.

Lemma 2.2. Let aj,k ∈ [0,∞) for all j, k ∈ N. If there exist a real number ε > 0
and a polynomial g : N→ N such that aj,k ≤ e−k

ε

for all j, k ∈ N with k ≥ g(j), then
the series

∑∞
k=0 aj,k (j = 0, 1, 2, . . . ) are uniformly p-convergent.

A uniform, resource-bounded generalization of the classical first Borel–Cantelli
lemma was proved by Lutz [10]. Here we use the following precise variant of this
result.

Theorem 2.3. Let α, α̃ ∈ R with 1 ≤ α < α̃, and let

d : N× N× {0, 1}∗ → Q ∩ [0,∞)
be an exactly 2(log n)α-time-computable function with the following two properties.

(i) For each j, k ∈ N, the function dj,k defined by dj,k(w) = d(j, k, w) is a
martingale.

(ii) The series
∑∞

k=0 dj,k(λ) (j = 0, 1, 2, . . . ) are uniformly p-convergent.

Then there is an exact 2(log n)α̃-martingale d̃ such that

∞⋃
j=0

∞⋂
t=0

∞⋃
k=t

S1[dj,k] ⊆ S∞[d̃].

Proof. Assume the hypothesis, and fix α′ ∈ Q such that α < α′ < α̃. Since

n·2(log(2n+2))α
′
= o(2(log n)α̃), it suffices by Lemma 2.1 to show that there is a 2(log n)α

′
-

martingale d′ such that
∞⋃
j=0

∞⋂
t=0

∞⋃
k=t

S1[dj,k] ⊆ S∞[d′].(2.1)

Fix a polynomial m : N
2 → N testifying that the series

∑∞
k=0dj,k(λ) (j =

0, 1, 2, . . . ) are uniformly p-convergent, and define

d′(w) =
∞∑
j=0

∞∑
t=0

∞∑
k=mj(2t)

2t−jdj,k(w)
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for all w ∈ {0, 1}∗. Thus, for each w ∈ {0, 1}∗,

d′(w) ≤
∞∑
j=0

∞∑
t=0

∞∑
k=mj(2t)

2t−j+|w|dj,k(λ)

≤ 2|w|
∞∑
j=0

2−j
∞∑
t=0

2t · 2−2t

= 2|w|+2,

so d′ : {0, 1}∗ → [0,∞). It is clear by linearity that d′ is a martingale. To see that
(2.1) holds, assume that A ∈ ∪∞j=0 ∩∞t=0 ∪∞k=tS

1[dj,k], and let c ∈ N be arbitrary. Then

there exist j ∈ N and k ≥ mj(2j + 2c) such that A ∈ S1[dj,k]. Fix w � A such that
dj,k(w) ≥ 1. Then d′(w) ≥ 2c+j−jdj,k(w) ≥ 2c. Since c is arbitrary here, it follows
that A ∈ S∞[d′], confirming (2.1).
To see that d′ is 2(log n)α

′
-time-computable, define dA, dB , dC : N × {0, 1}∗ →

[0,∞) as follows, using the abbreviation s = r + |w|+ 2.

dA(r, w) =

s∑
j=0

∞∑
t=0

∞∑
k=mj(2t)

2t−jdj,k(w),

dB(r, w) =

s∑
j=0

2s∑
t=0

∞∑
k=mj(2t)

2t−jdj,k(w),

dC(r, w) =

s∑
j=0

2s∑
t=0

mj(2s
2+4s+t)∑

k=mj(2t)

2t−jdj,k(w).(2.2)

For all r ∈ N and w ∈ {0, 1}∗, it is clear that

dC(r, w) ≤ dB(r, w) ≤ dA(r, w) ≤ d′(w),

and it is routine to verify the inequalities

d′(w)− dA(r, w) ≤ 2−(r+1),

dA(r, w)− dB(r, w) ≤ 2−(r+2),

dB(r, w)− dC(r, w) ≤ 2−(r+2),

whence we have

d′(w)− 2−r ≤ dC(r, w) ≤ d′(w)(2.3)

for all r ∈ N and w ∈ {0, 1}∗. Using formula (2.2), the time required to compute
dC(r, w) exactly is no greater than

O((s+ 1)(2s+ 1)m(s, 2s2 + 4s+ 2s)2(log n)α) = O(q(n) · 2(log n)α),

where n = r + |w| and q is a polynomial. Since q(n) · 2(log n)α = o(2(log n)α
′
), it

follows that dC(r, w) is exactly 2
(log n)α

′
-time-computable. By (2.3), then, d′ is a

2(log n)α
′
-martingale.
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The proof of our main theorem uses the techniques of weak stochasticity and
martingale dilation, which we briefly review here.
As usual, an advice function is a function h : N → {0, 1}∗. Given a function q :

N→ N, we write ADV(q) for the set of all advice functions h such that |h(n)| ≤ q(n)
for all n ∈ N. Given a language B and an advice function h, we define the language

B/h = {x ∈ {0, 1}∗ | 〈x, h(|x|)〉 ∈ B},
where 〈· , ·〉 is a standard string-pairing function, e.g., 〈x, y〉 = 0|x|1xy. Given
functions t, q : N→ N , we define the advice class

DTIME(t)/ADV(q) = {B/h | B ∈ DTIME(t) and h ∈ ADV(q)}.
Definition (Lutz and Mayordomo [11], Lutz [12]). For t, q, ν : N → N, a lan-

guage A is weakly (t, q, ν)-stochastic if, for all B,C ∈ DTIME(t)/ADV(q) such that
|C=n| ≥ ν(n) for all sufficiently large n,

lim
n→∞

|(AB)
⋂
C=n|

|C=n| =
1

2
.

We write WS(t, q, ν) for the set of all weakly (t, q, ν)-stochastic languages.
The following result resembles the weak stochasticity theorems proved by Lutz

and Mayordomo [11] and Lutz [12] but gives a more careful upper bound on the time
complexity of the martingale.

Theorem 2.4 (weak stochasticity theorem). Assume that α, β, γ, τ ∈ R satisfy
α ≥ 1, β ≥ 1, γ > 0, and τ > αβ. Then there is an exact 2(log n)τ -martingale d such
that

S∞[d] ∪WS(2nα

, nβ , 2γn) = C.

Proof. Assume the hypothesis, and assume without loss of generality that α, β, γ,
τ ∈ Q. Fix α′, τ ′, τ ′′ ∈ Q such that α < α′ and α′β < τ ′′ < τ ′ < τ . Let U ∈
DTIME(2n

α′
) be a language that is universal for DTIME(2n

α

)×DTIME(2nα

) in the
following sense. For each i ∈ N, let

Ci = {x ∈ {0, 1}∗|〈si, 0x〉 ∈ U},

Di = {x ∈ {0, 1}∗|〈si, 1x〉 ∈ U}.
Then DTIME(2n

α

)×DTIME(2nα

) = {(Ci, Di)|i ∈ N}.
Define a function d′ : N3 × {0, 1}∗ → Q ∩ [0,∞) as follows. If k is not a power of

2, then d′i,j,k(w) = 0. Otherwise, if k = 2
n, where n ∈ N, then

d′i,j,k(w) =
∑

y,z∈{0,1}≤nβ

Pr(Yi,j,k,y,z|Cw),

where the sets Yi,j,k,y,z are defined as follows. If |(Ci/y)=n| < 2γn, then Yi,j,k,y,z = ∅.
If |(Ci/y)=n| ≥ 2γn, then Yi,j,k,y,z is the set of all A ∈ C such that∣∣∣∣ |(A (Di/z)) ∩ (Ci/y)=n|

|(Ci/y)=n| − 1
2

∣∣∣∣ ≥ 1

j + 1
.
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The definition of conditional probability immediately implies that, for each i, j, k ∈
N, the function d′i,j,k is a martingale. Since U ∈ DTIME(2n

α′
) and α′β < τ ′′,

the time required to compute each Pr(Yi,j,k,y,z|Cw) using binomial coefficients is at

most O(2(log(i+j+k))τ
′′
) steps, so the time required to compute d′i,j,k(w) is at most

O((2n
β

+ 1)2 · 2(log(i+j+k))τ
′′
) = O(2(log(i+j+k))τ

′
) steps. Thus d′ is exactly 2(log n)τ

′
-

time-computable.
As in [11] and [12], the Chernoff bound tells us that, for all i, j, n ∈ N and

y, z ∈ {0, 1}≤nβ

, writing k = 2n,

Pr(Yi,j,k,y,z) ≤ 2e−kγ/2(j+1)2 ,

whence

d′i,j,k(λ) ≤ (2n
β

+ 1)2 · 2e−kγ/2(j+1)2

< e2n
β+3−kγ/2(j+1)2 .

Let a = � 1
γ �, let ε = γ

4 , and fix k0 ∈ N such that

k2ε > kε + 2(log k)β + 3

for all k ≥ k0. Define g : N→ N by

g(j) = 4a(j + 1)4a + k0

for all j ∈ N. Then g is a polynomial and, for all i, j, n ∈ N, writing k = 2n,

k ≥ g(j)⇒



kγ = k2εk2ε

> [4a(j + 1)4a]2ε(kε + 2(log k)β + 3)
≥ 2(j + 1)2(kε + 2nβ + 3)

⇒ d′i,j,k(λ) < e−k
ε

.

It follows by Lemma 2.2 that the series
∑∞

k=0 d
′
i,j,k(λ), for i, j ∈ N, are uniformly

p-convergent. Since 1 < τ ′′ < τ , it follows by Theorem 2.3 that there is an exact
2(log n)τ -martingale d such that

∞⋃
i=0

∞⋃
j=0

∞⋂
t=0

∞⋃
k=t

S1[d′i,j,k] ⊆ S∞[d].(2.4)

Now assume that A �∈WS(2nα

, nβ , 2γn). Then, by the definition of weak stochas-
ticity, we can fix i, j ∈ N, functions h1, h2 ∈ ADV(nβ), and an infinite set J ⊆ N such
that, for all n ∈ J , A ∈ Yi,j,k,h1(n),h2(n), where k = 2

n. For each n ∈ J , then, there is
a prefix w � A such that Cw ⊆ Yi,j,k,h1(n),h2(n), whence

d′i,j,k(w) ≥ Pr(Yi,j,k,h1(n),h2(n)|Cw) = 1,

i.e., A ∈ S1[d′i,j,k]. This argument shows that

∞⋃
i=0

∞⋃
j=0

∞⋂
t=0

∞⋃
k=t

S1[d′i,j,k] ∪WS(2n
α

, nβ , 2γn) = C.
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If follows by (1.4) that

S∞[d] ∪WS(2nα

, nβ , 2γn) = C.

The technique of martingale dilation was introduced by Ambos-Spies, Terwijn,
and Zheng [3]. It has also been used by Juedes and Lutz [9] and generalized consid-
erably by Breutzmann and Lutz [6]. We use the notation of [9] here.
The restriction of a string w = b0b1 · · · bn−1 ∈ {0, 1}∗ to a language A ⊆ {0, 1}∗

is the string w|̀A obtained by concatenating the successive bits bi for which si ∈ A.
If f : {0, 1}∗ → {0, 1}∗ is strictly increasing and d is a martingale, then the f -dilation
of d is the function f d̂ : {0, 1}∗ → [0,∞) defined by

f d̂(w) = d(w|̀range(f))
for all w ∈ {0, 1}∗.

Lemma 2.5 (martingale dilation lemma—Ambos-Spies, Terwijn, and Zheng [3]).
If f : {0, 1}∗ → {0, 1}∗ is strictly increasing and d is a martingale, then fˆd is also a
martingale. Moreover, for every language A ∈ {0, 1}∗, if d succeeds on f−1(A), then
fˆd succeeds on A.
Finally, we summarize the most basic ideas of resource-bounded measures in E

and E2. A p-martingale is a martingale that is, for some k ∈ N, an nk-martingale. A

p2-martingale is a martingale that is, for some k ∈ N, a 2(log n)k -martingale.
Definition (Lutz [10]).
1. A set X of languages has p-measure 0, and we write µp(X) = 0, if there is a
p-martingale d such that X ⊆ S∞[d].

2. A set X of languages has p2-measure 0, and we write µp2
(X) = 0, if there is

a p2-martingale d such that X ⊆ S∞[d].
Definition (Lutz [10]).
1. A set X of languages has measure 0 in E, and we write µ(X|E) = 0, if

µp(X
⋂
E) = 0.

2. A set X of languages has measure 0 in E2, and we write µ(X|E2) = 0, if
µp2(X

⋂
E2) = 0.

3. A set X of languages has measure 1 in E, and we write µ(X|E) = 1, if
µ(Xc|E) = 0. In this case, we say that X contains almost every element of
E.

4. A set X of languages has measure 1 in E2, and we write µ(X|E2) = 1, if
µ(Xc|E2) = 0. In this case, we say that X contains almost every element of
E2.

5. The expression µ(X|E) �= 0 means that X does not have measure 0 in E. Note
that this does not assert that “µ(X|E)” has some nonzero value. Similarly,
the expression µ(X|E2) �= 0 means that X does not have measure 0 in E2.

It is shown in [10] that these definitions endow E and E2 with internal measure
structure. This structure justifies the intuition that, if µ(X|E) = 0, then X ∩ E is a
negligibly small subset of E (and similarly for E2).

3. Results. The key to our main theorem is the following lemma, which says that
languages that are ≤P

nα−T-reducible to nondense languages cannot be very stochastic.
Lemma 3.1 (main lemma). For all real numbers α < 1 and β > 1 + α,

Pnα−T(DENSE
c) ∩WS(2n, nβ , 2n

2 ) = ∅.
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Proof. Let α < 1 and β > 1+α, and assume without loss of generality that α and
β are rational. Let A ∈ Pnα−T(DENSE

c). It suffices to show that A is not weakly
(2n, nβ , 2

n
2 )-stochastic.

Since A ∈ Pnα−T(DENSE
c), there exist a nondense language S, a polynomial

q(n), and a q(n)-time-bounded oracle Turing machine M such that A = L(MS) and,
for every x ∈ {0, 1}∗ and B ⊆ {0, 1}∗, M makes exactly �|x|α�queries (all distinct) on
input x with oracle B. Call these queries QB(x, 1), . . . , QB(x, �|x|α�) in the order in
which M makes them.
For each B ∈ {0, 1}∗ and n ∈ N, define an equivalence relation ≈B,n on {0, 1}≤q(n)

by

u ≈B,n v ⇔ (∀w)[u ≤ w ≤ v ⇒ [[w ∈ B]] = [[u ∈ B]]]

and an equivalence relation ≡B,n on {0, 1}n by

x ≡B,n y ⇔ (∀i)[1 ≤ i ≤ nα ⇒ QB(x, i) ≈B,n QB(y, i)].

Note that ≈B,n has at most 2|B≤q(n)| + 1 equivalence classes, so ≡B,n has at most

(2|B≤q(n)|+ 1)nα

equivalence classes.

Let ε = 1−α
2 , and let J be the set of all n ∈ N for which the following three

conditions hold.
(i) 2|S≤q(n)|+ 1 ≤ 2nε

.
(ii) nα+ε ≤ n

2 .
(iii) nα(2n+ 1) ≤ nβ .

Since α + ε < 1 and β > 1 + α, conditions (ii) and (iii) hold for all sufficiently large
n. Since ε > 0 and S is not dense, condition (i) holds for infinitely many n. Thus the
set J is infinite.
Define an advice function h : N→ {0, 1}∗ as follows. If n �∈ J , then h(n) = λ. If

n ∈ J , then let Dn be a maximum-cardinality equivalence class of the relation ≡S,n.
For each 1 ≤ i ≤ �nα�, fix strings yn,i, zn,i ∈ Dn such that, for all x ∈ Dn,

QS(yn,i, i) ≤ QS(x, i) ≤ QS(zn,i, i).

Let

h1(n) = yn,1 · · · yn,�nα,
h2(n) = zn,1 · · · zn,�nα,

h3(n) = [[Q
S(yn,1, 1) ∈ S]] · · · [[QS(yn,�nα, �nα�) ∈ S]],

h(n) = h1(n)h2(n)h3(n).

Note that |h(n)| = �nα�(2n+ 1) ≤ nβ for all n ∈ J , so h ∈ ADV(nβ).
For each n ∈ N, let t = �nα�, and let Cn be the set of all coded pairs

〈x, y1 · · · ytz1 · · · ztb1 · · · bt〉

such that x, y1, . . . , yt, z1, . . . , zt ∈ {0, 1}n, b1, . . . , bt ∈ {0, 1}, and, for each 1 ≤ i ≤ t,

Qb1···bt(yi, i) ≤ Qb1···bt(x, i) ≤ Qb1···bt(zi, i),

where Qb1···bt(w, i) denotes the ith query of M on input w when the successive oracle
answers are b1, . . . , bt. Let Bn be the set of all such coded pairs in Cn such that M
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accepts on input x when the successive oracle answers are b1, . . . , bt. Finally, define
the languages

B = {〈x, v〉 | v = λ or〈x, v〉 ∈ B|x|},

C = {〈x, v〉 | v = λ or〈x, v〉 ∈ C|x|}.
It is clear that B,C ∈ DTIME(2n). Also, by our construction of these sets and the
advice function h, for each n ∈ N, we have

(C/h)=n =

{
Dn if n ∈ J,
{0, 1}n if n �∈ J

and

(B/h)=n =

{
A ∩Dn if n ∈ J,
{0, 1}n if n �∈ J.

For each n ∈ J , if κ(n) is the number of equivalence classes of ≡S,n, then

κ(n) ≤ (2|S≤q(n)|+ 1)n
α ≤ (2nε

)n
α

= 2n
α+ε

,

so

|Dn| ≥ 2n

κ(n)
≥ 2n−nα+ε ≥ 2n

2 .

It follows that |(C/h)=n| ≥ 2n
2 for all n ∈ N.

Finally, for all n ∈ J ,
(A (B/h)) ∩ (C/h)=n = (A (A ∩Dn)) ∩Dn = ∅.

Since J is infinite, it follows that

|(A (B/h)) ∩ (C/h)=n|
|(C/h)=n| �→ 1

2

as n → ∞. Since B,C ∈ DTIME(2n), h ∈ ADV(nβ), and |(C/h)=n| ≥ 2n
2 for all

n ∈ N, this shows that A is not weakly (2n, nβ , 2
n
2 )-stochastic.

We now prove our main result.
Theorem 3.2 (main theorem). For every real number α < 1,

µp(Pnα/2−T(DENSE
c)) = µp2(Pnα−T(DENSE

c)) = 0.

Proof. Let α < 1, and let β = 3+α
2 , so that 1+α < β < 2. By Theorem 2.4, there

is an exact 2(log n)2-martingale d such that

S∞[d] ∪WS(2n, nβ , 2n
2 ) = C.

By Lemma 3.1, we then have

Pnα−T(DENSE
c) ⊆ S∞[d].

Since d is a p2-martingale, this implies that µp2(Pnα−T(DENSE
c)) = 0.
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Define f : {0, 1}∗ → {0, 1}∗ by

f(x) = 0|x|
2−|x|−11x.

Then f is strictly increasing, so f d̂, the f -dilation of d, is a martingale. The time
required to compute f d̂(w) is

O(|w|2 + 2(log |w′|)2)

steps, where w′ = w|̀range(f). (This allows O(|w|2) steps to compute w′ and then
O(2(log |w

′|)2) steps to compute d(w′).)
Now |w′| is bounded above by the number of strings x such that |x|2 ≤ |s|w|| =

�log(1 + |w|)�, so

|w′| < 21+
√

log(1+|w|).

Thus the time required to compute f d̂(w) is

O(|w|2 + 2(1+
√

log(1+|w|) )2) = O(|w|2)

steps, so f d̂ is an n2-martingale.
Now let A ∈ Pnα/2−T(DENSE

c). Then f−1(A) ∈ Pnα−T(DENSE
c) ⊆ S∞[d], so

A ∈ S∞[f d̂] by Lemma 2.5. This shows that Pnα/2−T(DENSE
c) ⊆ S∞[f d̂]. Since

f d̂ is an n2-martingale, it follows that µp(Pnα/2−T(DENSE
c)) = 0.

We now develop a few consequences of the main theorem. The first is immediate.
Corollary 3.3. For every real number α < 1,

µ(Pnα/2−T(DENSE
c) | E) = µ(Pnα−T(DENSE

c) | E2) = 0.

The following result on the density of weakly complete (or weakly hard) languages
now follows immediately from Corollary 3.3.

Corollary 3.4. For every real number α < 1, every language that is weakly
≤P
nα/2−T

-hard for E or weakly ≤P
nα−T-hard for E2 is dense.

Our final two corollaries concern consequences of the strong hypotheses µp(NP) �=
0 and µp2(NP) �= 0. The relative strengths of these hypotheses are indicated by the
known implications

µ(NP | E) �= 0⇒ µ(NP | E2) �= 0⇔ µp2(NP) �= 0⇔ µp(NP) �= 0⇒ P �= NP.

(The leftmost implication was proven by Juedes and Lutz [9], and the fact that
µp(NP) �= 0 implies µp2

(NP) �= 0 was proven by Ambos-Spies, Terwijn, and Zheng [3].
The remaining implications follow immediately from elementary properties of resource-
bounded measure.)

Corollary 3.5. Let α < 1. If µp(NP) �= 0, then every language that is ≤P
nα−T-

hard for NP is dense.
We conclude by considering the densities of languages to which SAT can be adap-

tively reduced.
Definition. A function g : N→ N is subradical if log g(n) = o(log n).
It is easy to see that a function g is subradical if and only if, for all k > 0,

g(n) = o( k
√
n). (This is the reason for the name “subradical.”) Subradical functions
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include very slow-growing functions such as logn and (logn)5, as well as more rapidly

growing functions such as 2(log n)0.99 .

Corollary 3.6. If µp(NP) �= 0, g : N → N is subradical, and SAT ≤P
g(n)−T H,

then H is dense.

Proof. Assume the hypothesis. Let A ∈ NP. Then there is a ≤P
m-reduction f

of A to SAT. Fix a polynomial q(n) such that, for all x ∈ {0, 1}∗, |f(x)| ≤ q(|x|).
Composing f with the ≤P

g(n)−T-reduction of SAT to H that we have assumed to exist

then gives a ≤P
g(q(n))−T-reduction of A to H. Since g is subradical, log g(q(n)) =

o(log q(n)) = o(log n), so for all sufficiently large n, g(q(n)) ≤ 2 log n
4 = n

1
4 . Thus

A ≤P

n
1
4−T

H.

The above argument shows that H is ≤P

n
1
4−T
-hard for NP. Since we have assumed

µp(NP) �= 0, it follows by Corollary 3.5 that H is dense.
To put the matter differently, Corollary 3.6 tells us that if SAT is polynomial-time

reducible to a nondense language with at most 2(log n)0.99 adaptive queries, then NP
has measure 0 in E and in E2.

4. Questions. As noted in the introduction, the relationships between weak
hardness notions for E and E2 under reducibilities such as ≤P

T,≤P
nα−T and ≤P

nα−tt

remain to be resolved. Our main theorem also leaves open the question whether
≤P
nα−T-hard languages for E must be dense when

1
2 ≤ α < 1. We are in the curious

situation of knowing that the classes Pn0.99−tt(DENSE
c) and Pn0.49−T(DENSE

c) have
p-measure 0, but not knowing whether the class Pn0.50−T(DENSE

c) has p-measure
0. Indeed, at this time we cannot even prove that E �⊆ Pn0.50−T (SPARSE). Further
progress on this matter would be illuminating.
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1. Introduction. The Kraft inequality
∑
n≥0 snk

−n ≤ 1 characterizes the gen-
erating sequences (sn)n≥0 of leaves in a k-ary tree. It is used in connection with the
Huffman algorithm to build prefix codes or search trees and usually restricted to the
case of finite trees. We are interested here in the case of infinite sequences corre-
sponding to infinite trees. These infinite trees arise, for example, as search trees in
infinite sets. They also appear in the context of finite automata having nested loops
to represent the set of first returns to a given state. The tree thus obtained is called a
regular tree. It has only a finite number of nonisomorphic subtrees since two subtrees
corresponding to the same state of the automaton are isomorphic. The generating
sequences of such infinite trees are of interest in the applications of finite automata
to text compression or channel coding.

Our main result is a characterization of the generating sequences of leaves of
regular k-ary trees. Its essence is that the two conditions of being the generating
sequence of

(i) a k-ary tree, and
(ii) a regular tree

are independent in the sense that their conjunction is enough to guarantee that a
sequence is the generating sequence of a regular k-ary tree.

The proof uses a new construction on graphs called the multiset construction,
which is a counterpart for automata with multiplicities of the well-known subset con-
struction of automata theory.

Our results have a connection with symbolic dynamics. Actually, in both cases,
the emphasis is on the space of paths in a finite graph. Even if we do not use results
from symbolic dynamics, some of the methods used, like state-splitting or the Perron
theory, are similar. Using an expression of Lind and Marcus [15], our treatment is
“dynamical in spirit.” The relationship with symbolic dynamics is discussed more
closely in [7] and [8].

The paper is organized as follows. Section 2 contains preliminary results and
definitions on graphs, trees, regular sequences, and the Perron–Frobenius theory. In
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section 3, we present the multiset construction. Section 4 contains the proof of our
main result (Theorem 16). Section 5 treats a similar problem, with the set of leaves
replaced by the set of all nodes.

The results contained in this paper represent the terminal point of a series of steps.
In a previous paper [7] (with a preliminary version in [5]), we proved Theorem 16 in
the particular case of a strict inequality. The proof uses the technique of state-splitting
from symbolic dynamics. In the same paper, we also give a proof of Theorem 19 which
is different from the proof given here, which is based on the multiset construction and
is more simple. Finally, the survey paper [8] gives an overview of length distributions
and regular sequences.

2. Definitions and background. In this section, we fix our notation concern-
ing graphs, trees, and regular sequences. We also recall some notions concerning
positive matrices.

We give a word on the terminology used here. We constantly use the term regular
where a richer terminology is often used. In particular, what we call a regular sequence
here is, in Eilenberg’s terminology, an N-rational sequence (see [11], [19], or [10]).

2.1. Graphs and trees. In this paper, we use directed multigraphs, i.e., graphs
with possibly several edges with the same origin and the same end. We simply call
them graphs in all of what follows. We denote G = (Q,E) a graph with Q as a set of
vertices and E as a set of edges. We also say that G is a graph on the set Q.

A tree T on a set of nodes N with a root r ∈ N is a function T : N − {r} −→ N ,
which associates to each node distinct from the root its father T (n), in such a way
that, for each node n, there is a nonnegative integer h such that Th(n) = r. The
integer h is the height of the node n.

A tree is k-ary if each node has at most k children. A node without children is
called a leaf. A node which is not a leaf is called internal. A node n is a descendant
of a node m if m = Th(n) for some h ≥ 0. A k-ary tree is complete if all internal
nodes have exactly k children and have at least one descendant which is a leaf.

For each node n of a tree T , the subtree rooted at n, denoted Tn, is the tree
obtained by restricting the set of nodes to the descendants of n.

Two trees S, T are isomorphic, denoted S ≡ T , if there is a map which transforms
S into T by permuting the children of each node. Equivalently, S ≡ T if there is a
bijective map f : N → M from the set of nodes of S onto the set of nodes of T such
that f ◦ S = T ◦ f . Such a map f is called an isomorphism.

If T is a tree with N as set of nodes, the quotient graph of T is the graph
G = (Q,E) where Q and E are defined as follows. The set Q is the quotient of N by
the equivalence n ≡ m if Tn ≡ Tm. Let m̄ denote the class of a node m. The number
of edges from m̄ to n̄ is the number of children of m equivalent to n.

Conversely, the set of paths in a graph with given origin is a tree. Indeed, let
G = (Q,E) be a graph. Let r ∈ Q be a particular vertex, and let N be the set
of paths in G starting at r. The tree T having N as a set of nodes and such that
T (p0, p1, . . . , pn) = (p0, p1, . . . , pn−1) is called the covering tree of G starting at r.

Both constructions are mutually inverse in the sense that any tree T is isomorphic
to the covering tree of its quotient graph starting at the image of the root.

Proposition 1. Let T be a tree with root r. Let G be its quotient graph, and let
i be the vertex of G which is the class of the root of T . For each vertex q of G and
for each n ≥ 0, the number of paths of length n from i to q is equal to the number of
nodes of T at height n in the class of q.
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Fig. 1. A regular tree.
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Fig. 2. And its quotient graph.

A tree is said to be regular if it admits only a finite number of nonisomorphic
subtrees, i.e. if its quotient graph is finite.

For example, the infinite tree represented in Figure 1 is a regular tree. Its quotient
graph is represented in Figure 2.

There is also a close connection between trees and sets of words on an alphabet.
Let X be a set of words on the alphabet {0, 1, . . . , k − 1}. The set X is said to be
prefix-closed if any prefix of an element of X is also in X. When X is prefix-closed,
we can build a tree T (X) as follows. The set of nodes is X, the root is the empty
word ε, and T (a1a2 · · · an) = a1a2 · · · an−1.

Let, for example, X = {ε, 0, 1, 10, 11}. The tree T (X) is represented in Figure 3.

2.2. Regular sequences. We consider sequences of natural integers s = (sn)n≥0.
We shall not distinguish between such a sequence and the formal series s(z) =∑
n≥0 snz

n.

We usually denote a vector indexed by elements of a set Q, also called a Q-vector,
with boldface symbols. For v = (vq)q∈Q we say that v is nonnegative, denoted v ≥ 0,
(resp., positive, denoted v > 0) if vq ≥ 0 (resp., vq > 0) for all q ∈ Q. The same
conventions are used for matrices. A nonnegative Q × Q-matrix M is said to be
irreducible if, for all indices p, q, there is an integer m such that (Mm)p,q > 0. The
matrix is primitive if there is an integer m such that Mm > 0.

The adjacency matrix of a graph G = (Q,E) is the Q ×Q-matrix M such that,
for each p, q ∈ Q, the integer Mp,q is the number of edges from p to q. The adjacency
matrix of a graph G is irreducible iff the graph is strongly connected. It is primitive
if, moreover, the greatest commom divisor (g.c.d.) of lengths of cycles in G is 1.

Let G be a finite graph and let I, T be two sets of vertices. For each n ≥ 0, let sn
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Fig. 3. The tree T (X).

be the number of distinct paths of length n from a vertex of I to a vertex of T . The
sequence s = (sn)n≥0 is called the sequence recognized by (G, I, T ) or also by G if I
and T are already specified. When I = {i} and T = {t}, we simply denote (G, i, t)
instead of (G, {i}, {t}).

A sequence s = (sn)n≥0 of nonnegative integers is said to be regular if it is
recognized by such a triple (G, I, T ), where G is finite. We say that the triple (G, I, T )
is a representation of the sequence s. The vertices of I are called initial and those of
T terminal. Two representations are said to be equivalent if they recognize the same
sequence.

A representation (G, I, T ) is said to be trim if every vertex of G is on some path
from I to T . It is clear that any representation is equivalent to a trim one.

A well-known result in theory of finite automata allows one to use a particular
representation of any regular sequence s such that s0 = 0. One can always choose in
this case a representation (G, i, t) of s with a unique initial vertex i and a unique final
vertex t �= i such that no edge is entering vertex i and no edge is going out of vertex
t. Such a representation is called a normalized representation (see, for example, [17,
p. 14]).

Let (G, i, t) be a trim normalized representation. If we merge the initial vertex
i and the final vertex t in a single vertex still denoted by i, we obtain a new graph
denoted by G, which is strongly connected. The triple (G, i, i) is called the closure of
(G, i, t).

Let s be a regular sequence such that s0 = 0. The star s∗ of the sequence s is
defined by

s∗(z) =
1

1− s(z)
.

Proposition 2. If (G, i, t) is a normalized representation of s, its closure (G, i, i)
recognizes the sequence s∗.

Proof. The sequence s is the length distribution of the paths of first returns to
vertex i in G, that is, of finite paths going from i to i without going through vertex
i. The length distribution of the set of all returns to i is thus 1+ s(z) + s2(z) + · · · =
1/(1− s(z)).

An equivalent definition of regular sequences uses vectors instead of the sets I, F .
Let i be a Q-row vector of nonnegative integers, and let t be a Q-column vector of
nonnegative integers. We say that (G, i, t) recognizes the sequence s = (sn)n≥0 if for
each integer n ≥ 0

sn = iMnt,

where M is the adjacency matrix of G. The proof that both definitions are equivalent
follows from the fact that the family of regular sequences is closed under addition (see
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1 2

Fig. 4. The Fibonacci graph.

[11]). A triple (G, i, t) recognizing a sequence s is also called a representation of s,
and two representations are called equivalent if they recognize the same sequence.

A sequence s = (sn)n≥0 of nonnegative integers is rational if it satisfies a recur-
rence relation with integral coefficients. Equivalently, s is rational if there exist two
polynomials p(z), q(z) with integral coefficients and with q(0) = 1 such that

s(z) =
p(z)

q(z)
.

Any regular sequence is rational. The converse is, however, not true (see section
5). For example, the sequence s defined by s(z) = z

1−z−z2 is the sequence of Fibonacci
numbers also defined by s0 = 0, s1 = 1, and sn+1 = sn+ sn−1. It is recognized by the
graph of Figure 4 with I = {1} and T = {2}.

2.3. Regular sequences and trees. If T is a tree, its generating sequence of
leaves is the sequence of numbers s = (sn)n≥0, where sn is the number of leaves at
height n. We also simply say that s is the generating sequence of T .

The following result is a direct consequence of the definitions.
Theorem 3. The generating sequence of a regular tree is a regular sequence.
Proof. Let T be a regular tree, and let G be its quotient graph. Since T is

regular, G is finite. The leaves of T form an equivalence class t. By Proposition 1,
the generating sequence of T is recognized by (G, i, t), where i is the class of the root
of T .

We say that a sequence s = (sn)n≥1 satisfies the Kraft inequality for the integer
k if ∑

n≥0

snk
−n ≤ 1,

i.e., using the formal series s(z) =
∑
n≥0 snz

n, if

s(1/k) ≤ 1.

We say that s satisfies the strict Kraft inequality for k if s(1/k) < 1. The following
result is well known (see [3, p. 35], for example).

Theorem 4. A sequence s is the generating sequence of a k-ary tree iff it satisfies
the Kraft inequality for the integer k.

Proof. Let first T be a k-ary tree, and let s be its generating sequence. It is
enough to prove that, for each n ≥ 0, the sequence (s0, . . . , sn) satisfies the Kraft
inequality. It is the generating sequence of the finite tree obtained by restricting T to
the nodes at height at most n. We may thus suppose T to be a finite tree. We have

s(z) = zt1(z) + · · ·+ ztk(z),

where t1, . . . , tk are the generating sequences of leaves of the (possibly empty) subtrees
rooted at the children of the root of T . By induction on the number of nodes, we
have ti(1/k) ≤ 1, whence the desired result.
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Conversely, we use an induction on n to prove that there exists a k-ary tree with
generating sequence (s0, . . . , sn). For n = 0, we have s0 ≤ 1 and T is either empty or
reduced to one node. Suppose by induction hypothesis that we have already built a
tree T with generating sequence (s0, s1, . . . , sn−1). We have

n∑
i=0

sik
−i ≤ 1;

then
n∑
i=0

sik
n−i ≤ kn,

and thus

sn ≤ kn −
n−1∑
i=0

sik
n−i.

This allows us to add sn leaves at height n to the tree T .
Let us consider the Kraft equality case. If s(1/k) = 1, then any tree T having s

as generating sequence is complete. The converse property is not true in general (see
[11, p. 231]). However, it is a classical result that when T is a complete regular tree,
its generating sequence satisfies s(1/k) = 1 (see Proposition 8).

For the sake of a complete description of the construction described above in the
proof of Theorem 4, we have to specify the choice made at each step among the leaves
at height n. A possible policy is to choose to give as many children as possible to the
nodes which are not leaves and are of maximal height.

If we start with a finite sequence s satisfying the Kraft inequality, the above
method builds a finite tree with a generating sequence equal to s. It is not true that
this incremental method gives a regular tree when we start with a regular sequence,
as shown in the following example.

Let s(z) = z2/(1−2z2). Since s(1/2) = 1/2, we may apply the Kraft construction
to build a binary tree with length distribution s. The result is the tree T (X), where
X is the set of prefixes of the set

Y =
⋃
n≥0

01n0{0, 1}n,

which is not regular.
If s is a regular sequence such that s0 = 0, there exists a regular tree T having s

as a generating sequence. Indeed, let (G, i, t) be a normalized representation of s. The
generating sequence of the covering tree of G starting at i is s. If s satisfies, moreover,
the Kraft inequality for an integer k, it is, however, not true that the regular covering
tree obtained is k-ary, as shown in the following example.

Let s be the regular sequence recognized by the graph of Figure 5 on the left with
i = 1 and t = 4. We have s(z) = 3z2/(1 − z2). Furthermore, s(1/2) = 1, and thus s
satisfies Kraft’s equality for k = 2. However, there are four edges going out of vertex
2 and its regular covering tree starting at 1 is 4-ary. A solution for this example is
given by the graph of Figure 5 on the right. It recognizes s, and its covering tree
starting at 1 is the regular binary tree of Figure 1.

The aim of section 4 is to build from a regular sequence s that satisfies the Kraft
inequality for an integer k a tree with a generating sequence s which is both regular
and k-ary.
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Fig. 5. Graphs recognizing s(z) = 3z2/(1− z2).

2.4. Approximate eigenvector. Let M be the adjacency matrix of a graph
G. By the Perron–Frobenius theorem (see [12] for a general presentation and [15],
[14], or [9] for the link with graphs and regular sequences), the nonnegative matrix
M has a nonnegative real eigenvalue of maximal modulus denoted by λ, also called
the spectral radius of the matrix.

When G is strongly connected, the matrix is irreducible and the Perron–Frobenius
theorem asserts that the dimension of the eigenspace of the matrix M corresponding
to λ is equal to one, and that there is a positive eigenvector associated to λ.

Let k be an integer. A k-approximate eigenvector of a nonnegative matrix M is,
by definition, an integral vector v ≥ 0 such that

Mv ≤ kv.

One has the following result (see [15, p. 152]).

Proposition 5. An irreducible nonnegative matrix M with spectral radius λ
admits a positive k-approximate eigenvector iff k ≥ λ.

For a proof, see [15, p. 152]. When M is the adjacency matrix of a graph G,
we also say that v is a k-approximate eigenvector of G. The computation of an
approximate eigenvector can be obtained by the use of Franaszek’s algorithm (see, for
example, [15]). It can be shown that there exists a k-approximate eigenvector with
elements bounded above by k2n, where n is the dimension of M [4]. Thus the size of
the coefficients of a k-approximate eigenvector is bounded above by an exponential in
n and can be in the worst case of this order of magnitude.

The following result is well known. It links the radius of convergence of a sequence
with the spectral radius of the associated matrix.

Proposition 6. Let s be a regular sequence recognized by a trim representation
(G, I, T ). Let M be the adjacency matrix of G. The radius of convergence of s is the
inverse of the maximal eigenvalue of M .

Proof. The maximal eigenvalue λ of M is λ = lim supn≥0
n
√‖Mn‖, where ‖ ‖ is

any of the equivalent matrix norms. Let ρ be the radius of convergence of s and, for
each p, q ∈ Q, let ρpq be the radius of convergence of the sequence upq = (Mn

pq)n≥0.
Then 1/λ = min ρpq. Since (G, I, T ) is trim, we have ρpq ≥ ρ for all p, q ∈ Q. On
the other hand, ρ ≥ min ρpq since s is a sum of some of the sequences upq. Thus
ρs = min ρpq, which concludes the proof.

As a consequence of this result, the radius of convergence ρ of a regular sequence
s is a pole. Indeed, with the above notation, s(z) = i(1−Mz)−1t. Then det(I−Mz)
is a denominator of the rational fraction s, and the poles of s are among the inverses
of the eigenvalues of M . And since 1/λ is the radius of convergence of s, it has to be
a pole of s. In particular, s diverges for z = ρ.
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Fig. 6. The graphs G and G.

The following result, due to Berstel, is also well known. It allows one to compute
the radius of convergence of the star of a sequence.

Proposition 7. Let s be a regular sequence. The radius of convergence of the
series s∗(z) = 1/(1− s(z)) is the unique real number r such that s(r) = 1.

For a proof, see [11, pp. 211–214], [10, p. 82], or [9, p. 84]. As a consequence, we
obtain the following result.

Proposition 8. Let s be a regular sequence and let λ be the inverse of the radius
of convergence of s∗. The sequence s satisfies the Kraft strict inequality s(1/k) < 1
(resp., equality s(1/k) = 1) iff λ < k (resp., λ = k).

We have thus proved the following result, which is the basis of the constructions
of the next sections.

Proposition 9. Let s be a regular sequence satisfying Kraft’s inequality s(1/k) ≤
1. Let (G, i, t) be a normalized representation of s and let (G, i, i) be the closure of
(G, i, t). The adjacency matrix M of G admits a k-approximate eigenvector.

Actually, under the hypothesis of Proposition 9, the graphG itself also admits a k-
approximate eigenvector. Indeed, let w = (wq)q∈Q−t be a k-approximate eigenvector
of G. Then the vector w = (wq)q∈Q, defined by wq = wq for q �= t and wt = wi, is a
k-approximate eigenvector of G. This is illustrated in the following example.

Let us, for example, consider again s(z) = 3z2/(1 − z2) (see Figure 5). The
sequence s is recognized by the normalized representation (G, 1, 4), where G is the
graph represented on the left of Figure 6. The graph G is represented on the right.
The vectors

w =



3
2
1
3


 ,w =


32
1




are 2-approximate eigenvectors of G and G, respectively.

3. The multiset construction. In this section, we present the main construc-
tion used in this paper. It can be considered as a version with multiplicities of the
subset construction used in automata theory to replace a finite automaton by an
equivalent deterministic one. We use only unlabeled graphs, but the construction can
be easily generalized to graphs with edges labeled by symbols from an alphabet.

Our construction is also linked with one used by D. Lind to build a positive matrix
with given spectral radius (see [15, especially Lemma 11.1.9]).

We use, for convenience, the term multiset of elements of a set Q as a synonym
of Q-vector. If u = (uq)q∈Q is such a multiset, the coefficient uq is also called the
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multiplicity of q. The degree of u is the sum
∑
q∈Q uq of all multiplicities.

We start with a triple (G, i, t), where G = (Q,E) is a finite graph and i (resp., t)
is a row (resp., column) Q-vector. We denote by M the adjacency matrix of G.

Let m be a positive integer. We define another triple (H,J,X) which is said to
be obtained by the multiset construction. The graph H is called an extension of the
graph G. The extension is not unique and depends as we shall see on some arbitrary
choices. The set S of vertices of H is formed of multisets of elements of Q of total
degree at most m. Thus, an element of S is a nonnegative vector u = (uq)q∈Q with
indices in Q such that

∑
q∈Q uq ≤ m. This condition ensures that H is a finite graph.

We now describe the set of edges of the graph H by defining its adjacency matrix
N . Let U be the S × Q-matrix defined by Uu,q = uq. Then N is any nonnegative
S × S-matrix which satisfies

NU = UM.

Equivalently, for all u ∈ S,
∑
v∈S

Nu,vv = uM.

Let us comment informally on the above formula. We can describe the construction
of the graph H as a sequence of choices. If we reach a vertex u of H, we partition
the multiset uM of vertices reachable from the vertices composing u into multisets
of degree at most m to define the vertices reachable from u in H. The integer Nu,v

is the multiplicity of v in the partition. The formula simply expresses the fact that
the result is indeed a partition. In general, there are several possible partitions. The
matrix U is called the transfer matrix of the extension.

We further define the S-row vector J and the S-column vector X. Let J be the
S-row vector such that Ji = 1 and Ju = 0 for u �= i. Let X be the S-column vector
such that Xu = u · t.

Thus

JU = i, X = Ut.

To avoid unnecessary complexity, we only keep in S the vertices reachable from i.
Thus, we replace the set S by the set of elements u of S such that there is a path
from i to u.

The number of multisets of degree at most m on a set Q with n elements is
nm+1−1
n−1 . Thus the number of vertices of a multiset extension is of order nm. It is

polynomial in n if m is taken as a constant.
Let, for example, G be the graph represented on Figure 7 on the left. The graph

H represented on the right is a multiset extension of G with

i =
[
1 0

]
, j =

[
0
1

]
.

The matrices M,N , and U are

M =

[
2 1
0 1

]
, N =

[
1 1
0 2

]
, U =

[
1 0
1 1

]
, J =

[
1 0

]
, X =

[
0
1

]
.

In this case, the matrix U is invertible, and the matrices M,N are conjugate.
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1 2 1 12

Fig. 7. The graphs G and H.

The basic property of an extension is the following one.
Proposition 10. Let H be an extension of G. The triple (H,J,X) is equivalent

to (G, i, t).
Proof. For each n ≥ 0, we have

UMn = NnU.

Consequently, for each integer n ≥ 0,

JNnX = JNnUt

= JUMnt

= iMnt.

This shows that (H,J,X) recognizes s.
We will also make use of the following additional property of extensions.
Proposition 11. Let H be an extension of G. Let M (resp., N) be the adjacency

matrix of G (resp., H), and let U be the transfer matrix. If w is a k-approximate
eigenvector of M , the vector W = Uw is a k-approximate eigenvector of N . If w is
positive, then W is also positive.

Proof. We have

NW = NUw = UMw ≤ kUw = kW.

Since all rows of U are distinct from 0, the vector W is positive whenever w is posi-
tive.

In the next section, we will choose a particular extension of the graph G called
admissible which is defined as follows. Let w be a positive Q-vector, and let m be
a positive integer. Let H be an extension of G, let U be the transfer matrix, and
let W = Uw. We say that H is admissible with respect to w and m if, for each
u ∈ S, all but possibly one of the vertices v such that (u,v) is an edge of H satisfy
Wv ≡ 0 mod m.

Theorem 12. For any graph G on Q, any positive Q-vector w, and any integer
m > 0, the graph G admits an admissible extension with respect to w and m.

The proof relies on the following combinatorial lemma. This lemma is also used
in a similar context by Adler, Coppersmith, and Hassner [1] and Marcus [16]. It is
actually presented in [2] as a nice variant of the pigeon-hole principle.

Lemma 13. Let w1, w2, . . . , wm be positive integers. Then there is a nonempty
subset S ⊂ {1, 2, . . . ,m} such that

∑
q∈S wq is divisible by m.

Proof. The partial sums w1, w1 + w2, w1 + w2 + w3, . . . , w1 + w2 + · · · + wm
either are all distinct (mod m), or two are congruent (mod m). In the former case,
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at least one partial sum must be congruent to 0 (mod m). In the latter, there are
1 ≤ p < r ≤ m such that

w1 + w2 + · · ·+ wp ≡ w1 + w2 + · · ·+ wr(mod m).

Hence wp+1 + wp+2 + · · ·+ wr ≡ 0 (mod m).
Proof of Theorem 12. We build progressively the set of edges of H. Let u be an

element of S. We prove by induction on the degree d(uM) =
∑
q∈Q(uM)q of uM

that there exists v1, . . . ,vn ∈ S such that uM =
∑n
i=1 vi and Wvi

≡ 0 mod m for
1 ≤ i ≤ n − 1. If uM ∈ S, i.e., if d(uM) ≤ m, we choose n = 1 and v1 = uM .
Otherwise, there exists a decomposition uM = v + u′ such that d(v) = m. Let
w1, w2, . . . , wm be the sequence of integers formed by the wq repeated vq times. By
Lemma 13 applied to the sequence of integers wi, there is a decomposition v = v′+ r
with v′ �= 0 such that Wv′ ≡ 0 mod m. We have uM = v′ + w′ with w′ = r + u′.
Since d(w′) < d(uM), we can apply the induction hypothesis to w′, giving the desired
result.

For an S-vector W, we denote by �Wm � the S-vector Z such that for each u in S,

Zu =

⌈
Wu

m

⌉
.

Summing up the previous results, we obtain the following statement.
Proposition 14. Let H be an admissible extension of G with respect to w and

m. Let M (resp., N) be the adjacency matrix of G (resp., H), let U be the transfer
matrix, and let W = Uw. If w is a positive k-approximate eigenvector of M , then
�Wm � is a positive k-approximate eigenvector of N .

Proof. By Proposition 3, the vector W is a positive k-approximate eigenvector of
N . Thus

NW ≤ kW.

Let u be an element of S. We haveWv ≡ 0 mod m for all indices v such that Nu,v > 0
except possibly for an index v0. The previous inequality implies that

∑
v∈S−{v0}

Nu,v
Wv

m
+Nu,v0

Wv0

m
≤ k

Wu

m
.

Since Wv

m is a nonnegative integer for v ∈ Q− {v0}, we get
∑

v∈S−{v0}
Nu,v

Wv

m
+Nu,v0

⌈
Wv0

m

⌉
≤ k

⌈
Wu

m

⌉
.

This proves that

N

⌈
W

m

⌉
≤ k

⌈
W

m

⌉
.

4. Generating sequence of leaves. In what follows, we state and prove, using
the multiset construction, our main result concerning the generating sequences of
regular trees. We begin with the following lemma, which is also used in the next
section. We use the term leaf for a vertex of a graph without outgoing edges.

Lemma 15. Let G be a graph on a set Q of vertices. Let i ∈ Q and T ⊂ Q. If G
admits a k-approximate eigenvector w, there is a graph G′ and a set of vertices I ′ of
G′ such that the following hold.
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1. G′ admits the k-approximate eigenvector w′ with all components equal to 1.
2. The triple (G, i,w) is equivalent to the triple (G′, I ′,w′).
3. If wp = 1 for all p ∈ T , there is a set of vertices T ′ of G′ such that the triple

(G, i, T ) is equivalent to the triple (G′, I ′, T ′). Moreover, if T is the set of
leaves of G, we can choose for T ′ the set of leaves of G′.

Proof. We first show that one can replace G by a graph without multiplicities,
i.e., such that the adjacency matrix has coefficients 0 or 1.

For this, let n be the maximal value of the coefficients of M . Let Q′ be the
set of all pairs (p, j) for p ∈ Q and 1 ≤ j ≤ n. Let E′ be the set of all pairs
((p, j), (q, h)) ∈ Q′ × Q′ such that 1 ≤ j ≤ n and 1 ≤ h ≤ Mp,q. Let i′ = (i, 1) and
T ′ = {(t, j) | t ∈ T, 1 ≤ j ≤ n}. Let G′ = (Q′, E′). The triple (G′, i′, T ′) recognizes
the same sequence as (G, i, T ). Let w′(p,j) = wp for all p ∈ Q and all 1 ≤ j ≤ n.

The triple (G′, i′,w′) recognizes the same sequence as (G, i,w). The vector w′ is a
k-approximate eigenvector of M ′.

We may thus suppose that all coefficients of M are 0 or 1, i.e., that the set E of
edges of G can be identified with a subset of Q×Q. We now transform the graph G
into a graph G′ such that there are at most k edges going out of every vertex. For
this, let Q′ be the set of pairs (q, j) with q ∈ Q and 1 ≤ j ≤ wq. For each p ∈ Q, we
have

∑
q|(p,q)∈E

wq ≤ kwp.

We may thus partition the pairs (q, h) ∈ Q′ in such a way that (p, q) ∈ E in wp
groups X1, X2, . . . , Xwp

of at most k elements. The edges going out of (p, j) are all
the pairs ((p, j), (q, h)) such that (q, h) ∈ Xj . One can actually identify G with a
multiset extension of G′, where the set of multisets is {⋃1≤j≤wp

(p, j) | p ∈ Q} that
we identify to Q. Let I ′ = {(i, j) | 1 ≤ j ≤ wi}. Let w′(p,j) = 1 for all (p, j) with p ∈ Q
and 1 ≤ j ≤ wp. Then, according to Proposition 10, the triple (G′, I ′,w′) recognizes
the same sequence as (G, i,w). Moreover, if wp = 1 for all p ∈ T , let T ′ be set of all
(p, 1) ∈ Q′ with p ∈ T . Then the triple (G′, I ′, T ′) recognizes the same sequence as
(G, i, T ). If T is the set of vertices which have no outgoing edges, it is clear that the
same holds for T ′.

We now come to our main result.

Theorem 16. Let s = (sn)n≥0 be a regular sequence of nonnegative integers, and
let k be a positive integer such that

∑
n≥0 snk

−n ≤ 1. Then there is a k-ary rational
tree having s as its generating sequence.

Proof. Let us consider a regular sequence s and an integer k such that
∑
n≥0 snk

−n

≤ 1. Since the result holds trivially for s(z) = 1, we may suppose that s0 = 0. Let
(G, i, t) be a normalized representation of s, and let G be the closure of G as defined
at the beginning of section 2.2. We denote by M (resp., M) the adjacency matrix of
G (resp., G). Let Q = Q−{t} be the vertex set of G. Let λ be the spectral radius of
M . By Proposition 8, the matrix M admits a positive k-approximate eigenvector w.
By definition, we have Mw ≤ kw.

Let w be the Q-vector defined by wq = wq for all q ∈ Q and wt = wi. Then, since
there is no edge going out of t in G, w is a positive k-approximate eigenvector of M .
Let t be the Q-vector which is the characteristic vector of the vertex t. Let m = wi.

By Theorem 12 there exists an admissible extension H of G with respect to w
and m. Let U be the transfer matrix, and let W = Uw. Since wt ≡ 0 mod m, we
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may choose H with the following additional property. For all u ∈ S, either ut = 0 or
u = t.

According to Proposition 10, the sequence s is recognized by (H,J,X), where J
is the characteristic row vector of i and X is the characteristic column vector of t.
This means that s is recognized by the normalized representation consisting of the
graph H, the initial vertex i that we identify to i, and the terminal vertex t that we
identify to t.

Let N be the adjacency matrix of H. By Proposition 14, the vector �Wm � is a
positive k-approximate eigenvector of N . Remark that �Wm �i = �Wm �t = 1.

We may now apply Lemma 15 to construct a triple (H ′, I ′, T ′) equivalent to
(H, i, t). The set T ′ is the set of leaves of H ′. Since �Wm �i = 1, I ′ is reduced to one
vertex i′. Since H ′ admits a k-approximate eigenvector with all components equal to
one, the graph H ′ is of outdegree at most k. Finally, s is the generating sequence of
the covering tree of H ′ starting at i′. This tree is k-ary and regular.

Let us consider the above constructions in the particular case of the equality
in Kraft’s inequality. In this case, the result is a complete k-ary tree. Indeed, by
Proposition 8, the matrixM admits a positive integral eigenvectorw for the eigenvalue
k. We have, for all p ∈ Q,

∑
q∈Q

Mp,qwq = kwp.

As a consequence, for any u �= t, we have

∑
v∈S

Nu,vWv = kWu.

Then the graph constructed in Lemma 15 is of constant outdegree k. Thus the k-ary
tree obtained is complete.

Let us consider the complexity of the construction used in the proof of Theorem
16. Let n be the number of vertices of the graph G giving a normalized representation
of s. The size of the integer m = wi is exponential in n (see section 2.4). Thus the
number of vertices of the graph H is bounded by a double exponential in n. The final
regular tree is the covering tree of a graph whose set of vertices has the same size in
order of magnitude.

Let, for example, s be the sequence defined by

s(z) =
z2

(1− z2)
+

z2

(1− 5z3)
.

Since s(1/2) = 1, it satisfies the Kraft equality for k = 2. The sequence s is rec-
ognized by (G, i, t), where G = (Q,E) is the graph given in Figure 8 with Q =
{1, 2, 3, 4, 5, 6, 7}, i = 1, t = 4. The adjacency matrix of G admits the 2-approximate
eigenvector represented in Figure 8, where the coefficients of w are represented in
squares beside the vertices. Thus m = 3.

An admissible extension H of G with respect to w and m is given in Figure 9. In
this figure, each multiset of S is represented by a sequence of vertices with repetitions
corresponding to the multiplicity. For example, the multiset u = (0, 0, 1, 0, 0, 2, 0) is
represented by (3, 6, 6). The sequence s is recognized by the normalized representation
(H, 1, 4), where the initial and final vertices are named as they appear in Figure 9.
The coefficients of �Wm � are represented in squares beside the vertices.
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3

3

1

5

4

7 62 1

2

3 1

2

4

Fig. 8. A normalized representation of s.
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Fig. 9. An admissible extension H.

A regular binary tree T having s as a generating sequence of leaves is given in
Figure 10. In this figure, the nodes have been renumbered, with the children of a
node with a given label represented only once. The leaves of the tree are indicated by
black boxes. The tree itself is obtained from the graph of Figure 9 by application of
the construction of Lemma 15. For example, the vertex (2, 5), which has coefficient 6
in W, is split into two vertices named 2 and 3 in the tree.

This example was suggested to us by Christophe Reutenauer [18].

5. Generating sequence of nodes. In this section, we consider the generating
sequence of the set of all nodes in a tree instead of just the set of leaves. This is
motivated by the fact that in search trees, the information can either be carried by the
leaves or by all the nodes of the tree. We will see that the complete characterization of
the generating sequences of nodes in regular trees (Theorem 17) is more complicated
than the one for leaves.

Soittola (see [19, p. 104]) has characterized the series which are the generating
sequences of nodes in a regular tree. We characterize the ones that correspond to
k-ary trees (Theorem 17). We also give a more direct construction in a particular
case (Theorem 19).
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Fig. 10. A regular binary tree with length distribution s.

Let T be a tree. The generating sequence of nodes of the tree T is the sequence
t = (tn)n≥0, where tn is the number of nodes of T at height n. The sequence t satisfies
t0 ≤ 1 and, moreover, if T is a k-ary tree, the condition

tn ≤ ktn−1

for all n ≥ 1. If T is a regular tree, then t is a regular sequence. We now completely
characterize the regular sequences t that are the generating sequences of nodes of a
k-ary regular tree.

Theorem 17. Let t = (tn)n≥0 be a regular sequence, and let k be a positive
integer. The sequence (tn)n≥0 is the generating sequence of nodes of a k-ary regular
tree iff it satisfies the following conditions.

(i) The convergence radius of t is strictly greater than 1/k.
(ii) The sequence s(z) = t(z)(kz − 1) + 1 is regular.
Proof. Let us first show that the conditions are necessary. Let T be the complete

k-ary tree obtained by adding i new leaves to each node that has k− i children. Since
T is a regular tree, T is also regular.

Let s be the generating sequence of leaves of T . Since T is complete, s(1/k) = 1.
Since ktn = sn+1 + tn+1 for all n ≥ 0, we have

1− s(z) = t(z)(1− kz).

Since s is a regular sequence, its radius of convergence is strictly larger than 1/k (see
section 2.4). Since the value of the derivative of s at z = 1/k is kt(1/k), the same
holds for t. This proves the necessity of the conditions.

Conversely, if t satisfies the conditions of the theorem, the regular series s(z) =
t(z)(kz−1)+1 satisfies s(1/k) = 1. Thus, by Theorem 16, s is the generating sequence
of leaves of a complete k-ary regular tree. The internal nodes of this tree form a k-ary
regular tree whose generating sequence of nodes is t.

The sequence s defined by condition (ii) is rational as soon as t is regular and
therefore rational. Given a regular sequence t, condition (ii) is decidable in view of
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a theorem of Soittola [19], also found independently in [13] and recalled below. We
say that a rational sequence has a dominating root, either if it is a polynomial or if it
has a real positive pole which is strictly smaller than the modulus of any other one.
A sequence r is a merge of the sequences ri if there is an integer p such that

r(z) =

p−1∑
i=0

ziri(z
p).

Theorem 18 (Soittola). A sequence of nonnegative integers r = (rn)n≥0 is
regular iff it is a merge of rational sequences having a dominating root.

This result shows that it is decidable if a rational series is regular (see [19]). In
the positive case, there is an algorithm computing a representation of the sequence.

We may observe that condition (ii) of the theorem implies the nonnegativity of
the coefficients of the series s and thus the inequality for all n ≥ 1, tn ≤ ktn−1. It also
implies that t0 ≤ 1.

We now show that there are regular sequences t satisfying tn ≤ ktn−1 for all n ≥ 1,
and condition (i) of the theorem and such that the sequence s(z) = t(z)(kz − 1) + 1
is not regular. The example is based on an example of a rational sequence with
nonnegative coefficients and which is not regular (see [10, p. 95]). Let

rn = b2ncos2(nθ)

with cos(θ) = a
b , where the integers a, b are such that b �= 2a and 0 < a < b. The

sequence r is rational, has nonnegative integer coefficients, and is not regular. Its
poles are 1

b2 ,
1
b2 e

2iθ, and 1
b2 e
−2iθ. We now define the sequence t as follows:

t2h = kh,

t2h+1 = kh + rh.

We also assume that b2 < k. By Soittola’s theorem, the sequence t is regular since it
is a merge of rational sequences having a dominating root. The convergence radius
of t is 1√

k
> 1

k . Therefore, the sequence t satisfies the first condition of Theorem 17.

Let s be the sequence defined by s(z) = t(z)(kz − 1) + 1. If h = 2p is even,

sh = kth−1 − th

= kkp−1 + krp−1 − kp + 1 = krp−1 + 1.

Thus the sequence s is not regular.
The above example does not work for the small values of k (the least value is

k = 10). We do not know of similar examples for 2 ≤ k ≤ 9.
We finally describe a particular case of Theorem 17 in which one has a relatively

simple method, based on the multiset construction, to build the regular tree with a
given generating sequence of nodes. This avoids the use of Soittola’s characterization
which leads to a method of higher complexity.

A primitive representation of a regular sequence s is a representation (G, i, t) such
that the adjacency matrix of G is primitive. The following result is proved in [7] with
a different proof using the state-splitting method of symbolic dynamics. The proof
given here relies on a simpler construction.

Theorem 19. Let t = (tn)n≥0 be a regular sequence, and let k be a positive
integer such that t0 = 1, tn ≤ ktn−1 for all n ≥ 1, and such that
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(i) the convergence radius of t is strictly greater than 1/k, and
(ii) t has a primitive representation.

Then (tn)n≥0 is the generating sequence of nodes by height of a k-ary regular tree.
We are going to give a proof of the theorem which uses the multiset construction.

We shall use the following lemma that we establish first.
Lemma 20. Let M be a primitive matrix with spectral radius λ. Let v be a nonnull

and nonnegative integral vector, and let k be an integer such that λ < k. Then there
is a positive integer n such that Mnv is a positive k-approximate eigenvector of M .

Proof. For a primitive matrix M with spectral radius λ, it is known that the
sequence ((Mλ )

n)n≥0 converges to r.l, where r is a positive right eigenvector and l is
a positive left eigenvector of M for the eigenvalue λ with l · r = 1 (see, for example,
[15, p. 130]). Thus (M

n

λn v)n≥0 converges to r.l.v, which is equal to ρr, where ρ is a
nonnegative real number. Since Mr = λr, we get, for a large enough integer n,

M
Mn

λn
v ≤ k

Mn

λn
v,

or, equivalently, MMnv ≤ kMnv. If n is large enough, we moreover have Mnv > 0
since M is primitive.

We now give the proof of Theorem 19. It uses a shift of indices of the sequence
to obtain a new sequence to which a simple application of the multiset construction
can be applied.

Proof. Since t is regular, it is recognized by a triple (G, i, t), where G = (Q,E) is
a finite graph. Let M be the adjacency matrix of G.

For each n ≥ 0, we have

tn = iMnt.

We denote by λ the spectral radius of M . By Proposition 6 the positive real number
1/λ is the radius of convergence of t. Thus λ < k by hypothesis (i). Since M is a
primitive matrix, by Lemma 20, there exists a positive integer n0 such that Mn0t is
a positive k-approximate eigenvector of M .

Let w =Mn0t, and let t′ be the sequence defined by t′n = tn+n0 for n ≥ 0. Thus,
for each n ≥ 0,

t′n = iMnw.

The sequence t′ is thus recognized by the triple (G, i,w). Note that t′0 = i ·w.
Let H = (S,R) be the extension of G obtained by the multiset construction in

the following way. When we reach a vertex u of H, we partition uM in multisets v
of degree 1, i.e., such that v is a 0, 1-vector with vq = 0 for all q ∈ Q except one.
All elements of S are thus elements of Q except perhaps the initial vertex i. If i is of
degree 1, the number of elements of S is then equal to the number of elements of Q.

Let U be the transfer matrix of the extension. Since w is a positive k-approximate
eigenvector of M , by Proposition 11, the vector W = Uw is a positive k-approximate
eigenvector of the adjacency matrix of H. By Proposition 10, the triple (H, i,W) is
equivalent to (G, i,w).

We now apply Lemma 15 to the graph H. We use i as initial vertex and the
k-approximate eigenvector W. Since we only use the first assertion of the lemma, we
will not use any set T of terminal states. According to the lemma, we construct a
graph H ′ and a set of vertices I ′ of H ′ such that H ′ admits the k-approximate vector
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1 2 3

Fig. 11. A primitive representation G of t.

W′ with all components equal to 1, and (H ′, I ′,W′) is equivalent to (H, i,W). Thus
H ′ is k-ary. Note that I ′ has Wi = i ·w = tn0 elements.

Let Tp be the covering tree of H
′ starting at the state p of I ′. Each Tp is a regular

k-ary tree. Then t′ is the sum of the generating sequences of nodes of the trees Tp for
p ∈ I ′.

Finally, we build a finite k-ary tree T ′ whose generating sequence of nodes is
(t0, t1, . . . , tn0). This can actually be done since t0 = 1 and tn ≤ ktn−1 for n ≥ 1. We
then identify bijectively each leaf at height n0 of T ′ to the root of a tree Tj . We get
a regular k-ary binary tree whose generating sequence of nodes is t.

Let, for example, t be the series recognized by the graph G of Figure 11 with

i =
[
1 0 0

]
and t =


11
0


 .

The adjacency matrix M of G is the primitive matrix

M =


1 1 0
0 0 1
1 0 0


 .

Its spectral radius is less than 2. The hypotheses of Theorem 19 are thus satisfied.
We apply the method described above. We have

M2t =


21
2


 and M3t =


32
2


 .

Since M3t ≤ 2M2t, M2t is an approximate eigenvector of M . We thus set n0 = 2
and w =M2t. The graph H is the same as the graph G of Figure 11. The vector W
is thus

W =


21
2


 .

The graph H ′ is represented on the left side of Figure 12. We finally obtain the binary
regular tree T represented on the right side of Figure 12. (The nodes of the tree have
been renumbered.)

Acknowledgments. The authors would like to thank Jean Berstel, Christophe
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our paper.
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Abstract. We present an 8-approximation algorithm for the problem of finding a minimum
weight subset feedback vertex set (or subset-fvs, in short). The input in this problem consists of
an undirected graph G = (V,E) with vertex weights c(v) and a subset of vertices S called special
vertices. A cycle is called interesting if it contains at least one special vertex. A subset of vertices
is called a subset-fvs with respect to S if it intersects every interesting cycle. The goal is to find
a minimum weight subset-fvs. The best previous algorithm for the general case provided only a
logarithmic approximation factor. The minimum weight subset-fvs problem generalizes two NP-
complete problems: the minimum weight feedback vertex set problem in undirected graphs and the
minimum weight multiway vertex cut problem. The main tool that we use in our algorithm and
its analysis is a new version of multicommodity flow, which we call relaxed multicommodity flow.
Relaxed multicommodity flow is a hybrid of multicommodity flow and multiterminal flow.

Key words. approximation algorithms, combinatorial optimization, feedback vertex set, mul-
ticommodity flow, multicut
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1. Introduction. We consider in this paper the problem of finding a minimum
weight subset feedback vertex set (or subset-fvs, in short). The input in this problem
consists of an undirected graph G = (V,E) with vertex weights c(v) and a subset of
vertices S called special vertices. A cycle is called interesting if it contains at least
one special vertex. A subset of vertices is called a subset-fvs with respect to S if it
intersects every interesting cycle. The goal is to find a minimum weight subset-fvs.

The minimum weight subset-fvs problem generalizes two NP-complete prob-
lems: When S = V , this is simply the minimum weight feedback vertex set problem in
undirected graphs [16, 9], and when S contains a single special vertex, the subset-fvs
problem is equivalent to the minimum weight vertex multiway cut problem [5]. In the
multiway cut problem, the input consists of a weighted graph and a set T of termi-
nals, and the goal is to disconnect the terminals from each other by removing a set of
vertices of minimum weight. The multiway cut problem is reduced to the subset-fvs
problem by adding a special (infinite-weight) vertex to the graph and connecting it
to all the terminals. Conversely, the subset-fvs problem with a single special ver-
tex is reduced to a multiway cut problem by defining all the neighbors of the special
vertex as terminals and removing the special vertex. Thus, the subset-fvs problem
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defines a full spectrum of feedback set problems which are categorized by the number
of special vertices. Another motivation for the subset-fvs problem is that heuristics
for genetic linkage analysis require solving instances of the subset-fvs problem [8].

Our main result in this paper is an algorithm that approximates the subset-
fvs problem by a factor of 8. This improves on the approximation algorithm for the
subset-fvs problem presented in [8] that achieves a factor of min{log |S|, log τ∗, 2∆},
where τ∗ denotes the value of an optimal fractional solution, and ∆ is the maximum
degree. Our result almost matches the 2-approximation algorithms known for the
vertex multiway cut problem [10] and for the feedback vertex problem [3, 2]. We
remark that our algorithm requires solving linear programs exactly, and in this sense
it is not a combinatorial algorithm.

The main tool that we use in our algorithm is a new version of multicommodity
flow which we call relaxed multicommodity flow. Relaxed multicommodity flow is a
hybrid of multicommodity flow and multiterminal flow. In multicommodity flow, for
each edge, the capacity constraints apply to the total flow of all the commodities.
In multiterminal flow, for each edge, the capacity constraints only apply to each
commodity separately.

In relaxed multicommodity flow, there are two types of capacity constraints. First,
the intracommodity constraints are single commodity capacity constraints that apply
to each commodity separately. Second, the intercommodity constraints are constraints
on the joint flow of the commodities. The intercommodity constraints used here are
defined as follows: For every edge we consider the maximum flow, among all the
commodities, which is shipped along it; we require that for every vertex, the sum of
the maximum flows shipped along the edges incident to it is bounded by four times
the weight of the vertex.

Even et al. [8] formulate the subset feedback set problem as an integer linear
program and show that the gap between an optimal integral solution and an opti-
mal (fractional) solution to the linear relaxation of this program can be as large as
Ω(log |S|). This means that an approximation algorithm which is based on rounding
a fractional solution to an integral solution cannot achieve a constant approximation
factor. Since the linear program for the subset feedback set problem is a “covering”
problem, the dual problem is a “packing” problem, which in fact can be interpreted
as a multicommodity flow problem. In the context of approximation algorithms for
covering problems, the dual packing program usually serves as a lower bound on the
optimal integral solution, and the approximation factor is measured with respect to
this lower bound. This motivates replacing (standard) multicommodity flow by re-
laxed multicommodity flow as the dual problem of the subset-fvs problem. This
relaxation allows us to increase the total amount of flow shipped in the graph. We
show that this provides a better lower bound on the optimal solution, yielding a
constant approximation factor.

Suppose that a demand vector specifies for each source-sink pair (commodity)
the amount of flow that needs to be shipped from the source to the sink. We say
that a flow function realizes a demand vector if it ships for each commodity the
amount of flow specified by the demand vector. A tight cut in the context of a
relaxed multicommodity flow problem is a multiset of vertices which are tight with
respect to the intracommodity constraints, called intrasaturated vertices, and also a
set of vertices for which the intercommodity constraints are tight, called intersaturated
vertices.

Tight cuts play an important role in identifying an approximate subset-fvs
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in our algorithm. Clearly, the weight of the intrasaturated vertices in a tight cut
can be at most the sum of the demands. Thus, the key notion in the analysis of
the approximation algorithm is bounding the weight of the intersaturated vertices
in a tight cut. Indeed, our main theorem (Theorem 4.4) bounds the weight of the
vertices that are intersaturated in every realization of a demand vector by the sum of
the demands. Loosely speaking, Theorem 4.4 functions as an approximate “min-cut
max-flow” theorem and implies that the total weight of the saturated vertices (both
intersaturated and intrasaturated) in the cut is at most twice the sum of the demands.

1.1. Related work. Minimum weight feedback sets and subset feedback sets
in directed graphs were considered in several papers [18, 20, 17, 6, 7]. Note
that in the directed case, the vertex and edge versions are equivalent. The best
known approximation factor for the subset feedback set in the directed case is
O(min{log τ∗ log log τ∗, log |S| log log |S|}), where τ∗ denotes the value of an optimal
fractional solution [6]. Factor two approximation algorithms for the feedback vertex
set problem in undirected graphs were given by [3, 2]. An approximation algorithm
with a factor of two for the subset feedback edge set problem was given by [8]. Re-
cently, Goemans and Williamson [11] considered a generalization of the subset-fvs
problem in undirected planar graphs and obtained a 9/4-approximation algorithm for
their problem.

The approximation algorithm for the subset-fvs problem turns out to be much
more complicated than the approximation algorithm for the subset feedback edge
problem presented by [8]. This is in accordance with conventional wisdom that in
undirected graphs, optimization problems on vertices are harder than their counter-
parts on edges. For example, recall that the multiway cut problem is a special case
of the subset feedback set problem. For the edge version, there is a rather simple 2-
approximation algorithm [5]. (Recently, better bounds were obtained by [4, 15].) For
the vertex version, [10] gives a noncombinatorial 2-approximation algorithm which is
based on the observation that there exists an optimal solution in half-integers for the
linear program for multiway cuts.

Recently, Naor and Zosin [19] improved the approximation factor for the directed
multiway cut problem from 2 log k to 2 using the relaxed multicommodity flow tech-
nique. However, [19] uses a completely different relaxation.

Organization. In section 2, a Gomory–Hu transformation and simplifying assump-
tions are presented. In section 3, the algorithm is overviewed. In section 4, the main
theorem providing a bound on the sum of the weights of the vertices that are inter-
saturated by every relaxed multicommodity flow that supplies the demand vector is
proved. In section 5, the approximation algorithm is presented. In section 6, the
approximation factor is proved.

2. Preliminaries. In this section we define a transformation which is used by
our algorithm and provide some simplifying assumptions. We henceforth refer some-
times to the weight of a vertex as its capacity, depending on the context.

2.1. A Gomory–Hu transformation. Let G = (V,E) be an undirected graph
where both edges and vertices are capacitated. Let C be a minimum cut separating
source x from sink y in G. The cut C may contain both edges and vertices. Let E(C)
denote the edges in C, and let V (C) denote the vertices in C. The removal of C from
the graph partitions it into two parts, X and Y , where x ∈ X and y ∈ Y as can be
seen in Figure 2.1.

Let Rx be the graph obtained from G by condensing the vertices in Y into a
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Fig. 2.1. A Gomory–Hu transformation.

single vertex denoted by y′ which has infinite capacity. Let Ry be the graph obtained
from G by condensing the vertices in X into a single vertex denoted by x′ which has
infinite capacity. Each vertex u ∈ V (C) appears now in both Rx and Ry. We denote
by ux the copy of u in Rx, and by uy the copy of u in Ry. We refer to ux and uy
as virtual copies of u. We refer to the edges in Rx and Ry that correspond to edges
in E(C) or are adjacent to virtual copies of vertices in V (C) as virtual edges. This
construction is essentially the same as the condensation of a minimum cut performed
by Gomory and Hu [12] (see also [14], and Granot and Hassin for the vertex version
[13]).

The following two lemmas follow directly from [14, Lemma 5, p. 66; Lemma 6,
p. 68] and from [13, Lemmas 4, 5, and 6].

Lemma 2.1. Let Rx and Ry denote the graphs obtained from applying a Gomory–
Hu transformation to graph G with respect to minimum cut C between vertices x and
y. Let a ∈ X and b ∈ Y , and suppose that the capacity of C is at least d. Then, flow
of value d can be shipped in G from a to b if and only if flow of value d can be shipped
in Rx from a to y′, and flow of value d can be shipped in Ry from b to x′.

Lemma 2.2 (under the same premises of Lemma 2.1). Let a, b ∈ X (or Y ).
Then, flow of value d can be shipped in Rx (or Ry) from a to b if and only if flow of
value d can be shipped in G from a to b.

2.2. Simplifying assumptions. For ease of presentation, we can assume with-
out loss of generality the following assumptions.

(A) The set of finite weight vertices in the graph constitutes an independent set.
This can easily be achieved by adding an infinite weight vertex on each edge.

(B) For each special vertex:
(B1) It has infinite weight.
(B2) It has degree two.
(B3) Its two neighbors are not special vertices and have infinite weight.
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Fig. 2.2. Transforming a special vertex with large degree.

We justify Assumptions (B1), (B2), and (B3) as follows. Let s be a special vertex
that does not satisfy (B1) or (B2). We insert a new vertex with infinite weight on
each edge adjacent to s, add all new vertices to S, and delete s from S, as can be seen
in Figure 2.2. Note that the new vertices are assigned infinite weight while vertex s
retains its original weight.

Assumption (B3) can be satisfied by adding an infinite weight vertex on each edge
in the graph. Thus, the set of special vertices constitutes an independent set, and
each special vertex has degree two. Clearly, this transformation does not change the
set of interesting cycles, nor does it change the optimal subset-fvs.

Let S = s1, . . . , sk denote henceforth the set of special vertices. We denote the
two neighbors of special vertex si for 1 ≤ i ≤ k by xi and yi.

3. Overview. In this section we overview the spirit of the algorithm and its
proof. Our algorithm follows the basic framework suggested by [8] for approximating
the subset-fes problem. We first review the algorithm of [8].

Algorithm subset-fes

Input: Graph G = (V,E) with special vertices s1, . . . , sk;
Output: subset-fes M of G;

Notation: Vi
�
= V − {si, . . . , sk};

for i = 1 to k do

Mi ← minimum cut between xi and yi in the graph Gi = (Vi, E − ∪i−1
j=1Mj).

M ←M1 ∪ · · · ∪Mk.

It is easy to see that the algorithm finds a feasible solution to the subset-fes
problem. Even et al. [8] show that the solution found by the algorithm approximates
the optimal solution by a factor of 2. Algorithm subset-fes can also be interpreted
from a multicommodity flow perspective. Let each pair xi, yi, 1 ≤ i ≤ k, define a
commodity. The algorithm considers the commodities one-by-one and at each step
maximizies the flow of the considered commodity. Notice that at the end of step i,
1 ≤ i ≤ k, min-cut Mi is deleted from the graph and special vertex si is added back
to the graph. In the end, we obtain a multicommodity flow function, where the flow
of the different commodities is independent or nonaggregating.

The vertex version of Algorithm subset-fes is not a good approximation algo-
rithm for the subset-fvs problem, as shown by the example depicted in Figure 3.1.
To keep the drawing simple, the special vertices are not shown in Figure 3.1 (recall
that special vertex si is connected to xi and yi). Assume that vertices v1, . . . , vk and
u1, . . . , uk have unit weight. Let the weight of vertex w be 1+ε. The algorithm would
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Fig. 3.1. An example showing that the vertex version of Algorithm subset-fes may only be a
k-approximation for the subset-fvs problem.

proceed by assigning Mi = {vi}, and the cost of the computed solution would be 5
(i.e., k, the number of special vertices), compared to the optimum solution that only
contains vertex w.

Loosely speaking, we refine Algorithm subset-fes by replacing the independence
between the commodities by a relaxed multicommodity flow function. This means that
in the ith iteration, the maximum flow (of value di) from xi to yi is computed such
that di = {d1, . . . , di} can be realized by a relaxed multicommodity flow function. A
minimum cut (corresponding to the flow of the ith commodity) that disconnects xi
from yi is computed with respect to the relaxed multicommodity flow function. The
minimum cut contains vertices which are intersaturated by every relaxed multicom-
modity flow that realizes di, as well as vertices which are intrasaturated with respect
to a commodity (one or more). The algorithm augments its solution by incrementally
adding to the subset-fvs the vertices belonging to the minimum cuts computed in
each iteration.

It is crucial that the minimum cuts computed at each iteration are not deleted
from the graph. Instead, a construction similar to the one used by Gomory and Hu
[12] is employed with respect to the minimum cut computed at each iteration. This
allows the flow which is computed in later iterations to either reuse a minimum cut
computed at a previous iteration or go through the corresponding special vertex (but
not both). We note that if we had deleted the minimum cuts from the graph (as in
Algorithm subset-fes), the value of the multicommodity flow function would have
been much smaller than the weight of the minimum cuts M1, . . . ,Mk.

The analysis rests on three key components. (a) The weight of the intersaturated
vertices in a solution of a relaxed multicommodity flow problem is bounded by the
sum of the demands (Theorem 4.4). (b) The relaxed flow which realizes d can be
reconfigured so that the new source-sink pairs satisfy a separation property with
respect to an optimal subset-fvs (section 6.2). (c) The sum of the demands of a
relaxed flow whose source-sink pairs satisfy a separation property with respect to a
subset-fvs is bounded by 4 times the weight of the subset-fvs (Theorem 6.2).
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The weight of the solution found by the algorithm equals the intersaturated ver-
tices and intrasaturated vertices that are added to the solution. The weight of the
intersaturated vertices, as well as the weight of the intrasaturated vertices, is bounded
by the sum of the demands. The sum of the demands is then bounded by 4 times the
weight of an optimal subset-fvs using components (b) and (c), yielding an approxi-
mation factor of 8.

4. Relaxed multicommodity flow. In this section we define relaxed
multicommodity flow which is a hybrid between multicommodity flow and multi-
terminal flow. In multicommodity flow, each commodity is subject to the capacity
and preservation constraints, and the congestion constraints require that the sum
of the flows of the different commodities do not exceed the edge/vertex capacities.
In multiterminal flow, each commodity is subject to the capacity and preservation
constraints, but there are no congestion constraints between them.

The source-sink pair of the ith commodity is denoted by ai (source) and bi (sink).
We denote by c(e) the capacity of edge e and by c(v) the capacity of vertex v. We
denote by fi(e) the amount of flow of commodity i on edge e. Denote by di, for
1 ≤ i ≤ k, the amount of flow of commodity i shipped in the graph from ai to bi.
Denote by N(v) the set of edges adjacent to v, and for any V ′ ⊂ V , denote by N(V ′)
the set of edges which have at least one endpoint in V ′. Denote by fmax(e) the value
max1≤i≤k fi(e), i.e., fmax(e) equals the maximum flow along the edge e among all the
commodities. To simplify notation, we also refer to the flow vector (f1, . . . , fk) as the
flow f .

Definition 4.1. A multiterminal flow f = (f1, . . . , fk) between source-sink pairs
{(ai, bi)}ki=1 is a relaxed multicommodity flow that realizes a demand vector d =
(d1, . . . , dk), if, for every 1 ≤ i ≤ k, the flow supplied by fi from ai to bi equals di,
and the following constraints are satisfied.

Intracommodity constraints. Each flow fi is a single commodity flow. Namely,
(1) for all e ∈ E : fi(e) ≤ c(e), and
(2) for all v ∈ V :

∑
e∈N(v) fi(e) ≤ 2 · c(v).

Intercommodity constraints. For all v ∈ V :
∑
e∈N(v) fmax(e) ≤ 4 · c(v).

The intracommodity constraints are standard single commodity constraints. The
sum of the flows of commodity i going through vertex v is bounded by c(v). Note
that in (2), each flow path passing through a nonterminal contributes twice its value
to the left-hand side (LHS) and therefore the right-hand side (RHS) is 2 · c(v). (As
for sources and sinks, Assumption (B1) implies that they have infinite capacity.) The
intercommodity constraints differ from (standard) multicommodity flow constraints
in two respects. (i) For each edge e, the maximum, taken over all commodities on e,
replaces the sum. (ii) The capacity of each vertex is multiplied by two and therefore
the RHS is 4 · c(v).

The relaxation of the intercommodity constraints is crucial for the success of the
technique used in this paper in which flows of commodities are maximized one-by-one.
The example depicted in Figure 4.1 shows that, without this relaxation, maximizing
the flows of the commodities one-by-one could yield a total flow which is 1/(k − 1)
times smaller than the minimum cut that separates all source-sink pairs. Assume
that vertices v1, v2, . . . , vk−1 have unit capacities. A unit flow between x1 and y1
would intersaturate the unit capacity vertices along the path, and no more flow could
be pushed for the other commodities. This example shows that the intercommodity
constraints need to be relaxed by a parameter α, where α > 1. In section 6.4, we
explain the choice α = 2.
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Fig. 4.1. Relaxed multicommodity flow example.

We define two types of saturated vertices with respect to f :

• Vertex v ∈ V is called intrasaturated with respect to i if the intracommodity
constraint corresponding to commodity i is tight with respect to v.

• Vertex v ∈ V is called intersaturated if the intercommodity constraint with
respect to v is tight.

Note that a vertex can be both intersaturated and intrasaturated with respect to more
than one commodity.

Consider a network N = (G, c), where G is a graph and c is a capacity function
defined on the vertices and edges. We now define the notions of a restricted function
h : E → R≥0 with respect to a network N = (G, c) and the restricted network Nh

with respect to a restricted function h.

Definition 4.2. Function h is called a restricted function for a network N =
(G, c) if

(1) for all e ∈ E : h(e) ≤ c(e), and
(2) for all v ∈ V :

∑
e∈N(v) h(e) ≤ 4 · c(v).

The restricted network Nh has the same vertex and edge set as N . The vertex
capacities in Nh are the same as in N ; the capacity of each edge e in Nh is set to
h(e).

Whenever it is clear which capacity function is attached to the edges of a network,
we refer to the network as a graph. In particular, for simplicity we denote by Gf the
restricted network Nf , where N = (G, c).

The next claim follows directly from the previous definitions.

Claim 4.3. Let h be a restricted function for a graph G and suppose that for each
1 ≤ i ≤ k, flow function fi is a single commodity flow function in Gh that satisfies
the capacity constraints. Then, (f1, . . . , fk) is a relaxed multicommodity flow in G.

4.1. Flow vs. intersaturated vertices. Consider source-sink pairs (ai, bi), 1 ≤
i ≤ k, and a demand vector d = {d1, . . . , dk}. For simplicity of presentation, assume
that all edges are uncapacitated, and there are no two finite weight vertices that
are adjacent. Let I denote the set of intersaturated vertices that are saturated in
every realization of d. Note that in the case of single commodity flow, an edge that
is saturated by every maximum flow function must belong to a minimum cut. We
now state our main theorem which can be interpreted as an approximate “min-cut
max-flow” theorem in the context of relaxed multicommodity flow.
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Theorem 4.4. Suppose that a demand vector d = {d1, . . . , dk} can be realized by
a relaxed multicommodity flow function. Then,

∑
v∈I

c(v) ≤
k−1∑
i=1

di.

The tightness of Theorem 4.4 follows from the example depicted in Figure 4.1.
The relaxed multicommodity constraints enable one to push one unit of flow per
commodity. Hence

∑k−1
i=1 di = k − 1. The vertices v1, . . . , vk−1 are all intersaturated

by such a relaxed multicommodity flow, and hence
∑
v∈I c(v) = k − 1, and tightness

follows.

We need the following definition, claim, and lemma for proving the theorem.

Definition 4.5. A relaxed multicommodity flow function f is called simple if it
has the following “minimal” property. For each commodity i, and for each edge e ∈ E
for which fmax(e) = fi(e), if we decrease fi(e) by rerouting the flow (of possibly all
commodities), then there exists an edge e′ ∈ E for which fmax(e

′) has to be increased.
Intuitively, a simple relaxed multicommodity flow function f does not contain spurious
cycles for each commodity, and it “overlays” flow paths of different commodities as
much as possible.

Claim 4.6. Let f be a relaxed multicommodity flow function that realizes de-
mand vector d. Then, there exists a simple relaxed multicommodity flow function f ′

that realizes demand vector d such that f ′max(e) ≤ fmax(e) for each edge e ∈ E.

Proof. Let g be a relaxed multicommodity flow function that realizes demand
vector d and satisfies gmax(e) ≤ fmax(e) for all e ∈ E such that it is impossible to
decrease gmax(e) on some edge e without increasing gmax(e

′) on some other edge e′.
We can obtain such a relaxed multicommodity flow function from f by subsequent
minimization of fmax(e) on each edge e ∈ E without increasing fmax(e

′) on some other
edge e′.

Now we show that the following relaxed multicommodity flow function f ′ satisfies
the claim. Flow function f ′ minimizes

∑
e∈E
|{i|f ′i(e) = gmax(e)}|,(4.1)

subject to the constraints that f ′max(e) ≤ gmax(e), and f
′ realizes demand vector d.

We need only to show that f ′ is simple. Suppose that it is not simple. Then,
there exists an edge e and commodity i for which f ′max(e) = f ′i(e) such that we can
decrease f ′i(e) by rerouting the flow without increasing f ′max(e

′) for any other edge
e′ ∈ E. Let f ′′ be the rerouted flow function, and let h denote the flow function which
is the average (taken over each commodity) of f ′ and f ′′.

We claim that since h is the average of f ′ and f ′′, we have that for all edges
e′ ∈ E, {i|hi(e′) = gmax(e

′)} ⊆ {i|f ′i(e′) = gmax(e
′)}. We also have that for edge

e, {i|hi(e) = gmax(e)} ⊂ {i|f ′i(e) = gmax(e)}. Clearly, h contradicts the objective
function that f ′ minimizes.

Lemma 4.7. Suppose that a simple relaxed multicommodity flow function f real-
izes demand vector d = {d1, . . . , dk}. Let V ′ ⊆ V contain only finite weight vertices.
(By Assumption (A), V ′ is an independent set.) Then, there exists a relaxed multi-
commodity flow function g that also realizes demand vector d satisfying that for each
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edge e ∈ E, gmax(e) ≤ fmax(e), and

∑
e∈N(V ′)

gmax(e)− 2 ·
∑
v∈V ′

c(v) ≤ 2 ·
k−1∑
i=1

di.(4.2)

Proof. The proof is by induction on k. For k = 1, f is a single commodity flow
function, and thus the RHS of (4.2) is 0. The LHS of (4.2) is not positive because of
the intracommodity constraints. We assume the induction hypothesis holds for k− 1,
and we prove it for k. Without loss of generality, let d1 denote the minimum demand
in d. Let V ′′ contain all vertices v ∈ V ′ for which there exists an edge e ∈ N(v) such
that f1(e) < fmax(e). We show that it suffices to prove the induction hypothesis for
vertices in V ′′ only. Let g be a relaxed multicommodity flow function that satisfies the
induction hypothesis (or the lemma) for V ′′. Since gmax(e) ≤ fmax(e) for all e ∈ E, we
have that gmax(e) ≤ fmax(e) = f1(e) for all e ∈ N(V ′ − V ′′). By the intracommodity
constraint for commodity 1, for all v ∈ V ,

∑
e∈N(v) f1(e) ≤ 2 · c(v). Therefore, g

satisfies

∑
e∈N(V ′−V ′′)

gmax(e)− 2 ·
∑

v∈V ′−V ′′
c(v) ≤ 0,

implying that g satisfies the induction hypothesis for V ′ too.
An edge e = (u, v), where c(v) is finite and v ∈ V ′′ is called critical with respect

to commodity 1 if: (i) fmax(e) = f1(e); (ii) fmax(e) > fi(e) for all i > 1.
The easy case is when each flow path of commodity 1 contains at most two critical

edges. In this case, remove the flow of commodity 1 from the graph. The relaxed
multicommodity flow (f2, . . . , fk) is not necessarily simple. Let f ′ be a simple relaxed
multicommodity flow function that realizes demand vector {d2, . . . , dk} and satisfies
that for each edge e ∈ E, f ′max(e) ≤ fmax(e). By Claim 4.6, flow function f ′ exists.

The induction hypothesis states that there exists a relaxed multicommodity flow
function g′ that satisfies demand vector {d2, . . . , dk} such that for all e ∈ E, g′max(e) ≤
f ′max(e). Flow function g′ also satisfies, for V ′′,

∑
e∈N(V ′′)

g′max(e)− 2 ·
∑
v∈V ′′

c(v) ≤ 2 ·
k−1∑
i=2

di.(4.3)

Now extend g′ to g by adding commodity 1 back to the graph, i.e., g1(e) = f1(e)
for all e ∈ E. We claim that gmax(e) > g′max(e) only if e is critical with respect to
commodity 1: if gmax(e) > g′max(e), then f1(e) = g1(e) > g′i(e). Since e is not critical,
there exists a commodity i > 1 such that

fi(e) = fmax(e) ≥ f1(e).

Hence, fi(e) > g′i(e) = gi(e). Thus, the construction of g contradicts the fact that f
is simple, yielding that if gmax(e) > g′max(e), then e is critical, as claimed.

The effect of extending g′ to g in (4.3) is as follows. The RHS increases by 2d1.
The LHS increases due to the critical edges: we change g′max(e) to f1(e) = g1(e) in∑
e∈N(V ′′) g

′
max(e) only in terms corresponding to critical edges. Since every flow path

of commodity 1 contains at most two critical edges, the increase of the LHS is also
bounded by 2d1.
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Fig. 4.2. Construction of Ra1 and Rb1 from Gfmax .

However, the RHS of (4.3) is increased by 2d1. This completes the proof of the
induction hypothesis for k in this case.

The harder case is when there exists a flow path of commodity 1 containing at least
three critical edges, e1, e2 = (u, v), and e3, appearing in this order along the path from
a1 to b1. By Definition 4.2, we may interpret fmax also as a restricted function for G.
Construct the restricted graph Gfmax . Commodity f1 is a standard single commodity
flow in Gfmax . We claim that in Gfmax , any standard single commodity flow function
that ships d1 units of flow from a1 to b1 must saturate edge e2. Otherwise, in Gfmax

there exists a single commodity flow f ′1 that ships d1 units of flow from a1 to b1 and
f ′1(e2) < f1(e2). Therefore, by Claim 4.3, there exists in G a relaxed multicommodity
flow f ′ = (f ′1, f2, . . . , fk) that contradicts the fact that f is simple. Therefore, in
Gfmax there exists a minimum cut C separating u from v (the endpoints of e2) which
is saturated by flow f1. Note that cut C may contain both edges and vertices. The
removal of C from the graph partitions it into two parts, X and Y , where u ∈ X and
v ∈ Y . Since cut C is saturated by f1, it also separates a1 from b1 in Gfmax . Apply
now the Gomory–Hu transformation (see section 2.1) to cut C and graph Gfmax . We
obtain two graphs, Ra1 with condensed vertex y′ and Rb1 with condensed vertex x′,
as depicted in Figure 4.2. We assign capacity to edges V (C)× {y′} and V (C)× {x′}
equal to the flow of f1 along these edges, and zero capacity to edges in V (C)×V (C).

Before we can apply the induction hypothesis to Ra1
and Rb1 , we prove the

following claim.

Claim 4.8.

(a) Each source-sink pair (for i > 1) must belong to either Ra1
or Rb1 .

(b) Each of the graphs Ra1 and Rb1 must contain at least one source-sink pair
(for i > 1).

Proof of Claim 4.8. We first prove that for each commodity i > 1 we have that
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either ai, bi ∈ Ra1
, or ai, bi ∈ Rb1 . Otherwise, suppose ai ∈ Ra1

and bi ∈ Rb1 . Since
f1(e2) > fi(e2) and cut C is saturated by commodity 1, we get that d1 > di, which
contradicts the assumption that d1 is the smallest demand.

We prove that each side must contain a source-sink pair. Assume without loss
of generality that source-sink pairs (ai, bi) for 2 ≤ i ≤ t are in Ra1 , and source-sink
pairs (ai, bi) for t+ 1 ≤ i ≤ k are in Rb1 . We first claim that from Lemma 2.2, there
exists in Ra1

a relaxed multicommodity flow function fx that satisfies demand vector
{d1, d2, . . . , dt}, where the source and sink of commodity 1 are a1 and y′. Similarly,
in Rb1 there exists a relaxed multicommodity flow function fy that satisfies demand
vector {d1, dt+1, . . . , dk}, where the source and sink of commodity 1 are x′ and b1.
We note that for all edges e ∈ Ra1 , f

x
max(e) ≤ fmax(e), and for all edges e ∈ Rb1 ,

fymax(e) ≤ fmax(e).
We now show that 1 < t < k. Let z1 and z2 denote the endpoints of e1; suppose

that z1 has finite weight. By the definition of critical edges, it follows that z1 ∈ V ′′.
Hence, there exists an edge e′ ∈ N(z1) and commodity j > 1 such that fmax(e

′) =
fj(e

′) > f1(e
′). We show that the source-sink pair aj , bj ∈ Ra1 . If aj , bj ∈ Rb1 ,

then some of the flow paths of commodity j pass through cut C. In this case, we
contradict the simplicity of f by rerouting flow as follows. For each flow path Pj of
commodity j that passes through the cut C, we can take two flow paths P1 and P ′1 of
commodity 1 that pass through the same edges or vertices of the cut C that Pj uses.
Now, we can reroute each flow path Pj which is crossing the cut C in the following
way. It will go from the cut C to a1 using path P1 and continue from a1 to the cut
C using path P ′1. Thus, we can reroute commodity j in Ra1 using the flow paths of
commodity 1, yielding that fj(e

′) ≤ f1(e
′). Therefore, fj(e

′) is decreased without
increasing fmax(e

′′) for any other edge e′′. This contradicts the fact that f is simple
and hence aj , bj ∈ Ra1

as claimed. Similarly, using critical edge e3, we can prove that
there exists a commodity j′ such that aj′ , bj′ ∈ Rb1 . (Note that the fact that each
side of the cut must contain at least one terminal pair implies that in the special case
of two commodities the hard case does not occur.)

Now we can apply the induction hypothesis to graphs Ra1
and Rb1 and vertex

sets V ′′ ∩ Ra1 and V ′′ ∩ Rb1 with respect to simple flow functions obtained from fx

and fy. (Denote by V (C) the vertices in C; note that each vertex z ∈ V (C) appears
in both Ra1 and Rb1 .) Denote by gx the flow function in Ra1 that exists by the
induction hypothesis and for which gxmax(e) ≤ fxmax(e) for all e ∈ Ra1 . We get from
the induction hypothesis that∑

e∈N(V (C)∩V ′′)

gxmax(e) +
∑

e∈N(X∩V ′′)

gxmax(e)(4.4)

− 2 ·
∑

v∈V (C)∩V ′′
c(v)− 2 ·

∑
v∈X∩V ′′

c(v) ≤ 2 ·
t−1∑
i=1

di.

Denote by gy the flow function in Rb1 that exists by the induction hypothesis and for
which gymax(e) ≤ fymax(e) for all e ∈ Rb1 . We now get from the induction hypothesis
that ∑

e∈N(V (C)∩V ′′)

gymax(e) +
∑

e∈N(Y ∩V ′′)

gymax(e)(4.5)

− 2 ·
∑

v∈V (C)∩V ′′
c(v)− 2 ·

∑
v∈Y ∩V ′′

c(v) ≤ 2 ·
(

k−1∑
i=t+1

di + d1

)
.
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By rerouting flow, similarly to the rerouting of flow in the proof of Claim 4.8, we
can obtain, without loss of generality, that

(a) neither gx nor gy deliver flow along edges in V (C)× V (C);
(b) if terminal pair (ai, bi) is in X, and e ∈ V (C)× {y′}, then gx1 (e) ≥ gxi (e). A

similar property holds for a terminal pair in Y and an edge in V (C)× {x′}.
We now form a relaxed multicommodity flow function g in graph G by gluing

together gx and gy. For commodity 1, g1(e) = gx1 (e) for all e ∈ Ra1 ∩G, g1(e) = gy1 (e)
for all e ∈ Rb1 ∩G, and g1(e) = gx1 (e) for all edges in G corresponding to virtual edges
in Ra1 and Rb1 . Recall that virtual edges correspond to edges in the minimum cut
C, and hence, for every virtual edge e, gx1 (e) = gy1 (e). Consider a source-sink pair
(aj , bj), j > 1. Suppose that aj , bj ∈ Ra1 . By Lemma 2.2 and by rerouting flow, we
may assume that for every edge e ∈ Rb1 , gj(e) ≤ gy1 (e). Moreover, the construction of
gj implies that gj(e) = gxj (e) for every e ∈ Ra1 . The analogous property holds when
a source-sink pair is in Rb1 .

We now apply Claim 4.3 to the flow functions g1, . . . , gk in graph G to obtain
relaxed multicommodity flow function g such that it realizes demands {d1, . . . , dk},
and it satisfies gmax(e) ≤ gxmax(e) if e ∈ Ra1 , and gmax(e) ≤ gymax(e) if e ∈ Rb1 .

Divide the edges N(V (C) ∩ V ′′) into groups:
Group (a): edges incident to y′ or x′;
Group (bx): edges incident to vertices in X;
Group (by): edges incident to vertices in Y ;
Group (c): edges in V (C)× V (C).
Our assumption on gx implies that edges of group (a) in X are saturated by gx1 .

Therefore, for every vertex v ∈ V (C),
∑

e∈N(v)∩ group(a)

gxmax(e) = c(v).

In addition, our assumption on gx implies that the flow of gx along edges of group (c)
is zero. Therefore,∑

e∈N(V (C)∩V ′′)

gxmax(e) =
∑

v∈V (C)∩V ′′
c(v) +

∑
e∈ group(bx)

gxmax(e).(4.6)

The same applies for the other side of the cut. Therefore,∑
e∈N(V (C)∩V ′′)

gymax(e) =
∑

v∈V (C)∩V ′′
c(v) +

∑
e∈ group(by)

gymax(e).(4.7)

Summing up inequalities (4.4) and (4.5), substituting summations of gx and gy with
the RHSs of (4.6) and (4.7), and replacing gx and gy by g, we get that

2 ·
∑

v∈V (C)∩V ′′
c(v) +

∑
e∈N(V ′′)

gmax(e)− 2 ·
∑
v∈V ′′

c(v)− 2 ·
∑

v∈V (C)∩V ′′
c(v)

≤ 2 ·
k−1∑
i=1

di + 2 · (d1 − dt).

Therefore, we get that

∑
e∈N(V ′′)

gmax(e)− 2 ·
∑
v∈V ′′

c(v) ≤ 2 ·
k−1∑
i=1

di,
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proving the lemma.

Proof of Theorem 4.4. By Lemma 4.7 there exists a flow function g such that

∑
e∈N(I)

gmax(e)− 2 ·
∑
v∈I

c(v) ≤ 2 ·
k−1∑
i=1

di,

where V ′ is chosen to be I. For each vertex v ∈ I, ∑e∈N(v) gmax(e) = 4 · c(v) by the
intercommodity constraints. Substituting in the above yields the theorem.

Remark 1. Let α denote the factor by which the intercommodity constraints are
relaxed. (In this paper, α = 2.) Then, the bound in Theorem 4.4 can be generalized to

∑
v∈I

c(v) ≤ 1

α− 1
·
k−1∑
i=1

di.

5. The approximation algorithm. In this section we describe a primal-dual
algorithm for approximating the subset-fvs problem. The algorithm computes a
relaxed multicommodity flow in the graph, iteratively, for k iterations. The algorithm
constructs a sequence of graphs H0, H1, . . . , Hk, where Hi is constructed in the end
of the ith iteration. Initially, we start with a graph H0 which is obtained from G by
removing all special vertices from it. All edges in H0 are assigned infinite capacity.
The graph Hi is constructed from Hi−1 by a Gomory–Hu transformation based on
the minimum cut that is computed in the ith iteration. Note that this transformation
replaces the source-sink pair xi, yi with a new source-sink pair denoted by x′i, y

′
i.

Moreover, capacities are assigned to virtual edges in Hi as described later.

We now describe iteration i+ 1 for 0 ≤ i ≤ k − 1 of the algorithm. The input is
graph Hi and demand vector di = {d1, . . . , di} which was realized in Hi−1 in the ith
iteration.

1. Compute a relaxed multicommodity flow function f = (f1, . . . , fi+1) in Hi

that
(i) realizes demand vector di for commodities 1, . . . , i, for source-sink pairs

x′j , y
′
j , 1 ≤ j ≤ i and

(ii) maximizes di+1, the amount of flow of commodity i + 1 shipped from
xi+1 to yi+1.

2. Compute a minimum cut C and deduce from it a subset of vertices Fi+1 =
Ai+1 ∪ Bi+1, where Ai+1 is a subset of the vertices intrasaturated by fi+1,
and Bi+1 is a subset of the vertices intersaturated by f .

3. Derive graph Hi+1 from graph Hi by applying the Gomory–Hu construction
to minimum cut C between xi+1 and yi+1, and by adding back special ver-
tex si+1.

The algorithm returns as a subset-fvs the set F
�
= F1 ∪ · · · ∪ Fk.

We now elaborate on the steps of the algorithm. In step 1, we compute a relaxed
multicommodity flow function f that realizes demand vector di and maximizes di+1,
the amount of flow of commodity i+ 1. The flow function f can be computed using
a linear program. The objective function maximizes di+1. The constraints of the
linear program are standard and include constraints for encoding the intercommodity
requirements. These constraints use a new variable fmax(e) for every edge and are
defined as follows. For each vertex v ∈ V for which c(v) is finite, we have
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∀ e ∈ N(v), ∀ j, 1 ≤ j ≤ (i+ 1) : fj(e) ≤ fmax(e),

∀v :
∑

e∈N(v)

fmax(e) ≤ 4 · c(v).

We are interested in identifying the set of vertices in Hi that are intersatu-
rated by every relaxed multicommodity flow function that realizes demand vector
{d1, . . . , di+1}. Let this set be denoted by Ii+1. The vertices belonging to Ii+1 can
be identified as follows. For each vertex v ∈ V where c(v) is finite, independently
solve the linear program that minimizes

∑
e∈N(v) f

v
max(e) subject to the constraints

that fv is a legal relaxed multicommodity flow function that realizes demand vector
{d1, . . . , di+1}. Clearly, if v is intersaturated in fv, then v ∈ Ii+1. By taking the flow
function f to be the average over all flows {fv}v∈V , we get that f intersaturates only
vertices in Ii+1.

We now elaborate on step 2 in the algorithm. Consider graph Hi with a single
source-sink pair, edge capacities, and vertex weights. We note that edge capaci-
ties in Hi (which will be described in step 3) are defined during the construction of
H0, . . . , Hi−1, and only virtual edges have been assigned finite capacity (vertices main-
tain their original capacities). Our goal is to compute a minimum cut with respect
to the source-sink pair xi+1, yi+1. We define additional temporary capacities for the
sake of computing the minimum cut as follows: For every vertex v in Ii+1 and edge
e ∈ N(v), define c(e) = fmax(e). Since di+1 is maximum, it follows that fi+1 is a max-
flow between xi+1 and yi+1 in Hi. Let C denote a minimum cut between xi+1 and
yi+1 in Hi. The cut C consists of vertices, denoted by V (C), and of edges, denoted
by E(C). Vertices in V (C) must be intrasaturated by fi+1. Define Ai+1 = V (C).
Edges in E(C) must be either virtual or incident to a vertex in Ii+1. Virtual edges
in E(C) contribute nothing to Bi+1 (or Fi+1). However, for every nonvirtual edge in
E(C), we add its endpoint which belongs to Ii+1 to the set Bi+1, unless this vertex
is already in Ai+1. Thus, Ai+1 consists of vertices that are intrasaturated by fi+1,
Bi+1 consists of vertices that are intersaturated by f = (f1, . . . , fi+1), and these sets
are disjoint. The set Fi+1 is the union of these two sets.

We now elaborate on step 3 in the algorithm. We apply the Gomory–Hu trans-
formation (section 2.1) to the graph Hi with (a) the original vertex capacities and the
edge capacities that have been assigned to the virtual edges in the previous iterations;
(b) the cut C; and (c) source-sink pair (xi+1, yi+1). This reduction yields two graphs,
Rxi+1 with condensed vertex y′i+1 and Ryi+1 with condensed vertex x′i+1. Connect
now Rxi+1 with Ryi+1 by inserting special vertex si+1 and connecting it to its two
neighbors xi+1 ∈ Rxi+1

and yi+1 ∈ Ryi+1
, as can be seen in Figure 5.1.

The resulting graph is denoted by Hi+1. Edge capacities are assigned to edges
in Hi+1 as follows: If an edge is a virtual edge in one of the graphs H1, . . . , Hi and
not in Hi+1, then it keeps its capacity. If an edge is a virtual edge in Hi+1, then it
is assigned capacity c(e) = fmax(e). All other (nonvirtual) edges are assigned infinite
capacity.

5.1. Properties. The following two claims follow directly from the construction
of Hi+1.

Claim 5.1. The graph induced by G−∪i+1
j=1Fj − {si+2, . . . , sk} is a subgraph of

Hi+1.
Claim 5.2. Graph Hi+1 does not contain any interesting cycles.
The following theorem guarantees that the first step in each iteration of the al-

gorithm is feasible.
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Fig. 5.1. Obtaining graph Hi+1 from Hi (and vice-versa).

Theorem 5.3. Suppose there exists a relaxed multicommodity flow function in
graph Hi that realizes demand vector {d1, . . . , di+1} for source-sink pairs (x′j , y

′
j),

1 ≤ j ≤ i, and (xi+1, yi+1). Then there exists a relaxed multicommodity flow function
that realizes demand vector {d1, . . . , di+1} for source-sink pairs (x′j , y

′
j), 1 ≤ j ≤ i+1,

in graph Hi+1.

Proof. Let f = (f1, . . . , fi+1) denote the relaxed multicommodity flow computed
in iteration i + 1, in graph Hi. It is obvious that fmax is a restricted function for
both graph Hi and graph Hi+1. Let Hf

i+1 denote the restricted graph with respect
to graph Hi+1 and the restricted function fmax. We show that for each commodity j,
1 ≤ j ≤ i+ 1, we can ship dj units of flow from x′j to y′j , and therefore by Claim 4.3,
we conclude that there exists a relaxed multicommodity flow function in Hi+1 that
realizes demand vector {d1, . . . , di+1} for source-sink pairs (x′j , y

′
j), 1 ≤ j ≤ i+ 1.

We start with commodity i + 1. In graph Hf
i , the restricted graph with respect

to graph Hi and function fmax(e), di+1 units of flow from xi+1 to yi+1 went through

the cut C. This means that in graph Hf
i+1 we can ship di+1 units of flow from xi+1

to y′i+1 and from x′i+1 to yi+1. Thus, we can ship the flow of commodity i+1 in Hf
i+1

from x′i+1 to yi+1, then to xi+1 through si+1, and then from xi+1 to y′i+1.

Suppose that j < i+1. We need to distinguish between two cases. The first case
is when x′j ∈ Rxi+1 and y′j ∈ Ryi+1

(or vice-versa). We first observe that dj ≤ di+1

since the flow of commodity j goes from x′j to y′j through cut C in Hf
i . In graph

Hf
i , we can ship via cut C flow of commodity j of value dj from x′j to y′j , and flow

of commodity i+ 1 of value di+1 from xi+1 to yi+1. Therefore, by Lemma 2.1 in the
graph Hf

i+1, we can ship flow of value dj from x′j to y′i+1, and flow of value di+1 from
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xi+1 to y′i+1. Hence, since dj ≤ di+1, we can ship flow of value dj from x′j to xi+1.
Similarly, we can ship flow of value dj from y′j to yi+1. Thus we can ship the flow of

commodity j of value dj from x′j to y′j via si+1 in graph Hf
i+1. The second case is

when both x′j and y′j belong to Rxi+1
(or Ryi+1

). In this case, fj is a flow of value dj

from x′j to y′j in Hf
i . By Lemma 2.2 we get that there exists a flow function of value

dj from x′j to y′j in Hf
i+1.

5.2. Correctness. There are three issues that need to be addressed regarding
the correctness of the algorithm. First, we need to show that step 1(i) of the algorithm
can be implemented, i.e., demand vector di = {d1, . . . , di} can be realized in Hi. This
can be proved inductively. The basis (i = 0) is immediate. Theorem 5.3 guarantees
that if di can be realized in Hi−1, then it can also be realized in Hi.

We prove that at the end of the kth iteration, the set F produced by the algorithm
is a subset-fvs in graph G. It follows from Claim 5.1 that G − F is a subgraph of
Hk. Claim 5.2 states that Hk does not contain interesting cycles. Therefore, F is a
subset-fvs in G.

5.3. Complexity. We show that there is no exponential blowup in the number
of vertices in graph Hi as a result of the Gomory–Hu transformation. We claim that
the number of virtual vertices in each graph Hi, 1 ≤ i ≤ k, is at most i · |V |. For
vertex u ∈ G, define the set Vu recursively. Initially, Vu contains u. If, during the run
of the algorithm, a vertex x ∈ Vu generates two virtual copies of itself, then delete x
from Vu and add the two virtual copies of x to Vu. We claim that |Vu| ≤ k for all
u ∈ G. This follows by observing that the set of edges in a minimum cut is contained
in a biconnected component. The reason for this is as follows: consider two edges in a
minimum cut; there are two paths that connect the source with those edges and two
paths that connect the sink with those edges. Therefore, they have to be in the same
biconnected component. Since every two vertices of Vu belong to different biconnected
components of Hi for all i ≥ 0, it follows that at most one vertex from Vu will belong
to a minimum cut in some iteration of the algorithm. Thus, in each iteration, at most
one vertex from Vu can generate two new virtual copies, yielding that |Vu| grows by
at most 1 at each iteration.

6. Analysis of the algorithm. The analysis of the algorithm is divided into
four parts.

1. We define a separation property of source-sink pairs with respect to an opti-
mal subset-fvs. We show that if the separation property is satisfied, then
the sum of the demands which can be supplied is bounded by four times the
weight of the subset-fvs.

2. We reconfigure the relaxed multicommodity flow in Hk to a relaxed multi-
commodity flow in G − {s1, . . . , sk} with respect to new source-sink pairs.
Moreover, the reconfiguration causes the source-sink pairs to satisfy a sepa-
ration property with respect to an optimal subset-fvs.

3. We show that all the intersaturated vertices chosen in the course of the al-
gorithm are also intersaturated in Hk. This property will allow us to use
Theorem 4.4 in order to bound the weights of the chosen intersaturated ver-
tices.

4. We combine the previous parts to obtain the 8-approximation factor.

6.1. Separation of source-sink pairs. Let F ∗ denote an optimal subset-fvs
in graph G. For 0 ≤ i ≤ k, define the graph Gi = (Vi, Ei) to be the subgraph of G
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induced by V − F ∗ − {si+1, . . . , sk}. We define the following separation property.

Definition 6.1. Source-sink pairs {(aj , bj)}kj=i+1 are separated by F ∗ in the
subgraph of G induced by V −{si+1, . . . , sk} if they satisfy the following two conditions.

1. For every i + 1 ≤ j ≤ k, the vertices aj and bj belong to different connected
components of graph Gi.

2. For every i+1 ≤ j, j′ ≤ k, the vertices aj and aj′ belong to different connected
components of graph Gi.

The following theorem enables bounding the sum of the realized demands by the
weight of a separating subset of vertices.

Theorem 6.2. Suppose that the source-sink pairs {(ai, bi)}ki=1 are separated by
F ∗ in the subgraph G′ of G induced by V −{s1, . . . , sk}. Then, for every demand vector
(d1, . . . , dk) in G′ with respect to the source-sink pairs (ai, bi), which is realizable by
a relaxed multicommodity flow function, the following holds:

k∑
i=1

di ≤ 4 · c(F ∗).

Proof. Let f = (f1, . . . , fk) denote a relaxed multicommodity flow that realizes
the demand vector (d1, . . . , dk). Let Ci denote the connected component in G′ − F ∗
that contains the source ai. Let Ti denote the set of edges which have one endpoint
in F ∗ and the other endpoint in Ci. By definition, fi(e) ≤ fmax(e) for each edge e.
Since bi /∈ Ci, the flow of fi along the edges of Ti cannot be less than di, namely,
di ≤

∑
e∈Ti

fi(e). Therefore,

di ≤
∑
e∈Ti

fmax(e).

Summing up over all commodities, we get that

k∑
i=1

di ≤
∑

e∈∪k
i=1

Ti

fmax(e).

Since the sets {Ti}ki=1 are disjoint,

∑
e∈∪k

i=1
Ti

fmax(e) ≤
∑
v∈F∗

∑
e∈N(v)

fmax(e).

By the intercommodity constraints, we get that

k∑
i=1

di ≤ 4 · c(F ∗).

Remark 2. Let α denote the factor by which the intercommodity constraints are
relaxed. (In this paper, α = 2.) Then, the bound in Theorem 6.2 can be generalized to

k∑
i=1

di ≤ 2α · c(F ∗).
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6.2. Reconfiguring flow paths. Let f = (f1, . . . , fk) denote the relaxed multi-
commodity flow with source-sink pairs {(x′i, y′i)}ki=1 and demand vector d in the graph
Hk computed in the last iteration of the algorithm. Our goal is to define relaxed mul-
ticommodity flow f = (f1, . . . , fk) with (new) source-sink pairs {(ai, bi)}ki=1 and the
same demand vector d in the subgraph of G induced by V − {s1, . . . , sk} such that
the source-sink pairs {(ai, bi)}ki=1 are separated by F ∗ in this subgraph.

We construct this relaxed multicommodity flow inductively. For each i, 0 ≤ i ≤ k,
construct in the graphHi a relaxed multicommodity flow f = (f1, . . . , fk) with source-
sink pairs (x′j , y

′
j), for commodities 1 ≤ j ≤ i, and with source-sink pairs (aj , bj),

for commodities i + 1 ≤ j ≤ k and demand vector d, such that source-sink pairs
{(aj , bj)}kj=i+1 are separated by F ∗ in the subgraph ofG induced by V−{si+1, . . . , sk}.

Clearly for i = k the relaxed multicommodity flow f is the flow computed in the
last iteration of the algorithm. And for i = 0 the relaxed multicommodity flow f is
the required relaxed multicommodity flow.

Assume that for i + 1 we construct such relaxed multicommodity flow f =
(f1, . . . , fk) with source-sink pairs (x′j , y

′
j) for commodities 1 ≤ j ≤ i + 1, and with

source-sink pairs (aj , bj) for commodities i+ 2 ≤ j ≤ k. Now we construct from it a
relaxed multicommodity flow for i.

Overview. Our construction will consist of two steps. In the first step, we choose
source-sink pairs (aj , bj) for j ≥ i+1 that satisfy the following. (1) They are separated
in Gi. (2) In graph Hi+1, demand vector {d1, . . . , dk} can be realized with source-sink
pairs (x′j , y

′
j) for 1 ≤ j ≤ i+ 1, and (aj , bj) for j ≥ i+ 2, such that flow from (aj , bj)

for j ≥ i+ 2 should not go through special vertex si+1.

In the second step, we restrict flow function f = (f1, . . . , fk) to flow paths from
(new) source aj to (new) sink bj , for i+ 2 ≤ j ≤ k. This flow function is henceforth
referred to as f . Note that f satisfies, for (aj , bj), for i + 2 ≤ j ≤ k: All flow paths
from aj to bj are subpaths of the flow paths in f prior to the modification. Hence,
the amount of flow of commodity j shipped from aj to bj in f remains dj . Thus, we
generate the required flow f in Hi from flow function f in Hi+1.

Step 1. The construction proceeds by replacing systematically each flow path by
a subpath of itself, so that all flow paths in f continue to share a common source and
sink.

We assign ai+1 ← xi+1, bi+1 ← yi+1 or ai+1 ← yi+1, bi+1 ← xi+1. The choice
is made so that the sources ai+1, . . . , ak belong to different connected components
in the graph Gi. Note that since si+1 ∈ Gi+1 and both xi+1 and yi+1 have infinite
weight, xi+1 and yi+1 belong to the same connected component in graph Gi+1. Hence,
at most one source at (t > i + 1) may belong to this connected component. If no
source belongs to this component, then both assignments of ai+1 and bi+1 are good.
If at belongs to this connected component, then it is either separated from xi+1 or
from yi+1 in graph Gi. In such a case, define ai+1 to be the neighbor of si+1 that is
separated from at in graph Gi.

The assignment of ai+1 and bi+1 satisfies the property that {aj , bj}kj=i+1 are
separated by F ∗ in the subgraph of Gi induced by V − {si+1, . . . , sk}. However, the
flow paths of some commodity j for j > i + 1 may not satisfy the requirement (2)
that they use only vertices in Hi+1 − si+1. Namely, the flow paths from aj to bj
(j > i+ 1) might pass through special vertex si+1. (Note that at this stage, the flow
paths pass only through vertices in Hi+1.) Otherwise, there is no need to update aj
and bj . Since the special vertex si+1 is about to be removed, this will disconnect all
flow paths flowing through it. By construction, si+1 is an articulation vertex of degree
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two (i.e., the removal of si+1 partitions Hi+1 into two connected components), and
thus, if a flow path from aj to bj passes through si+1, then all flow paths between aj
and bj pass through si+1 in Hi+1. Hence, it suffices to consider the case where all
these paths go through si+1. We consider two cases.

1. All flow paths enter si+1 from ai+1 and exit si+1 to bi+1. In this case, we
assign bj ← ai+1. Since aj and ai+1 do not belong to the same connected
component in Gi, aj and (the updated) bj also belong to different connected
components in Gi.

2. All flow paths enter si+1 from bi+1 and exit si+1 to ai+1. There are two
subcases: If aj and bi+1 belong to different connected components in Gi,
then we assign bj ← bi+1. Note that now, aj and bj are still in different
components and that all subpaths of the flow paths that go from aj to bj
avoid si+1. If aj and bi+1 are in the same connected component, then ai+1

and bj cannot belong to the same connected component since, otherwise,
aj and bj would belong to the same connected component of Gi+1. In this
case, we update aj ← ai+1; swap ai+1 and bi+1, that is, ai+1 ← bi+1; and
bi+1 ← ai+1. Note that now, aj and ai+1 belong to different components, and
so do aj and bj . Also, all subpaths of the flow paths that go from aj to bj
avoid si+1. The swap between ai+1 and bi+1 does not conflict with separating
ai+1 from the rest of the sources, because aj is the only source that belongs
to the connected component of ai+1 and bi+1 in the graph Gi+1.

Step 2. Now we generate the required flow f in Hi from flow function f in Hi+1.
Recall the Gomory–Hu transformation through which graph Hi+1 was obtained from
Hi. Let C denote the minimum cut in the Gomory–Hu transformation. The removal
of vertex si+1 from Hf

i+1 separates the graph into two parts denoted by Rxi+1 and
Ryi+1 . Note that flow function fmax in Hi+1 is a restricted function for graph Hi.

Thus, restricted graph Hf
i (for graph Hi and restricted function f) is a well-defined

graph.
We now show that in Hf

i for i + 1 ≤ j ≤ k, there exists a standard single
commodity flow function that ships dj units of flow from aj to bj , and for 1 ≤ j ≤ i,
there exists a standard single commodity flow function that ships dj units of flow from
x′j to y′j . We need to consider several cases.

The easiest case is when j = i + 1. Recall that vertices x′i+1 and y′i+1 represent

condensed subgraphs in Hf
i . In Hi+1, commodity i+ 1 is shipped from x′i+1 to yi+1

and then, via si+1, from xi+1 to y′i+1. By Lemma 2.1, we can ship in Hf
i flow of value

di+1 from xi+1 to yi+1. Vertices ai+1 and bi+1 were already matched to xi+1 and to
yi+1 (or vice-versa) in the first part of the proof, and thus we show that di+1 units of
flow can be shipped from ai+1 to bi+1.

Suppose that j < i+1. We need to distinguish between two cases. The first case
is when x′j ∈ Rxi+1

and y′j ∈ Ryi+1
(or vice-versa). We first observe that dj ≤ di+1

since the flow of commodity j went from x′j to y′j through cut C in Hi in iteration
i+1 of the algorithm. By Lemma 2.1, in graph Rxi+1 , dj units of flow can be shipped
from x′j to xi+1. Also, in graph Rxi+1 , di+1 units of flow can be shipped from xi+1 to
y′i+1. Thus, since dj ≤ di+1, in graph Rxi+1

, dj units of flow can be shipped from x′j
to y′i+1. Similarly, in graph Ryi+1 , dj units of flow can be shipped from x′i+1 to y′j .
Therefore, by Lemma 2.1, in graph Hf

i we can ship dj units of flow of commodity j
from x′j to y′j .

The second case is when both x′j and y′j belong to Rxi+1 (or Ryi+1). By Lemma
2.1, in graph Rxi+1 , there exists a flow of value dj from x′j to y′j . Therefore, by
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Lemma 2.2, in graph Hf
i , we can ship dj units of flow of commodity j from x′j to y′j .

The last case is for commodities j for i+1 < j ≤ k. It follows from the construc-
tion described in Step 1 that aj and bj are not separated by cut C in graph Hf

i . This
case can be handled similarly to the previous subcase.

We have now established that in Hf
i for i + 1 ≤ j ≤ k, there exists a standard

single commodity flow function that ships dj units of flow from aj to bj , and for
1 ≤ j ≤ i, there exists a standard single commodity flow function that ships dj units

of flow from x′j to y′j . Notice that for each vertex v ∈ Hf
i , the capacity of the edges in

N(v) is either obtained from f in Hi+1, or, all the edges adjacent to v are virtual edges
whose capacity is obtained from some legal relaxed multicommodity flow function in
Hi. Therefore, we have that for each vertex v ∈ Hf

i ,
∑
e∈N(v) c(e) ≤ 4 · c(v). Now by

Claim 4.3 we can superposition all the single commodity flow functions obtained for
each commodity and get a legal relaxed multicommodity flow function f that realizes
demand vector d1, . . . , dk in Hi. This completes the construction of required relaxed
multicommodity flow function f in Hi.

6.3. Intersaturated vertices.
Theorem 6.3. Intersaturated vertices chosen by the algorithm are also intersat-

urated in Hk, namely,

k⋃
i=1

Bi ⊆ Ik.

Proof. The proof follows by observing that for each edge e, fmax(e), which we
constructed in the previous subsection in Hi, cannot be larger than fmax(e) in Hi+1.
Thus, if a vertex is not intersaturated in Hi+1, then it is also not intersaturated in
Hi. Therefore if a vertex is intersaturated in Hi for some 1 ≤ i ≤ k, then it is
intersaturated in Hk.

6.4. The approximation factor. We are now ready to finish the analysis of
the approximation factor of the algorithm. Our goal is to bound the weight of the
chosen feedback set, namely, c(F ). To meet this end, we consider separately the
chosen intrasaturated vertices and the chosen intersaturated vertices. Recall that
in the ith iteration we add to F a subset Fi = Ai ∪ Bi. The vertices in Ai are a
subset of a minimum cut corresponding to the flow fi, and hence, c(Ai) ≤ di. Using
Theorem 6.3, we bound c(∪ki=1Bi) by c(Ik). We apply Theorem 4.4 to the graph Hk

and obtain c(Ik) ≤
∑k
i=1 di. Therefore,

c(F ) ≤ 2 ·
k∑
i=1

di.

We now provide an upper bound on the sum of the demands. It follows from recon-
figuration of the flow paths that in the graph G− {s1, . . . , sk} there exists a relaxed
multicommodity flow function with source-sink pairs {(ai, bi)}ki=1 that realizes de-
mand vector (d1, . . . , dk). Moreover, these source-sink pairs are separated by F ∗, and
thus by Theorem 6.2,

k∑
i=1

di ≤ 4 · c(F ∗),

yielding that c(F ) ≤ 8 · c(F ∗).
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We now can explain the choice of the relaxation factor of the intercommodity
constraints. Let this factor be denoted by α. It follows from Remarks 1 and 2 that
the approximation factor of the algorithm with respect to α is

2α ·
(
1 +

1

α− 1

)
.

This expression is minimized for α = 2.
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Abstract. This paper puts forward a new notion of a proof based on computational complexity
and explores its implications for computation at large.

Computationally sound proofs provide, in a novel and meaningful framework, answers to old
and new questions in complexity theory. In particular, given a random oracle or a new complexity
assumption, they enable us to

1. prove that verifying is easier than deciding for all theorems;
2. provide a quite effective way to prove membership in computationally hard languages (such

as Co-NP-complete ones); and
3. show that every computation possesses a short certificate vouching its correctness.

Finally, if a special type of computationally sound proof exists, we show that Blum’s notion of
program checking can be meaningfully broadened so as to prove that NP-complete languages are
checkable.

Key words. interactive proofs, probabilistically checkable proofs, random oracles, Merkle trees
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1. Introduction.
CS proofs. Proofs are fundamental to our lives, and as for all things fundamental

we should expect that answering the question of what a proof is will always be an on
going process. Indeed, we wish to put forward the new notion of a computationally
sound proof (CS proof) which achieves new and important goals, not attained or even
addressed by previous notions.

Informally, a CS proof of a statement S consists of a short string, σ, which (1) is as
easy to find as possible, (2) is very easy to verify, and (3) offers a strong computational
guarantee about the verity of S. By “as easy to find as possible” we mean that a CS
proof of a true statement (i.e., for the purposes of this paper, derivable in a given
axiomatic theory) can be computed in a time close to that needed to Turing-accept
S. By “very easy to verify” we mean that the time necessary to inspect a CS proof
of a statement S is substantially smaller than the time necessary to Turing-accept S.
Finally, by saying that the guarantee offered by a CS proof is “computational” we
mean that false statements either do not have any CS proofs, or such “proofs” are
practically impossible to find.

Implementations of CS proofs. The value of a new notion, of course, cru-
cially depends on whether it can be sufficiently exemplified. We provide two main
implementations of our notion. The first is based on a random oracle and provably
yields a CS proof system without any unproven assumption. The second relies on a
new complexity conjecture: essentially, that it is possible to replace the random oracle
of the first construction with a cryptographic function and obtain, mutatis mutandis,
similar results.

Applications of CS proofs. In either implementation, CS proofs provide, in a
new and meaningful framework, very natural answers to some of our oldest questions
in complexity theory. In particular, they imply not only that the time necessary to ver-
ify is substantially smaller than the time necessary to accept, but, more importantly,
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that this “speed-up” occurs for all theorems (rather than just a few theorems). In ad-
dition, they provide a quite effective way for proving membership in computationally
hard languages (e.g., Co-NP complete ones).

CS proofs also possess novel and important implications for computational cor-
rectness. In particular, in either implementation, they imply that every computation
possesses a short certificate vouching for its correctness. In addition, if implementable
in the second manner, CS proofs also imply that any heuristic or program for an NP-
complete problem is cryptographically checkable. This application at the same time
extends and demonstrates the wide applicability of Blum’s [11] original framework for
checking program correctness.

Origins of CS proofs. In conceiving and constructing CS proofs, we have ben-
efited from the research effort in interactive and zero-knowledge proofs. In particular,
the notion of a probabilistically checkable proof [3, 17] and that of a zero-knowledge
argument [13] have been the closest sources of inspiration in conceiving the new no-
tion itself. In exemplifying the new notion, most relevant has been a construction of
Kilian’s [23], and, to a lesser extent, the works of [18] and [9].

Naturalness of CS proofs. We wish to emphasize that, from the above starting
point, the mentioned applications of CS proofs to computation at large have been
obtained by means of surprisingly simple arguments. Indeed, after setting up the
stage for the new notion, the results about computational correctness follow quite
naturally. This simplicity, in our opinion, lends support to our new perspective.

2. New goals for efficient proofs.
Proofs without demands for efficiency: Semirecursive languages. Truth

and proofs have been traveling hand in hand. As formalized in the first half of this
century by a brilliant series of works, the classical notion of a proof 1 is inseparable
from that of a true statement. Given any finite set of axioms and inference rules, the
corresponding true statements form a semirecursive set.2 In the expressive and elegant
approach of Turing, such sets possess two equivalent characterizations particularly
important for our enterprise, one in terms of accepting algorithms and one in terms
of verifying algorithms.

1. A language (set of binary strings) L is semirecursive if and only if there exists
an (accepting) Turing machine A such that

L = {x : A(x) = Y ES}.
2. A language L is semirecursive if and only if there exists a (verifying) Turing

machine V, halting on all inputs, such that

L = {x : ∃σ ∈ {0, 1}∗ such that V (x, σ) = Y ES}.
Establishing the verity of a statement is thus a purely algorithmic process, and (at
least formally) classical proofs—the σs of the second definition—are just strings. Be-
cause in this paper a “true” theorem simply is one derivable in a given theory, for

1Thinking that the intuitive notion of a proof has remained unchanged from the times of classic
Greece (i.e., thinking that people like Peano, Zermelo, Frankel, Church, Turing, and Gödel have
only contributed its rigorous formalization and the discovery of its inherent limitations) is certainly
appealing, but unrealistic. Personally, we believe that no notion so fundamental and so human can
remain, not even intuitively, the same across so different spiritual experiences and historical contexts.
No doubt, our yearning for permanence (dictated by our intrinsically transient nature) predisposes
us to perceive more continuity in our endeavors than may actually exist.

2Again, throughout this work, true is considered equivalent to derivable.
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variety of discourse we may call a member of a semirecursive language a theorem or a
true statement, and a classical proof a derivation.

Finally, we also wish to recall the definition of a recursive language. Namely,
3. a language L is recursive (decidable) if and only if there exists a (deciding)

Turing machine D, halting on all inputs, such that

L = {x : D(x) = Y ES}.

Most of the semirecursive languages considered later on are actually recursive, in
which case we may refer to their accepting algorithms as deciding algorithms.

Prior demands for efficiency: NP, IP, and PCP. The two classical
definitions of semirecursiveness are syntactically different, but they are not formally
distinct from the point of view of “computational efficiency.” Indeed, though in many
natural cases verifying a classical proof is computationally preferable to finding it,
classical proofs are more a way of expressing what is in principle true rather than
a way of capturing what is efficiently provable. Providing a derivation is certainly a
way to convince someone that a given theorem is true but not necessarily an efficient
one: a classical proof may be arbitrarily long, or its relative verifying algorithm may
take arbitrarily many computational steps to verify it.

Therefore, the now familiar notions of NP (due to Cook [16] and, independently,
to Levin [24]) and IP (due Goldwasser, Micali, and Rackoff [21] and, independently,
to Babai and Moran [4]) have been put forward in an effort to capture the essence of
an efficient proof. Despite the notable differences between NP and IP, in both cases
this effort consists of demanding that verifying be easy.

Our notion too demands ease of verification (and in a stronger sense), but also
broadens the perceived essence of an efficient proof by demanding some novel prop-
erties.

Another type of “proof efficiency” is provided by the notion of PCP [3, 17] (which
we shall discuss in some detail later on). Quite succinctly, this notion consists of an
explicit algorithm transforming an NP-witness, σ, into a new proof (i.e., string), τ,
which is polynomially longer, but whose correctness can be detected in probabilistic
polylogarithmic time by random accessing (at unit cost) selected bits of τ . This
immediately yields the following NP-like proof system: the prover transforms an
NP-witness σ into a longer but samplable proof-string τ, and sends τ to the verifier,
who then will verify τ by selectively sampling its bits.

In terms of overall verifying time, however, such a proof system is not more
efficient than its NP counterpart (i.e., than just sending σ). Indeed, though few
chosen bits of τ will be “truly checked,” to ensure that he is truly dealing with, say,
the ith bit of τ , the verifier must read/receive every bit of τ and keep precise track of
the order in which it is read/received. And such read/receiving operations, according
to any natural measure, have in themselves a cost proportional to τ ’s length, which
is greater than the length of σ.3

(Notice that having the prover not send τ at all, but rather having him answer
any question the verifier may ask about specific bits of τ , does not work: a dishonest
prover may cheat successfully with probability 1.)

Our demands for efficiency. Our notion of an efficient proof system is ex-
pressed in relation to Turing acceptability. We believe this to be a necessary step.

3This continues to be true if the prover sends to the verifier a piece of randomly-accessible
hardware containing τ, if such a transmission is deemed preferable.
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Indeed, we perceive accepting as the solitary process of determining what is true and
proving as the social process of conveying to others the results of this determination.

Let us begin with the desideratum common to prior notions of our proof: ease of
verification. Both NP and IP interpret ease of verification in absolute terms, namely,
by requiring that verifiers run in polynomial-time. This interpretation automatically
and strictly narrows the class of the efficiently provable theorems. By contrast, we
believe that efficient verifiability should be expressed in relative rather than absolute
terms, namely, by comparing the complexities of (1) verifying the proof of a given
statement S and (2) accepting S (i.e., establishing S’s verity without any help).

In addition, we perceive two new desiderata. First, because a proof system spec-
ifies (implicitly or explicitly) two processes, that of verifying and that of proving, we
believe that proving too should be efficient, and this latter efficiency should again be
relative to the complexity of accepting. Second, while NP and IP narrow the prov-
able theorems to a small subset of all true statements (e.g., PSPACE), we believe
that all true statements (i.e., all Turing-acceptable languages) should be efficiently
provable.

Our main goals. In sum, at the highest and informal level, the objective of
our new notion of a proof is finding the right relationship between accepting, efficiently
proving, and efficiently verifying a true statement. We articulate this general objective
in the following goals.

1. (Relative) efficiency of verifying. Construct proof systems so that, for all
theorems, the complexity of verifying is substantially smaller than that of
accepting.

2. (Relative) efficiency of proving. Construct proof systems so that the prover’s
complexity is close to that of accepting.

3. (Recursive) universality. Construct proof systems capable of efficiently prov-
ing membership in every semirecursive language.

As we shall point out in what follows, our notion of a CS proof system also achieves
additional goals, but we do not consider them essential to the “right” notion of an
efficient proof.

2.1. Efficiency of verifying.
The relative nature of efficient verifiability. As outlined above, we regard

a proof system to be efficient if it makes verifying a given statement easier than
Turing accepting it (i.e., easier than establishing its verity without the help from
any prover). Ignoring a small, fixed polynomial, we demand that the complexity
of verifying be polylogarithmic in that of accepting. Though somewhat arbitrary,
the latter choice stems from two simple reasons: “logarithmic” because we wish the
advantage of verifying over accepting to be substantial (whenever the accepting time
is substantial!), and “poly” because we wish such an advantage to be reasonably
independent from any specific computational model.

The ubiquitous nature of efficient verifiability. There is an additional and
novel aspect to our goal of efficient verifiability, namely, that such efficiency should
arise for all theorems and not for just some of them. Let us explain this point focusing
on the NP proof system.

To begin with, within P, the NP mechanism does not guarantee that verification
is computationally easier than acceptance (which in this case coincides with decision).
For instance, in principle, for infinitely many positive constants c there could be a
language Lc decidable in time O(nc) but for which any type of NP-witness needs
Ω(nc) steps to be verified. If this were the case, the NP proof system could not make
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verifying membership in these languages any easier than deciding them.
In addition, in principle again, assuming P �= NP only entails the existence of a

superpolynomial gap between the complexities of Turing accepting and verifying for
some, but possibly rare, inputs, such as certain instances of satisfiability. By contrast,
according to our present point of view, a proof system does not make verification
sufficiently efficient unless it makes it polylogarithmically easier than accepting for
essentially all theorems.

2.2. Efficiency of proving.
The relative nature of efficient provability. As mentioned already, implicitly

or explicitly, proofs involve two agents, a prover and a verifier. We thus believe that
the right notion of a proof should require efficiency for both agents and that the
efficiency of a prover should not be measured in absolute terms but relatively to the
complexity of Turing accepting the problem at hand.

Measuring prover efficiency relative to the complexity of accepting is a quite
natural choice. Indeed, based on our intuition that the complexity of convincing
someone else cannot be lesser than that of convincing ourselves (and based on our
view that accepting is the process of convincing ourselves), the complexity of proving
cannot be lower than that of accepting, while it could be much greater. We thus
demand that our proof systems satisfy the following two properties.

(i) The prover must succeed in convincing the verifier whenever the theorem at
hand is true (the old completeness property of an interactive proof system).

(ii) The amount of computation needed by the prover to convince the verifier
must be polynomially close to that needed to accept that the given theorem
is true.

In property (ii), we demand that the two amounts of computation be polynomially
close to ensure a reasonable robustness.

We refer to the simultaneous holding of these two properties as feasible complete-
ness. Feasible completeness is a novel requirement for proof systems. But do any of
the prior proof systems “happen” to enjoy it anyway? Quite possibly, the answer is
no. Consider, for instance, an NP language L (preferably not NP-complete4) decid-
able by an algorithm D in, say, nlogn time. Then, in the NP mechanism, proving that
a given string x belongs to L entails finding a polynomially long and polynomial-time
inspectable witness wx. But the complexity necessary to find such an insightful string
may vastly exceed that of running algorithm D on input x for |x|log |x| steps! Indeed,
finding such an insightful string wx might in the worst case require O(2|x|) steps. In
other words, while a few months of hard work may suffice for proving to ourselves
(i.e., for accepting) that a given mathematical statement is true, it is conceivable that
a lifetime may not be enough for finding an explanation followable by a verifier with
a limited attention span.

Efficient provability might also not hold for the IP proof mechanism. Indeed,
often the best way to prove membership in an IP language consists of invoking
the general IP = PSPACE protocol [26, 33], which is extremely wasteful of prover
resources.

Realizing the importance of feasible completeness in a proof system allows us

4Above, we assume that L is not NP-complete to avoid raising two issues at once. Indeed, due
to our current complexity measures, NP-proving membership in an NP-complete language appears
feasible. In fact, because of self-reducibility, if L isNP-complete and decidable in nlogn time, then an
NP-witness of x ∈ L is findable in poly(|x|)·|x|log |x| time. However, as we shall see in subsection 5.8,
NP may not enjoy feasible completeness even when one focuses solely on NP-complete languages.
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to raise a variety of intriguing questions about NP and IP.5 But our point is not
determining which proof systems happen to enjoy feasible completeness. Our point
is that feasible completeness must be required from any notion of a proof system that
aims at achieving an adequate level of generality and meaningfulness.

Related notions of feasible provability. Related notions of “feasible” prov-
ability have been considered in the past. In particular, Bellare and Goldwasser [6]
discuss demonstrating membership in certain languages L by provers working in poly-
nomial time and having access to an oracle for membership in L. Their notion, how-
ever, is weaker than ours because, in order to demonstrate membership in L of some
given input x, their prover can query the oracle about other inputs x′ for which ac-
cepting membership in L might be “much harder” than for x (despite the fact that
such x′ have been polynomial-time computed from x). Thus, if accessing the oracle
for L were to be substituted with running an algorithm deciding L, then their provers
may work much harder than needed for accepting that a specific x belongs to L.

Less relevantly, the protocols of [20] and [13] show that, if a prover were given
for free an NP witness that an input x belongs to an NP-complete language L, then
proving in zero-knowledge that x ∈ L only requires polynomial (in |x|) work. (In a
sense, therefore, theirs is an example of feasible provability, but relative to the “nonde-
terministic complexity of x.” That is, the prover complexity of a zero-knowledge proof
system for NP is shown to be feasible relative to the prover complexity of another
proof system: the NP one.) Such notion is nonetheless adequate when the prover is
not handed the statement of a theorem (e.g., x ∈ L) as an input, but rather generates
it together with suitable auxiliary information (e.g., an NP-witness of x ∈ L) that
enables feasible proving.

By contrast, our notion of feasible completeness refers to (1) individual inputs
and (2) the deterministic complexity of these inputs.

2.3. Recursive universality. The previous proof systems discussed above have
only a limited “range of action.” For instance, an interactive proof system (P, V ) is
defined only with respect to proving membership in a specific language L. Different
languages have, therefore, different interactive proof systems, or none. Moreover, as
mentioned above, even considering the classes of all languages having an interactive
proof system, one obtains a set of languages, IP, that is quite small with respect to
the set of all semirecursive languages.

We instead consider universality (i.e., the capability of handling the entire range
of semirecursive languages) to be a necessary property of a “sufficiently right” proof
system. By this we do not just mean that every semirecursive language should admit
a proof system of the “right” type. We actually mean that a “right” proof system
should be able to prove membership in any semirecursive language. That is, for any
language L and any member x of L, on input x and a suitable description of L, a
right proof system should be able to prove, efficiently, that x belongs to L. (As will
be seen, we consider an accepting algorithm for L to be a suitable description of L

5For instance, in an intuitive language,
Q1: What is the computational complexity required from any IP-prover of unsatisfiability?
Q2: (In light of better-than-exhaustive-search algorithms for graph isomorphism) What is the

complexity required from any NP-prover of, say, graph isomorphism?
Q3: Are there NP-languages L, such that proving membership in L may require much less

computation from an IP-prover than from an NP-prover?
(i.e., can giving a prover “more freedom” save him much work?) In particular,

Q3′: What is the computational complexity required from any IP-prover of satisfiability?
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and one that facilitates our establishing the efficient provability and verifiability of a
proof system.)

3. CS proofs with a random oracle. To approximate our new goals, we put
forward the notion of a CS proof system. As we shall see, this actually is a family of
closely related notions. The first of such notions, that of a CS proof with a random
oracle, will be presented and implemented in detail in this section; the others will be
more briefly discussed in section 4. All these proof systems aim at proving membership
in the following special language.

3.1. The CS language.
Encodings. Throughout this paper, we assume usage of a standard binary encod-

ing, and often identify an object with its encoding. (In particular, if A is an algorithm,
we may—meaningfully, if informally—give A as an input to another algorithm.) The
length of an (encoded) object x is denoted by |x|. If q is a quadruple of binary strings,
q = (a, b, c, d), then our quadruple encoding is such that, for some positive constant
c,

1 + |a|+ |b|+ |c|+ |d| < |q| < c(1 + |a|+ |b|+ |c|+ |d|).

Steps. IfM is a Turing machine and x an input, we denote by #M(x) the number
of steps that M takes on input x.

Definition 3.1. We define the CS language, denoted by L, to be the set of all
quadruples q = (M,x, y, t), such that M is (the description of) a Turing machine, x
and y are a binary strings, and t a binary integer such that

1. |x|, |y| ≤ t;
2. M(x) = y; and
3. #M(x) = t.

Notice that, as long asM reads each bit of its inputs and writes each bit of its outputs,
the above property 1 is not a real restriction. Notice too that, due to our encoding, if
q = (M,x, y, t) ∈ L, then t < 2|q|.

3.2. The notion of a CS proof-system with a random oracle.
Oracles and oracle-calling algorithms. We denote the set of all binary strings

having length i by Σi, and the set of all functions from a-bit strings to b-bit strings
by Σa → Σb. By an oracle we mean a function in Σa → Σb, for some choice of a and
b.

We consider algorithms making calls to one or two oracles. To emphasize that an
algorithm A makes calls to a single oracle, we write A(·). If A is such an algorithm and
f an oracle, we write Af to denote the algorithm obtained by answering A’s queries
according to function f, that is, by answering each query α with f(α). Similarly, to
emphasize that an algorithm A makes calls to two oracles, we write A(·,·). If A is such
an algorithm and (f1, f2) a pair of oracles, we write A(f1,f2) to denote the algorithm
obtained by answering A’s queries to the first oracle according to function f1, and
those to the second oracle according to function f2.

For complexity purposes, in a computation of an oracle-calling algorithm, the
process of writing down a query and receiving its answer from the proper oracle f is
counted as a single step. No result of this paper would change in any essential way if
this process costed poly(a, b) steps whenever f ∈ Σa → Σb.

An algorithm that, in any possible execution, makes exactly N calls to each of its
oracles will be referred to as a N-call algorithm.
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Integer presentation. If x is an integer given as an input to an algorithm
A, unless otherwise clarified it is assumed that x is presented in binary to A. We
only make an exception for the security paramenter, denoted by k, that is always
presented in unary to all our algorithms: accordingly, we shall denote by 1k (i.e., the
concatenation of k 1s) the unary representation of integer k.6

Definition 3.2. Let P (·) and V (·) be two oracle-calling Turing machines, the
second of which is running in polynomial time. We say that (P, V ) is a CS proof sys-
tem with a random oracle if there exists a sequence of six positive constants, c1, . . . , c6
(referred to as the fundamental constants of the system), such that the following two
properties are satisfied.

1′. Feasible completeness. For all q = (M,x, y, t) ∈ L, for all k, for all f ∈ Σkc1 →
Σkc1

, (1′.i) P f (q, 1k) halts within (|q|kt)c2 computational steps, outputting a
binary string C whose length is ≤ (|q|k)c3 , and (1′.ii) V f (q, 1k, C) = Y ES.

2′. Computational soundness. For all q̃ �∈ L, for all k such that 2k > |q|c4 , and
for all (cheating) deterministic 2c5k-call algorithm P̃ , for a random oracle
ρ ∈ Σkc1 → Σkc1

,

P robρ[V
ρ(q̃, 1k, P̃ ρ(q̃, 1k)) = Y ES] ≤ 2−c6k.

Thus, an execution of (P, V ) requires a common oracle f and two common inputs: a
quadruple of binary strings q (allegedly a member of L) and a unary-presented integer
k. We refer to q as the CS input, and to k as the security parameter. Such an execution
consists of first running P f on inputs q and 1k, so as to produce a binary output C,
and then running V f on inputs q, 1k and C. If q = (M,x, y, t) and V f (q, 1k, C) = Y ES,
we may call string C a random-oracle CS proof of M(x) = y, or, more precisely, a
random-oracle CS proof, of security k, of M(x) = y in less than t steps. For variation
of discourse, we may sometimes refer to such a C as a CS witness or a CS certificate. If
it is clear from the context that we are dealing with CS proof systems with a random
oracle, we may simplify our language by dropping the qualification “random-oracle.”

Discussion.
Controlled inconsistency. CS proofs (similarly to zero-knowledge arguments

discussed later on) allow the existence of false proofs but ensure that these are com-
putationally hard to find. That is, false CS proofs may exist, but they will “never” be
found.

Equivalently, CS proof systems are deliberately inconsistent but practically in-
distinguishable from consistent systems. Indeed, each CS proof specifies a security
parameter, controlling the amount of computing resources necessary to “cheat” in the
proof, so that these resources can be made arbitrarily high. Accordingly, CS proofs
are meaningful only if we believe that the provers who produced them, though more
powerful than their corresponding verifiers, are themselves computationally bounded.7

From a practical point of view, this is hardly a limitation. As long we restrict our at-
tention to physically implementable processes, no prover in our universe can perform
21,000 steps of computation, at least during the existence of the human race. Thus,
“practically speaking” all provers are computationally bounded.

6This is to ensure that a polynomial-time algorithm is guaranteed to be able to make “poly(k)”
steps when the security parameter is k.

7The transition from an interactive proof system to a CS proof system is analogous to the
transition from a perfect zero-knowledge proof system to a computational zero-knowledge proof
system [21], which has proved to be a more flexible and powerful notion [20].
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Deterministic cheating. In the above definition of a CS proof system with a
random oracle, we have considered cheating provers P̃ to be deterministic because
probabilism does not help in our context. Indeed, since we are not concerned about
the size of the description of P̃ , nor about its running time (except for the number

of oracle calls it may make), P̃ may easily have built in any “lucky” sequence of coin
tosses.

Security parameters. Informally, the security parameter k controls the proba-
bility of something going wrong, and CS proofs become more meaningful as k grows.
But, at a minimum, we require that k be large enough so that 2k > |q|c4 . This “mild”
lower-bound is relied upon in our proof of Theorem 3.8.8 At the same time, it is also
reasonable in that, on input a quadruple q, the honest prover P is allowed at least
poly(|q|) steps of computation, and it would thus be strange not to assume that a
cheating prover can make a similar number of steps.

Running time. A member of L, q = (M,x, y, t), includes the exact number of
steps, t, in which M outputs y on input x. More simply, however, we could have
demanded that t upperbounds #M(x). But since the CS proof system with a random
oracle of section 3.4.2, (P,V), actually proves the exact value of #M(x), it would
have been a pity to loose this exact information.9

A paradox. CS proofs are paradoxical in that a computationally bounded prover
appears able to “prove more theorems” than an unbounded one. Indeed, if we choose
k’s value as a suitable function of the input length, then a properly-bounded CS prover
can demonstrate membership in any EXPT IME language to a verifier whose running
time is upperbounded by a fixed polynomial in the input length alone. By contrast,
the unbounded prover of an interactive proof system can only prove membership
in PSPACE languages to a polynomial-time verifier, and it is widely believed that
PSPACE is a proper subset of EXPT IME .

However, at a second thought, there is no paradox. Indeed, a prover, being
someone more powerful than us, may be a potentially useful ally (willing to enlarge
our state of knowledge by letting us verify that some very difficult theorems are
indeed true), but may also be a potentially dangerous enemy (wishing to trick us into
believing some false statements). It is thus not too surprising that, when a prover is
powerful but not-too-powerful, we can “trust him to a larger extent” and can thus
“critically receive” from him more theorems than before.

Achieving our goals. Let us now point out how CS proofs achieve our main
goals for the notion of an efficient proof.

1. Efficient verifiability. Our first goal required that, for every theorem, ver-
ifying should be polylogarithmically easier than accepting. This goal is ap-
proximated by a CS proof system (P, V ) in the following sense. Let L be
a semirecursive language, x a member of L, and A an accepting algorithm
for L. Then the theorem x ∈ L can be verified by running A on input x
and verifying that A(x) = Y ES. Assume now that the latter computation
takes t steps and that (P, V ) is a CS proof system with a random oracle.
Then, by choosing a proper security parameter k and running P on inputs

8Roughly, for proving Theorem 3.5 it suffices that 2k > poly(|t|), which it is implied by 2k >
poly(|q|), because |t| < |q|.

9In any case, he who considers more natural choosing t as an upperbound to #M(x) may notice
that with minor changes all of the results of this paper, including those about CS checking, remain
true. In particular, a CS proof that some q = (M,x, y, T ) belongs to the modified CS language is
computable in poly(|q|k#M(x)) even when #M(x) << T .
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q = (A, x, Y ES,#A(x)) and 1k, and access to a random oracle ρ, one obtains
a CS certificate of x ∈ L, C that (a) is length-bounded by a fixed polynomial
in |q| and k, and (b) is accepted by V ρ running on additional inputs q and 1k.
Therefore, because V is polynomial time (and because k is unary-presented),
V accepts within a number of steps that are bounded by a fixed polynomial
in |q| and k. Thus, because #A(x) enters q in binary representation and be-
cause of our quadruple-encoding conventions, V accepts in time polynomial
in |x| and k (as well as in |A|) but polylogarithmic in #A(x).

2. Efficient provability. Our second goal called for the complexity of proving
being polynomially close to that of accepting. This property is immediately
guaranteed by the feasible completeness of a CS proof system. Feasible com-
pleteness in fact states that there exists a fixed constant c2 such that, if an
algorithm A accepts that a string x belongs to a semirecursive language L
(in #A(x) steps), then a CS prover can, on inputs q = (A, x, Y ES,#A(x))
and 1k and with access to a random oracle, find a CS proof of x ∈ L within
(|q|k#A(x))c2 steps. That is, a CS prover can find a CS proof of x ∈ L in a
time that is polynomial in #A(x) and k (as well as in |A| and |x|).

3. Recursive universality. Our third goal called for proof systems capable of
proving membership in all possible semirecursive languages. In apparent con-
trast with this requirement, a CS proof system is defined to prove membership
only in the CS language L. But L is designed so as to encode membership
questions relative to any possible semirecursive language. In fact, to each
semirecursive language L corresponds a Turing machine ML so that x ∈ L if
and only if ML, on input x, outputs Y ES in some number of steps t. Thus
x ∈ L if (ML, x, Y ES, t) ∈ L, thus achieving the third goal.

Efficient verifiability within P. Note that a CS proof system with a random
oracle makes verifying computationally preferable to accepting even for polynomial-
time languages.

The process behind the curtains. In a classical proof system, what con-
vinces us of the verity of a given statement is the existence of a string satisfying a
proper syntactic property. By contrast, in an interactive proof system there are no
strings that do the convincing: the “proof is in the process.” Differently from both
scenarios, in a noninteractive CS proof system, proofs are strings possessing a special
property, but such strings may exist also for false statements. Therefore, what is con-
vincing is not the existence of such strings but our belief that the process behind the
generation/selection of such strings had computationally limited resources.10

Comparison with zero-knowledge arguments. Goldwasser, Micali, and Rack-
off [21] introduced and first exemplified the notion of a zero-knowledge proof system,
and Goldreich, Micali, and Wigderson[20] showed that all languages in NP possess

10Indeed, when debating whether a given statement is true, we do not have “serendipitous” access
to some CS proof of it, if any. Thus, if we are given such a string, then there must have been an active
process that generated/selected it. For instance, assume that, while walking on a beach pondering
our favorite statement S, we encounter a sand pattern that looks like the sequence of bits of a CS
proof, σ, of S. Then, we may consider that the grains of sand have been arranged in such a σ-shape
by natural elements (such as wind, waves, and sun), and view the universe as a computer and its
age as computing time, so that, in a final analysis, our σ has been found in a few billion years: an
unlikely event if we have chosen our parameters so that the age of the universe is negligible with
respect to the time necessary to find a good-looking CS proof of a false statement.
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a (computationally) zero-knowledge proof, under a general complexity assumption.11

Brassard, Chaum, and Crépeau [13] then put forward a related notion, that of a
zero-knowledge argument for NP, and proved a related theorem: under a specific
complexity assumption, there exist zero-knowledge arguments for all NP languages.12

We wish to disregard the zero-knowledge component of the latter protocols and
focus instead on their proof-system component, which we call the argument (proper).
Such arguments in fact provide an earlier example of proof systems which (as our CS
proofs) are “convincing if its provers are computationally bounded.” Let us explain.

In a (zero-knowledge) argument system for an NP language L, all agents, the

prover P, the verifier V, and any possible malicious prover P̃ , are assumed to be
polynomial-time machines. Before proving that a given input x belongs to L, P is
assumed to have available, on a special tape inaccessible by V, anNP-witness of x ∈ L,
w. (Without this assumption, such a w might be uncomputable by the polynomial-
time P .) During the protocol, P is provided by V with a special encryption scheme
and uses it so as to convince V of the existence of w (without revealing it) by means of
an interactive process that is less efficient than merely sending w. Vice versa, if x �∈ L,
no such w exists, and it is hard for a malicious P̃ to convince V of the opposite. In fact,
succeeding in such a malicious convincing entails “breaking” the provided encryption
scheme, and the chance that a polynomial-time P̃ may do that is quite remote.

Arguments, therefore, do not enlarge (nor aim at enlarging) the class of theorems
that are efficiently provable. Rather, they constitute an alternative way of proving
membership in NP, a way that is less efficient than simply providing the witness but
satisfies an additional property, zero-knowledgeness (which is in fact an integral part
of their very definition).

Note that, leaving aside zero-knowledgeness and interaction (there are, after all,
interactive CS proof systems), our CS proofs with a random oracle differ from the
arguments of Brassard, Chaum, and Crépeau in the following ways.

• Their arguments for NP may not enjoy efficient verifiability. As discussed
above, such NP arguments are less efficient than classical NP proof systems,
and, as pointed out in subsection 2.1, the latter systems may not satisfy
(ubiquitous efficiency, and thus) efficient verifiability.

• Their arguments for NP may not enjoy efficient provability. As discussed
above, on input a member x of an NP language L, the prover of an NP
argument is assumed to have “for free” (as an additional input) an NP-
witness w of x ∈ L. But, as we have pointed out in subsection 2.2, the
time necessary for a prover to find such a witness w may vastly exceed that
necessary to accept that x ∈ L.

• Their arguments for NP do not enjoy recursive universality. NP languages
are a proper subset of all recursive languages.

3.3. The intuition behind our CS proof-system with a random oracle.
Our construction is based on an earlier one of Kilian’s [23], which is itself based on

11Informally, they exhibit interactive protocols enabling a prover to convince a polynomial-time
verifier that an input belongs to an NP language L, but without conveying any more knowledge
than the mere fact that a given witness of such a membership exists. Their protocols privilege the
“proof aspect” rather than the “zero-knowledge aspect”. Indeed, even if endowed with unbounded
computational power, their provers cannot convince their verifiers that inputs outside L are in L
(but with a negligible probability). However, for their verifiers to gain no information about inputs
of L (other than their belonging to L) it is crucial that they be time-bounded.

12Differently from Goldreich, Micali, and Rackoff, rather then the proof aspect, they privilege the
zero-knowledge aspect (see previous footnote).
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Merkle’s trees [27] and probabilistically checkable proofs [3, 17]. Let us thus start by
recalling the latter two notions.

3.3.1. Probabilistically checkable proofs. Babai, Fortnow, Levin, and
Szegedy [3], and Feige, Goldwasser, Lovasz, Safra, and Szegedy [17] have put forward,
independently and with different aims,13 some related and important ideas sharing
a common technique: proof-samplability.14 In essence, they present two algorithms.
The first transforms an NP-witness, w, into a slightly longer “samplable proof,” w′.
The second algorithm can check the correctness of such a string w′ by “random” ac-
cessing (i.e., accessing at unit cost) selected few of its bits. In our paper, we refer to
these two algorithms as the (sampling-enabling) prover and the (sampling) verifier,
which we, respectively and consistently, denote by SP and SV, so as to differentiate
them from other types of provers and verifiers.

The following version of their result has proved useful in most applications so far.
Theorem 3.3 (samplable proofs: Version 0). For all NP languages L there

exist two polynomial-time algorithms, a deterministic SP , a probabilistic SV, and a
polynomial Q, such that

(a) For all n-bit strings x ∈ L and for all NP-witness w of x ∈ L, SP (x,w) = w′,
wherein string w′ is such that, on input x and access to any Q(log n) bits of
w′ of its choice, algorithm SV accepts; and

(b) for all x �∈ L and for all w′, algorithm SV, on input x and access to any
Q(log n) bits of w′ of its choice, rejects with probability ≥ 1/2.

We shall, however, rely on a more precise and general version of their result,
namely the following theorem.

Theorem 3.4 (samplable proofs: Version 1). For any polynomial-time relation
R over Σ∗ × Σ∗, there exist a deterministic polynomial-time algorithm SP (·, ·), a
probabilistic polynomial-time algorithm SV (·, ·), and two polynomials L(·) and Λ(·),
such that the following hold.

1. For all strings x and y such that R(x, y) holds, SP (x, y) outputs a string y′

such that
1.1. y′ < L(|x|+ |y|), and
1.2. SV (x, |y′|), having a random tape of length Λ(log |y′|) and random access

to y′, accepts.
2. For all strings x such that for all y R(x, y) = 0, and for any string σ, the

probability (computed over SV ’s coin tosses) that SV (x, |σ|), having a random
tape of length Λ(log |σ|), having random access to σ, and actually accessing
Λ(log |σ|) bits of σ, accepts is ≤ 1/2.

In the statement of Theorem 3.4, as customary, inputs |y′| and |σ| are presented
to SV in binary. (Thus the second input of SV is polylogarithmically shorter than
|x|+ |y|.) Note that, unlike in the case of NP, R(x, y) = 1 may not imply any a priori

13The authors of [3] focus on proofs of membership in NP languages and show that it is possible
to construct verifiers that work in time poly-logarithmic in the length of the input. (Since in such
a short time the verifier could not even read the whole input—and thus check that the proof he is
going to sample actually relates to the “right” theorem—these authors have devised a special error-
correcting format for the input and assume that it is presented in that format. An input that does
not come in that format can be put into it in polynomial-time.)

The authors of [17] use proof-samplability to establish the difficulty of finding approximate
solutions to important NP-complete problems. (With this goal in mind, these other authors do not
mind verifiers working in time polynomial in the length of the input and do not use or need the fact
that inputs appear in any special format.)

14Though improved in [2, 1, 35, 29], the original proof-samplability techniques of [3] and [17]
suffice for our purposes.
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bound for the length of y relative to that of x.

3.3.2. Merkle’s trees. Recall that a binary tree is a tree in which every node
has at most two children, hereafter called the 0-child and the 1-child. A collision-
free hash function is, informally speaking, a polynomial-time computable function H
mapping binary strings of arbitrary length into reasonably short strings, so that it
is computationally infeasible to find any collision (for H), that is, any two different
strings x and y for whichH(x) = H(y). (Popular candidate collision-free hash function
is the standardized secure hash function [32] and Rivest’s MD4 [31].)

A Merkle tree [27] then is a binary tree whose nodes store (i.e., are associated to)
values, some of which are computed by means of a collision-free hash function H in a
special manner. A leaf node can store any value, but each internal node should store
a value that is the one-way hash of the concatenation of the values in its children.15

Thus, if the collision-free hash function produces k-bit outputs, each internal node of
a Merkle tree, including the root, stores a k-bit value. Except for the root value, each
value stored in a node of a Merkle tree is said to be a 0-value if it is stored in a node
that is the 0-child of its parent, and a 1-value otherwise.

The crucial property of a Merkle tree is that, unless one succeeds in finding a
collision for H, it is computationally hard to change any value in the tree (and, in
particular, a value stored in a leaf node) without also changing the root value. This
property allows a party A to “commit” to n values, v1, . . . , vn (for simplicity assume
n = 2a for some integer a), by means of a single k-bit value. That is, A stores value vi
in the ith leaf of a full binary tree of depth d, and uses a collision-free hash function
H to build a Merkle tree, thereby obtaining a k-bit value, rv, stored in the root.
This root value rv “implicitly defines” what the n original values were. Assume in
fact that, as some point in time, A gives rv, but not the original values, to another
party B. Then, whenever, at a later point in time, A wants to “prove” to B what
the value of, say, vi was, he may just reveal all n original values to B, so that B can
recompute the Merkle tree and then verify that the newly computed root-value indeed
equals rv. More interestingly, A may “prove” what vi was by revealing just d+1 (i.e.,
log n+1) values: vi together with its authentication path, that is, the values stored in
the siblings of the nodes along the path from leaf i (included) to the root (excluded),
Y1, . . . , Yd. Party B verifies the received alleged leaf-value vi and the received alleged
authentication path Y1, . . . , Yd as follows. She sets X1 = vi and, letting i1, . . . , id
be the binary expansion of i, computes the values X2, . . . , Xd as follows: if ij = 0,
she sets Xj+1 = H(YjXj); otherwise, she sets Xj+1 = H(XjYj). Finally, B checks
whether the computed k-bit value Xd equals rv.

3.3.3. Kilian’s construction. In [23], Kilian presents a special zero-knowledge
argument for NP, (P, V ), exhibiting a polylogarithmic amount of communication,
where prover P uses a Merkle tree in order to provide to V “virtual access” to a
samplable proof.16

In essence, disregarding zero-knowledge aspects, the polynomial-time prover P,
as in any zero-knowledge argument, possesses a polynomially long witness, w, proving

15i.e., if an internal node has a 0-child storing the value U and a 1-child storing a value V, then it
stores the value H(UV ). If a child of an internal node does not exist, we assume by convention that
it stores a special value, denoted by EMPTY.

16Essentially the same construction (minus its zero-knowledge aspects) was independently discov-
ered by the author and privately comunicated to Shafi Goldwasser prior to Kilian’s publication that
same year. (It was not, however, written up or circulated until after Kilian’s publication, and then
only in the context of a broader notion of an efficient proof.)
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that a given input x belongs to a given NP-language L. In virtue of Theorem 3.3,
P then transforms w into a longer, but still polynomially long in the length of x,
“samplable proof” w′ by running on inputs x and w the algorithm SP of Theorem
3.3. In order to yield more efficient verifiability, P cannot send V witness w, nor can
he send him the longer samplable proof w′. Rather, P uses a Merkle tree with a
collision-free hash function H, producing k-bit outputs, as above, to compute a k-bit
string, rv, that commits him to w′ and then sends rv to the verifier V . (For instance,
disregarding further efficiency considerations, if w′ is n-bit long and, for simplicity,
n is a power of 2, the ith bit of w′ is set to be the value vi in the above described
construction, the Merkle tree is a full binary tree of depth logn, and rv is the k-bit
value stored in its root.)

Verifier V runs as a subroutine the algorithm SV of Theorem 3.3. When SV
wishes to consult the jth bit of w′, V asks P for it, and P responds by providing
the original value bj together with its authentication path. V then checks whether
bj ’s authentication path is correct relative to rv, and, if so, he is assured that bj
is the original value because he trusts that P, being polynomial-time, cannot find a
collision for H. V then feeds bj to SV . The computation proceeds this way until V
finds that an authentication path is incorrect, in which case it halts and rejects, or
until SV halts, in which case V rejects if SV does and accepts otherwise. Because
SV “virtually” accesses a polylogarithmic (in n) number of bits of w′, and because
each such a virtual access is answered by k poly(log n) bits of authentication path, the
overall amount of communication is polylogarithmic in n and thus in the length of x.

Notice that the above construction only shows how a verifier can be given vir-
tual access to w′. Let us reiterate that, in order to obtain a communication efficient
zero-knowledge argument, Kilian’s construction is actually more complicated, but the
additional zero-knowledge constraint is irrelevant for our goals.

3.3.4. Our modifications. Like all prior argument systems, Kilian’s is not a CS
proof system (nor even an interactive one, as defined later on). To begin with, it only
proves membership in NP languages and thus does not satisfy recursive universality.
Further, even relative to the NP languages, it may not satisfy feasible completeness.
Indeed, in his construction, in order to convince verifier V that x belongs to an NP
language L, prover P needs an NP-witness, w, of x ∈ L. But, again, the time
necessary to compute w on input x may vastly exceed that necessary to accept (in
this case, decide) that x ∈ L (in a way that does not produce an NP-witness).

We do, however, obtain a CS proof system with a random oracle, (P,V), by
modifying his argument system. First, as a necessary step towards recursive univer-
sality, we assume that an input to (P,V) consists of a member of the CS language L,
(M,x, y, t).17 On such a CS input, (P,V) works as follows. First, P runs machine M
on input x so as to generate, in t steps, the history (i.e., sequence of instantaneous
configurations), σ, of a computation of M(x) in which string y is produced as an
output. Such a history σ is then thought of as a proof that M(x) = y. This proof
will not be insightful, and, because no restriction is put on M, can be arbitrarily long
relative to x. (Notice that P’s computation so far satisfies, by definition, feasible
completeness.)

Next, P will put such a proof σ in samplable form. Consider in fact the following
relation R.

17Again, in order to prove membership in a given semirecursive language L, M will then be a
Turing machine accepting L, and y will be the special string YES.
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R(q, σ) = 1 if and only if σ is the t-step history of a computation of M outputting y
on input x.

Then, notice that R is poly(|q|, |σ|)-time computable. Thus, due to Theorem 3.4 proof
σ can be put in a probabilistically checkable form τ by algorithm SP within poly(|q|)
—and thus poly(t)— steps. Given random access to the so obtained τ, algorithm SV,
on inputs q and τ, then efficiently checks its correctness using polylog(|τ |) queries and
a random tape, RT, whose length is polylog(|τ |). (Notice that also this second piece
of P’s computation satisfies feasible completeness.)

Though proving that “M(x) = y in t steps,” such τ is again too long. Thus,
P “Merkle hashes” τ as in [23] using a collision-free hash function H and gives V
only virtual access to it (something that still preserves feasible completeness). The
verifier is thus guaranteed that he is properly accessing τ (i.e., that P is not choosing
on-line the bits of τ based on the bit-locations that V wishes to access) provided
that P is computationally incapable of finding a collision in H.18 To provide such
a “guarantee,” for a specific input q = (M,x, y, t) ∈ L, it is possible to choose the
security parameter k big enough so that finding a collision in a k-bit-outputH requires
a number of steps enormously bigger than those required above from P on the input
q at hand, but not too big so as to violate feasible completeness.19 In sum, therefore,
we propose to keep honest a prover working on a given individual problem by means of
another much harder individual problem, that of finding a collision for H (though the
latter problem may belong to a “much lower” complexity class than the first one20).

So far, our (P,V) satisfies both recursive universality and feasible completeness
but still is interactive. Indeed, recall that, to give V virtual access to τ, P uses function
H to Merkle-hash the samplable proof τ and sends V the resulting root value RV .
In response, V runs the sampling verifier SV with a random tape RT . During this
execution SV computes which bits of τ it wishes to see; CS verifier V then sends these
requests to CS prover P; and prover P replies with both the requested bits and their
authentication paths relative to RV . Because RT is genuinely random, if the input
(M,x, y, t) �∈ L and if V interacts with a malicious prover P̃ that does not succeed in
finding a collision for H, then SV (and thus V) accepts with probability at most 1/2.

Let us now introduce further modifications in order to dispense with any interac-
tion between P and V during the proving process. We first decrease the probability
of SV accepting a false statement to less than 2−k by repeating the above process k
times, each time using an independently-selected random tape RT . We then use a ran-
dom oracle, as follows, to retain more or less this same probability, while eliminating
any interaction between P and V.

In some sense, we have the CS prover P “choose” the k random tapes of SV, so
that V is no longer needed. In fact, given these tapes, V runs deterministically, and

18In Kilian’s case such guarantee stemmed from the fact that the prover was polynomial-time,
while collision finding is assumed not to be (and to enable him to prove membership in NP-complete
languages it was assumed that he had access to an NP witness for free). In our case, however, P
cannot be assumed to be polynomial-time, because it ought to be able to run M on x for t steps for
all possible (M,x, y, t) ∈ L, and t may vastly exceed |(M,x, y, t)|.

19Assume, for instance, that the complexity of finding an H-collision for a k-bit outputH is Ω(2k
d
)

for some constant d between 0 and 1. Then, because the honest prover works in time polynomial
in t, setting k = (log t)2/d seems a reasonable choice. This choice in fact increases only by a
poly((log t)2/d) factor the amount of work of the honest prover but forces any malicious prover to

work in time 2(log t)2 .
20Accordingly, we view a prover working on a given input as an individual device, endowed with a

fixed amount of computational resources, rather than a mechanism capable of handling all members
of a given complexity class.
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thus a prover P who knows them can simulate perfectly V’s actions (and in particular
compute the bit locations of τ that SV wishes to see). Of course, however, this a
dangerous way of proceeding. In fact, it is already dangerous having a malicious CS
prover P̃ simply know these k random tapes (let alone choose them), or even just
predict the bit locations that SV wishes to see in its k runs. In fact:

Letting λ denote the number of bit-locations of τ SV wishes to access in a
single run, the total number of such bit-locations will be kλ. Now, if kλ is
sufficiently small with respect to the total number of bits in τ (which we would
like to be our case in order to satisfy efficient verifiability), it is not hard to

see that if P̃ knows in advance these kλ bit-locations, then he could provide
(1) a root value RV for the Merkle tree, (2) bit values for said locations, and
(3) authetication paths for these values relative to RV , so as to cheat V with
probability 1.

Notice too, however, that, if the k random tapes are selected after P̃ provides the
root value RV, then, roughly said, unless he succeeds in finding at least one collision
for H, his probability of cheating still is < 2−k. (This continues to be true even if P̃
knows the so-selected k tapes in their entirety, rather than just the bit-requests that
the sampling verifier computes from them.) This suggests replacing interaction in the
above proof system as follows. On input (M,x, y, t) ∈ L, prover P, as before, (a)
computes a classical proof of it by running M on input x and costructing a history
σ of such computation, (b) puts σ in a samplable form τ, and (c) stores τ in the
leaves of a suitable binary tree and constructs a corresponding Merkle tree, using a
collision-free hash function H, so as to compute a root value RV . At this point, P
uses the random oracle on input RV so as to compute k suitably-long random tapes,
RT1, . . . , RTk. He then runs (“in his head”) verifier V and its subroutine SV as in the
whole process described above for k times, using RTi as SV ’s random tape in the ith
iteration. Therefore, he computes (in his head) all the bit-locations of the samplable
proof that SV requests to access. Then, it outputs, as a CS proof with a random
oracle for (M,x, y, t) ∈ L, the value RV and the requested bits, each with its own
authentication path relative to RV . Such proof can be verified, in the obvious way,
by using verifier V (with subroutine SV ) and the same random oracle.

The intuition that this strategy works is quite strong. Consider a malicious prover
trying to “CS-prove with a random oracle” a false statement. Of course, he can choose
a root value RV ′ of his liking and consult the oracle so as to see whether he can
produce a good-looking CS proof relative to RV ′. However, roughly said, because for
each RV ′ (as long as he does not succeed in finding a collision for the random oracle),
his chance of finding a good-looking proof is at most 2−k, we expect that he tries
2k times before he succeeds. Thus, if k is large enough, and the running time of the
malicious prover is properly and meaningfully upperbounded, his chance of finding a
CS proof of a false statement is negligible. (Despite this simple and strong intuition,
however, formally proving that this strategy works appears to be more difficult.)

Our strategy is reminiscent of a step used by Fiat and Shamir [18]. Indeed, they
construct their digital signature scheme by starting with an interactive two-party
protocol, in which the first party sends a first message to the second party and the
second party responds with a random string, and then replacing the random message
of the second party by evaluating a collision-free hash function on the first party’s
message. (By now, similar strategies have been discussed in the literature in many a
context.)

As a final modification, in lieu of k-bit-output collision-free hash function H,



COMPUTATIONALLY SOUND PROOFS 1269

we construct our Merkle tree using a random oracle mapping 2k-bit strings to k-
bit ones. Indeed, finding collisions for random oracles is provably hard in a precisely
quantifiable way, and adoption of such oracles also for this task dispenses us for relying
on additional complexity assumptions (i.e., the existence of a collision-free H).

Note that the random oracle used for removing the interaction between prover
and verifier and that used for building the Merkle tree had better be different. Alter-
natively, using standard techniques, one may use a single random oracle to “extract”
two independent ones: one for each of these two tasks.

3.4. Description of (P,V): Our CS proof-system with a random oracle.
Having presented all the ideas entering in our construction at an intuitive level, let
us now proceed more formally.

3.4.1. Preliminaries.
From one oracle to two oracles. According to our definition, in a CS proof

system with a random oracle, prover and verifier have oracle access to a single function
f, where feasible completeness holds for any f, and computational soundness for a
random f .

It will be easier, however, to exhibit a CS proof system with a random oracle
(P,V) by having P and V have oracle access to two distinct functions, f1 and f2, where
feasible completeness holds for any possible choice of f1 and f2, while computational
soundness holds when f1 and f2 are random and independent.

Oracle access to these two functions can be simulated by accessing a single, prop-
erly selected, function f : to ensure that f1 and f2 are randomly and independently
selected when f is random, it suffices to arrange that whenever (i, x) �= (j, y), no
query made to f in order to compute fi(x) coincides with a query made to f in order
to compute fj(y).

21

From k runs to one run: Sampling proof systems and their length bounds. Rather
than having the probability of successful cheating be less than 1/2, let us restate
Theorem 3.4 so as to reduce this probability to 2−k by means of a sampling verifier
that (at least formally) still uses a single random tape but receives an additional,
independent security parameter.

Theorem 3.5 (samplable proofs: Version 2). There exists a deterministic polynomial-
time algorithm SP (·, ·), a probabilistic polynomial-time algorithm SV (·, ·, ·), and two
polynomials L(·) and Λ(·) such that, for any polynomial-time relation R over Σ∗×Σ∗,
the following two properties hold.

1. For all strings x and y such that R(x, y) holds, SP (x, y) outputs a string y′

such that
1.1. y′ < L(|x|+ |y|), and
1.2. for every security parameter k, SV (x, |y′|, 1k), having a random tape of

length k · Λ(log |y′|) and random access to y′, accepts.
2. For all strings x such that for all y R(x, y) = 0 and for any string σ, the

probability (computed over SV ’s coin tosses) that SV (x, |σ|, 1k), having a
random tape of length k · Λ(log |σ|), having random access to σ, and actually
accessing k · Λ(log |σ|) bits of σ, accepts is ≤ 2−k.

The CS-history relation. In what follows we shall use Theorem 3.5 only for a
specific relation H, the CS-history relation, defined as follows.

21For instance, if, for i = 1, 2, fi : {0, 1}ai → {0, 1}bi (for some positive integer values ai and bi,
i = 1, 2), letting f map {0, 1}1+max(a1+a2) into {0, 1}max(b1+b2) allows us to achieve our goal quite
straightforwardly.
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H(q, h) = 1 if and only if string q = (M,x, y, t) ∈ L and string h is an
encoding of the history of the execution of M on input x.

Notice that, assuming the use of a proper encoding for these histories, not only is
H polynomial-time computable, but there also is a fixed polynomial Q such that
H(q, h) = 1 implies |h| ≤ Q(2|q|). (In fact, our quadruple conventions imply that
|t| < |q|, and thus that t < 2|q|.) Let us now use the CS-history relation to restate
Theorem 3.5 in the following form more directly useful to us.

Theorem 3.6 (samplable proofs: Version 3). There exists a deterministic polynomial-
time algorithm SP (·, ·), a probabilistic polynomial-time algorithm SV (·, ·), and two
polynomials 1(·) and λ(·) such that, letting H be the history relation, the following two
properties hold.

1. For all strings q and h such that H(q, h) = 1, SP (q, h) halts within 1(|q|)
steps outputting a string h′ such that
1.1. log |h′| < 1(|q|), and
1.2. for every security parameter k, SV (q, |h′|, 1k), having a random tape of

length k · λ(|q|) and random access to h′, accepts.
2. For all strings q such that for all h H(x, h) = 0, for any security parameter
k, and for any string σ, the probability (computed over SV ’s coin tosses) that
SV (q, |σ|, 1k), having a random tape of length k ·λ(|q|), having random access
to σ, and actually accessing k · λ(|q|) bits of σ, accepts is ≤ 2−k.

Definition 3.7. Let SP, SV, 1, and λ be as in Theorem 3.6. Then, we shall
refer to (SP, SV ) as a sampling proof system (for the CS-history relation), and to 1
and λ as its length bounds (respectively, for the samplable proof produced by SP and
the number of queries and length of the random tape used by SV ).

Notation.
• Basics. We denote the empty word by ε, the set {0, 1} by Σ, the set of all nat-
ural numbers by N , the set of all positive integers by Z+, the concatenation
of two strings x and y by x|y (or more simply by xy), and the complement of
a bit b by b̄.

• Strings. If α is a binary string, then |α| denotes α’s length; α1 · · ·αi de-
notes α’s i-bit prefix; and α1 · · · ᾱi denotes α’s i-bit prefix with the last bit
complemented.

• Labeled trees. If N is a power of two, we let TN denote the complete binary
tree with N leaves, whose vertices are labeled by binary strings whose lengths
range from 0 to logN as follows. Vertex vε is the root, v0 and v1 are, respec-
tively, its the left and right child, and, more generally, for all i ∈ [0, logN) and
for all α ∈ Σi , vα0 and vα1 are, respectively, the left and right child of node
vα. (Consequently, vα1···αj and vα1···ᾱj are siblings whenever 0 < |α| ≤ logN
and 0 < j ≤ |α|.)
The leaves of TN are thought to be ordered “from left to right.” Within the
context of a tree TN , we denote by [j] the (log2N)-bit binary representation
of integer j, with possible leading 0s. (Accordingly, the jth leaf of TN is node
v[j].)

3.4.2. Algorithms P and V. Let us now describe two oracle-calling algo-
rithms, P and V, and then prove that they are, respectively, the prover and verifier
of a CS proof system with a random oracle, (P,V).

Common inputs: q = (M,x, y, t), an n-bit (alleged) member of L, and 1k, a security
parameter.
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{Comment: For the purpose of the code of (honest) prover P, q = (M,x, y, t) ∈
L and thus t = #M(x).}

Common subroutines: (SP, SV ), a sampling proof system—as per Definition 3.7—with
length bounds 1 and λ.

Common oracles:f1 ∈ Σ2k → Σk and f2 ∈ Σk+n → Σk·λ(n).
{Comment: The first oracle, when randomly selected, is used as a collision-
free hash function of a Merkle tree, by which P commits to a samplable proof
of q ∈ L. The second oracle, when randomly selected, is used to generate the
random tape of sampling verifier SV .}

P’s output: C, a CS certificate that q ∈ L.
V’s additional input: C.

Algorithm P
P1. (Commit to a samplable proof of q ∈ L.)

P1.1 (Find a proof, denoted by σ, of x ∈ L.)
Run machine M on input x so as to output y in #M(x) steps and
generate an encoding, σ, of M ’s computational history.
{Comment: σ can be considered a proof that x ∈ L.}

P1.2 (Compute a samplable form, denoted by τ, of proof σ.)
τ ← SP (q, σ).
{Comment: Theorem 3.6, our quadruple encoding, and n = |q| imply
|τ | ≤ 1(n).}

P1.3 (Commit to τ by means of a k-bit value Rε.)
Assume, for simplicity only, that |τ |/k = N, where N is an integral
power of 2. Then, we shall associate to (figuratively speaking, “store
in”) each node vα of a labeled tree TN a value Rα computed as follows.
Subdivide τ into the concatenation of N substrings, each k-bit long,
τ = τ1 · · · τN , and for 0 ≤ j < N, assign to the jth leaf, v[j], the k-bit
value

R[j] = τj .(3.1)

Then, in a bottom-up fashion, assign to each interior node vα of TN the
k-bit value

Rα = f1(Rα0|Rα1).(3.2)

{Comment: Rε thus is the k-bit value assigned to the root of TN . Rε is
considered a commitment to all values stored in the vertices of TN and
thus a comitment to all of τ .}

P2. (Build a CS certificate, C, of q ∈ L.)
P2.1 (Start building the CS certificate with the k-bit commitment Rε as prefix.)

C ← Rε.
P2.2 (Choose a random tape, T, for SV .)

T ← f2(q |Rε).
P2.3 (Run SV with random tape T and virtual access to τ .)

Run SV with random tape T, inputs q and |τ |, and virtual access to τ .
Whenever SV wishes to access bit-location i of τ, perform the following
instructions.

P2.3.1 (Find the index, I, of the substring of τ containing bi.)
I ← �i/k�;
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P2.3.2 (Add leaf I to the CS certificate.)
C ← C|R[I]; and

P2.3.3 (Add to the certificate the authentication path of leaf I.)
Set α = [I];
{Comment: |α| = log2N .}
Set AUTHPATHI = Rα1···ᾱlog N

| · · · |Rα1ᾱ2
|Rᾱ1

;
{Recall: The authentication path of leaf I consists of the values stored
in the siblings of the vertices of the path from leaf I to the root.}
C ← C|AUTHPATHI .
{Example: if N = 8 and I = 3, then [I] = 011 and AUTHPATHI =
(R010, R00, R1).}

P3. (Output a certificate for q ∈ L.)
Output C.
{Comment: C’s k-bit prefix is Rε.}

Algorithm V
V 1. (Read and delete Rε from certificate C, and compute SV ’s random tape T .)

ALLEGEDROOT ← C1 · · · Ck;
C ← Ck+1 · · ·; and
T ← f2(q|Rε).

V 2. (Run SV with random tape T, inputs q, 1(n) and 1k, and virtual access to
samplable proof τ .)
Execute SV (q, 1(n), 1k) with random tape T . Whenever SV wishes to access
bit-location i of the samplable proof, do the following.
V 2.1 (Find the index, I, of the k-bit segment of τ containing bi, and read the

value of leaf I from the certificate.)
I ← �i/k�; α← [I]; and Rα ← C1 · · · Ck.
Provide SV with the (i− kI)th bit of Rα.

V 2.2 (Delete the value of leaf I from the certificate.) C ← Ck+1 · · ·.
V 2.3 (Check and remove from the certificate the authentication path of leaf I.)

For m = 1 to logN,
Rα1···ᾱm ← C1 · · · Ck and
C ← Ck+1 . . . .

For m = logN, . . . , 1, compute Rα1···αm−1
as follows:

Rα1···αm−1
←
{
f1(Rα1···αm

|Rα1···ᾱm
) if αm = 1,

f1(Rα1···ᾱm
|Rα1···αm

) if αm = 0

and check whether the computed value Rε equals the value
ALLEGEDROOT .
{Example: If N = 8 and I = 3, then [I] = 011 and the verifier computes

R01 = f1(R010|R011),

R0 = f1(R00|R01), and

Rε = f1(R0|R1),

where values R011, R010, R00, and R1 are retrieved from C.}
V 3. (Accept if and only if SV accepts and the authentication path of each leaf is

correct.)
If SV accepts and each V 2.3 check is passed, output Y ES. Otherwise, output
NO.
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3.5. (P,V) works.
Theorem 3.8. (P,V) is a CS proof system with a random oracle.
As per our Definition 3.2, to prove Theorem 3.8 we need to prove that (P,V)

satisfies both feasible completeness and computational soundness.

3.5.1. Proof of feasible completeness. Adopting the two-oracle formulation
of Definition 3.2 and recalling the domain and range of each of the two oracles in our
construction of (P,V), what we need to prove is the following.

There exists c1, c2, c3 > 0 such that for all q = (M,x, y, t) ∈ L, for all k, for
all f1 ∈ Σ2k → Σk, and for all f2 ∈ Σk+|q| → Σk·λ(|q|):
(i) Pf1,f2(q, 1k) halts within (|q|kt)c2 computational steps, outputting a binary
string C whose length is ≤ (|q|k)c3 , and
(ii) Vf1,f2(q, 1k, C) = Y ES.

It is immediately seen that subproperty (ii) of feasible completeness holds. That
is, for all q = (M,x, y, t) ∈ L, for all security parameter k, and for all oracles f1 and
f2, the certificate output by P convinces V. Subproperty (i), that is, the fact that P
performs only polynomially many (in n, k, and t) steps for producing a certificate,
follows as easily. Indeed, prover P performs the following operations: (1) initially
invests t steps of computation for running M on input x; (2) takes a number of
steps polynomial in q’s length (i.e., n) and t for computing the samplable proof τ ;
(3) makes less than t log t queries (each at unit cost) to the second random oracle
for generating the Merkle tree; and, finally, (4) makes additional polynomially many
steps for running V “in his head” and answering its queries so as to build the desired
CS certificate.

Finally, let us argue that the length of (P,V)’s certificates are in accordance to
Definition 3.2. Namely, letting q = (M,x, y, t) be a member of L and C = Pf1,f2(q, 1k),
then C’s length is polynomial in |q| and k. To this end, notice that C contains a k-bit
root value, plus one authentication path (in the constructed Merkle tree) for each bit
that the samplable verifier SV wishes to access when run on inputs q and |τ | and
(virtual) access to the samplable proof τ of “M(x) = y in t steps.” Now, because
τ can be computed in a number of steps upperbounded by a fixed polynomial in |q|
and t, and because according to our conventions t < 2|q|, it follows that the length
of the binary representation of |τ | is upperbounded by some other fixed polynomial
in |q| alone. Therefore, because SV runs in polynomial time, the number of bits of
τ it accesses (i.e., the number of authentication paths included in C) is polynomial
in |q| alone. The claim about the length of C then follows from the fact that each
authentication path contains a k-bit value for each level of the constructed Merkle
tree and thus k log τ < k|q| bits overall.

3.5.2. Proof of computational soundness. Adopting the two-oracle formu-
lation of Definition 3.2 and recalling the domain and range of each of the two oracles
in our construction of (P,V), what we need to prove is the following.

There exist positive constants c4, c5, and c6 such that for all q̃ �∈ L, for all k
such that 2k > |q̃|c4 , and for all (cheating) deterministic 2c5k-call algorithm

P̃ , for random oracles ρ1 ∈ Σ2k → Σk and ρ2 ∈ Σk+|q̃| → Σk·λ(|q̃|),

P robρ1;ρ2
[V ρ1,ρ2(q̃, 1k, P̃ ρ1,ρ2(q̃, 1k)) = Y ES] ≤ 2−c6k.

We shall actually prove the following theorem.
Theorem 3.9. (P,V) satisfies the above condition for the following choice of c4,

c5, and c6:
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c4
def
= 64c, c5

def
= 1/8, and c6

def
= 1/16,

where c
def
= the smallest positive integer C such that nC > 1(n) for all integers n > 1.

Recall that 1 is the first length-bound of our underlying sampling proof system
(SP, SV ).

Proof idea. In essence, the proof is by contradiction. Assume that q �∈ L,
and that, nonetheless, we are given a cheating prover P̃ that has a nonnegligible
probability of outputting a CS proof for q ∈ L. Then, we derive a contradiction by
using such P̃ to build a samplable proof for q ∈ L. Let us explain.

By hypothesis, for many oracles ρ1 and ρ2, P̃ should be able to produce a CS proof
Cρ1,ρ2

for q ∈ L. Such string Cρ1,ρ2
allegedly includes the contents of a few bit-locations

of an underlying samplable proof, τρ1,ρ2
. By varying ρ1 and ρ2, and looking at their

corresponding Cρ1,ρ2 , we obtain the contents of more and more bit-locations, until we
discover the bits in all the locations having a nonnegligible probability of being queried
by the sampling verifier on input q. Despite the fact that such contents are pieced
together from different CS proofs (and thus potentially from different underlying
samplable proofs), we shall prove that, with high probability, the discovered contents
are consistent with a single samplable proof τ .

Local definition 1.
• Probabilities. Let S1, S2, . . . , be finite sets, and let E be an event. Then, by
PROBx1∈S1;x2∈S2;...[E] we denote the probability of E in the experiment con-
sisting of selecting elements x1 ∈ S1, x2 ∈ S2, . . . randomly and independently.
If, for some xi, it is already clear that xi ranges in Si, we may omit specifying
Si and more simply denote the same probability by PROB...;xi;...[E].

• Pseudoexecutions. We shall consider executing a cheating, N -call, prover
P̃(·,·) by answering its queries to the first oracle by means of a function f,
and its queries to the second oracles by means of a predetermined, N -long,
sequence S (i.e., the ith query to the second oracle will be answered with the

ith element of S). We shall call such a process a pseudoexecution (of P̃), or an

execution of algorithm P̃f,S . When P̃f,S is run on an n-bit input (q �∈ L) and
security parameter k, then each element of S will consist of a kλ(n)-bit string
(i.e., a possible random tape for V). If σ is a string and m an integer between

1 and N, by the expression P̃f,Sm=σ we denote the algorithm identical to
P̃f,S , except that the mth query to the second oracle is answered by σ (i.e.,
the mth element of S—no matter what it originally was—is “forced” to be
σ). By the expression P̃f,Sm=σ1,σ2 we denote the algorithm that first executes
Pf,Sm=σ1 and then Pf,Sm=σ2 .

• Collisions. Let f be an oracle, A(·) an oracle-calling algorithm, and z an
input. Then, by the expression an f-collision in Af (z), we mean that execut-
ing A on z with oracle f, A queries f about two distinct strings a and b and
obtains the same string, c (= f(a) = f(b)), in response.

• Pseudocertificates and pseudoroots. Without loss of generality, we assume
that a cheating prover P̃ never asks the same query twice to the same oracle.
Again, without loss of generality, we assume that each cheating prover P̃
verifies all its nonempty outputs. That is, if C̃ is a nonempty string and

P̃f1,f2(q̃, 1k̃) = C̃, then, prior to outputting C̃, P̃ runs V making all required

calls to f1 and f2 so as to verify that Vf1,f2(q̃, 1k̃, C̃) = Y ES, and thus that

C̃ is a CS certificate for q̃. If q̃ does not belong to the CS language L, to
emphasize this fact we refer to C̃ itself as a pseudocertificate (for q̃) and to
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its k̃-bit prefix as a pseudoroot.
In an execution of a cheating prover P̃ producing a pseudocertificate C̃ for
q̃, we say that C̃ is relative to tape-number m if (1) the pseudoroot of C̃ is a

string R̃ε such that the mth query of P̃ to its second oracle consists of the
pair (q̃, R̃ε).

To indicate a generic pseudocertificate having pseudoroot R̃ε, we write R̃ε . . . .
A proof by contradiction. We proceed by contradiction. Assume that Theo-

rem 3.9 is incorrect; then, because P̃ verifies all its nonempty outputs, the following
proposition holds.

Proposition 3.10. There exist an integer ñ > 1, a ñ-bit string q̃ �∈ L, an integer

k̃ such that 2k̃ > ñ64c, and a deterministic, 2k̃/8-call, cheating prover P̃ such that, for

random oracles ρ1 ∈ Σ2k̃ → Σk̃ and ρ2 ∈ Σk̃+ñ → Σk̃·λ(ñ),

(P1) PROBρ1;ρ2 [P̃ρ1,ρ2(q̃, 1k̃) �= ε] > 2−k̃/16.
We now show that Proposition 3.10 contradicts the fact that (P,V)’s subroutine

(SP, SV ) is a sampling proof system. We start by stating without proof some easy
probabilistic facts.

Basic lemmas. Let A and B be finite sets, A×B their Cartesian product, and
E a subset of A×B. Then, in the following two lemmas PROBa;b[(a, b) ∈ E] denotes
the probability that (a, b) belongs to E by selecting uniformly and independently a
in A and b in B, and PROBb[(a, b) ∈ E] denotes the probability that (a, b) belongs
to E by selecting uniformly b in B.

Lemma 3.11. Assume PROBa;b[(a, b) ∈ E] > x, and let G = {a : PROBb[(a, b) ∈
E] > 2−1 · x}. Then,

PROBa[a ∈ G] > x/2.

Lemma 3.12. Assume PROBa;b[(a, b) ∈ E] < x, and let L = {a : PROBb[(a, b) ∈
E] < nx}. Then,

PROBa[a ∈ L] > 1− n−1.

Lemma 3.13. For all positive integers k and N, for all N -call algorithms A(·),
and for all inputs z,

PROBf∈Σ2k→Σk [ an f -collision in Af (z)] < N22−k.
Note that Lemma 3.13 continues to hold if A has additional inputs and oracles,

provided that f is randomly selected independently of them.
An averaging argument.
Lemma 3.14. Let ñ, q̃, and k̃ be as in Proposition 3.10. Then, there exist an

oracle f1 ∈ Σ2k̃ → Σk̃, a 2k̃/8-long sequence S of k̃ · λ(ñ)-bit strings, an integer

m ∈ [1, 2k̃/8], and a k̃-bit (pseudoroot) R̃ε such that

(L1.1) PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · ·] > 2−1 · 2−3k̃/16, and

(L1.2) PROB
σ1,σ2∈Σk̃·λ(̃n)

[P̃f1,Sm=σ1(q̃, 1k̃) = R̃ε · · · = P̃f1,Sm=σ2(q̃, 1k̃) ∧ f1-collision
in Pf1,Sm=σ1,σ2(q̃, k̃)] < 32 · 2−9k̃/16.

Proof. Let ρ1 and ρ2 be oracles as in Proposition 3.10. Then, because P̃ρ1,ρ2

verifies its nonempty outputs (and because it is 2k̃/8-call), each of its pseudocertificates
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is relative to some tape-number between 1 and 2k̃/8. Thus, inequality P1 implies that

there exists a positive integer m ∈ [1, 2k̃/8] such that

(L1.3) PROBρ1;ρ2 [P̃ρ1,ρ2(q̃, 1k̃) �= ε ∧ P̃ρ1,ρ2(q̃, 1k̃) is relative to tape-number m] ≥
2−k̃/16/2k̃/8 = 2−3k̃/16.

Therefore, by focusing our attention on tape-numberm (i.e., on themth answer of our

random oracle ρ2 ∈ Σk̃+ñ → Σk̃·λ(ñ)) and by averaging, inequality L1.3 implies that

there exists a 2k̃/8-long sequence, S, of k̃·λ(ñ)-bit strings (i.e., of possible second-oracle
answers), such that

(L1.4) PROB
ρ1;σ∈Σk̃·λ(̃n)

[P̃ρ1,Sm=σ(q̃, 1k̃) �= ε ∧ P̃ρ1,Sm=σ(q̃, 1k̃) is relative to tape-

number m] > 2−3k̃/16.

Define now an oracle ρ1 : Σ2k̃ → Σk̃ to be good if

PROB
σ∈Σk̃·λ(̃n)

[P̃ρ1,Sm=σ(q̃, 1k̃) �= ε ∧ P̃ρ1,Sm=σ(q̃, 1k̃) is relative to tape-number

m] > 2−1 · 2−3k̃/16.
Then, inequality L1.4 and Lemma 3.11 imply that

(L1.5) PROBρ1
[ρ1 good ] > 2−1 · 2−3k̃/16.

Note now that because both P̃ρ1,Sm=σ1 and P̃ρ1,Sm=σ2 make at most 2k̃/8 or-
acle calls, algorithm P̃ρ1,Sm=σ1,σ2 makes at most twice as many calls to ρ1. Thus,
Lemma 3.13 implies that

(L1.6) PROB
ρ1∈Σ2̃k→Σk̃;σ1,σ2∈Σk̃·λ(̃n)

[ρ1-collision in P̃ρ1,Sm=σ1,σ2(q̃, 1k̃)] < 4 · 2k̃/4 ·
2−k̃ = 4 · 2−3k̃/4.

Define now an oracle ρ1 : Σ2k̃ → Σk̃ to be lucky if
PROB

σ1,σ2∈Σk̃·λ(̃n)
[ρ1-collision in

P̃ρ1,Sm=σ1,σ2(q̃, 1k̃)] < (8 · 23k̃/16) · (4 · 2−3k̃/4) = 32 · 2−9k̃/16.
Then, inequality L1.6 and Lemma 3.12 imply that

(L1.7) PROBρ1
[ρ1 lucky ] > 1− 8−1 · 2−3k̃/16 > 1− 2−1 · 2−3k̃/16 ≥ 1−PROBρ1

[ρ1
good] = PROBρ1 [ρ1 not good].

Because inequality L1.7 implies that there exist oracles in Σ2k̃ → Σk̃ that are both
good and lucky, let f1 be one such oracle. Then, because F1 is good, letting F1 be
oracle f1 of Lemma 3.14 satisfies inequality L1.1. In fact, L1.1 simply states that f1
is a good oracle. Let us now show that there exists a k-bit value R̃ε such that letting
F1 be oracle f1 of Lemma 3.14 satisfies inequality L1.2. In fact, notice that, for any

possible choice of σ, the computation of P̃F1,Sm=σ(q̃, 1k̃) is always identical up to its

mth query to the second oracle, and thus that there exists a k̃-bit value R̃ε such that
all mth queries consist of the same pair (q̃, R̃ε). Therefore, whenever an execution of

P̃f1,Sm=σ(q̃, 1k̃) produces a nonempty pseudocertificate with respect to tape-number

m, R̃ε will be the pseudoroot of this certificate. Now, because F1 is lucky, we have

PROB
σ1,σ2∈Σk̃·λ(̃n)

[P̃F1,Sm=σ1(q̃, 1k̃) = R̃ε · · · = P̃F1,Sm=σ2(q̃, 1k̃) ∧ F1-

collision in P̃F1,Sm=σ1,σ2(q̃, 1k̃)]

< PROB
σ1,σ2∈Σk̃·λ(̃n)

[F1-collision in P̃F1,Sm=σ1,σ2(q̃, 1k̃)] < (because F1 is

lucky) 32 · 2−9k̃/16.
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A collision argument.
Local definition 2. If C̃ is a pseudocertificate, we write C̃ � (i, b) if C̃ indicates that

location i (in the samplable proof that is allegedly Merkle-hashed to the pseudoroot

of C̃) contains bit b.
Lemma 3.15. Let ñ, q̃, k̃, P̃, f1, S, m, and R̃ε be as in Lemma 3.14, let σ0 and

σ1 be two distinct k · λ(ñ)-bit strings, and let E0 be the execution of P̃f1,Sm=σ0(q̃, 1k̃)

and E1 the execution of P̃f1,Sm=σ1(q̃, 1k̃). Now, if E0 and E1 produce two pseudocer-

tificates, respectively, C0 and C1, such that (1) both C0 and C1 have pseudoroot R̃ε and
(2) for some common location i, C0 � (i, 0) and C1 � (i, 1), then an f1-collision occurs

in P̃f1,Sm=σ0,σ1(q̃, 1k̃).
Proof. Recall that, supposedly, the underlying samplable-proof of q̃ ∈ L has

been divided into N substrings, each k̃-bit long and stored in a separate leaf of a
Merkle tree of depth logN . Thus bit-location i should be stored in the Ith leftmost
leaf of the Merkle tree, where I = �i/k̃�, or, equivalently, in the node whose logN -
bit name is [I] = α1 · · ·αlogN . According to our notation, the value stored in this
node is denoted by R[I]. Now, because they indicate different bit-values for location

i, pseudocertificates C0 and C1 also indicate different k̃-bit values for the content of
node [I], respectively, R0

[I] and R
1
[I].

Pseudocertificates C0 and C1 also include two authentication paths for these values.
Let them be, respectively,

R0
α1···αlog N−1ᾱlog N

|R0
α1···ᾱlog N−1

| · · · |R0
ᾱ1
|R̃ε

and
R1

α1···αlog N−1ᾱlog N
|R1

α1···ᾱlog N−1
| . . . , R1

ᾱ1
|R̃ε.

Because cheating prover P̃ verifies all its outputs, for each j ∈ [1, logN ] it queries
oracle f1 about string S0

j in the first execution, and about string S1
j in the second

execution, where S0
j = R0

α1···αj
|R0

α1···ᾱj
and S1

j = R1
α1···αj

|R1
α1···ᾱj

.

This implies that there exists a value j ∈ [1, logN ] such that S0
j and S1

j are
different queries but oracle f1 returns the same answer on them. In fact, for j = 1,
the two queries S0

1(= R
0
α1
|R0

ᾱ1
) and S1

1(= R
2
α1
1|R1

ᾱ1
) are both answered by R̃ε, and

for j = logN the two queries S0
logN (= R0

[I]) and S
1
logN (= R1

[I]) are different, because
they coincide with the two different values for leaf I.

Reaching the desired contradiction.
Local definition 3. Letting ñ, q̃, k̃, S, m, and R̃ε be as in Lemma 3.14, define the

following.
• Conditional probabilities Pi,0 and Pi,1. For each bit-location i ∈ [1, 1(ñ)],
define

Pi,0 = PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ R̃ε · · · � (i, 0)]

and
Pi,1 = PROB

σ∈Σk̃·λ(̃n)
[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ R̃ε · · · � (i, 1)].

• String τ . For each location i ∈ [1, 1(ñ)], define
τi = 0 if Pi,0 ≥ Pi,1 and τi = 1 otherwise.

• Probabilities Pi and P ī. For each bit-location i ∈ [1, 1(ñ)], define
Pi = Pi,τi and P ī = Pi,τ̄i .

• Event “all queries answered by τ .”

If σ ∈ Σk̃·λ(ñ), in a pseudoexecution of P̃f1,Sm=σ(q̃, 1k̃) with no f1-collision

and producing a pseudocertificate C̃ with pseudoroot R̃ε, “all queries answered
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by τ” denotes the event that, for all bit-locations i ∈ [1, 1(ñ)] and for all bit

b, C̃ � (i, b) implies b = τi.

Lemma 3.16. Let ñ, q̃, k̃, P̃, f1, S, m, and R̃ε be as in Lemma 3.14 Then,

PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ all queries answered by τ ] > 2−k̃.
Proof. We start by claiming that

(L3.1) P ī < 4 · 2−9k̃/32.

To prove our claim, consider selecting two k̃ · λ(ñ)-bit strings, σ0 and σ1, and then

executing P̃f1,Sm=σ0,σ1(q̃, 1k̃). That is, consider executing first P̃f1,Sm=σ0(q̃, 1k̃) and

then P̃f1,Sm=σ1(q̃, 1k̃). Then, by definition of Pi and P ī, with probability ≥ 2PiP ī,
one of the latter two executions outputs a pseudocertificate C0 and the other a
pseudocertificate C1 such that (1) C0 and C1 are nonempty pseudocertificates hav-

ing pseudoroot R̃ε, and (2) C0 � (i, 0) and C1 � (i, 1). By Lemma 3.15, (1) and
(2) imply that, with probability ≥ 2PiP ī (taken over the choices of σ1 and σ2),

(3) an f1-collision occurs in P̃f1,Sm=σ0,σ1(q̃, 1k̃). Thus, by Lemma 3.14 (inequality

L1.2), we have 2PiP ī < 32 · 2−9k̃/16. Now, because P ī ≤ Pi by definition, we have

2P 2
ī
≤ 2PiP ī < 32 · 2−9k̃/16, and thus P ī < 4 · 2−9k̃/32 as initially claimed.

Define now Pτ̄ as the probability that “P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · , but not all
queries answered by τ”, that is,

Pτ̄
def
= PROB

σ∈Σk̃·λ(̃n)
[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ ∃iR̃ε · · · � (i, τ̄i)].

Then, because there are at most 1(ñ) bit-locations i, and because (due to Propo-

sition 3.10 and our definition of c) 1(ñ) < (ñ)c < 2k̃/64, we have

(L3.2) Pτ̄ ≤
∑�(ñ)

i=1 P ī < 4 · 2−9k̃/32 · 1(ñ) < 4 · 2−9k̃/32 · 2k̃/64 = 4 · 2−17k̃/64.
Thus

(L3.3) PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ all queries answered by τ ]

≥ PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · ·]−Pτ̄ ≥ (by inequalities L1.1 and

L3.2) 2−1 ·2−3k̃/16−4 ·2−17k̃/64 > (because 2k̃ > n64c, n ≥ 2 and c ≥ 1 imply

k̃ > 64) 2−k̃.
Notice now that Lemma 3.16 contradicts the fact that the underlying (SP, SV )

is a sampling proof system according to Definition 3.7. In fact, because P̃ verifies all
its nonempty outputs, we have

2−k̃ < (because of inequality L3.3) PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · ·
∧ all queries answered by τ ] = PROB

σ∈Σk̃·λ(̃n)
[Vf1,Sm=σ(q̃, 1k̃, R̃ε · · ·) =

Y ES ∧ all queries answered by τ ].
But, by our construction of V, the last inequality implies that, by running sam-

pling verifier SV on inputs q̃ (�∈ L), |τ | (i.e., ñ), and k̃, having a random tape of

length k̃ · λ(|τ |), and having random access to τ, SV accepts with probability > 2−k̃.
Because q̃ �∈ L, the existence of τ contradicts property 2 of Theorem 3.6. The

contradiction establishes Theorem 3.9, and thus that our (P,V) enjoys computational
soundness, completing our proof of Theorem 3.9.

3.6. The significance of CS proofs with a random oracle. Random oracles
may be quite theoretical, and, as discussed later on, one might consider implementing
CS proofs cryptographically (with or without interaction). But the latter implemen-
tations would be meaningless if it turned out that P = NP. This would not be too
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bad, one might say, because, if P = NP, the very notion of an “efficient” proof system
would be meaningless, at least in any broad sense.22

Personally, we disagree: fundamental intuitions such as proofs being a notion that
is both meaningful and separate (from that of accepting23) could not be shaken by a
formal result such as P = NP. Indeed, the author’s inclination to believe that P �=
NP is only based on (1) his a priori certainty that proofs are a meaningful and separate
notion, and (2) his inclination to believe that NP is a reasonable approximation of
the notion of a proof. But if it turned out that P = NP, to the author this would
only mean that NP did not provide such a reasonable approximation after all.

It is thus important to establish meaningful models for which we can show that
proofs do exist as an independent notion. CS proofs with a random oracle provide us
with such a model: indeed, they guarantee that

even if NP = P, given a sufficient amount of randomness in the proper form,
fundamental intuitions like verification being polylogarithmically easier than
decision are indeed true.

4. Other types of CS proofs. Many variants of the basic notion of a CS
proof exist. Below, we confine ourselves to briefly presenting just two additional ones:
that of an interactive CS proof (because it can be implemented based on standard
cryptographic assumptions) and that of a noninteractive CS proof (because it implies
the existence of CS checkers for NP-complete problems).

4.1. Interactive CS proofs.
The notion of an interactive CS proof system. Let us first quickly recall

interactive Turing machines (ITMs) as defined by Goldwasser, Micali, and Rackoff
[21]. Informally, an ITM is a probabilistic Turing machine capable of “sending and
receiving messages.” An ITM is meant to be run a number of times, each time starting
with the internal configuration reached at the end of the previous run. Each run of
an ITM starts by reading one incoming message—i.e., reading a string on a special
tape—and ends by sending one outgoing message—i.e., writing a string on another
special tape. (In an initial run we assume that the incoming message is the input,
and that the internal configuration consists of a blank work tape and a distinguished
start state.) An ITM halts when, in a given run, it enters a special halting state, from
which it takes no further action. ITMs are meant to be executed in pairs. If A and B
are ITMs, an execution of (A,B) on input x is obtained by having x be both A’s and
B’s input and by running alternatively A and B, so that each outgoing message of A
is B’s incoming message in the next run of B, and vice versa. The number of rounds
in an execution of (A,B) is the number of times in which either of the two ITMs
sends a message. By convention, an execution of (A,B) starts and ends with a run
of B. In its last run, B may accept by outputting the special symbol YES, or reject
by outputting the special symbol NO. Except for their exchanged messages, in an
execution of (A,B) neither ITM has access to the internal computation (in particular
the coin tosses) of the other. The probability that, after a random execution of (A,B)
on a given input x, B accepts is taken over all coin tosses of A and B.

22Though concurring with us that properly capturing efficient verification may require more than
P = NP, one might also believe that if P = NP, there would be little or no notion of efficient
verification to be captured.

23Again, he who is concerned about truth but not about time does not need proofs and provers:
he may be equally happy to run a decision algorithm whenever he wishes to establish whether a given
statement holds. Proofs cannot properly exist as a separate notion unless they succeed in making
verification of truth much easier than accepting truth.
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Slightly more generally, we shall also consider ITM pairs (A,B), where A actually
is an interactive circuit. This allows us to use the size of A to bound more effectively
the number of “steps” A may make in an execution with B.24 Recall that a circuit of
size ≤ s is a finite function computable by at most s Boolean gates, where each gate
is either a NOT-gate (with one binary input and one binary output) or an AND-gate
(with two binary inputs and one binary output).

Notice that an interactive circuit A may be taken to be deterministic, because
it might have wired in any finite lucky sequence of coin tosses. (In this case the
probability that B is convinced in a random execution with A on input x solely
depends on B’s coin tosses.)

Definition 4.1. Let (P, V ) be a pair of ITMs, the second of which running in
polynomial time, and let L be the CS language. We say that (P, V ) is an interactive CS
proof system if there are four positive constants a, b, c, and d such that the following
two properties are satisfied.

1′′. Feasible completeness. For all q = (M,x, y, t) ∈ L, and for all integers k, in
every execution of (P, V ) on inputs q and 1k,
(1′′.i) P halts within (|q|kt)a computational steps, and
(1′′.ii) V outputs YES.

2′′. Computational soundness. For all q̃ �∈ L, for all k such that 2k > |q|b, and
for all (cheating) interactive circuit P̃ of size ≤ 2ck, in a random execution

of P̃ with V on inputs q̃ and 1k,
P rob[V outputs Y ES] < 2−dk.

The constructability of interactive CS proof systems. Let us make the
mentioned notion of a collision-free hash function a bit more formal.

Definition 4.2. Let KG (for key generator) be a probabilistic polynomial-time
algorithm, KG : 1∗ → Σ∗, and let E (for evaluator) be a polynomial-time algorithm,
E : Σ∗ × 1∗ → Σ∗ (more precisely, E : Σ∗ × 1k → Σk for all positive integers k).
We say that the pair (KG,E) is a collision-free hash function if there exist positive
constants r, s, and t such that for all k > r and for all (collision-finding) circuits CF
of size < 2sk, letting h be a random output of KG on input k,

Probh[CF (h, 1
k) = (x, y) such that x �= y ∧ E(h, x) = E(h, y)] < 2−tk.

From the proof of Theorem 3.9 (indeed, even from the informal arguments of
subsection 3.4) the reader can easily derive a proof of the following corollary.

Corollary 4.3. Interactive CS proof systems exist if collision-free hash func-
tions exist.

(Notice that such CS proof systems would actually be four-round ones: in essence,
the verifier runs KG to generate a random h and sends it to the prover as the first
message; the prover uses h to construct the Merkle tree and sends its root to the

24An ITM making, say, at most s steps, may de facto make “many more steps” if it has a large
description—e.g., by encoding a large finite function in its state control. For instance, factoring a
randomly chosen k-bit integer appears to be computationally intractable when k is large, but not
for an algorithm whose description is about 2k-bit long! Indeed, the finite state control of such
a Turing machine could easily encode the factorization of all k-bit integers. For this reason, in a
cryptographic CS proof system, a cheating prover is envisaged to be an algorithm whose running
time and description, in some standard encoding, are both bounded. Having a cheating prover be a
Boolean combinatorial circuit with a bounded number of gates is actually just a specific but simple
way to accomplish this.
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verifier as the second message; the verifier runs the sampling algorithm SV to compute
a sequence of bit-positions and sends them to the prover as the third message; and
the prover returns to the verifier the bit-values of those positions—together with their
authenticating paths—as the fourth message.)

Two-round CS proof systems. Informally, a two-round CS proof system is
an interactive CS proof system (P, V ) in every execution of which only two messages
are sent: the first by V and the second by P . Such proof systems appear signif-
icantly more difficult to implement than general interactive ones. Nonetheless they
could be constructed based on Cachin, Micali, and Staedler’s new computationally
private information-retrieval system [14]. Their construction relies on the difficulty of
deciding, given a prime p and an integer n (whose factorization is unknown), whether
p divides φ(n).

4.2. CS proof-systems sharing a random string.
The notion of a CS proof system sharing a random string. In a CS

proof system sharing a random string, prover and verifier are ordinary (as opposed
to oracle-calling) algorithms, sharing a short random string r. That is, whenever the
security parameter is k, they share a string r that both believe to have been randomly
selected among those having length kc, where c is a positive constant. If string r is
universally known, it can be shared by all provers and verifiers. (CS proof systems
sharing a random string are a special case of one-round CS proof systems because r
could be the message sent by the verifier to the prover.)

Definition 4.4. Let (P, V ) be a pair of Turing machines, the second of which
runs in polynomial time. We say that (P, V ) is a CS proof system sharing a random
string if there exists a sequence of five positive constants, c2, . . . , c6 (referred to as
the fundamental constants of the system25), such that the following two properties are
satisfied.

1′′′. Feasible completeness. For all q = (M,x, y, t) ∈ L and for all binary string r,
(1′′′.i) on inputs q and r, P halts within (|q| · |r| · t)c2 computational steps
outputing a binary string C, whose length is ≤ (|q| · |r|)c3 , such that
(1′′′.ii) V (q, r, C) = Y ES.

2′′′. Computational soundness. For all q̃ �∈ L, for all k such that 2k > |q|c4 , and
for all (cheating) circuits P̃ whose size is ≤ 2c5k, for a random kc1-bit string
r

Probr[P̃ (q̃, r) = C̃ ∧ V (q̃, r, C̃) = Y ES] ≤ 2−c6k.

We refer to the above strings r and C as, respectively, a reference string and a CS
certificate (of q ∈ L, relative to r and (P,V)).

The constructability of CS proof systems sharing a random string.
We conjecture that CS proof systems with a random string exist. In particular,
their existence is guaranteed by an ad hoc (and stronger) assumption: informally the
“replaceability,” in Theorem 3.6’s (P,V), of random oracles with (hopefully) adequate
functions (e.g., collision-free hashing ones). Such replacements have been advocated,

25The “numbering” of these constants has been chosen to facilitate comparison with CS proof
systems with a random oracle.
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in more general contexts, by Bellare and Rogaway [7].26

5. Computationally sound checkers. CS proofs have important implications
for validating one-sided heuristics for NP. Generalizing a prior notion of Blum’s, we
put forward the notion of a CS checker and show that CS proofs with a random string
imply CS checkers for NP.

To begin with, we state the general problem of heuristic validation we want to
solve, explain why prior notions of checkers may be inadequate for solving it, discuss
the novel properties we want from a checker, and convey in a simple but wishful
manner what our checkers are. Then we shall approximate this wishful version of a
CS checker by a more formal definition and construction.

Warning. Approaching meaningfully the problem of validating efficient heuris-
tics for NP-complete problems is nontrivial (as we shall see, it entails reconciling
“two opposites”), and our particular approach to it may prove quite subjective (if not
outright controversial). Nonetheless, the problem at hand is so crucial that we might
be excused for putting forward some quite preliminary contributions and ideas.

5.1. The problem of validating one-sided heuristics for NP.
A general problem. NP-complete languages contain very important and useful

problems that we would love to solve. Unfortunately, it is extensively believed that
P �= NP and NP �= Co-NP, and thus that our ability of successfully handling NP-
complete problems is severely limited. Indeed, if P �= NP, then no efficient (i.e.,
polynomial-time) algorithm may decide membership in an NP-complete language
without making any errors. Moreover, if NP �= Co-NP, then no efficient algorithm
may, in general, prove nonmembership in an NP-complete language by means of
“short and easy-to-verify” strings.

In light of the above belief, the “best natural alternative” to deciding NP-
complete languages efficiently and conveying efficiently to others the results of our de-
terminations consists of tackling NP-complete languages by means of efficient heuris-
tics that are one-sided. Here by “heuristic” we mean a program (emphasizing that no
claim is made about its correctness) and by “one-sided” we mean that such a program,
on input a string x, outputs either (1) a proper NP-witness, thereby proving that x
is in the language, or (2) the symbol NO, thereby claiming (without proof) that x is
not in the language.

But for an efficient one-sided heuristic to be really useful for tacklingNP-complete
problems we should know when it is right. Of course, when such an heuristic outputs
an NP-witness, we can be confident of its correctness on the given input. However,
when it outputs NO, skepticism is mandatory: even if the heuristic came with an a
priori guarantee of returning the correct answer on most inputs, we might not know
whether the input at hand is among those. Thus, in light of the importance of NP-

26A word of caution is now due about such replacements. For certain tasks, it is now known how
to replace random oracles successfully with ordinary algorithms based on traditional assumptions.
For instance, a random oracle provably is “collision-free,” but collision-free hash functions can be
built, say, under the assumption that the integer factorization or the discrete logarithm problems
are computationally intractable. On the other hand, “random-oracle replacement” does not always
work: Canetti, Goldreich, and Halevi [15] show that it is possible to construct special algorithms
that behave very differently when given access to a random oracle than they do when given access
to any pseudorandom function. (In light of their result, it should be possible to construct, somewhat
artificially, some CS proof systems sharing a random oracle that can never be transformed into CS
proof systems sharing a random string by replacing their oracle with a pseudorandom function. But
this does not imply that the same holds for every CS proof system with a random oracle, in particular
for the (P,V) of Theorem 3.9).
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complete languages and in light of the many efficient one-sided heuristics suggested
for these languages, a fundamental problem naturally arises.

Given an efficient one-sided heuristic H for an NP-complete language, is
there a meaningful and efficient way of using H so as to validate some of its
NO outputs?

Interpreting the problem. The solvability of the above general problem criti-
cally depends on its specific interpretation.

One such interpretation was proposed by Manuel Blum when, a few years ago, he
introduced the beautiful notion of a checker [11]27, and asked whether NP-complete
languages are checkable. Under this interpretation, the general problem still is to-
tally open. Moreover, as we shall argue below, unless this interpretation is suitably
broadened, even a positive solution might have a limited usefulness.

In this paper we thus propose a new interpretation of the general problem and,
assuming the existence of CS proofs with a random string, provide its first (and
positive) solution.

5.2. Blum checkers and their limitations.
The notion of a Blum checker. Intuitively, a Blum checker for a given function

f is an algorithm that either (a) determines with arbitrarily high probability that a
given program, run on a given input, correctly returns the value of f at that input,
or (b) determines that the program does not compute f correctly (possibly, at some
other input). Let us quickly recall Blum’s definition.

Definition 5.1. Let f be a function and C a probabilistic oracle-calling algorithm
running in expected polynomial time. Then, we say that C is a Blum checker for f if,
on input an element x in f ’s domain and oracle access to any program P (allegedly
computing f), the following two properties hold.

1. If P (y) = f(y) for all y (i.e., if P correctly computes f for every input), then
CP (x) outputs YES with probability 1.

2. If P (x) �= f(x) (i.e., if P does not compute f correctly on the given input x),
then CP (x) outputs YES with probability ≤ 1/2.

The probabilities above are taken solely over the coin tosses of C whenever P is
deterministic, and over the coin tosses of both algorithms otherwise.

The above notion of a Blum checker slightly differs from the original one.28 In
particular, according to our reformulation any correct program for computing f im-
mediately yields a checker for f, though not necessarily a useful one (because such a
checker may be too slow, or because its correctness may be too hard to establish).29

Despite their stringent requirements, Blum checkers have been constructed for a
variety of specific functions (see, in particular, the works of Blum, Luby, and Rubinfeld
[12] and Lipton [25]).

Note that the notion of a checker is immediately extended to languages: an algo-
rithm C is a Blum checker for a language L if it is a Blum checker for L’s characteristic
function. Indeed, the interactive proof systems of [26] and [33] yield Blum checkers

27We shall call his notion a Blum checker to highlight its difference from ours.
28Disregarding minor issues, Blum’s original formulation imposes an additional condition, roughly,

that C run asymptotically faster than the fastest known algorithm for computing f—or asymptoti-
cally faster than P when checking P . This additional constraint aims at rebuffing a natural objection:
who checks the checker? The condition is in fact an attempt to guarantee, in practical terms, that
C is sufficiently different from (and thus “independent” of) P, so that the probability that both C
and P make an error in a given execution is smaller than the probability that just P makes an error.

29Thus, running a checker C (as defined by us) with a program P may be useful only if C is much
faster than P, or if C’s correctness is much easier to prove—or believe—than that of P .
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for, respectively, any #P- or PSPACE-complete language.30

Blum checkers vs. efficient heuristics for NP-complete problems. We
believe that the question of whether Blum checkers for NP-complete languages exist
should be interpreted more broadly than originally intended. We in fact argue that,
even if they existed, Blum checkers for NP-complete languages might be less relevant
than desirable.

Definition 5.2 (informal). We say that a Blum checker A for a function f is
irrelevant if, for all efficient heuristics H for f, and for all x in f ’s domain, with high
probability AH(x) = NO without ever calling H on input x.

Note that, if P �= NP, then no efficient heuristic for an NP-complete language
is correct on all inputs. Thus it is quite legitimate for a Blum checker for an NP-
complete language to output NO whenever its oracle is an efficient heuristic, without
ever calling it on the specific input at hand: a NO-output simply indicates that the
efficient heuristic is incorrect on some inputs (possibly different from the one at hand).
However, constructing an irrelevant Blum checker for the characteristic function of
SAT (the language consisting of all Boolean formulae in conjunctive normal form)
under the assumption that P �= NP is not trivial. The difficulty lies in the fact
that a checker does not know whether it is accessing a polynomial-time program (in
which case, if P �= NP, it could always output NO), or an exponential-time program
that is correct on all inputs (in which case it should always output YES). We can,
however, construct such an irrelevant Blum checker under the assumption that one-
way functions exist. This assumption appears to be stronger than P �= NP but is
widely believed and provides the basis of all modern cryptography.

Definition 5.3 (informal). We say that a function f mapping binary strings
to binary strings is one-way if it is length-preserving, polynomial-time computable,
but not polynomial-time invertible in the following sense: for any polynomial-time
algorithm A, if one generates at random a sufficiently long input z and computes
y = f(z), then the probability that A(y) is a counter-image of f is miniscule.

Theorem 5.4 (informal). If one-way functions and Blum checkers for NP-
complete languages exist, then there exist irrelevant Blum checkers for NP-complete
languages.

Proof (informal). Let SAT be the NP-complete language of all satisfiable for-
mulae in conjunctive normal form, let P be a program allegedly deciding SAT, let C
be a Blum checker for SAT, let f be a one-way function, and let C be the following
oracle-calling algorithm.

On input an n-variable formula F in conjunctive normal form, and oracle access
to P, C works in two stages. In the first stage, C randomly selects a (sufficiently long)
string z and computes (in polynomial time) y = f(z). After that, C utilizes the
completeness of SAT to construct, and feed to P, n formulae in conjunctive normal
form, F1, . . . , Fn, whose satisfiability “encodes a counter-image of y under f .”

(For instance, F1 is constructed so as to be satisfiable if and only if there exists a
counter-image of y whose first bit is 0. The checker feeds such an F1 to P . If P outputs
“F1 is satisfiable,” then C constructs F2 to be a formula that is satisfiable if and only
if there exists a counter-image of y whose 2-bit prefix is 00. If, instead, P responds

30In fact, the definition of a Blum checker for a language L is analogous to a restricted kind of
interactive proof for L: one whose prover is a probabilistic polynomial-time algorithm with access to
an oracle for membership in L. Indeed, whenever a language L possesses such a kind of interactive
proof system, a checker C for L is constructed as follows. On inputs P (a program allegedly deciding
membership in L) and x, the checker C simply runs both prover and verifier on input x, giving the
prover oracle access to program P . C outputs YES if the verifier accepts, and rejects otherwise.
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“F1 is not satisfiable,” then C constructs F2 to be a formula that is satisfiable if and
only if there exists a counter-image of y whose 2-bit prefix is 10. And so on, until all
formulae F1, . . . , Fn are constructed and all outputs P (F1), . . . , P (Fn) are obtained.)

Because string y is, by construction, guaranteed to be in the range of f, at the
end of this process one either finds (a) a counter-image of y under f, or (b) a proof
that P is wrong (because if no f -inverse of y has been found, then P must have
provided a wrong answer for at least one of the formulae Fi). If event (b) occurs,
C halts outputting NO. Otherwise, in a second phase, C runs Blum checker C on
input the original formula F and with oracle access to P . When C halts so does C,
outputting the same YES/NO value that C does.

Let us now argue that C is a Blum checker for SAT. First, it is quite clear that C
runs in probabilistic polynomial time. Then there are two cases to consider.

1. P correctly computes SAT’s characteristic function. In this case, a counter-
image of y is found, and thus CP does not halt in the first phase. Moreover, in
the second phase, C runs Blum checker C with the same correct program P .
Therefore, by property 1 of a Blum checker, CP will output YES no matter
what the original input formula F might be, and, by construction, so will CP .
This shows that C enjoys property 1 of a Blum checker for SAT.

2. P (F ) provides the wrong answer about the satisfiability of F . In this case,
either CP halts in phase 1 outputting NO, or it executes phase 2 by running
CP (F ), that is, the original Blum checker for SAT, C, on the same input
F and the same oracle P . Therefore, by property 2 of a Blum checker, the
probability that CP (F ) will halt outputting YES is no greater than 1/2. By
construction, the same holds for CP (F ). This shows that C enjoys property 2
of a Blum checker for SAT.

Finally, let us argue that, for any input F and any efficient P (no matter how
well it may approximate SAT’s characteristic function), almost always CP (F ) = NO,
without even calling P on F . In fact, because C runs in polynomial time, whenever
P is polynomial-time, so is algorithm CP . Therefore, CP has essentially no chance of
inverting a one-way function evaluated on a random input. Therefore, C will output
NO in phase 1, where it does not call P on F .

In sum, differently from many other contexts, the notion of a Blum checker may
not be too useful for handling efficient heuristics for NP-complete languages, either
because no such checkers exist31 or because they may exist but not be too useful.

Blum checkers are not complexity-preserving. The lesson we derive from
the above sketched proof of Theorem 5.4 is that Blum’s notion of a checker lacks a
new property that we name complexity preservation. Intuitively, a Blum checker for
satisfiability, when given a “not-so-difficult” formula F, may ignore it altogether and
instead call the to-be-tested efficient heuristic on very special and possibly much harder
inputs, thus forcing the heuristic to make a mistake and justifying its own outputting
NO (i.e., “the heuristic is wrong”).

The possibility of calling a given heuristic H on inputs that are harder than
the given one essentially erodes the chances of meaningfully validating H’s answer
whenever it happens to be correct.32 Such a possibility may not matter much if “the

31Notice that this possibility does not contradict the fact that NP is contained in both #P and
PSPACE and that #P- and PSPACE-complete languages are Blum checkable!

32Note that such possibility not only is present in the definition of a Blum checker but also in
all known examples of a Blum checker. Typically, in fact, a Blum checker works by calling its given
heuristic on random inputs, and these may be more difficult than the specific, original one.
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difference in computational complexity between any two inputs of similar length” is
somewhat bounded. But it may matter a lot if such a difference is enormous—which
may be the case for NP-complete languages, as they encode membership in both easy
and hard languages. We thus wish to develop a notion of a “complexity-preserving”
checker.

5.3. New checkers for new goals.
The old goal. Blum checkers are very useful to catch the occasional mistake of

programs believed to be correct on all inputs. That is, they are ideally suited to check
fast programs for easy functions (or slow program for hard functions). In fact, if f
is an efficiently computable function, then we know a priori that there are efficient
and correct programs for f . Therefore, if a reputable software company produces a
program P for f, it might be reasonable to expect that P is correct. In this framework,
by running a Blum checker for f, with oracle P, on a given input x we have nothing to
lose33 and something to gain. Indeed, if the checker answers YES, we have “verified
our expectations” about the correctness of P at least on input x (a small knowledge
gain), and if the checker answers NO, we have proved our expectations about P to be
wrong (a big knowledge gain).

The new goal. We instead want to develop checkers for a related but different
goal: validating efficient heuristics that are known to be incorrect on some inputs.
That is, we wish to develop checkers suitable for handling fast programs for hard
functions. Now, if f is a function hard to compute, then we know a priori that no
efficient program correctly computes it. Therefore, obtaining from a checker a proof
that such an efficient program does not compute f correctly would be quite redundant.
We instead want checkers that, at least occasionally, if an efficient heuristic for f
happens to be correct on some input x, are capable of convincing us that this is the
case.

Interpreting the new goal. Several possible valid interpretations of this general
constraint are possible. In this paper we focus on a single one: namely, we want
checkers that are complexity-preserving. Let f be a function that is hard to compute
(at least in the worst case). Then, intuitively, a complexity-preserving checker for f
will, on input x, call a candidate program for f only on inputs for which evaluating
f is essentially as difficult as for x.

Our point is that, while a given heuristic for satisfiability, H, may make mistakes
on some formulae, it may return remarkably accurate answers on some class of formu-
lae (e.g., those decidable in O(2cn) time, for some constant c < 1, by a given deciding
algorithm D). Intuitively, therefore, checkers should be defined (and built!) so that,
if the input formula belongs to that class and H happens to be correct on the input
formula, they call H only on additional formulae in that class.

5.4. The wishful version of a CS checker. The spirit of a CS checker is best
conveyed wishfully assuming (for a second) that NP equaled Co-NP. In that case,
our CS checkers would take the following simple and appealing form.

Wishful checkers. Define a wishful checker to be a polynomial-time algorithm
C that, on input a Boolean formula F, outputs a Boolean formula F satisfying the
following two properties.

1. Membership reversion. F ∈ SAT if and only if F �∈ SAT.

33Blum checkers are often so fast (e.g., running in time sublinear in that of the algorithm they
check) that not even this is much of a concern.
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2. Complexity preservation. “The satisfiability of F is as hard to decide as that
of F .”

How to use a wishful checker. We interpret the above algorithm C as a kind
of checker because it immediately yields the following algorithm C ′ (more closely
matching our intuition of a checker).
C ′ : Given an efficient one-sided heuristic for SAT, H, and an input formula, F,

compute F = C(F ). Then, call H so as to obtain the two values H(F )
and H(F). If either value is different than NO, then (H being one-sided)
a satisfying assignment has been computed either proving that F ∈ SAT or
that F �∈ SAT. Otherwise, H(F ) = H(F) = NO proves that H is incorrect.

Note that, by the very definition of a wishful checker, the above proof that H is
incorrect has been obtained without querying H on formulae harder than the original
input F .

5.5. The notion of a CS checker. Let us now informally explain how, without
assuming NP = Co-NP, CS checkers may approximate wishful ones to a sufficiently
close extent. Renouncing to achieving greater generality, we limit our discussion to
CS checkers for SAT.

CS checkers. Informally speaking, a CS checker is a polynomial-time algorithm
C that, on input a formula F, outputs a Boolean formula F , called the coinput,
satisfying the following properties.

1. Membership semireversion.
1.1. At least one of F and F is satisfiable.
1.2. If F is satisfiable, then no efficient algorithm has a nonnegligible chance

of finding a satisfying assignment for F .
2. Complexity semipreservation. If F �∈ SAT, then the satisfiability of F is as

hard to decide as that of F .
(Note: We explain why complexity preservation is restricted to the “F �∈
SAT” case a few lines below.)

How to use CS checkers. We interpret the above C as a checker because
it immediately yields the following algorithm C′ (that better matches what we may
intuitively expect from a checker).

C′ : Given an efficient one-sided heuristic for SAT, H, and an input formula, F,
do the following.

– Compute the coinput F = C(F ).
– Call H so as to obtain H(F ).
– If H(F ) �= NO, HALT.
– If H(F ) = NO, call H so as to obtain H(F) and HALT.

The usefulness of CS checkers. The usefulness of the above C′ stems from
the following two properties.

(a) C′ is informative about the satisfiability of F or the correctness of H.
(b) If H is correct on F , then C′ never calls H on a formula harder than F .

Indeed, a computation of C′ results in (1) showing a satisfying assignment of F, (2)
showing a satisfying assignment of F , or (3) showing that H(F ) = H(F) = NO.

A type-1 result clearly proves that F ∈ SAT.
A type-2 result is interpretable as saying that F is unsatisfiable. This is so because

if F belonged to SAT, then either a satisfying assignment of coinput F does not exist,
or (by the very definition of a CS checker) the probability that it can be obtained in
polynomial time is negligible. (Notice, in fact, that C′ is efficient because both C and
H are.)
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A type-3 result proves that H is wrong. In fact, if H(F ) = NO is correct, then
(by property 1.1 of a CS checker) F �∈ SAT, and thus H(F) = NO is incorrect. Let us
now argue that if H is correct on F , our proof of H’s incorrectness has been obtained
in a complexity-preserving manner. We distinguish two cases.

1. If H is correct on F and H(F ) �= NO, then H(F ) is an (easy-to-verify)
satisfying assignment of F, and thus C′ does not call H on any coinput.
Therefore, C vacuously does not call H on any F harder than F .

2. If H is correct on F and H(F ) = NO, then F �∈ SAT, in which case (by
property 2 of a CS checker) F is guaranteed to have the same complexity as
F .

If instead H is not correct about our original input F, then H(F ) = H(F) = NO
still is a proof of H’s incorrectness, but not necessarily one obtained in a complexity-
preserving manner. Notice, however, that lacking complexity preservation in this case
is of no concern: if H happens wrong about our own original input, we are happy to
prove that H is wrong in any manner. Recall that in checking we care about our own
original input x more than about H. Thus if H(x) is correct, we aim at “proving”
this fact, and we do not want to throw H away by calling it on much harder inputs.
But if H(x) is wrong, we do not mind dismissing H in any way. Least of all, we want
to be convinced that H(x) is right!

The complexity preservation of a CS checker. To complete our informal
discussion of CS checkers we must explain in what sense, whenever F �∈ SAT, the
complexity of F is close to that of F . That is, we must explain (1) how we measure
the complexity of the original input, and (2) how the coinput preserves this complexity.

1. Complexity meters. The complexity of the original input F is defined to be
the number of steps made by a chosen deciding algorithm for SAT, D, on
input F . That is, when a CS checker for SAT is given an input formula F,
it is also given as an additional input the description of this chosen D. We
refer to D as the complexity meter. In fact, by specifying D, we (implicitly)
pin down the complexity of the original formula F . By insisting that D be a
decider for SAT (i.e., that D be correct) we insist that the complexity of the
original input be a “genuine” one.34

By properly choosing the complexity meter, one may be able to force the
complexity of the original input to be small (and thus force the checker to
query its given heuristic on a coinput of similarly small complexity). Choosing
D to be the algorithm that tries all possible satisfying assignments for F is
certainly legitimate but not too meaningful. (Because any formula would
have “maximum complexity” relative to such a complexity meter, the checker
would essentially be free to call its given heuristic on any possible coinput.)
Quite differently, if the original input F is known to belong to a class of
formulae for which a given SAT algorithm performs very well (e.g., runs in
subexponential time), by specifying that algorithm as our complexity meter,
we force the checker to call its given heuristic only on a coinput of similarly
low complexity.
Let us stress that we do not require that the checker, or someone choosing
a complexity meter D, know how many steps D takes on the original input
F . Nor do we require that one distinguish (somehow) for which inputs, if
any, algorithm D (slow in the worst case) may be reasonably fast. Rather, we
require that, if F happens to belong to those inputs on which D is fast, then

34In particular, if D were allowed to make errors, all formulae F could have constant complexity.
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it is this lower (and possibly unknown) complexity that should be preserved
by a CS checker.

By specifying D one specifies implicitly the complexity of F, whatever it
happens to be.

For technical reasons, however, we require that D’s running time be upper-
bounded by 22n, a bound that essentially poses no real restrictions. Within
these bounds, any algorithm for satisfiability could always be “timed-out”
and then converted to an exhaustive search for a satisfying assignment).

2. Complexity cometers. The complexity of a coinput F is defined to be the
number of steps taken on input F by a decider for SAT, D, specified before
hand. We refer to such a D as the complexity cometer.
Thus a complexity cometer is independent of the chosen complexity meter:
the first is fixed once and for all (in fact, it could be made part of the very
definition of a CS checker), while the second is chosen afresh each time a
CS checker is run. Under these circumstances, at first glance, it may appear
surprising that a CS checker may succeed in keeping the complexity of the
coinput close to that of the original input. But the fixed cometer D includes
the code of the universal algorithm, so that, in a sense, the complexity of a
coinput is measured relative to a “decider for SAT that is easily constructed
on input D.”
Notice that one could conceive stating complexity preservation by simply
saying that the number of steps taken by a chosen D on the original input
is polynomially close to the number of steps taken by the same D on the
coinput. This would be a simpler way of having the cometer easily depend
on the meter. However, we needed to endow CS checkers with a bit more
room to maneuver than that. In any case, we believe it preferable to have the
meter that is a fixed component of the CS checker to be a universal meter.

5.6. The actual definition of a CS checker.
Preliminaries.
• We let CNF denote the language of all formulae in conjunctive normal form,
and SAT the set of all satisfiable formulae in CNF. If F ∈ SAT, then we denote
by SAT(F ) the set of all satisfiable assignments of F . For any positive integer
n, CNFn and SATn will denote, respectively, all formulae in CNF and SAT
whose binary length is n.

• By an SAT decider we mean an algorithm that (correctly) decides the lan-
guage SAT. (Deciders need not output a satisfying assignment in case the
input formula is satisfiable.) We say that an SAT decider D is reasonable if,
for all F ∈ CNF, #D(F ) ≤ 2|F |.

• If A is a probabilistic algorithm and E an event (involving executions of A
on specified inputs), by ProbA[E] we denote the probability of E, taken over
all possible coin tosses of A.

Definition 5.5. Let Φ be a probabilistic polynomial-time algorithm, D an SAT
decider, and Q(. , . , . , .) a positive polynomial. We say that (Φ,D,Q) is a CS checker
if, for all positive constant c, for all CNF formulae F, for all reasonable SAT deciders
D, and for all sufficiently large k, on input (F,D, 1k) Φ outputs a formula F such
that:

1. F ∨ F ∈ SAT;
2. F ∈ SAT ⇒ for all kc-size circuits A, ProbΦ[A(F) ∈ SAT(F)] < 2−k; and
3. F �∈ SAT⇒ #D(F) < Q(|F |, |D|, 1k,#D(F )).
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If C = (Φ,D,Q) is a CS checker, we refer to Φ as the reducer, to D as the
complexity cometer, and to Q as the complexity slackness.

Remark. Note that even the existence of triplets (Φ,D,Q) satisfying just prop-
erties 1 and 2 alone constitutes a surprising statement about SAT. Informally, they
say that any formula F can be efficiently transformed to a formula F such that (1) at
least one of them is satisfiable, while (2) every efficient algorithm can find a satisfying
assignments for at most one them. That is,

properties 1 and 2 “almost” say that NP = Co-NP,
in the sense that, to convince a verifier V that a formula F is not satisfiable, a prover
P may first run Φ on input (F,D, 1k) so as to compute F , and then (because if F �∈
SAT, then, by property 1, F is satisfiable) produce a satisfying assignment for F . The
verifier is convinced because, if also F were satisfiable, then a satisfying assignment
for F could be found in less than 2k steps, which would violate property 2 whenever
P is poly(k) size, and k is large enough!

5.7. Implementing CS checkers for SAT. Let us recall some known proper-
ties of Cook’s [16] and Levin’s [24] NP-completeness constructions.

Key properties of Cook’s and Levin’s constructions. Given a polynomial-
time predicate A(· , ·) and a positive constant b, these constructions consist of a
polynomial-time algorithm that, on input a binary string x, outputs a CNF formula
φ that is satisfiable if and only if there is a binary string σ such that |σ| ≤ |x|b and
A(x, σ) = Y ES. We refer to such a string σ as a witness (for x). The construction
further enjoys the following extra properties (which are actually required by Levin’s
definition of NP-completeness):

(i) x is polynomial-time retrievable from φ;
(ii) a proper witness for x is polynomial-time computable from any satisfying

assignment for φ (if one exists); and
(iii) a satisfying assignment for φ is polynomial-time computable from any proper

witness for x (if one exists).
Theorem 5.6. If CS proof systems sharing a random string exist, then CS

checkers for SAT exist.
Proof. Let (P, V ) be a CS proof system sharing a random string with fundamental

constants c2, . . . , c6, and consider the following algorithm.

Algorithm Φ
Inputs: F, a CNF formula, D, a reasonable SAT solver, and 1k, a security
parameter.
Subroutines: P and V .
Output: a CNF formula F .

Code: Randomly select a k-bit (reference) string r for (P, V ), and use Cook’s
(or Levin’s) construction to compute a CNF formula F that is satisfiable
if and only if there exist two binary strings t and σ such that, setting
q = (F,D,NO, t), the following three properties hold: (1) |t| ≤ 2|F |,35
(2) |σ| ≤ (|q| · k)c3 , and (3) V (q, r, σ) = Y ES.
{Comment: If it exists, σ is a CS certificate of (D,F,NO, t) ∈ L, relative to
(P, V ) and reference string r. The existence of such a σ, however, does not
guarantee that D(F ) = NO.36}

35i.e., because D is reasonable, considering t as an integer, t = #D(F ) ≤ 2|F |.
36In fact, we “expect” that σ exists (and thus that F is satisfiable) with “overwhelming probabil-

ity,” even when F is satisfiable. But σ is hard to find.
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Let us now show that there exist an SAT decider D and a positive polynomial Q such
that C = (Φ,D,Q) is a CS checker.

To begin with, notice that, because of the polynomiality of V and of Cook’s
construction, Φ is polynomial-time.37

Further, because properties 1 and 2 of a CS checker (as per Definition 5.5) only
depend on its reducer, let us show that they hold for our Φ prior to defining D and Q.

Property 1 holds trivially if F ∈ SAT. Assume therefore that F �∈ SAT. Then,
because of the correctness and running time of the complexity meter D, we have
D(F ) = NO within t ≤ 22n steps. Thus, by the (feasible) completeness of (P, V ) for
any possible reference string r there is a CS certificate σ of q = (D,F,NO, t) ∈ L.
Thus, F ∈ SAT, proving that property 1 holds in all cases.

Property 2 is established by contradiction. Assume that there exists an input
formula F ∈ SAT and a poly(k)-size circuit A that, with nonnegligible probability,
computes a satisfying assignment of a so-constructed coinput F . Then, by property (ii)
of Cook’s construction, from such a satisfying assignment (if it exists and is found) one
computes in polynomial time both t and a CS certificate σ of q = (D,F,NO, t) ∈ L.
But if F ∈ SAT, then for no t is q = (D,F,NO, t) ∈ L. Therefore, this contradicts
the computational soundness of (P, V ).

Let us finally show that there exist an SAT decider D and a positive polynomial
Q such that, for all formulae F �∈ CNF, for all complexity meters D, and for all
security parameters k, if D, on input F, takes t (≤ 22|F |) steps to decide that no
satisfying assignment for F exists, then, given any coinput F of F, D finds a satisfying
assignment for F in at most Q(|F |, |D|, k, t) steps.

Algorithm D works in four phases as follows.
D1. Computes F, D, and r from F .

(Due to property (i) of Cook’s construction, D can execute this phase in
time polynomial in |F|. Thus, because F has been computed by C in time
polynomial in |F |, |D|, and k, this phase is executable in time polynomial in
|F |, |D|, and k.)

D2. Runs D on input F to find the exact number of steps, t, taken by D to output
NO on input F .
(Because D can be simulated with a slow-down polynomial in |D|, this phase
takes time polynomial in |D| and t.)

D3. Run prover P on input q = (D,F,NO, t) and reference string r to produce a
CS certificate, σ, of q ∈ L.
(Due to the feasible completeness of (P, V ), this phase is executable in time
polynomial in |q|, k, and t; and thus in time polynomial in |F |, |D|, k, and
t.)

D4. Use σ to compute a satisfying assignment for F .
(Due to property (iii) of Cook’s construction, this phase also can be imple-
mented in time polynomial in |F |, |D|, and k.)

Because each phase is implementable in time polynomial in |F |, |D|, k, and t, there ex-
ists a polynomialQ such that D(F) outputs a satisfying assignment of F in Q(|F |, |D|,
k, t) steps.

37Indeed, define A(·, ·) as follows: A((F,D, r), (t, σ)) def
= V ((D,F,NO, t), r, σ). Notice now that

A is polynomial-time: in fact, V is the verifier of a CS proof system with a random string. Notice
also that |σ| is polynomially bounded in |F |, |D|, and |r|: in fact q = (D,F,NO, t), |t| ≤ 2|F |, and
|σ| ≤ (|q|k)c3 .
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Finally, notice that the above four-phase procedure can be converted to an SAT
decider by interleaving two different computations. In the first, an exhaustive search
is conducted for deciding whether F is satisfiable. In the second, F is interpreted as
a coinput of F, and the above four-phase procedure is run. The so-modified D halts
when either computation halts and outputs what the halting computation does.

5.8. Remarks.
An alternative formulation. As we said, any CS checker C (as per Definition

5.5) immediately yields an oracle-calling algorithm that, on input a formula F (a
complexity meter D, and a security parameter k) and access to a one-sided efficient
heuristic H, computes a coinput F and obtains H(F ) and H(F).

With this in mind, we can rephrase Theorem 5.6 as follows (and obtain—implicitly—
a definition of a CS checker that is more closely tailored to our implemetation).

Corollary 5.7. If CS proof systems sharing a random string exist, then there
exist (1) a polynomial-time oracle-calling algorithm C(·)(· , · , ·) that, whenever its first
input is a CNF formula F, queries its oracle at most twice: once about F, and possibly
a second time about a second CNF formula F ; (2) an SAT decider D and a polynomial
Q(. , . , . , .) such that

for all one-sided heuristics H for SAT, for all F ∈ CNF, for all reasonable
SAT deciders D solving F in ≤ 22|F | steps, for all sufficiently long random
binary strings r, the following two properties hold.

rm 1. Individual-complexity preservation. If H is correct on F and CH(F,D, r)
queries H about a second CNF formula F , then

#D(F) ≤ Q(|F |, |D|, |r|,#D(F )).

2. Computational meaningfulness. CH(F,D, r) produces one of the following
three outputs:
(a) a satisfying assignment for F

(i.e., a proof that F is satisfiable),
(b) a CS proof, relative to (P, V ) and reference string r, of D(F ) = NO

(i.e., evidence that F is not satisfiable),
(c) a formula F such that, by construction, either F or F is satisfiable, and

yet H(F ) = H(F) = NO
(i.e., a proof that H is not correct).

Unlike Blum checkers, the above oracle-calling algorithm C does not provide an-
swers that are correct with arbitrarily high probability (computed over its possible
coin tosses). The type-(a) and type-(c) outputs of C are errorless, at least in the sense
that any error here can be efficiently detected. But a type-(b) output of C, interpreted
as a (computationally) meaningful explanation that F is nonsatisfiable, may be wrong
in a noneasily detectable manner: if F is satisfiable, C could output a “false” CS proof
of D(F ) = NO with positive probability. However, this probability is reasonably high
only if an enormous amount of computation is performed; whereas, in our applica-
tion, all computation is performed by C which is polynomial-time and by oracle H
which is also polynomial-time. Therefore, the probability of a false type-(b) output
is absolutely negligible.

Another advantage of one-sided heuristics. Our CS checkers only deal with
one-sided heuristics for SAT. As already discussed, given the one-sided nature of NP,
this is a natural choice. On the other hand, could we have dealt with heuristics just
outputting YES (i.e., “satisfiable, but with no proof”) or NO?

So far, because of the self-reducibility property of NP-complete problems, choos-
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ing between either type of heuristics has often been a matter of individual taste.
Indeed, it is well known that a decision oracle for SAT can, in polynomial time, be
converted to a search oracle for SAT . As we explain below, however, this “equiva-
lence” between decision and search relative to NP-complete languages may cease to
hold when one demands, as we do, that our reductions preserve the complexity of
individual inputs, rather than just that of complexity classes.

When dealing with one-sided efficient heuristics H for SAT, assuming that H is
correct on F, we need only to take care of complexity preservation when H(F ) �= NO.
In fact, if H(F ) ∈ SAT (F ), then there is no need to call H on any coinput F , and
thus there is no complexity to be preserved. Presumably, however, if H outputs just
YES and NO, we would care about preserving F ’s complexity also when H(F ) is
correct and H(F ) = Y ES. Now, to convince ourselves that H(F ) = Y ES is correct,
we could run the self-reducibility algorithm, calling H on a sequence of formulae
F1, . . . , Fn (obtained by “fixing” a new variable each time), so as to find a satisfying
assignment of F, or prove that H is wrong (on either F or some Fi). The problem
is, however, that this self-reducibility process may not be complexity-preserving: It
may be the case that our F is relatively easy, while some of the Fi’s are very hard.
Indeed, it is conceivable that it is the “degree of freedom” of the variables of the
original formula F that make it easy to decide (without finding any NP-proof of it)
that F is satisfiable. However, after sufficiently many variables of F have been fixed,
the difficulty of deciding satisfiability may grow dramatically high (though later on,
when sufficiently many variables have been fixed, it will dramatically drop).

Extra complexity preservation. Notice that, in the implementation of the
proof of Theorem 5.6, the CS checker preserves the complexity of the original input
F in a much closer manner than demanded by our definition. Indeed, the coinput F
consists of the very encoding of the computation of the complexity meter D on input
F (and we wonder whether this may yield a preferable formulation of complexity
preservation).

Additional applications. We believe that complexity preservation, in different
formulations, will be useful to other contexts as well. In particular, it will enhance
the meaningfulness of many reductions in a complexity setting. For instance, using
complexity preservation, [22] presents a more refined notion of a proof of knowledge
[21, 36, 18, 6].

An open problem. Is it possible to (define and) construct CS checkers that,
when given an heuristic H and an input x, also receive a concise algorithmic repre-
sentation of a (“nontrivial”) set S and call H only on x and elements of S? Such
checkers could still be allowed to output a proof that the given heuristic H is wrong.
But, if H happens to be correct on S, and the given input happens to belong to S,
they should output a “validation” for H(x) (rather than a proof that H is wrong).

6. Certified computation. In this section we reinterpret the results of sections
3 and 4 in terms of computation rather than proofs. More precisely, we aim at ob-
taining certificates ensuring that no error has occurred in a given execution of a given
algorithm on a given input.

That is, certified computation does not deal with semantic questions such as “is
algorithm A correct?” Rather it addresses the following syntactic question.

Is string y what algorithm A should output on input x (no matter what A is
supposed to do)?

This question is quite crucial whenever we are confident in the design of a given algo-
rithm A but less so in the physical computer that runs it. For instance, the computer
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hardware may be defective. Alternatively, the hardware may function properly, but
the operating system may be flawed. Alternatively yet, the hardware and software
may be fine, but some α rays may succeed in flipping a bit together with its controls,
so that the original bit value is not restored.

Moreover, even assuming that the physical computer is correct, after running A
on input x so as to obtain a result y, can we convince someone else that y is indeed
equal to A(x) without having him redo the computation himself?

Certified computation provides a special way to answer these basic questions for
any algorithm and for any input.

Defining certified computation. In view of our work so far, formalizing and
exemplifying (at least given a random oracle) the notion of certified computation is
rather straightforward but tedious indeed. We thus think that is best to proceed at a
very intuitive level.

Definition 6.1 (informal). A certified-computation system is a compiler-verifier
pair of efficient algorithms, (C,V). Given any algorithm A as input, C outputs an
equivalent algorithm A′ enjoying the following properties.

1. A′ runs in essentially the same time as A does.
2. A′ receives the same inputs applicable to A and produces the same outputs.
3. For each input x, algorithm A′ produces the same output y as A, but also a

short and easily inspectable string C vouching that indeed y = A(x) in the
following sense.

If A(x) outputs y in t steps, then V(A, x, y, t, C) = Y ES. Otherwise, it
is very hard to find a string σ such that V(A, x, y, t, σ) = Y ES.

Of course, one may ask who verifies the correctness of the verifier (i.e., either of
algorithm V itself or of its executions). Note, however, that such a V is a unique pro-
gram, capable of verifying certificates for the correct execution of all other programs.
It is thus meaningful to invest sufficient time in proving the correctness of this partic-
ular algorithm (e.g., by verification methods). Also, being that V is quite efficient (and
runs on short inputs) we may afford to execute it on very “conservative” hardware
(i.e., with particular redundancy, resiliency, and so on), or even on a multiplicity of
hardwares.

Constructing certified-computation systems. One possible way of con-
structing program certification systems essentially consists of giving a CS proof of the
statement “y = A(x) in t steps.” Let us explain. On input x, algorithm A′ = C(A)
first runs A on x so that, after some number t of steps, an output y is obtained. Then
A′ outputs y and a CS proof of (A, x, y, t) ∈ L. Thus the length of such a CS proof
will be polynomial in log t (and, of course, |A|, |x|, |y|, and some suitable security
parameter k). The additional time required to produce this CS proof is comparable
to the running time of A. (This holds if one uses the construction of Theorem 3.8
rather than a generic CS proof system.) Indeed, while the definition of CS proofs
allows a polynomial relation between these running times, the sketched construction
actually yields a linear-time relation!

An alternative notion of certified computation. Another type of certified
computation was previously proposed in [3] as an application of PCP. In essence, in
their notion, A′(x) outputs both A(x) and a string τ that vouches the correctness of
A(x). Though τ may be extraordinarily long (τ ’s length exceeds the number of steps
taken by A on input x), it could be inspected in PCP-style, by reading and verifying
only selectively few of its bits. As we have argued in section 2, however, ensuring that
one is really working with precisely these few bits of τ requires an overall verification
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time that is linear in τ ’s length (and thus greater than the time necessary to run A
on input x).

Pros and cons of certified computation. One may view some older algo-
rithms as specialized forms of certified computation, (i.e., applicable to certain func-
tions only). For instance, the classical extended GCD algorithm not only outputs the
greatest common divisor c of two input integers a and b, but also two integers x and
y such that ax+ by = c. Blum views such extended output as a relatively simple way
of checking the validity of c. That is, by checking that indeed (1) ax + by = c and
that (2) c divides both a and b, one verifies that there is no divisor of a and b greater
than c, and so that c actually is the greatest common divisor. Thus x and y are a sort
of certificate proving the correctness of c. This certificate, however, is not sufficiently
short (with respect to a, b, and c) and not sufficiently easy to verify (with respect to
ordinary GCD computation).

A certified computation system can, instead, be considered as an “extended”
universal algorithm, in the sense that it shows that certified computability is not a
property enjoyed only by some special functions (such as the GCD function) but is
an intrinsic property of computation. It should be noticed that, in addition to such
“universality,” a certified computation system produces relatively shorter and more
easily inspectable certificates (than, say, the special ones produced by the extended
GCD algorithm), but has a weaker guarantee of correctness (i.e., false certificates
exist but are hard to find).

Finally, it should be appreciated that our suggested certified computation system
may be impractical (as it refers to the execution history of Turing machines). One way
to improve its efficiency may consist of finding a more convenient, and yet sufficient
for our purposes, version or representation of the execution history of an algorithm.

Assumptions and implementations. The constructability of certified com-
putation systems is implied by CS proof systems with a random oracle or CS proof
systems with a random string. As explained below, if the latter proof systems exist,
then their use in the current context does not require trusting the randomness of the
extra string or the computational limitation of the prover.

Indeed, in this application, the random string need not be agreed upon by both
prover and verifier (by means of some possibly difficult negotiation) nor chosen by
means of a trusted third party or process. When seeking reassurance that indeed
y = A(x), the user U of a certified computation system (P,V) controls both P and
V, and thus can choose their common string in a way that he believes to be genuinely
random, without “asking for their consent.”

In addition, the physical device D implementing algorithm P “sits on top of
user U ’s desk” and produces its output within a “reasonable time” monitored by U .
Therefore, user D knows for a fact that D does not comprise more than 2k gates and
that it takes less than 2k steps of computation for a security parameter k set by U .

In sum, if CS proofs with a random string exist, they yield certified computation
systems that de facto offer the same guarantees of a probabilistic algorithm.

Conceivable applications of certified computation. Certified computation
can in principle be quite useful when “contracting out” computer time. Indeed, con-
sider an algorithm A that we believe to be correct but is very time-consuming. Then,
we can hire a supercomputing company for executing A on a given input x on their
computers and agree that we will pay for their efforts if they give us back the value
y = A(x) together with a certificate of correct execution, that is, a CS certificate
of “A(x) = y in t steps.” Note that, because such a certificate also vouches for the
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number of steps taken by A’s execution, it is easy for the supercomputing company
to charge according to the amount of computation actually invested.

Certified computation may also facilitate the verification of certain mathematical
theorems proven with the help of a computer search (as in the case of the four-color
theorem). For instance, the proof may depend on a lemma stating that there is no
sparse graph with less than fifty nodes possessing a given property, and the lemma
could be proved by means of an exhaustive search taking a few years of computing.
Often, algorithms performing an exhaustive search are sufficiently simple so that we
can be confident of the correctness of their design. Thus rather than (1) asking the
reader of trusting that such a search has been done and has returned a negative result,
or (2) asking the reader to perform such an extensive computation himself, one might
publish together with the rest of the proof a compact and easily verifiable certificate
of correct execution relative to a random oracle. If the security parameter were chosen
to be, say, 1,000, then even the most skeptic reader might believe that no one has
invested 21,000 steps of computation in order to find a false certificate nor that he has
succeeded in finding one by relying on a probability of success less than 2−1,000.

7. Concluding remarks.
Are CS proofs really proofs? In our minds this question really goes together

with an older one: do probabilistic algorithms [34, 30] really compute? There is a
sense in which both answers should be NO. These negative answers, in our opin-
ion, may stem from two different reasons: (1) a specific interpretation of the words
“proof” and “computation,” and (2) our mathematical tradition. The first reason is
certainly true but also “harmless.” The second is more “dangerous” and less accept-
able: not because it is false that these notions break with a long past, but because
the unchallenged length of a tradition should not be taken as implying that specific
formalizations of fundamental intuitions are “final.” Indeed, we believe that even
fundamental intuitions cannot be divorced from the large historical contexts in which
they have arisen, and we expect that they will change with the changing of these
contexts. And we believe and hope that, with time, CS proofs will be regarded to be
as natural as probabilistic computations.

Truths versus proofs. According to our highest-level goal, CS proofs propose
a new relationship between proving and deciding. In the thirties, Turing suggested
that establishing (to yourself) the truthfulness of a mathematical statement consists
of running a proper (accepting) algorithm. Today, we suggest that proving (to others)
a mathematical statement consists of feasibly speeding up the verification of the result
of any given accepting algorithm. That is, (1) proofs should make verifying the result
of any accepting computation exponentially faster than the same accepting compu-
tation, but (2) proofs should not be more time-consuming to find than the accepting
computations whose result verification they wish to facilitate. This, in our opinion,
is an appealing relationship between proving and accepting, and one that guarantees
that proving is both a useful and a distinct notion.

Living with error. In order to guarantee this “feasible speed up,” CS proofs
replace the traditional notion of a proof with a computational one. While CS proofs
of true statements always exist, are suitably short, and are feasibly found, proofs
of false statements either do not exist or are extraordinarily hard to find. Indeed,
a CS proof is a short string that can be thought of as a “compressed version” of
a long accepting computation. But the same conciseness that gives CS proofs their
distinctive advantage also causes them to “lose quality” with respect to the accepting
computations they compress: it makes them vulnerable to the possibility of error
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(though in a controllable way).38

To be sure, the possibility of inconsistency should not be taken lightly. But
after realizing that the coherence of a sufficiently rich mathematical system cannot
be decided within it, perhaps we should switch to managing error rather than trying
desperately to ban it!
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1. Introduction. The graph isomorphism (GI) problem consists of determining
whether two graphs are isomorphic. It is well known that GI is in NP, but despite
decades of study by mathematicians and computer scientists, it is not known whether
GI is in P or is NP-complete. Many researchers conjecture that GI’s complexity lies
somewhere between P and NP-complete. There are several other decision problems
(some graph-theoretic and others group-theoretic in nature) that also are not known
to be in P or NP-complete. One such problem which is closely related to GI is graph
automorphism (GA) which consists of deciding whether a graph has a nontrivial
automorphism. Regarding the relative complexities of GA and GI, it is known that
GA is polynomial-time many-one reducible to GI. On the other hand, GI is not
known to be even polynomial-time Turing reducible to GA (see [15] for these and
related results). However, in [17] it is shown that GI is polynomial-time reducible to
the problem of computing the number of automorphisms of a graph.
The notion of program checking was introduced by Blum and Kannan [7] as an

algorithmic alternative to program verification. Since then, the design of efficient
checkers for various computational problems has rapidly grown into a discipline of
algorithm design [7, 8]. One of the first program checkers in [7] was a randomized
polynomial-time checker for GI. It is an outstanding open question in the area if
NP-complete problems have efficient program checkers. This can be construed as ad-
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ditional evidence that GI is not NP-complete. Later, in [16] it was shown that GA
has a nonadaptive checker. In other words, the checker can make all its queries to the
program in parallel, hence enabling it to be fast in parallel (in NC, to be precise). It is
an open question whether GI too has a nonadaptive checker. The apparent bottleneck
here is that the search problem for GI is not known to be polynomial-time truth-table
reducible to the decision problem for GI; i.e., it is not known if the search problem is
reducible to the decision problem via parallel (nonadaptive) queries. A related ques-
tion is that of computing automorphisms of a graph in polynomial time with oracle
access to either GI or GA. Indeed, it is shown in [16] that with nonadaptive queries
to GA, the lexicographically first automorphism of a graph can be computed in poly-
nomial time, whereas computing the lexicographically last automorphism is as hard
as GI. Also see [1], in which the complexity of computing k nontrivial automorphisms
of a graph is studied.
With these issues in mind, a natural next step in investigating the relationship

between GI and GA is to consider exactly how much we need to know about the
number of automorphisms of a graph in order to solve the GI problem. This motivates
us to define and study modular GA problems. Let Aut(G) denote the automorphism
group of the graph G.

Definition 1. For any k, let modk-GA = {G : |Aut(G)| ≡ 0 (mod k)}.
We show in Theorems 4 and 5 that for any k > 1, GA ≤pm modk-GA ≤pm GI; thus

the modk-GA problems are intermediate in difficulty between GA and GI. It is an
open question whether any of the modk-GA problems is polynomial-time equivalent
to GA or GI. We conjecture that modk-GA is not polynomial-time equivalent to GA
or GI for any k > 1. An evidence that some of the modk-GA problems could be
actually harder than GA is the observation that tournament isomorphism (GI for
tournament graphs) is many-one reducible to mod2-GA. This follows from the fact
that the automorphism group of any tournament is of odd size [15], which in turn
implies that two tournaments are isomorphic if and only if the automorphism group
of their disjoint union contains an order-2 permutation (which must switch the two
graphs).
The proof technique we use is a combination of elementary properties of finite

graphs (see, e.g., [12]) and the theory of finite groups of prime-power order (see, e.g.,
a group theory text like [18]).
The layout of the paper is as follows. Section 2 contains the preliminaries. In

section 3, we prove that the modk-GA problems are located between GA and GI. In
section 4, we show that search is polynomial-time Turing equivalent to decision for
modk-GA, and in section 5 we use this result in combination with an IP protocol for
modp-GA to obtain an efficient program checker for modk-GA. Notice that although
both GA and GI have program checkers ([16] and [7], resp.) and modk-GA is inter-
mediate in complexity, it does not necessarily imply that modk-GA has a program
checker [7].

2. Preliminaries. In this paper, by a graph we mean a finite directed graph1

(see, for example, [12] or any other standard text on graph theory for basic definitions).
For a graph G, let V (G) denote its vertex set and E(G) denote its edge set. A
permutation π on V (G) is an automorphism of the graph G if (u, v) ∈ E(G) ⇐⇒
(π(u), π(v)) ∈ E(G). The set of automorphisms Aut(G), of a graph G, is a subgroup

1We consider the problems GI, GA, and modk-GA on directed graphs. However, our results hold
for these problems on undirected graphs as well.
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l l l

Fig. 1. Examples of Cycle and Path: The above graph, including the dashed edge, is
Cycle(G1, G2, G3), where G1, G2, and G3 are the graphs induced by {4, 5, 6}, {7, 8, 9}, and
{10, 11, 12}, respectively. Excluding the dashed edge in the above graph gives Path(G1, G2, G3).
The underlying cycle C3 (resp., path P3) is induced by vertices 1, 2, and 3, which are labeled l.

of the permutation group on V (G). The identity automorphism of any graph will be
denoted by id.
Let X be a list of vertices in V (G) for a graph G. By G[X] we mean the graph G

with distinct labels attached to the vertices in X. We can define these labels as given
in [15, p. 8]: If |V (G)| = n, label j, 1 ≤ j ≤ n, is defined as a graph Lj consisting of
2n+ j+3 vertices which has a directed path P of length 2n+3 and a directed path of
length j emanating from the (n+2)nd vertex of path P . Notice that Lj is rigid (i.e.,
it has no nontrivial automorphisms). The size of G[X] is O(n

2). This definition of
labels guarantees that every automorphism of G[X] must pointwise fix the vertices of
X. Thus Aut(G[X]) is isomorphic to the subgroup of Aut(G) which pointwise fixes the
vertices in X. Furthermore, given an automorphism of Aut(G[X]), the corresponding
automorphism of Aut(G) can be efficiently (i.e., in polynomial time) constructed.
Given two lists of vertices X,Y ⊆ V (G), we usually assume that the graphs G[X] and
G[Y ] have the same labels in vertices occupying the same relative positions in X and
Y .

Definition 2. Let G1, . . . , Gn be n graphs.
• Let Pn be a directed simple path of n new vertices v1, v2, . . . , vn, where each
vertex vi is labeled with a single label l. The graph Path(G1, . . . , Gn) is ob-
tained by taking one copy of each of the graphs G1, . . . , Gn and, for 1 ≤ i ≤ n,
attaching all the vertices of Gi to vi. See Figure 1 for an example.

• Let Cn be the directed simple cycle on n new vertices v1, v2, . . . , vn, with each
vertex vi, 1 ≤ i ≤ n, labeled with a single label l. The graph Cycle(G1, . . . , Gn)
is obtained by taking one copy of each of the graphs G1, . . . , Gn and, for
1 ≤ i ≤ n, attaching all the vertices of Gi to vi. See Figure 1 for an example.

In both Path(G1, . . . , Gn) and Cycle(G1, . . . , Gn), since vertices v1, v2, . . . , vn are
labeled with l, any automorphism of these graphs must map {v1, v2, . . . , vn} onto itself.
Thus, any automorphism of Path(G1, . . . , Gn) (Cycle(G1, . . . , Gn)) when restricted
to {v1, v2, . . . , vn} is an automorphism of Pn (respectively, Cn). It follows that an
automorphism of Path(G1, . . . , Gn) cannot permute the copies of G1, . . . , Gn, while
an automorphism of Cycle(G1, . . . , Gn) can permute them but only along the cycle Cn.
The reducibilities discussed in this paper are the standard polynomial-time Turing
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and many-one reducibilities. Formal definitions of these and other standard notions
in complexity theory can be found in [3, 2].
We now recall some useful complexity-theoretic concepts. A set A ⊆ Σ∗ is a

d-cylinder if there is a polynomial-time computable function OR that takes a list of
strings x1, x2, . . . , xm as argument and produces a string y such that

OR(x1, x2, . . . , xm) = y ∈ A ⇐⇒ ∃i : 1 ≤ i ≤ m : xi ∈ A.
Similarly, a set A ⊆ Σ∗ is a c-cylinder if there is a polynomial-time computable
function AND that takes a list of strings x1, x2, . . . , xm as argument and produces a
string y such that

AND(x1, x2, . . . , xm) = y ∈ A ⇐⇒ (∀i : 1 ≤ i ≤ m)[xi ∈ A].
Proposition 3 (see [10, 16]). GI is a d-cylinder and a c-cylinder.
It is interesting to note here that GA is known to be a d-cylinder [15], but it is open

whether it is also a c-cylinder. The relative complexity of decision and search for NP
problems is well studied [9, 4, 19, 6]. For instance, it is known that search and decision
are polynomial-time Turing equivalent for all NP-complete problems. In particular, we
recall that for GI search is polynomial-time Turing reducible to decision [19], whereas
for GA a stronger result holds: search is nonadaptively polynomial-time reducible to
decision [16].

3. Locating the modk-GA problems. We show in this section that modk-GA
is located between GA and GI ∀k > 1.

Theorem 4. For all k > 1, GA ≤pm modk-GA.
Proof. Given a graph G, we define for every i, j with 1 ≤ i < j ≤ n the graph

Hi,j = Cycle(G[{i}], G[{j}], . . . , G[{j}]) which contains one copy of G[{i}] and k − 1
copies of G[{j}]. Further, let H be obtained by applying the Path operator to all the
graphs Hi,j with 1 ≤ i < j ≤ n. We claim that G has a nontrivial automorphism if
and only if H is in modk-GA.
Suppose that G has a nontrivial automorphism ϕ. There exist two vertices i

and j such that ϕ(i) = j. Notice that Hi,j has a nontrivial automorphism α that
cyclically permutes the k graphs in Cycle(G[{i}], G[{j}], . . . , G[{j}]) as follows. The
automorphism α maps the first graph G[{i}] to G[{j}] by ϕ. It maps each of the first
k−2 copies of G[{j}] to the next copy of G[{j}] by the identity automorphism. Finally,
α maps the last copy of G[{j}] back to G[{i}] by the automorphism ϕ−1.
The order of α is k since the vertices in Hi,j are moved in a cyclic way through

the k subgraphs. In fact, α is a product of k-cycles. Thus, Hi,j ∈ modk-GA. Since
|Aut(H)| =∏1≤i<j≤n |Aut(Hi,j)|, it follows that H ∈ modk-GA.
For the converse, assume that H ∈ modk-GA. Then H has a nontrivial auto-

morphism, say, α. Notice that α must induce a nontrivial automorphism β in one
of its subgraphs Hi,j . Since Hi,j = Cycle(G[{i}], G[{j}], . . . , G[{j}]), there are two
possibilities: either β induces a nontrivial automorphism of G[{i}] or G[{j}], or β
maps G[{i}] to some copy of G[{j}]. In either case we get a nontrivial automorphism
of G.
Mathon [17] has shown that |Aut(G)| is polynomial-time computable with GI as

oracle. From this it easily follows that modk-GA ≤pT GI. In the next theorem, we
strengthen this to a ≤pm-reduction using some permutation group theory.

Theorem 5. For all k > 1, modk-GA ≤pm GI.
We need a couple of definitions and group-theoretic lemmas before we prove The-

orem 5. Let A be a subgroup of Sn and let [n] denote the set {1, 2, . . . , n}. A subset
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X ⊆ [n] is A-invariant if g(X) = X ∀g ∈ A. If X ⊆ [n] is A-invariant, then con-
sider the action of A restricted to X. This gives rise to a subgroup of the symmetric
group SX , which we denote by A

X . A useful obvious property is that |AX | ≤ |A|
∀A-invariant sets X.

Lemma 6. Let A be a subgroup of Sn such that |A| = m. Then there exists an
A-invariant subset X ⊆ [n] with |X| ≤ m logm, such that A is isomorphic to AX .

Proof. Consider the following procedure for constructing the set X:
X := ∅;

while ∃i �∈ X : |AX | < |AX∪A(i)| do
(* A(i) denotes the orbit of i under A *)
Pick such an i;
X := X ∪A(i)

endwhile
First we claim that, as a loop invariant, X is always an A-invariant subset of

[n]. To see this, notice that it holds at the beginning when X is empty, and if X is
A-invariant, then so is X ∪A(i) since we are including an entire A-orbit in the set.
Next, suppose X is A-invariant and i �∈ X is some index. Consider the mapping

ϕ from AX∪A(i) to AX which maps an element of AX∪A(i) to its restriction to X.
Since X is A-invariant, it is easy to verify that ϕ is a surjective homomorphism from
AX∪A(i) to AX . It follows that |AX | divides |AX∪A(i)|. Suppose now, at some stage
of the while loop, i is an index such that |AX | < |AX∪A(i)|. Then it must hold that
2|AX | ≤ |AX∪A(i)|. Thus we have argued that every time X increases by including
an orbit A(i) in it, the size of the group AX increases by at least a factor of 2. Thus
the assignment X := X ∪A(i) is executed at most logm times, implying also that the
procedure must terminate. Since the size of any orbit A(i) is bounded by |A|, it follows
that the procedure terminates with an A-invariant setX such that |X| ≤ m logm. Let
X be the set computed when the while-loop is exited. To complete the proof we must
show that AX is isomorphic to A. Consider the canonical surjective homomorphism
ψ from A to AX , which maps a given element of A to its corresponding restriction to
X. To show that this homomorphism is an isomorphism we must argue that Ker(ψ)
is (id). Suppose g ∈ Ker(ψ) is a nontrivial element. Then there is i �∈ X such that
g(i) �= i. This in turn implies that the surjective homomorphism ϕ from AX∪A(i) to
AX , which maps an element of AX∪A(i) to its restriction to X, has a nontrivial kernel
with g ∈ Ker(ϕ). Consequently, |AX | < |AX∪A(i)|. Thus, both X and i satisfy the
while-loop condition, contradicting the fact that the while-loop has terminated. This
completes the proof of this lemma.

Lemma 7. Let A be a finite group. Let X = {a1, a2, . . . , at} and Y = {b1, b2, . . . , bt}
be two subsets of A such that 〈X〉 ∩ 〈Y 〉 = {id} and aibj = bjai for 1 ≤ i, j ≤ t.
Then |〈X〉| divides the order of the group 〈{aibi : 1 ≤ i ≤ t}〉.

Proof. Let H denote the subgroup of A generated by {aibi | 1 ≤ i ≤ t}, K
denote the subgroup of A generated by {ai | 1 ≤ i ≤ t}, and L denote the subgroup
of A generated by {bi | 1 ≤ i ≤ t}. Notice that since aibj = bjai for 1 ≤ i, j ≤ t, we
have KL = LK, and therefore the set KL is actually a subgroup of A. Next, notice
that, by definition of H, any x ∈ H can be written as a product of elements from
the generator set {aibi | 1 ≤ i ≤ t}. Using aibj = bjai for 1 ≤ i, j ≤ t as a rewrite
rule, this product of generators expressing x can be rewritten as ay, where a ∈ K and
y ∈ L. It follows that H ⊆ KL. Consider the following map ψ from the group H to
the group K, defined as follows:

∀x ∈ H : ψ(x) = a where x = ay, with a ∈ K and y ∈ L.
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We claim that ψ is a well-defined surjective homomorphism from H to K. We
first show that ψ is well defined. Suppose there are two distinct elements a, a′ ∈ K
such that x = ay = a′y′ for elements y, y′ ∈ L. This implies, by cancellation laws,
that a−1a′ = yy′−1, which belongs to both K and L. Since K ∩ L = {id}, we have
a = a′. Thus ψ is well defined. To see that ψ is a homomorphism is routine: we
can easily check that ψ(xx′) = ψ(x)ψ(x′) and that ψ(x−1) = (ψ(x))−1 hold using the
rewrite rules aibj = bjai for 1 ≤ i, j ≤ t. To see that ψ is surjective, let a ∈ K be any
element. We can express a as a product Π1≤r≤mair for indices ir ∈ [t]. Consider the
element x = Π1≤r≤mairbir ∈ H. It is easy to see that ψ(x) = a.
Thus, by the fundamental theorem of homomorphisms, it follows that H/Ker(ψ)

is isomorphic to K. Therefore, |H/Ker(ψ)| = |K|. It follows that |K| divides |H|,
which proves the lemma.

Proof of Theorem 5. First, we argue that it suffices to show that modpl -GA ≤pm GI
for all prime p and l > 0. To see this, let

∏
1≤j≤r p

lj
j be the prime factorization of

k. Clearly, a graph G ∈ modk-GA if and only if G ∈ ⋂rj=1modplj
j

-GA. Thus, if

mod
p
lj
j

-GA ≤pm GI for 1 ≤ j ≤ r, it follows that modk-GA ≤pm GI, since GI is a
c-cylinder.
We next prove a useful group-theoretic claim. Let G be a graph on n vertices and

let f be a partial permutation on [n] (i.e., f is defined on a subset of the domain [n]
and can be extended to a permutation in Sn). Then we call f a partial automorphism
of G if f can be extended to an automorphism of G.

Claim. Let p be a fixed prime and l > 0. A graph G on n vertices is in modpl -GA
if and only if there exist a set X ⊆ [n] with |X| ≤ pl(log pl) and a subgroup K =
{a1, a2, . . . , apl} of SX such that each ai ∈ K is a partial automorphism of G.

Proof. Let G ∈ modpl -GA be an n vertex graph. Since pl divides |Aut(G)|,
by Sylow’s theorem Aut(G) has a subgroup A of size pl. By Lemma 6, there is an
A-invariant set X ⊆ [n] with |X| ≤ pl(log pl), such that AX is isomorphic to A. Let
AX = {a1, a2, . . . , apl}. Furthermore, it also follows that AX is a subgroup of SX
where each ai ∈ AX is a partial automorphism of G. Conversely, suppose there is
X ⊆ [n] with |X| ≤ pl(log pl) and a subgroup K = {a1, a2, . . . , apl} of SX where each
ai ∈ K is a partial automorphism of G. Then for each i with 1 ≤ i ≤ pl, there is a
bi ∈ S[n]−X such that aibi ∈ Aut(G). We can now apply Lemma 7 to the elements
{ai}1≤i≤pl and {bi}1≤i≤pl , since therequired conditions are fulfilled. Consequently,
|〈{aibi : 1 ≤ i ≤ pl}〉| is divisible by pl. Since 〈{aibi : 1 ≤ i ≤ pl}〉 is a subgroup of
Aut(G), it follows that pl divides |Aut(G)|.
Now, note that the language B = {(G, f) : f is a partial automorphism of the

graph G} is ≤pm-equivalent to GI (for details, see [15, Theorem 1.18]). We will give
a truth-table reduction from modpl -GA to B, where the truth-table is a disjunction
of conjunctions. Since the language B is ≤pm-reducible to GI and since GI is both
a c-cylinder and a d-cylinder, it follows that modpl -GA is ≤pm-reducible to GI. We
describe below the said reduction of modpl -GA to B as a logical expression, which is
easily seen to describe a disjunction-of-conjunctions truth-table reduction:

G ∈ modpl -GA ⇐⇒ (∃ X ⊆ [n] : |X| ≤ pl log pl)

(∃ subgroup K < SX : |K| = pl)(∀a ∈ K)[(G, a) ∈ B].
This completes the proof of Theorem 5.
Since GA is not known to be a c-cylinder and, moreover, the set B defined above

is ≤pm-equivalent to GI, it is unlikely that the approach taken in the above proof can
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be used to show that modk-GA is ≤pm-reducible to GA.
We next show a useful result relating the complexity of modk-GA to modl-GA

when l is a factor of k.
Lemma 8. For k, l > 1 such that l divides k, modl-GA ≤pm modk-GA.
Proof. Let G be an instance of modl-GA, where k = lm for some m > 1. Let

Cm denote the directed cycle of length m. Consider the graph Path(G,Cm). By
construction, any automorphism of Path(G,Cm) must map G to itself and Cm to
itself. Thus, |Aut(Path(G,Cm))| = |Aut(G)||Aut(Cm)| = |Aut(G)|m. Thus k divides
|Aut(Path(G,Cm))| if and only if l divides |Aut(G)|. It follows that G �→ Path(G,Cm)
is a ≤pm-reduction from modl-GA to modk-GA.
4. Computing solutions for modk-GA instances. Let

∏
1≤j≤m p

ej
j be the

prime factorization of k. We define an NP witness of the membership of a graph
G in modk-GA as m subgroups {A1, A2, . . . , Am} of Aut(G), where Ai is listed as
a set of permutations and |Ai| = peii for each i. We are interested in the search
problem of computing an NP witness for G ∈ modk-GA. Clearly, given a collection
{A1, A2, . . . , Am} of permutation sets, it can be verified to be a witness for G in time
polynomial in |V (G)|. Notice that, for an instanceG in modk-GA, it is straightforward
to design a polynomial-time algorithm with GI as oracle for computing a witness. This
can be done, for instance, by adapting ideas in the proof of Theorem 5 of the previous
section where we showed how modk-GA is many-one reducible to GI. The result of
this section is stronger since we will use the weaker oracle modk-GA for the same
task. Hence, for the above definition of search problem, it follows that search is
polynomial-time Turing reducible to decision for modk-GA.

Intuitive description of the algorithmic task. Our aim is to design a polynomial-
time algorithm that, given G in modk-GA as input, computes the NP witness de-
scribed above with oracle access to modk-GA. Clearly, a graph G ∈ modk-GA if
and only if G ∈ ⋂mj=1modpej

j
-GA. Also, by Lemma 8, mod

p
ej
j
-GA is ≤pm-reducible

to modk-GA ∀j. Thus, it suffices to design a polynomial-time algorithm for the case
when k = pl for some prime p. In this case, given G ∈ modpl -GA as input, the
witness that the algorithm must compute with oracle modpl -GA is a p

l-subgroup A
of Aut(G). (We actually do better; the oracle our algorithm will access is modp-GA,
which is ≤pm-reducible to modpl -GA by Lemma 8.) By Sylow’s theorem, such a sub-
group A exists. By standard p-group theory, if A is a pl-subgroup of Aut(G), we have
a subgroup chain: A0 = (id) < A1 < · · · < Al = A, where |Ai| = pi and ∀i, Ai is a
normal subgroup of Ai+1. Our algorithm will compute such a subgroup A inductively
by computing each subgroup in such a sequence A1, . . . , Ai in increasing order of i
until finally Al = A is computed. Thus it suffices to perform the following algorithmic
task: Given a pi-subgroup Ai of Aut(G) for a graph G and 0 ≤ i ≤ p− 1, compute a
pi+1-subgroup of Aut(G) if G ∈ modpi+1-GA.
The following results about finite groups of prime-power order indicate how this

can be done. First, we recall a stronger form of the third Sylow theorem [14, Theorem
11.1.1, p. 66]: if pi+1 divides |Aut(G)|, then for each subgroup of order pi there is
some subgroup of order pi+1 containing it.

Theorem 9. (Sylow’s theorem [14]). If pi+1 divides the order of a finite group
H, then for each subgroup K of H of order pi there is some subgroup of H of order
pi+1 containing K.
We derive from this the following easy fact, which is useful for our particular

application.
Fact 10. Let Ai be a pi-subgroup of Aut(G). A graph G is in modpi+1-GA if
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and only if the following three conditions hold for some g ∈ Aut(G).
(a) g �∈ Ai.
(b) g has order ps for some s ≤ i+ 1.
(c) gAig

−1 = Ai.

Moreover, if t+ 1 is the smallest positive integer such that gp
t+1 ∈ Ai for g ∈ Aut(G)

satisfying (a), (b), and (c), the set Ai+1 =
⋃p−1
j=0 Aig

jpt is a pi+1-subgroup of Aut(G)
containing Ai as a normal subgroup.

Proof. Suppose G ∈ modpi+1-GA and Ai is a p
i-subgroup of Aut(G). By The-

orem 9, there is a pi+1-subgroup Ai+1 of Aut(G) containing Ai. Furthermore, Ai is
normal in Ai+1 since every p

i-subgroup of a pi+1-subgroup is normal (see, e.g., [18,
Theorem 4.6, p. 75]). Thus, the quotient group Ai+1/Ai exists and is a cyclic group
of order p. Let Aig be a generator for Ai+1/Ai for some g ∈ Ai+1 − Ai. Such an
element g clearly fulfills the conditions (a), (b), and (c).
To prove the reverse implication suppose there exists g ∈ Aut(G) satisfying the

above three conditions. Let A be the group generated by Ai∪{g}. Since gAig−1 = Ai,
Ai is a normal subgroup of A. Furthermore, o(Aig) = pt+1 for some 0 ≤ t < s. It

follows that Aig
pt is an order-p element of the quotient group A/Ai. Let Ai+1 =⋃p−1

j=0 Aig
jpt . Clearly, Ai ⊂ Ai+1 ⊂ A. It is easy to check that Ai+1 is a p

i+1-subgroup
of Aut(G). Consequently, Ai is a normal subgroup of Ai+1.
By Fact 10 our algorithmic task is reduced to the following: Given as input

G ∈ modpi+1-GA and Ai as a list of permutations, where Ai is a p
i-subgroup of

Aut(G), compute g ∈ Aut(G) satisfying properties (a), (b), and (c) of Fact 10. We
first design an algorithm for the case i = 0. We will use this as a subroutine in our
algorithm for the general case.
We first describe a property of the graph gadget Cycle that we use extensively in

this section.
Lemma 11. Let H and K be two graphs on n vertices, and p be a fixed prime.

Consider Cycle(H,K, . . . ,K) with p − 1 copies of K. Aut(Cycle(H,K, . . . ,K)) is in
bijective correspondence with

Aut(H)× (Aut(K))p−1 ∪ Z∗p × (Aut(K))p−2 × Iso(H,K)× Iso(K,H),

where × denotes the Cartesian product, Z∗p is {1, . . . , p − 1}, and Iso(H,K) de-
notes the set of isomorphisms from H to K. Additionally, if a nontrivial π ∈
Aut(Cycle(H,K, . . . ,K)) is represented in Aut(H) × (Aut(K))p−1, then a nontriv-
ial automorphism of either H or K can be computed from π in polynomial time.
Similarly, if π is represented in Z∗p × (Aut(K))p−2 × Iso(H,K) × Iso(K,H), then a
nontrivial element of Iso(H,K) can be computed from π in polynomial time. Further-
more,

|Aut(Cycle(H,K, . . . ,K))| = |Aut(H)| · |Aut(K)|p−1 · (1 + (p− 1)χ[H ∼= K]),(1)

where χ[H ∼= K] is defined as 1 if H is isomorphic to K, and 0 otherwise.
Proof. Any automorphism of Cycle(H,K, . . . ,K) induces an automorphism in

the underlying directed p-cycle to which the graphs H and K are attached. The
automorphism group of the directed p-cycle is isomorphic to Zp = {0, . . . , p − 1}
under addition modulo p, where the element k ∈ Zp represents a forward rotation of
the directed p-cycle by k positions.
Consider π ∈ Aut(Cycle(H,K, . . . ,K)). If the underlying p-cycle is pointwise

fixed (represented by 0), then π maps H to itself, and also each copy of K to itself.
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Thus, π can be represented as an element of the product Aut(H) × (Aut(K))p−1.
Suppose the automorphism induced on the p-cycle is a rotation by some k > 0. Then
π can be represented by an element of Z∗p×(Aut(K))p−2×Iso(H,K)×Iso(K,H), where
the first component represents the k by which the underlying p-cycle is rotated by π,
the second component represents the p − 2 permutations used by π to successively
map one copy of K into the next (corresponding to the rotate by k), Iso(H,K)
represents the mapping by π of H into the kth copy of K, and finally Iso(K,H)
represents the mapping of the (p − k)th copy of K back to H. Clearly, in this
representation of Aut(Cycle(H,K, . . . ,K)), the part Z∗p × (Aut(K))p−2× Iso(H,K)×
Iso(K,H) is nonempty if and only if H and K are isomorphic. It is clear from the
above description that given a nontrivial π ∈ Aut(Cycle(H,K, . . . ,K)), if π can be
represented as an element of the product Aut(H) × (Aut(K))p−1, then it induces a
nontrivial automorphism, either on H or on some copy of K which can be computed
in polynomial time from π. Similarly, if π is represented in Z∗p × (Aut(K))p−2 ×
Iso(H,K) × Iso(K,H), then π induces an isomorphism from H to K which can be
computed in polynomial time from π.
Since Aut(H) × (Aut(K))p−1 ∪ Z∗p × (Aut(K))p−2 × Iso(H,K) × Iso(K,H) is a

disjoint union and |Iso(H,K)| = |Iso(K,H)| we get

|Aut(Cycle(H,K, . . . ,K))| = |Aut(H)|·|Aut(K)|p−1+(p−1)·|Aut(K)|p−2·|Iso(H,K)|2.

The expression for |Aut(Cycle(H,K, . . . ,K))| in the lemma statement follows by ob-
serving additionally that if H ∼= K, then |Iso(H,K)| = Aut(H) = Aut(K), and if
H �∼= K, then |Iso(H,K)| = 0.

Lemma 12. For any prime p, there is a polynomial-time algorithm A with
modp-GA as oracle such that given a graph G as input, A rejects G if G �∈ modp-GA,
and A outputs an element of order p contained in Aut(G) if G ∈ modp-GA.

Proof. We first give an intuitive description of A. Let G ∈ modp-GA. Any order-
p automorphism of G is a product of disjoint p-cycles. Given G as input, algorithm
A will compute an order-p automorphism of G by successively determining all its
p-cycles. In order to find the p-cycles of an order-p automorphism we will use the
Cycle gadget of Lemma 11 as follows. Let X be a maximal fixed point set for G
such that G[X] ∈ modp-GA, and let H = G[X]. For a vertex list C = {i1, . . . , ip}
in a graph G, let its rotate shift r(C) be the vertex list {i2, . . . , ip−1, ip, i1}. By
the maximality of X in the definition of H, identity (1) of Lemma 11 implies that
Cycle(H[C], H[r(C)], . . . , H[r(C)]) ∈ modp-GA, with p− 1 copies of H[r(C)], if and only
if H[C]

∼= H[r(C)]. In turn, H[C]
∼= H[r(C)] if and only if G has an automorphism with

C as a p-cycle. This property of Cycle is repeatedly exploited in algorithm A to build
the desired order-p automorphism. The algorithm is formally described in Figure 2.

Correctness. If G �∈ modp-GA, then G is clearly rejected by A. In order to prove
correctness we must establish the following claims for any input G ∈ modp-GA.

Claim 1. The while-loop invariant: At the beginning of each iteration of the
while-loop, there is an order-p automorphism of G that fixes X pointwise and contains
each C ∈ C as a cycle.

Claim 2. Termination: Eventually each vertex in S = V (G)−X will be covered
by some cycle in C and the while-loop is exited.
Clearly, if Claims 1 and 2 are true, then the algorithm will output an order-p

automorphism ψ.
The first for-loop computes G[X] ∈ modp-GA where X is a maximal set (of fixed

points) preserving membership of G[X] in modp-GA.
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input G;
if G �∈ modp-GA then reject and stop;
X := ∅;
for i := 1 to |V (G)| do
if G[X∪{i}] ∈ modp-GA then X := X ∪ {i}

endfor;
S := V (G)−X;
C := ∅;
G′ := G[X]; G

′′ := G[X];
while S �= ⋃D∈C D do
find a p-cycle C ⊆ S −⋃D∈C D such that Cycle(G′[C], G

′′
[r(C)], . . . , G

′′
[r(C)]) ∈ modp-GA;

(* There are p− 1 copies of G′′[r(C)] in the above Cycle definition *)

G′ := G′[C]; G
′′ := G′′[r(C)];

C := C ∪ {C};
endwhile;
output ψ and stop.

Fig. 2. Algorithm A.

Proof of Claim 1. Claim 1 clearly holds at the beginning of the first iteration
of the while-loop when C is empty. Now, suppose it holds at the beginning of some
iteration of the while-loop for a set of p-cycles C, and a new p-cycle C gets added in that
iteration. Since the algorithm adds C to C, we have Cycle(G′[C], G

′′
[r(C)], . . . , G

′′
[r(C)]) ∈

modp-GA.
Observe that by construction of G′ and G′′ in A we have at any stage of the

algorithm

Aut(G′[C]) = Aut(G′′[r(C)]) =

{
π ∈ Aut(G) | ∀x ∈

⋃
D∈C

D ∪ C : π(x) = x

}
.

Hence, by identity (1) of Lemma 11 we have

|Aut(Cycle(G′[C], G
′′
[r(C)], . . . , G

′′
[r(C)]))| = |Aut(G′[C])|p · (1 + (p− 1)χ[G′[C]

∼= G′′[r(C)]]).

From the above identity, Aut(Cycle(G′[C], G
′′
[r(C)], . . . , G

′′
[r(C)])) ∈ modp-GA if and

only if either G′[C] ∈ modp-GA or G′[C]
∼= G′′[r(C)]. Notice that G

′
[C] �∈ modp-GA, since

maximality of X implies that no order-p element of Aut(G) can pointwise fix X ∪C.
Thus, G′[C]

∼= G′′[r(C)]. Let ψ ∈ Iso(G′[C], G
′′
[r(C)]). Then ψ induces a φ ∈ Aut(G) which

pointwise fixes X, and C ∪ {C} is contained in the p-cycle set of φ. Let o(φ) = psm
for positive integers m and s with (p,m) = 1. Notice that s = 1, for if s > 1, then

φp
s−1m is an order-p automorphism of G that pointwise fixes not only X but each

point in the cycles in C∪{C}, contradicting maximality of X. As (p,m) = 1, there are
integers α, β such that pα+mβ = 1. Notice that φmβ has order p, because o(φ) = pm
and p does not divide mβ. We claim that φmβ is an order-p automorphism of G that
contains C ∪{C} in its p-cycle set. To see this, let ρ1 be the product of the p-cycles in
C ∪ {C}. Then φ = ρ1ρ2 for some permutation ρ2 whose nontrivial cycles are disjoint

from C ∪ {C}. We have φmβ = ρmβ1 ρmβ2 as ρ1 and ρ2 commute. Since o(ρ1) = p

we have ρmβ1 = ρ1−pα
1 = ρ1. Thus, φ

mβ = ρ1ρ
mβ
2 , implying that φmβ is an order-p

automorphism of G which contains C ∪ {C} as p-cycles and also pointwise fixes X.
This finishes the proof of Claim 1.
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Proof of Claim 2. To prove Claim 2 it suffices to show that after every iteration
of the while-loop a new p-cycle gets added to C. Since X is a maximal fixed point set
for the graph G preserving membership in modp-GA, notice that for ψ ∈ Aut(G[X])
of order p, ψ(x) �= x ∀x ∈ V (G) −X. That is, each vertex in V (G) −X is in some
p-cycle of ψ. Consider the beginning of some iteration of the while-loop such that S �=⋃
D∈C D. By Claim 1 there is an order-p automorphism ψ of G[X] containing each D ∈

C as a cycle. Let C ⊆ S −⋃D∈C D be a p-cycle of ψ. Clearly, ψ ∈ Iso(G′[C], G
′′
[r(C)]),

and hence Cycle(G′[C], G
′′
[r(C)], . . . , G

′′
[r(C)]) ∈ modp-GA. Thus, there is at least one

p-cycle C for which the “find” will succeed. So, a new p-cycle will get included in C
at the end of this iteration. It follows that the while-loop iteration will terminate in
|V (G)−X|/p iterations. This completes the proof of Claim 2.
Finally, observe that A has polynomially bounded running time, since the while-

loop iterates at most n/p times, and each “find” operation takes time O(np) (imple-
mented as an exhaustive search of all p-cycles contained in S −⋃D∈C D).
For the general case we need two additional graph gadgets. The first of these,

Paste, is built out of t n-vertex graphs, G1, . . . , Gt. The gadget Paste(G1, G2, . . . , Gt)
has the property that any ψ ∈ Aut(Paste(G1, G2, . . . , Gt)) induces on each Gj , 1 ≤
j ≤ t the same automorphism π ∈ ⋂tj=1 Aut(Gj). In the next lemma we formally
describe Paste and state relevant properties.

Lemma 13. Given t graphs G1, G2, . . . , Gt, each with n nodes, we can construct
in polynomial time a new graph Paste(G1, G2, . . . , Gt) with vertex set a disjoint union
of V (Gi), 1 ≤ i ≤ t, such that the following properties hold.

1. ψ is an isomorphism from Paste(G1, G2, . . . , Gt) to Paste(H1, H2, . . . , Ht) if
and only if there is a permutation π ∈ ⋂ti=1 Iso(Gi, Hi) such that ψ restricted
to Gi is π for 1 ≤ i ≤ t. In fact, ψ ↔ π is a bijective correspondence between
Iso(Paste(G1, G2, . . . , Gt),Paste(H1, H2, . . . , Ht)) and

⋂t
i=1 Iso(Gi, Hi).

2. Given ψ ∈ Iso(Paste(G1, G2, . . . , Gt),Paste(H1, H2, . . . , Ht)), we can con-
struct in polynomial time the corresponding π ∈ ⋂ti=1 Iso(Gi, Hi).

3. Let p be a prime. Paste(G1, G2, . . . , Gt) ∈ modp-GA if and only if there is

an order-p permutation π ∈ ⋂ti=1 Aut(Gi).
Proof. We define Paste(G1, G2, . . . , Gt) for t graphs G1, G2, . . . , Gt, with n ver-

tices each. It has one copy of each of the graphs G1, G2, . . . , Gt. Furthermore, we
label all the nodes of Gi using a distinct label ci which depends only on the index
i (see Figure 3 for an example). In particular, for two graphs Paste(G1, G2, . . . , Gt)
and Paste(H1, H2, . . . , Ht), the nodes of both Gi and Hi get the same label ci by
construction for each i. This forces each isomorphism from Paste(G1, G2, . . . , Gt) to
Paste(H1, H2, . . . , Ht) to map the copy of Gi to Hi for every i. Next, for each i < t
and 1 ≤ j ≤ n, we put a directed edge from the jth node of Gi to the jth node
of Gi+1. This ensures that for each isomorphism ψ from Paste(G1, G2, . . . , Gt) to
Paste(H1, H2, . . . , Ht), if node j1 in Gi is mapped to node j2 in Hi, then for each
i′ �= i, the corresponding node j1 of G

′
i gets mapped to the node j2 of H

′
i. It follows

that there is a π ∈ Sn such that for each i, ψ maps Gi to Hi via π. Thus, the
construction guarantees the property claimed in part 1.
Notice that parts 2 and 3 of the lemma are both direct consequences of part 1

and the above gadget construction. This proves the lemma.
We give some intuitive explanation before proceeding further. Recall that in the

general case the input are G ∈ modpi+1-GA and Ai as a list of permutations, where
Ai is a p

i-subgroup of Aut(G). By Fact 10 we need to compute g ∈ Aut(G)−Ai such
that o(g) divides pi+1 and gAig

−1 = Ai. For this purpose, we will design the last



1310 V. ARVIND, R. BEIGEL, AND A. LOZANO

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��1

2

3

c

c

c

c’

c’

c’

1’

2’

3’

Fig. 3. An example of Paste: The entire graph is Paste(G,G′), where G is induced by 1, 2,
and 3, and G′ is induced by 1′, 2′, and 3′. Nodes of G and G′ are labeled by c and c′, respectively.

of our graph gadgets Combine which is built from G and Ai using Paste and Cycle.
Essentially, Combine has the property that allows us to easily extract the desired
element g from an order-p automorphism of Combine. We explain the underlying
ideas before giving the formal details. First, we transform the algebraic requirement
gAig

−1 = Ai into the setting of GAs. For this we need a crucial definition and a
lemma of Hoffman from [13].

Definition 14 (see [13]). Let π ∈ Sn be a permutation. The cycle graph of π is
the directed graph G = ([n], E), where (i, j) ∈ E if and only if π(i) = j for i �= j.

Lemma 15 (see [13]). Let G and H be the cycle graphs of π and ψ in Sn,
respectively. Then, Aut(G) is precisely the set of all permutations in Sn that com-
mute with π. Furthermore, Iso(G,H) is precisely the set of permutations g such that
gπg−1 = ψ.
Let Ai = {g1, g2, . . . , gt}. Let Gi be the cycle graph of gi for 1 ≤ i ≤ t. Clearly,

gAig
−1 = Ai if and only if g ∈

⋂t
i=1 Iso(Gi, Gτ(i)) for some permutation τ of [t].

Let H = Paste(G,G1, G2, . . . , Gt) and K = Paste(G,Gτ(1), Gτ(2), . . . , Gτ(t)). The
element g we are seeking is in Iso(H,K) for some τ , with the additional properties
that g �∈ Ai and o(g) divides pi+1. Since we must compute g with access to modp-GA
as oracle (not GI), we will define Combine to be essentially Cycle(H,K, . . . ,K) with
p− 1 copies of K. Actually, we will incorporate in Combine more labels attached to
H and the copies of K that allow us to identify cycles of g and also to ensure that the
resulting element g is in Aut(G)−Ai. We now formally define Combine and establish
some properties.

Lemma 16. Let G be a graph on n nodes and S = {g1, g2, . . . , gt} ⊆ Sn be a set of
permutations. Let C = {C1, C2, . . . , Cs} ⊆ Sn be a set of pairwise disjoint cycles, p be
a fixed prime, and τ be a permutation on [t]. Then we can compute in time polynomial
in n, t, and s a graph Combine(τ,G, S, C, p) such that Aut(Combine(τ,G, S, C, p)) is
in bijective correspondence with

Ap ∪ Z∗p ×Ap−2 ×B2,

where
1. A is the set of automorphisms π of G such that π(x) = x ∀x ∈ ⋃si=1 Ci and

such that πgiπ
−1 = gi for 1 ≤ i ≤ t;

2. B is the set of all automorphisms π of G such that C1, C2, . . . , Cs are cycles
of π and such that πgiπ

−1 = gτ(i) for 1 ≤ i ≤ t.
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Furthermore, given a nontrivial ψ ∈ Aut(Combine(τ,G, S, C, p)), we can decide in
polynomial time whether it has its representation in Ap, or in Z∗p × Ap−2 × B2, and
also compute its representation as an element of Ap ∪ Z∗p × Ap−2 × B2. If ψ has its
representation in Ap, then we can compute in polynomial time a nontrivial element
ψG ∈ A, and if ψ has its representation in Z∗p ×Ap−2 ×B2, then we can compute in
polynomial time a nontrivial element ψG ∈ B.

Proof. Let the composition C1C2 · · ·Cs of the cycles in C be ψ ∈ Sn. Let G′ be
the graph obtained from G by labeling each x ∈ ⋃si=1 Ci with a distinct label nx.
Similarly, let G′′ be the graph obtained from G by labeling ψ(x) ∈ ⋃si=1 Ci with label
nx for each x ∈

⋃s
i=1 Ci.

Let H = Paste(G′, G1, G2, . . . , Gt), where Gi is the cycle graph of gi for 1 ≤ i ≤ t.
Similarly, let K = Paste(G′′, Gτ(1), Gτ(2), . . . , Gτ(t)). Finally, we put one copy of H
and p − 1 copies of K together to build the graph Cycle(H,K, . . . ,K). We define
Combine(τ,G, S, C, p) as Cycle(H,K, . . . ,K). Clearly, Combine(τ,G, S, C, p) can be
computed in time polynomial in n, t, and s. See Figure 4 for an example graph.
Notice that by construction we have

Aut(G′) = Aut(G′′) =

{
π ∈ Aut(G) | π(x) = x ∀x ∈

s⋃
i=1

Ci

}
.(2)

By Lemma 15 we have

Aut(Gi) = {π ∈ Sn | πgiπ−1 = gi} for 1 ≤ i ≤ t.(3)

By construction we have

Iso(G′, G′′) = {π ∈ Aut(G) | C1, C2, . . . , Cs are cycles of π}.(4)

Again, by Lemma 15 we have

Iso(Gi, Gτ(i)) = {π ∈ Sn | πgiπ−1 = gτ(i)}.(5)

By identities 2 and 3 and the definition of A we have

A = Aut(G′) ∩
t⋂
i=1

Aut(Gi) = Aut(G′′) ∩
t⋂
i=1

Aut(Gτ(i)).(6)

By identities 4 and 5 and the definition of B we have

B = Iso(G′, G′′) ∩
t⋂
i=1

Iso(Gi, Gτ(i)).(7)

We now show that Aut(Combine(τ,G, S, C, p)) is in bijective correspondence with
Ap ∪Z∗p ×Ap−2 ×B2. By Lemma 11, Aut(Combine(τ,G, S, C, p)) can be represented
as

Aut(H)× (Aut(K))p−1 ∪ Z∗p × (Aut(K))p−2 × Iso(H,K)× Iso(K,H).

First, consider Aut(H) × (Aut(K))p−1. By Lemma 13 and identity (6), Aut(H)
is in bijective correspondence with Aut(G′) ∩ ⋂ti=1 Aut(Gi) = A and Aut(K) is in
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Fig. 4. An example of Combine: The entire graph is Combine(τ,G, S, C, p), where τ = id, G
is the graph induced by nodes 1, 2, and 3, S = {id}, C = {(1 3)}, and p = 3. Notice that G′ is the
graph G with labels n and n′ on nodes 1 and 3, respectively. G′′ has labels n′ and n on nodes 1
and 3, respectively. The graph induced by 1′, 2′, and 3′ is the cycle graph Gid of id. The additional
labels c and c′ are for building H = Paste(G′, Gid) and K = Paste(G′′, Gid). Finally, the nodes
10, 11, and 12 induce the cycle underlying Cycle(H,K,K). For clarity, some edges are shown with
dashed lines.

bijective correspondence with Aut(G′′) ∩ ⋂ti=1 Aut(Gτ(i)) = A. Hence, Aut(H) ×
(Aut(K))p−1 is in bijective correspondence with Ap.
Next, consider Z∗p × (Aut(K))p−2 × Iso(H,K) × Iso(K,H). Since Aut(K)p−2 is

in bijective correspondence with Ap−2, it suffices to show that Iso(H,K)× Iso(K,H)
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is in bijective correspondence with B2. By Lemma 13, Iso(H,K) is in bijective
correspondence with Iso(G′, G′′) ∩ ⋂ti=1 Iso(Gi, Gτ(i)), which is B by identity (7).
Since Iso(K,H) is clearly in bijective correspondence with Iso(H,K), it follows that
(Aut(K))p−2× Iso(H,K)× Iso(K,H) is in bijective correspondence with Z∗p ×Ap−2×
B2.
Finally, by the properties of Cycle and Paste described in Lemmas 11 and 13,

notice that given a nontrivial automorphism ψ ∈ Aut(Combine(τ,G, S, C, p)) we can
decide in polynomial time whether its representation is in Ap or in Z∗p × Ap−2 ×
B2. If the representation of ψ is in Ap, then, by Lemma 13, ψ induces a nontrivial
automorphism on H or some copy of K. To be precise, we take the automorphism
induced on H or the first such copy of K on which a nontrivial automorphism is
induced. This automorphism of H or K yields a nontrivial automorphism ψG ∈
A by identity (6) and the bijective correspondence of Lemma 13. Similarly, if ψ
has its representation in Z∗p × Ap−2 × B2, then, by Lemmas 11 and 13, ψ induces
an isomorphism ψG ∈ Iso(H,K) = B. In either case, by Lemma 11, ψG is easily
computable from ψ.

Corollary 17. Combine(τ,G, S, C, p) ∈ modp-GA if and only if either A has
an element of order p or B is not empty. Furthermore, given any order-p element
ψ ∈ Aut(Combine(τ,G, S, C, p)), either ψG ∈ A and ψG is of order p, or ψG ∈ B
(where A, B, and ψG are as defined in Lemma 16).

Proof. Identity (1) in Lemma 11 and the bijective correspondence of Lemma 16
immediately yields

|Aut(Combine(τ,G, S, C, p))| = |A|p(1 + (p− 1)χ[B �= ∅]),(8)

where χ[B �= ∅] is 1 if B �= ∅ and is 0 otherwise.
For the first part, by identity (8), notice that Combine(τ,G, S, C, p) ∈ modp-GA

if and only if p divides |A| or B is not empty. Since A is a group, it has an element
of order p if and only if p divides |A| (by Sylow’s theorem (Theorem 9)).
Next, by Lemma 16 ψG ∈ A ∪ B. Notice that ψG ∈ A precisely when ψ has

its representation in Ap. In that case, ψ induces an order-p automorphism on H or
some copy of K. Consequently, by identity (6) and the bijective correspondence of
Lemma 13, ψG is an order-p element in A.
We are ready to prove the main result of this section.
Theorem 18. For any prime p, there is a polynomial-time algorithm B with

modp-GA as oracle such that, given a graph G and a pi-subgroup Ai of Aut(G) as
input, if G �∈ modpi+1-GA, then B rejects, and if G ∈ modpi+1-GA, then B lists out
the elements of an order-pi+1 subgroup of Aut(G).

Proof. The case i = 0 is proven in Lemma 12. We first give a brief intuitive
description of algorithm B. Given G and Ai as input, the algorithm exhaustively—but
in time polynomial in |V (G)|—searches for a permutation τ of Ai and a cycle collection
C of constant size (specified in the algorithm) such that Combine(τ,G,Ai, C, p) ∈
modp-GA. Now, using algorithm A of Lemma 12 it computes an order-p element
ν ∈ Aut(Combine(τ,G,Ai, C, p)). Next, applying Lemma 16, νG ∈ Aut(G) is extracted
from ν. The element g (defined in Fact 10) is computed from νG, and Ai+1 is computed
from g and Ai using Fact 10. In order to ensure that g is the desired element defined
in Fact 10, the cycle collection C is picked by the algorithm in such a way that it fulfills
two properties: First, the points of

⋃
D∈C D witness that νG �∈ Ai, as C is picked such

that νG differs from each element of Ai at some point in
⋃
D∈C D; this ensures that

g �∈ Ai. Second, only cycles whose size is a power of p are picked, which guarantees
that o(g) = ps for some s > 0.
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input G and a pi-subgroup Ai of Aut(G);
X := {m | 1 ≤ m ≤ pi+1 and (p,m) = 1};
for each pairwise disjoint cycle collection

{{Cs}ts=1 | t ≤ 2p2i+1,
∏t
s=1 Cs �= id, and (

∏t
s=1 Cs)

pi+1

= id}
and each sequence {lm,j ∈Mj}1<j≤pi,m∈X
and each sequence {fm,j ∈ Fj}j∈J,m∈X
and each permutation τ of Ai

do
if the following conditions hold:
(a) {lm,j ∈Mj}1<j≤pi ⊆ ∪1≤i≤tCi for each m ∈ X
(b) {fm,j ∈ Fj}j∈J ⊆ ∪1≤i≤tCi for each m ∈ X
(c) (C1C2 · · ·Ct)m(lm,j) �= gj(lm,j) or (C1C2 · · ·Ct)m(fm,j) �= gj(fm,j) ∀j and
for each m ∈ X
(d) Combine(τ,G,Ai, C, p) ∈ modp-GA, where C := {C1, . . . , Ct}

then
Use Algorithm A of Lemma 12 to compute an order-p automorphism
ν of Combine(τ,G,Ai, C, p);
Using Lemma 16, compute from ν an automorphism νG of G;
Compute o(νG) = rps, where (p, r) = 1;
Let g := νrG;
Compute Ai+1 defined in Fact 10;
Output Ai+1 and stop

endif
endfor
reject and stop.

Fig. 5. Algorithm B.

We now present the details. Let Ai = {g1, . . . , gpi}, where without loss of gener-
ality, g1 = id. For 1 ≤ j ≤ pi, let Fj = {x ∈ [n] : gj(x) = x} and Mj = [n]−Fj . That
is, Fj is the set of fixpoints of gj ∈ Ai and Mj is the set of points that are not fixed
by gj . Let J ⊆ [pi] denote the set of indices j such that Fj �= ∅. Notice that J �= ∅
since 1 ∈ J . The algorithm is described in Figure 5.

Correctness. In order to prove the correctness of algorithm B, it suffices to estab-
lish the following claims.

Claim 1. If G ∈ modpi+1-GA, then for some choice of the “for” loop parameters,
the four “if” conditions (a), (b), (c), and (d) will be true.

Claim 2. If the “if” conditions (a), (b), (c), and (d) are met by some choice of
the for-loop parameters, then the set Ai+1 that is output is a p

i+1-subgroup of Aut(G).
Proof of Claim 1. Suppose G ∈ modpi+1-GA and Ai is a p

i-subgroup of Aut(G).
By Fact 10, there is a π ∈ Aut(G) − Ai such that πAiπ

−1 = Ai and o(π) = ps.
Fix such a π. If (p,m) = 1, then πm and π both generate the same cyclic group.
It follows that ∀m ∈ X : πm �∈ Ai. Thus, for each m ∈ X, we have sequences
{lm,j ∈Mj}1<j≤pi and {fm,j ∈ Fj}j∈J such that ∀j, the following holds:

πm(lm,j) �= gj(lm,j) or π
m(fm,j) �= gj(fm,j).

Writing π as a product of disjoint cycles we need at most 2pi cycles of π to verify
as above that πm �∈ Ai for a given m ∈ X, since in the worst case we may need to
pick a distinct cycle for each point lm,j or fm,j . Furthermore, since |X| ≤ pi+1 we
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need to pick at most 2p2i+1 cycles of π to verify that (∀m ∈ X)[πm �∈ Ai]. For such
a choice of cycles C = {C1, . . . , Ct} of π and sequences {lm,j} and {fm,j}, conditions
(a), (b), and (c) in the “if” statement are fulfilled.
Next, observe that since πAiπ

−1 = Ai there is a permutation τ of Ai such that
πgjπ

−1 = gτ(j) for each gj ∈ Ai. We claim that Combine(τ,G,Ai, C, p) ∈ modp-GA.
To see this, recall by Lemma 16 that Aut(Combine(τ,G,Ai, C, p)) has the represen-
tation Ap ∪ Z∗p × Ap−2 × B2. It is easy to verify that π ∈ B. Since B �= ∅, by
Corollary 17 we have Combine(τ,G,Ai, C, p) ∈ modp-GA. Thus, condition (d) in the
“if” statement is fulfilled by Combine(τ,G,Ai, C, p). This completes proof of Claim 1.

Proof of Claim 2. Let ν be the order-p automorphism of Combine(τ,G,Ai, C, p)
computed by algorithm A. Consider νG ∈ Aut(G), defined in Lemma 16. Let o(νG) =
rps, (p, r) = 1. Let g = νrG. Then o(g) = ps.
By Lemma 16 and Corollary 17, either νG is an order-p element in A or νG ∈ B.

We show in each case that the algorithm outputs a pi+1-subgroup Ai+1 of Aut(G).
• Suppose νG is an order-p element of A. In this case, g = νG. Now, by
definition of A, we have νGAiν

−1
G = Ai and νG(x) = x ∀x ∈ ⋃tj=1 Cj . Since

{l1,j ∈ Mj} is contained in
⋃t
j=1 Cj , we have νG(l1,j) = l1,j ∀j > 1, which

implies that g = νG �∈ Ai. Thus, by Fact 10, Ai+1 is a p
i+1-subgroup of

Aut(G).
• Suppose νG ∈ B. By Lemma 16, νGAiν

−1
G = Ai, and C1, . . . , Ct are cy-

cles of νG. The algorithm B picks C1, . . . , Ct such that
∏t
j=1 Cj �= id and

(
∏t
j=1 Cj)

pi+1

= id. Since (
∏t
j=1 Cj)

pi+1

= id and (p, r) = 1, we have

(
∏t
j=1 Cj)

r = (
∏t
j=1 Cj)

m′
for some m′ such that 1 ≤ m′ < pi+1 and

(p,m′) = 1. Therefore,

∀x ∈
t⋃

j=1

Cj : g(x) = νrG(x) =


 t∏
j=1

Cj



r

(x) =


 t∏
j=1

Cj



m′

(x).(9)

Since the “if” conditions (a), (b), and (c) are fulfilled, the sequences {lm′,j ∈
Mj} and {fm′,j ∈ Fj} are both contained in

⋃t
j=1 Cj , and we also have


 t∏
j=1

Cj



m′

(lm′,j) �= gj(lm′,j) or


 t∏
j=1

Cj



m′

(fm′,j) �= gj(fm′,j), 1 ≤ j ≤ pi.

By identity (9) this is equivalent to

g(lm′,j) �= gj(lm′,j) or g(fm′,j) �= gj(fm′,j), 1 ≤ j ≤ pi.

Hence, g �∈ Ai. Finally, since νGAiν−1
G = Ai, we have gAig

−1 = νrGAiν
−r
G =

Ai. Putting it all together, it follows from Fact 10 that the output set Ai+1

is a pi+1-subgroup of Aut(G).
This completes the proof of Claim 2.

Running time. Let |V (G)| = n, where G is the input graph. An easy analysis
shows that the running time of algorithm B is polynomial in n (treating p and i as
constants): Notice that each of the four nested for-loops has a polynomial (in n)
range. The following computations involved are within for-loops: checks of the “if”
conditions, calls to algorithm A of Lemma 12, invoking the procedure described in
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Lemma 16, and computing powers of permutations. Each of these has polynomial
running time. Hence, the overall algorithm has polynomial running time.
Notice the following immediate consequence of Theorem 18 and Lemma 8. In-

terestingly, it is analogous to the well-known result that ModpP and ModpkP are
identical [5].

Corollary 19. For any prime p and any k > 0, modp-GA and modpk -GA are
polynomial-time Turing equivalent.
The main consequence of Theorem 18 is stated below. In the beginning of the

section we argued how it follows easily from Theorem 18.
Theorem 20. Let

∏
1≤j≤m p

ej
j be the prime factorization of k. There is a

polynomial-time oracle algorithm with oracle access to modk-GA that computes, for
input G ∈ modk-GA, a list of m subgroups {A1, A2, . . . , Am} of Aut(G), where each
Ai is listed as a set of permutations and |Ai| = peii .

5. A program checker for modk-GA. As mentioned in the introduction, both
GI and GA have polynomial-time program checkers. Since modk-GA sits between
GA and GI with respect to many-one reducibility, it is natural to ask if modk-GA
is also polynomial-time checkable. This does not follow from the results of GI and
GA as polynomial-time checkability is known to be preserved only under polynomial-
time Turing equivalence [7]. We show that modk-GA has a polynomial-time program
checker for each k > 1.

Definition 21 (see [7]). A program checker CA for a decision problem A is a
probabilistic oracle algorithm that takes as input an instance x0 of A and a positive
integer k (the security parameter) given in unary such that, given any program P
(purportedly for A) that halts on all instances, the following properties are satisfied:

1. If P is a correct program, that is, if P (x) = A(x) for all instances x, then
with probability ≥ 1− 2−k, CA(x0, P, k) = Correct.

2. If P (x0) �= A(x0), then with probability ≥ 1− 2−k, CA(x0, P, k) = Incorrect.
The probability is computed over the internal coin-tosses of the checker CA, and CA
is allowed to make oracle queries to the program P on some instances.

Definition 22 (see [11]). An interactive proof system consists of a prover-
verifier pair P ↔ V . The verifier V is a probabilistic polynomial-time machine, and
the prover P is, in general, a machine of unlimited computational power which shares
the input tape and a communication tape with V . P ↔ V is an interactive (i.e., IP)
protocol for a language L if for every x ∈ Σ∗,

x ∈ L⇒ Prob[P makes V accept ] > 3/4,

x �∈ L⇒ for all provers P ′ : Prob[P ′ makes V accept ] < 1/4.

The design of our checker for modk-GA is based on the following theorem.
Theorem 23 (see [7]). If a decision problem A and its complement have both

interactive proof systems, in each of which the honest prover can be simulated in
polynomial time with queries to A, then A has a polynomial-time program checker.
We first consider modp-GA for prime p. Notice that Lemma 12 already gives

an IP protocol for modp-GA with the prover polynomial-time Turing reducible to
modp-GA. Thus, it suffices to design an IP protocol for modp-GA with requisite
properties.

Lemma 24. For any prime p, there is an IP protocol for modp-GA in which the
honest prover is polynomial-time Turing reducible to modp-GA.

Proof. We will build the desired IP protocol from the above IP protocol for the
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input (G,C);
Y := [n]− {i : i ∈ C};
1. Verifier:

Pick ψ ∈ SY and b ∈ {0, 1}, both uniformly at random;
if b = 0 then send G′ = ψ(G) to the Prover
else send G′ = ψ ◦ C(G) to the Prover
endif

2. Prover:
if there is π ∈ SY such that π(G) = G′ then send c = 0
else send c = 1
endif;

if c = b then the Verifier accepts
else the Verifier rejects
endif

Fig. 6. 2-round IP protocol for L.

related language L = {(G,C) : |V (G)| = n, C ∈ Sn is a p-cycle and G has no
automorphism with C as one of its cycles } (see Figure 6).
We first show that if the prover is honest, then the protocol accepts an input

(G,C) ∈ L with probability 1. Suppose b = 0 and the graph ψ(G) = G′ is sent
to the prover. Then clearly the prover will find a permutation, namely, ψ, such that
ψ(G) = G′ and send back c = 0, leading to the acceptance of the input. Next, suppose
b = 1. In that case we claim that there does not exist any permutation π ∈ SY such
that π(G) = G′. Suppose there exists such a π. Then, since π(G) = ψ◦C(G), it follows
that (π)−1ψ ◦ C is in Aut(G), which contradicts the assumption that (G,C) ∈ L. In
this case the prover will send back c = 1 and the verifier will again accept.
Next, to prove that the protocol is sound, we must show that the verifier rejects

an input (G,C) �∈ L with probability at least 3/4 for any prover. In what follows we
denote the set {i : i ∈ C} by X and use Y to denote [n]−X.

Claim A. If τ ∈ Aut(G) such that τ has C as a cycle, then the random graphs
ψ(G) and ψ ◦C(G) are identically distributed, where ψ is picked uniformly at random
from SY .

Proof of Claim A. Let τ = ρ ◦C, where ρ ∈ SY . Since SY is a group and ρ ∈ SY ,
if α is uniformly distributed in SY , then so is β = α ◦ ρ. Therefore, for any graph H

Probα[α(G) = H] = Probα[ατ(G) = H]

and, replacing τ by ρ ◦ C, we have

Probα[ατ(G) = H] = Probα[(α ◦ ρ) ◦ C(G) = H] = Probβ [β ◦ C(G) = H],

where α and β are picked uniformly at random from SY . This completes the proof of
Claim A.
It follows from Claim A that if (G,C) �∈ L, the prover cannot distinguish between

whether G′ came from the case b = 0 or from b = 1. In fact, whether b = 0 or b = 1
the prover will find a π ∈ SY such that π(G) = G′. Therefore, the bit c that is
sent back by any (even a cheating) prover can agree with b with probability at most
1/2. Consequently, the verifier will reject an input (G,C) �∈ L with probability at
least 1/2. The error probability can be made exponentially small (say, 2−n) in the
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input G; (* G has n nodes *)
for each p-cycle C ∈ Sn do

if the IP protocol for L rejects (G,C) then reject (and stop)
endfor;
accept

Fig. 7. IP protocol for modp-GA.

above protocol by repeating the protocol2 (in parallel or sequentially). In Figure 7
we describe the IP protocol for modp-GA.
Notice that since p is constant, the total number of p-cycles in Sn is bounded

by qnp for a constant q. Thus the for-loop in the above protocol is bounded by
a polynomial in n. It is easy to see that this IP protocol accepts G ∈ modp-GA
with probability 1 and rejects G ∈ modp-GA with probability larger than 3/4. The
following claim completes the proof of the lemma.

Claim B. There is an honest prover that is polynomial-time Turing reducible to
modp-GA for the above IP protocol for modp-GA.

Proof of Claim B. It suffices to describe a polynomial-time algorithm with
modp-GA as oracle that simulates the honest prover correctly for inputsG ∈ modp-GA.
Since the IP protocol for modp-GA invokes the protocol for L, it is enough to give a
polynomial-time algorithm, with oracle modp-GA, that simulates the honest prover
of the IP protocol for L for each input in the set {(G,C) : C is a p-cycle in Sn}, where
G ∈ modp-GA. The honest prover’s task in the protocol for L is to compute π ∈ SY
such that π(G) = G′, where Y = [n]− C. We have already argued in the correctness
proof that for G ∈ modp-GA such a π ∈ SY exists if and only if the outcome of
b is 0 and G′ = ψ(G) for the random permutation ψ ∈ SY . Thus, we can assume
that the honest prover is sent a graph G′ by the verifier, where G′ = ψ(G) for some
ψ ∈ SY (ψ is not known to the prover). Since Y ∩C = ∅, it follows that G[C] and G

′
[C]

are isomorphic (take the isomorphism that pointwise fixes C and is defined as ψ on
Y ). Thus, |Aut(G[C])| = |Aut(G′[C])|. Now, consider G′′ = Cycle(G[C], G

′
[C], . . . , G

′
[C])

with p− 1 copies of G′[C]. By identity (1) in Lemma 11, we have

|Aut(G′′)| = |Aut(G[C])|p · (1 + (p− 1)χ[G[C]
∼= G′[C]]).

It follows that G′′ ∈ modp-GA since G[C] and G
′
[C] are isomorphic.

The honest prover simply invokes algorithmA on input G′′ (which is in modp-GA)
and computes an order-p automorphism ν of G′′.
Recall, by Lemma 11, that Aut(G′′) can be represented as

Aut(G[C])× (Aut(G′[C]))
p−1 ∪Z∗p × (Aut(G′[C]))

p−2× Iso(G[C], G
′
[C])× Iso(G′[C], G[C]).

Since G[C] �∈ modp-GA and G′[C] �∈ modp-GA, by Lemma 11 each order-p ele-
ment ν ∈ Aut(G′′) has its representation in Z∗p × (Aut(G′[C]))

p−2 × Iso(G[C], G
′
[C]) ×

Iso(G′[C], G[C]), and from ν an element π′ ∈ Iso(G[C], G
′
[C]) can be computed in poly-

nomial time. Clearly, π′ when projected on Y yields a π ∈ SY such that π(G) = G′.
The honest prover computes π as described and sends it back to the verifier.
As claimed, we have shown that there is an honest prover of the IP protocol for

L that is polynomial-time Turing reducible to modp-GA.

2With some modifications we can easily get constant round IP protocols.
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Theorem 25. For any prime p, modp-GA has a polynomial-time program checker.
Proof. Note that, from Lemma 12, we get an IP protocol for modp-GA with the

prover polynomial-time Turing reducible to modp-GA and that, by Lemma 24, an IP
protocol with requisite properties exists for modp-GA. Now, by Theorem 23 it follows
that there is an efficient checker for modk-GA.

Theorem 26. For each k > 1, modk-GA has a polynomial-time program checker.
Proof. Let

∏
1≤i≤m p

ei
i be the prime factorization of k. Because the class of check-

able sets is closed under join and under Turing equivalence [7], by Theorem 25 it suf-
fices to show that modk-GA ≡pT modp1-GA⊕ · · · ⊕modpm -GA. Observe that a graph
G belongs to modk-GA if and only if (∀i ≤ m)[G ∈ modpei

i
-GA]. Since, by Corol-

lary 19, modpei
i
-GA ≡pT modpi-GA for each i, we have modk-GA ≤pT modp1-GA⊕

· · · ⊕ modpm -GA. Recall from Lemma 8 that modpi-GA ≤pm modk-GA for each i.
Therefore, modp1-GA⊕ · · · ⊕modpm -GA ≤pT modk-GA as well.
6. Concluding remarks. We define the modular GA problems (modk-GA) and

locate them between GA and GI. We also design an efficient program checker for
modk-GA based on an algorithm that reduces search to decision for modk-GA and
an IP protocol for modk-GA. The bottleneck in making our checker nonadaptive is
essentially the following: Can search be reduced to decision via parallel queries for
modp-GA for prime p? Indeed, our initial motivation in studying the modk-GA prob-
lems was to understand the difference between GI and GA by introducing problems
of intermediate difficulty. In this context, a challenging problem is whether search
reduces to decision via parallel queries for GI (hence yielding nonadaptive checkers
for GI). We believe that this question will be easier to answer for modp-GA.

Acknowledgments. We are grateful to the referees for their thoughtful com-
ments. In particular, we are indebted to a referee for pointing out a flaw in an earlier
proof of Theorem 18. His insightful suggestions, especially the use of identity (1),
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APPROXIMATING SHORTEST PATHS ON A NONCONVEX
POLYHEDRON∗
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Abstract. We present an approximation algorithm that, given the boundary P of a simple,
nonconvex polyhedron in R

3 and two points s and t on P , constructs a path on P between s and t
whose length is at most 7(1 + ε)dP (s, t), where dP (s, t) is the length of the shortest path between s

and t on P , and ε > 0 is an arbitrarily small positive constant. The algorithm runs in O(n5/3 log5/3 n)
time, where n is the number of vertices in P . We also present a slightly faster algorithm that runs
in O(n8/5 log8/5 n) time and returns a path whose length is at most 15(1 + ε)dP (s, t).

Key words. approximation algorithms, Euclidean shortest paths, computational geometry

AMS subject classification. 68E99

PII. S0097539799352759

1. Introduction. Problem statement. Let P be the boundary (surface) of
a simple, possibly nonconvex polyhedron in R

3 with n vertices, and let s and t be
two points on P . (A polyhedron is simple if it is homeomorphic to a ball in R

3.) Let
πP (s, t) denote any shortest path between s and t on P , and dP (s, t) denote its length.
Let us call a path between s and t on P λ-approximate, for λ ≥ 1, if its length is at
most λdP (s, t). In this paper, we consider the problem of computing an approximate
shortest path on P from s to t. See Figure 1.

Computing a shortest path on a polyhedral surface is a central problem in nu-
merous areas, including robotics, geographic information systems, medical imaging,
low-altitude flight simulation, and water flow analysis. In most of these applications,
a simple, efficient algorithm for computing an approximate shortest path is preferable
to an expensive algorithm that computes an exact shortest path, since the input sur-
faces are rather large, efficiency is critical, and the polyhedral surface is typically an
approximation of the real surface.

Previous results. Motivated by these applications, many researchers have studied
the problem of computing a shortest path on a polyhedral surface [2, 3, 6, 10, 11,
12, 13, 17, 22, 25, 27]. Sharir and Schorr [27] gave an O(n3 log n) algorithm for
computing a shortest path on the boundary of a convex polyhedron, exploiting the
property that a shortest path “unfolds” into a straight line. Mitchell, Mount, and
Papadimitriou [22] improved the running time to O(n2 log n); their algorithm works
for nonconvex polyhedra as well. Chen and Han [6] gave another algorithm with an
improved running time of O(n2). Although several heuristics have been proposed
(see [2, 10, 11, 13, 17, 25], for example), it is a long-standing and intriguing open
problem whether a subquadratic algorithm can be developed even for computing an
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ts

Fig. 1. A path on a polyhedral surface.

approximate shortest path. Hershberger and Suri [16] presented a simple algorithm
that computes a 2-approximate path on a convex polyhedron in O(n) time. Agarwal
et al. [1] presented an algorithm that computes a (1 + ε)-approximate path on a
convex polyhedron in O(n log 1/ε + 1/ε3) time for any given ε > 0. However, both
these algorithms heavily exploit the convexity of the polyhedron and do not extend
to nonconvex polyhedra.

For the three-dimensional Euclidean shortest path problem—where we are given
a set of polyhedral obstacles and we want to compute the shortest collision-free path
between two given points—there are some approximation algorithms due to Papadim-
itrou [24], Clarkson [8], and Choi, Sellen, and Yap [7]. All these algorithms compute a
(1+ ε)-approximate path, but their running times are superquadratic in n. Recently,
Lanthier, Maheshwari, and Sack [19] and Mata and Mitchell [21] had considered the
problem of computing the weighted shortest path problem on polyhedral surfaces. In
this problem, each face of the given polyhedral surface has a weight associated with it,
and the cost of traversing a face is the distance traveled on the face times the weight
of the face. In this scenario, they give approximation algorithms for computing a
minimum-cost path between two given points on the polyhedral surface. Their algo-
rithms compute a (1+ε)-approximate path for the unweighted case in superquadratic
time.

Our results. In this paper, we present an algorithm that runs in O(n5/3 log5/3 n)
time and computes a 7(1 + ε)-approximate path on P from s to t. (Throughout the
rest of this paper, we will assume that ε > 0 is an arbitrarily small, positive number.)

We also present a second algorithm that computes in O(n8/5 log8/5 n) time a 15(1+ε)-
approximate path between s and t on P . Although our approach falls short of giving
a simple, near-linear-time algorithm for this problem, it is an important step because
the problem of computing an approximate shortest path in subquadratic time has
been open for quite some time.

The basic idea of our algorithm is rather simple: we choose a parameter r and
partition P into O(n/r) “patches,” each consisting of at most r faces. For each patch
Ri, we carefully choose a set of points on the “boundary edges” of Ri and construct
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a graph Gi that approximates a shortest path between any two points lying on the
boundary edges of Ri. We merge these graphs Gi into a single graph G; s and t
are guaranteed to be vertices of G. We then compute a shortest path from s to t
in G using Dijkstra’s algorithm and prove that the length of this path is at most
7(1 + ε)dP (s, t). There are two nontrivial steps in the algorithm: how to choose
points on the boundary edges and how to construct the graphs Gi’s. Using a scheme
based on the planar separator theorem [20] to partition P into patches, we ensure
that there are only O(

√
r) boundary edges per patch, which allows us to put only a

small number of points on the boundary of each patch Ri. In order to compute the
graph Gi efficiently, we need the idea of computing shortest paths on Ri from edge
sources.

The paper is organized as follows. In section 2, we give basic definitions and
properties related to shortest paths, and in section 3, we describe how to partition
P into patches. Section 4 describes the overall algorithm. Sections 5 and 6 describe
how to choose points on the edges of each patch and how to construct the graphs
Gi’s, respectively. Section 7 describes how the algorithm of Mitchell, Mount, and Pa-
padimitriou [22] can be generalized to compute shortest paths from edge sources; the
generalized algorithm is used in the construction of the Gi’s. Although this is a rather
technical extension of the algorithm of Mitchell, Mount, and Papadimitriou [22], we
include it for completeness. We conclude in section 8 by mentioning some exciting
recent developments.

2. Geometric preliminaries. We assume that the polyhedral surface P is spec-
ified by a set of faces, edges, and vertices that form a simplicial complex, with each
edge occurring in exactly two faces, and two faces intersecting either at a common
edge, vertex, or not at all. We consider faces to be closed polygons and edges to be
closed line segments. Without loss of generality, we assume that all faces are triangles
(otherwise, we can use any polygon triangulation algorithm to triangulate the faces,
thus introducing at most O(n) additional edges), and that s and t are vertices of P .
Since P is the boundary of a polyhedron, we will sometimes refer to a path on P as
a path on the polyhedron. If π is a path on P , we let |π| denote its length. For any
two points a, b ∈ π, let π[a, b] denote the portion of π between a and b. For any two
points u, v in P , let πP (u, v) denote the shortest path on P between u and v. We
refer to dP (u, v) = |πP (u, v)| as the shortest path distance on P between u and v. We
denote by d(p, q) the Euclidean distance between points p and q in R

3.
We review some relevant properties of shortest paths on polyhedral surfaces. A

detailed analysis can be found in [22, 27].

Unfolding. Two faces f and f ′ of P are said to be edge-adjacent if they share
a common edge. A sequence of edge-adjacent faces is a list of one or more faces
F = (f1, f2, . . . , fk+1) such that the face fi is edge-adjacent to the face fi+1 for
1 ≤ i ≤ k. Let ei be the edge shared by the faces fi and fi+1. We then refer to
the (possibly empty) list of edges E = (e1, e2, . . . , ek) as an edge sequence. If no face
(resp., edge) appears more than once in F (resp., E), then we call the sequence simple.

We associate with each face a two-dimensional coordinate system. If faces f and
f ′ are edge-adjacent sharing an edge e, we define the planar unfolding of f ′ onto f
as the image of points of f ′ when f ′ is rotated about the line through e until f and
f ′ become coplanar and lie on opposite sides of e; see Figure 2. Points in the planar
unfolding of f ′ onto f are represented in the coordinate system of f . We unfold
an edge sequence E as follows: Rotate fk+1 around ek until its plane coincides with
fk, rotate fk+1 (already unfolded around ek) and fk around ek−1 until their plane
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Fig. 2. Unfolding an edge sequence.

coincides with that of fk−2, and continue in this manner until all faces f2, . . . , fk+1

lie in the plane of f1. If x is a point on face fi, then the unfolded image of x along
E (written in the coordinate system of face f1) is the image of x when we unfold the
edge sequence E .

Let vi be a point that lies in the interior of edge ei for 1 ≤ i ≤ k. Let v (resp., v′)
be a point on face f1 (resp., fk+1) so that one of the following three conditions hold.
(There are nine possibilities allowed here, three each for v and v′.)

(i) v (resp., v′) is the vertex of f1 (resp., fk+1) that is opposite edge e1 (resp.,
ek).

(ii) v (resp., v′) lies in the interior of f1 (resp., fk+1).
(iii) v (resp., v′) coincides with v1 (resp., vk).

Then we say that the path π given by the concatenation of the segments vv1, v1v2, . . . ,
vk−1vk, vkv

′ connects the edge sequence E . If π connects edge sequence E , then the
planar unfolding of π along E is simply the unfolded image of π along E .
Shortest paths. A geodesic is a path that is locally optimal; that is, it cannot

be shortened by slight perturbations. A shortest path is obviously a geodesic. We
now state a few relevant properties of geodesics and shortest paths.

Lemma 2.1. The intersection of a shortest path with a face is a (possibly empty)
line segment. If π is a geodesic path that connects (two points along) the edge sequence
E, then the planar unfolding of π along E is a straight line segment.

Unlike the case of convex polyhedra, where a geodesic cannot pass through a
vertex of the polyhedron, a geodesic on the boundary of a nonconvex polyhedron can
pass through a vertex. The subpath of a geodesic π between any two vertices v and
v′ of P that are consecutive on π connects some edge sequence E . (If E = ∅, then v
and v′ are the endpoints of some edge e which is contained in π.) By Lemma 2.1, the
subpath from v to v′ is completely determined by giving the edge sequence E . Thus,
we have the following characterization of geodesics and shortest paths.

Lemma 2.2. We can describe a geodesic path π from s to t by writing it as a list

Φ(π) = (v1 = s, E1, v2, E2, v3, . . . , vk, Ek, vk+1 = t),

where v1, . . . , vk are the vertices (in order) through which π passes, and each Ei is
the (possibly empty) edge sequence which π[vi, vi+1] connects. The planar unfolding
of π[vi, vi+1] along Ei is a straight line segment. If π is a shortest path, no edge of P
appears in more than one edge sequence Ei, and each edge sequence Ei is simple.
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3. Partitioning the polyhedral surface. We can associate with the polyhe-
dral surface P a graph GP , the dual graph of the 1-skeleton of P , defined as follows.
(We use “nodes” and “arcs” in the context of graphs and use “vertices” and “edges”
when speaking of polyhedral features.) For each face f of P , there is a node nf in
GP . There is an arc between two nodes nf and nf ′ in GP if the corresponding faces
f and f ′ share an edge. Since P is a simple polyhedron, its 1-skeleton is a planar
graph; therefore, GP is also planar. Since each face of P is a triangle, the degree of
each node of GP is 3.

Our algorithm exploits a scheme that was developed by Frederickson [14] for
partitioning any planar graph G = (V,E). Let (V1, V2, . . . , Vk) be a cover of the node
set V , that is, Vi ⊆ V and

⋃
i Vi = V . We refer to each Vi as a region. A node in V

is interior to a region if all its adjacent nodes are in that region; a shared node is one
that is present in at least two regions. For a given parameter r, an r-partition of G is
a covering of the node set V by Θ(|V |/r) regions, so that the following two conditions
hold (see Figure 3).

(i) Any node is either a shared node or an interior node of some region; and
(ii) each region contains at most r nodes and O(

√
r) shared nodes.

Based on the separator theorem of Lipton and Tarjan [20], Frederickson [14] showed
that r-partitions exist and can be constructed in O(|V | log |V |) time.

Fig. 3. An r-partition of a planar graph. The shared nodes are highlighted.

An r-partition of GP induces a subdivision of the polyhedral surface P , which
we describe below. A polyhedral patch of P (or simply, a patch of P ) is just the
portion of P comprised of a subset of the faces of P . Given an r-partition of GP , we
designate any face that corresponds to a shared node of GP as a buffer face. For each
region Vi, we associate a polyhedral patch Pi consisting of the faces corresponding to
the interior nodes of Vi. (That is, each shared node defines one buffer face, and each
region defines one polyhedral patch.) Thus, an r-partition of GP induces a partition P
into O(n/

√
r) buffer faces and O(n/r) polyhedral patches, with each patch containing

at most r faces. Abusing terminology slightly, we refer to this partition of P as an
r-partition of P . An r-partition of P can be computed in O(n log n) time.

An edge of P incident to a buffer face is called a frontier edge. It is easily seen
that an r-partition satisfies the following properties:

1. If a face f in a patch shares an edge e with another face f ′, then either f ′

belongs to the same patch as f , or f ′ is a buffer face. In the latter case, e is
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a frontier edge.
2. Each patch has only O(

√
r) frontier edges.

Note that the frontier edges of a polyhedral patch constitute its boundary, so
we can also refer to them as the boundary edges of the patch. The total number
of frontier edges is at most cn/

√
r for some constant c > 0. Let α = cn/

√
r. The

following lemma describes the main application of the above partitioning scheme, but
first we need a definition.

Definition 3.1. An ε-portal set on an edge e of P is a collection φ(e) of points
(or portals) on e so that the following holds: For any point x on e that lies on the
shortest path πP (s, t), there exists p ∈ φ(e) whose distance from x is at most (ε/2α)×
dP (s, t). For simplicity, we assume that φ(e) includes the endpoints of edge e. Given
an r-partition of P and an ε-portal set on each frontier edge of the r-partition, a path
is legal if it lies completely within a single patch (resp., buffer face), and each of its
two endpoints is either s, t, or a portal on a frontier edge of the patch (resp., buffer
face).

Lemma 3.2. Given an r-partition of the polyhedron P and an ε-portal set on
each frontier edge of the r-partition, there is a path π∗ on P between s and t such that
(1) its length is at most (1 + ε)dP (s, t), and (2) it is a concatenation of legal paths.

Proof. Let π = (v1 = s, E1, v2, E2, v3, . . . , vk, Ek, vk+1 = t) represent the shortest
path between s and t, where v1, . . . , vk are the vertices (in order) through which π
passes, and each Ei is the (possibly empty) edge sequence which π[vi, vi+1] connects.
Let e be a frontier edge that occurs in some edge sequence Ei above. Let x be the
(unique) point on e that lies on π, and let p be the portal on e so that dP (x, p) =
d(x, p) ≤ ε/2× dP (s, t)/α. We alter π slightly by introducing a loop from x to p and
back. This increases the length of the path by at most εdP (s, t)/α. If we perform this
surgery on every frontier edge that occurs in some edge sequence, we get a path π∗

whose length is at most (1 + ε)dP (s, t). It is clear that π
∗ is a concatenation of legal

paths, since s and t are assumed to be vertices of P .

4. The overall algorithm. In this section, we present our algorithm for com-
puting a path between s and t on P whose length is at most 7(1 + ε)dP (s, t). For
the sake of clarity, we first present an algorithm that approximates the shortest path
distance, i.e., it returns a quantity that is at least dP (s, t) and at most 7(1+ε)dP (s, t).
Subsequently, we modify this algorithm to compute an approximate shortest path.

4.1. Approximating the shortest path distance. In order to describe the
algorithm, we need to define a β-approximator, which is similar to the well-studied
notion of a spanner (see [5, 26]) with Steiner points.

Definition 4.1. Let R be a polyhedral patch and S a set of points on R. A
β-approximator for S on R is a weighted graph G = (S ∪ S′, E), where S′ is a set of
additional points on R, that has the following properties.

(P1) The weight w(u, v) of any arc (u, v) ∈ E is dR(u, v), the length of the shortest
path between u and v on R.

(P2) For any u, v ∈ S, the length of the shortest path in G between u and v, denoted
dG(u, v), is at most βdR(u, v).

Algorithm. Approximate-distance.

1. We compute an r-partition of P , where r = n1/3 log1/3 n. Let R1, . . . , Rk1 de-
note the resulting buffer faces, Rk1+1, . . . , Rk1+k2 denote the resulting patches,
and B denote the set of resulting frontier edges. Here, k1 = O(n/

√
r),

k2 = O(n/r), and |B| ≤ α = O(n/
√
r). Recall that the boundary of each
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buffer face consists of three frontier edges, and the boundary of each patch
Ri consists of at most O(

√
r) frontier edges.

2. On each frontier edge e ∈ B, we compute an ε/2-portal set.
3. Let V denote the set of vertices of P , and let M denote the set of all the
portals introduced in step 2. For each i ≤ k1 + k2, let Vi = V ∩Ri be the set
of vertices in Ri, and let Mi = M ∩ Ri be the set of portals on the frontier
edges of Ri. Set |Mi| = mi and β = 7(1+ε/3). We compute a β-approximator
Gi = (Mi ∪M ′i , Ei) for Mi on Ri, where M

′
i is a set of additional Steiner

points on Ri.
4. We compute the graph G = (N,E), where N =

⋃
i(Mi∪M ′i) and E =

⋃
iEi.

Using Dijkstra’s algorithm [9], we compute the shortest path πG(s, t) between
s and t in G, and return its length dG(s, t) as our estimate of dP (s, t).

A critical component of the algorithm is the procedure for computing the β-
approximators in step 3, which we describe in section 6. The procedure for computing
the portal sets in step 2, which we outline in section 5, is comparitively straightfor-
ward.

Theorem 4.2. (i) dP (s, t) ≤ dG(s, t) ≤ 7(1 + ε)dG(s, t). (ii) The algorithm runs

in O(n5/3 log5/3 n) time.

Proof. Assuming the correctness of the various subprocedures, it follows from
Lemma 3.2 that the algorithm returns an estimate dG(s, t) such that dP (s, t) ≤
dG(s, t) ≤ 7(1 + ε)dP (s, t), provided ε is chosen sufficiently small.

We now analyze the running time of the algorithm. In step 1 of the algorithm,
we can compute an r-partition in O(n log n) time. The number of frontier edges in
the r-partition is α = O(n/

√
r).

Using the algorithm described in the next section (see Lemma 5.2), we can com-
pute an ε/2-portal set of size O((n/

√
r) log n) on a frontier edge in O((n/

√
r) log n)

time. Summing up over all frontier edges, step 2 takes O((n2/r) log n) time. Moreover,
M = O((n2/r) log n).

To analyze step 3, we consider the buffer faces and patches separately. For each
buffer face Ri, 1 ≤ i ≤ k1, we compute a β-approximator Gi using any algorithm
for computing spanners in the plane. Using Clarkson’s algorithm [8], for instance,
we obtain a graph Gi = (Mi, Ei) (without Steiner points), with |Ei| = O(mi/β), in
O(mi logmi) time. A buffer face Ri has at most three frontier edges incident on it, so
mi = O((n/

√
r) log n). Hence, the running time for computing Gi using Clarkson’s

algorithm is O((n/
√
r) log2 n). The time taken in step 3 over all buffer faces is thus

O((n2/r) log2 n).

For a patch Ri, k1+1 ≤ i ≤ k1+k2, we use the algorithm described in section 6.1
to construct a 7(1 + ε)-approximator for Mi on Ri. The algorithm introduces a set
M ′i of at most O(mi) Steiner points and constructs a graph Gi = (Mi ∪M ′i , Ei) with
O(r2 +mi) arcs. Furthermore, the algorithm takes O(r3 log r +mi log r +mi logmi)
time to construct Gi. Since the boundary of Ri consists of O(

√
r) frontier edges

and each edge has O((n/
√
r) log n) portals, mi = O(n log n). The running time for

computing Gi is then O(r
3 log r + n log2 n), and the running time for step 3 summed

over all patches is O(nr2 log r + (n2/r) log2 n).

To compute the time taken in step 4, we first estimate the size of the graph G.
Each buffer face contributes O(n/

√
r) nodes and arcs to G, so the contribution to G

from all buffer faces is O(n2/r) nodes and arcs. Each patch contributes O(r+n log n)
nodes and O(r2 + n log n) arcs, so the overall contribution to G from all patches is
O((n2/r) log n) nodes and O(nr+(n2/r) log n) arcs. Running Dijkstra’s algorithm on
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G takes O(nr + (n2/r) log2 n) time [9].
Summing up, the overall running time of the algorithm is O(nr2 log r +

(n2/r) log2 n). Substituting r = n1/3 log1/3 n, the running time of the algorithm

is O(n5/3 log5/3 n).
The running time of the above algorithm is constrained by the procedure used

in step 3 for computing the β-approximators. By using the slightly faster procedure
that is described in section 6.3 for computing 15-approximators and choosing r =
n2/5 log2/5 n in step 1, we obtain the following result.

Theorem 4.3. Given the boundary P of a simple, possibly nonconvex polyhedron
in R

3 with n vertices, and two points s, t ∈ P , we can compute in O(n8/5 log8/5 n)
time a quantity between dP (s, t) and 15(1 + ε)dP (s, t).

4.2. Computing an approximate shortest path. We now describe the mod-
ifications to the algorithm presented above that will allow us to compute an approxi-
mate shortest path from s to t. Let Gi be the β-approximator, computed in step 3,
for Mi on Ri. We want to be able to answer the following path query for an arc in Gi:
given (p, p′) ∈ Ei, compute a path on Ri between p and p′ whose length is at most
the weight of (p, p′). If Ri is a buffer face, we can answer such a query by simply
taking the line segment joining p and p′. For a patch Ri, we augment Gi with a data
structure that can answer a path query in O(r) time. It will be evident in section 6
that such a data structure can be computed within the time bound for computing Gi.

Let πG be the shortest path in G that is computed by step 4 of the algorithm.
We can compute a path π in P between s and t by simply doing a path query for each
arc traversed by πG and concatenating the resulting paths. But this is expensive if
πG traverses too many arcs of G. However, as described below, we really need to do
path queries for only a few arcs in πG. For a face f of P , if p1 and p2 are the first
and last nodes in f that appear in πG, we can bypass the arcs in πG between p1 and
p2 by including in π the line segment joining p1 and p2. If we perform this step for
every face, we will be left with only O(n) arcs of πG for which we have to perform
path queries; performing these takes a total of O(nr) time. Thus we get the main
result of this paper.

Theorem 4.4. Given the boundary P of a simple, possibly nonconvex poly-
hedron with n vertices, and points s, t ∈ P , we can compute in O(n5/3 log5/3 n)

(resp., O(n8/5 log8/5 n)) time a path on P between s and t whose length is at most
7(1 + ε)dP (s, t) (resp., 15(1 + ε)dP (s, t)).

5. Computing portal sets. In this section, we present an algorithm that, given
an edge e of P and ε > 0, computes an ε-portal set φ(e) on e. We first describe a
scheme for computing a rough estimate ρ∗ of the shortest path distance dP (s, t) such
that

ρ∗ ≤ dP (s, t) ≤ O(n)ρ∗.

The estimate ρ∗ will be useful in constructing portal sets. Let C(s, ω) be the axis-
parallel cube with edge-length 2ω centered at s, and let P (ω) be the portion of P
lying within C(s, ω), i.e., P (ω) = P ∩ C(s, ω). Note that P = P (∞). For a face f
of P , let f(ω) = f ∩ C(s, ω). Since f is a triangle, f(ω) is convex. This implies that
P (ω) consists of O(n) faces. Let ρ∗ be the smallest value of ω for which s and t are
connected by a path lying completely in P (ω).

Lemma 5.1. (i) ρ∗ ≤ dP (s, t) ≤ c1nρ
∗ for some constant c1, and (ii) ρ∗ can be

computed in O(n log n) time.
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Proof. (i) We claim that any shortest path πP (s, t) must intersect the boundary
of C(s, ρ∗). Suppose, on the contrary, that the claim is false. Then there exists a
ρ′ < ρ∗ such that πP (s, t) lies completely within C(s, ρ′). Thus, πP (s, t) connects s
and t in P (ρ′), contradicting the fact that ρ∗ is the smallest value of ω for which s and
t are path-connected within P (ω). Since πP (s, t) intersects the boundary of C(s, ρ

∗),
we have dP (s, t) = |πP (s, t)| ≥ ρ∗.

To establish the second inequality, consider the shortest path π′ between s and t
in P (ρ∗). Since P (ρ∗) consists of at most O(n) faces and π′ intersects each of these
faces in a single (possibly empty) line segment, π′ can be specified as a concatenation
of at most O(n) such line segments. Each such line segment lies completely within
C(s, ρ∗) and so has length at most 2

√
3ρ∗. It follows that |π′| ≤ c1nρ

∗ for some
constant c1. Since π

′ is also a path on P , dP (s, t) ≤ |π′| ≤ c1nρ
∗.

(ii) For any ω, P (ω) is a disjoint union of path-connected components. For each
face f of P , f(ω) is contained in at most one such component. For a path-connected
component Ψ of P (ω), let FΨ be the collection f of faces of F such that f(ω) �= ∅ and
f(ω) is a face of Ψ. Note that Ψ =

⋃
f∈FΨ

f(ω). Observe that the sets FΨ partition
the set of faces of P that have a nonempty intersection with C(s, ω).

Let fs (resp., f t) be a face of P containing s (resp., t). Then ρ∗ is the smallest
value of ω for which (i) s, t ∈ C(s, ω), and (ii) fs(ω) and f t(ω) belong to the same
path-connected component of P (ω). Thus, computing ρ∗ reduces essentially to finding
the smallest ω when (ii) occurs. We sketch below an algorithm to do this.

Our algorithm represents each connected component Ψ of P (ω) implicitly by the
set FΨ. As ω increases from zero, our representation changes. Two sets FΨi and
FΨj

may get merged. A new face f may be added to one of the already existing sets
FΨ. A set consisting of just a single new face f may be created if f(ω) forms a single
path-connected component in P (ω). Clearly, such changes in our representation occur
only when some vertex, edge, or face of P first intersects C(s, ω). Hence, there are
only O(n) critical values of ω at which our representation needs to be updated.

We first compute and sort (in increasing order) these critical values of ω. Starting
from ω = 0, we go through them in order, updating our representation of the path-
connected components of P (ω) appropriately. We stop and report the value of ω when
fs and f t are in the same set in our representation. If we use any data structure for
disjoint sets [9] to represent the path-connected components, the entire procedure can
be implemented in O(n log n) time.

Using Lemma 5.1, we can show the following.

Lemma 5.2. Let B be the set of frontier edges in an r-partition of P , where |B| ≤
α. Given any edge e ∈ B, we can compute an ε-portal set φ(e) of size O((α/ε) log n)
in time O((α/ε) log n).

Proof. We use the estimate ρ∗ to compute φ(e) as follows. For 1 ≤ i ≤ �log c1n�,
where c1 is the constant defined in Lemma 5.1, we add a set Si of O(α/ε) portals so
that they subdivide e∩C(s, ρ∗2i) into equal-sized intervals, each of length (ε/2α)ρ∗2i.

Clearly, this procedure adds a total of O((α/ε) lg n) portals. To see that φ(e)
constructed above is an ε-portal set, let x be any point on πP (s, t)∩e. Since dP (s, t) ≤
c1nρ

∗, x ∈ C(s, ρ∗2i) for some 1 ≤ i ≤ �log c1n�. Let ix be the smallest such i. If
ix = 1, then there is a portal p ∈ S1 so that

d(p, x) ≤ (ε/2α)ρ∗ ≤ (ε/2α)dP (s, t).

If ix > 1, then x does not lie in C(s, ρ∗2ix−1), so d(s, x) ≥ ρ∗2ix−1. There is a portal
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p ∈ Six so that

d(p, x) ≤ (ε/2α)2ix−1ρ∗ ≤ (ε/2α)d(s, x) ≤ (ε/2α)dP (s, t).

Hence there is always a portal p on e such that d(p, x) ≤ (ε/2α)dP (s, t), as
required.

6. Approximating legal paths. Let R be a polyhedral patch with r (triangu-
lar) faces, V the set of its vertices, and B the set of its boundary edges. We assume
that |B| = O(

√
r). Let M be a set of m points (portals) lying on the edges in B. In

this section, we describe algorithms for computing a β-approximator (introduced in
Definition 4.1) on R for M , the set of portals on R. That is, we construct a weighted
graph G = (M ∪M ′, E), where M ′ is a set of additional points on R, that has the
following properties:

1. The weight w(u, v) of any arc (u, v) ∈ E is dR(u, v), the length of the shortest
path between u and v on R.

2. For any u, v ∈ V B ∪M , the length of the shortest path in G between u and
v, denoted dG(u, v), is at most βdR(u, v).

The key to computing an approximator is the notion of shortest paths from edge
sources, which we introduce below. In order to present the main ideas clearly, we first
describe an algorithm for computing a 13-approximator for V B ∪M on R. We then
show how this algorithm can be modified so that it returns a 7(1 + ε)-approximator.
Finally, we present a faster algorithm for computing a 15-approximator.

Mount [23] showed that the single-source shortest path algorithm of Mitchell,
Mount, and Papadimitriou [22] can be generalized to obtain the following result.

Lemma 6.1. Given a polyhedral patch R and a subset U ⊆ V of “vertex sites,”
we can preprocess it in O(r2 log r) time, where r is the number of faces in R, so that
given a query point x lying on any edge e of R, we can compute the vertex u ∈ U that
is closest to x, and the distance dR(q, x) in O(log r) time. We can also compute in
O(r) time a shortest path between q and x.

Let Q be the region of the patch R given by a union of a subset of vertices of
R (“vertex sites”) and a subset of boundary edges of R (“edge sites”). We will re-
gard Q as a set of points (which is infinite if there is an edge site). We define the
distance dR(Q, x) of a point x ∈ R from Q to be the minimum minq∈Q dR(q, x). In
section 7, we show that we can preprocess the patch R in O(r2 log r) time so that we
can quickly compute the shortest distance between Q and a query point lying on the
edge of the patch. This result, stated in Lemma 7.4, is obtained by fairly straightfor-
ward modifications to the algorithms of Mitchell, Mount, and Papadimitriou [22] and
Mount [23]. (Note that Lemma 6.1 is a special case of Lemma 7.4 where there are no
edge sites.) As we shall see below, allowing edge sites is a useful idea in constructing
β-approximators.

6.1. Computing a 13-approximator. We now present our algorithm for com-
puting a 13-approximator G = (M ∪ M ′, E) for the portals M on the polyhedral
patch R.

Algorithm. 13-approximator.
1. For each pair u, v ∈ V of vertices in the path R, we compute the shortest
path distance dR(u, v) on R between u and v and introduce an arc (u, v) ∈ E
whose weight is dR(u, v). We can easily compute these distances in O(r

3 log r)
time by invoking the algorithm of Mitchell, Mount, and Papadimitriou [22]
for each vertex of R.
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2. We run the preprocessing algorithm of Lemma 6.1 with U = V . For each
p ∈ M , we find the vertex v ∈ V that is closest to p. We compute the
distance dR(v, p) and introduce an arc (p, v) in G with weight dR(v, p).

3. We repeat the following for every boundary edge e ∈ B: We let Q be the set of
points on R consisting of the union of all the vertices V and all the boundary
edges except edge e and run the preprocessing algorithm of Lemma 7.4. For
each p ∈M that lies in e, we find the q ∈ Q that is closest to p. We introduce
in G a new node q, and an arc (p, q) with weight dR(p, q).

4. Let M ′ be the set of points that are introduced as nodes in G in the above
steps. For each edge e ∈ B, we sort the points (M ∪M ′)∩ e along e and add
an arc (p, p′) of weight d(p, p′) if p and p′ are consecutive in the sorted order.

Lemma 6.2. The algorithm constructs in O(r3 log r +m log r +m logm) time a
graph with O(r +m) nodes and O(r2 +m) arcs.

Proof. Step 1 of the algorithm requires O(r3 log r) time. In this step, we introduce
O(r2) arcs. In step 2, the preprocessing algorithm of Lemma 6.1 takes O(r2 log r)
time. The computation involving a single p ∈ M takes O(log r) time, so the overall
computation for every p ∈ M takes O(m log r) time. Running the preprocessing
algorithm of Lemma 7.4 once takes O(r2 log r) time. Since we run this algorithm
O(
√
r) times in step 3, once for each boundary edge, we spend O(r5/2 log r) time.

We can perform the computation for each p ∈ M in a total of O(m log r) time. We
introduce at most m new nodes and arcs in this step. After these steps, we have a
total of O(r +m) nodes in G. So we can implement step 4 in O(r +m logm) time.
We introduce only O(r +m) arcs in this step.

Summing up, we spent O(r3 log r + m logm + m log r) time and constructed a
graph G with O(r +m) nodes and O(r2 +m) arcs.

The following lemma plays a crucial role in proving that the above algorithm
computes a 13-approximator.

Lemma 6.3. Let e be a boundary edge of the patch R, and let Q be the set of
points of R consisting of all the vertices of R and all the boundary edges of R except
e. Let e′ ∈ B be a boundary edge of R distinct from e, and let x ∈ e and y ∈ e′. Let
π(x, y) be a shortest path, of length l, between x and y. If dR(x, v) > 3l for every
vertex v ∈ V , then the closest point q in Q to x lies on edge e′, and dR(Q, x) ≤ l.

Figure 4 illustrates the situation in Lemma 6.3. We first establish a preliminary
claim before proving Lemma 6.3. We refer to any path that originates from x and
that has length at most l as a short path. Since dR(x, v) > 3l for every v ∈ V , no
short path passes through a vertex. It follows that every short, geodesic path connects
some edge sequence beginning with the edge e. Let E = eE0e′ be the edge sequence
that π(x, y) connects (e and e′ are, respectively, the first and last edges of E).

Claim 6.4. The edge sequence connected by any short, geodesic path is a prefix
of E.

Proof. Suppose, on the contrary, that the claim is false. That is, there is a short,
geodesic path π′ that connects E ′e1e3, whereas the edge sequence connected by π(x, y)
is E = E ′e1e2E ′′.

Since both paths unfold into straight lines, the edges e1, e2, and e3 must be
incident on the same (triangular) face, say, f . Let vi be the vertex of f opposite ei.
Let a1 ∈ π(x, y) ∩ e1, a2 ∈ π(x, y) ∩ e2, and a3 ∈ π′ ∩ e3. Then

d(ai, aj) ≤ dR(ai, x) + dR(x, aj) ≤ 2l.
In triangle f , suppose that the angle at vertex v1 is at least as large as the angles

at v2 and v3. (The other cases are treated identically.) Using the fact that the angle
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Fig. 4. Illustration of Lemma 6.3.

at v1 is at least π/3,

min{d(v1, a2), d(v1, a3)} ≤ d(a2, a3) ≤ 2l.
It follows from the triangle inequality that dR(x, v1) ≤ 3l. This contradicts the
assumption that dR(x, v) > 3l for every v ∈ V .

We can now prove Lemma 6.3.
Proof of Lemma 6.3. Since π(x, y) is a shortest path, the edge sequence E = eE0e′

is simple. Since π(x, y) is geodesic, it unfolds into a straight line, and so there can be
no boundary edge in E0. As a consequence of the claim, e′ is the only edge site in Q
that can be reached by a short, geodesic path. We have already established that no
short path can reach a vertex site. Thus, the closest point to x in Q lies in edge e′,
and dR(e

′, x) ≤ l.
Lemma 6.5. The graph G constructed by the algorithm is a 13-approximator for

V B ∪M on the polyhedral patch R.
Proof. Clearly, dG(p, p

′) = dR(p, p
′) for any two vertices p, p′ ∈ V (step 1) or for

any two points p, p′ ∈ (M ∪M ′) lying on the same boundary edge e ∈ B (step 4).
Let π be the shortest path on R between p, p′ ∈ V B ∪M , and let |π| = l. We will

show that dG(p, p
′) ≤ 13l. Let w,w′ ∈ V be the vertices in R that are closest (along

R) to p and p′, respectively. We consider two cases.
Case 1. max{dR(p, w), dR(p′, w′)} ≤ 3l. In step 2 of the algorithm, we introduce

an arc (p, w) with weight dR(p, w) in G, so dG(p, w) = dR(p, w) ≤ 3l. Similarly,
dG(p

′, w′) = dR(p
′, w′) ≤ 3l. Now,
dR(w,w

′) ≤ dR(w, p) + dR(p, p
′) + dR(p

′, w′) ≤ 7l.
Since w,w′ ∈ V , dG(w,w′) is also at most 7l. Finally, we have

dG(p, p
′) ≤ dG(p, w) + dG(w,w

′) + dG(w
′, p′) ≤ 13l.

Case 2. max{dR(p, w), dR(p′, w′)} > 3l. Assume, without loss of generality, that
dR(p, w) > 3l. In this case, neither p nor p′ is a vertex. Let e (resp., e′) be the
boundary edge containing p (resp., p′) in its interior. If e and e′ are the same edge,
the lemma follows because dG(p, p

′) = dR(p, p
′).
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Let us assume that e and e′ are distinct. Let Q be the region consisting of all the
vertices and boundary edges of the patch except edge e. Then, by Lemma 6.3, the
closest point q ∈ Q to p lies on edge e′, and dR(q, p) ≤ l. When we processed p in
step 3 of the algorithm, we had to introduce point q ∈ e′ as a node of G, and we also
had to add an arc (q, p) with weight dR(q, p). Thus, dG(q, p) = dR(q, p) ≤ l. By the
triangle inequality, dR(q, p

′) ≤ dR(q, p) + dR(p, p
′) ≤ 2l.

Since q and p′ both lie on e′, dG(q, p′) ≤ 2l. Finally, we have dG(p, p′) ≤ dG(p, q)+
dG(q, p

′) ≤ 3l.
6.2. Computing a 7(1 + ε)-approximator. Using a scheme based on recent

work of Har-Peled [15] for computing approximate shortest path maps on a polyhe-
dron, we modify algorithm 13-approximator, as described below, so that it returns
a 7(1+ε)-approximator (for any ε > 0) forM on the polyhedral patch R. For a given
source point v on R and an edge e, Har-Peled’s algorithm computes a set W (v, e) of
O((1/ε) log 1/ε) points on e so that for any q ∈ e, there is a p ∈W (v, e) with

dR(v, p) + d(p, q) ≤ (1 + ε)dR(v, q).

The modification involves replacing steps 1 and 2 of algorithm 13-approximator
by the following procedure, which is repeated for each v ∈ V . We compute the sets
W (v, e) for each edge e ∈ B; using Har-Peled’s algorithm, we can do this in O(r2 log r)
time. We add each point p ∈ ⋃e∈BW (v, e) to the node set M ′ of G and also include
an arc (v, p) in G with weight dR(v, p). We can compute all the distances dR(v, p) in
O(r2 log r) time using the algorithm of Mitchell, Mount, and Papadimitriou [22].

It is easy to see that the running time of the new algorithm is the same as that of
algorithm 13-approximator. To show that the graph G it computes is a 7(1 + ε)-
approximator, we analyze Case 1 of Lemma 6.5 as follows. In this case, there is a
vertex w of R such that dR(p, w) ≤ 3l. The path on R obtained by concatenating
the shortest paths from p to w, w to p, and p to p′ has length at most 7l. The
modifications ensure that there is a path in G between p and p′ that uses w and
whose length is at most 7(1 + ε)l.

6.3. Computing a 15-approximator. We now present a slightly different algo-
rithm that computes a 15-approximator G = (M∪M ′, E) forM on the patch R. This
algorithm, which we call 15-approximator, runs in O(r5/2 log r +m log r + r log r)
time. Algorithm 15-approximator is identical to 13-approximator, except that
we replace step 1 by the following procedure. From each e ∈ B, we let Q consist of just
the edge site e and run the O(r2 log r)-time preprocessing algorithm of Lemma 7.4.
For each vertex v ∈ V , let o ∈ e be the closest point in e to v. We introduce o as a
new node in G and add an arc (o, v) with weight dR(o, v). We can show the following
lemma.

Lemma 6.6. We can compute, in time O(r5/2 log r +m logm +m log r), a 15-
approximator for M on the polyhedral patch R.

Proof. The analysis of the algorithm’s running time is quite straightforward. We
argue that it returns a 15-approximator. Let π be the shortest path on R between
p, p′ ∈ V B ∪M and let |π| = l. We modify the analysis of Case 1 of Lemma 6.5 as
follows to show that dG(p, p

′) ≤ 15l; the analysis of Case 2 is unchanged.
In Case 1, dR(p, w) ≤ 3l. In step 2 of the algorithm, we introduce an arc (p, w)

with weight dR(p, w) in G, so dG(p, w) = dR(p, w) ≤ 3l.
Now dR(p

′, w) ≤ dR(p
′, p) + dR(p, w) ≤ 4l. Let e ∈ B be the boundary edge

containing p′ and let o ∈ e be the closest point in e to w. Clearly, dR(w, o) ≤ dR(w, p
′).

Also from the triangle inequality, dR(o, p
′) ≤ dR(o, w) + dR(w, p

′) ≤ 2dR(w, p′).
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Fig. 5. Three geodesic paths to x on edge e: p is monotone with respect to (e, f) but not with
respect to (e, f ′); q is monotone with respect to both (e, f) and (e, f ′); r is monotone with respect to
(e, f ′) but not with respect to (e, f).

The new algorithm introduces in step 1 an arc (w, o) with weight dR(w, o) in G,
so dG(w, o) = dR(w, o). Since p

′ and o are on the same edge, dG(o, p
′) = dR(o, p

′).
Thus

dG(w, p
′) ≤ dG(w, o) + dG(o, p

′) = dR(w, o) + dR(o, p
′) ≤ 3dR(w, p′) ≤ 12l.

Finally, dG(p, p
′) ≤ dG(p, w) + dG(w, p

′) ≤ 15l.
7. Shortest path computation. Let R be a polyhedral patch with r triangular

faces, and let V , E, andB denote, respectively, the set of vertices, edges, and boundary
edges of the patch. Let F ⊆ E be a collection of boundary edges and U ⊆ V be a
collection of vertices. Let Q denote the portion of the patch consisting of the edges in
F and the vertices in U . Since the edges in E include their endpoints, Q is a closed
set. For any point x on the patch, the closest point to x in Q is any y ∈ Q such that
dR(y, x) = minq∈Q dR(q, x). In this section, we describe a variant of the algorithms
of Mount [23] and Mitchell, Mount, and Papadimitriou [22] that preprocesses R in
O(r2 log r) time into a data structure so that for any query point x lying on a boundary
edge, the closest point q in Q to x and the distance dR(q, x) can be computed in
O(log r) time. If desired, the shortest path between q and x can also be returned in
an additional O(r) time.

Given a face f , and e, one of the three edges incident to it, we refer to (e, f) as
an edge-face pair. Every nonboundary edge is part of two edge-face pairs, while every
boundary edge is part of one edge-face pair. With respect to an edge-face pair (e, f),
a path π to x ∈ e from any q ∈ Q is monotone if the following hold.

1. Any subpath π′ of π that does not pass through a vertex unfolds into a
straight line. This means that we can represent π as a list

Φ(π) = (v1 = q, E1, v2, E2, v3, . . . , vk, Ek, vk+1 = x),

where v2, . . . , vk are the vertices (in order) through which π passes, and each
Ei is the (possibly empty) edge sequence which π[vi, vi+1] connects.

2. The path π reaches x through face f . This means that if x lies in the interior
of edge e, the path π lies in face f just before it reaches x. (See Figure 5.)

The second condition is assumed to hold trivially if x is one of the endpoints of
e. If e is a nonboundary edge incident also to face f ′ and x lies in the interior of e,
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Fig. 6. In Proposition 7.1, the segment qv∗2 is perpendicular to e′.

e′

u

v

f

e

π π′

Fig. 7. The anchor of π is the boundary edge-site e′; the anchor of π′ is the vertex v.

the second condition says that the path π reaches x through f and not through f ′.
The shortest monotone path from Q to a point x ∈ e (with respect to (e, f)) is the
smallest-length monotone path (with respect to (e, f)) from any q ∈ Q to x. It is easy
to see that the shortest path from Q to x is monotone with respect to either (e, f) or
(e, f ′). If e is a boundary edge that is not part of Q, a shortest path to x is the same
as a shortest monotone path to x with respect to (e, f).

Let Φ(π) = (v1 = q, E1, v2, . . . , vk, Ek, vk+1 = x) denote any monotone path π
with respect to the edge-face pair (e, f) from q ∈ Q to x ∈ e. Suppose q lies in the
interior of a boundary edge e′ ∈ F . Let v∗2 denote the unfolded image of v2 when the
edge sequence E1 is unfolded; note that the segment qv∗2 is the unfolded image of the
subpath π[q, v2]. The following proposition states a local optimality criterion for π to
be a shortest monotone path. (See Figure 6.)

Proposition 7.1. Let q, e′, and v∗2 be the same as above. If π is the shortest
montone path (with respect to (e, f)) from Q to x , then the segment qv∗2 is perpen-
dicular to the edge e′.

In the list Φ(π), if vk is a vertex, we call it the anchor of π and Ek the last edge
sequence. If vk is not a vertex, the list is of the form (q, E , x), where q is a point lying
in the interior of a boundary site e′. In this case, we call the edge e′ the anchor of
π and E the last edge sequence of π. See Figure 7. We now state some important
properties of monotone paths.

The following lemma is analogous to Lemma 4.4 of Mitchell, Mount, and
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Papadimitriou [22].
Lemma 7.2. For edge-face pair (e, f), edge sequence E, and anchor r, the set I of

points x on e for which there is a shortest monotone path from Q with r as the anchor
and E as the last edge sequence is connected (and, therefore, a subsegment of e).

We refer to I as the interval of optimality for r and E with respect to (e, f). Let
r denote the unfolded image of r when E is unfolded onto the plane containing f . For
any x ∈ I, let π(x) denote the shortest monotone path to x (which has anchor r and
last edge sequence E). We define the distance of x to r along E to be the Euclidean
distance of x to r. Note that this distance is the same as the length of the subpath
of π(x) from r to x. The following lemma can be proved using techniques similar to
Lemmas 4.5 and 7.1 of Mitchell, Mount, and Papadimitriou [22] and Lemma 3.2 of
Mount [23].

Lemma 7.3. Intervals of optimality with respect to edge-face pair (e, f) cover
the edge e and have mutually disjoint interiors. Moreover, there are only O(r) such
intervals.

7.1. The algorithm. We now describe an algorithm that computes the intervals
of optimality with respect to each edge-face pair (e, f) of the polyhedral patch. If I is
an interval of optimality with anchor r and last edge sequence E , the algorithm also
computes r, the unfolded image of r when E is unfolded onto the plane containing f .

The algorithm maintains the following information. We keep a list of candidate
intervals of optimality on each edge-face pair. A candidate interval (or interval for
short) is a segment on an edge-face pair (e, f) which is a supersegment of some (pos-
sibly empty) interval of optimality. A candidate interval I has associated with it the
anchor rI and the last edge sequence EI along which monotone paths from Q reach
the points in I. We also store with each candidate interval I its unfolded anchor
rI . We also store with each interval its frontier point αI , which is the point in I that
mimimizes the distance to rI along EI (the point that is closest to the unfolded anchor
rI). If the anchor rI is one of the edge sites, we define the priority of the frontier
point αI to be its distance to rI along EI . If the anchor is a vertex, the algorithm will
have already computed a value d(rI) (which is the shortest path distance to rI). In
this case, we define the priority of αI to be d(rI) plus the distance between αI and
rI along EI .

The algorithm also maintains a priority queue called the event queue. The event
queue contains the frontier point αI of each candidate interval I, with its priority, if
αI has not already been “permanently labeled.”

We are now ready to describe the overall algorithm. It makes use of two proce-
dures, project and insert-interval, which we describe after the overall algorithm.
In the initialization phase, we perform the following steps.

1. On each boundary edge e in Q, we insert a candidate interval I extending
over the entire edge. Since e has only one face f incident on it, we can think
of I as being on the edge-face pair (e, ∅), where ∅ is a “dummy” face. The
anchor of I is the edge e itself, and its last edge sequence is empty. Note that
the priority of this interval is zero.

2. For each vertex v in Q, we set d(v) = 0. For each face f incident to v and each
edge e of f , we insert a candidate interval I, whose extent is the entire edge
e, on the edge-face pair (e, f); the anchor of I is v and its last edge sequence
is empty; we refer to v as the predecessor pred(I) of I. (By predecessor of
an interval I, we mean the candidate interval or vertex whose “propagation”
gives rise to I.) We then call the procedure insert-interval(I, e).
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Fig. 8. Projecting an interval I: (i) rI is a vertex; (ii) rI is an edge site.

The main loop of the algorithm consists of iterating the following steps until the
event queue becomes empty.

1. We remove from the event queue the frontier point αI that has the smallest
priority. Suppose that αI belongs to candidate interval I on edge-face pair
(e, f). We permanently label αI with its priority.

2. If αI is a vertex v, and a value has not already been assigned to d(v), we
assign d(v) to be the priority of v = αI . We store a pointer ptr(v) from
v to the candidate interval I. We look at each face f ′ incident to v, and
each edge e′ on f ′. We insert a candidate interval I on edge-face pair (e′, f ′)
whose extent is the entire edge e′. The anchor of I is v, and its last edge
sequence is empty. We set v to be the predecessor pred(I) of I. We then call
the procedure insert-interval(I, e). If d(v) has already been assigned to
vertex v, we can skip the above steps.

3. Whether αI is a vertex or not, we find the other face f
′ incident to e. If there

is no such face, we do nothing. Let e1 and e2 be the two other edges of f
′.

We call project(I, e1) to find the interval I1 on e1 that is hit by monotone
paths through I. We set I to be the predecessor of pred(I1) of I1. We then
call the procedure insert-interval(I1, e1). We do the same with e2.

We now describe the two procedures project and insert-interval. Let e be
an edge incident to two faces f and f ′, and let e1 and e2 be the other two edges of
f ′. Suppose I is a candidate interval on the edge-face pair (e, f), with anchor rI and
last edge sequence EI . The procedure project(I, e1) simply finds the interval I1 on
e1 that is hit by the monotone paths through I. If rI is a vertex, we just use the
fact that monotone paths unfold into straight lines to determine how the “wedge” of
paths with anchor rI and edge sequence EI is extended into f ′. (See Figure 8.) If rI
is a boundary edge site, we also use the fact that an optimal monotone path extends
onto f ′ such that it is perpendicular to the unfolded image (along EI) of rI onto f ′.
(This is depicted in Figure 8.)

A call to the procedure insert-interval(I, e) restores the following invariants
for the candidate intervals on an edge-face pair (e, f):

1. The intervals have pairwise disjoint interiors, which means they can be or-
dered along the edge e.

2. The ordering of the intervals along e is consistent with the ordering of the
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pred(I)

f

e

e1

I

e2

I ′

Fig. 9. Clockwise from top left: (1) the candidate intervals on edge-face pair (e, f), and (por-
tions of) their predecessors on edges e1 and e2 on f ; (2) the interval I is propagated from pred(I)
and insert-interval(I, e) is called; (3) the trimmed subinterval I′ of I; and (4) the list of intervals
on (e, f) after the call is completed.

predecessors of the intervals on the other two edges of f .

Suppose that the procedure insert-interval(I, e) is invoked on the edge-face
pair (e, f), and that e1 and e2 are the other two edges of f . We assume that prior
to the newly introduced interval I, the above invariants hold for the list of candidate
intervals I on (e, f). Let us orient the edge e in an arbitrary way; this fixes an ordering
≺ of I and a corresponding ordering ≺ of the predecessors of intervals in I ∪ I. Let
L ⊆ I be the set of intervals Ij such that pred(Ij) ≺ pred(I), and let R = I − L.

Let I ′ ⊆ I be the set of points x such that the distance of x from Q through
pred(I) is smaller than the distance from Q through pred(Ij) for any Ij ∈ I. We can
show that I ′ will be an interval. We introduce I ′ into the list of candidate intervals
on (e, f). We truncate each Ij ∈ L (resp., Ij ∈ R) to the subinterval that precedes
(resp., succeeds) I ′ according to the ≺ ordering. This completes the description of
procedure insert-interval(I, e). (See Figure 9 for an illustration.) At the end
of the procedure, the invariants are restored. The key property of the procedure
is that in restoring the invariants, it never trims a shortest monotone path. The
implementation details of the procedure are identical to the corresponding procedure
in Mitchell, Mount, and Papadimitriou [22].

This completes the description of the algorithm. At termination, we are left with a
bunch of candidate intervals on each edge-face pair. The correctness of the algorithm,
that is, the claim that these are actually the intervals of optimality, follows from the
fact we never trim a shortest monotone path in any of the calls to insert-interval.

7.2. Running time analysis. To bound the running time of the algorithm, we
first bound the number of events. An event corresponds to the “permanent labeling”
of a frontier point αI of candidate interval I on edge-face pair (e, f). Suppose I has
anchor rI and last edge sequence EI . Using the fact that we always pick the interval
with the smallest priority, we can show that a portion of I (that includes αI) is in
fact an interval of optimality on (e, f) with anchor rI and last edge sequence EI .
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(This argument is similar in spirit to the argument for the correctness of Dijkstra’s
algorithm.) We charge the event to this interval of optimality I. Each interval of
optimality is charged only once, so by Lemma 7.3, we get a charge of O(r) per edge-
face pair. As there are only O(r) edge-face pairs, it follows that there are only O(r2)
events. From this, we can show that the running time of the algorithm is O(r2 log r),
as in Mitchell, Mount, and Papadimitriou [22].

We now describe how the output of the algorithm is used to answer shortest
distance queries. Given a query point x which is either a vertex of R or a point on
the boundary edge of R, we locate the interval of optimality I in which it lies. (For a
vertex v, I is the interval that ptr(v) points to.) Suppose I is an interval on edge-face
pair (e, f) with anchor rI and last edge sequence EI . If rI is a vertex, the distance
of x from Q is d(rI) plus the distance of rI from x along EI . If rI is an edge, the
distance of x from Q is the shortest distance of rI to x along EI . These distances
can be computed in constant time since rI , the image of rI when EI is unfolded onto
f , is known. Since I can be found in O(log r) time using a binary search, we can
answer shortest distance queries in O(log r) time. With minor modifications, we can
also report the point q ∈ Q that is closest to x in O(log r) time. If we desire a
shortest path between x and q, we go back along the edge sequence EI to r and find
the shortest path between r and q. This “back-tracing” takes O(r) time. Note that
all these queries can be answered within the same time bounds even if x is a point
on an internal edge e: we simply consider both intervals of optimality in which it lies
and choose the one which gives the shorter distance to Q. We conclude by stating
the main result of this section.

Lemma 7.4. Suppose that we are given a polyhedral patch R and a region (set of
points) Q on R specified as a union of some vertices of R and some boundary edges
of R. We can preprocess the patch in O(r2 log r) time, where r is the number of faces
of the patch, so that the following queries can be performed. Given a point x on any
edge of the patch, we can report the closest point q ∈ Q to x and the shortest path
distance of q from x in O(log r) time. We can also report a shortest path between q
and x in O(r) time.

8. Conclusions. After the initial submission of this paper, there have been some
remarkable developments on computing shortest paths on a terrain. Kapoor [18] has
claimed an O(n log2 n)-time algorithm for the exact shortest path problem, but his
algorithm is complex, and we await the full version of the paper to verify the details.
Aleksandrov, Maheshwari, and Sack [4] describe an O((n/ε) log n)-time algorithm
for computing a (1 + ε)-path, provided that the edges of the terrain satisfy certain
geometric properties.
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TAKING A WALK IN A PLANAR ARRANGEMENT∗
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Abstract. We present a randomized algorithm for computing portions of an arrangement of n
arcs in the plane, each pair of which intersect in at most t points. We use this algorithm to perform
online walks inside such an arrangement (i.e., compute all the faces that a curve, given in an online
manner, crosses) and to compute a level in an arrangement, both in an output-sensitive manner.
The expected running time of the algorithm is O(λt+2(m + n) logn), where m is the number of
intersections between the walk and the given arcs.

No similarly efficient algorithm is known for the general case of arcs. For the case of lines and for
certain restricted cases involving line segments, our algorithm improves the best known algorithm of
[M. H. Overmars and J. van Leeuwen, J. Comput. System Sci., 23 (1981), pp. 166–204] by almost
a logarithmic factor.
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1. Introduction. Let Ŝ be a set of n x-monotone arcs in the plane, each pair
of which intersect in at most t points. Computing the whole (or parts of the) ar-
rangement A(Ŝ), induced by the arcs of Ŝ, is one of the fundamental problems in
computational geometry, and has received a lot of attention in recent years [26]. One
of the basic techniques used for such constructions is based on randomized incremental
construction of the vertical decomposition of the arrangement (see [5]).

If we are interested in computing only parts of the arrangement (e.g., a single face
or a zone), the randomized incremental technique can still be used, but it requires
nontrivial modifications [9, 11]. Intuitively, the added complexity is caused by the
need to “trim” parts of the plane as the algorithm advances, so that it will not waste
energy on regions which are no longer relevant. In fact, this requirement implies that
such an algorithm has to know in advance which regions we are interested in at any
stage during the randomized incremental construction.

A variation of this theme, with which the existing algorithms cannot cope effi-
ciently, is the following online scenario: We start from a point p = p(0) ∈ R

2, and we
find the face f of A(Ŝ) that contains p(0). Now the point p starts moving and traces
a connected curve {p(t)}t≥0. As our walk continues, we wish to keep track of the face

of A(Ŝ) that contains the current point p(t). The collection of these faces constitutes
the zone of the curve p(t). However, the function p(t) is not assumed to be known
in advance, and it may change when we cross into a new face or abruptly change
direction in the middle of a face (see [4] for an application where such a scenario
arises). The only work we are aware of that can deal with this problem efficiently is
due to Overmars and van Leeuwen [25], and it only applies to the case of lines (and,
with some simple modifications, to certain restricted cases involving line segments as
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well).1 It can compute such a walk in (deterministic) O((n +m) log2 n) time, inside
an arrangement of n lines, where m is the number of intersections of the walk with
the lines of Ŝ. This is done by maintaining dynamically the intersection of half-planes
that corresponds to the current face.

In this paper, we propose a new randomized algorithm that computes the zone of
the walk in a general arrangement of arcs, as above, in O(λt+2(n+m) log n) expected
time, where λt+2(n+m) is the maximum length of a Davenport–Schinzel sequence of
order t+2 having n+m symbols [26]. The new algorithm can be interpreted as a third
“online” alternative to the algorithms of [9, 11]. The algorithm is rather simple and
appears to be practical. As a matter of fact, we had implemented and experimented
with a variant of the algorithm [3].

As an application of the new algorithm, we present an algorithm for computing
a level in an arrangement of arcs. It computes a single level in O(λt+2(n+m) log n)
expected time, where m is the complexity of the level. We also show how to adapt
the main algorithm to obtain a point-location algorithm that locates m points in an
arrangement of n arcs, as above, in expected time O(λt+2(n +m + w) log n), where
w is the minimum number of intersections between a spanning tree connecting those
query points and the given arcs.

Both results improve by almost a logarithmic factor over the best previous result
of [25] for the case of lines (and for certain cases involving line segments).2 For the
case of general arcs, we are not aware of any similarly efficient previous result.

The paper is organized as follows. In section 2 we describe the algorithm. In
section 3 we analyze its performance. In section 4 we mention a few applications of
the algorithm, including the construction of a single level, and multiple point location.
Concluding remarks are given in section 6.

2. The algorithm. In this section, we present the algorithm for performing an
online walk inside a planar arrangement.

Randomized incremental construction of the zone using an oracle. Given a set Ŝ
of n x-monotone arcs in the plane, so that any pair of arcs of Ŝ intersect at most
t times (for some fixed constant t), let A(Ŝ) denote the arrangement of Ŝ; namely,
the partition of the plane into faces, edges, and vertices as induced by the arcs of
Ŝ (see [26] for details). In the following, we need two basic geometric primitives for
splitting and merging vertical trapezoid, SplitGeom, MergeGeom, illustrated in Figure
1. We assume that Ŝ is in general position, meaning that no three arcs of Ŝ have
a common point, and that the x-coordinates of the intersections and endpoints of
the arcs of Ŝ are pairwise distinct. The vertical decomposition of A(Ŝ), denoted by
AVD(Ŝ), is the partition of the plane into vertical pseudotrapezoids, obtained by
erecting two vertical segments up and down from each vertex of A(Ŝ) (i.e., each point
of intersection between a pair of arcs and each endpoint of an arc), and by extending
each of them until it either reaches an arc of Ŝ, or otherwise all the way to infinity.
See, e.g., [5, 26] for more details concerning vertical decompositions. To simplify
(though slightly abuse) the notation, we refer to the cells of AVD(Ŝ) as trapezoids. A
selection R of Ŝ is an ordered sequence of distinct elements of Ŝ. By a slight abuse
of notation, we also denote by R the unordered set of its elements. Let σ(Ŝ) denote

1Recently, an improvement was given by Chan [7], and further improvement was given by Brodal
and Jacob [6]; their algorithm can perform an update in O(logn log logn) amortized time and answer
queries (of the kind used in this application) in O(logn) time per query.

2Our results are also asymptotically faster and much simpler to implement than what is yielded
by the recent results of Chan [7, 8] and Brodal and Jacob [6].
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(a)

∆

s

(b)

∆
τ1 τ2 τ3

Fig. 1. Geometric primitives: (a) SplitGeom(∆, s) splits ∆ into an O(1) vertical trapezoids
that cover the original trapezoid and their interior is not crossed by s. (b) MergeGeom({τ1, τ2, τ3})
merge the adjacent trapezoids τ1, τ2, τ3 with the same top and bottom arcs into a single trapezoid ∆.

the set of all selections of Ŝ. For a permutation S of Ŝ, let Si denote the subsequence
consisting of the first i elements of S for i = 0, . . . , n.

Computing the decomposed arrangement AVD(Ŝ) can be done in a randomized
incremental manner (see [5]). Let γ be the curve traced by the walk. For a selection
R ∈ σ(Ŝ), let Dγ(R) (resp., Zγ(R)) denote the district (resp., zone) of γ in A(R);
these are, respectively, the set of all trapezoids of AVD(R) and the set of all faces
of A(R) that have a nonempty intersection with γ. Let Aγ,VD(R) denote the set

of all trapezoids in AVD(R) that cover Zγ(R). Our goal is to compute Aγ,VD(Ŝ).
(Alternatively, we may be interested only in computing the district Dγ(Ŝ) of γ.)

We assume for the moment that we are supplied with an oracle O(Si, γ,∆), which
can decide in constant time whether a given vertical trapezoid ∆ is in Aγ,VD(Si).
Equipped with this oracle, computing Aγ,VD(S) is fairly easy, using a variant of
the randomized incremental construction, outlined above. The algorithm, called
CompZoneWithOracle, is depicted in Figure 2. We present this algorithm at a con-
ceptual level only, because this is not the algorithm that we shall actually use. It is
given to help us describe and analyze the actual online algorithm that we shall present
later.

Note that the set of trapezoids Ci maintained by the algorithm in the ith iteration
is a superset of Aγ,VD(Si). There might be trapezoids in Ci that are no longer in
Zγ(Si). (Typically these are trapezoids that are separated from Zγ(Si) by an arc
that does not cross their interior and is intersected after they have been created.)
However, this implies that any such trapezoid will be eliminated the first time an arc
that crosses it will be handled, or, if no such arc exists, at the final clean-up step of
the algorithm. Moreover, the algorithm CompZoneWithOracle can be augmented to
compute a history DAG (as in [12, 26]), whose nodes are the trapezoids created by the
algorithm and where each trapezoid destroyed during the execution of the algorithm
points to the trapezoids that were created from it. Let HT γ(Si) denote this structure
after the ith iteration of the algorithm. Note that the out-degree of each node of HT γ
is bounded by a constant that depends on t.

Definitions. A trapezoid created by the SplitGeom operation of CompZone-
WithOracle is called a transient trapezoid if it is later merged (in the same itera-
tion) to form a larger trapezoid. A trapezoid generated by CompZoneWithOracle is
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Algorithm CompZoneWithOracle(Ŝ, γ, O).

Input: A set Ŝ of n arcs, a curve γ, an oracle O
Output: Aγ,VD(Ŝ)

begin
Choose a random permutation S = 〈s1, s2, . . . , sn〉 of Ŝ.
C0 ← {R2}
for i from 1 to n do
Di ← {∆ | ∆ ∈ Ci−1, int∆ ∩ si = ∅}
Temp← ∅
for each ∆ ∈ Di do

Temp← Temp ∪ SplitGeom(∆, si),
where SplitGeom(∆, s) is the operation of splitting a vertical
trapezoid ∆ crossed by an arc s into a constant number of
vertical trapezoids, as in [12], such that the new
trapezoids cover ∆, and they do not intersect s in their interior.

end for
Merge all the adjacent trapezoids of Temp that have the same top

and bottom arcs. Let Temp1 be the resulting set of trapezoids.
Let Temp2 be the set of all trapezoids of Temp1 that are in Aγ,VD(Si).

Compute this set using |Temp1| calls to O.
Ci ← (Ci−1 \ Di) ∪ Temp2

end for
Remove from Cn all trapezoids not belonging to Aγ,VD(Ŝ), by checking

with O each trapezoid of Cn.
return Cn

end CompZoneWithOracle

Fig. 2. A randomized incremental algorithm for constructing the zone of a walk in an arrange-
ment of arcs, using an oracle.

final if it is not transient. The rank rank(∆) of a trapezoid ∆ is the maximum of the
indices i, j of the arcs containing the bottom and top edges of ∆ in the permutation
S. We denote by D(∆) the defining set of a final trapezoid ∆; this is the minimal
set D such that ∆ ∈ AVD(D). It is easy to verify that |D(∆)| ≤ 4. We can also
define D(∆) for a transient trapezoid ∆ to be the minimal set D such that ∆ can
be transient during an incremental construction of AVD(D). Here it is easy to verify
that |D(∆)| ≤ 6. The index index(∆) of a trapezoid ∆ is the minimum i such that
D(∆) ⊆ Si. For a trapezoid ∆, we denote by cl(∆) the conflict list of ∆, that is, the
set of arcs of Ŝ that intersect ∆ in its interior. next(∆) denotes the first element of
cl(∆), according to the ordering of S.

In the algorithm, whenever we compute a trapezoid, we also compute its conflict
list. The overall running time of the algorithm is dominated by the time required
to compute and manipulate those conflict lists. Generally speaking, if a trapezoid
is created from a parent trapezoid by splitting, we can compute the conflict list by
scanning the parent conflict list and checking each arc to see if it intersects the new
trapezoid. If a trapezoid is formed by merging several trapezoids, its conflict list
can be computed by merging the trapezoid’s conflict-list. This can be done in linear
time in the size of the input conflict lists, as described below. Since a conflict list
participates only in a constant number of such merge/split operations, the overall
time required to manipulate those conflict lists is proportional to their overall size.

For a trapezoid ∆ generated by CompZoneWithOracle, which was not merged into
a larger trapezoid, we denote by father(∆) the trapezoid that ∆ was generated from.
A vertical side of a trapezoid ∆ is called a splitter. A splitter ν is transient if it is not
incident to the intersection point (or endpoint) that induced the vertical edge that
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τ ′τ

ν

p

l1l2 l3

l4
l5

∆

Fig. 3. Illustration of the definitions: ν is a transient splitter, and thus τ, τ ′ are both transient.
We have rank(τ) = index(τ) = 4, rank(∆) = 3, and index(∆) = 5, where S = 〈l1, l2, l3, l4, l5〉.

contains ν. (This means that the two trapezoids adjacent to ν are transient and will
be merged into a larger final trapezoid.) See Figure 3 for an illustration of some of
these definitions. It is easy to verify that a trapezoid ∆ is transient if and only if
at least one of its bounding splitters is transient. Thus, one can decide whether a
trapezoid is transient, by inspecting its splitters, in constant time.

The online algorithm constructs portions of HT γ(S) incrementally, as they are
needed. This is done by performing a sequence of point locations in the arrangement,
where each such query constructs the final trapezoid of AVD(Ŝ) that contains the
query point, plus all ancestor trapezoids that lie on paths of HT γ(S) from the root to
that trapezoid. Informally, instead of building HT γ(S) layer by layer, as is done by
CompZoneWithOracle, the online algorithm constructs the DAG in an “orthogonal”
depth-first search manner. The intuition behind the design and efficiency of the
algorithm is that the expected number of nodes in HT γ(S) is only O(λt+2(n +m)),
whereas the overall expected running time of CompZoneWithOracle is O(λt+2(n +
m) log n) (this is the expected overall size of the conflict lists of the computed nodes,
which the algorithm needs to construct and manipulate). Both bounds are easy
consequences of known results and will be discussed in section 3.2. Thus, in our
quest to usurp the oracle, we can afford to pay an extra O(log n) time during the
search for and construction of each node of HT γ(S). This indeed will be the cost
of a point-location query (ignoring the time required for constructing any new node
of HT γ(S) that the query has to pass through). Informally, the online algorithm
performs essentially the same operations as the preceding algorithm, except that it
executes them in a different order, and, in addition, it may revisit again and again
portions of the DAG that have already been constructed as it searches down the DAG
while performing point locations. However, since this extra cost is only logarithmic,
it does not increase the asymptotic complexity of the algorithm.

An online algorithm for constructing the zone. Before describing the algorithm
in detail, we refer the reader to Appendix A, which provides a pseudocode for some
relevant procedures used by the algorithm, and Appendix B, which presents an exam-
ple of how the following algorithm works. The reader is encouraged to consult with
the appendices whenever the definitions and the descriptions become too vague.

Let us assume that the random permutation S of Ŝ has been fixed in advance.
Note that S predetermines HT γ = HT γ(S). The key observation in the online
algorithm is that in order to construct a specific leaf of HT γ(S) we do not have to
maintain the entire DAG, and it suffices to compute only the parts of the DAG that
lie on paths connecting the leaf with the root of HT γ . (There might be several such
paths, since our structure is a DAG and not a tree.)

To facilitate this computation, we maintain a partial history DAG, denoted by
T . The nodes of T are of two types: (i) final nodes, whose corresponding trapezoids
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appear in HT γ = HT γ(S); and (ii) transient nodes, which are some of the leaves of T ,
whose corresponding trapezoids are transient. A transient node can be easily detected
since its trapezoid is transient. A final node is simply a node which is not transient.
In particular, all the internal nodes of T are copies of identical nodes of HT γ (whose
corresponding trapezoids are final), while some of the leaves of T might be transient.
Intuitively, T stores the portion of HT γ that we have computed explicitly so far. The
transient leaves of T delimit portions of HT γ that have not been expanded yet. Inside
each node of T , we also maintain the conflict list of the corresponding trapezoid ∆
and its first element next(∆).

Suppose we wish to compute a leaf of HT γ that contains a given point p. We
denote this operation by PointLocate(p). We first locate the leaf of T that contains
p. This is done by traversing a path in T , starting from the root of T , and going
downward in each step into the child of the current trapezoid that contains p (each
such step requires O(1) time, because, as already noted, the out-degree of any node of
HT γ , and thus of T , is bounded by a constant that depends on t). (A technical issue
that we face is that usually p lies on some trapezoid boundary, so we need additional
local information to determine which child to descend to at each of the above steps—
see below for more details.) At the end we either reach a final leaf (with an empty
conflict list), which is the required leaf of HT γ , or encounter a leaf v of T . In the
latter case, we need to expand T further below v. If v represents a transient trapezoid,
then the first step is to replace v by the corresponding node v∗ of HT γ , obtained by
merging the transient trapezoid of v with adjacent transient trapezoids, with identical
top and bottom arcs, to form the final trapezoid associated with v∗. If v is a final
node we expand it by splitting it with the first arc that crosses its trapezoid, using
steps (iv) and (v) below.

Assume for the moment that we are supplied (for the case where v is transient)
with a method (to be described shortly) to generate all those adjacent transient trape-
zoids, whose union forms the final trapezoid that is stored at v∗ in HT γ . Then we do
the following: (i) Merge all those transient trapezoids into a new (final) trapezoid ∆;
(ii) compute the conflict list cl(∆) from the conflict lists of the transient trapezoids;
(iii) compute the first element s∆ = next(∆) in cl(∆) according to the permutation
S; (iv) compute all the transient or final trapezoids generated from ∆ by splitting it
by s∆ (this generates O(1) new trapezoids); and (v) extract from cl(∆) the conflict
list cl(∆′) of each new trapezoid ∆′ and compute next(∆′) as well.

Overall, this requires O(k + l) time, where k is the number of transient trape-
zoids that are merged, and l is the total length of the conflict lists of these transient
trapezoids. This is trivial to show for steps (i), (iii), (iv), and (v). To perform in step
(ii) the merging of the conflict lists in linear time, one may use a global bit-vector
structure. Namely, we initialize before the execution of the algorithm a bit-vector b
of size n to be everywhere zero. To merge several conflict lists L1, . . . , Lk, we scan
each list in turn, and for each of its elements sj , we first test whether bj = 0; if so,
we add sj to the output conflict list and change bj to 1. After creating the output
conflict list in this manner, we scan the output list, turning off all the bits that got
turned on.

In this manner, we have upgraded a transient leaf v of T into a final node v∗. We
denote this operation by Expand(v). We can now continue going down in T , passing
to the child of ∆ that contains p and repeating recursively the above procedure at
that child, until constructing and reaching the desired leaf of HT γ that contains p
(namely, until we reach a node that is final and had empty conflict list).
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To complete the presentation of this point-location mechanism, we describe
Expand(v), the procedure that computes the “sibling” transient trapezoids that are
adjacent to the transient trapezoid of v.

Let τ be the transient trapezoid. Then either the top arc or the bottom arc of τ
are the cause of the splitting that generated τ . In particular, next(τf ) is either the top
or bottom arc of τ , where τf = father(τ) denotes the trapezoid that τ was generated
(split) from. This also implies that rank(τ) = index(τ). Since τ is transient, one of
the splitters of τ must be transient. Let ν denote such a transient splitter, and let
us assume that ν is the right edge of τ . Note also that τf must be a final trapezoid,
so in particular ν was generated from a final splitter (by the insertion of an arc that
separated ν from the vertex that induced the bigger final splitter).

We compute the transient trapezoid τ ′ that lies to the right of τ and has the same
top and bottom arcs, by taking the midpoint p of ν, and by performing a point-location
query of p in T using (recursively) the same mechanism described above. During this
point-location process, we always go down into the trapezoid ∆ that contains p in its
interior or on its left edge; see below for details. We stop as soon as we encounter a
transient trapezoid τ ′ that has a left edge identical to ν. This happens when τ and
τ ′ have the same top and bottom edges; namely, we stop when rank(τ) = rank(τ ′).
(Intuitively, if the trapezoid τ ′ has rank smaller than rank(τ), then either it fully
contains ν in its interior or its left edge is longer than (and contains) ν; the first time
when both τ and τ ′ have the same connecting edge is when their top and bottom
edges are identical, namely, when rank(τ) = rank(τ ′).) See below for more details
in the proof of correctness of the algorithm. We continue this process of collecting
adjacent transient trapezoids using point-location queries on midpoints of transient
splitters, until the two extreme splitters (the left splitter of the leftmost trapezoid in
the sequence and the right splitter of the rightmost trapezoid) are nontransient. We
take the union of those trapezoids to be the new expanded trapezoid. See Figure 3
for a scenario where such a merging occurs. A more detailed illustration is given in
Appendix B below.

Of course, during this point-location process, we might be forced into going into
parts of HT γ that are rather remote from the point p. In such a case, we will compute
those parts in an online manner, by performing PointLocate and Expand calls on the
relevant trapezoids that we encounter while going down T . Thus, the point-location
process is recursive and might be quite substantial. Nevertheless, as will be argued
below, the overall cost of the PointLocate and Expand operations is not excessive, so
these operations are efficient in an amortized sense.

Let γ be the curve of the online walk whose zone we wish to compute. We consider
γ to be a directed curve, supplied to us by the user through a function EscapePointγ .
The function EscapePointγ(p,∆) receives as input a point p ∈ γ, and a trapezoid ∆
that contains p, and outputs the next intersection point of γ with ∂∆ following p. If
γ ends before we reach ∂∆, the function returns nil. We assume (although this is
not crucial for the algorithm) that γ does not intersect itself.

Let GS denote the adjacency graph of AVD(Ŝ). This is a graph having a ver-
tex for each trapezoid in AVD(Ŝ), such that an edge connects two vertices if their
corresponding trapezoids share a common vertical side. Under general position as-
sumptions, each vertex inGS has degree at most 4. It is easy to verify that a connected
component of GS corresponds to a face of A(Ŝ). Given a final leaf-trapezoid ∆, we
can compute the face of A(Ŝ) that contains ∆ by performing a depth-first search
in GS . This is done by performing point-location queries on appropriate points on
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Algorithm CompZoneOnline(Ŝ, p, EscapePointγ).

Input: A set Ŝ of n arcs, a starting point p of the walk,
and a function EscapePointγ that represents the walk

Output: The decomposed zone Aγ,VD(Ŝ) of γ in A(Ŝ)
begin

Choose a random permutation S = 〈s1, s2, . . . , sn〉 of Ŝ.
T ← {(R2, S)} - a partial history DAG with a root corresponding to

the whole plane; the conflict list of the root is the whole S.
v ← PointLocate(p, ·),

where PointLocate(p, ·) is the leaf of HT γ whose associated trapezoid
contains p. (The procedure has an additional flag parameter
that we ignore here; it is used in cases where p lies on trapezoid
boundaries; see Appendix A and below.)

/* All the paths in HT γ from v to the root now exist in T . */
D ← {∆v} (∆v is the trapezoid stored at v.)
while ( p = nil ) do

p← EscapePointγ(p,∆v)

w ← PointLocate(p,+),
where (p,+) denotes a point p+ on γ just past p, and w is the next leaf
of HT γ , such that p+ ∈ ∆w. This is done by performing a
point-location query in T , as described in the text, and expanding T
accordingly.

v ← w
D ← D ∪ {∆v}

end while
if only the district of γ needs to be computed then

return D (the district of γ in AVD(Ŝ))
Z ← ∅
for each ∆ ∈ D

Compute the face F of ∆v in Aγ,VD(S) (if it had not yet been computed).
Z ← Z ∪ F

end for
return Z.

end CompZoneOnline

Fig. 4. Algorithm for constructing the zone of a walk in an arrangement of arcs in an online
manner. See Appendix A for the pseudocode of the main subroutines used by CompZoneOnline, and
Appendix B for an illustration of the execution of CompZoneOnline.

the splitters of ∆, in a manner similar to that used in the Expand operation. This
yields all the neighbors of ∆ in GS , and we continue in this manner until the entire
connected component of GS containing ∆ is constructed.

Thus, given a walk γ, we can compute its zone by the algorithm CompZoneOnline

depicted in Figure 4. See Appendix A for the pseudocode of the main subroutines
used by CompZoneOnline, and Appendix B for an illustration of the execution of
CompZoneOnline.

As will be shown in section 3.1, by the time the algorithm terminates, the final
parts of T are contained in HT γ . (A proper inclusion might arise; see Remark 3.13.)
In analyzing the performance of the algorithm, we first bound the overall expected
time required to compute HT γ , which can be done by bounding the expected running
time of CompZoneWithOracle (in an appropriate model of computation). Next, we
will bound the additional time spent by the algorithm in traversing between adjacent
trapezoids (i.e., the additional time spent in performing the point-location queries).

Remark 2.1. By skipping the expansion of the face that contains the current
point p in CompZoneOnline, we get a more efficient algorithm that only computes the
district D of the walk, that is, the collection of trapezoids in AVD(Ŝ) that γ crosses.
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There are cases where this will be sufficient; see section 4 (e.g., in the adaptation of
the algorithm for computing a level in an arrangement).

3. Analysis of CompZoneOnline.

3.1. Correctness. In this section, we establish the correctness of CompZoneOnline.
Before starting, we note that the correctness of CompZoneWithOracle is easier to es-
tablish and follows routinely from standard considerations. We therefore omit any
further details concerning this issue.

The main technical issues that arise in the proof of correctness have to do with
the potentially complex patterns of exploring the DAG T that can arise during the
recursive execution of the PointLocate and Expand routines. The first main step
in the proof is to show that the Expand routine always terminates properly, with a
transient trapezoid that is compatible with the input one. Once this is shown, the rest
of the proof is a routine, though somewhat involved, task, which employs induction
on the structure of T and on the sequence of steps executed by the algorithm.

Lemma 3.1. During the execution of CompZoneOnline, the union of trapezoids of
the leaves of T form a pairwise disjoint covering of the plane by vertical trapezoids.

Proof. By induction on the steps of CompZoneOnline, noting that this is true
initially, and that each step that modifies T either merges leaf trapezoids into a larger
leaf trapezoid or splits a leaf trapezoid into subtrapezoids.

Corollary 3.2. Each conflict list, as computed for a (transient or final) trape-
zoid ∆ by the procedure CompZoneOnline, is the list of all arcs of S that cross (the
interior of) ∆.

Proof. We prove the corollary by induction on the steps of CompZoneOnline.
Observe that the region(s) from which ∆ was generated cover ∆, and thus the union
of their conflict lists must contain, by the induction hypothesis, the correct conflict list
of ∆, which is thus correctly constructed by the appropriate Expand or PointLocate
step.

Corollary 3.3. For a trapezoid ∆ created by CompZoneOnline, all the arcs of
D(∆) appear in S before all the arcs of cl(∆).

Consider an Expand operation that is triggered by point location at the midpoint
p of a transient splitter ν that bounds a transient trapezoid τ , where τ has already
been generated in T , and we wish to find the transient trapezoid τ ′ that shares ν
with τ as a common splitter. (It is easily verified that τ ′ uniquely defined, given the
permutation S.) Let i denote the rank of τ . As noted, i is also the index of τ . Clearly
si must be either the top or the bottom arc of τ . Assume, without loss of generality,
that ν is the right splitter of τ and that si is the top edge of τ . Let sj be the bottom
arc of τ , with j < i.

Lemma 3.4. During the execution of this Expand step, ignoring recursive calls,
all the trapezoids that are either visited or generated fully contain ν either in their
interior or within their left edge. Consequently, for any such trapezoid, except for the
last one, either its conflict list contains si and sj, or it contains si and sj is the bottom
arc of the trapezoid. Moreover, if this sequence of trapezoids includes a trapezoid that
does contain ν on its left edge, then all subsequent trapezoids in the sequence have this
property.

Proof. This is shown by induction on the sequence of steps of this (nonrecursive
portion of the) execution of Expand. For this proof, we assume that during this
execution, any recursive call to Expand terminates correctly, with a transient trapezoid
that is adjacent to the trapezoid that initiated the recursive call and has the same
top and bottom arcs. If this is not the case, we assume that the algorithm aborts at
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that point, and from that point on there is nothing to prove. (We thus modify the
algorithm for the purpose of the proof, but a subsequent argument (in Lemma 3.5
below) will show that the algorithm never aborts.)

The first node that the Expand procedure visits is the root of T , and the claims
clearly hold in this case. Assume they hold for all trapezoids up to and including
a trapezoid ∆. Suppose first that ∆ is final, and let sk = next(∆). By induction
hypothesis, the conflict list of ∆ contains si, so we must have k ≤ i. Then Corollary
3.3 implies that sk does not cross the relative interior of ν. This implies that the
subtrapezoid ∆′ of ∆ that is split from it by sk and contains (a point slightly to the
right of) the midpoint of ν must fully contain ν in its closure. If ∆ contained ν on its
left side, then clearly this also holds for ∆′.

If ∆ is transient, then there are two subcases: If the top and bottom edges of
∆ are, respectively, si and sj , then the Expand procedure terminates and returns
∆; the claims clearly hold in this case. Otherwise, the Expand procedure executes a
recursive call with the midpoint of some (transient) splitter of ∆. As argued above,
we may assume that this recursive call returns a transient trapezoid compatible with
∆, in the above sense. We repeat this step, if needed, until we obtain a sequence of
compatible transient trapezoids, including ∆, which cannot be expanded any further.
We then merge all these trapezoids into a trapezoid ∆′, which clearly must be final.
It is obvious, by construction, that ∆′ satisfies the first assertion of the lemma.

To prove the second assertion (for transient trapezoids), assume that ∆ contains
ν on its left edge ν0. It suffices to show that ν0 is not transient (which will imply
that ∆ is not merged with other trapezoids on its left, so that this left splitter will
be contained in ν0), so assume to the contrary that it is transient. As already noted,
a transient splitter like ν0 is generated when we insert an arc s	 that delimits ν0 and
separates it from the vertex w that induced it. Once this occurs, ν0 will trigger a call
to Expand which, if properly terminated, will erase ν0 as it merges ∆ with adjacent
transient trapezoids. As argued above, we have � < i (because si ∈ cl(∆)).

The same argument also implies that the trapezoid τf from which τ has been
split (by the insertion of si) has a nontransient right splitter ν∗ that contains ν and
extends all the way to the vertex w. Thus, by Corollary 3.2, the conflict list of τf
contains s	, so next(τf ) cannot be si, contrary to assumption.

This induction step completes the proof of the lemma.

As a consequence, it is easily verified by induction that, during the execution of
this Expand step, including all recursive calls, no arc sk with k > i is processed.

We now show that each call to Expand terminates correctly.

Lemma 3.5. Each point-location query at the midpoint of a transient splitter
generates a “compatible” transient trapezoid; that is, a transient trapezoid adjacent to
the current transient trapezoid that has the same top and bottom arcs.

Proof. Suppose the lemma is false, and consider the first call where this happens,
where we order the calls in the order of returns from Expand (i.e., in postorder on
the recursion forest). Let ∆ be the transient trapezoid that initiated this call, and
assume, without loss of generality, that the call started at the right splitter ν of ∆,
and that the top and bottom edges of ∆ are, respectively, si and sj , with i > j.
Arguing as in the proof of Lemma 3.4, we have that during the execution of the
nonrecursive portion of this call, the procedure visits or generates a sequence Σ of
trapezoids, each of which contains ν, and, by the induction hypothesis, all recursive
calls that it executes terminate properly.

Let sk, s	, with k < �, be the two arcs that intersect at the vertex w that induced
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a splitter that contains ν (the case where w is an endpoint of an ark sk is handled
similarly). Clearly, we must have k < � < i. Moreover, w must lie above ν, or else the
insertion of sj would have disconnected ν from w; since si has not yet been inserted
at that stage, it easily follows that ν could not have been formed at all. It is easily
seen that any trapezoid τ ∈ Σ that contains ν in its interior must either contain
sk and s	 in its conflict list or be bounded by sk and contain s	 in its conflict list.
Hence, as can be easily verified, sk and s	 will eventually be processed in splitting
operations during this execution and will consequently generate trapezoids in Σ that
contain ν on their left edge. Moreover, either si and sj appear in the conflict list
of any such trapezoid, or si appears in the conflict list and sj bounds the trapezoid
on the bottom. Eventually, si will thus be inserted, and then the resulting trapezoid
will be compatible with ∆ and the procedure will terminate correctly, contrary to
assumption.

Lemma 3.6. For any final trapezoid ∆ created by the Expand procedure, during
the execution of CompZoneOnline, ∆ is a trapezoid of AVD(Si), where i = index(∆).

Proof. The proof is shown by induction on the depth of the nodes in T , where the
depth of a node is defined to be the length of the longest path from the root of T to
this node.

The only node of depth 0 is the root of T , which is being computed during the
initialization of the algorithm, and is also the only trapezoid in AVD(S0).

Assume that the induction hypothesis holds for all trapezoids of depth < k, and
let ∆ be a final trapezoid of depth k in T . There are two cases to consider: (a) ∆ has
been generated by splitting a final trapezoid τ by inserting some arc si. (b) ∆ has
been obtained by merging several transient trapezoids.

In case (a), by induction hypothesis, τ is a trapezoid of AVD(Sj), where j =
index(τ). By Corollary 3.2, the conflict list of τ is computed correctly, so no arc
s	, with j < � < i, crosses τ . Hence τ is also a trapezoid of AVD(Si−1), and, by
construction, any final trapezoid obtained by splitting τ with si is a trapezoid of
AVD(Si). Since i = index(∆), this completes the induction step in this case.

In case (b), let τ1, . . . , τm be the transient trapezoids whose merging forms ∆. By
construction, all of them have the same top arc, say, si, and the same bottom arc,
say, sj . Suppose, without loss of generality, that i > j. Since these trapezoids are
transient, we have, as argued above, index(τ	) = rank(τ	) = i for each � = 1, . . . ,m. In
particular, this also holds for the leftmost and rightmost trapezoids in this sequence,
which is easily seen to imply that all the arcs in D(∆) belong to Si. Finally, since the
conflict lists of the τ	’s are computed correctly, and the conflict list of ∆ is the union
of these lists, it follows that no arc in that list belongs to Si. In other words, ∆ is a
final trapezoid defined by arcs of Si and no arc of Si crosses its interior. This readily
implies that ∆ is a trapezoid of AVD(Si), and this completes the induction step in
this case, and thus completes the proof of the lemma.

Lemma 3.7. All the (final) nonleaf nodes computed by CompZoneOnline appear
in HT γ .

Proof. What we really need to show is that each nonleaf-trapezoid ∆ in T be-
longs to Aγ,VD(Si−1), where si is the arc that has split ∆, thus making it a nonleaf.
Indeed, any such trapezoid belongs to HT γ , by construction and by correctness of
CompZoneWithOracle.

The proof proceeds by induction on the sequence of trapezoid-splitting steps taken
by CompZoneOnline. That is, a final nonleaf-trapezoid ∆ will be considered when it
is split by an arc (thus becoming a nonleaf). The claim clearly holds initially for the
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whole plane, stored at the root of T (and of HT γ). Let ∆ be a nonleaf final trapezoid
generated in T and then split by an arc si by CompZoneOnline, and suppose that all
previously split nonleaf trapezoids in T appear in HT γ . The trapezoid ∆ has been
split as part of a point-location query with some point p. Suppose first that p ∈ γ or
p lies on a splitter of a final trapezoid of AVD(Ŝ). (The later case occurs when we
expand the district of γ into its zone.) Since ∆ is split at that point, it follows by
construction that p ∈ ∆ and therefore ∆ belongs to Aγ,VD(Si−1).

Otherwise, p is the midpoint of some transient splitter ν, and the point location
of p is part of some Expand operation. Again, p (and in fact the whole segment ν)
belongs to ∆. Let τ be the transient trapezoid bounded by ν that has triggered that
Expand operation, and let τ0 be the first transient trapezoid (in the execution order
of CompZoneOnline) in the sequence of compatible trapezoids that includes τ . Let τf
be the father of τ0, which is a final (nonleaf) trapezoid from which τ0 has been split
by an arc sj . By induction hypothesis, τf belongs to Aγ,VD(Sj−1). Hence τ0 is fully
contained (as a set) in the zone of γ in A(Sj−1). By the preceding analysis, we know
that (a) sj is the top or bottom arc of τ0 and of τ , and (b) during the whole Expand
operation that started at τ0 no arc beyond sj is inserted. It follows that p belongs to
the zone of γ in A(Sj−1), and that si, the arc that has split ∆, must satisfy i ≤ j.
Hence ∆ belongs to the zone of γ in A(Si−1), which establishes the induction step
and thus completes the proof of the lemma.

Lemma 3.8. All the trapezoids of Aγ,VD(Ŝ) are computed by CompZoneOnline.
Proof. Consider first the sequence of trapezoids of AVD(Ŝ) that constitute the

district of γ in the full arrangement, in the order in which they are traversed by γ.
The proof first proceeds by induction on this sequence, arguing that each of these
trapezoids is produced by CompZoneOnline. As implied by the preceding analysis,
each point-location query with a point p returns the trapezoid of AVD(Ŝ) that con-
tains p. Hence, if the kth trapezoid in the above sequence has been generated, the
EscapePointγ function produces a point that lies in the next trapezoid, which will
therefore also be produced by CompZoneOnline. A similar argument holds for the
subsequent stage of the algorithm that expands the district of γ into its zone.

3.2. Running time. In this subsection, we first analyze the performance of
CompZoneWithOracle and then use this analysis to bound the expected running time
of CompZoneOnline. We assume that CompZoneWithOracle maintains for each trape-
zoid ∆ its conflict list cl(∆) that stores the set of arcs that cross it. We also assume
that each conflict list cl(∆) stores its minimal element next(∆) in the ordering of S
and that each yet uninserted arc s maintains a list of all current trapezoids ∆ for
which next(∆) = s. Then it is easy to see that the running time of the algorithm
is proportional to the overall size of all the conflict lists that it generates. We also
assume that a call to the Oracle O takes O(1) time.

Lemma 3.9. The algorithm CompZoneWithOracle computes the zone of γ in
AVD(Ŝ) in O (λt+2(n+m) log n) expected time, and the expected number of trapezoids
that it generates is O (λt+2(n+m)).

Proof. The proof is a straightforward adaptation of the proof of [9].3 Specifically,
we first make m cuts at the points where γ crosses the arcs of Ŝ, thereby obtaining a
collection of m+ n subarcs, so that Zγ(Ŝ) becomes a single face in the new arrange-

ment. We now insert the original arcs of Ŝ one by one in the random order S. It is
easily checked that the expected number of subarcs of the r random arcs that have

3The algorithm of [9] has some additional overhead that is not required in CompZoneWithOracle.
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been inserted is O
(
r + m

n r
)
. Thus, the expected number of trapezoids maintained in

the rth iteration is O
(
λt+2

(
r + m

n r
))
. Using the Clarkson–Shor sampling technique

[10, 24] implies that the overall expected weight of those trapezoids in the rth iteration
is O(λt+2(n +m)). However, the expected work in the rth iteration is the expected
weight of the newly created trapezoids, and the probability of a trapezoid (that ap-
pears in the set of trapezoids maintained by the algorithm after the rth iteration) to
be created in the rth iteration is O(1/r). We conclude that the expected work in the
rth iteration is O(λt+2(n+m)/r). Summing over r = 2, . . . , n, we conclude that the
expected overall running time of the algorithm is O(λt+2(n+m) log n).

Lemma 3.10. The expected number of transient trapezoids generated by CompZone-
Online is O(λt+2(n+m)), and the expected total size of their conflict lists is O(λt+2(n+
m) log n).

Proof. Each final trapezoid generated by CompZoneOnlinemight be split intoO(1)
transient trapezoids. Each final (nonleaf) trapezoid computed by CompZoneOnline is
also computed by CompZoneWithOracle, as follows from Lemma 3.7. By Lemma 3.9,
the expected number of such trapezoids is O(λt+2(n+m)).

The second part of the lemma follows by a similar argument.

Definition 3.11. A curve γ is locally x-monotone in A(Ŝ) if it can be decom-
posed inside each face of A(Ŝ) into a constant number of x-monotone curves.

Theorem 3.12. The algorithm CompZoneOnline computes the zone of γ in A(Ŝ)
in O (λt+2(n+m) log n) expected time, provided that γ is a locally x-monotone curve
in A(Ŝ).

Proof. The time spent by CompZoneOnline is bounded by the time required to
construct the history DAG, by the time spent in maintaining the conflict lists of the
trapezoids, and by the time spent on performing point-location queries, as we move
from one trapezoid to another in Aγ,VD(S).

By Lemmas 3.9 and 3.10, the expected time spent on maintaining the conflict
lists of the trapezoids computed by the algorithm is O(λt+2(n +m) log n), since the
total time spent on handling the conflict lists is proportional to their total length. By
Lemma 3.10, the expected total size of those conflict lists is O(λt+2(n+m) log n).

Moreover, the depth of the history DAG constructed by the algorithm is O(log n)
with a probability polynomially close to 1 [24]. Thus, the expected time spent directly
on performing a single point-location query (that is, the number of trapezoids that
contain the query point and are visited or generated during this point-location step)
is O(log n). The curve γ is locally x-monotone, which implies that it intersects each
splitter of any trapezoid of any Aγ,VD(Ŝ) at most O(1) times. Thus, the expected
number of point-location queries performed by the algorithm is proportional to the
expected number of transient and final trapezoids created, plus O(m). By Lemma
3.10, we have that the expected running time is

O
(
λt+2(n+m) log n+ (λt+2(n+m) +m) log n

)
= O (λt+2(n+m) log n) .

Remark 3.13. Note that CompZoneWithOracle computes the zone of γ in AVD(Si)
for each i = 1, . . . , n. As a consequence, it might compute a trapezoid ∆ ∈ Aγ,VD(Si)
that does not intersect the zone of γ in Aγ,VD(S). In particular, such a trapezoid ∆
will not be computed by CompZoneOnline. This is a slackness in our analysis that we
currently do not know whether it can be exploited to further improve the analysis of
the algorithm. (We suspect that it cannot improve the above asymptotic bound on the
running time.)
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Remark 3.14. The only classical result of this type that we are aware of is due to
Overmars and van Leeuwen [25]. It maintains dynamically the intersection of n half-
planes in (deterministic) O(log2 n) time for each insertion or deletion operation. This
procedure can be used to perform walks inside line arrangements in (deterministic)
O((n + m) log2 n) time, where m is the number of intersections of the walk with
the lines. Our algorithm is somewhat simpler and is faster than the algorithm of
[25] by nearly a logarithmic factor, and, most importantly, applies to more general
arrangements.4

The technique of [25] can also be used to perform x-monotone online walks in
arrangement of segments. We simply regard each segment as the full line that contains
it, but make it active only when the walk passes vertically above or below the segment.
This means that, in addition to the usual updates that the algorithm performs, we also
insert (resp., delete) segments when the walk becomes covertical with their left (resp.,
right) endpoint. (If the walk is not x-monotone, this may slow down the algorithm
considerably.)

As for general arcs (or nonmonotone walks in arrangements of segments), we are
not aware of any result of this type in the literature. Of course, if the curve γ is known
in advance (and is simple, in the sense that one can compute quickly its intersections
with any arc of Ŝ), we can compute the single face containing γ in an appropriately
modified arrangement (as in the proof of the general planar zone theorem [26, Theorem
5.11]; see also the proof of Lemma 3.9 using the algorithms of [11, 9]. These algorithms
(especially the first one) are slightly simpler than the algorithm of Theorem 3.12,
although they have the same expected performance. However, these algorithms are
useless for online walks, and they are probably slower than our algorithm in practice, as
they either maintain additional complicated data-structures [9] or perform additional
redundant computation of regions that lie outside the zone of γ [11].

Recently, several algorithms for performing online walks were implemented [3],
including a variant of the algorithm presented here, which exhibited satisfactory per-
formance in practice.

4. Applications. In this section we present several applications of the algorithm
CompZoneOnline.

4.1. Computing a level in an arrangement of arcs. In this subsection we
show how to modify the algorithm of the previous section to compute a level in an
arrangement of x-monotone arcs.

Definition 4.1. Let Ŝ be, as above, a set of n x-monotone arcs in the plane, any
pair of which intersect at most t times (for some fixed constant t). We also assume,
as above, that Ŝ is in general position. The level of a point in the plane is the number
of arcs of Ŝ lying strictly below it. Consider the closure El of the set of all points on
the arcs of Ŝ having level l (for 0 ≤ l < n). El is an x-monotone (not necessarily
connected) curve (which is polygonal in the case of lines or segments), which is called
the level l of the arrangement A(Ŝ). At x-coordinates where a vertical line intersects
less than l + 1 arcs of S, we consider El to be undefined.

Levels are a fundamental structure in computational and combinatorial geometry
and have been subject to intensive research in recent years (see [1, 13, 27, 28]). Tight

4Recently, Chan [7] improved the result of [25], providing a data structure for maintaining inter-
section of half-planes in O(log1+ε n) amortized time for each update. His data structure is consid-
erably more complicated than ours and that of Overmars and van Leeuwen, and currently seems to
be only of theoretical significance. Moreover, our algorithm is still faster than Chan’s (by a factor of
O(logε n)). Very recently, this result was further improved by [6].
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Ek

Fig. 5. The first level in an arrangement of segments. (The vertical edges show the jump
discontinuities of the level, but are not part of the level.)

bounds on the complexity of a single level, even for arrangements of lines, proved to
be surprisingly hard to obtain. Currently, the best-known upper bound for the case
of lines is O(n(l+ 1)1/3) [13], while the lower bound is Ω(n log (l + 1)) [14].5 See also
[1, 28] for weaker upper bounds for other classes of arcs.

First, note that if Ŝ is a set of lines, then, once we know the leftmost ray that
belongs to El, the level l is locally defined: as we move from left to right along El, each
time we encounter an intersection point (a vertex of A(Ŝ)) we have to change the line
that we traverse. (This is also depicted in Figure 5.) In particular, we can compute
the level El in O(λ3(n+ |El|) log n) time using CompZoneOnline. The same procedure
can be used to compute a level in an arrangement of more general arcs. The only
nonlocal behavior we have to watch for are jump discontinuities of the level caused
when an endpoint of an arc appears below the current level, or when the current level
reaches an endpoint of an arc (see Figure 5). See below for details concerning the
handling of those jumps.

In the following, let 0 ≤ l < n be a prescribed parameter. Let El denote the level
l in the arrangement A(Ŝ).

The following adaptation of CompZoneOnline to our setting is rather straightfor-
ward, but we include it for the sake of completeness. We sort the endpoints of the
arcs of Ŝ by their x-coordinates. Each time our walk reaches the x-coordinate of the
next endpoint, we update El by jumping up or down to the next arc, if needed. This
additional work requires O(n log n) time.

If the level reaches the x-coordinate x0 of a right endpoint of an arc, past which
there are fewer than l + 1 arcs intersecting a vertical line, then the level lies on the
highest arc just to the left of x0 and it ceases to be defined just to the right of x0. In
this case, our walk climbs to the line y = +∞ and moves along the line (effectively
tracing a sequence of topmost trapezoids of A(Ŝ)) until it reaches the x-coordinate
of a left endpoint of an arc, following which we might have again l+1 arcs crossing a
vertical line. If so, the walk then descends on the topmost arc and continues to trace
the level l. For simplicity, we continue the discussion of the algorithm assuming that
El is everywhere defined.

During the walk, we maintain the invariant that the top edge of the current
trapezoid is part of El. To compute the first trapezoid in the walk, we compute the
intersection of level l with the y-axis (this can be done by sorting the arcs according
to their intersections with the y-axis). Let p0 be this starting point. We perform
a point-location query with p0 in our virtual history DAG to compute the starting
trapezoid ∆0 (containing p0 on its top arc).

Now, by walking to the right of ∆0 we can compute the part of El lying to the

5Recently, a slightly larger lower bound has been announced by Tóth [29].
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right of the y-axis. Let ∆ be the current trapezoid maintained by the algorithm, such
that its top edge is a part of El. Let p(∆) denote the top right vertex of ∆. By
performing point-location queries in our partial history DAG T , we can compute all
the trapezoids of AVD(Ŝ) that contain p(∆). (By our general position assumption,
the number of such trapezoids is at most 6; this number materializes when p(∆) lies
in the intersection of two arcs.) By inspecting this set of trapezoids, one can decide
where El continues to the right of ∆ and determine the next trapezoid having El as
its roof. The algorithm sets ∆ to be this trapezoid.

If the algorithm reaches an x-coordinate of an endpoint of an arc, we have to
update El by jumping up (if this is the right endpoint of an arc and it lies on or below
the level) or down (if it is a left endpoint and lies below the level); namely, we set ∆
to be the trapezoid lying above (or below) the current ∆.

The algorithm continues in this manner until reaching the rightmost edge of El.
The algorithm then performs a symmetric walk to the left of the y-axis to compute
the other portion of the level.

Let CompLevel denote this modified algorithm. We summarize our result as
follows.

Theorem 4.2. The algorithm CompLevel computes the level l in A(Ŝ) in
O (λt+2(n+ |El|) log n) expected time.

Remark 4.3. Since CompLevel is online, we can use it to compute the first m′

edges or vertices of El in expected O(λt+2(n+m′) log n) time.
Remark 4.4. A straightforward extension of CompLevel allows us to compute

any connected path within the union of Ŝ (i.e., we restrict our “walk” to the arcs of
Ŝ) in an online manner, in randomized expected time O (λt+2(m+ n) log n), where m
is the number of vertices of the path. As above, the extended version can also handle
vertical jumps between adjacent arcs during the walk.

Remark 4.5. For the case of lines, one can use the algorithm of [25] to construct
a level El in O(n log n+ |El| log2 n) deterministic time, as described, e.g., in [15]. The
same technique, with a simple modification, also works for the case of line segments,
with the same complexity bounds. Our algorithm is faster in these cases by nearly a
logarithmic factor.

As already mentioned, recently Chan [7] presented a faster algorithm for the dy-
namic maintenance of the intersection of half-planes, requiring O(log1+ε n) amortized
time for each operation. Thus, one can compute the level l in O(n log n+|El| log1+ε n)
deterministic time. Chan [8] also showed that by using the algorithm of [2] one can
compute the level l in O(n+ |El|α(n)2 log n) randomized expected time. Those results
were very recently improved by Brodal and Jacob [6]. We note, however, that our
algorithm is still faster and simpler than those two algorithms.

4.2. Other applications. In this subsection, we provide some additional appli-
cations of CompZoneOnline and CompLevel.

Theorem 4.6. Let L be a set of n lines in the plane, and let 0 < ε ≤ 1 be
a prescribed constant. Then one can compute a (1/r)-cutting of A(L), having at
most (1 + ε)(8r2 − 2r + 4) trapezoids. The expected running time of the algorithm is
O
((
1 + 1

ε

)
nrα(n) log n

)
, where α(n) is the inverse of the Ackermann function [26].

Proof. We obtain the proof by plugging the algorithm of Theorem 4.2 and Remark
4.3 into the algorithm described in [18].

For a discussion of cuttings of small asymptotic size and their applications, see
[22, 18].
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Remark 4.7. Theorem 4.6 improves the previous result of [18] by almost a loga-
rithmic factor.

Once we have computed the level l (in an arrangement of general arcs), we can
clip the arcs to their portions below the level. Using those clipped arcs as input, we
can compute the portion of the arrangement below the level l (i.e., the first l levels of

A(Ŝ)) in O((m+n) log n+r) time, wherem = |El| is the complexity of the level l, and
r is the complexity of the first l levels of A(Ŝ), using, e.g., the algorithm described
in [24]. This improves over the previous result of [16] that computes this portion of
the arrangement of lines in O(n log n+ nl) time. (Note that this running time is not
output sensitive: It is easy to come up with examples where the complexity of the
first l levels is only O(l2).)

5. Implementation. The algorithm described in this paper was implemented
and compared to some other heuristics/algorithms for constructing zones in an online
manner for an arrangement of lines; see [3]. The source code of our program is
available from [19]. We had implemented a competing algorithm, the following variant
CompZonePoly, which differs from CompZoneOnline in the following two key points:

• CompZonePoly does not perform merging of adjacent compatible regions.
Thus, the history DAG is now a tree.
• Each node in the history tree corresponds to a convex polygon of bounded
complexity. Namely, if the polygon that corresponds to a node has more than
c edges (where c is a prescribed constant), then the polygon is being further
split into two regions, and the corresponding node becomes the parent of
two new nodes. The motivation for this variant is that the average number
of vertices of a face in an arrangement of lines is about 4. Thus, in this
representation most faces (and intermediate faces) will correspond to a single
node in the history tree.

Currently, we do not have any bounds on the performance of CompZonePoly and
we leave it as an open question for further research. Nevertheless, CompZonePoly
performs extremely well in practice and was one of the two fastest algorithms tested
in [3].

5.1. Geometric filtering. To overcome the problems of robustness and degen-
eracies, we had used the exact arithmetic as provided by the rational numbers of
LEDA [23]. Unfortunately, using exact arithmetic in a naive way slows the program
by a factor of 20–40 [18]. One possible way to achieve reasonable performance is to
use filtering techniques. Here, one uses representation of numbers that maintain the
history of the computations that generated them, so that if necessary the compu-
tations are recomputed using a higher level of precision. Such arithmetic types are
provided by LEDA real and LEDA rational kernel. While filtering may be a carefree
approach to this problem, as one can apply it easily to a program without rewriting,
its performance is still inferior compared to the technique described below.

The idea is to implement filtering in the geometric level. Here each geometric
entity has two representations: one is a floating-point representation (i.e., inexact) and
the other one is an implicit exact representation. For example, a point is represented
in its floating-point Cartesian representation and its logical representation; that is,
the geometric operations and entities used to create it. For example, a point p might
be defined to be the point lying on the line l and having the same x-coordinate as a
point q.

Thus, when a geometric primitive is being called, it is first computed using
floating-point arithmetic. If the computation result lies below a certain threshold,
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then the algorithm recomputes the primitive using exact arithmetic. This might re-
quire computing the exact representation of the points and lines used in this primitive.
While in general this is worse than arithmetic filtering, it performs better in our sce-
nario, as the depth of computation of vertices and edges in planar arrangement is
bounded.

Furthermore, since this representation preserves the combinatorial information,
one can use this information to resolve geometric decisions without resorting to exact
arithmetic. For example, consider a point p that is defined to be the intersection point
between the lines l1, l2, and the algorithm calls a primitive isOnLine to decide if p
lies on the line l1. Here, after the floating-point predicate had failed, the predicate
decides using the logical representation of p = l1 ∩ l2 that it lies on l1, and thus it
return true.

Note that this is a scenario where arithmetic filtering will perform badly, for in
this case the arithmetic filtering will first carry out the computations using floating-
point arithmetic, and after those operations fail the computations will be reperformed
using a higher level of precision, using some kind of a gap-bound so that it resolves
the predicate correctly.

We refer to the above approach as geometric filtering. It seems to be the most
natural approach to the problem of robustness, although the considerable benefits
of this approach in practice are not widely known. For example, in the case of the
algorithms of [3], the usage of geometric filtering speeded up the algorithms by a factor
of 2–3. In practice, virtually all computations are performed using floating-point
arithmetic, and only negligible part of the computations resort to exact arithmetic.

A very similar idea was recently implemented by Funke and Mehlhorn [17]. For
further details about our approach, see [19].

5.2. Empirical results. The testing was carried out using the inputs of [3],
and the results are depicted in Table 1. The tests were performed on a dual Pentium
II 450MHz with 512MB memory using Linux. Each entry in the table is the aver-
age of 25 executions of the program on this input. As can be seen from the table,
CompZoneOnline is considerably slower (by a factor 2–8) than CompZonePoly.

The disappointing performance provided by CompZoneOnline is mainly caused
by the expensive Expand operations (involving repeated point-location queries in the
DAG). Of course, CompZonePoly does not perform Expand operations. Furthermore,
as testified by Table 1, the usage of vertical trapezoids by CompZoneOnline is inher-
ently inefficient as it blows up the number of nodes in the associated history structure
by a factor of 2–3 compared to the number of nodes created by CompZonePoly.

In addition, the implementation of CompZonePoly associates with each line l in
the conflict list of a region P , the two edges of ∂P that l intersects. When computing
the conflict lists of the children of the node that corresponds to P , one can sometimes
compute what conflict lists l belongs to without executing a single geometric primitive.
It is not clear how one can implement a similarly efficient scheme for the computation
of the conflict lists of vertical trapezoids.

6. Conclusions. In this paper we have presented a new randomized algorithm
for computing a zone in a planar arrangement in an online fashion. This algorithm is
the first efficient algorithm for the case of planar arcs, it performs faster (by nearly a
logarithmic factor) than the algorithm of [25] for the case of lines and for the case of
an x-monotone walk in an arrangement of segments, and it is considerably simpler.
(It is also faster and much simpler than the recent algorithm of [7].) We also presented
an efficient randomized algorithm for computing a level in an arrangement of arcs in
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Table 1
Results for the two implemntations. Running times are in seconds. The number of nodes

created by CompZoneOnline is considerably larger than the final number of nodes in the resulting
DAG, as the algorithm merge nodes during its execution.

CompZoneOnline CompZonePoly

Input Lines # Faces # Time Nodes # Nodes created Time Nodes #

test 42 26 0.053 383 457 0.009 203
reg2000 2,004 667 1.449 17,651 21,419 0.228 6,735
rgl2000 2,004 6,271 6.331 93,729 117,324 0.890 36,853
rnd2000 2,004 1,411 1.458 25,072 32,064 0.295 9,844
zon2000 2,004 11,803 10.754 191,089 245,602 1.857 75,067
big2000 2,004 1 1.215 11,649 15,409 0.662 6,779
reg8000 8,004 2,664 6.122 70,409 85,376 1.007 26,841
zon8000 8,002 47,411 49.252 811,471 1,039,358 8.551 318,637
big8000 8,004 1 5.150 46,965 62,184 2.845 27,344

the plane, whose expected running time is faster than any previous algorithm for this
problem.

The main result of this paper relies on the application of point-location queries
to compute the relevant parts of an “offline” structure (i.e., the history DAG). The
author believes that this technique should have additional applications. In particular,
this approach might be useful also for algorithms in higher dimensions. We leave this
as an open question for further research.

Although the resulting algorithm seems to be only a minor variant of previous
algorithms [11, 9], the author believes that the new algorithm supersedes those algo-
rithms: (i) Implementing the new algorithm was quite easy and does not require any
advanced data-structure. In particular, since the algorithm does not keep geometric
adjacency information in the vertical decomposition (unlike previous algorithms) its
implementation is thus considerably easier. (ii) The algorithm only computes what
it must compute, while [11] performs a lot of redundant computations. (iii) The
algorithm provides a powerful data-structure for online computation of parts of an
arrangement, where the computation time is the same as a randomized incremental
algorithm that uses an oracle. This enables one to compute a portion of an arrange-
ment in a completely arbitrary order, in time identical to the time spent by a optimal
randomized incremental algorithm. See [21, 20] for results that use this observation.

It is somewhat surprising that in most applications that use Overmars and van
Leeuwen [25] (or Chan [7] improvement) data-structure—which is more flexible than
our data-structures since it allows insertion and deletion—one can use our algorithm
instead and the resulting algorithms are always faster. See [21] for more details.

The empirical results testify that this algorithm is practical, although it is slower
than the heuristic CompZonePoly we had also tested. We currently do not have any
proof of performance bounds for CompZonePoly, and we leave this as a question for
further research. Another striking conclusion from the empirical tests is that using
vertical decomposition in practice is not as efficient as using polygons having constant
complexity; see [3, 18] for similar results. It seems that planar vertical decomposition
should be avoided in practice, as they give inferior performance. An additional reason
for avoiding vertical decompositions in practice is their vulnerability to degeneracies
(for example, several vertices of the arrangement having the save x-coordinate, etc).
However, if one computes the zone in arrangement of segments, or of general arcs, it
seems that the usage of vertical trapezoids is most natural. We believe that in such
scenarios CompZoneOnline will perform reasonably well compared to other algorithms.
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Appendix A. Pseudocode for subroutines of CompZoneOnline. See Figures
6–9.

Algorithm Split(v).
Input: A final node v in the partial history DAG T

begin

s← next(∆v), where ∆v is the trapezoid associated with the node v
L← SplitGeom(∆v, s),

where SplitGeom(∆v, s), as above, returns the collection of trapezoids
that cover ∆v, so that s does not intersect any of them in its interior.

for each τ ∈ L do

Create a new node w and attach it as a child of v in T .
Set ∆w to τ
Compute cl(∆w) from cl(∆v)
Compute next(∆w), the first element of cl(∆w)

end for

end Split

Fig. 6. Splitting a final node in T and creating its children.

Algorithm PointLocateLeftCompatible(v, p, r).
Input: v - current node of T

p - query point
r - target rank of output trapezoid

Output: A transient trapezoid of rank r having p on its left splitter
begin

if rank(v) = r then

return v
if isTransient(v) then

v ← Expand(v)
if isLeaf(v) then

Split(v)
Let w be the child of v, so that ∆w contains p either in its interior

or on its left splitter
return PointLocateLeftCompatible( w, p, r )

end PointLocateLeftCompatible

Fig. 7. Computing a transient trapezoid in T that is left “compatible” with an input transient
trapezoid by carrying out a point-location query in T . The algorithm also uses a symmetric routine,
PointLocateRightCompatible, whose code is omitted.
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Algorithm Expand(v).
Input: v - current transient leaf node of T
Output: A final node of T whose trapezoid contains ∆v

begin

if isF inal(∆v) then

return v
L← {v}

/* collect the sequence of transient trapezoids adjacent to each other
to the right of ∆v */

temp← v
while isTransientRightSplitter(∆temp) do

temp← PointLocateLeftCompatible( root(T ),
midPointRightSplitter( ∆temp), rank(∆temp) )

L← L ∪ {temp}
end while

/* Similarly collect the sequence of transient trapezoids to the left of ∆v */
temp← v
while isTransientLeftSplitter(∆temp) do

temp← PointLocateRightCompatible( root(T ),
midPointLeftSplitter( ∆temp), rank(∆temp) )

L← L ∪ {temp}
end while

∆← ⋃
u∈L∆u

Compute cl(∆) and next(∆) from the conflict lists of the
nodes of L, using the global bit-vector technique.

Add a new leaf node x to the partial history DAG T , mark x as final,
and replace all nodes of L in T by x.

Set ∆x to ∆

return x
end Expand

Fig. 8. Expanding a transient leaf trapezoid of T to a final trapezoid containing it.
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Algorithm PointLocate( p, flag ).
Input: p - a query point

flag - since p usually lies on the boundary of a trapezoid, flag
indicates the side of the splitter or arc that contains p
where the point location should take place

Output: The trapezoid of AVD(Ŝ) that contains p (in its interior
or on the appropriate edge dictated by flag)

begin

v ← root(T )

while ( cl(∆v) �= ∅ ) do

Expand(v)
Split(v)
v ← child of v whose trapezoid contains p; if p lies on

the boundary of several children trapezoids, choose the one
that is compatible with flag

end while

return ∆v

end PointLocate

Fig. 9. The function that performs a point-location query; that is, it computes the necessary
parts of the partial history DAG T and returns the trapezoid of AVD(Ŝ) that contains a query point.

Appendix B. Taking a walk in ten easy figures. In this appendix we illus-
trate step by step the action of processing a single point-location query by CompZone-
Online. (See Figures 10–19.)

1

2

3

4

a

Fig. 10. The input for CompZoneOnline is the set of segments Ŝ = {1, 2, 3, 4}. We assume that
the algorithm uses the permutation S = (1, 2, 3, 4). We illustrate how CompZoneOnline carries out a

point-location query to compute the trapezoid of AVD(Ŝ) that contains the point a. We assume that
this is the first query processed by the algorithm.
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∆0

a

T
∆0

Fig. 11. CompZoneOnline starts with the trapezoid ∆0 = R
2 that corresponds to the root of the

partial DAG T .

1

∆1

a

T
∆0

∆1

Fig. 12. CompZoneOnline splits ∆0 by the segment next(∆0) = 1, and goes down in the DAG
into the new node that corresponds to the trapezoid ∆1. All children of ∆0 (including ∆1) are final.

∆2

a

τ1

2

1

T
∆0

∆1

∆2

τ1

Fig. 13. Since ∆1 is final, it is split by next(∆1) = 2 into four final subtrapezoids, and we go
down to the child ∆2 that contains a.
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∆3

p

3

τ1
a

1

2 T
∆0

∆1

∆2

τ1

∆3

Fig. 14. CompZoneOnline splits ∆2 by next(∆2) = 3 into three subtrapezoids. Two of them are
final, and the third one, ∆3, that contains a is transient (its right splitter is transient). We thus
execute Expand(∆3), which performs a point-location query (with the midpoint p of the right splitter).
The point location goes down in the partial DAG, through ∆0 and ∆1, and reaches the (final) leaf
that stores τ1. Since rank(∆3) = 3 and rank(τ1) = 2, those two trapezoids are not compatible (this
holds also because τ1 is final, whereas ∆3 is not), and the algorithm continues by further splitting
τ1 by next(τ1) = 3.

τ3

p

3

τ2

τ4∆3
a

2

1

T
∆0

∆1

∆2 τ1

∆3 τ4τ2τ3

Fig. 15. The splitting of τ1 creates three children τ2, τ3, τ4, of which τ2 and τ4 are final,
whereas τ3 is transient. CompZoneOnline goes down to the newly created τ3, which contains p on
its left splitter. Since τ3 is transient and rank(τ3) = rank(∆3), it is compatible with ∆3. Since the
right splitter of τ3 is final, and so is the (empty) left splitter of ∆3 the execution of Expand(∆3)
terminates.
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∆4

a
τ4

1

2 3 T
∆0

∆1

∆2 τ1

∆4 τ4τ2

Fig. 16. The trapezoids ∆3 and τ3, from the previous figure, are merged by CompZoneOnline to
form the final trapezoid ∆4. Since cl(∆4) is not empty, we split it further by next(∆4) = 4.

τ4
4

τ5

∆5τ6
a q

2
3

1

T
∆0

∆1

∆2 τ1

∆4
τ4τ2

τ5 τ6 ∆5

Fig. 17. The splitting of ∆4 creates three children ∆5, τ5, τ6, of which τ5 and τ6 are final,
whereas ∆5 is transient and contains a. CompZoneOnline goes into ∆5, and since it is transient,
CompZoneOnline calls Expand(∆5). A point-location query is performed at the midpoint q of the right
splitter of ∆5. This query traverses in T the path (∆0,∆1, τ1, τ4). The (final) trapezoid τ4 is not
compatible with ∆5 so it is further split by the segment next(τ4) = 4.

4
τ7

τ8 τ9
∆5a q

32

1

T
∆0

∆1

∆2 τ1

∆4
τ4τ2

τ5 τ6 τ7 τ9∆5
τ8

Fig. 18. τ4 is split into τ7, τ8, τ9, of which only τ8 is transient. CompZoneOnline goes into
τ8, which contains q on its left splitter. This trapezoid is compatible with ∆5, and since both the
left splitter of ∆5 and the right splitter of τ8 are final, Expand(∆5) terminates and merges both
trapezoids.
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∆6
a

1

4

32
T

∆0

∆1

∆2 τ1

∆4
τ4τ2

τ5 τ6 τ7 τ9∆6

Fig. 19. Voila! The newly formed final trapezoid ∆6 contains our query point a, and its
conflict list is empty. Thus, ∆6 is the trapezoid of AVD(Ŝ) that contains a and is output as such
by CompZoneOnline.
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Abstract. For a collection of sets in Rd we consider the task of finding all sets in the collection
that cover or contain a given point. The algorithms introduced in this paper are based on quadtrees
and their generalizations to Rd. The advantages of our new splitting algorithm to find the covering
sets of a point over the basic algorithm are detailed by means of hit rates and the expected depth
traversed in the quadtree search, numerically and theoretically. This solves a difficult problem faced
by mesh-free discretizations of partial differential equations.

Key words. quadtree and octree search methods, computational geometry
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1. Introduction. The task of this paper is, given a collection of support sets
Si ⊂ Rd, i = 1, 2, . . . , N , to efficiently answer the query “Given a point x ∈ Rd, find
all Si such that x ∈ Si.” This task arises when assembling the matrix for a mesh-free
discretization of a partial differential equation. The sets Si are the support sets of
the basis functions used to solve the partial differential equation. They are typically
rectangles with modest aspect ratios, or circles/spheres in Rd with d being 2, 3, or 4.
An example of such a problem is illustrated in Figure 1.

One way to answer this query quickly is to organize the Si using quadtrees and
octrees [5, 9, 13]. Clearly the time needed to answer this query is at least Ω(#{ i |
x ∈ Si }) where #A is the cardinality of the set A. The quantity #{ i | x ∈ Si } is the
covering number of x; it is the number of support sets containing (that is, covering)
the point x. Quadtrees and octrees have been found useful in geometric tasks such as
finding which points from a collection belong to a given range [3]. For a task involving
preprocessing a collection of points, quadtrees and octrees can be considered as tries,
such as are used for string matching [2]. However, the task studied in this paper
involves preprocessing a collection of sets {Si ⊂ Rd | i = 1, 2, . . . , N } rather than
a collection of points. Also note that this task is not the point location problem
previously studied [11, 12], in that here the sets Si are usually not disjoint. Our
analysis is also different to that of [11, 12] in that here we are concerned with the
expected time for a random query point x, rather than with worst-case analysis. While
the data structures described here are those of Samet [15], Samet considers their use
only for the intersection problem: find all pairs (i, j) where Si∩Sj �= ∅. Here we wish,
given x, to find all i where x ∈ Si.

For each point x and support set Si, we assume that we can test if x ∈ Si in
Θ(1) time. The point about using quadtrees/octrees or other similar data structures
is that we can avoid doing unnecessary tests. The total time to answer a query can be
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published electronically October 31, 2000. This research was supported by NSF/DARPA grant DMS-
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Fig. 1. Example of distribution of support sets Si.

roughly divided up into the time needed to traverse the data structure plus the time
to perform the tests to identify the support sets containing x. Since the best we can
do is to have a “hit” (i.e., x ∈ Si) whenever we test for “x ∈ Si,” we are interested
in the “hit rate,” which is the ratio of hits to the total number of tests, averaged
over all the integration points. In particular, we don’t want this to go to zero; and if
the hit rate can be bounded away from zero, then the number of tests is, at worst,
proportional to the average covering number of the sets {Si | i = 1, 2, . . . , N }. We
will show that the average time to traverse the quadtree is no worse than O((logN)/d)
for both algorithms that we will present, so that the traversal time is a more easily
controlled cost.

Worst-case deterministic bounds for the hit rate can be arbitrarily bad: the hit
rate is zero if x is not covered by any support set and at least one test is done for x. If
there are no restrictions on the shape of the support sets, then quadtrees/octrees can
be made to perform badly, for example, by making the Si’s curves or thin ribbons.
In practice, the support sets Si are discs, balls, rectangles, rectangular solids, or
similar shapes, with modest aspect ratios (the ratio between the longest and smallest
dimension).

Our bounds on the hit rate are proven under the assumption that x is chosen
randomly and uniformly over a set S which contains the union of the Si’s.

1.1. Application. Various new methods for solving partial differential equations
have been introduced which do not require construction of grids or triangulations
of regions in order to compute approximate solutions. These are known as mesh-
free methods; there are a number of types of mesh-free methods such as partition of
unity finite element methods (PUFEM), reproducing kernel particle methods (RKPM),
element free Galerkin (EFG) methods, and moving least squares (MLS) methods. An
overview of mesh-free methods in general can be found in [4].

All of these methods construct basis functions Ψi, i = 1, 2, . . . , N , over the domain
of interest Ω ⊂ Rd from which a Galerkin discretization is developed. Thus, for
example, for solving the partial differential equation

−∇2u(x) + u(x) = f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where ∂Ω is the boundary of Ω, we approximate u ≈ uh where uh(x) =
∑N
i=1 uhi Ψi(x).
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Fig. 2. Quadtree and octree examples.

Then we construct a linear system of equations for the unknown coefficients uhi :∑N
j=1 Kiju

h
j = fi for i = 1, 2, . . . , N where

Kij =

∫
Ω

1

2

(∇Ψi(x)T∇Ψj(x) + Ψi(x)Ψj(x)
)

dV (x).

For most mesh-free methods, either there are no analytical formulas available for Ψi(x)
or they are too complex to compute these integrals directly. Therefore numerical
approximations of the form

Kij ≈
P∑
k=1

1

2

(∇Ψi(xk)T∇Ψj(xk) + Ψi(xk)Ψj(xk)
)

ωk

are used to construct the linear system. In our notation, P is the number of integration
points. Let Si = suppΨi = { z | Ψi(z) �= 0 }, the support of Ψi. Note that Ψi and
all of its derivatives are zero outside its support Si. The integration points xk are
scattered essentially uniformly throughout the region Ω. Rather than first looping
over i and j where Si ∩ Sj �= ∅ and then finding all k such that xk ∈ Si ∩ Sj , we
can compute the matrix K more efficiently by looping first over k and then finding
all i where xk ∈ Si by using quadtree/octree-type data structures. Note that the
former strategy leads to both an intersection-finding problem and a range-searching
problem. While finding all i and j where Si ∩ Sj �= ∅ can be solved using quadtree
structures (see, for example, Samet [15, pp. 199–225]), the costs are at least as high
as for the task discussed here. The problem of finding all xk where xk ∈ Si ∩ Sj is
a range-searching problem which requires construction of a range-searching tree on
the integration points. Apart from the fact that the number of integration points is
usually much larger than the number of support sets in practice, these structures are
complex and the searching time complexity is O(logd−1 P + #{ k | xk ∈ Si ∩ Sj })
in d dimensions where P is the number of integration points. By contrast, the latter
strategy can be accomplished with methods which have an expected time complexity
of just O(logN + E(#{ i | xk ∈ Si })) in any fixed number of dimensions.

1.2. Quadtrees and octrees. Quadtrees and octrees are members of hierarchi-
cal decomposition data structures based on the principle of recursive decomposition
of space. Examples of quadtrees and octrees are illustrated in Figure 2. They are
widely used in image compression [14, 13], GIS (Geographic Information Systems)
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[16, 6], computer vision [7], and computer graphics [8, 17]. Quadtrees can be used
to represent a two-dimensional space. Similarly, octrees can be used to deal with
the three-dimensional case. A quadtree is a tree data structure based on a rectangle
with four children and an octree is a tree data structure based on a cube with eight
children. However, both of them can be used in the generation of meshes for finite
element analysis. Due to different applications, there are variants on this structure,
such as region-based quadtrees and point quadtrees.

A quadtree can be described in this way using Java, for example:
class QtreeNode{

private Object data;

private QtreeNode children[2][2];

private QtreeNode parent;

private int depth;

private int coords[2];

...

}
An octree tree can be described in a similar way using Java:

class OctreeNode{
private Object data;

private OctreeNode parent;

private OctreeNode children[2][2][2];

private int depth;

private int coords[3];

...

}
We use the following notation and terminology to describe various aspects of quad-
trees, octrees, and their d-dimensional analogues.

• A support set Si is simply a bounded subset of Rd; the quadtree or octree con-
struction algorithm is, given a collection {Si | i = 1, 2, . . . , N} of these sets,
to build a corresponding quadtree or octree representation of these support
sets Si.

• A rectangle is a set of the form [a1, b1] × [a2, b2] × · · · × [ad, bd] in Rd; a
rectangle in a quadtree or octree has the special property that ai = γi2

−k,
bi = (γi + 1)2−k for all i with k independent of i, and γi an integer. A
subrectangle of a rectangle R in a quadtree or octree is a rectangle in the
quadtree or octree contained in the rectangle R.
• We use quadtree to refer to quadtrees and their generalizations to 2d-trees in

Rd. The term thus includes octrees in three dimensions and binary trees in
one dimension.
• The width of a set A is the diameter of the set in the infinity norm; that is,
width(A) = sup{ ‖x− y‖∞ | x, y ∈ A } = supx,y∈Amaxi |xi − yi|.
• The top rectangle is the rectangle at the root of the quadtree or octree. It is
usually considered to be the rectangle [0, 1]× [0, 1]× · · · × [0, 1].

• The expected value of a random variable X is denoted E(X).
• The d-dimensional volume, or d-volume of a set S is denoted vold(S).

Each rectangle in the quadtree has an associated linked list containing references
to support sets Si; if R is a rectangle in the quadtree whose linked list contains a
reference to Si, we say that Si is linked to R, or that R links Si.
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Fig. 3. Example of the basic quadtree.
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Fig. 4. Example of the expanded quadtree.

2. Algorithms. In this section we present two quadtree search algorithms to
find the number of support sets covering each point x. In our application, x is an
integration point and is part of a set of integration points xk that are approximately
uniformly distributed in a domain Ω. The first algorithm for building quadtree struc-
tures is the called the basic algorithm, and the second is called the splitting algorithm.
These data structures constructed are discussed in Samet [15], where the former is
called the MX-CIF quadtree and the latter the expanded MX-CIF quadtree. In this
paper they will be referred to as the basic and expanded quadtrees, respectively. How-
ever, neither data structure was considered in Samet [15] in the context of identifying
sets containing a given query point. The splitting algorithm has advantages over the
basic algorithm in finding the number of support sets covering the integration point
x. The total expected query time for randomly selected points x can be bounded in
terms of the hit rate and the expected depth traversed in the quadtree. We will pro-
vide detailed theoretical analysis and numerical simulation in terms of these quantities
later. We illustrate the basic and expanded quadtrees in Figures 3 and 4.

In both the basic algorithm and the splitting algorithm, each rectangle in the
quadtree has a corresponding linked list. In the basic approach we try to link each Si
to a rectangle R in the quadtree if it is contained in R and there is no subrectangle
of R in which Si is completely contained. Note that Si is not necessarily linked to a
leaf node of the quadtree, even at the time of linking. Also note that there can be
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more than one support set linked to a single rectangle R, creating a linked list. In the
interests of efficiency, we usually want these linked lists to be short. When using this
algorithm, in the worst case, the construction of the quadtree takes O(N log(1/ε))
time where ε = mini diamSi.

The basic algorithm constructs a quadtree which is the MX-CIF quadtree dis-
cussed by Samet [15, pp. 200–213] and the data structure discussed by Abel and
Smith [1]. Unlike Samet, however, we are interested here in finding sets Si containing
query points, rather than intersection detection.

Pseudocode for building the basic quadtree (basic algorithm).
void basic(S,top,N)

/* Constructing a quadtree for support sets Si. */

for i = 1, 2, . . . , N
R← top
repeat

for each subrectangle R′ of R
if Si ⊆ R′

R← R′ & break for loop

end if

end for

until (no subrectangle of R contains Si)
link Si to the rectangle R

end for

For example, in Figure 3, S1 is not linked to the top rectangle R but it is linked to
the subrectangle R2; since S2 is not contained in any of the subrectangles of R, it is
linked to R.

In our splitting algorithm (our second method), if a support set Si is a subset
of a rectangle R but is not a subset of any subrectangle of R in the quadtree and
if diam(Si) < 1

2width(R), then we don’t link Si to R; rather we “split” Si for each
subrectangle R′ of R, if Si ∩R′ �= ∅, and recursively call the splitting algorithm with
Si ∩ R′. We give the pseudocode for the splitting algorithm below. Note that the
splitting algorithm builds a recursive extension of the MX-CIF tree of Samet which
is the expanded MX-CIF tree of Samet [15, pp. 213–215].

Pseudocode for building the expanded quadtree (splitting algorithm).
procedure splitting(Si,R)

/* Add support set Si to quadtree

using R as the root of the quadtree */

loop

if R′ is a subrectangle of R where Si ⊂ R′

R← R′

else if diam(Si) < 1
2width (R)

for each subrectangle R′ of R where R′ ∩
Si �= ∅ (allocate R′ if necessary)

call splitting(Si ∩R′,R′)
else

link Si to R and exit loop

end loop

The splitting algorithm is illustrated by Figure 5. The subscripts in this figure
refer to the subrectangle number, being 1 (northwest), 2 (southwest), 3 (southeast),
or 4 (northeast). In this figure Rj+p

k,l,... denotes the rectangle at level j + p, where
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Fig. 5. Example for describing the splitting algorithm.

k, l, . . . denotes the path from Rj−1 to this rectangle within the quadtree.
To construct the complete quadtree, we apply splitting to all support sets, i.e.,

for i = 1, 2, . . . , N
call splitting(Si,top)

Note that in the expanded quadtree, each Si can be linked to more than one rectangle
in the quadtree. In fact, each Si can be linked to at most 2d rectangles. As given,
the time and space requirements for the splitting algorithm are O(2dN h), where h
is the depth (or height) of the expanded quadtree. Since splitting can produce very
small sets in the computation of R′ ∩ Si, the worst-case space and time requirements
are unbounded. However, if path compression [2] is used so that rectangles with only
one allocated subrectangle and no Si linked to it are removed from the quadtree, the
worst-case space requirements reduce to O(2dN). Furthermore, the depth of the path-
compressed quadtree is bounded above by cmax + �log2 N�, where cmax = maxx#{ i |
x ∈ Si } is the maximum covering number. In applications, the maximum covering
number is bounded, or grows polylogarithmically in N .

The path-compressed quadtree can be built incrementally using a number of dif-
ferent techniques. A path-compressed version of the basic quadtree can start by
finding the depth and coordinates of the smallest enclosing quadtree rectangle. For
each Si we find a bounding box [a1, b1] × · · · × [ad, bd] ⊆ [0, 1]d and expand each
coordinate ai and bi in binary. The number of leading bits of ai and bi that match
is the depth of the smallest enclosing quadtree rectangle, and the matching bits are
the (integer) coordinates of that rectangle. Using the Java data structures above, the
current path-compressed quadtree can be traversed downwards until a rectangle is
found at the correct depth, or the correct place to insert a new such rectangle can be
found. Once this is found, standard techniques can insert a suitable rectangle in O(1)
time. A similar approach can be used to find the ≤ 2d rectangles which are linked to
a support set for the splitting algorithm by first finding matching bits. This makes
the time to construct the quadtree for the splitting algorithm with path compres-
sion O(2dN(cmax + logN + d log log(1/ε))), where ε = mini diam(Si) assuming O(1)
time bit operations (and, or, invert, and shift) on integers. Alternatives to pointer-
based data structures include balanced trees and hash-tables using the tuple (depth,
coord1,. . ., coordd) as the key, where coordi is the ith coordinate of the rectangle.
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Alternatively, if in the splitting algorithm the set R′ ∩ Si is expanded to have
diameter no less than 0 < η ≤ 1/2 times the diameter of Si, the maximum depth of
the expanded quadtree is no more than log2(1/ε) + log2(1/η). Choosing a particular
value (e.g., η = 1/4) gives an upper bound on the depth of the expanded quadtree
generated by the modified splitting algorithm with the same asymptotic behavior.
Furthermore, the performance bounds for the search given below remain unaltered
for the modified splitting algorithm.

Once the quadtree is constructed, we need to use it to find the support sets
covering a given point x. Below is our pseudocode for doing this with a quadtree
constructed using either the basic or splitting algorithms.

list function search(x,top)
/* Given x, find all Si that cover x: x ∈ Si */

R← top
while R �= null

for each Si linked to R
if x ∈ Si then

add Si to list of covering support sets

increment covering number

R←allocated subrectangle of R containing x, if any

R← null if there is no such subrectangle

end while

In Figure 3, we show the behavior of the basic algorithm. We need to make a test to
determine if x is in S2 or not because S2 is linked to the top rectangle, though x is
far from S2.

In Figure 4, the advantages of the splitting algorithm are exemplified. We will
test if a given x ∈ S2 only if it is in the two smallest rectangles shown containing S2.

2.1. The advantage of the expanded quadtree over the basic quadtree.
Just as we discussed above, in the basic quadtree there are many unnecessary tests to
obtain the sets covering each integration point. Here, we give the plot of the number
of wasted tests (unnecessary tests) per integration point in two algorithms in Figure 6.
Here, we randomly generate 2,000 support sets (circles) with radius = 0.2 and use
10,000 uniformly distributed integration points.

We observe that the number of wasted tests in the basic algorithm is 15–20 times
the number in the expanded quadtree.

Figure 7 gives plots of the lengths of the linked lists in the basic and expanded
quadtrees. We can see, for the chosen 200 support sets, that the linked lists are
generally much shorter for the expanded quadtree, so that fewer tests are needed for
each rectangle. Furthermore, the few rectangles with long linked lists in the basic
quadtree are the top rectangles, and the rectangles near the top. All support sets
linked to the top rectangle are tested for any integration point, making this data
structure much less efficient. The expanded quadtree also links support sets deeper
in the quadtree, as shown in Figure 8.

2.2. The hit rate. The hit rate is the ratio between the average number of sets
covering integration point x and the average number of tests for finding all covering
sets for all integration points x, where x is a point randomly chosen from a uniform
distribution of points over the top rectangle.
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Fig. 6. The number of wasted tests in the basic and expanded quadtrees.
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Fig. 8. Depth of rectangle linked to each support set.

We give a more precise definition of the hit rate:

hit rate =
E(covering#)

E(#tests)
.

Here covering# is the number of sets covering the randomly chosen point x, while
#tests is the number of tests needed in the algorithms to determine the list of sets
covering x. That is, hit rate is the ratio between the mathematical expectation of
the covering (support sets) numbers of the integration points and the expectation
of the number of tests to get the coverings for the randomly chosen and uniformly
distributed integration points.

3. Analysis of the expected search time. We randomly choose integration
points x and go down through the quadtree to find the sets Si which contains x in
our integration region. The total search time will depend on how many tests we will
do for the integration points we use, and how deeply we traverse the tree structure.
So our expected search time is

E(search time) = O(E(depth) + E(#tests)),

where depth is the depth traversed in the quadtree when searching for sets covering
a given point x, and #tests is the number of tests x ∈ Si that are performed during
the search. Since E(#tests) = (hit rate) × E(covering#), provided the hit rate is
bounded away from zero, we get O(E(depth) + E(covering#)) expected search time
per query point.

We will show that, for both the splitting and basic algorithms, the expected depth
is bounded above by (logN)/d; i.e, E(depth) = O((logN)/d). For the basic quadtree,
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the hit rate can go to zero. In fact, for the basic quadtree the hit rate is O(N−1/2) in
two dimensions in practice. The expanded quadtree, however, has a hit rate that is
bounded away from zero independently of N , although it can decrease exponentially
as the dimension d increases. In the following sections we will analyze both the hit
rate and the expected depth traversed in the quadtree.

3.1. Analysis of the hit rate. We assume bounds on the aspect ratio, which
is the ratio of the longest to the shortest side. First, we give the lower and upper
bounds of E(covering#), then we get the inequality of reflecting relationship between
E(covering#) and E(#tests). We combine these to bound the hit rate.

3.1.1. The hit rate for the basic algorithm. First, we note that the hit rate
can be arbitrarily bad for the basic quadtree. In two dimensions, if every support
set Si was chosen to intersect either the horizontal or vertical lines bisecting the
top rectangle, then every support set would be linked to the top rectangle of the
quadtree. That would mean that all the support sets would have to be tested for all
integration points x ∈ top. This would give a hit rate of E(covering#)/N , which
can be arbitrarily close to zero, and goes to zero if the average covering number is
bounded as N →∞.

Even for uniform or random distributions of the sets Si, if diam(Si) are all near
ε > 0, the number of sets linked to the top rectangle is Θ(Nε); if ε = Ω(N−1/d)
as we would expect if the Si’s covered top, then the number of sets linked to the
top rectangle would be Ω(N1−(1/d)). While this is an improvement over the naive
approach of directly testing a point x against all sets Si, it is far from optimal. This
confirms the O(

√
N) query time found in [1] for planar queries.

3.1.2. Using the number of links to express E(#test) for the expanded
quadtree. We work in d dimensions (d = 2 for quadtrees, d = 3 for octrees). Let

Nj = #links at level j. Also, let N̂j be the number of rectangles which have at least

one support set linked at level j. Note that N̂j ≤ Nj , and every support set has at
most 2d links to it. So, for all support sets N for the integration point x , we have

∞∑
j=0

Nj ≤ 2dN.

Every rectangle at level j has d-volume 2−jd times the volume of the top rectangle
and each link from a rectangle requires a test for any point contained in that rec-
tangle. Suppose that the rectangles at level j which are linked to a support set are
Rj,1, Rj,2, . . . , R

j,N̂j
. Since there are Nj links at level j, then the expected number

of links to search from level j is

E(tests at level j) =

N̂j∑
k=1

Pr(x ∈ Rj,k)× (#support sets linked to Rj,k)

=

N̂j∑
k=1

2−jd(#support sets linked to Rj,k) = 2−jdNj .

So, E(#tests) is the sum of the expected number of links in all levels: E(#tests) =∑∞
j=0 2

−jdNj .
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3.1.3. Bounds on E(covering#) for the expanded quadtree. Adding to-
tal volumes of all support sets Si, i = 1, 2, . . . , N , in d dimensions, we get the value of
E(covering#) = E(#{ i | x ∈ Si }). Let a be the maximum aspect ratio (the ratio of
the largest side to the shortest side for rectangles) of the support sets. Assume that
vold(top) = 1. Then

E(covering#) =

N∑
i=1

vold(Si) ≥
N∑
i=1

1

ad−1
width(Si)

d

=
1

ad−1

N∑
i=1

width(Si)
d.

We suppose that, at level j, Si has nij links. Then the total links of Si in the whole
tree is less than 2d:

∞∑
j=0

nij ≤ 2d for all i.

On the other hand, the total number of links in level j for all supports of our
integration points are Nj =

∑
i nij . Remember that for the expanded quadtree a

support set Si is not linked at level j if the width of Si is no more than half the width
of a rectangle at level j. That is,

nij = 0 if width(Si) ≤ 2−j−1width(top).

Since in the expanded quadtree, the volume of Si is split into disjoint parts, if we
add all volumes in each linked rectangle for Si, we have the following bound:

vold(Si) ≤
∞∑
j=0

nij2
−jdvold(top).

Assuming vold(top) = 1, we have

vold(Si) ≤
∞∑
j=0

nij2
−jd.

An upper bound for E(covering#) is easily obtained:

E(covering#) ≤
N∑
i=1

∞∑
j=0

nij2
−jd =

∞∑
j=0

(
N∑
i=1

nij

)
2−jd

=

∞∑
j=0

Nj2
−jd.

However, what we really need is a lower bound. For each set Si let j∗i = min{ j |
Si is linked to a rectangle R at level j }. For at least one rectangle R on level j∗i ,
the aspect ratio of Si ∩ R is no more than 2a. Then vold(Si) ≥ vold(R ∩ Si) ≥
(2a)1−dwidth(R∩Si)

d ≥ (2a)1−d2−dwidth(Si)d ≥ 2a(4a)−d2−(j∗i +1)d. Since
∑∞
j=0 nij

≤ 2d and nij = 0 for j < j∗i , vold(Si) ≥
∑∞
j=0 2a(4a)

−d2−(j+1)d × 2−dnij .
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Then

vold(Si) ≥ 2a(16a)−d
∞∑
j=0

nij2
−jd.

So, we can get a lower bound of E(covering#) as follows:

E(covering#) =

N∑
i=1

vold(Si) ≥ 2a(16a)−d
∞∑
j=0

N∑
i=1

nij2
−jd

= 2a(16a)−d
∞∑
j=0

Nj2
−jd = 2a(16a)−dE(#tests).

Thus the hit rate for the expanded quadtree is bounded away from zero for fixed d.

3.1.4. The lower bound of the average hit rate for the expanded quad-
tree. By the definition of the hit rate, we have lower bound for average hit rate:

hit rate =
E(covering#)

E(#tests)
≥ 2a(16a)−d.

From here, we can see it is impossible to get zero hit rate in our quadtree search.
That is to say, if each set Si is a square in two dimensions, for each set Si covering x,
there will be an average of at most 128 tests using the splitting algorithm. However,
this bound is not sharp: the hit rate is usually much larger, as can be seen in Figure 9
and Table 1.

3.2. The simulation results on hit rate. From the point of view of the hit
rate, we can also demonstrate the advantage of the expanded over the basic quadtree.
For 10,000 randomly chosen and uniformly distributed integration points and 2,000
support sets with radius 0.2, we get the following results. The average hit rate in the
expanded quadtree is almost 30 times larger than that of in the basic case: expanded
quadtree: 0.1694; basic quadtree: 0.0057. This result agrees with the result of the
wasted tests counted in the two algorithms. Note that in this simulation, many of the
support sets overlap, which can cause difficulties for other data structures.

Figure 9 shows the hit rate plots for the basic and expanded quadtrees.
Computational results were also obtained for actual mesh-free methods. In par-

ticular, for a two-dimensional elasto-plastic problem computations were done using
a number of different levels of refinement. The particular mesh-free method used
was the RKPM (reproducing kernel particle method) [10]. The basis functions were
tensor products of B-splines (that is, Ψi(x) = Bi,1(x1)Bi,2(x2), where Bi,1 and Bi,2

are cubic splines), so that the support sets were axis-aligned rectangles. The aspect
ratios of the support sets were all similar and not extreme. However, each support set
was relatively large, resulting in a great deal of overlap; the average covering number
is around 15. Table 1 shows the main results. Note that “#R” is the number of
rectangles allocated for the quadtree, N is the number of sets, P is the number of
integration (i.e., query) points, and h is the depth (or height) of the quadtree. The
naive algorithm tests each point against each support set. This example does not
show the full power of the data structures since the problems are relatively small and
two-dimensional. However, the difference between the basic and expanded quadtrees
is clearly evident. The average covering numbers for the problems are shown in Ta-
ble 2. As expected, the basic quadtree’s hit rate is roughly proportional to N−1/2,
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Fig. 9. Hit rate plot in the basic and expanded quadtrees.

Table 1
Quadtree statistics for mesh-free problems.

Data structure Basic Expanded Naive

Problem N P #R Hit rate h #R Hit rate h Hit rate

coarse 71 557 4 0.2372 2 16 0.3904 5 0.1998
medium 152 1286 5 0.1443 2 42 0.3033 7 0.1058
fine 349 3139 12 0.0775 3 106 0.2781 7 0.0419
fine2 605 5582 20 0.0516 3 223 0.2442 10 0.0246
fine3 985 8262 20 0.0396 3 240 0.1937 10 0.0155

and the naive algorithm’s hit rate is roughly proportional to N−1, while the expanded
quadtree’s hit rate is relatively stable. There is clearly additional overhead in setting
up the quadtree using the splitting algorithm, but the number of rectangles allocated
is much less than the number of support sets, and the depth of the resulting quadtree
grows only slowly, probably logarithmically, in N . Note that the implementation of
the splitting algorithm did not use any modifications to avoid deep quadtrees. Even so,
path compression would achieve little here since the number of rectangles not linked
by support sets for the splitting algorithm were, for the various problems, coarse 2;
medium 6; fine 9; fine2 16. Thus for the largest problem (fine2), path compression
could save no more than 16 of the 223 allocated rectangles. Thus it appears that for
our application, path compression will save little in space or time.

3.3. The upper bounds of E(depth). As in the previous section, we let Nj

denote the number of links at level j; N̂j denotes the number of rectangles linked to at

least one support set in level j; and Ñj denotes the number of allocated rectangles in
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Table 2
Average covering numbers.

Problem coarse medium fine fine2 fine3

Avg. covering # 14.18 16.09 14.61 14.90 15.22

the quadtree at level j. Clearly, N̂j ≤ Nj . Since every allocated rectangle must have

a subrectangle that is linked to a support set, Ñj ≤
∑∞
k=j N̂k ≤

∑∞
k=j Nk. On the

other hand, Ñj ≤ 2dj since there are at most 2dj rectangles in a quadtree at level j.
Note from the previous section that

∑∞
j=0 Nj ≤ N for the basic quadtree, but∑∞

j=0 Nj ≤ 2dN in the expanded quadtree.

3.4. Analysis of E(depth). Recall that depth is the depth of the quadtree
traversed while searching for the sets covering a given point x, chosen at random. The
basis of these calculations are bounds on the probability of depth having a particular
value. A detailed discussion on related issues can be found in [2].

E(depth) =

∞∑
j=0

j Pr(depth = j)

=

∞∑
j=0

j [Pr(depth ≥ j)− Pr(depth ≥ j + 1)]

=

∞∑
j=1

Pr(depth ≥ j).

The problem now is to bound Pr(depth ≥ j). This is the probability that x lies in an
allocated rectangle at a depth j. A simple bound is

Pr(depth ≥ j) = 2−djÑj ≤ 2−dj min(2dj , 2dN) = min(1, 2−d(j−1)N).

This leads to bounds of the form E(depth) = O(logN):

E(depth) =
∞∑
j=1

Pr(depth ≥ j)

≤
∞∑
j=1

min(1, 2−d(j−1)N).

Suppose that 2d(j
∗−1) < N ≤ 2dj

∗
. Then for j ≥ j∗, 2−d(j−1)N ≤ 2−d(j−j

∗−1) ≤ 1.
Thus

E(depth) ≤
j∗∑
j=1

1 +

∞∑
j=j∗+1

2−d(j−j
∗−1)

= j∗ +
∞∑
l=0

2−dl = j∗ +
1

1− 2−d
≤ j∗ + 2.

Note that j∗ = �(log2 N)/d�, and so

E(depth) ≤
⌈
log2 N

d

⌉
+ 2 = O

(
log2 N

d

)
.
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4. Conclusions. The expected total search time using the expanded quadtree
for a random point x ∈ top is O(E(depth)) + O(E(#tests)). Since the number of
tests needed is the covering number divided by the hit rate (which is bounded below
by 2a(16a)−d) we get an expected search time which is O((logN)/d+ (16a)dE(#{ i |
x ∈ Si })). For fixed d, this is O(logN + E(#{i | x ∈ Si})). This means that for
applications where the covering number grows at least as fast as logN , we have an
asymptotically optimal method. Otherwise, the expected time for the search grows
like O(logN) which, while not asymptotically optimal, still gives good performance.
By comparison, the expected total search time for the basic quadtree is Θ(N) for a
worst-case collection of sets {Si}, and Θ(N1−1/d) for collections of sets which occur
in practical problems.
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AN O(n log n) ALGORITHM FOR THE MAXIMUM AGREEMENT
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Abstract. The maximum agreement subtree problem is the following. Given two rooted trees
whose leaves are drawn from the same set of items (e.g., species), find the largest subset of these
items so that the portions of the two trees restricted to these items are isomorphic. We consider
the case which occurs frequently in practice, i.e., the case when the trees are binary, and give an
O(n logn) time algorithm for this problem.

Key words. algorithms, agreement subtree
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1. Introduction. Suppose we are given two rooted trees T1 and T2 with n leaves
each. The internal nodes of each tree have at least two children each. The leaves in
each tree are labeled with the same set of labels, and further, no label occurs more
than once in a particular tree. An agreement subtree of T1 and T2 is defined as follows.
Let L1 be a subset of the leaves of T1, and let L2 be the subset of those leaves of T2

which have the same labels as leaves in L1. The subtree of T1 induced by L1 is an
agreement subtree of T1 and T2 if and only if it is isomorphic to the subtree of T2

induced by L2. The maximum agreement subtree problem (henceforth called MAST )
asks for the largest agreement subtree of T1 and T2.

We need to define the terms induced subtree and isomorphism used above. Intu-
itively, the subtree of T induced by a subset L of the leaves of T is the topological
subtree of T restricted to the leaves in L, with branching information relevant to L
preserved. More formally, for any two leaves a, b of a tree T , let lcaT (a, b) denote
their lowest common ancestor in T . If a = b, lcaT (a, b) = a. The subtree U of T
induced by a subset L of the leaves is the tree with leaf set L and interior node set
{lcaT (a, b)|a, b ∈ L} inheriting the ancestor relation from T ; that is, for all a, b ∈ L,
lcaU (a, b) = lcaT (a, b).

Intuitively, two trees are isomorphic if the children of each node in one of the trees
can be reordered so that the leaf labels in each tree occur in the same order and the
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shapes of the two trees become identical. Formally, we say two trees U1 and U2 with
the same leaf labels are isomorphic if there is a 1–1 mapping µ between their nodes,
mapping leaves to leaves with the same labels and such that for any two different
leaves a, b of U1, µ(lcaU1(a, b)) = lcaU2(µ(a), µ(b)).

Motivation. The MAST problem arises naturally in biology and linguistics as
a measure of consistency between two evolutionary trees over species and languages,
respectively. An evolutionary tree for a set of taxa, either species or languages, is
a rooted tree whose leaves represent the taxa and whose internal nodes represent
ancestor information. It is often difficult to determine the true phylogeny for a set of
taxa, and one way to gain confidence in a particular tree is to have different lines of
evidence supporting that tree. In the biological taxa case, one may construct trees
from different parts of the DNA of the species. These are known as gene trees. For
many reasons, these trees need not entirely agree, and so one is left with the task of
finding a consensus of the various gene trees. The maximum agreement subtree is one
method of arriving at such a consensus. Notice that a gene is usually a binary tree,
since DNA replicates by a binary branching process. Therefore, the case of binary
trees is of great interest.

Another application arises in automated translation between two languages [GY95].
The two trees are the parse trees for the same meaning sentences in the two languages.
A complication that arises in this application (due in part to imperfect dictionaries)
is that words need not be uniquely matched, i.e., a word at the leaf of one tree could
match a number (usually small) of words at the leaves of the other tree. The aim is to
find a maximum agreement subtree; this is done with the goal of improving context-
using dictionaries for automated translation. So long as each word in one tree has only
a constant number of matches in the other tree (possibly with differing weights), the
algorithm given here can be used and its performance remains O(n log n). More gen-
erally, if there are m word matches in all, the performance becomes O((m+n) log n).
Note, however, that if there are two collections of equal meaning words in the two
trees of sizes k1 and k2, respectively, they induce k1k2 matches.

Previous work. Finden and Gordon [FG85] gave a heuristic algorithm for the
MAST problem on binary trees which had an O(n5) running time and did not
guarantee an optimal solution. Kubicka, Kubicki, and McMorris [KKM95] gave
an O(n(.5+ε) log n) algorithm for the same problem. The first polynomial time al-
gorithm for this problem was given by Steel and Warnow [SW93]; it had a run-
ning time of O(n2). Steel and Warnow also considered the case of nonbinary and
unrooted trees. Their algorithm takes O(n2) time for fixed degree rooted and un-
rooted trees and O(n4.5 log n) time for arbitrary degree rooted and unrooted trees.
They also give a linear reduction from the rooted to the unrooted case. Farach

and Thorup gave an O(nc
√

log n) time algorithm for the MAST problem on binary
trees; here c is a constant greater than 1. For arbitrary degree trees, their algo-

rithm takes O(n2c
√

log n) time for the unrooted case [FT95] and O(n1.5 log n) time
for the rooted case [FT97]. Farach, Przytycka, and Thorup [FPT95a] obtained an
O(n log3 n) algorithm for the MAST problem on binary trees. Kao [Ka95] obtained
an algorithm for the same problem which takes O(n log2 n) time. This algorithm takes

O(min{nd2 log d log2 n, nd
3
2 log3 n}) for degree d trees. Finally, Cole and Hariharan

[CR96] improved the algorithm from [FPT95a] to an O(n log n) algorithm.

The MAST problem for more than two trees has also been studied. Amir and
Keselman [AK97] showed that the problem is NP -hard for even 3 unbounded degree
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trees. However, polynomial bounds are known [AK97, FPT95b] for three or more
bounded degree trees.

Our contribution. This paper is the combined journal version of [FPT95a] and
[CR96] and presents an O(n log n) algorithm for the MAST problem for two binary
trees.

The O(n log3 n) algorithm of [FPT95a] can be viewed as taking the following
approach (although the authors do not describe it this way). It identifies two special
cases and then solves the general case by interpolating between these cases.

Special case 1. The internal nodes in both trees form a path. The MAST problem
reduces to essentially a size n longest increasing subsequence problem in this case. As
is well known, this can be solved in O(n log n) time.

Special case 2. Both trees T1 and T2 are complete binary trees. For each node v
in T2, only certain nodes u in T1 can be usefully mapped to v, in the sense that the
subtree of T1 rooted at u and the subtree of T2 rooted at v have a nonempty agreement
subtree. There are O(n log2 n) such pairs (u, v). This can be seen as follows. Note
that for (u, v) to be such a pair, the subtree of T1 rooted at u and the subtree of T2

rooted at v must have a leaf-label in common. For each label, there are only O(log2 n)
such pairs obtained by pairing each ancestor of the leaf with this label in T1 with each
ancestor of the leaf with this label in T2. The total number of interesting pairs is thus
O(n log2 n).

For each pair, computing the MAST takes O(1) time, as it is simply a question
of deciding the best way of pairing their children.

The interpolation process takes a centroid decomposition of the two trees and
compares pairs of centroid paths, rather than individual nodes as in the complete
tree case. The comparison of a pair of centroid paths requires finding matchings with
special properties in appropriately defined bipartite graphs, a nontrivial generaliza-
tion of the longest increasing subsequence problem. This process creates O(n log2 n)
interesting (u, v) pairs, each of which takes O(log n) time to process.

In [CR96] two improvements are given, each of which gains a logn factor.
Improvement 1. The complete tree special case is improved to O(n log n) time as

follows. A pair of nodes (u, v), u ∈ T1, v ∈ T2, is said to be interesting if there is an
agreement subtree mapping u to v. As is shown below, for complete trees, the total
number of interesting pairs (u, v) is just O(n log n). Consider a node v in T2. Let
L2 be the set of leaves which are descendants of v. Let L1 be the set of leaves in T1

which have the same labels as the leaves in L2. The only nodes that may be mapped
to v are the nodes u in the subtree of T1 induced by L1. The number of such nodes
u is O(size of the subtree of T2 rooted at v). The total number of interesting pairs is
thus the sum of the sizes of all subtrees of T2, which is O(n log n).

This reduces the number of interesting pairs (u, v) to O(n log n). Again, process-
ing a pair takes O(1) time. (This is less obvious, for identifying the descendants of
u which root the subtrees with which the two subtrees of v can be matched is non-
trivial.) Constructing the above induced subtree itself can be done in O(|L1|) time,
as will be detailed later. The basic tool here is to preprocess trees T1 and T2 in O(n)
time so that least common ancestor (LCA) queries can be answered in O(1) time.

Improvement 2. As in [FPT95a], when the trees are not complete binary trees,
we take centroid paths and match pairs of centroid paths. The O(log n) cost that
the algorithm in [FPT95a] incurs in processing each such interesting pair of paths
arises when there are large (polynomial in n size) instances of the generalized longest
increasing subsequence problem. At first sight, it is not clear that large instances of
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these problems can be created for sufficiently many of the interesting pairs; unfor-
tunately, this turns out to be the case. However, these problem instances still have
some useful structure. By using (static) weighted trees, we process pairs of interest-
ing vertices in O(1) time per pair, on the average, as is shown by an appropriately
parameterized analysis.

The paper is organized as follows. Section 2 gives some basic definitions and
primitives. Section 3 outlines the algorithm. Section 4 provides further details of
the algorithm, and section 5 gives the analysis. The remaining sections deal with
problems raised in sections 3–5.

2. Definitions and preliminaries. All trees henceforth refer to binary trees
whose internal nodes have exactly two children.

The tree T (x) denotes the subtree of T rooted at vertex x. The size of a tree T ,
denoted by |T |, is the number of leaves in it. In our problem, |T1| = |T2| = n.

Given a binary tree T , its centroid decomposition is a partitioning of its vertices
into disjoint paths obtained as follows. First, for each internal node x in T , the edge
to the child with the maximal number of leaves below it is called a centroid edge.
Here ties are broken arbitrarily. Now, the centroid edges form a collection of disjoint
paths, called centroid paths. The beginning of such a centroid path P is defined to
be the vertex x closest to the root of T . Then, if we remove P from T (x), we get a
forest of trees called the side trees of T (x), and then each side tree is of size at most
|T (x)|/2. Note that the full centroid decomposition could also be found recursively
by first finding the centroid path from the root, and then recursing on each side tree.
Also note that the centroid decomposition of T can easily be found in O(n) time.

A tree T can be preprocessed in O(|T |) time so that given any subset L of its
leaves in left to right order, the subtree induced by L can be computed in O(|L|) time.
The details of this procedure are described in section 8.

The set of labels at the leaves of T1 is identical to that at the leaves of T2. For a
leaf l in one of these trees, the leaf with the same label in the other tree is called its
twin. Two subtrees, one from each tree, are said to intersect if and only if some leaf
in one subtree has a twin in the other. The subtree of T2 induced by some subset of
the leaves of T1 is the subtree of T2 induced by the twins of these leaves of T1.

3. Algorithm outline. We need some definitions to outline the algorithm.

Definitions. Let π be the centroid path containing the root of T1. Let p = |π|,
and let u1, u2, . . . , up−1, up be the vertices on this path in order from the root. Let
M1,M2, . . . ,Mp−1 comprise the forest of side trees created by the removal of π from
T1. Let mi = |Mi| be the number of leaves in Mi (see Figure 3.1). Recall that
mi ≤ n/2 as π is a centroid path. For technical reasons, we define Mp to be the tree
consisting of the vertex up and set mp = 1. Then,

∑p
i=1 mi = n.

Given trees T1, T2, our aim is to determine the maximum agreement subtree of T1

and T2 efficiently. To do so, we will need to compute not just this agreement subtree
but the maximum agreement subtree of T1 and T2(w) for each w in T2. All these
subtrees will be computed implicitly by a procedure Agree(T1, T2).

Agree(T1, T2) proceeds broadly as follows. See Figure 3.1. First, it recursively
computes the maximum agreement subtree of Mi, T2(w) for each side tree Mi of T1

and each vertex w in T2. This is not done explicitly, though, as we will see shortly.
Second, it uses the information gathered in this process to compute the maximum
agreement subtree of T1, T2(w) for each vertex w in T2. Both steps together take
O(n log n) time.
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u1

u2

up−1

up

M1

M2

Mp−1

v1

v2

N1

N2

vq−1

vq

Nq−1

π
π(x)

Fig. 3.1. Centroid paths in T1 and T2 with π starting in root of T1 and π(x) starting in x = v1
in T2.

We will describe Agree(T1, T2) in detail shortly. Two observations will be used in
this description.

First, as in the discussion of interesting pairs in Improvement 1, note that it
is not necessary to compute the maximum agreement subtrees of Mi, T2(w) for all
w ∈ T2. The first reason is that the maximum agreement subtree of Mi, T2(w) is
empty if Mi does not intersect with T2(w). The second reason is that the maximum
agreement subtrees of Mi, T2(w) and Mi, T2(parent(w)) are identical if Mi does not
intersect with the the subtree of T2 rooted at w’s sibling. For these two reasons, it
suffices to compute Agree(Mi, Si), where Si is the subtree of T2 induced by the leaves
of Mi. This implicitly computes the maximum agreement subtrees of Mi, T2(w) for
all w ∈ T2.

Second, note that if the maximum agreement subtree of T1, T2(w) does not have
any vertex on the centroid path π of T1, then all vertices in this agreement subtree
belong to a single side tree Mi of T1. For, if these vertices were distributed over two or
more side trees of T1, then these vertices would have a common ancestor on π which
would be in the maximum agreement subtree as well. Thus, when the maximum
agreement subtree of T1, T2(w) does not have any vertex on π, it can be determined
using some Agree(Mi, Si) from the previous paragraph.

Algorithm outline. Agree(T1, T2) has three steps.

Step 1. The centroid decompositions of T1 and T2 are computed. This takes O(n)
time.

Step 2. For each i, 1 ≤ i ≤ p − 1, Agree(Mi, Si) is computed recursively, where
Si is the subtree of T2 induced by the leaves of Mi. We will inductively assume that
this takes O(mi logmi) for each i. Recall that if the maximum agreement subtree of
T1 and T2 contains no vertex from π, then it will be found in Step 2. Step 3 handles
the other case.

Step 3: Matching π. For each w ∈ T2, the largest agreement subtree for the trees
T1 and T2(w) is found using information from Step 2. Informally, we call this the
process of “matching” π at each of the vertices w of T2. We will show how this is
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done in O(
∑p

i=1 mi log
n
mi

) time.

Clearly, the total time over all three steps is O(n log n). The following sections
show how Step 3 is performed in O(

∑p
i=1 mi log

n
mi

) time. Starting in the next sec-
tion, we will define some bipartite graphs. Each graph will correspond to a particular
centroid path in the centroid decomposition of T2 and will be used to match π as in
Step 3 at all the vertices in this centroid path. These graphs will have the property
that a particular kind of matching, which can be computed efficiently, will correspond
to the relevant agreement subtrees.

4. The matching graphs G(x) and the π matching algorithm.

Definitions. Recall that the centroid decomposition of T2 partitions its vertices
into disjoint paths and that the beginning of such a path is defined to be the vertex
closest to the root of T2 in that path. Let X denote the set of vertices in T2 at which
paths in the above decomposition begin.

We define a number of bipartite graphs, one for each x ∈ X. The graph G(x)
corresponding to vertex x is defined as follows.

Vertices of G(x). The left vertex set L(x) of G(x) is a subset of {u1, . . . , up}.
Vertex ui, 1 ≤ i ≤ p− 1, is in the set if and only if Mi and T2(x) intersect. Vertex up

is in the set if and only if its twin is in T2(x).

The right vertex set R(x) of G(x) is exactly the set of vertices in the centroid
path beginning at vertex x.

Since both sets of vertices are drawn from centroid paths, we order the vertices
on each side in the order they occur on their respective centroid paths. The topmost
vertex is the closest to the root and the bottommost is the farthest. Further, two edges
(a, b) and (a′, b′) in G(x) are said to cross if a is above a′ and b is below b′, or vice
versa. In addition, edge (a, b) is said to dominate (a′, b′) in G(x) if a is above a′ and
b is above b′. The topmost edge in a set of edges, if any, is the edge which dominates
all other edges in that set.

Before defining the edges of G(x), we need the following definitions.

Definitions. Let π(x) be the centroid path containing x. Let q be the length of
this path. Let v1, v2, . . . , vq be the vertices on this path in order from the root. Let
N1, N2, . . . , Nq−1 comprise the forest of side trees of T2(x) created by the removal of
v1, . . . , vq from T2(x). Let ni = |Ni| for i = 1, . . . , q−1 (see Figure 3.1). For technical
reasons, we define Nq to be the tree consisting of the vertex vq and set nq = 1. Then∑q

i=1 ni = |T2(x)|.
4.1. Motivation for defining edges of G(x). We first motivate the definition

of edges of the graph G(x). The purpose of G(x) is to determine maximum agreement
subtrees of T1 and T2(vk) for each k, 1 ≤ k ≤ q. The edges of G(x) will be defined
so that maximum weight matchings of a certain kind (called agreement matchings) in
G(x) will correspond to maximum agreement subtrees of T1 and T2(vk), 1 ≤ k ≤ q.
Clearly, the edges of G(x) and the agreement matchings must capture the structural
properties of these maximum agreement subtrees. We outline these structural prop-
erties next and show how they lead to the edge definitions.

Consider the maximum agreement subtree A of T1, T2(vk). Note that A has the
following properties.

Case 1. If A has no vertices in π(x), then it must be the maximum agreement
subtree of (T1, Nj) for some j, k ≤ j ≤ q − 1.
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Case 2. Similarly, if A has no vertices in π, then it must be the maximum
agreement subtree of (Mi, T2(vk)) for some i, 1 ≤ i ≤ p− 1.

Case 3. Next, suppose A has at least one vertex both from π and from π(x).
In other words, there is at least one vertex in A which is in π and which maps to a
vertex in π(x).

Suppose vertex ui ∈ π is one such vertex and it maps to vertex vj ∈ π(x). If ui

is not the bottommost such vertex in π and z is the unique child of ui in A which is
not in π, then A(z) must be the maximum agreement subtree of (Mi, Nj).

Now if ui is indeed the bottommost such vertex, we divide into subcases.

Case 3.0. If ui is the leaf up, it must map to the other leaf vq since leaves can
only map to leaves. Then the subtree of A rooted at ui is just the vertex ui, which is
also the maximum agreement subtree of (T1(ui), Nq).

For the remaining subcases, we assume that ui is not the leaf up.

Case 3.1. The subtrees ofA rooted at the two children of ui inA are the maximum
agreement subtrees of the pairs (T1(ui+1), Nj) and (Mi, T2(vj+1)). The following facts
will be of use in this case. If Mi and Nj+1 do not intersect, then the maximum
agreement subtree of (Mi, T2(vj+1)) is identical to that of (Mi, T2(vj′)), where j′ > j
is the topmost vertex below vj in π(x) such that Mi and Nj′ intersect. And if Mi+1

and Nj do not intersect, then the maximum agreement subtree of (T1(ui+1), Nj) is
identical to that of (T1(ui′), Nj), where i′ > i is the topmost vertex below ui in π
such that Mi′ and Nj intersect.

Note that if this subcase does not hold, then the subtree of A rooted at one of the
two children of ui is just the maximum agreement subtree of (Mi, Nj). In addition,
all descendants of the other child of ui in A must come from either a single side tree
below vj in T2 or a single side tree below ui in T1. These situations are handled by
the second and third cases, respectively.

Case 3.2. The subtrees ofA rooted at the two children of ui inA are the maximum
agreement subtrees of (Mi, Nj) and (T1(ui+1), Nj′) for some j′, j < j′ ≤ q.

Case 3.3. The subtrees of A rooted at the two children of ui in A are the max-
imum agreement subtrees of (Mi, Nj) and (Mi′ , T2(vj+1)), respectively, for some i′,
i < i′ ≤ p.

The following properties of A can be inferred from the above case analysis.

Property 1. A has a path (which is possibly empty) comprising vertices in π
which map to vertices in π(x), with the property that off-path subtrees are maximum
agreement subtrees of the following three kinds: maximum agreement subtrees of
(Mi, Nj) for some i, j, maximum agreement subtrees of (T1(ui), Nj) for some i, j, and
maximum agreement subtrees of (Mi, T2(vj)) for some i, j.

Property 2. A contains at most one maximum agreement subtree of the second
kind and at most one of the third kind. A also contains at least one maximum
agreement subtree of either the second or the third kind. More specifically, in Case
3.1, there is one of each kind, in Cases 1 and 3.2, there is one of the second kind but
none of the third kind, and in Cases 2 and 3.3, there is one of the third kind but none
of the second kind. Finally, Case 3.0 can be viewed as either kind since Mp = T1(up)
and Nq = T1(vq).

Property 3. In Case 3, there are zero or more maximum agreement subtrees of the
first kind, all of which occur above subtrees of the second and third kinds. Here, by
above we refer to the relative positions of the nearest ancestors ui, vj on the centroid
paths. In Cases 1 and 2, there are no subtrees of the first kind.

Property 4. If two maximum agreement subtrees of the first kind occur in A, for
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instance, the maximum agreement subtrees of (Mi, Nj) and (Mi′ , Nj′), then i < i′

implies j < j′.
Property 5. If subtrees of both the second kind and the third kind exist in A, for

instance, the maximum agreement subtrees of (T1(ui′), Nj) and (Mi, T2(vj′)), respec-
tively, then i < i′ and j < j′.

To model these three different kinds of maximum agreement subtrees, we need
three different kinds of edges in G(x), namely white edges, red edges, and green edges,
respectively. The details of these edges are described next, followed by the definition
of agreement matching which captures the above structural properties.

4.2. Edges of G(x). G(x) is actually a multigraph, where each multiedge con-
sists of three edges—a white edge, a red edge, and a green edge—each of which has a
distinct weight associated with it. A multiedge between ui ∈ L(x), 1 ≤ i ≤ p− 1, and
vj ∈ R(x), 1 ≤ j ≤ q− 1, exists if and only if Mi and Nj intersect. The white edge in
this multiedge has weight equal to the size of the maximum agreement subtree of Mi

and Nj . The red edge in this multiedge has weight equal to the size of the maximum
agreement subtree of T1(ui) and Nj . The green edge in this multiedge has weight
equal to the size of the maximum agreement subtree of Mi and T2(vj). If up ∈ L(x),
then there is a multiedge between up and vj such that either j 	= q and up’s twin is
in Nj or j = q and up’s twin is vq; all three edges in this multiedge have weight 1. In
addition, there is a multiedge between ui and vq such that either i 	= p and vq’s twin
is in Mi or i = p and vq’s twin is up; all three edges in this multiedge have weight 1.

4.3. Agreement matchings in G(x).

Definitions. We define a proper crossing in G(x) to be either a single red edge, a
single green edge, or a red-green edge pair such that the two edges cross and, further,
the endpoint of the green edge in L(x) is above that of the red edge.

A matching in G(x) is an agreement matching if

1. it has zero or more white edges and one proper crossing, and
2. no white edge crosses any other edge; further, all white edges dominate the

edges in the proper crossing.

See Figure 4.1. The weight of such a matching is just the sum of the weights of its
edges. The following property of agreement matchings in G is crucial.

The key property. Each maximum weight agreement matching corresponds to
a maximum agreement subtree, and vice versa, as is made precise below.

Lemma 4.1. A maximum weight agreement matching M containing only edges
incident upon or below vertex w in R(x) corresponds to an agreement subtree A of
T1, T2(w), w ∈ π(x), having the same weight.

Proof. We associate with each white edge (ui, vj) the maximum agreement sub-
tree of (Mi, Nj). Similarly, we associate with each red edge (ui, vj) the maximum
agreement subtree of (T1(ui),Mj) and with each green edge (ui, vj) the maximum
agreement subtree of (Ni, T2(vj)). The tree A is defined as follows.

A will have a path containing one vertex for each white edge (see Figure 4.1).
These vertices occur in the same sequence from top to bottom as their corresponding
edges. The off-path children of these vertices will be the roots of the associated
maximum agreement subtrees defined above. It remains to define the remaining child
of the bottommost vertex on this path. This child will depend upon the nature of
the proper crossing. We will define a tree A′ for the proper crossing as follows. This
child will be the root of A′.
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Fig. 4.1. An agreement matching with the associated agreement tree.

If the proper crossing has a green edge and a red edge, then A′ is a tree whose
left and right subtrees are the maximum agreement subtrees associated with the two
edges. On the other hand, if the proper crossing has exactly one edge (red or green),
then A′ is just the maximum agreement subtree associated with that edge.

And finally, if there are no white edges at all, then A = A′. The equivalence of
weights is easy to check in all cases.

Lemma 4.2. A maximum agreement subtree A of T1 and T2(w), w ∈ π(x), has
a unique corresponding agreement matching which has the same weight and contains
only edges incident upon or below w in R(x).

Proof. We sketch how the agreement matching corresponding to A is constructed.
Recall Cases 1–3 and Properties 1–5 in section 4.1.

If Case 1 occurs, then A is of the maximum agreement subtree of (T1, Nj) for
some vj coinciding with or below w in π(x). Let ui be the topmost vertex in π such
that Mi intersects with Nj . Then the maximum agreement subtree of (T1(ui), Nj)
has the same weight as that of (T,Nj). Further, there is a red edge between ui and
vj in G(x); this red edge constitutes the agreement matching. Clearly, the weight of
this matching is identical to that of A.

If Case 2 occurs, a similar argument shows that the matching comprises a solitary
green edge with the same weight as A. In Case 3, a similar argument can be used to
show that the matching contains a sequence of zero or more noncrossing white edges,
lying above a proper crossing.

Thus, in order to determine the maximum agreement subtree of T1 and T2(w),
w ∈ π(x), it suffices to determine the maximum weight agreement matching in G(x)
containing only edges incident upon or below vertex w in R(x).

4.4. Finding maximum weight agreement matching in G(x). To describe
the algorithm for matching π, we need the following definitions followed by an impor-
tant theorem. The theorem itself will be proved in section 7.

Definitions. The degree of a vertex in G(x) is defined as the number of white
edges incident on it. Let dx(ui) denote the degree of ui. A vertex in L(x) is called
a singleton vertex if it has degree one; the white edge incident on it is called a sin-
gleton edge. Let nswe(x) denote the number of nonsingleton white edges in G(x).
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Let nsav(x) denote the number of vertices in R(x) which have at least one incident
nonsingleton white edge. Let SV (x) denote the set of singleton vertices in L(x).

Theorem 4.3. Consider a particular x ∈ X. For each ui ∈ L(x), the largest
weight agreement matching in G(x) containing only edges incident on or below ui in
L(x) can be found in time

O


 ∑

i|dx(ui)>1

dx(ui) log
nsav(x)

dx(ui)
+

∑
(ui,vj)∈G(x)|dx(ui)=1

log
|T (x)|
nj


 .

Further, for each vj ∈ R(x), the largest weight agreement matching in G(x) con-
taining only edges incident on or below vj in R(x) can also be found in the same
time.

Theorem 4.3 is achieved by storing the vertices of R(x) in an appropriately
weighted search tree. The construction is described in section 7.

Algorithm outline for matching π. The matching graphs G(x) for all x ∈ X
will be constructed in time proportional to the sum of the sizes of these graphs. This
construction is described in section 6. Then each matching graph G(x) is processed as
follows (see Theorem 4.3). For each ui ∈ L(x), the largest weight agreement matching
in G(x) containing only edges incident on or below ui in L(x) is found. Further, for
each vj ∈ R(x), the largest weight agreement matching in G(x) containing only edges
incident on or below vj in R(x) is also computed. This computation of agreement
matchings is described in section 7. For each w ∈ T2, the largest agreement subtree
of T1 and T2(w) can be determined easily from the above information as it is given
by the largest weight agreement matching in G(x) comprising only edges incident
upon or below vertex w in R(x). Section 5 shows that the total time taken above is
O(
∑p

i=1 mi log
n
mi

), as required.

Inferring maximum agreement subtrees. Consider a vertex w ∈ T2; let x be
the beginning of the centroid path in T2 containing w. Then w ∈ R(x). The maximum
agreement subtree of T1 and T2(w) is given by the largest weight agreement matching
in G(x) comprising only edges incident upon or below vertex w in R(x).

5. The analysis. We need the following preliminary lemmas before beginning
the analysis.

Lemma 5.1. Consider graph G(x). Then

∑
i|dx(ui)>1

dx(ui) log
nsav(x)

dx(ui)
≤

∑
i|dx(ui)>1

dx(ui) log
n

mi
.

Proof. Multiplying each side by ln 2, we get the following equivalent inequality:

A =
∑

i|dx(ui)>1

dx(ui) ln
nsav(x)

dx(ui)
≤

∑
i|dx(ui)>1

dx(ui) ln
n

mi
= B.

Note that
∑

i|dx(ui)>1 dx(ui) = nswe(x). Let αi(x) > 0 be such that dx(ui) =

αi(x)
mi

n nswe(x). Then
∑

i|dx(ui)>1 αi(x)mi = n. Also note that nsav(x) ≤ nswe(x).
Therefore,

A ≤ B −
∑

i|dx(ui)>1

αi(x)
mi

n
nswe(x) lnαi(x).
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It suffices to show that

C =
∑

i|dx(ui)>1

αi(x)mi lnαi(x) ≥ 0.

We split C into two terms:

C1 =
∑

i|dx(ui)>1,αi(x)≥1

αi(x)mi lnαi(x)

and

C2 =
∑

i|dx(ui)>1,0<αi(x)<1

αi(x)mi lnαi(x),

C1 ≥
∑

i|dx(ui)>1,αi(x)≥1

(αi(x)− 1)mi.

Further,

∑
i|dx(ui)>1,αi(x)≥1

(αi(x)− 1)mi −
∑

i|dx(ui)>1,αi(x)<1

(1− αi(x))mi

=
∑

i|dx(ui)>1

(αi(x)− 1)mi =
∑

i|dx(ui)>1

αi(x)mi −
∑

i|dx(ui)>1

mi ≥ n− n ≥ 0.

Therefore C ≥∑i|dx(ui)>1,0<αi(x)<1(1− αi(x) + αi(x) lnαi(x))mi ≥ 0.
Recall that Si denotes the subtree of T2 induced by the leaves of Mi.
Lemma 5.2.

∑
x∈X|dx(ui)>1 dx(ui) = O(mi).

Proof. Consider G(x) such that dx(ui) > 1. Then all but one of the vertices of
R(x) adjacent to ui are also in Si; this is because Mi intersects both the right and the
left subtrees of all but the bottommost of the vertices adjacent to ui in R(x). Since
each vertex in Si is in at most one matching graph G(x) and since |Si| = mi, the
lemma follows.

Consider a vertex ui ∈ π. From Theorem 4.3 and Lemma 5.1, the following work
is assigned to ui when considering the matching graph G(x), x ∈ X.

1. If Mi and T2(x) do not intersect, then no work is assigned to ui as ui is not
in G(x).

2. If dx(ui) = 1, then the work assigned to ui is O(log |T2(x)|
nj

), where vj is the

vertex in π(x) adjacent to ui.
3. If dx(ui) > 1, then the work assigned to ui is O(dx(ui) log

n
mi

).
The following is a corollary of Lemma 5.2 and the above bounds.
Corollary 5.3. The work assigned to vertex ui over all matching graphs G(x)

with dx(ui) > 1 is O(mi log
n
mi

).
It now suffices to account for the work assigned to vertex ui over all matching

graphs G(x) with dx(ui) = 1. Next, we show that this work is also O(mi log
n
mi

). We
use the tree Si for this analysis.

Analyzing over Si. Note that for each x ∈ X such that dx(ui) = 1, x is not in
Si, i.e., either it lies on the path in T2 between the endpoints of some edge e in Si,
or it lies on the path in T2 between the root of Si and the root of T2. In the former
case, x is said to lie on edge e of Si. To handle the latter case, we add a dummy edge
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y

x1

x2

x3

xk

last(e)

z

Fig. 5.1. Portion of T2 showing vertices in H(e) and last(e).

to Si connecting its root to a new node, representing the root of T2. This new node
now becomes the root of Si. This addition of the dummy edge is only for the next few
paragraphs, until the work done on that edge is accounted for. Subsequent references
to Si will not have the dummy edge.

Consider the maximal subset H(e) of vertices x in X which lie on edge e of Si

and for which dx(ui) = 1. Let H(e) = {x1, x2, . . . , xk}; here the vertices appear in
increasing order of distance from the root of T2. Let e = (y, z), with y as the parent of
z in Si. Let first(e) = x1. Let last(e) be the first vertex x in X such that dx(ui) > 1
and x is on the path from xk to z in T2, if any; otherwise, let last(e) be z (and then
z is a leaf). See Figure 5.1.

Lemma 5.4. The sum of |T2(first(e))| over any subset of edges of Si, no two of
which lie on the same root-to-leaf path in Si, is O(n).

Proof. The above subtrees of T2 are all disjoint.

Lemma 5.5. The work assigned to ui on edge e, i.e., in processing graphs G(x),

x ∈ H(e), is O(log |T2(first(e))|
|T2(last(e))| ).

Proof. The work assigned to ui in processing G(xj) is O(log
|T2(xj)|
|T2(xj+1)| ) for 1 ≤

j < k and O(log |T2(xk)|
|T2(last(e))| ) for j = k. Thus the sum of the work assigned to ui at

the graphs G(xj) is O(log |T2(first(e))|
|T2(last(e))| ).

Corollary 5.6. The work assigned to ui on the dummy edge e is O(log n
mi

).

Proof. |T2(last(e))| ≥ mi.

It remains to analyze the work assigned to ui over the nondummy edges in Si.
From now onwards, we can ignore the dummy edge in Si.

Lemma 5.7. Consider edges e, e′ ∈ Si such that e is on the path from e′ to the
root of Si. If H(e), H(e′) are nonempty, then |T2(last(e))| ≥ |T2(first(e′))|.

Proof. first(e′) is a descendant of last(e) in T2.

We claim that sum of the work assigned to ui over all the edges of Si isO(mi log
n
mi

).
We show this next by applying tree contraction on Si.

Removal step. First, remove all edges e in Si incident upon leaves in Si. The work
done on these edges is bounded by the sum over all such edges e of O(log |T2(first(e))|);
further, the number of such edges is at most mi. By Lemma 5.4, this sum is at most
O(mi log

n
mi

).
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Contract step. Next, contract all paths consisting only of degree two vertices in
Si into a single edge. The H set for such an edge e is defined to be the union of the H
sets for the edges comprising the path which was contracted to give e. The work done
on e is also defined to be the sum of the work done on the relevant edges. first(e) and
last(e) are again defined as before. As is easily seen, Lemmas 5.4, 5.5, and 5.7 hold
for the new contracted tree as well. Further, this new tree has at most mi/2 leaves.

Wrapping up. O(logmi) phases of the removal and contract steps are performed.

In the jth phase, the work done on the edges removed is O( mi

2j−1 log
n2j−1

mi
). Summing

up over all phases, we get the following lemma.

Lemma 5.8. The work assigned to vertex ui over all matching graphs G(x) with
dx(ui) = 1 is O(mi log

n
mi

).

The following lemma is needed in the next section.

Lemma 5.9. The total number of edges incident on ui over all matching graphs
is O(mi log

n
mi

).

Proof. Recall that the work attributed to a singleton edge is of the form log |T2(x)|
nj

≥
1. Thus, Lemma 5.8 implies that there are O(mi log

n
mi

) singleton edges incident to
ui, and by Lemma 5.2, there are O(mi) nonsingleton edges incident to ui.

Theorem 5.10. There is an algorithm for the MAST problem for two binary
trees with an O(n log n) running time.

Proof. Corollary 5.3 and Lemma 5.8 imply that the total work assigned to ui is
O(mi log

n
mi

). Hence the total matching cost from Step 3 in section 3 isO(
∑

mi log
n
mi

).
Further, Step 1 takes linear time. Also, in section 8, it will be shown that we can con-
struct the recursive subproblems in Step 2 in linear time, so if we exclude the recursive
calls, our cost is bounded by c

∑
mi log

n
mi

for some sufficiently large c. Inductively,
we assume that each recursive call takes at most cmi logmi time, and then the total
time is at most

c
∑
i

(
mi log

n

mi
+mi logmi

)
= cn log n,

as desired.

The above analysis assumes (a) that we can construct the recursive subproblems
in linear time, which will be done in section 8, (b) that we can construct the matching
graphs in time proportional to their sizes, which will be done in sections 6 and 8, and
(c) that Theorem 4.3 holds true, which will be proved in sections 7 and 9.

6. Constructing the matching graphs. We show how all the matching graphs
can be set up in time proportional to the sum of their sizes, which by Lemma 5.9 is
O(
∑p−1

i=1 mi log
n
mi

). First, we show how to set up the vertices and edges in each
graph. Then we show how the weights on the edges are computed.

Preprocessing. T2 is preprocessed in linear time to compute a pointer from each
vertex to the beginning of the centroid path containing it. It is also preprocessed to
enable induced subtree computations in the same time bounds.

6.1. Setting up vertices and edges. The matching graphs in which vertex ui

appears along with the multiedges incident upon it in these graphs are determined in
time proportional to the sum of the number of such multiedges over all such graphs
as follows.
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Processing up. First, consider the leaf up of T1. The only matching graphs
containing up are those which correspond to centroid paths beginning at vertices x of
T2 such that x is an ancestor of the twin of up in T2. Further, if up ∈ L(x), then there
is a multiedge between up and vertex y ∈ R(x) if and only if y is the nearest ancestor
of up’s twin in the centroid path beginning at x. Thus the matching graphs to which
up belongs and the multiedges incident on up in these graphs can be determined in
time proportional to the number of such graphs, given pointers from each vertex in
T2 to the beginning of the centroid path containing it.

Lemmas 6.1 and 6.2 are needed for the next step.

Lemma 6.1. If vertex vj in the centroid path beginning at vertex x of T2 is in Si,
then ui is adjacent to vj in G(x).

Proof. Clearly, if j 	= q, then Mi and Nj intersect, and if j = q, then vj ’s twin is
in Mi.

Lemma 6.2. If vertex vj in the centroid path beginning at vertex x of T2 is not
in Si, then ui is adjacent to vj in G(x) if and only if vj 	= vq and there exists some
vertex y ∈ Si which is in Nj.

Proof. We assume that j 	= q. For if j = q, then vj = vq is a leaf of T2, and since
it does not appear in Si, its twin is not in Mi, and therefore, there is no edge between
ui and vj .

First, suppose some vertex y ∈ Si is in Nj . Then, clearly, Nj intersects Mi.
Therefore, there must be an edge between ui and vj in G(x). Next, suppose that
there is such an edge. Then Nj intersects Mi. Therefore, there exists some y ∈ Si

which is in Nj .

Processing ui, 1 ≤ i ≤ p − 1. The subtrees of T2 induced by leaves of each
Mi are computed in O(

∑p−1
1 mi) time as described in section 8. Let Si denote this

induced subtree. For each vertex z in Si, perform the following in T2 until a vertex
in the centroid path containing the parent of z in Si is reached: repeatedly jump to
the parent of the beginning of the centroid path in T2 containing the current vertex.
By Lemmas 6.1 and 6.2, there is a multiedge from ui to each vertex y of T2 (in the
corresponding matching graph containing y) encountered in this following procedure.
Thus this procedure takes time proportional to the sum of the number of multiedges
incident on ui over all matching graphs it lies in, given pointers from each vertex in
T2 to the beginning of the centroid path containing it.

Remark. For an edge between ui and vj , i 	= p, j 	= q, define map(i, j) as follows.
If vj ∈ Si, then map(i, j) = vj . Otherwise, if vj 	∈ Si, then map(i, j) is that vertex in
Si which is closest to the root of Si and a descendant of vj in T2. Note that map(i, j)
can be easily computed in the course of the above procedure.

6.2. Determining edge weights in G(x). Recall that for a multiedge between
ui and vj in G(x), we need to determine the sizes of the maximum agreement subtrees
of the following pairs of trees.

1. Mi, Nj : white edge weight.
2. T1(ui), Nj : red edge weight.
3. Mi, T2(vj): green edge weight.

Also recall that the multiedge itself indicates that Mi and Nj intersect.

Assume that the agreement matchings in graphs G(x′) have already been deter-
mined, where x′ is a descendant of x in T2. Using this information and the information
computed in Step 2, we show how the above required information can be computed
for multiedge (ui, vj) in graph G(x) in constant time. Recall that in Step 2, the max-
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imum agreement subtrees of Mi and the subtrees rooted at each vertex w of Si were
determined.

White edge weight. Let y = map(i, j). If y 	= vj , then the maximum agreement
subtree of Mi and the subtree of Si rooted at y gives the desired information. Suppose
y = vj , i.e., y ∈ Si. Let z be the child of y ∈ Si such that z ∈ Nj . The maximum
agreement subtree ofMi and the subtree of Si rooted at z gives the desired information
in this case. This takes constant time.

Green edge weight. The maximum agreement subtree of Mi and the subtree
of Si rooted at y = map(i, j) gives the desired information in constant time.

Red edge weight. Let y be the root of Nj . Recall that the agreement matchings
in graphs G(x′) have already been determined, where x′ ∈ X is a descendant of x
in T2. Since y ∈ X, agreement matchings in graph G(y) would already have been
computed. Recall from Theorem 4.3 that for each vertex in L(y), the maximum weight
agreement matching containing only edges incident on or below that vertex in L(y)
has been computed.

Note that since Mi intersects with T2(y) (since a multiedge exists between ui and
vj), ui ∈ L(y). The largest weight agreement matching in G(y) containing only edges
incident on or below vertex ui in L(y) gives the desired information. This information
is computed as graph G(y) was processed, so it can be accessed in constant time now.

7. Computing agreement matchings. Consider graph G(x). Recall that for
each vertex in L(x), we need to compute the largest weight agreement matching
containing only edges incident on or below it in L(x), and likewise for each vertex
in R(x). We outline the algorithm before giving details. The algorithm is similar to
that in [FPT95a], but the data structure we use and the associated operations are
different.

Algorithm outline. First, a weight balanced binary search tree T whose leaves
are the vertices in R(x) is set up; here, the vertices in R(x) are given appropriate
weights yet to be described. Next, the vertices in L(x) are considered in turn in
bottom-to-top order. For each vertex ui ∈ L(x), the vertices adjacent to it in R(x)
are searched for in T ; the largest weight agreement matching with each white edge
incident on ui as topmost edge is found in the course of this search, as is the largest
weight proper crossing for each green edge incident on ui. From the above information,
the largest weight agreement matching containing only edges incident on or below ui

in L(x) is easily found. Following the above search, the information stored in T is

updated. The time taken for processing ui will be O(dx(ui) log
nsav(x)
dx(ui)

) if dx(ui) > 1

and O(log |T (x)|
nj

) if dx(ui) = 1 and ui is adjacent to vj in G(x). After all vertices in

L(x) have been processed, the vertices in R(x) are processed. For all such vertices vj ,
the largest weight agreement matching containing only edges incident on or below vj

in R(x) are found in O(|R(x)|) time by a single scan of T . The bounds in Theorem
4.3 follow.

Weighted search tree T . Vertex vj ∈ R(x) is given weight nj+
|T (x)|

nsav(x) if some

nonsingleton edge in G(x) is incident upon it, and weight nj otherwise. The sum of
the weights of vertices in R(x) is at most 2|T (x)|. The construction of T using these
weights is dealt with in section 9.

Tree T has the following three crucial characteristics.
1. T can be constructed in O(|R(x)|) time.

2. Searching for vj in T takes O(log |T (x)|
nj

) time.
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3. Searching for an ordered subset {vj1 , . . . , vjk} of R(x), each vertex in which

has an incident nonsingleton edge, takes O(k log nsav(x)
k ) time. The procedure

used here is to first search for vj1 , starting at the root, and then to search for
vj2 , starting at vj1 in the obvious way, and so on.

Auxiliary information in T . We maintain the following auxiliary information
at each internal vertex in T . Recall that we process the vertices of L(x) in order; an
edge of G(x) is said to be in T if its endpoint in L(x) has already been processed.
Further, we say that an edge of G(x) is in T (z) if it is in T and its endpoint in R(x)
is located in T (z). Let anc(z) denote the set of ancestors of z in T , z inclusive. For
a leaf vj ∈ T , lfringe(vj) is the set of vertices in T which are left children of vertices
in anc(vj) but not themselves in anc(vj). rfringe(vj) is defined analogously.

The following information is maintained at each vertex z of T .
1. g(z): For each z, maxz′∈anc(z) g(z

′) will be the heaviest green edge in T which
forms a proper crossing with each red edge in T (z).

2. x(z): This is largest weight proper crossing among the edges in T (z).
3. m(z): This is largest weight agreement matching containing a white edge

such that the topmost white edge is in T (z).
4. y(z): This the largest weight proper crossing such that the green edge in this

crossing is in T but not in T (z), the red edge in this crossing is in T (z), and
the green edge does not form a proper crossing with all the red edges in T (z).

5. r(z): This is simply the heaviest red edge in T (z).
Next, we show how vertex ui is processed, given that vertices below it in L(x) have

been processed. For the moment, assume that dx(ui) = 1. The case when dx(ui) > 1
will be addressed later.

Case 1. dx(ui) = 1. Let vj be the only vertex to which ui is adjacent. First, vj

is found in T ; this takes O(log |T (x)|
nj

) time. Next, the white, red, and green edges

incident on ui are processed as described below in the same time bound. An important
fact to note is that in each case, the information in T will be read and updated only
at vertices in the set anc(vj) and vertices which are children of vertices in this set; the

time taken in this process will be proportional to the depth of vj , i.e., O(log |T (x)|
nj

).

Processing white edge e = (ui, vj). First, the largest weight agreement
matching with e as the topmost edge is determined. Then the m() values at vertices
in anc(vj) are updated according to the weight of this matching. All other information
remains unchanged.

The above desired matching is computed as follows. There are two cases. In the
first case, this matching contains another white edge. The largest weight matching
among all such matchings is given by 1+maxz∈lfringe(vj) m(z). The other case occurs
when this matching contains only edge e plus a proper crossing. Thus, it suffices to
compute the largest proper crossing containing edges dominated by e. This is given by

max

{
max

z∈lfringe(vj)
x(z), max

z∈lfringe(vj)

(
max

z′∈anc(z)
g(z′)

)
+ r(z), max

z∈lfringe(vj)
y(z)

}
.

The first term here is the largest weight proper crossing in which both edges are in
T (z) for some z ∈ lfringe(vj). The second term is the largest weight proper crossing
in which the red edge is in T (z) for some z ∈ lfringe(vj); the green edge is not in this
subtree but it forms a proper crossing with each red edge in this subtree. The third
term is the largest weight proper crossing in which the red edge is in T (z) for some
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z ∈ lfringe(vj); the green edge is not in this subtree and it does not form a proper
crossing with some red edge in this subtree.

Processing red edge e = (ui, vj). The m() and x() values remain unchanged
in T . Next, note that no green edge already in T can form a proper crossing with e.
This implies that the y() and g() values for z ∈ anc(vj) need to be modified.

Consider y(z) first, z ∈ anc(vj). A green edge in T which formed a proper
crossing with all red edges in T (z) does not do so any more. So y(z) is set to
max{y(z), (maxz′∈anc(z) g(z

′)) + r(z)}.
Consider g(z) next, z ∈ anc(vj). g(z) is set to φ. Before this is done, g(y)

is updated to maxy′∈anc(y) g(y
′) for each y ∈ lfringe(vj) and y ∈ rfringe(vj). The

invariant on g() is easily seen to be maintained.
Finally, r(z) is set to max{r(z), wt(e)} for each z, z ∈ anc(vj).

Processing green edge e = (ui, vj). Note that e can form a proper crossing
with only those red edges in T which are in T (z), z ∈ rfringe(vj); further, e forms a
proper crossing with each such red edge. Therefore, g(z) is set to

max
{

max
z′∈anc(z)

g(z′), wt(e)
}

for each z ∈ rfringe(vj).
For each z ∈ anc(vj), x(z) is then set to the larger of the current value and

max(wt(e)+ r(z′)), the maximum being taken over all vertices z′ ∈ rfringe(vj) which
are descendants of z. Also note that maxz∈rfringe(vj)(wt(e) + r(z)) gives the largest
weight proper crossing containing e.

Case 2. dx(ui) = k > 1. Suppose ui is adjacent to vj1 , vj2 , . . . , vjk , in bottom-
to-top order. Then these vertices are searched for in sequence in T . This takes

O(k log nsav(x)
k ) time by the procedure mentioned earlier, i.e., first search for vj1 ,

starting at the root, and then search for vj2 , starting at vj1 in the obvious way, and
so on. In the above process, all vertices in the set {z|z ∈ (anc(vj1) ∪ anc(vj2) ∪ · · · ∪
anc(vjk))} are traversed. Again, as in Case 1, only information at vertices in the above
set and at children of vertices in the above set needs to be read and updated. This

takes time proportional to the size of the above set, which, in turn, is O(k log nsav(x)
k ).

Processing R(x). It remains to show how, for each vj ∈ R(x), the largest
weight agreement matching containing only edges incident on or below vj in R(x) is
computed.

For each vj ∈ R(x), we find the largest weight agreement matching with some
white edge incident upon vj as the dominant edge and the largest weight proper
crossing containing some red edge incident on vj . This information clearly suf-
fices. The first of the above two is given simply by m(vj). The second is given
by max{y(z),maxz′∈anc(vj) g(z

′)+ r(vj)}. Over all vj ∈ R(x), the computation of the
above two values can be accomplished in a single pass of T in O(|R(x)|) time.

8. Computing induced subtrees. We show how to preprocess a tree in O(|T |)
time so that given any subset L of its leaves in order, the subtree induced by L can
be computed in O(|L|) time. The construction is a generalization of the proof of
Lemma 5.2 in [FT95].

T is preprocessed for LCA queries in O(|T |) time. This enables the computation
of the LCA of any two leaves of T in constant time [HT84]. The distance of each
vertex from the root of T is also computed; call this quantity the depth of a vertex.
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Given the ordered set of leaves L = l1, l2, . . . , l|L|, the following steps are executed.
First, the LCA l′i of each pair of consecutive leaves li, li+1, 1 ≤ i ≤ |L| − 1, is found;
the l′is will be the internal vertices in the subtree induced by L. Next, the edges
between vertices are set up as follows.

For each vertex v in the sequence l1, l
′
1, l2, l

′
2, . . . , l|L|−1, l

′
|L|−1, l|L|, two vertices

vleft and vright are computed. vleft is the nearest vertex to the left of v, if any,
which has depth strictly less than v. vright is defined analogously. This computation
is easily accomplished in O(|L|) time. Finally, edges are put between v and one of
vleft, vright—whichever has greater depth. If exactly one of vleft, vright is defined (this
will happen only for vertices on the paths from the root to the leftmost and rightmost
leaves in the induced subtree), then an edge is put between v and the vertex which is
defined. The root of the induced tree will be the unique vertex for which both vleft

and vright are undefined; no edges need be put in this case.

Step 2 of the main algorithm. Step 2 (see section 3) requires finding the

induced trees Si for each Mi, 1 ≤ i ≤ p− 1, in O(
∑p−1

i mi) time. This is done in two
steps. (Essentially, this procedure is described in [FT95].) First, the leaves of each
Mi are sorted by the order in which their twins occur in T2. This is done by bucket
sorting all the leaves of T1 by the order in which their twins occur in T2, and then
bucket sorting them (in a stable way) by the order in which the trees Mi to which

they belong occur in T1. This takes O(
∑p−1

i mi) time.

Next, for each Mi, 1 ≤ i ≤ p − 1, the subtree of T2 induced by the leaves of Mi

is found using the algorithm described above in O(mi) time. The total time taken is

O(
∑p−1

i mi).

9. The weighted search tree. We will now complete our solution to the MAST
problem by describing the weighted search trees from section 7. Recall that we are

given vertices v1, v2, . . . , v|R(x)|, such that vertex vj has weight w(vj) = nj +
|T (x)|

nsav(x)

if it has an incident nonsingleton edge, and weight w(vj) = nj otherwise. The sum of
the vertex weights is bounded by 2|T (x)|.

Theorem 9.1 from [Fre75, Meh77] shows that the weight balanced tree T can be
constructed in O(|R(x)|) time.

Theorem 9.1. Given weights w1, . . . , wn with sum W , a binary tree such that
the depth of the ith leaf is O(1+ log(W/wi)) can be constructed in O(n) time. In this
tree, the total weight of all leaves in the subtree rooted at any node z will be at most
half of the corresponding weight for the subtree rooted at the grandparent of z.

It follows from Theorem 9.1 that the time to search for vj in T isO(1+log |2T (x)|
w(vj)

) =

O(1 + log |T (x)|
nj

).

Next consider the case when an ordered subset {vj1 , . . . , vjk} of vertices is given,
each having an incident nonsingleton edge. The algorithm to search for these vertices
is to first start from the root and search for vj1 , then start from vj1 and search for
vj2 , then start from vj2 and search for vj3 , and so on. Each search is performed in
the obvious way. For technical reasons, we return to the root at the end.

Each edge in T is traversed at most twice during the above search, once in each
direction.

Consider the topological subtree formed by the traversed edges. It has k leaves
and k − 1 internal nodes with two children. These nodes form a tree, with each edge
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in the tree corresponding to a path in the search tree. We associate with a node in
the topological subtree the path in the search tree corresponding to the edge from
the node to its parent in the topological subtree. The associated path for the root
node of the topological subtree is the path from this node to the root of the search
tree. We will give an upper bound on the total number of vertices on these paths
excluding their endpoints. To do this, we give a lower bound on the total weight of
the “off-path” subtrees for each path. (An “off-path” subtree for a node is simply the
subtree which does not contain the continuation of the path.)

Let l be the number of internal vertices on one such path associated with node v.
By Theorem 9.1, the sum of the weights of every second root of the off-path subtrees
is at least (2w(v) − w(v)) + (4w(v) − 2w(v)) + · · · + (2�l/2	w(v) − 2�l/2	−1w(v)) =

(2�l/2	 − 1)w(v). But w(v) ≥ |T (x)|
nsav(x) and the total weight is at most 2T (x). Simple

calculus shows that the sum of these lower bounds on the path lengths is maximized
when the terms w(v) are all at their minimum value and the path weights are all

equal at 2T (x)/(2k − 1). This gives path lengths of O(log nsav(x)
2k−1 ) and hence a total

path length of O(k log nsav(x)
k ).

10. Concluding remarks. We can generalize our technique to higher degree
bounds d > 2 by combining it with techniques from [FT95, section 2] for unbounded
degrees. This appears to yield an algorithm with running time O(min{n√d log2 n,
nd log n log d}). We conjecture, however, that there is an algorithm with running
time O(n

√
d log n).
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comments.
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Abstract. Given an alphabet {a1, . . . , an} with the corresponding list of weights [w1, . . . , wn],
and a number L ≥ �logn�, we introduce the WARM-UP algorithm, a Lagrangian algorithm for con-
structing suboptimal length restricted prefix codes. Two implementations of the algorithm are pro-
posed. The first one has time complexity O(n logn+n logw), where w is the highest presented weight.
The second one runs in O(nL log(n/L)) time. The number of additional bits per symbol generated by
WARM-UP when comparing to Huffman encoding is not greater than 1/ψL−�log(n+�logn�−L)�−2.
Even though the algorithm is approximated it presents an optimal behavior for practical settings.

An important feature of the proposed algorithm is its implementation simplicity. The algorithm
is basically a selected sequence of Huffman tree constructions for modified weights. The approach
gives some new insights on the problem.

Key words. prefix codes, Huffman trees, Lagrangian duality

AMS subject classifications. 94A45, 94A45, 90C11
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1. Introduction. An important problem in the field of coding and information
theory is the variable length code problem [10]. A particular case of relevant interest
is the binary prefix code problem. Given an alphabet Σ = {a1, . . . , an} and a corre-
sponding list of weights [w1, . . . , wn], the problem is to find a prefix code for Σ that
minimizes the weighted length of a code string, defined to be

∑n
i=1 wili, where li is the

length of the code assigned to ai. This problem is equivalent to the following problem:
given a list of weights [w1, . . . , wn], find a tree T that minimizes the weighted path
length

∑n
i=1 wili, where li is the height of the ith leaf of T . T must be chosen among

all full binary trees1 with n leaves. The equivalence is due to the fact that every
binary prefix code can be represented by a full binary tree [4]. If the list of weights
is sorted, this problem can be solved in O(n) by one of the efficient implementations
of Huffman’s algorithm [10, 26, 21]. Any tree constructed by Huffman’s algorithm is
called a Huffman tree.

In this paper we consider the binary prefix code problem with restricted maximal
length, that is, for a fixed L ≥ �log n�, we must minimize

∑n
i=1 wili constrained to

li ≤ L for i = 1, . . . , n. Gilbert [8] recommends formulating this problem when the
weights wi are inaccurately known. Choueka, Klein, and Perl [3] suggest the use of
length restricted codes to reduce the external path length

∑n
i=1 li. The objective is

to allow space efficient decoding of optimal prefix codes without bit-manipulation.
Zobel and Moffat [29] describe the use of word-based Huffman codes for compression
of large textual databases. The application allows the maximum of 32 bits for each
codeword. For the cases that exceed this limitation, it is recommended to use length
restricted codes.

∗Received by the editors April 16, 1997; accepted for publication (in revised form) July 13, 2000;
published electronically November 8, 2000.
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Some methods can be found in the literature to solve the binary prefix code
problem with restricted maximal length [9, 27, 12, 5, 1, 23]. The first polynomial
algorithm is due to Garey [7]. The algorithm is based on dynamic programming, and it
has an O(n2L) complexity for time and space. Larmore and Hirschberg [12] presented
the Package-Merge algorithm. This is an O(nL) algorithm that requires linear space.
The authors reduce the original problem to a coin collector’s problem, using a nodeset
representation of a binary tree. Turpin and Moffat [25] discuss some aspects about the
implementation of the Package-Merge algorithm. Aggarwal, Schieber, and Tokuyama
[1] have used Megiddo’s parametric search paradigm [14] to obtain an O(n

√
L log n+

n log n) time algorithm. Currently, the fastest strongly polynomial time algorithm for
the problem is due to Schieber [23]. This algorithm also utilizes a parametric search.

However, it runs in O(n2O(
√

logL log log n)) time and requires O(n) space. These last
two algorithms are based on a reduction of the binary prefix code problem to the
concave least weight subsequence problem [13].

Some approximative algorithms have also been proposed in the literature [5, 15].
Milidiú and Laber proposed the build, remove, condense, and insert (BRCI) algorithm
[15, 17]. This algorithm is 1/ψL−�log(n+�log n�−L)�−1-approximative and constructs
prefix codes with restricted maximum length L in O(n) time if the input weights are
already sorted. The algorithm requires O(n) space. BRCI first constructs a Huffman
tree, and next it obtains a code tree with restricted maximal height L. The second tree
is obtained by removing some leaves of the Huffman tree and condensing them into
a complete binary tree. The strategy employed by the ROT algorithm is similar [5].
However, it does not provide a good theoretical approximation for the most important
case, where L = O(log n).

In this paper we present an approximative algorithm that constructs length
restricted prefix codes. The algorithm is called WARM-UP. It is based on La-
grangian relaxation [2], a powerful technique used to solve some important problems
in combinatorial optimization. A very simple implementation of WARM-UP runs in
O(n log n + n logw) time, where n is the number of weights and w is the highest
weight. A more elaborated implementation that uses Megiddo’s parametric search
runs in O(nL log(n/L)) time. The algorithm requires O(n) space and allows a very
space-economical implementation [18]. We show that the number of additional bits
per symbol generated by a WARM-UP code rather than a Huffman code is not greater
than 1/ψL−�log(n+�logn�−L)�−2.

The first parametric search proposed in [1] is similar to the WARM-UP approach
introduced here. Nevertheless, from a Lagrangian point of view, the former ap-
proach uses only one Lagrange multiplier, whereas the later uses a varying number of
nonzero Lagrange multipliers throughout the WARM-UP process. Furthermore, Ag-
garwal’s algorithm solves a sequence of concave least weight subsequence problems,
while our algorithm constructs a sequence of Huffman trees. Due to the simplicity
of Huffman’s procedure, the WARM-UP algorithm has a small constant factor in its
O(n log n + n logw) time complexity. Furthermore, WARM-UP can take advantage
of improvements in Huffman’s procedure, such as the recent ones proposed in [22, 19].

WARM-UP is quite different from the other approximative algorithms presented
in the literature. First, WARM-UP is able to recognize when it gets an optimal code
during its execution, while the others are not. This capability is provided by the
Lagrangian duality theory. Second, WARM-UP constructs optimal codes in almost
all practical settings. This behavior does not happen with the algorithms proposed
in [5, 15]. Although this fact is based on empirical results, it can be theoretically
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explained somehow. Actually, the codes obtained by the WARM-UP algorithm are
optimal codes either for the length restricted problem or for a related problem, where
some codeword lengths cannot be longer than L and some others cannot be longer
than L − 1. This fact gives some insight on why WARM-UP is able to construct
optimal codes so frequently. Hence, WARM-UP allows as simple implementations
as the other approximate algorithms, and it is also able to produce length restricted
codes with compression power similar to those produced by the exact algorithms.

The paper is organized as follows. In section 2, we give an integer programming
formulation to the problem and develop the theoretical background needed to justify
our algorithm. In section 3, we address the special case of constructing a Huffman
tree with height exactly equal to L, given that the Huffman tree with maximum
height has height greater than L, and the Huffman tree with minimum height has
height smaller than L. In section 4, we introduce the WARM-UP algorithm. In
section 5, we present a strong polynomial implementation for WARM-UP. In section
6, we analyze the approximation of the algorithm. In section 7, we present some
experimental results. Finally, in section 8, we comment on our findings.

2. The Lagrangian approach. Our approach is based on an integer program-
ming formulation to the problem. Given a sequence of n integer weights w1 ≤ · · · ≤ wn
and a length L ≥ �log n�, the problem is to find a sequence of n integers l1, . . . , ln
that minimizes

n∑
i=1

wi.li,

constrained to 


li ≤ L,∑n
i=1 2−li = 1, i = 1, . . . , n.

li ∈ N,
(2.1)

We call this problem PL. The restriction
∑n
i=1 2−li = 1 is satisfied if and only

if l1, . . . , ln are the heights of the leaves of a full binary tree with n leaves [4]. In
mathematical programming terms, we say that PL is a primal problem [20].

Since w1 ≤ · · · ≤ wn, there is a solution where l1 ≥ · · · ≥ ln. Throughout this
work we use this fact. For convenience, we use Sn to denote the points with integer
coordinates that satisfy

∑n
i=1 2−li = 1, and we use h(T ) to denote the height of a tree

T .

2.1. The Lagrangian relaxation. Let λ = (λ1, . . . , λn), with λi ≥ 0 for i =
1, . . . , n. The Lagrangian function associated to problem PL is given by

L(l,λ) =

n∑
i=1

wi.li +

n∑
i=1

λi.(li − L).(2.2)

The values λi are called Lagrangian multipliers. A point (l,λ) is a saddle point
of the Lagrangian function L(l,λ) if and only if

(a) L(l,λ) ≤ L(l,λ) for all l ∈ Sn,
(b) li ≤ L for i = 1, . . . , n,
(c) λi.(li − L) = 0 for i = 1, . . . , n.
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It is a well-known result [20] that if (l,λ) is a saddle point of the Lagrangian
function L(l,λ), then l is a global optimum to the primal problem, in this case to
problem PL.

Now, we can establish a sufficient condition for the sequence of integers l1, . . . , ln
to be a solution to problem PL.

Theorem 2.1. Let λ = (λ1, . . . , λn), with λi ≥ 0 for i = 1, . . . , n. Let also
l = (l1, . . . , ln) be the heights of the leaves of a Huffman tree for the modified list of
weights given by w1 + λ1, . . . , wn + λn. If

{
li ≤ L,

li = L when λi �= 0

for i = 1, . . . , n, then l solves problem PL.
Proof. We show that (l,λ) is a saddle point of the Lagrangian function L(l,λ)

by proving conditions (a)–(c).
(a) Since l corresponds to the heights of the leaves of a Huffman tree for the

weights w1 + λ1, . . . , wn + λn, it follows that

n∑
i=1

(wi + λi).li ≤
n∑
i=1

(wi + λi).li for all l ∈ Sn.

Subtracting the expression
∑n
i=1 λi.L from both sides of the inequality above, we

obtain that

n∑
i=1

wi.li +

n∑
i=1

λi(li − L) ≤
n∑
i=1

wi.li +

n∑
i=1

λi(li − L),

and therefore,

L(l,λ) ≤ L(l,λ) for all l ∈ Sn.

Conditions (b) and (c) follow immediately from the theorem hypothesis. This
result shows that l is a global optimum to problem PL.

2.2. Finding the multipliers. Theorem 2.1 suggests a simple way to solve
problem PL. Find multipliers λ1, . . . , λn such that the Huffman tree for the modified
weights w1 + λ1, . . . , wn + λn have height equal to L, and all the leaves associated to
the effectively modified weights wi + λi, with λi > 0, are arranged at height L. This
Huffman tree is an optimal prefix code tree with height restriction L.

As an example, let us consider the list of weights W = [1, 1, 2, 3, 5, 8, 13]. Figure
1 (a) shows a Huffman tree for this list. Suppose that we add 0.5 to the two lowest
weights of the given list. The tree in Figure 1 (b) is a Huffman tree for this modified
list. Since all the leaves with modified weights are at height 4, then the tree in Figure
1 (b) is an optimal code tree with restricted maximal height 4 for the original list of
weights W .

A natural question appears: how to choose these multipliers?
Our approach to choose these multipliers is to select a value x, with w1 < x < wn,

and set

λi = max{0, x− wi}.
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Fig. 1. (a) A Huffman tree for the list of weights [1, 1, 2, 3, 5, 8, 13]. (b) An optimal tree with
maximal restricted height 4 for the same list.

Next, we use a test to verify if the chosen set of multipliers, defined by x, is
adequate. Let wx be the new list of weights obtained through this perturbation.
Observe that wx = (max{w1, x}, . . . ,max{wn, x}). Let Tx be a Huffman tree for the
list wx. We say that the leaves of Tx with weight x are the warmed leaves. A tree Tx
has a useful property, given by the following lemma.

Lemma 2.2. If h(Tx) = L, then all the warmed leaves of Tx are either at height
L or L− 1 in Tx.

Proof. Since x is the smallest weight of the list wx and h(Tx) = L, then there is a
warmed leaf arranged at height L. On the other hand, leaves with equal weights are
always arranged in consecutive heights in a Huffman tree [28]. Hence, all the warmed
leaves are either at height L or L− 1 in Tx.

If h(Tx) = L, then we are close to the conditions of Theorem 2.1. Actually, we
can prove that a tree Tx with height L either solves PL or a quite related problem.

Theorem 2.3. Let Tx be a tree such that h(Tx) = L, and let nL and nL−1

be, respectively, the number of leaves at heights L and L − 1 in Tx. Moreover, let
l = (l1 ≥ · · · ≥ ln) be the heights of the leaves of Tx. We have the following.

(a) If nL−1 = 0, then l solves the problem PL.
(b) If nL−1 > 0, then l solves the problem PL with the additional list of constraints

li ≤ L− 1 for i = nL + 1, . . . , nL + nL−1.

Proof. (a) Lemma 2.2 ensures that all warmed leaves can only be at heights L
and L− 1 in a Tx tree with height L. Since nL−1 = 0, it follows that all the warmed
leaves are at height L. Hence, it follows from Theorem 2.1 that l solves the problem
PL.

(b) The proof is analogous to that of Theorem 2.1. It suffices to prove that (l,λ),
where λi = max{0, x − wi} for i = 1, . . . , n, is a saddle point of the Lagrangian
function associated to PL with the additional list of constraints

li ≤ L− 1 for i = nL + 1, . . . , nL + nL−1.
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We have given some insight explaining why a tree Tx with height L induces very
good codes. One question arises: how to select x?

Let us define T−x as a Huffman tree with minimum height for the list wx, and T+
x

as a Huffman tree with maximum height for the same list. Schwartz [24] shows how
to construct both of these trees. The following theorem shows that if we increase the
value of the parameter x, then the heights of the warmed leaves of the tree Tx cannot
increase. In particular, the height of Tx cannot increase. This monotonicity suggests
that we can determine an adequate value for x through a convenient binary search.

Theorem 2.4. Let s, t be two real numbers, with 0 < s < t. Furthermore, let
l = (l1 ≥ · · · ≥ ln) and l′ = (l′1 ≥ · · · ≥ l′n) be, respectively, the heights of the leaves
of the trees T−s and T+

t . Then

l′i ≤ li

for i = 1, . . . , k, where k is the largest value such that max{s, wk} = s.
Proof. The optimality of l and l′ implies that

n∑
i=1

max{wi, s}.(l′i − li) ≥ 0,(2.3)

n∑
i=1

max{wi, t}.(li − l′i) ≥ 0.(2.4)

Let k′ be the greatest integer value such that max{t, wk} = t. Adding inequalities
(2.3) and (2.4), we obtain that

(t− s).
k∑
i=1

(li − l′i) +

k′∑
i=k+1

(t− wi)(li − l′i) ≥ 0.(2.5)

Since we have k′ equal weights in the tree T+
t , it follows that l′1 ≥ l′i ≥ l′1−1 for i =

1, . . . , k′. Similarly, we have that l1 ≥ li ≥ l1 − 1 for i = 1, . . . , k.
Let us assume that l′i > li for some i ≤ k. We can show that this assumption

implies that l′j ≥ lj for j = 1, . . . , k′. In effect, if j > i, we have that l′j ≥ l′i − 1 ≥
li ≥ lj . On the other hand, if j < i, then l′j ≥ l′i ≥ li + 1 ≥ lj . Since l′j ≥ lj
for j = 1, . . . , k′ and l′i > li, then the inequality (2.5) is not satisfied. Since this
contradiction was generated by the assumption that l′i > li for some i ≤ k, then we
have that l′i ≤ li for i = 1, . . . , k.

Corollary 2.5 (WARM-UP theorem). Let s, t be two real numbers with 0 <
s < t. Then we have that h(T+

t ) ≤ h(T−s ).
Proof. It follows immediately from Theorem 2.4, since l′1 = h(T+

t ) and l1 =
h(T−s ).

We note that there may exist more than one value of x such that h(Tx) = L.
Actually, this is the usual case. Hence, one could ask which value of x generates the
best tree? The next theorem shows that x∗ = min{x|h(T−x ) ≤ L} is the choice that
produces the best tree.

Theorem 2.6. Let x∗ be the smallest value of x such that h(T−x ) ≤ L, and let
y be such that h(Ty) ≤ L. Moreover, let l = (l1, . . . , ln) and l′ = (l′1, . . . , l

′
n) be,

respectively, the heights of the leaves of Tx∗ and Ty. Hence

n∑
i=1

wili ≤
n∑
i=1

wil
′
i.
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Proof. Let k = max{k|wk < x∗}. Let P be the problem PL augmented by the
list of constraints li ≤ li for i = 1, . . . , k. By using a saddle point argument one can
show that l solves the problem P . Similarly, l′ solves the problem PL augmented by
the list of constraints li ≤ l′i for i = 1, . . . , k′, where k′ = max{k|wk < y}. We call
this second problem P ′.

Since x∗ < y, it follows from Lemma 2.4 that li ≥ l′i for i = 1, . . . , k. Moreover,
k ≤ k′. Hence, P is a relaxation of P ′, and as a consequence,

n∑
i=1

wili ≤
n∑
i=1

wil
′
i.

2.3. Well-numbered trees. The WARM-UP theorem allows us to search for
an appropriate value of x by performing a binary search on the interval (w1, wn). If
for a given x, h(T−x ) > L, then we must increase x. On the other hand, if h(T+

x ) < L,
we must decrease x. The special case where h(T−x ) < L and h(T+

x ) > L is addressed
in the next section.

Now, we show that there exists x such that h(Tx) = L. In order to show this fact,
we define the concept of well-numbered trees.

Definition 2.7. A weighted full binary tree is well numbered if and only if the
following hold.

(a) To each node is assigned a different integer number i, with 1 ≤ i ≤ 2n− 1.
(b) A parent node weight is equal to the sum of the weights of its two children

nodes.
(c) If i > j, then the weight of the node with number i is not smaller than the

weight of the node with number j.
(d) Let i > j. If the node with number i is son of a node with number i′, and the

node with number j is son of a node with number j′, then i′ ≥ j′.
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34
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1.5 1.5
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108 9
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3

7

Fig. 2. A well-numbered tree.

The tree in Figure 2 is well numbered. Each number is drawn at the right side of
the node. Now, we state three key properties concerning the well-numbered trees.

Proposition 2.8. Let y1, . . . , y2n−1 be the nodes of a well-numbered tree T .
Furthermore, let yi1 and yi2 , with i2 > i1, be the two children of node yi, and let yi3
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and yi4 , with i4 > i3, be the two children of node yi+1. Under these assumptions, we
have that i2 = i1 + 1, i3 = i2 + 1, and i4 = i3 + 1.

Proof. First, we prove that i2 = i1 + 1. Assume that i2 > i1 + 1. Let z be the
node with number i1 + 1. It follows that the parent of z has a number not smaller
than the parent of yi1 and a number not greater than the parent of yi2 . Hence, the
parent of z has number i, which contradicts the fact that each internal node has only
two children. The proof that i4 = i3 + 1 is analogous and the proof that i3 = i2 + 1
follows by the same arguments already used.

Proposition 2.9. Let y1, . . . , y2n−1 be the nodes of a well-numbered tree T with
corresponding heights l1, . . . , l2n−1. Then, 0 ≤ li − li+1 ≤ 1 for i = 1, . . . , 2n− 2.

Proof. First, let us prove that li+1 ≤ li for i = 1, . . . , 2n − 2. It follows from
properties (b) and (c) that y2n−1 is the heaviest node and hence the root of T . Hence,
the result holds for i = 2n− 2. Let us assume by induction that the result is valid for
i > p, and then we prove it for i = p. Observe that the parent of yp has a number
smaller than or equal to the number of the parent of yp+1. It follows by induction
that the parent of yp has a height not lower than the height of the parent of yp+1.
Since a parent’s height is exactly one unit lower than the height of its children, the
result holds for i = p.

Now, suppose that li > li+1 + 1 for some i. In this case, the parent yi′ of yi has
height li′ = li − 1. Therefore, i′ ≥ i + 1 and li′ = li − 1 > li+1, which contradicts
the inequality li+1 ≤ li for i = 1, . . . , 2n − 2, that we have already proved. Hence,
li ≤ li+1 + 1.

Proposition 2.10. If T is well numbered, then T is a Huffman tree.
Proof. It follows from Proposition 2.8 that the tree T has the sibling property,

defined by Gallager [6]. Therefore, T is a Huffman tree.

2.4. The existence of a suitable x. Now, we are ready to prove that there is
a value x, such that h(Tx) = L. This proof gives an insight about the effects in the
tree generated by changing the parameter x.

Theorem 2.11. If h(T−w1
) > L ≥ �log n�, then there is a rational number x=p/q,

with q ≤ n and w1 < x < wn, such that h(Tx) = L.
Proof. Observe that T−w1

is the Huffman tree for the original list of weights,
since max{w1, wi} = wi for i = 1, . . . , n. Let us assume that T−w1

is well numbered.
In section 3 we show how to construct such a tree. We use yi to denote the node
with number i, φi to denote the weight of node yi, and ni to denote the number of
descendent leaves of node yi with weight x. We define ni = 1 when yi is a leaf with
weight equal to x. We also define δi by δi = (φi+1 − φi)/(ni − ni+1).

The well-numbered tree in Figure 2 is a Tx tree, with x = 1.5. For this tree, we
have n1 = n2 = 1, n4 = n7 = n11 = n13 = 2, and the others nodes have ni = 0. We
also have that φ1 = 0, φ2 = 0.5, φ4 = 0, and so on. Now, we prove that one of the
trees obtained by the following algorithm is a Tx tree with h(Tx) = L.

x← w1

T ← T−x
Repeat

Let I = {i|i = arg min {δi|ni > ni+1}}
Define i∗ to be the smallest integer in I
For each leaf yj of T with φj = x do

φj ← x + δi∗

Update all internal node weights to assure that a parent weight

is equal to the sum of its children’s weights.



THE WARM-UP ALGORITHM 1413

In T interchange2 the subtrees with roots yi∗ and yi∗+1

Assign number i∗ to yi∗+1 and number i∗ + 1 to yi∗

x← x + δi∗

Until I = ∅
We divide the algorithm correctness proof into six parts.
(Part a) All trees constructed by the algorithm are well numbered.
Items (a) and (b) of Definition 2.7 are clearly respected by all trees T . Hence, we

need to prove that items (c) and (d) are also respected.
For the initial tree, the result follows from the hypothesis under T−w1

. When the
algorithm adds δi∗ to the leaves with weight x, and after updating the internal node
weights, we still have φj ≤ φj+1 for j = 1, . . . , 2n− 2, since δi∗ is the minimum value
necessary to produce a tie between the weights of two nodes with consecutive numbers.
Therefore, items (c) and (d) of Definition 2.7 hold. On the other hand, interchanging
the two chosen subtrees and also their corresponding root node numbers will also
ensure items (c) and (d).

(Part b) In each cycle, the tree T is a Tx tree for the current value of x.
It follows from (Part a) and Proposition 2.8 that each tree T is a Huffman tree.

Thus, we must prove that the weights of the leaves of T are given by max{w1, x}, . . . ,
max{wn, x} for the current value of x. The leaves of the initial tree have these weights.
Let Tm and xm be, respectively, the tree T at the beginning of the mth cycle and
the value of x at the beginning of this same cycle. We assume that the weights of the
leaves of Tm are given by max{w1, x

m}, . . . , max{wn, xm}, and then we prove that
the weights of the leaves of Tm+1 are given by max{w1, x

m+1}, . . . ,max{wn, xm+1}.
We can suppose that wi ≤ xm < wi+1. If xm+1 ≤ wi+1, then the result clearly

holds. On the other hand, if xm+1 > wi+1, the result doesn’t hold, since Tm+1 would
have a leaf with weight wi+1 < xm+1. However, if xm+1 > wi+1, then the integer
i∗ chosen during the mth cycle is such that δi∗ = (xm+1 − xm) > (wi+1 − xm). Let
yj be the node of tree Tm such that φj+1 = wi+1. Since φj ≥ xm, we have that
δj ≤ wi+1 − xm. It follows that i∗ would not belong to I, and, as a consequence, the
case xm+1 > wi+1 is not possible.

(Part c) Node yi∗+1 is always a leaf.
First, let us assume that yi∗ is a leaf and that yi∗+1 is an internal node. In this

case, ni∗ = 1; otherwise, i∗ would not have been selected because ni∗ = 0 ≤ ni∗+1. As
a consequence we get that φi∗ = x. The two children of yi∗+1 have numbers no greater
than i∗. Therefore, these children must have weights x; otherwise, we contradict either
item (c) of Definition 2.7 or the result of (Part b). Hence, ni∗ = 1 < 2 = ni∗+1 and
i∗ would not belong to set I.

Now, let us assume that yi∗ and yi∗+1 are both internal nodes. Let yi′ , yi′+1

be the sons of yi∗ , and let yi′+2, yi′+3 be the sons of yi∗+1. It follows from the
definition of δi that φi′ +φi′+1 +(ni′ +ni′+1).δi∗ = φi∗ +δi∗ .ni∗ = φi∗+1 +δi∗ .ni∗+1 =
φi′+2 +φi′+3 +(ni′+2 +ni′+3).δi∗ . We also have that φi′ +δi∗ .ni′ ≤ φi′+1 +δi∗ .ni′+1 ≤
φi′+2 + δi∗ .ni′+2 ≤ φi′+3 + δi∗ .ni′+3; otherwise, there would be a node yj with nj >
nj+1 such that δj < δi∗ . To satisfy the two previous expressions, we must have
that φi′ + δi∗ .ni′ = φi′+1 + δi∗ .ni′+1 = φi′+2 + δi∗ .ni′+2 = φi′+3 + δi∗ .ni′+3. Since
ni∗ > ni∗+1, ni∗ = ni′ + ni′+1, and ni∗+1 = ni′+2 + ni′+3, then either ni′ > ni′+1 or
ni′+1 > ni′+2 or ni′+2 > ni′+3. Hence, there is an index j with i′ ≤ j < i′ + 3 ≤ i,
such that nj > nj+1 and δi∗ = δj . This contradiction establishes the result.

2When two subtrees are interchanged, the second subtree becomes a child of the root parent of
the first subtree and vice-versa.



1414 RUY LUIZ MILIDIÚ AND EDUARDO SANY LABER

(Part d) Let M be the sum of the numbers assigned to the leaves of T . The five
statements below are true.

(i) (n2 − n)/2 ≤M ≤ (3n2 − n)/2.

(ii) If the algorithm halts, then M = (n2 − n)/2.

(iii) After each cycle the value of M either remains the same or decreases by
exactly one unit.

(iv) In no more than n2 + n cycles, the value of M satisfies M = (n2 − n)/2.

(v) If M = (n2 − n)/2, then h(T ) = �log n�.
Demonstrations. (i) There are n leaves in T , each leaf assigned a different number.

Thus, M ≥∑n
j=1 j = (n2 − n)/2 and M ≤∑2n−1

j=n j = (3n2 − n)/2.

(ii) In order to prove this item, we just need to show that I �= ∅ whenever
M > (n2−n)/2. If the sum of the numbers assigned to the leaves of T is greater than
n(n− 1)/2, then there is a leaf with number k, such that k > n. Since each number
in the set {1, . . . , 2n − 1} is a assigned to a node, then there is a node with number
smaller than n.

It follows from item (d) of Definition 2.7 that the parent of y1 is the internal node
with minimum number. Let m be the number of y1’s parent. We have that m < n < k
and nm ≥ 1. Since φk ≥ φm > x and yk is a leaf, then nk = 0. As nm > nk, there
exists an index i with m ≤ i < k, such that ni > ni+1. Hence, the set I is not empty.

(iii) It follows from (Part c) that yi∗+1 is a leaf. If yi∗ and yi∗+1 are leaves, then
the value of M remains the same. On the other hand, if yi∗ is an internal node, then
the value of M decreases by exactly one unit, since we interchange the numbers.

(iv) First, we show that in no more than n cycles yi∗ is a leaf. If yi∗ is a leaf,
then φi∗ = x; otherwise, ni∗ = 0 ≤ ni∗+1. Furthermore, φi∗+1 > x; otherwise
ni∗+1 = 1 = ni∗ . In this case the value of x is updated to x + φi∗+1 − φi∗ = φi∗+1.
Hence, the number of leaves with weight x is increased by one unit. Therefore, this
case can happen in no more than n cycles, otherwise we would obtain a tree with
more than n leaves.

When yi∗ is an internal node, the value of M decreases by one unit. Since (n2 −
n)/2 ≤M ≤ (3n2−n)/2, this second case can happen no more than (3n2−n)/2−(n2−
n)/2 = n2. Therefore, in no more than n2+n the value of M satisfies M = (n2−n)/2.

(v) If M = (n2 − n)/2, then the numbers of all the leaves are not greater than
n. Let lj be the height of a generic leaf yj . We have that the parent of y1 has height
l1 − 1 and a number greater than n. It follows from Proposition 2.9 that the height
of any leaf yj satisfies l1 − 1 ≤ lj ≤ l1. Therefore, all the leaves of T are arranged in
consecutive heights. Hence, h(T ) = �log n�.

(Part e) On each cycle the height of T either remains the same or decreases by
one unit.

If yi∗ has the same height as yi∗+1, then the interchange does not modify h(T ).
On the other hand, if the height of yi∗+1 is smaller than that of yi∗ by one unit, then
the interchange either decreases h(T ) by one unit or does not modify h(T ), because
yi∗+1 is a leaf.

(Part f) The variable x assumes only rational values of the form p/q with p, q ∈
N and 1 ≤ q ≤ n during the algorithm execution.

Let xm be the value of x at the beginning of the mth cycle. The first value of x is
w1, so x1 is an integer. We observe that in the next assignment x assumes the value
xm + ((φi∗+1 − φi∗)/ni∗) = xm + (φi∗+1 −A− xm.ni∗)/ni∗ = (φi∗+1 −A)/ni∗ , where
A is the sum of the weights of the leaves that descend from yi∗ with corresponding
weight values different from xm. Since φi∗+1 − A and ni∗ are positive integers and
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1 ≤ ni∗ ≤ n, we get that x assumes only values in the form p/q with p, q ∈N and q ≤
n.

Algorithm Correctness. It follows from (Part d) that the algorithm can only stop
if M = (n2−n)/2. On the other hand, if M = (n2−n)/2, then h(T ) = �log n�. Since
the first tree has height greater than L and after each cycle the height of T does not
decrease by more than one unit, then the algorithm must obtain a tree Tx with height
exactly L in no more than n2 + n. Furthermore, (Part f) ensures that x is a rational
number p/q with q ≤ n.

This result allows us to stop searching for a value x when the length of the search
interval is smaller than 1/n2, since there is only one rational with denominator less
than n in such an interval, and it can be easily determined.

3. The procedure Ties. Before describing our algorithm we must first consider
a special case, where

h(T−x ) < L and h(T+
x ) > L.

For the same list of weights it is possible that more than one Huffman tree exists.
This happens because when constructing the tree, Huffman’s algorithm faces alterna-
tive choices on how to choose a node when there is more than one node with minimal
weight.

Searching for an adequate value for x, we can face a situation where h(T−x ) < L
and h(T+

x ) > L. If we increase x, then the new tree gets a height smaller than L.
On the other hand, if we decrease the value of x, then we obtain a tree with height
greater than L. Corollary 2.5 guarantees this fact. Since we have already shown that
there is always a value x such that h(Tx) = L, then the current value of x is the one
we are looking for. In this case, we can construct a Huffman tree with height exactly
L for the current list of weights.

The trees in Figure 3 are T3 trees for the weights 1, 2, 4, 6, 10, 16, 26. The left tree
is a T+

3 tree and its height is 6, while the right tree is a T−3 tree and its height is 4.
If we have been trying to find a Tx tree with height 5, we would face the special case
addressed in this section.

Let us consider the well-known implementation [26] of Huffman’s algorithm that
uses a stack S to store the leaves of the tree, and a queue Q to store the internal nodes.
At the start, Q is empty and S contains the leaves of the tree sorted by weights, such
that the leaf with lower weight is located at the top of S.

During the main step of this implementation, the weight of the leaf at the top of
S is compared to the weight of the internal node at the head of Q. The node with
smaller weight is selected. After the selection of two nodes, a new internal node is
created. This new node is the parent of the selected nodes, and it is inserted at the
tail of Q. Observe that whenever a node is selected, it is removed either from the
top of S or from the head of Q. The main step is executed until S is empty and Q
contains only one node.

We say that a tie occurs whenever a leaf at the top of S has the same weight
as an internal node at the head of Q. If we choose a leaf whenever a tie occurs, we
obtain a Huffman tree with minimum height. On the other hand, if we always choose
an internal node, we get a Huffman tree with maximum height [24].

3.1. Procedure Ties description. Let T− be a Huffman tree with minimum
height, and let T+ be a Huffman tree with maximum height. Both of these trees have
the same list of weights. The procedure Ties constructs a Huffman tree with height
L when h(T−) < L and h(T+) > L.
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Fig. 3. A T+
3 tree and a T−3 tree for the weights 1, 2, 4, 6, 10, 16, 26.

The procedure performs a binary search on the integers 1, . . . , 2n − 2. For each
selected integer k, it constructs a Huffman tree T k using the implementation described
above with an additional refinement: choose a leaf on each one of the first k ties and
then choose only internal nodes on all subsequent ties. If it obtains the tree with
height L, then the procedure ends. If the obtained tree has height lower than L, then
the binary search proceeds with a decreased value of k. Otherwise, the binary search
proceeds with an increased value of k.

3.2. Ties correctness. Let us suppose that procedure Ties produces also a
numbering of the nodes as follows. Number 1 is assigned to the first node removed
either from the top of S or from the head of Q. Number 2 is assigned to the second
removed node, and so on. It is easy to see that the constructed tree is well numbered.

Now, let yi denote the node with number i in T k, with corresponding weight and
height given by φi and li, respectively. Let us also assume that p is the number of the
internal node selected when the (k + 1)th tie occurs, and that q is the number of the
first leaf selected after node yp. Observe that φp = φp+1 = · · · = φq since the (k+1)th
tie was between nodes yp and yq and T k is well numbered. Furthermore, it follows
from Proposition 2.9 that lp ≥ lp+1 · · · ≥ lq ≥ lp − 1. Under these assumptions, the
following steps are performed to obtain T k+1 from T k.

For i = q down to p + 1
Interchange the subtree rooted at yi with the one rooted at yi−1

Assign number i to node yi−1, and number i− 1 to node yi
Next

Two cases can occur when the procedure interchanges the subtrees. If the leaf yi
has the same height as the internal node yi−1, then the tree height is not affected.
Otherwise, yi has a height smaller than that of yi−1 by exactly one unit. In this
second case, the interchange either reduces the tree height by one unit or keeps it the
same. Since lp ≥ · · · ≥ lq ≥ lp − 1, the second case can only happen once. Therefore,
we have that h(T k+1) ≤ h(T k) ≤ h(T k+1) + 1.
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When h(T 2n−1) < L and h(T 0) > L, one can find a value k such that h(T k) = L,
by performing a binary search on 1, . . . , 2n. Hence, the procedure Ties can be used
to construct a Tx tree with h(Tx) = L, since h(T−x ) < L and h(T+

x ) > L.

3.3. Ties complexity. The binary search tries no more than �log(2n−2)� values
for k. As we spend O(n) to construct an optimal tree if the frequencies are already
sorted, we have that the procedure spends an O(n log n) time in the worst case.

4. The WARM-UP algorithm. In this section, we describe the WARM-UP
algorithm. A pseudocode for it is given in Figure 4. In Phase 0, the algorithm
constructs a Huffman tree for the given list of weights. If this tree has a height not
greater than L, then the algorithm halts since this tree is an optimal code tree with
restricted maximal height L. Otherwise, the algorithm goes to Phase 1.

In Phase 1, WARM-UP executes a binary search, in the interval (w1, wn], looking
for a value x such that all the leaves with weight x in the tree Tx are at level L. If this
happens, the algorithm halts, since this tree is known to be optimal from Theorem
2.1. In the pseudocode, “Is Optimal” accounts for the checking of this condition. If
the current tree is not optimal, then the algorithm compares its height against L and
uses this information to update the interval search limits and the value of x.

The binary search also stops when the length of the searching interval is smaller
than 1/n2. Whenever this happens, the algorithm finds the unique rational number
p/q with q ≤ n in the last searching interval. Setting x = p/q, the algorithm builds a
Tx tree with height L. This last fact is assured by Theorem 2.11.

4.1. Complexity. In Phase 0, the algorithm spends an O(n) time to construct
the Huffman tree since the weights are already sorted.

In Phase 1, the algorithm can spend an O(n log(n2.wn)) time in the worst case.
That is true because in every cycle the length of the search interval is divided by
2. Hence, in no more than �log n2.(wn − w1)� steps we have sup− inf ≤ 1/n2.
Moreover, during each cycle we spend an O(n) time to determine both a Huffman
tree with minimum height and a Huffman tree with maximum height for the current
list of weights. In Phase 1, the algorithm can also execute one call to procedure Ties.
However, that does not affect the time complexity, since it represents an additional
effort bounded by O(n log n).

If the algorithm reaches Phase 2, it spends an O(n) time to find the adequate
rational number p/q. Therefore, we conclude that the WARM-UP algorithm has an
O(n log n + n logwn) worst case time complexity.

By using Moffat’s runlength approach [22], the WARM-UP time complexity can
be easily reduced to O(n log n + r log(n/r) logwn), where r is the number of distinct
weights in the given list of weights.

5. A strong polynomial time implementation. We can use Megiddo’s para-
metric search [14] to devise a strong polynomial time implementation for WARM-UP.
Instead of performing a binary search in the interval (w1, wn], we use a parametric
search to find a tree Tx∗ with height L, where x∗ = min{x|h(T−x ) ≤ L}. Theorem 2.6
guarantees that this is the best choice for x.

The new search scheme is divided into two phases: the binary search phase and
the parametric search phase. In the first phase, the algorithm performs a binary
search in the list of weights [w1, . . . , wn]. For each value of x, the algorithm checks
if the height of T−x is greater than L or not. If the height is greater, then the value
of x is increased; otherwise, it is decreased. The value of x∗ is known to be in some
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Phase 0: Trying a Huffman tree

If h(T−w1
) ≤ L then Return(T−w1

)

Phase 1: Binary search

inf ← w1; sup← wn; x← (inf + sup)/2
While sup-inf > 1/n2 do

If T−x Is Optimal then Return(T−x )
If h(T−x ) > L then inf ← x
Else

If T+
x Is Optimal then Return(T+

x )
If (h(T+

x ) > L and h(T−x ) < L) then Return(Ties(x))
sup← x

End If
x← (inf + sup)/2

End While
If h(T+

sup) = L then Return(T+
sup)

Phase 2: Search for p/q

q ← 1; p← �q.inf�
While (p = q.inf or p ≥ q.sup) do

q ← q + 1
p← �q.inf�

End While
Return(Ties(p/q))

Fig. 4. The WARM-UP Algorithm.

interval (wk−1, wk], where k is an integer, with 1 < k ≤ n. The objective of the first
phase is to find out the value of k.

In the second phase, a Huffman tree is constructed for the list of warmed up
weights [w∗1 , . . . , w

∗
n], where w∗i = max{wi, x∗}. At the beginning, the only infor-

mation about x∗ is that it belongs to the interval (inf, sup], where inf = wk−1 and
sup = wk. In this phase, we construct the required Huffman tree Tx∗ , using only an
interval estimate of x∗. Phase 2 is based on a serialization of the parallel algorithm
for constructing Huffman codes, proposed in [16]. Since the value of x∗ is not known
during the algorithm execution, it is not possible to directly compare weights that
depend on x∗. Before explaining the second phase, we show how to compare such
weights.

5.1. Comparing weights. Let s be a leaf, and let t be an internal node. Let
us assume that the weight of s is a real number w(s) and the weight of t is given
by w(t, x∗), a linear function of x∗, defined by atx

∗ + bt, where at and bt are known
positive coefficients. If at = 0, then the comparison between w(s) and w(t, x∗) is
immediate since w(t, x∗) = bt. On the other hand, if at > 0, then the comparison
is more elaborate since the value of w(t, x∗) is not known with precision. The only
information about x∗ is that it belongs to a certain interval (inf, sup]. In order to
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perform this parametric comparison, we need to use the concept of critical value
(intersection point) [14] that we redefine for our purposes.

Definition 5.1. Let (s, t) be an ordered pair, where s is a leaf and t is an internal
node. Furthermore, let w(s) be the weight of s, and let w(t, x∗) = atx

∗ + bt be the
weight of t. If at > 0, then the critical value γ associated to the pair (s, t) is the unique
real number that solves the equation w(s) = w(t, x∗); that is, γ = (w(s)− bt)/at.

As an example, if w(s) = 17 and w(t, x∗) = 3x∗ + 2, then the critical value γ
associated to the pair (s, t) is 5. In order to compare the weights of s and t, the
Parametric WARM-UP uses the function Compare that we describe below.

Compare determines if either w(s) < w(t, x∗) or w(s) ≥ w(t, x∗). In order to
decide if either w(s) < w(t, x∗) or w(s) ≥ w(t, x∗), it compares if either γ < x∗ or γ ≥
x∗. If γ < x∗, then w(s) = w(t, γ) < w(t, x∗); otherwise, w(s) = w(t, γ) ≥ w(t, x∗).
If either γ ≤ inf or γ > sup, the comparison is straightforward. If inf < γ ≤ sup, the
function compares h(T−γ ) against L. If h(T−γ ) > L, then γ < x∗; otherwise, γ ≥ x∗.
This last statement follows from the definition of x∗ and from Corollary 2.5. The time
complexity of Compare is O(n), since it may construct a Huffman tree T−γ .

Compare also updates the interval (inf, sup] whenever the value of γ is in the
interval (inf, sup]. Actually, if γ < x∗, the lower limit inf takes the value of γ;
otherwise, the upper limit sup takes the value of γ.

5.2. The second phase. At the second phase, the algorithm maintains a list
S of leaves and a queue Q of internal nodes, both sorted by the nondecreasing order
of their weights. In some situations Q may contain one leaf. At the beginning Q
is empty and S contains all the leaves. At each cycle, the algorithm performs the
following steps.

Step 1. Compute the sum α of the two current smallest weights among the weights
of the nodes in Q and S.

Step 2. Do an exponential search to determine the leaves with weights smaller
than α in the list S.

Step 3. Let S′ be the sublist of S with weights smaller than α. U ←Merge(S′, Q),
Q← null, and S ← S − S′.

Step 4. If |U | is odd, then remove the last node from U and insert it in Q.

Step 5. For i = 1 to |U |/2 do: create a parent pi for the pair of nodes u2i−1 and
u2i in U ; insert pi in Q.

The algorithm ends if we get a Tx tree with all warmed leaves at height L during
a call to Compare. Otherwise, it ends when the number of cycles reaches L.

At the end of the second phase the algorithm verifies if the height of T+
sup is

equal to L. If that happens, it outputs the heights of the leaves of T+
sup. Otherwise,

the procedure Ties is called to construct a tree Tsup with height exactly L, and the
algorithm outputs the leaf levels of this tree.

5.3. The merging step. All the operations but the merge are straightforward.
Hence, we describe it now. At step 3, we merge S′ and Q into an auxiliary list U .
We can divide Q into two ordered lists. The first list Q′ contains the nodes of Q
whose weights depend on x∗. We observe that we do not allow nodes with equal
weights in Q′. If two nodes have equal weights, we insert in Q′ the one that appears
first in Q. The second list Q′′ is the list of the remaining nodes. For example, if
w(Q) = [2x∗, 2x∗, 33, 2x∗+7, x∗+30, x∗+30, 46, 64], then w(Q′) = [2x∗, 2x∗+7, x∗+30]
and w(Q′′) = [2x∗, 33, x∗ + 30, 46, 64]. In this case, w() is a function that returns the
node weights.
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Let U ′ be the list obtained by merging S′ and Q′. After obtaining U ′, the merge
between Q′′ and U ′ becomes straightforward. Hence, we should be concerned on
merging S′ and Q′. This merge is achieved through eight successive substeps that we
describe below.

At step 3.1, we choose a suitable parameter p and then we consider the list S′(p)
of the nodes that appear at positions p, 2p, . . . , �S′(p)/p�p in the list S′. We observe
that these positions split the list S′ into �|S′|/p� contiguous sublists of approximately
equal sizes. Let S′1, . . . , S

′
�|S|/p� be these sublists. At step 3.1, we determine the

critical values associated to all pairs in the cartesian product S′(p)×Q′. For example,
if w(S′(p)) = [22, 26, 31] and w(Q′) = [2x∗, 2x∗ + 7], then the critical values are
[11, 15/2, 13, 19/2, 31/2, 12].

At step 3.2, we sort the critical values obtained at step 3.1. Let γ1, . . . , γ|Q′||S′(p)|
be the sorted list. At step 3.3, we perform a binary search on the sorted list to obtain
an index j such that γj < x∗ ≤ γj+1. At step 3.4, we merge the lists S′(p) and Q′.
We use the fact that each critical value γ associated to a pair of nodes to be compared
is such that either γ ≤ γj < x∗ or γ ≥ γj+1 ≥ x∗. Hence, all comparisons are made
in O(1).

Let q′i be an element of Q′. We define f(i) as the position of the smallest element
of S′(p) that is greater than or equal to q′i. At the end of the step 3.4, the values of f(i)
are known. Hence, in order to know the position of q′i in the list S′, we need only to
compare q′i against the elements of the sublist S′f(i). At step 3.5, for i = 1, . . . , |Q′|, we

evaluate the critical values associated to all pairs of the cartesian product [q′i]×S′f(i).
Let Γ be the list of all the critical values so obtained. We observe that |Γ| ≤ p|Q′|
since |S′f(i)| ≤ p.

At step 3.6, we sort Γ obtaining a sorted list γ1, . . . , γ|Γ|. At step 3.7, we perform
a binary search on the sorted list of critical values to obtain and index j such that
γj < x∗ ≤ γj+1.

At step 3.8, we merge S′ and Q′ into an auxiliary list U ′. For that, we compare
q′i for i = 1, . . . , |Q′| against the elements of Sf(i). The comparisons are made in O(1)
since all the critical values γ are such that γ ≤ γj < x∗ or γ ≥ γj+1 ≥ x∗. Finally, at
step 3.9, we merge U ′ and Q′′, obtaining an ordered list U .

5.3.1. Analysis of the merging step. Let us analyze the complexity of step 3.
The most expensive steps are steps 3.2, 3.3, 3.6, and 3.7 since all the other steps are
O(n). Step 3.2 can be implemented in O(|Q′||S′|/p log(|Q′||S′|/p)) time, by using an
O(n log n) time sorting algorithm. Step 3.3 runs in O(n log(|Q′||S′|/p))) time. Fur-
thermore, step 3.6 runs in O(|Q′|p log(|Q′|p)) time, and step 3.7 runs in O(n log(|Q′|p))
time.

If we set p = �√S′�, the complexity becomes

O(max{|
√
S′||Q′| log(|

√
S′||Q′|), n log(|

√
S′||Q′|)}).

However, we can show that |Q′| = O(log n). Assuming that this is true, the complexity
becomes O(n log(|√S′||Q′|)), since steps 3.2 and 3.6 become O(

√
n log2 n) = o(n). In

addition, the space complexity is O(n). The critical values require O(|Q′|√S′) =
O(
√
n log n) space, and the other information requires O(n) space. Hence, we can

state the following theorem.
Theorem 5.2. Let k(i) and q(i) be, respectively, the number of leaves in S′ and

the number of nodes in Q at the beginning of the ith cycle of the parametric WARM-
UP. Then, at the ith cycle, the merge operation runs in O(n log k(i)+n log q(i)) time,
requiring O(n) space.
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In order to complete the analysis, we show that |Q′| = O(log n).

Proposition 5.3. At every cycle of the parametric WARM-UP we have that
|Q′| ≤ 2�log n�+ 2.

Proof. Let Q(j) = [q1(j), . . . , q|Q|(j)] and Q′(j) = [q′1(j), . . . , q
′
|Q′|(j)] be, respec-

tively, the lists Q and Q′ at the beginning of the jth cycle. Furthermore, let ni(j)
be the number of nodes in the list Q(j) with weight equal to w(q′i(j)) at the be-
ginning of the jth cycle. The list N(j) is given by N = [n1(j), . . . , n|Q′|(j)]. We
use max(N(j)) to denote the maximum value of N(j). For example, if w(Q(3)) =
[2x∗, 33, 2x∗+7, 2x∗+7, 2x∗+7, x∗+30, 46, 64], then w(Q′(3)) = [2x∗, 2x∗+7, x∗+30],
N(3) = [1, 3, 1], and max(N(3)) = 3. For the sake of simplicity, during this proof, we
use the term x∗-node to denote a node whose weight depends on x∗.

Since |Q′(j)| = |N(j)|, our approach is to bound |N(j)|. First, we consider the
list N(2) since N(1) is empty. Let k − 1 be the number of leaves with weight x∗ at
the beginning of the second phase of the parametric WARM-UP. At the beginning
of the second cycle the list Q has �(k − 1)/2� nodes with weights equal to 2x∗, since
the leaves with weight x∗ are melded at the first cycle. If k − 1 is odd, Q may also
contain a node with weight equal to x∗ or x∗ + wk. Hence, at the beginning of the
second cycle, we have that either N(2) = [�(k − 1)/2�, 1], or N(2) = [1, �(k − 1)/2�],
or N(2) = [(k − 1)/2]. In order to prove that |Q′| ≤ 2�log n�+ 2, it suffices to prove
the three facts below.

(a) max(N(j + 1)) ≤ �max(N(j))/2�.
(b) If max(N(j)) = 1, then |N(j + 1)| ≤ |N(j)|.
(c) |N(j + 1)| ≤ |N(j)|+ 2.

In effect, since max(N(2)) ≤ �(k−1)/2�, it follows by (a) that after �log(k−1)/2�
cycles we have max(N(j)) = 1. Hence, it follows by (b) and (c) that |N(2)| can
increase by at most 2�log(k − 1)/2� units. Hence, |Q′(j)| = |N(j)| ≤ 2 + 2�log(k −
1)/2� ≤ 2 + 2�log(n)� for all j.

Before proving that (a), (b), and (c) are correct, we should examine a special
case. Let us assume that the list U obtained through the merge between Q(j) and S′

has an odd number of nodes. In addition, we assume that a x∗-node (say y) occupies
the last position of U . In this case, step 4 of the parametric WARM-UP includes y at
the beginning of the list Q(j + 1), and, as a result, y is not melded at the jth cycle.
We use the term Q(j)-special to denote a node of Q(j) with this unusual behavior.
Furthermore, we define the parent of a Q(j)-special node as the node q1(j + 1). This
definition is useful because it forces every node in Q(j) to have a representative in
Q(j + 1). It can be proved by induction that the parent of a Q(j)-special node has a
weight different from the weight of every other x∗-node in Q(j + 1).

Now, we prove that (a), (b), and (c) are correct. First, we prove (a). If max(N(j+
1)) = 1, then the result is obvious since max(N(j)) ≥ 1. Let t > 1. We assume that
t x∗-nodes of Q(j + 1) have weights equal to ax∗ + b. We observe that none of these
nodes is a Q(j)-special parent, and, as a consequence, each of them has two children
that belong to Q(j). Moreover, all their 2t children must have equal weights. This is
because the list U is sorted. Since at least one of the children of a x∗-node must be
also a x∗-node, then those 2t children are x∗-nodes with weights equal to a/2x∗+b/2.
Letting t = max(N(j + 1)), we establish the correctness of (a).

Now, we prove (b). The condition max(N(j)) = 1 implies that all x∗-nodes of
Q(j) have different weights. Hence, |N(j)| is given by the number of x∗-nodes in
Q(j). Since the number of x∗-nodes in Q(j + 1) is not greater than that of Q(j), we
obtain that |N(j + 1)| ≤ |N(j)|.
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Now, we prove (c). Let qi(j) be an x∗-node, and let us assume that there are
t nodes in Q(j) with weights equal to that of qi(j). Under these conditions, we say
that qi(j) contributes to |N(j)| with 1/t units. The value of |N(j)| is given by the
sum of the contributions of the nodes in Q(j). Furthermore, the value of |N(j + 1)|
is given by the sum of the contributions of the parents of the x∗-nodes that belong
to Q(j). Hence, in order to give an upper bound on |N(j + 1)| − |N(j)|, we must
consider the nodes of Q(j) that contribute with less than one unit. Let us assume that
Q(j) has t nodes, qi1(j), . . . , qit(j), with weights equal to ax∗ + b. All these nodes,
together, contribute to |N(j)| with one unit. In addition, these nodes are disposed at
consecutive positions at the list U , and, as a consequence, they generate either �t/2�
or �t/2� − 1 parents with weights equal to 2(ax∗ + b). If qi1(j) is melded with a node
whose weight does not depend on x∗, then its parent will have a weight different from
the weight of every other x∗-node in Q(j + 1). In this case, its parent contributes to
|N(j)| with one unit. This may also occur either if qit(j) is melded with a node whose
weight does not depend on x∗ or if qit(j) is Q(j)-special. Hence |N(j + 1) − N(j)|
can increase by at most two units from one cycle to another, which establishes the
correctness of (a). We observe that the correctness of (a) is based on the fact that at
most one element of N(j) is greater than 1. This result can be proved by induction
on the number of cycles, using the same kind of arguments presented throughout this
proof.

5.4. Algorithm analysis. We can state the following theorem concerning the
behavior of the parametric WARM-UP.

Theorem 5.4. The parametric WARM-UP spends O(nL log(n/L)) time to con-
struct a tree Tx∗ with height L, where x∗ is the smallest value of x such that h(T−x ) ≤
L.

Proof. The correctness of the algorithm follows from the properties of Compare.
The decisions taken by Compare are equal to the ones taken by Huffman’s algorithm
when constructing a maximum height Huffman tree for the list of weights [w∗1 , . . . , w

∗
n],

where w∗i = max{x∗, wi}.
Now, we consider its time complexity. The most expensive steps are steps 2 and

3. The exponential search takes O(n log k(i)) time, where k(i) is the number of leaves
with weights smaller than α at the ith cycle. On the other hand, it follows from
Theorem 5.2 that the merge operation takes O(n log k(i)+n log q(i)) time, where q(i)
is the number of nodes in Q at the ith cycle. Since the algorithm executes at most L
cycles, the time complexity is upper-bounded by

L∑
i=1

O(n log k(i) + n log q(i)).(5.1)

Since
∑L
i=1 k(i) = n and

∑L
i=1 q(i) < 2n, then an upper bound for the time com-

plexity can be obtained by maximizing (5.1) as a function of k(i) and q(i), constrained

to
∑L
i=1 k(i) = n and

∑L
i=1 q(i) < 2n.

By Jensen’s inequality, the maximum occurs for k(i) = n/L and k(i) = 2n/L.
Hence, the parametric WARM-UP runs in O(nL log(n/L)) time.

6. Approximation. In the previous sections we proposed a method to construct
a prefix code tree Tx with height L. This tree is not necessarily an optimal prefix
code tree with restricted maximal height L. Now, we give an upper bound for the
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error of the code induced by this tree. Let us define this error ε by

ε =

n∑
i=1

pili −
n∑
i=1

pili,

where li is the height of ith leaf of an unrestricted Huffman tree, li is the height of ith
leaf of the tree Tx constructed by the WARM-UP algorithm, and pi is the probability
of symbol ai that is given by wi/(

∑n
j=1 wj). The value

∑n
i=1 pili is the average code

length, and it represents the average number of bits used per symbol. Now, we state
a theorem that gives an upper bound on ε.

Theorem 6.1. Let L be an integer such that L > �log n�+1. The average length
difference ε between the code induced by a tree Tx with height L and an unrestricted
Huffman code is such that

ε < 1/ψL−�log(n+�logn�−L)�−2,

where ψ is the golden ratio 1.618.

Proof. Let AW , AH , and AL be, respectively, the average length of a code induced
by a tree Tx with height L, the average length of a Huffman code, and the average
length of an optimal prefix code with restricted maximal length L.

Theorem 2.3 shows that the heights of the leaves of a tree Tx with height L
are optimal for problem PL augmented by some constraints of type li ≤ L − 1.
Since this last problem is a relaxation of problem PL−1, it follows that AW ≤
AL−1. Nevertheless, Milidiú and Laber [15] show that if L ≥ �log n� + 1, then
AL − AH ≤ 1/ψL−�log(n+�logn�−L)�−1. Hence, ε = AW − AH ≤ AL−1 − AH <
1/ψL−�log(n+�logn�−L)�−2.

This result shows that the average code length difference is quite small for values
of L not too close to �log n�. For example, if L − �log n� ≥ 15, then the difference
ε is less than 0.01. For L − �log n� ≥ 20, we have that ε < 0.0003. Nevertheless,
undesirable results like the difference being greater than 1 could occur. However, that
would only happen if L ≤ �log n�+ 1.

6.1. Limitations. Theorem 2.1 shows that if all the leaves with weight x in a
Tx tree have height L, then Tx is an optimal code tree with restricted maximal height
L. Unfortunately, for some list of weights there is no such x. For instance, consider
L = 3 and the list of weights given by [1, 1, 1, 13, 15]. Figure 5 (a) shows the tree
topology for all Tx with 1 ≤ x ≤ 5, and Figure 5 (b) shows the tree topology for all
Tx with 5 ≤ x ≤ 15. Observe that, in the tree topology of picture (b), not all the
leaves with weight less than 5 have height 3. Moreover, the average code length for
this tree is 2.064. On the other hand, this measure is equal to 2.032 for the optimal
code tree exhibited in Figure 5 (c).

One could ask what happens if we choose the multipliers in a different way. For
the list of weights presented in Figure 5, it has been proved [11] that the optimal code
tree can not be obtained, even if we try all the sets of multipliers.

7. Experimental results. The source data for our experiment was extracted
from the Calgary corpus. This corpus is a collection of 14 files available from the
University of Calgary, Canada. In order to generate the input vector of weights
for each source data, we considered two different models to parse the data. The first
method defines each single byte as a symbol of the alphabet. The second method packs
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Fig. 5. (a) Tree Tx for the list of weights W = [1, 1, 2, 3, 5, 8, 13] and 1 ≤ x ≤ 5. (b) Tree Tx
for the list of weights W and 5 ≤ x ≤ 15. (c) An optimal tree with restricted maximal height 3 for
the list W .

any sequence of alphanumeric American standard code for information interchange
(ASCII) codes3 into a single symbol. Each nonalphanumeric ASCII code is also
considered a symbol. This second method is suitable for English text files and source
code files. In order to generate each list of weights, the parsing method scans each
source data counting the frequency of each distinct symbol. The first method is
referred as the Byte method and the second as the Word method.

Table 1 shows the average codeword length, measured in bits, obtained by each
algorithm for the Calgary corpus files. For each file, we considered L running from
�log n� to �log n� + 6. A letter (b) beside the file name indicates that the file was
parsed through a Byte model, whereas the letter (w) indicates the word model. The
second column in the table indicates the number n of different symbols. From this
table, we get the following observations.

1. The average length of the codes produced by the WARM-UP algorithm was
equal to that produced by the LazyPM algorithm, except for two cases. These
two cases are printed in bold in Table 1.

2. In a few cases, the ROT algorithm generated very inefficient codes. In the
worst case, the compression loss was 63.5% for the pic file and L = �log n�.
Optimal codes were generated on seven experiments.

In this section, we report some experiments involving three methods that generate
length restricted prefix codes. The first method is the ROT Heuristics proposed in [5].
The second method is the WARM-UP, with the implementation presented in Figure
4, except that we removed Phase 2. The third one is the Package-Merge [12], an exact
method to construct optimal length restricted prefix codes. In these experiments, we
measured the average length of the codes obtained through these algorithms.

8. Conclusions. In this paper, we introduced the WARM-UP algorithm, a novel
technique to construct length-restricted prefix codes. This algorithm is very easy to
implement, since it consists of successive constructions of Huffman trees. Even though
it is approximative, it has an optimal behavior for practical settings.

We believe that the techniques developed here can be useful to address the prob-
lem of constructing optimal prefix codes satisfying other kinds of constraints.

3The underscore character is treated as alphanumeric.
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Table 1
The average codeword length in bits obtained by each algorithm for Calgary corpus files for L

from �logn� to �logn�+ 6.

File n Method L− �logn�
0 1 2 3 4 5 6

ROT 5.5429 5.3198 5.2628 5.2420 5.2349 5.2328 5.2320
bib (b) 81 WARM-UP 5.5305 5.3176 5.2606 5.2419 5.2349 5.2328 5.2320

PM 5.5305 5.3176 5.2606 5.2419 5.2349 5.2328 5.2320
ROT 9.4033 7.5160 6.5794 6.3838

book1 (w) 3186 WARM-UP 7.8299 6.6587 6.4491 6.3762
PM 7.8299 6.6587 6.4491 6.3762
ROT 10.2614 7.4370 6.7921 6.6226 6.5920

book2 (w) 7944 WARM-UP 9.6401 7.0257 6.6917 6.6119 6.5910
PM 9.6401 7.0257 6.6917 6.6119 6.5910
ROT 8.0000 5.8181 5.6801 5.6693

geo (b) 256 WARM-UP 8.0000 5.8073 5.6800 5.6693
PM 8.0000 5.8073 5.6800 5.6693
ROT 9.3045 7.2137 6.8939

news (w) 9975 WARM-UP 7.5054 6.9916 6.8835
PM 7.5054 6.9916 6.8835
ROT 8.0000 6.1892 6.0040 5.9749 5.9715

obj1 (b) 256 WARM-UP 8.0000 6.1295 5.9983 5.9744 5.9715
PM 8.0000 6.1295 5.9983 5.9744 5.9715
ROT 8.0000 6.5182 6.3432 6.3053 6.2947 6.2918 6.2913

obj2 (b) 256 WARM-UP 8.0000 6.4710 6.3386 6.3051 6.2947 6.2918 6.2913
PM 8.0000 6.4710 6.3386 6.3051 6.2947 6.2918 6.2913
ROT 8.3159 6.5581 6.2835

paper (w) 11834 WARM-UP 7.8441 6.4905 6.2786
PM 7.8441 6.4905 6.2786
ROT 7.1453 6.1232 5.7413

paper (w) 42499 WARM-UP 6.3766 5.8064 5.8052
PM 6.3766 5.8064 5.7399
ROT 4.2635 1.7553 1.6953 1.6836 1.6672 1.6628 1.6614

pic (b) 159 WARM-UP 2.6361 1.7511 1.6915 1.6727 1.6655 1.6625 1.6614
PM 2.6072 1.7511 1.6915 1.6727 1.6655 1.6625 1.6614
ROT 7.0186 5.6552 5.4895

progc (w) 1148 WARM-UP 6.0109 5.5740 5.4816
PM 6.0109 5.5740 5.4816
ROT 7.9505 5.6576 5.1389 4.9679 4.9340

progl (w) 979 WARM-UP 7.7133 5.4060 5.0484 4.9607 4.9336
PM 7.7133 5.4060 5.0484 4.9607 4.9336
ROT 6.3733 5.3580 4.8991 4.8067 4.7837

progp (w) 595 WARM-UP 5.3977 4.9586 4.8525 4.7964 4.7834
PM 5.3977 4.9586 4.8525 4.7964 4.7834
ROT 6.0556 5.7082 5.6207 5.5843 5.5735 5.5700 5.5689

trans (b) 99 WARM-UP 6.0526 5.7065 5.6123 5.5836 5.5734 5.5699 5.5689
PM 6.0526 5.7065 5.6123 5.5836 5.5734 5.5699 5.5689
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[18] R. L. Milidiú, A. A. Pessoa, and E. S. Laber, Efficient implementation of the WARM-
UP algorithm for the construction of length-restricted prefix codes, in Proceedings of the
Workshop on Algorithm Engineering and Experimentation, Baltimore, MD, 1999, Lecture
Notes in Comput. Sci. 1619, Springer, New York, 1999, pp. 1–17.
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Abstract. This paper presents a lower bound of Ω(D+
√
n/ logn) on the time required for the

distributed construction of a minimum-weight spanning tree (MST) in weighted n-vertex networks
of diameter D = Ω(logn), in the bounded message model. This establishes the asymptotic near-
optimality of existing time-efficient distributed algorithms for the problem, whose complexity is
O(D +

√
n log∗ n).
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1. Introduction. The study of distributed algorithms for minimum-weight span-
ning tree (MST) construction was initiated by the pioneering work of Gallager, Humb-
let, and Spira [GHS83], which introduced a basic distributed technique for the problem
and presented a message-optimal algorithm with time complexity O(n log n) on an n-
vertex network. This result was later improved to a message-optimal algorithm with
time complexity O(n) by Awerbuch [A87].

However, for many natural distributed network problems, the parameter con-
trolling the time complexity is not the number of vertices but rather the network’s
diameter D, namely, the maximum distance between any two vertices (measured in
hops). This holds, for example, for leader election and related problems [P90].

It is easy to verify that Ω(D) time is required for distributed MST construction in
the worst case. More formally, for every two integers n ≥ 2 and 1 ≤ D ≤ �n/2� there
exist weighted n-vertex networks of diameter D (say, based on a 2D-vertex ring with
n−2D vertices attached to it as leaves) on which any distributed MST algorithm will
require at least D time.

Hence, a natural question is whether O(D)-time algorithms exist for distributed
MST construction as well. More generally, the problem of devising o(n) (though possi-
bly not message-optimal) distributed algorithms for MST construction was introduced
in [GKP98].

Clearly, in the extreme model allowing the transmission of an unbounded-size
message on a link in a single time unit (cf. [L92]), the problem can be trivially solved
in time O(D) by collecting the entire graph’s topology and all the edge weights into
a central vertex, computing an MST locally and broadcasting the result throughout
the network. The problem thus becomes interesting in the more realistic, and rather
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common, B-bounded-message model (henceforth referred to simply as the B model),
in which message size is bounded by some value B (usually taken to be either constant
or O(log n)), and a vertex may send at most one message on each edge at each time
unit.

The algorithm presented in [GKP98] for distributed MST construction in this
model (with B = O(log n)-bit messages) has time complexity O(D + nε log∗ n) for
ε = ln 6/ ln 3 ≈ 0.613. This was later improved to O(D+

√
n log∗ n) in [KP98]. Similar

bounds were recently obtained by us using other algorithmic methods, but none of
those methods were able to break the

√
n-time barrier, indicating that distributed

MST might be harder than other distributed network problems such as leader election
or breadth-first search (BFS) tree construction.

It is important to mention that the algorithms of [GHS83, A87, GKP98, KP98]
discussed above were analyzed under the (natural) assumption that the weight of each
edge can be represented as an integer small enough to be included in a single message.
This assumption is adopted in the current paper.

The current paper concerns establishing the asymptotic near-optimality of the
algorithm of [KP98], by showing that Ω̃(

√
n) is a lower bound1 as well, even on low

diameter networks. Specifically, for any integers K,m ≥ 2, we construct a family of
O(m2K)-vertex networks of diameter D = O(Km) for which Ω(mK/(BK)) time is
required for constructing a minimum spanning tree in the B model. Fixing some posi-
tive integerm ≥ 2, we get that for every integer n ≥ 1 there exists a family of n-vertex
networks of diameter Θ(logn) for which MST construction requires Ω(

√
n/(B log n))

time in the B model.
While it is not clear that the Ω(logn) limitation on the diameters for which the

lower bound holds is essential, some limitation must apparently exist. This follows
from the observation that the n-vertex complete graph (D = 1) admits a simple
O(log n) time distributed MST construction algorithm.

Towards proving the lower bound on distributed MST construction, we first es-
tablish a lower bound on the time complexity of a problem referred to as the mailing
problem, which can be informally stated as follows. Given a particular type of graph
named FKm , for integers m,K ≥ 2, and two vertices s and r in it, it is required to
deliver an mK-bit string X generated in s to r. The graph FKm has n = O(m2K)
vertices and diameter O(Km), yet we show that the time required for mailing from
s to r on FKm in the B model is considerably larger than the diameter, namely,
Ω(mK/(BK)) = Ω(

√
n/(BK)).

The rest of the paper is organized as follows. First, a definition of the model
and the mailing problem is given in section 2. Section 3 handles the mailing problem
for the case of K = 2. It defines the graphs F 2

m, having diameter D = O(m) =
O(n1/4) and shows a lower bound of O(m2) = O(

√
n) on the time complexity of the

mailing problem for m2-bit strings. This result is then used in section 4 to prove that
the same lower bound applies also to the time complexity of the MST problem on
weighted versions of the graphs F 2

m. The next two sections extend these two results,
respectively, to graphs FKm , K ≥ 3 with diameters down to O(log n). Finally, section
7 discusses some open problems.

2. Preliminaries.

2.1. The model. A point-to-point communication network is modeled as an
undirected graph G(V,E), where the vertices of V represent the network processors

1Ω̃ is a relaxed variant of the Ω notation that ignores polylog factors.
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and the edges of E represent the communication links connecting them. Vertices are
allowed to have unique identifiers. The vertices do not know the topology or the edge
weights of the entire network, but they may know the IDs of their neighbors and the
weights of the corresponding edges.

A weight function ω : E → R
+ associated with the graph assigns a nonnegative

integer weight ω(e) to each edge e = (u, v) ∈ E. The weight ω(e) is known to
the adjacent vertices, u and v. The vertices can communicate only by sending and
receiving messages over the communication links. Communication is carried out in a
synchronous manner; i.e., all the vertices are driven by a global clock. Messages are
sent at the beginning of each round and are received at the end of the round. (Clearly,
our lower bounds hold for asynchronous networks as well.) At most one B-bit message
can be sent on each link in one direction on every round. It is assumed that B is large
enough to allow the transmission of an edge weight in a single message. The model
also allows vertices to detect the absence of a message on a link at a given round,
which can be used to convey information. Hence at each communication round, a link
can be at one of 2B + 1 possible states, i.e., it can either transmit any of 2B possible
messages or remain silent.

The length of a path p in the network is the number of edges it contains. The
distance between two vertices u and v is defined as the length of the shortest path
connecting them in G. The diameter of G, denoted D, is the maximum distance
between any two vertices of G.

2.2. The mailing problem. The mailing problem is defined in the following
situation. We are given a graph G with two distinguished vertices s and r, referred
to as the sender and the receiver , respectively. Both the sender s and the receiver
r store b boolean variables each, Xs

1 , . . . , X
s
b and Xr

1 , . . . , X
r
b , respectively, for some

integer b ≥ 1. An instance of the problem consists of an initial assignment X = {xi |
1 ≤ i ≤ b}, where xi ∈ {0, 1}, to the variables of s, such that Xs

i = xi. Given such
an instance, the mailing problem requires s to deliver the string X to the receiver
r, i.e., upon termination, the variables of r should contain the output Xr

i = xi for
every 1 ≤ i ≤ b. Henceforth, we refer to this problem as Mail(G, s, r, b). Throughout
sections 3 and 4, we consider this problem on graphs F 2

m with b = m2 for some integer
m ≥ 2. In sections 5 and 6, we deal with the problem on graphs FKm with b = mK for
K ≥ 3.

2.3. The distributed MST problem. Formally, the minimum spanning tree
(MST) problem can be stated as follows. Given a graph G(V,E) and a weight function
ω on the edges, it is required to find a spanning treeMST (G) ⊆ E whose total weight,
ω(MST (G)) =

∑
e∈MST (G) ω(e), is minimal. In the distributed model, the input

and output of the MST problem are represented as follows. Each vertex knows the
ID’s of its closest neighbors and the weights of the corresponding edges. A degree-
d vertex v ∈ V with neighbors u1, . . . , ud has d weight variables W v

1 , . . . ,W
v
d , with

W v
i containing the weight of the edge connecting v to ui, i.e., W

v
i = ω(v, ui). The

output of the MST problem at each vertex v is an assignment to the (boolean) output
variables Y v1 , . . . , Y

v
d , assigning

Y vi =

{
1, (ui, v) ∈MST (G),
0 otherwise.
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3. A lower bound for the mailing problem on F 2
m.

3.1. The graphs F 2
m. Let us now define the collection of graphs denoted F 2

m

for m ≥ 2. The two basic units in the construction are the ordinary path P on m2 +1
vertices,

V (P) = {v0, . . . , vm2} and E(P) = {(vi, vi+1) | 0 ≤ i ≤ m2 − 1},
and the highway H on m+ 1 vertices,

V (H) = {him | 0 ≤ i ≤ m} and E(H) = {(him, h(i+1)m) | 0 ≤ i ≤ m− 1}.
Each highway vertex him is connected to the corresponding path vertex vim by a

spoke edge (him, vim), as in Figure 1.

h(m-1)m r = h
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Fig. 1. The connections between the path and the highway.

The graph F 2
m is constructed by taking m2 copies of the ordinary path P, denoted

P1, . . . ,Pm2

, and connecting all of them to the same highway H. The vertex h0 is
the intended sender s, and the vertex hm2 is the intended receiver r. (See Figure 2.)

1P

H

2P

P

S

2m

m10S S

mhr = 0hs = 2

Fig. 2. The graph F 2
m.

Visualizing the graph F 2
m as organized in a cylindrical shape, the spoke edges can

be grouped into m+1 stars Si, 0 ≤ i ≤ m, where each star Si consists of the highway
vertex him and the m2 vertices v1im, . . . , v

m2

im connected to it by spoke edges. Hence

V (Si) = {him} ∪ {v1im, . . . , vm
2

im } and E(Si) = {(vjim, him) | 1 ≤ j ≤ m2}.
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The vertex and edge sets of the graph F 2
m are thus

V (F 2
m) = V (H) ∪

m2⋃
j=1

V (Pj) and E(F 2
m) =

m⋃
i=0

E(Si) ∪
m2⋃
j=1

E(Pj) ∪ E(H).

Fact 3.1. The graph F 2
m consists of n = Θ(m4) vertices, and its diameter is

Θ(m).

3.2. The lower bound. We would now like to prove that solving the mailing
problem on the graph F 2

m with a b = m2-bit string X requires Ω(m2/B) time in the
B model. Intuitively, this happens because routing the string X from s to r along
ordinary paths would be too slow; hence our only hope is to route the string along the
highway, or at least use interleaved paths, mixing highway segments with segments of
ordinary paths. However, F 2

m does not have sufficient capacity for routing all m2 bits
from s to r along such short (or “relatively short”) paths.

This intuition yields a rather simple proof of the claim if we limit ourselves to a
restricted class of algorithms, referred to as explicit delivery algorithms. These are
algorithms in which the input bits are required to be delivered in an explicit way,
namely, each bit xi must be shipped from s to t along some path pi. (Naturally,
the paths of different bits may be identical or partly overlap.) However, we would
like the lower bound to apply also to arbitrary algorithms, in which the information
can be conveyed from s to r in arbitrary ways. This may include applying arbitrary
functions to the bits at s and sending the resulting values, possibly modifying and
“recombining” these values in intermediate nodes along the way, in a way that will
allow r to extract the original bits from the messages it receives. For handling such a
general class of algorithms, the proof must be formalized in a more careful way.

Let us start with an outline of the proof. Consider the set of possible states a
vertex v may be in at any given stage t of the execution of a mailing algorithm on
some m2-bit input X . (The state of a vertex consists of all its local data; hence
it is affected by its input, topological knowledge, and history, namely, all incoming
messages.) As the computation progresses, the tree of possible executions grows, and
thus the set of possible states of v becomes larger. In particular, when the execution
starts at round 0, each of the vertices is in one specific initial local state, except for
the sender s, which may be in any one of 2m

2

states, determined by the value of the
input string X . Upon termination, the string X should be known to the receiver r,
meaning that r should be in one of 2m

2

states. Our argument is based on analyzing
the growth process of the sets of possible states, and showing that this process is slow,
forcing the algorithm to spend at least Ω(m2/B) time until the set of possible states

of r is of size 2m
2

.

We now continue with a more detailed and formal proof. Consider some arbitrary
algorithm Amail, and let ϕX denote the execution of Amail on an m2-bit input X in
the graph F 2

m. For 1 ≤ i ≤ m, define the tail set of the graph F 2
m, denoted Ti, as

follows. For every 1 ≤ j ≤ m2, define the tail of the path Pj as

Ti(Pj) = {vjl | i ≤ l ≤ m2}.

Let β(i) denote the least integer δ such that δm ≥ i, and define the tail of H as

Ti(H) = {hjm | β(i) ≤ j ≤ m}.
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Now, the tail set of F 2
m is the union of those tails,

Ti = Ti(H) ∪
⋃
j

Ti(Pj).

(See Figure 3.) For i = 0, the definition is slightly different, letting

T0 = V \ {h0}.

P

P

2

mhs = 0
h

1

2r = (i) mβ

iT

h

i

i

2m

1P

H

v

v

2
i

v

m2

Fig. 3. The tail set Ti in the graph F
2
m.

Denote the state of the vertex v at the beginning of round t during the execution
ϕX on the input X by σ(v, t,X ). In two different executions ϕX and ϕX ′ , a vertex
reaches the same state at time t, i.e., σ(v, t,X ) = σ(v, t,X ′), iff it receives the same
sequence of messages on each of its incoming links; for different sequences, the states
are distinguishable.

For a given set of vertices U = {v1, . . . , vl} ⊆ V , a configuration

C(U, t,X ) = 〈σ(v1, t,X ), . . . , σ(vl, t,X )〉

is a vector of the states of the vertices of U at the beginning of round t of the execution
ϕX . Denote by C[U, t] the collection of all possible configurations of the subset U ⊆ V
at time t over all executions ϕX of algorithm Amail (i.e., on all legal inputs X ), and
let ρ[U, t] = |C[U, t]|.

Prior to the beginning of the execution (i.e., at the beginning of round t = 0), the
input string X is known only to the sender s. The rest of the vertices are found in some
initial state, described by the configuration Cinit = C(T0, 0,X ), which is independent

of X . Thus, in particular, ρ[T0, 0] = 1. (Note, however, that ρ[V, 0] = 2m
2

.)

Our main lemma is the following.

Lemma 3.2. For every 0 ≤ t < m2,

ρ[Tt+1, t+ 1] ≤ (2B + 1) · ρ[Tt, t].
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Proof. The lemma is proved by showing that in round t+1 of the algorithm, each
configuration in C[Tt, t] branches off into at most 2B + 1 different configurations of
C[Tt+1, t+ 1].

Fix a configuration Ĉ ∈ C[Tt, t], and let δ = β(t+1). The tail set Tt+1 is connected
to the rest of the graph by the highway edge fδ−1 = (h(δ−1)m, hδm) and by the m2

path edges ejt = (vjt , v
j
t+1), 1 ≤ j ≤ m2. (See Figure 4.)

Fig. 4. The edges entering the tail set Tt+1.

Let us count the number of different configurations in C[Tt+1, t + 1] that may
result from the configuration Ĉ. Starting from the configuration Ĉ, each vertex vjt is
restricted to a single state, and hence it sends a single (well determined) message over
the edge ejt to vjt+1, thus not introducing any divergence in the execution. The same
applies to all the edges internal to Tt+1. As for the highway edge fδ−1, the vertex
h(δ−1)m is not in the set Tt; hence it may be in any one of many possible states, and
the value passed over this edge into the set Tt+1 is not determined by the configuration
Ĉ. However, due to the restriction of the B-bounded-message model, at most 2B + 1
different behaviors of fδ−1 can be observed by hδm. Thus altogether, the configuration
Ĉ branches off into at most 2B+1 possible configurations Ĉ1, . . . , Ĉ2B+1 ∈ C[Tt+1, t+
1], differing only by the state σ(hδm, t+ 1,X ). The lemma follows.

Applying Lemma 3.2 and the fact that ρ[T0, 0] = 1, we get the following result.

Corollary 3.3. For every 0 ≤ t < m2,

ρ[Tt, t] ≤ (2B + 1)t.

Let tend denote the time it takes algorithm Amail to complete the mailing. As
argued earlier, at that time, the receiver r may be in at least 2m

2

different states, hence
necessarily ρ[Ttend

, tend] ≥ 2m
2

. Applying Corollary 3.3, we get that (2B + 1)tend ≥
2m

2

, implying the following.

Lemma 3.4. For every m ≥ 1, solving the mailing problem Mail(F 2
m, h0, hm2 ,m2)

in the B model requires Ω(m2/B) time.
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4. A lower bound for the MST problem on J 2
m. In this section, we use the

results achieved in the previous sections and show that in the B model for B ≥ 3, the
distributed MST problem cannot be solved faster than Ω(m2/B) on weighted versions
of the graphs F 2

m. In order to prove this lower bound, we define in subsection 4.1 a
family of weighted graphs J 2

m, based on F 2
m but differing in their weight assignments.

Then in subsection 4.2, we show that any algorithm solving the MST problem on the
graphs of J 2

m can also be used to solve the mailing problem on F 2
m with the same time

complexity. Subsequently, the lower bound for the distributed MST problem follows
from the lower bound given in the previous section for the mailing problem in F 2

m.

4.1. The graph family J 2
m. The graphs F 2

m defined earlier were unweighted.
In this subsection, we define for every graph F 2

m a family of weighted graphs

J 2
m = {J2

m,γ = (F 2
m, ωγ) | 1 ≤ γ ≤ 2m

2},

where ωγ is an edge weight function.

Recall that in the graph F 2
m there are three types of edges, namely, highway edges,

edges of paths Pj , and star spokes. In all the weight functions ωγ , all the edges of
the highway H and the paths Pj are assigned the weight 0. The spokes of all stars
except S0 and Sm are assigned the weight 4. The spokes of the star Sm are assigned
the weight 2.

The only differences between different weight functions ωγ occur on them2 spokes
of the star S0. Specifically, each of these m2 spokes is assigned a weight of either 1 or
3; thus there are 2m

2

possible combinations of weight assignments. (See Figure 5.)

0hs = 2mhr = 

2

0 00 0

2

2

0 0

1

SS

1

3

00

0 m

0 0

4

444

444

4 4

Fig. 5. The edge weights assigned to J2m,γ .

Since discarding all spoke edges of weight 4 from the graph J2
m,γ leaves it con-

nected, and since every spoke edges of weight 4 is the heaviest edge on some cycle in
the graph, the following is clear.
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Lemma 4.1. No spoke edge of weight 4 belongs to the MST of J2
m,γ for every

1 ≤ γ ≤ 2m
2

.

Let us pair the spoke edges of S0 and Sm, denoting the jth pair (for 1 ≤ j ≤
m2) by

PEj = {(s, vj0), (r, vjm2)}.

Lemma 4.2. For every 1 ≤ γ ≤ 2m
2

and 1 ≤ j ≤ m2, exactly one of the two
edges of PEj belongs to the MST of J2

m,γ , namely, the lighter one.

Proof. Since the MST must be connected, at least one of the two edges of PEj

must belong to it, as otherwise the path Pj is completely disconnected from the rest
of the graph, by Lemma 4.1. It remains to show that the MST cannot contain both
edges of PEj .

The proof is by contradiction. Consider the cycle in J2
m,γ consisting of the edges

of H, PEj , and Pj , and suppose that both edges of PEj are in the MST. In order for
the MST to be cycle-free, at least one edge e of either the highway H or the path Pj
must not belong to the MST. Since the edges ofH and Pj have zero weight, ωγ(e) = 0.
Hence deleting the heavier edge of the pair PEj and adding the edge e instead leaves
us with a lighter tree than the original one, leading us to contradiction.

Lemma 4.3. For every m ≥ 2 and 1 ≤ γ ≤ 2m
2

, all the edges of the highway H
and the paths Pj, for 1 ≤ j ≤ m2, belong to the MST of J2

m,γ .

Figure 6 illustrates the remaining candidate edges to join the MST. Bold edges
belong to the MST under any edge weight function. Of the remaining edges, exactly
one of each pair will join the MST, depending on the particular weight assignment to
the spoke edges of the star S0.

mhr = 

1

1

2

2

2

2

0hs = 

3

m0S S

Fig. 6. The remaining candidate edges to join the MST of J2m,γ . Bold edges belong to the MST
under any edge weight function.
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4.2. The lower bound.
Lemma 4.4. Any distributed algorithm for constructing an MST on the graphs

of the class J 2
m can be used to solve the Mail(F 2

m, h0, hm2 ,m2) problem on F 2
m with

the same time complexity.
Proof. Consider an algorithm Amst for the MST problem, and suppose that we

are given an instance of the Mail(F 2
m, h0, hm2 ,m2) problem with input string X . We

use the algorithm Amst to solve this instance of the mailing problem as follows. The
sender s = h0 initiates the construction of an instance of the MST by turning F 2

m

into a weighted graph from J 2
m, setting the edge weights as follows: for each xi ∈ X ,

1 ≤ i ≤ m2, it sets the weight variableW s
i corresponding to the spoke edge ei ∈ E(S0)

to be

W s
i =

{
3, xi = 1,
1, xi = 0.

The rest of the graph edges are assigned fixed weights as specified in subsection 4.1.
Note that the weights for all the edges except those connecting s to its immediate
neighbors in S0 do not depend on the particular input instance at hand. Hence a
single round of communication between s and its S0 neighbors suffices for performing
this assignment; s assigns its edges weights according to its input string X , and needs
to send at most one message to each of its neighbors on S0, to notify it about the
weight of the spoke connecting them.

Every vertex v in the network, upon receiving the first message of algorithm Amst,
assigns the values defined by the edge weight function ωγ to its variables W v

i . (As
discussed earlier, this does not require v to know γ, as its assignment is identical
under all weight functions ωγ , 1 ≤ γ ≤ 2m

2

.) From this point on, v may proceed with
executing algorithm Amst for the MST problem.

Once algorithm Amst terminates, the receiver vertex r determines its output for
the mailing problem, by setting Xr

i ← Y ri for 1 ≤ i ≤ m2.
By Lemma 4.2, the lighter edge of each pair PEj , for 1 ≤ j ≤ m2, belongs to the

MST; thus in the set of variables Y r1 , . . . , Y
r
m2 obtained by the vertex r as a result of

solving the MST problem, Y rj = 1 corresponds to the assignment of ω(h0, v
j
0) = 3 to

the jth edge of S0, while Y
r
j = 0 corresponds to the assignment of 1 to that edge;

hence for every j, Y rj equals xj , the jth bit of X . Hence the resulting algorithm has
correctly solved the given instance of the mailing problem.

Combined with Lemma 3.4, we now have the following theorem.
Theorem 4.5. For every m ≥ 1, any distributed algorithm for constructing an

MST on the graphs of the family J 2
m in the B model for B ≥ 3 requires Ω(m2/B)

time.
Corollary 4.6. Any distributed algorithm for the MST problem in the B model

for B ≥ 3 requires Ω(
√
n/B) time on some n-vertex graphs of diameter O(n1/4).

5. A lower bound on the mailing problem on F K
m . This section generalizes

the results of the previous section to the graphs FKm for K ≥ 3, thus establishing the
desired lower bound.

5.1. The graphs F K
m . Given two integer parameters m,K ≥ 2, construct the

graph FKm as follows. The two basic units are still the path and the highway, with the
following changes. The basic path P now has mK + 1 vertices, i.e.,

V (P) = {v0, . . . , vmK} and E(P) = {(vi, vi+1) | 0 ≤ i ≤ mK − 1}.
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There are K − 1 highways, denoted H1, . . . ,HK−1. The level-2 highway H� consists
of m� + 1 vertices, i.e.,

V (H�) = {h�imK−� | 0 ≤ i ≤ m�} and

E(H�) = {(h�imK−� , h
�
(i+1)mK−�) | 0 ≤ i ≤ m� − 1}.

Each highway vertex h�imK−� is connected to the corresponding path vertex vj
imK−�

by a spoke edge. Figure 7 depicts these connections for the case of m = K = 3.

1H

2H

P

h 2h

9
1h

2
0 h6 12 15 21 24 27

2
3

27
1hr = 18

2h

hh2h9
2h2 2 2h2h18

2h

1
0hs = 

Fig. 7. The connections between the path P and the highways H1 and H2 for m = K = 3.

The graph FKm is constructed by taking mK copies of the path P, denoted

P1, . . . ,PmK

, and connecting them all to the same level-2 highway H�, for each
1 ≤ 2 ≤ K − 1. The vertex h1

0 is the intended sender s, and the vertex h1
mK is

the intended receiver r. (See Figure 8, showing the graph F 3
3 .)
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Fig. 8. The graph F 3
m (here also m = 3).
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The following two facts are easily verified.
Lemma 5.1. The cardinality of FKm is n = Θ(m2K) and its diameter is Θ(Km).

5.2. The lower bound. The lower bound for the mailing problem can be ex-
tended from F 2

m to FKm forK ≥ 3 in a natural way. Consider some arbitrary algorithm
Amail, and let ϕX denote the execution of Amail on the input X in the graph FKm . The
notion of a tail set is generalized to FKm for K ≥ 3 as follows. For every 1 ≤ j ≤ m,
define the tail of the path Pj as before, i.e.,

Ti(Pj) = {vjl | i ≤ l ≤ mK}.
Let β�(i) denote the least integer δ such that δmK−� ≥ i, and define the tail of H� as

Ti(H�) = {h�jmK−� | β�(i) ≤ j ≤ m�}.

The tail set of FKm is the union of those tails,

Ti = Ti(H) ∪
⋃
j

Ti(Pj).

(See Figure 8.) Again, for i = 0 the definition is T0 = V \ {h1
0}.

The main lemma becomes the natural extension of Lemma 3.2, and its proof is
similar. The notions of configuration, collection of configurations, and absolute size ρ
of collections of possible configurations are defined in the same way as in section 3.2.

Lemma 5.2. For any 0 ≤ t < mK ,
ρ[Tt+1, t+ 1] ≤ (2B + 1)K−1 · ρ[Tt, t].

Proof. The lemma is proved by showing that in round t+1 of the algorithm, each
configuration in C[Tt, t] branches off into at most (2B+1)K−1 different configurations
of C[Tt+1, t+ 1].

Fix a configuration Ĉ ∈ C[Tt, t]. The tail set Tt+1 is connected to the rest of the
graph by the highway edges f �β�(t+1)−1 = (h�(β�(t+1)−1)mK−� , h

�
β�(t+1)mK−�), for every

1 ≤ 2 ≤ K − 1, and by the mK path edges ejt = (vjt , v
j
t+1), 1 ≤ j ≤ mK .

Consider the number of different configurations in C[Tt+1, t + 1] that may result
from Ĉ. Starting from the configuration Ĉ, each vertex vjt is restricted to a single
state, and hence it sends a single (well determined) message over the edge ejt to v

j
t+1,

thus not introducing any divergence in the execution. The same applies to all the
edges internal to Tt+1.

The situation with highway edges f �β�(t+1)−1 is different as there are K possible

cases. When β�(t+1) = β�(t) for 1 ≤ 2 ≤ K−1, the vertices h�(β�(t)−1)mK−� are not in

the set Tt; hence their state is not defined by the choice of Ĉ. The value passed over
the edge f �β�(t)−1 into the set Tt+1 is thus unknown. However, due to the restriction of

the B-bounded-message model, at most 2B +1 different behaviors of can be observed
by each vertex h�β�(t)mK−� , resulting in 2B + 1 possible states for each such node.

Considering the entire set {h�β�(t)mK−� | 1 ≤ 2 ≤ K − 1}, the single state Ĉ results

in (2B + 1)K−1 states of the tail set Tt+1 at time t+ 1.
In the rest of the cases, β�(t+ 1) = β�(t) + 1 for at least one 2, when passing to

the next tail set causes the exclusion of the highway point h�β�(t)mK−� from the tail

set. Here, a well defined message is sent over f �β�(t+1)−1 since the state of h�β�(t)mK−�
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is defined by the configuration Ĉ. It follows that in these cases the number of possible
states of Tt+1 is less than (2B + 1)K−1.

Altogether, the configuration Ĉ branches off into at most (2B+1)K−1 possible con-
figurations Ĉ1, . . . , Ĉ(2B+1)K−1 ∈ C[Tt+1, t+1], differing by the states σ(h�β�(t+1)mK−� , t+

1,X ). The lemma follows.
Corollary 5.3. For any 0 ≤ t < mK ,

ρ[Tt, t] ≤ (2B + 1)(K−1)t.

Letting tend denote the time it takes algorithm Amail to complete the mailing, we
derive, similar to the proof for K = 2, that necessarily

(2B + 1)(K−1)tend ≥ ρ[Ttend
, tend] ≥ 2m

K

,

implying the following.
Lemma 5.4. For every K,m ≥ 2, solving the mailing problem Mail(FKm , h

1
0, h

1
mK ,

mK) in the B model requires Ω(mK/(BK)) time.

6. A generalized lower bound on the MST on J K
m . Finally, we show the

lower bound for the MST problem on the weighted versions of the graphs FKm .

6.1. The graph families J K
m . Let us define the families of weighted graphs

JKm . For every two integers m,K ≥ 2, let

JKm = {JKm,γ = (FKm , ω
K
γ ) | 1 ≤ γ ≤ 2m

K},

where ωKγ is the weight function defined as follows. All the edges of the highways H�
for 1 ≤ 2 ≤ K − 1 and the paths Pj for 1 ≤ j ≤ mK are assigned zero weight. It
remains to assign the weights to the spoke edges.

Consider a subgraph of FKm , consisting of all the available paths Pj , 1 ≤ j ≤ mK ,
a single highway H� and all the connections of this highway to the paths. Consider a

single node h�imK−� of the highwayH� and the set of all its connections to P1, . . . ,PmK

.

Following the terminology of the caseK = 2, this is termed the level-2 star SK,�m,i . There

are m� such stars at level 2.
Consider the collection of the stars SK,�m,i for 1 ≤ i ≤ m� , 2 ≤ 2 ≤ K − 1

(excluding the first star of each level 2). The spokes of these stars are assigned the

weight 4. The spokes of the first star of each level, SK,�m,0, are assigned as follows. The

spokes connecting the star centers h�0, 1 ≤ 2 ≤ K − 1 to the extreme vertex v10 of the
path P1 are assigned zero weight. The rest of the spokes are assigned the weight 4.

For the collection of the level-1 stars, SK,1m,i , the assignment is as follows. The

spokes of all the stars except the two extreme ones, SK,1m,0 and SK,1m,m, are assigned

the weight 4. The spokes of the last star SK,1m,m are assigned weight 2. The weight

assignment to the mK spokes of the star SK,1m,0 depends on the particular function ωKγ ,
with each spoke assigned a value of either 1 or 3, as in section 4.2.

Lemma 6.1. No spoke edge of weight 4 belongs to the MST of JKm,γ for every

1 ≤ γ ≤ mK .
Proof. Following the proof of Lemma 4.1, it can be shown that the elimination

of all spoke edges of weight 4 from the graph JKm,γ leaves the graph connected. Since
all the edges of all the highways and basic paths have zero weight, none of their
edges is eliminated. Consider the connectivity of the highway H1 and the basic paths
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P1, . . . ,PmK

. By construction, the spokes of two stars, namely, SK,1m,0 and SK,1m,m, have
edges of weight at most 3, which guarantees that every basic path is connected to H1.
The rest of the highways H�, for 2 ≤ 2 ≤ K − 1, are connected to the node v10 of the
basic path P1 by their nodes h�0 via a zero-weight edge. Thus all the highways are
connected to the path P1 and through it to the highway H1 and all the other basic
paths.

Hence every spoke edge of weight 4 occurs as the heaviest edge on some cycle in
the graph, implying the lemma.

Lemma 6.2. For every 2 ≤ 2 ≤ K − 1, the edge (h�0, v
1
0) belongs to the MST.

Proof. By Lemma 6.1, no spoke edge of weight 4 belongs to the MST. By con-
struction, each of the highways H� for 2 ≤ 2 ≤ K − 1 is connected to the rest of
the graph by spokes of weight 4 and by a single zero-weight spoke of the star SK,�m,0

connecting it to P1. Thus in order for the MST to be connected, the zero-weight edge
must belong to the MST.

Let us pair the spoke edges of SK,1m,0 and SK,1m,m connectingH1 to Pj for 1 ≤ j ≤ mK ,

denoting the jth pair (for 1 ≤ j ≤ mK) by

PEj = {(s, vj0), (r, vjmK )}.

By a proof similar to that of Lemma 4.2, we get the following lemma.

Lemma 6.3. For every 1 ≤ j ≤ mK , exactly one of the two edges of PEj belongs
to the MST of JKm,γ , namely, the lighter one.

6.2. The generalized lower bound on distributed MST. We obtained an
instance of the MST problem, in which the membership of edges in the MST is
predetermined for all but the mK edge pairs PEj . Following the proof method of
Lemma 4.4, we show that any algorithm solving the distributed MST problem on JKm
can be used for solving the mailing problem in the same time complexity, implying
the following.

Theorem 6.4. For every m,K ≥ 2, any distributed algorithm for constructing an
MST on the graphs of the family JKm in the B model for B ≥ 3 requires Ω(mK/(BK))
time.

Proof. Consider an algorithm Amst for the MST problem, and suppose that we
are given an instance of the Mail(FKm , h

1
0, h

1
mK ,m

K) problem with input string X .
We use the algorithm Amst to solve this instance of the mailing problem as follows.
The sender s = h1

0 initiates the construction of an instance of the MST by turning
FKm into a weighted graph from JKm , setting the edge weights as follows: for each
xi ∈ X , 1 ≤ i ≤ mK , it sets the weight variable W s

i corresponding to the spoke edge

ei ∈ E(SK,1m,0) (the first 1-level star), to be as in the proof of Lemma 4.4. The rest of the
graph edges are assigned fixed weights as specified in section 6.1. Note that again, the
weights for all the vertices except s and its immediate neighbors in SK,1m,0 do not depend
on the particular input instance at hand; hence a single round of communication
between s and its SK,1m,0 neighbors suffices for performing this assignment.

From this point on, we may proceed with executing algorithm Amst for the MST
problem. Once algorithm Amst terminates, the receiver r determines its output for
the mailing problem, by setting Xr

i ← Y ri for 1 ≤ i ≤ mK .

The fact that the resulting algorithm has correctly solved the given instance of
the mailing problem is established as in the proof of Lemma 4.4, relying on Lemma
6.3. The theorem now follows from Lemma 5.4.



LOWER BOUND FOR DISTRIBUTED MST 1441

Corollary 6.5. For every K ≥ 2, there exists a family of n-vertex graphs of
diameter O(Kn1/(2K), ) such that any distributed algorithm for the MST problem in
the B model for B ≥ 3 requires Ω(

√
n/(BK)) time on some of those graphs.

Corollary 6.6. For every n ≥ 2, there exists a family of n-vertex graphs of
diameter O(log n) such that any distributed algorithm for the MST problem in the B
model for B ≥ 3 requires Ω(

√
n/(B log n)) time on some of those graphs.

Finally, let us comment that it has recently been shown that using Yao’s method
[Yao77] it is possible to extend the lower bound of Lemma 5.4 on the mailing problem
into a lower bound on the expected time complexity of any randomized (Las Vegas)
distributed algorithm for the mailing problem (see [P00, Chapter 24, Exercise 9]).
This, in turn, yields the following lower bound on the time complexity of randomized
algorithms for distributed construction: For every n ≥ 2, there exists a family of
n-vertex graphs of diameter O(log n) such that any randomized Las Vegas distributed
algorithm for the MST problem in the B model requires Ω(

√
n/(B log n)) expected

time on some of those graphs.

7. Open problems. Several interesting problems can be considered for future
research. The first direction concerns the limitations of the presented lower bound.
To begin with, the lower bound does not seem to extend to diameters lower than
O(log n). As graphs with D = 1 admit an O(log n) distributed algorithm for MST
construction, one may expect an interesting interdependence between the time to
construct an MST and the network’s diameter.

Second, one may consider a model allowing L-bit edge weights for L > B. While
our lower bound still holds, stronger bounds may apply. Note that the transmission
of an edge weight can be carried out in this model by sending Θ(L/B) separate
messages. Hence each of the existing algorithms for distributed MST can be adapted
to this model with a multiplicative slowdown of L/B. The algorithm of [KP98], for
instance, will have time complexity O((D+

√
n log∗ n)L/B). However, it is less clear

whether this slowdown is necessary or if it can be avoided. It seems easy to verify
(say, by considering a ring with two diametrically opposing edges having the extreme
weights) that Ω(L/B) is indeed a lower bound on the time complexity of the problem
in this model. However, it is plausible that the algorithm of [KP98] can be modified
using pipelining ideas to yield a time complexity close to O(D +

√
n log∗ n+ L/B).

Another research direction is to try to reduce the communication complexity of
the nearly time optimal algorithm of [KP98] from O(|E| + n3/2) towards the lower
bound of O(|E|+ n log n).

Finally, one may consider the possibility of devising faster algorithms that con-
struct an approximation to the MST, namely, a spanning tree whose total weight is
near-minimum. To the best of our knowledge, nothing nontrivial is currently known
about this problem, and little is known about distributed approximation algorithms
in general, but this direction may well deserve further study.
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Abstract. We describe a deterministic parallel algorithm for linear programming in fixed di-
mension d that takes poly(log log n) time in the common concurrent read concurrent write (CRCW)
PRAM model and does optimal O(n) work. In the exclusive read exclusive write (EREW) model,
the algorithm runs in O(logn · log logd−1 n) time. Our algorithm is based on multidimensional search
and effective use of approximation algorithms to speed up the basic search in the CRCW model. Our
method also yields very fast poly(log log n) algorithms for smallest enclosing sphere and approximate
ham-sandwich cuts and an O(logn) time work-optimal algorithm for exact ham-sandwich cuts of
separable point sets. For these problems, in particular for fixed-dimensional linear programming,
o(logn) time efficient deterministic PRAM algorithms were not known until very recently.

Key words. parallel algorithms, computational geometry, linear programming

AMS subject classifications. 68W10, 68W40, 65D18, 90C05

PII. S0097539797325727

1. Introduction. We consider the standard linear programming problem: given
a set H of n half-spaces in R

d and a vector y, find a point x ∈ ⋂H that minimizes
y · x. We restrict ourselves to the case where n is much larger than d, and we fo-
cus attention on parallel algorithms that achieve good performance with respect to
n. Since the general problem is known to be P-complete [12], the restricted version
assumes more relevance. For the most part we will regard d as a constant. However,
since the running time of our algorithm grows rapidly with d, we will attempt to
examine the exact nature of this dependence. Megiddo [32] described a linear-time
algorithm for linear programming in fixed dimension d (hereafter referred to as LPd),
using an elegant multidimensional search technique. The same search technique, also
known as prune-and-search, yielded optimal algorithms for other optimization prob-
lems (see Megiddo [31] and Dyer [13, 14]). Following Megiddo’s linear-time algorithm,
there have been significant improvements in the constant factor (which was doubly
exponential in d) due to Dyer [14] and Clarkson [4]. Further progress was made,
using random sampling, by Clarkson [5]. This algorithm was later derandomized by
Chazelle and Matoušek [9]. With more careful analysis and some additional ideas,
Matoušek, Sharir, and Welzl [30] improved the algorithm further, achieving an ex-

pected running time of O(d2 · n + eO(
√
d log d)), a “subexponential” dependence on d.

Independently, Kalai [26] discovered an algorithm with matching performance, and
these are presently the fastest known algorithms.

In the context of parallel algorithms for LPd, there have been a number of re-
sults in the direction of finding a fast analogue of Megiddo’s linear-time sequential
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method [1, 2, 11, 34]. A straightforward parallelization of Megiddo’s method yields an
O(logd n) time n-processor exculsive read exclusive write (EREW) PRAM algorithm.
(We write logk n for (logn)k, and, similarly, log logk n for (log logn)k.) However, this
is far from the best that can be achieved. Alon and Megiddo [2] obtained an opti-
mal parallel algorithm that runs in constant time (i.e., time depending only on d) on
an n-processor randomized concurrent read concurrent write (CRCW) PRAM model.
They used a variant of Clarkson’s algorithm [5], which has smaller constants (in terms
of d) than Megiddo’s. More recently, Ajtai and Megiddo [1] developed a deterministic
O(log logd n) algorithm in an n processor model which allows O(log log n) time selec-
tion. Since there is an Ω(logn/ log log n) bound for exact selection [3], their model is
considerably more powerful than the CRCW model, and partly nonuniform. It may
also be noted that the work bound in the algorithm of Ajtai and Megiddo is superlin-
ear, since they use a linear number of processors. Thus an o(log n) time optimal deter-
ministic algorithm for LPd had hitherto proved elusive. Very recently, Goodrich [19]
(see also Goodrich and Ramos [20]) independently obtained a poly(log logn) time
CRCW algorithm with optimal speed-up using fast parallel derandomization tech-
niques. His approach is different from ours, being directly based on parallel deran-
domization techniques. His underlying randomized algorithm is similar to that of
Dyer and Frieze [16]. This is derandomized using fast deterministic constructions of
ε-approximations in R

d. Here, we generalize the basic multidimensional search algo-
rithm of Megiddo. Instead of pruning a constant fraction of the constraints in each
round, we increase the rate of pruning as a function of processor advantage. The
processor advantage is proportional to the ratio of the number of processors to the
number of constraints, which increases monotonically during the course of the search.
This allows us to improve the Ω(log n) phases seemingly required by Megiddo’s ap-
proach, and leads to a fast EREW algorithm. However, it does not directly yield a
poly(log logn) CRCW algorithm for the following reason. All known versions of multi-
dimensional search algorithms rely on exact selection procedures, either deterministic
or randomized. We make use of the observation that exact selection may be substi-
tuted by approximate splitting (defined formally in section 3) without significantly
affecting the asymptotic convergence rate of the procedure. This is crucial in order to
surmount the Ω(logn/ log log n) barrier for exact parallel selection: an impossibility
in Ajtai and Megiddo’ s approach. We apply this observation, using fast deterministic
splitting algorithms in the CRCW model, to obtain a poly(log logn) time algorithm.
Moreover, we are able to achieve linear work simultaneously. Although all presently
known poly(log logn) approximate splitting algorithms are based on derandomiza-
tion, they are relatively simpler and more efficient than constructing ε-nets in R

d as
in Goodrich’s algorithm [19]. However, it may be noted that the fastest algorithm
known for approximate splitting follows from applying Goodrich’s techniques. This
could be used in our algorithm to save an O(log log n) factor. However, we have cho-
sen to ignore this in our later description. Rather, we feel that other poly(log logn)
time approximate splitting algorithms, like that of Hagerup and Raman [24], which
are relatively simpler (although slower), are more in keeping with the basic simplicity
of our approach. Our method also implies a very simple poly(log logn) randomized
CRCW algorithm, although this is asymptotically slower than Alon and Megiddo’s
algorithm. Our approach has immediate applications to other optimization prob-
lems where Megiddo’s prune-and-search technique is effective. We are not aware of
any previous poly(log logn) time deterministic algorithms for problems like minimum
enclosing sphere and ham-sandwich cuts. The latter especially has numerous appli-
cations to divide-and-conquer algorithms, including those for convex hulls and range
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searching. The paper is organized as follows. In section 2, we describe our basic
approach, generalizing Megiddo’s multidimensional search technique. This directly
yields a fast EREW algorithm. In section 3, we modify the algorithm of section 2,
substituting some of the exact procedures by their faster approximate counterparts.
In section 4, we analyze the algorithms for the EREW and CRCW PRAM and bound
the total work by O(n). In section 5, we present further applications of our search
algorithm to problems like Euclidean 1-center and ham-sandwich cuts for separable
planar point-sets. Because of the close similarity of these algorithms to that for LPd,
we omit detailed analysis. In section 6, we make some observations regarding the
relationship between hyperplane cuttings and our approach. We show the existence of
a direct geometric construction for cuttings that does not require derandomization.
However, the size of this cutting is probably too large for general application.

2. A parallel multidimensional search method. Without loss of generality,
we assume that LPd has feasible region

{
x ∈ R

d : xd ≤
d−1∑
j=1

αijxj + bi (i = 1, 2, . . . , n)

}
,

and the objective is to minimize xd. Megiddo [32] noted that LPd can be viewed
as determining the critical linear constraints which define the optimal point x∗. If
we assume nondegeneracy (no (d+ 1)-hyperplanes intersect in a point of the feasible
region), then exactly d constraints define the optimal point, and the remaining con-
straints may be eliminated without affecting the optimum value. In its full generality,
the LPd problem also requires us to report if the optimum is unbounded or if the
feasible region is empty. In the description that follows, we do not discuss these con-
ditions explicitly, noting that Megiddo’s approach can handle these cases effectively.
Suppose we have a set of n hyperplanes

Hi = {x ∈ R
d : ai · x = bi} (i = 1, 2, . . . , n).

The sign of Hi with respect to y ∈ R
d is defined as {−,+,=} depending on

ai · y − bi
<
=
>

0.

Geometrically, we wish to determine which side of the hyperplane contains y (includ-
ing the possibility that y may lie on the hyperplane). We would like to determine the
sign of y with respect to all the hyperplanes Hi (i = 1, 2, . . . n). To do this, we extend
our definition to the sign of an arbitrary hyperplane in a similar fashion. Megiddo
showed that, by determining the signs of a constant number A(d) of carefully cho-
sen hyperplanes, we can determine the sign of a constant fraction B(d) of the Hi’s.
Here A(d) and B(d) are functions of d only. By repeatedly applying this strategy,
one can determine all the signs relatively quickly (as compared to evaluating them
individually). Megiddo used an elegant inductive argument to show the existence of
A(d) and B(d), starting from the observation that for d = 1, A(1) = 1 and B(1) =
1/2 (by determining the sign of the median half-line). If y is x∗, and the hyperplanes
are the constraints of LPd, then determining the sign of all hyperplanes is clearly
equivalent to solving LPd. Hereafter, we will be interested in determining the sign of
a hyperplane (not necessarily a constraint) with respect to x∗. However, x∗ is itself
unknown at the outset. Megiddo showed that the sign of an arbitrary hyperplane can



1446 MARTIN E. DYER AND SANDEEP SEN

be determined by solving at most three linear programming problems (recursively)
in one lower dimension. Using a nontrivial recursive strategy (involving recursion in
both n and d), Megiddo constructed an algorithm for LPd with running time linear in
n but doubly exponential in d. For convenience, we assume that no constraint hyper-
plane is parallel to xd. (This can be achieved by standard perturbation techniques, if
necessary.) From here, we focus on the following hyperplane location problem. Given
a set N of hyperplanes of the form

Hi =

{
x ∈ R

d : xd =

d−1∑
j=1

aijxj + bi

}
(i = 1, 2, . . . , n),

we wish to determine the sign at x∗ of all Hi. This is often referred to as the
multidimensional search problem. We will say that Hi is located if we know the
sign of Hi with respect to the linear programming optimum x∗. As already noted, a
straightforward parallelization of Megiddo’s algorithm yields an O(logd n) time algo-
rithm with n processors. It is inefficient because, in the later stages of the algorithm
when relatively few constraints remain, most of the processors are idle. We now
describe a parallelization of multidimensional search which uses processors more effi-
ciently in the later stages, when the number of processors greatly exceeds the number
of constraints. The algorithm proceeds in stages, where during each stage, we deter-
mine the sign of some hyperplanes. At the beginning of the stage i, we denote the set
of hyperplanes by Ni and their number by ni, and we define processor advantage ri
to be max{2, (p/ni)1/d}, where p is the number of processors. For example, n0 = n
and r0 = 2 if p ≤ n. Again, for simplicity of presentation, we assume that ri is an
integer (or else take the floor function). Also, in the remaining part of this section
we will write N , n, and r instead of Ni, ni, and ri since the description is limited to
iteration i for some i.

Par Mul Search(N, p, d)

1. The set N of hyperplanes is partitioned into r equal sized sets based on
their a�1 values (� = 1, 2, . . . , n). This is done by selecting the k(n/r)th
ranked elements (denoted by σk) from {a11, a21 . . . an1} for k = 1, 2, . . . , r.
For convenience, write σ0 = −∞. Denote this partition of N by P, where
the kth class of P consists of hyperplanes H� which satisfy σk−1 < a�1 ≤ σk
(k = 1, 2, . . . , r).

2. For d = 1, solve the problem directly and exit. (See below.) Otherwise,
partition N into r-sized subsets (groups) by picking (for each group) one
constraint from each class of P. Consider two hyperplanes Hi and Hj in a
group and say ai1 ≤ aj1. Since they come from different classes of P, there
are values σk, σl such that σk ∈ [ai1, aj1] and σl 
∈ [ai1, aj1].

3. Using the transformation
x1
′ = x1 + σk · x2 and x2

′ = x1 + σl · x2,
we obtain two hyperplanes Hij and Hji, where Hij (respectively, Hji) is

obtained by eliminating x
′
1 (respectively, x

′
2) between Hi and Hj . Intuitively,

these are planes that pass through the intersection of Hi and Hj and are
parallel to the x1

′ and x2
′ coordinate axes, respectively. There are two such

hyperplanes for each pair in the group. From Megiddo’s observation (see
also Dyer [14]), it follows that if we can locate both Hij and Hji (which are
hyperplanes in R

d−1), then we can locate at least one of Hi and Hj . Figure 1
illustrates the situation in two dimensions.
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Hj

Hi

Hij

Hji

Fig. 1. Each quadrant is completely contained in a half-plane determined by Hi or Hj . So by
determining the signs of both Hij and Hji, we can determine the sign of Hi or Hj . For example,
if the optimum lies in the NW quadrant, Hi’s sign is determined. (Hij and Hji are not necessarily
perpendicular.)

4. We recursively apply the search algorithm in one lower dimension to all such
hyperplanes Hij , Hji. Note that all Hij lie in a subspace corresponding to the
absence of x1

′ but possible presence of x2
′. Note there are only r different vari-

ables of the type x1
′, one for each of the r different σk values. Thus there are

only r distinct subspaces for which the algorithm must be called recursively.
The algorithm is called in parallel for all the distinct subspaces, allocating
processors to the subproblems proportional to their sizes. At the bottom of
this recursion on d, we will generate special hyperplanes with respect to which
we must locate x∗. Location for these special hyperplanes involves recursively
solving three (d − 1)-dimensional linear programming problems. Each such
problem is a restriction of the original LPd to a particular hyperplane. (See
Megiddo [32] for further details of these lower-dimensional problems.)

5. Repeat the previous step Rd times, where Rd is a function of d that we will
determine during the analysis. By repeating this step, we eliminate a fraction
of the remaining hyperplanes.

6. The located hyperplanes are now eliminated from consideration, the new
processor advantage is determined, and the above procedure is repeated.

The total number of hyperplanes generated in step 2 is (n/r)r(r − 1) < nr since
every pair of hyperplanes in a group generates two lower-dimensional hyperplanes.
Step 4 actually involves a double recursion, one of which we have unfolded (i.e., how
to generate the special hyperplanes inductively in R

d) for exposition of the basic
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algorithm. This is similar to Megiddo’s exposition [32] of the sequential algorithm,
where a certain proportion B(d) of hyperplanes is located using A(d) queries, these
functions being defined inductively. However, instead of the number of queries, we
bound the number of rounds of parallel recursive calls. The number Rd will actually
be defined according to the following recursive scheme. For the same set of σk’s and
r, we do c rounds of location (where c is some suitable constant) for the Hij ’ s, where
a certain proportion of Hij ’s are located recursively. This is done in order to boost
the proportion of hyperplanes located in d dimensions for inductive application. This
idea has been used before in [4, 14]. The difference here is that we cannot wait for the
results of location in one group before we start on the next, as is done in the sequential
algorithm. The number of groups r may be large, and so we must operate on them
all in parallel. For d = 1, the constraints are half-lines, and the linear programs
can be solved directly. The problem is equivalent to extremal selection (selection of
minimum or maximum), which can be solved in O(log n) time on an EREW PRAM
and O(log log n) time on a CRCW PRAM [25]. As constraints are eliminated in
each repetition of step 4, data compaction must be done, to ensure efficient processor
utilization in the next. The processor requirement is determined by the total size of
all problems that have to be solved simultaneously on all levels of the recursion on d.
We must show that this remains bounded by the total number of processors. We will
show this below and, more significantly, we will show that the recursive procedure
in d dimensions takes only O(log log n) rounds to eliminate all constraints. This will
lead to an overall time bound of O(log n log logd−1 n) for LPd on the EREW PRAM.

3. Multidimensional search using approximate computations. To cir-
cumvent the Ω(log n/ log log n) lower bound for exact selection in the CRCW PRAM,
we will modify step 1 of the previous section. We propose to use approximate splitting
in the partitioning step and approximate compaction to do load balancing. As noted
previously, extremal selection can be done in O(log log n) time in CRCW PRAM.
Formally, the problem of approximate splitting is defined as follows.

Given a set of N of n elements, an integer r, 1 ≤ r ≤ n, and an
expansion factor θ > 1, choose a set R of r elements (out of N) such
that the maximum number of elements of N in any interval induced
by (the sorted order of) R is less than θ · n/r.

Intuitively, θ = 1 gives even splitting but we will relax that significantly to speed up
our algorithm. For approximate splitting on the CRCW model, we use the following
result implied by the work of Hagerup and Raman [24] and Goldberg and Zwick [22]
(see the appendix for details).

Lemma 3.1. For all given integers n ≥ 4, and C ≤ r ≤ n1/4, approximate
splitting can be done with expansion factor

√
r in O(log log2 n) time and O(r · n)

CRCW processors where C is a sufficiently large constant.
For smaller r, we partition the ai2’s into two sets by an approximate median

which can be found quickly using the following result of Goldberg and Zwick.
Lemma 3.2. For a given set X of n elements and any fixed ε > 0, an element

x ∈ X whose rank r′ satisfies n
2 ≤ r′ ≤ n

2 (1 + ε) can be found in O(log log n) steps
using n/ log log n CRCW processors.

The problem of approximate compaction was defined by Hagerup [23] as follows.
Given an n-element set, of which a are active, place the active ele-
ments in an array of size (1 + λ)a, where λ is the padding factor.

As one might expect, the running time of fast parallel algorithms for this problem in-
creases as λ decreases. Hagerup described an O(log log3 n) time work-optimal CRCW
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algorithm for the above problem for λ = 1/poly(log logn). The following improved
result was recently obtained by Goldberg and Zwick [22].

Lemma 3.3. The approximate compaction problem can be solved on a CRCW
PRAM in time t ≥ log log n, using n/t processors, with a padding factor of
1/poly(log logn).

Suppose we substitute exact compaction by approximate compaction. Then, over
the O(d) levels of recursion, there will only be a slowdown in running time by a factor

of (1 + λ)
O(d)

, i.e., a constant. We will also use the following result on semisorting to
collect the elements of subproblem (i.e., a class or a group) together. The semisorting
problem may be defined as follows.

Let A be an array of n elements such that each element has an integer
label � ∈ {1, 2, . . . , k}. Sort the elements of A into disjoint subarrays
A� (� = 1, 2, . . . , k) such that, if there are n� elements with label �,
the subarrayA� must be of size O(n�).

The following is known about semisorting from [24].
Lemma 3.4. Semisorting problems of array size n and range size k can be solved

in O(log log n) CRCW time using kn processors.
So, if C is the constant for the splitting algorithm above, the modified algorithm

is as follows. If (p/ni)
1/d ≥ β, we choose ri = (p/ni)

1/d; otherwise, we choose ri = 2,
where β ≥ C is a constant that we will determine below, and we use the method of
Lemma 3.1 to partition the ai1’s, 1 ≤ i ≤ n, into classes. Once the splitters are deter-
mined, the partitioning can be done by brute force, comparing ai1 against all splitters
simultaneously in parallel. (There are sufficient processors for this to be done.) We
put the hyperplanes in each class in near-contiguous locations by an application of
semisorting and approximate compaction. Then we give each hyperplane in a class
a group number corresponding to its position in the derived subarray. We now form
groups by semisorting on group number, followed by approximate compaction of the
group subarray. Thus each group will pick at most one hyperplane from each class,
each hyperplane will belong to exactly one group, and each group is held in an array
a little longer than its size. There are sufficient processors throughout since each un-
compacted array is only a constant factor larger than the group size, by Lemma 3.4.
The per-processor overhead caused by arrays not being exactly compacted is a small
constant (in fact o(1)), and hence we ignore it in the analysis. Note, however, that
some groups may have less than r hyperplanes. The number of groups is determined
by the size of the largest partition since we take one hyperplane from each parti-
tion. Because of the approximate splitting, there could be n/

√
r groups, rather than

the n/r which would result from exact splitting. However, the size of each group
is no more than r because the number of classes is only r. We will denote the set
of groups by G, and their number by |G|. As indicated in the previous section, we
pair hyperplanes from a group and solve the lower dimensional problem recursively a
constant number of times, c (to be determined below). Then we start a new iteration
by throwing out constraints and compacting the remaining using Lemma 3.3. At the
bottom level (when the hyperplanes are points), we choose r splitters, so that the size
of the largest partition is at most n/

√
r. Location with respect to the r splitters can

be done simultaneously in O(log log n) time using extremal selection. We have chosen
r so that we will have enough processors at the bottom level.

4. Analysis. First we will prove a slightly weaker result, that our algorithm
takes O(log logd+1 n) in a CRCW PRAM using p = n processors, and subsequently
reduce the number of processors. The analysis is generalized to handle approximate
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splitting. Therefore, in particular, the bounds that we prove are applicable to the basic
algorithm of section 2. For convenience of presentation, we will refer to hyperplanes
in R

d as d-hyperplanes. Our first objective is to bound the number of rounds of
hyperplane locations required to eliminate a constant fraction of d-hyperplanes. Let πd
denote the fraction of d-hyperplanes that are located in Rd rounds for a fixed ri, say r.
Since the maximum size of a partition at the bottom level is n/

√
r, π1 ≥ (

√
r−1)/

√
r.

The following will be used to write a recurrence for πd. The groups refer to the
groupings of G as defined in the previous section.

Lemma 4.1. The number of (d − 1)-hyperplanes that have to be located in the
recursive call is bounded by n · (r − 1).

Proof. As pointed out in the previous section, although |G| could be n/
√

r
because of uneven splitting, the number of (d − 1)-hyperplanes can be bounded
by
∑
g∈G ng(ng − 1), where ng is the number of d-hyperplanes in group g ∈ G.

Since ng ≤ r and
∑

ng = n, the number of (d − 1)-hyperplanes is bounded by
n/r · r(r − 1).

Observation 4.1. Suppose, in a certain group of d-hyperplanes, at most m(m −
1)/2 of the (d−1)-hyperplanes have not been located. Then at most m d-hyperplanes
are not located.

Proof. Recall that the (d − 1)-hyperplanes are obtained by taking all possible
pairs in a group and generating two (d − 1)-hyperplanes from each pair. Suppose
there are m′(> m) unlocated d-hyperplanes; consider the m′(m′−1)/2 > m(m−1)/2
pairs formed by these. At least one (d − 1)-hyperplane from each pair has not been
located, since locating both (d− 1)-hyperplanes in a pair would imply that one of the
d-hyperplanes is located. This contradicts the antecedent of the observation that at
most m(m− 1)/2 pairs have not been located.

In order to write a recurrence for πd, we let n̄g denote the number of unlocated d-
hyperplanes in group g and let ug denote the number of unlocated (d−1)-hyperplanes
(among the ng(ng − 1) generated in g). From the above notations,

πd =
1

n

(
n−

∑
g

n̄g

)
.

From Lemma 4.1 and the recursive application (i.e., a fraction πd−1 of the (d − 1)-
hyperplanes are located in Rd−1 rounds),

∑
g

ug ≤ (1− πd−1)
c · n(r − 1).(1)

From Observation 4.1,

ug ≥ 1

2
n̄g · (n̄g − 1),

implying

2ug + 1 ≥ n̄2
g − n̄g + 1,

implying, in turn,

2ug + 1 ≥ ng.
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Therefore,
∑
g n̄g ≤

∑
g(2ug + 1). Substituting in (1), we can write the recurrence

for πd as follows:

πd ≥ 1

n
(n− 2(1− πd−1)

c
n(r − 1)− n/

√
r),(2)

where the last term on the right corresponds to
∑
g 1 = |G| ≤ n/

√
r. Simplifying,

we obtain

πd ≥ 1− 2(1− πd−1)
c
(r − 1)− 1/

√
r.

It is straightforward to verify by induction that, for d ≥ 2, πd ≥
√
r−2√
r

, provided r ≥ 8

and c ≥ 12. If r = 2, we choose an approximate median with accuracy 1/6 (i.e.,
ε = 1/6 in Lemma 3.2). Then (2) becomes

πd ≥ 1

n
(n− 2(1− πd−1)

c · n− 2n/3),

since |G| ≤ n/2 + n/6 = 2n/3. For c = 12 and π1 ≥ 1/3, πd ≥ 1/4 by induction.
Thus we take c = 12 and β = max{8, C} in our algorithm description where C is the
constant from Lemma 3.1. The total number of rounds Rd for location in dimension
d satisfies Rd = cd−1, since Rd = c · Rd−1 and R1 = 1. Hence we can write the
recurrence for ni, the number of surviving constraints at the beginning of iteration
i, as

ni+1 ≤ ni(1− πd) ≤
{

3
4ni (ri = 2),
2√
ri
ni (ri ≥ β).

After O(d) iterations with ri = 2, we will have (n/ni)
1/d ≥ β. Note that then

ni/n ≤ 1
8 . Thereafter,

ni+1 ≤ 2n
1+1/2d
i /n1/2d.

Letting ξi = ni/n, we can rewrite the previous inequality as

ξi ≤ 2ξ
1+1/2d
i ,

where ξ1 = 1
8 . Therefore, ξi = O(1/n) (i.e., ni = O(1)) when i ≥ c1 log log n for some

constant c1 = O(d). Each iteration involves splitting, compaction, and a constant
number of recursive calls to lower dimensional problems. Let Td(n) be the running
time for a d-dimensional problem of size n. Then we can write the recurrence

Td(n) ≤ c1 log log n[cd−1(Talloc + Tsplit + 3Td−1(n))],(3)

where Talloc and Tsplit denote the times for data compaction and approximate
splitting, respectively. From Lemma 3.3, Talloc = O(log log n), and from Lemma 3.1,
Tsplit = O(log log2 n), respectively. Using T1(n) = O(log log n), Td(n) is O(log

logd+1 n) for d ≥ 2. Since c1 = O(d), the implied constant is 2O(d2), which is of
the same form as that in the improvement of Megiddo’s algorithm due to Dyer [14]
and Clarkson [4]. The processor requirement is bounded by the number of (d − 1)-
dimensional linear programming problems which must be solved simultaneously at the
bottom level. Each such problem has ni constraints per problem. This number is the
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total number of hyperplanes that must be located simultaneously. This is bounded
by ni(ri − 1)d−1 from Lemma 4.1, since the number of distinct linear programming
instances grows by an (ri− 1) factor at each level of the recursion on d. But this is at
most n, since either ri = 2 or ri = (n/ni)

1/d ≥ 8. We can now state our intermediate
result as the following lemma.

Lemma 4.2. Linear programming in fixed dimension d ≥ 2 can be solved in
O(log logd+1 n) CRCW PRAM steps, using n processors .

Remark. Using a faster approximate splitting algorithm due to Goodrich [19],
with Tsplit = O(log log n), the running time would decrease to O(log logd n). The
previous analysis also holds for the basic algorithm of section 2, and therefore we can
analyze the performance of the algorithm on the EREW PRAM simply by substituting
bounds for exact selection and compaction. Since then Talloc = O(log n) and Tsplit =
O(log n), we obtain, similarly to the above, the following result.

Lemma 4.3. Linear programming in fixed dimension d ≥ 2 can be solved in
O(log n log logd−1 n) steps using n processors in an EREW PRAM.

To reduce the number of operations to O(n), we use a slow-down technique, ap-
plied inductively. We outline our strategy in the case of CRCW PRAM. We have
observed that the one-dimensional problem can be solved in O(log log n) steps using
n/ log log n processors. Assume that the (d−1)-dimensional problem can be solved in
O(log logd n) steps optimally. The standard slow-down method implies that, for any
time t > log logd n, these problems can be solved with optimal work. We start with p =
n/ log logd+1 n processors and reduce the number of constraints to n/ log logd+1 n by
running the algorithm with ri = 2 for O(log log logn) iterations. Let td = log logd+1 n.
In each iteration, we apply the work-optimal (d − 1)-dimensional method. Now it-
eration i (starting with i = 0) takes max{γitd, O(log logd n)} steps. Here γ ≤ 3

4 is
the fraction of constraints eliminated at each iteration. In each iteration, we use the
result of Lemma 3.3 to do load balancing. This takes O(max{γitd, log log n}) steps.
The total time taken to reduce the number of constraints to n/ log logd+1 n by the
above method can therefore be bounded by O(log logd+1 n+ log logd n · log log log n).
At this stage, we switch to the n-processor algorithm described previously. Therefore,
we can state our final result.

Theorem 4.4. Linear programming in fixed dimension d ≥ 2 can be solved in
2O(d2) log logd+1 n CRCW PRAM steps using n/ log logd+1 n processors.

Following an identical strategy, but using td = log n log logd−1 n and O(log n)
for the load balancing time, we obtain an analogous result for the EREW PRAM.
However, the running time increases by an O(log∗ n) factor, since the best work-
optimal EREW selection algorithm known runs in O(log n log∗ n) time (Cole [10]).

Theorem 4.5. Linear programming in fixed dimension d ≥ 2 can be solved in
2O(d2) log n log∗ n log logd−1 n EREW PRAM steps, using n/(log n log∗ n log logd−1 n)
processors.

5. Other applications. Although the search algorithm was described in the
context of linear programming, the method extends to problems where prune-and-
search methodology has produced linear-time sequential algorithms. We outline two
of these applications here, namely, finding the smallest enclosing circle (or, more
generally, the Euclidean 1-center problem) and finding ham-sandwich cuts of separable
point-sets on the plane.

5.1. Smallest enclosing circle. Given a set N = {(ai, bi), 1 ≤ i ≤ n} of
points in the plane, we wish to determine a circle C that encloses all the points and



PARALLEL MULTIDIMENSIONAL SEARCH 1453

is smallest among all such circles. This has a natural analogue in higher dimen-
sion, where we determine the smallest enclosing sphere in the appropriate dimension.
Megiddo [31] described a linear-time algorithm for the smallest enclosing circle prob-
lem. Dyer [14] extended this to solve the more general weighted Euclidean 1-center
problem in any fixed dimension, using additional tools from convex optimization. The
idea of Megiddo’s solution is very similar to the linear programming algorithm. The
minimum enclosing circle C is defined by at most three points, so the solution remains
unchanged if we eliminate the remaining points. The algorithm proceeds in iterative
phases, where in each phase a constant fraction of the input points are eliminated with
linear work. The crucial issue is to recognize which points can be eliminated using
carefully designed queries. In the following, we follow Megiddo’s [31] description with
appropriate modifications for the parallel algorithm. We will first solve a restricted
version of the problem, where the center of C is constrained to lie on a given straight
line. Without loss of generality, assume this line is the x-axis. Denote the center
of C by xc. Pair up the points arbitrarily and denote the perpendicular bisector of
pair (ai, bi), (aj , bj) by ⊥ij . It can be readily seen that there exists a critical value

xij (the intersection of ⊥ij with the x-axis), such that depending on xc
<
=
>

xij , one

of the points in the pair the one that is closer to xc, can be eliminated. So if we

can determine answers to queries of the form “Is x
<
=
>

xc ?” for arbitrary x, we can

use these to eliminate some of the points. For example, by evaluating the query at
xm, the median value of xijs, we can eliminate one point from every pair for half the
number of pairs, i.e., a quarter of the points. Determining the sign of an arbitrary x

(x
<
=
>

xc?) is easily done by finding the furthest point (in Euclidean distance) from

x. Denote the square of this distance by g(x). Let I = {i : (x− ai)
2
+ b2i = g(x)}. If

x < ai for every i, then x < xc. If x > ai for every i, then x > xc, else x = xc. All
this can be done in linear time. So, applying the above procedure recursively to the
remaining points (at most 3/4n), xc can be determined in O(n) steps. More formally,
we are solving the following optimization problem (unrestricted case).

min
x,y

f(x, y) = max
i
{(x− ai)

2
+ (y − b)

2}.

Note that f(x, y) is a convex function of its arguments. In the preceding paragraph,
we described a method to solve the constrained problem when y = 0. Given an arbi-

trary y, the sign of y is defined to be {+,=,−} depending on y
<
=
>

y∗, where (x∗, y∗) is

the unconstrained optimum of g(x, y). Because of the convexity, the sign of y can be
determined from the sign at (xc, y), where xc is the constrained optimum. The sign at
(xc, y) can be determined by an application of linear programming in plane or, alter-
natively, by a direct method of finding a line separator (see Megiddo [31]). The overall
algorithm is very similar to the linear programming algorithm. Here we consider pairs
of points instead of pairs of constraints. Each pair of point (a2i−1, b2i−1), (a2i, b2i) de-
fines a perpendicular bisector ⊥i such that, if we could determine which half-plane
of ⊥i contains (x∗, y∗), we could eliminate one point from the pair. This is similar
to determining the sign of ⊥i. We pair perpendicular bisectors, ⊥i and ⊥j , say, and
compute their intersection pij . Consider the two lines Xij and Yij , passing through
pij , parallel to the x and y axes, respectively. If the slopes of ⊥i and ⊥j do not have
the same signs, then by determining the signs of Xij and Yij , we can eliminate one
of the four points (defining ⊥i and ⊥j). Figure 2 illustrates this situation. Determin-
ing the sign of Xij or Yij is essentially a lower dimensional problem (the constrained
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Fig. 2. If the center of the optimum circle is located in the SW quadrant, clearly point i will
be strictly closer than i′ and hence can be eliminated.

version) that we solved before. So, we have reduced the searching problem to one
lower dimension. The strategy is identical to that of computing signs of hyperplanes
in section 2. Here the hyperplanes are defined by pairs of points (the perpendicular
bisectors). The groupings are done on the basis of slopes and the algorithm is applied
recursively to the r different subspaces generated. Here r is processor advantage,
which will be defined similarly to the linear programming algorithm. The analysis
is carried out in a fashion almost identical to section 4, and we omit further details.
Note that computing the sign of a bisector eliminates at least one of the two defining
points. Hence we can summarize with the following theorem.

Theorem 5.1. The minimum enclosing circle of n points on the plane can be
determined in O(log log3 n) CRCW time, using n/ log log3 n processors.

The above algorithm extends to any fixed dimension d. To determine the sign of
a hyperplane in dimension d > 2, we will use linear programming in dimension d after
determining the center of the constrained smallest sphere. (The center lies on the
hyperplane.) This is to determine if the center of the constrained sphere is contained
within the convex hull of the points I determining the optimum. If it is contained,
then we have the global unconstrained optimum. Otherwise, the optimum lies in the
direction perpendicular to the hyperplane bounding the d extreme points of I. This
additional complication increases the running time by an O(log log n) factor compared
with the linear programming algorithm.

Corollary 5.1.1. The minimum enclosing sphere of n points in Ed for d > 2
can be determined in O(log logd+2 n) time using n/ log logd+2 n CRCW processors.

5.2. Ham-sandwich cuts and partitioning a planar point-set. A line l is
called the bisector of a point set S if each open half-plane defined by the line contains
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at most half the points of S. It is known that, given two point sets P and Q, it
is possible to bisect them simultaneously using a line l. This line is called a ham-
sandwich cut of P and Q. In the special case where P and Q are linearly separable,
Megiddo [33] described a linear-time algorithm based on prune-and-search. Later, Lo
and Steiger [27] described a linear-time algorithm for the general case. Megiddo’s
algorithm is useful in situations where we need to partition a point set into four
quadrants using two lines. We can choose one line to be the median with respect to one
of the axes. This partitions the points into two sets S1 and S2. Then, using Megiddo’s
algorithm, we can take the other line to be a ham-sandwich cut of S1 and S2. This
has numerous applications to divide-and-conquer algorithms. Below we show that our
search strategy yields a fast parallel algorithm for this special case of ham-sandwich
cuts. However, it must be noted that ham-sandwich cuts can be used to compute
an exact median of a set of points on the x-axis. (Simply take this set as P and an
arbitrary two-point set in the upper half-plane as Q.) Thus the lower bound on exact
median-finding prevents us from attaining poly(log logn) performance. Therefore, we
will first design an O(log n) time algorithm for this problem. Then we will show how
to obtain approximate ham-sandwich cuts in poly(log logn) time. An approximate
ham-sandwich cut will mean that each of P and Q will be partitioned approximately
equally. We describe Megiddo’s method briefly. (Our version actually follows the
description in [17].) The problem is solved in the dual space where a point p = (a, b)
is mapped to the line D(p) : y = 2ax − b, and a nonvertical line l : y = λ1x + λ2 is
mapped to the point D(l) : (λ1/2,−λ2). Thus D2 = D, and it is known, moreover,
that D preserves incidence and the below-above relationship. (See [17] for details.)
Thus the P and Q are mapped to sets of lines G = D(P ) and H = D(Q). Assume,
without loss of generality, that the lines of G and H have nonpositive and nonnegative
slopes, respectively (by choosing the x-axis as a separating line in the primal plane).
In the arrangement A(S) formed by a set of lines S, a level k (1 ≤ k ≤ |S|) is the set
of points of A(S) that lie below exactly k lines of S. We will write Li(S) for the ith
level of S. In the arrangements A(G) and A(H), the median levels correspond to lines
that bisect P and Q in the primal plane. Because of the slope constraints we have
imposed, the levels in G and H are monotonically nonincreasing and nondecreasing,
respectively. This implies that Li(G) and Lj(H) have a nonempty intersection for all
i, j. We wish to determine a point p∗ in the intersection of the median levels. Then
D(p∗) is a ham-sandwich cut for P and Q. We actually solve a more general problem.
We determine a point s in the intersection of the ith level of G and the jth level of H.
Let m = |G| and n = |H|. The algorithm proceeds in phases, where in the kth phase,
we are looking for a point common to the levels gk of A(Gk) and hk of A(Hk). Here
Gk and Hk are the subsets of G and H active during the kth phase. Initially, k = 0,
g0 = i, h0 = j, G0 = G, and H0 = H. In the kth phase, we eliminate lines from
Gk and Hk that cannot contain the common point using line tests. A test consists
of determining which side of a given line t contains p∗. (The test may also yield a
point in the intersection, in which case the algorithm terminates.) Then new sets
Gk+1, Hk+1 are calculated after elimination of some lines. New values of gk+1 and
hk+1 are chosen, and we proceed to iteration k + 1. A test with respect to a line t is
similar to computing the sign in our general search strategy. It can be done in linear
time sequentially and involves computing a gkth and hkth intersection point of Gk

and Hk, respectively, on the line t. There are various cases, and we refer the reader
to [17, pp. 339–341] for details. We use the following optimal selection algorithm
from Chaudhuri, Hagerup, and Raman [7].
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Lemma 5.2. For all integers n ≥ 4, selection problems of size n can be solved in
O(log n/ log log n) CRCW time using n log log n/ log n processors.

Using this as a subroutine, we can compute the sign of a line t inO(log n/ log log n)
time. Consider the set of lines L = H ∪G. Suppose l1, l2 ∈ L have slopes of the oppo-
site sign and p1,2 is their common intersection point. Let tx and ty be the horizontal
and vertical lines through p1,2. By determining the signs of tx and ty, we can de-
termine at least one of the lines l1 or l2 which cannot contain any point s in the
intersection of the levels. (Otherwise, we can actually determine such a point s, and
the algorithm terminates.) We can therefore apply our search strategy to this situa-
tion by partitioning the lines of L using their slopes. Here we can use exact selection
using Lemma 5.2 since we have more time at our disposal. The remaining algorithm
is very similar to our previous search algorithms, and the analysis follows along sim-
ilar lines. Since each testing costs us O(log n/ log log n) time and the algorithm has
O(log log n) stages, the total time is O(log n) using n processors. We may also use
exact compaction. Finally, using a technique similar to Theorem 4.4, we can reduce
the number of processors to O(n/ log n). Thus, we have the following theorem.

Theorem 5.3. A ham-sandwich cut of two linearly separable sets P and Q can
be computed in O(log n) CRCW steps, using n/ log n processors, where n = |P ∪Q|.

An approximate ham-sandwich cut of P and Q, with relative accuracy λ (0 <
λ < 1), will be defined as follows. The cut is a line l which simultaneously partitions
P and Q, so that the partition of P (respectively, Q) does not contain more than
|P |(1+λ)/2 (respectively, |Q|(1+λ)/2) points. In the context of the dual setting this
implies that we have to determine a point s that lies in the intersection of Li(G) and
Lj(H), where (1− λ)|G|/2 ≤ i ≤ (1 + λ)|G|/2 and (1− λ)|H|/2 ≤ j ≤ (1 + λ)|H|/2.
Ghouse and Goodrich [21] describe a simple algorithm for this problem using random
sampling followed by verification. We follow the lines of our previous algorithms,
with the modification that testing with respect to a line is done using approximate
selection. We use the following algorithm for parallel approximate selection from [7].

Lemma 5.4. For all integers n ≥ 4 and t ≥ log log4 n, approximate selection with
relative accuracy 2−t/ log log4 n can be achieved in O(t) time, using a CRCW PRAM
optimally in O(n) operations. Furthermore, for q ≥ 1, a relative accuracy of 2−q can
be achieved in O(q + log log4 n) time, using O(qn) operations.

We also use Lemma 3.3 to update the values of gk, hk at each iteration. Because
of the use of approximate algorithms, testing with respect to a line t returns an an-
swer satisfying the following property. Given gk, hk, and a line t, the test returns
a half-plane (bounded by t) which contains an intersection point of level (1 ± ε)gk
of Gk with level (1 ± ε)hk of Hk. (Here ε is the relative accuracy of our selection
algorithm.) Moreover, the updated values of gk and hk are accurate within a mul-
tiplicative factor (1 + 1/poly(logn)). Since there are O(log log n) iterative phases

of the algorithm, the overall accuracy can be bounded by (1± ε)
O(log log n)

. From
Lemma 5.4, ε ≤ 1/poly(logn) is achievable in poly(log logn) steps. Hence an overall
relative accuracy of 1/poly(logn) is achievable using this approach. Therefore, we
have the following result.

Theorem 5.5. An approximate ham-sandwich cut of linearly separable sets P
and Q, with relative accuracy λ ≤ log−a n for some fixed constant a, can be computed
in O(log log6 n) steps, using O(n) operations, where n = |P ∪Q|.

6. Some observations on our method. In this section we offer some insights
into the multidimensional search technique relative to other methods, in particular,
random-sampling based strategies. The randomized algorithm of Clarkson [5] (later
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derandomized by Chazelle and Matoušek [9]) exploits efficient geometric partitioning
methods based on ε-net constructions (often referred to as cuttings in the context
of this problem). A 1/r-cutting C, for a set H of hyperplanes in R

d, is a collection
of d-dimensional simplices (with disjoint interiors) which covers R

d. Furthermore, no
simplex intersects more than |H|/r hyperplanes. The number of simplices in C is called
the size of the cutting. The derandomization methods are actually techniques for con-
structing cuttings whose existence is guaranteed by the probabilistic method. It was
shown by Matoušek [29] and Chazelle [8] that 1/r-cuttings of size O(rd) can be con-
structed in time O(n · rd−1), using a derandomization technique based on the method
of conditional probabilities (known as the Raghavan–Spencer technique). It is fairly
clear that, given such a cutting, the multidimensional search method becomes easier
to implement. We will show that the converse is also true—that the multidimensional
search method implies a cutting. This was noted somewhat less explicitly in some
previous papers (see [6, 28]). While the size of the cutting is much worse than one
obtains from the derandomization methods, it does not involve derandomization and
is a direct geometric constructon. The intuition is as follows. The multidimensional
search in d dimensions eliminates a fixed fraction B(d) of hyperplanes by location with
respect to a set of hyperplanes R of size A(d) . Let us denote the arrangement in R

d

induced by the hyperplanes in R by A(R), and let us denote the region in A(R) that
contains the optimum by ∆∗. Clearly, the number of hyperplanes intersecting ∆∗ can-
not exceed |H|(1−B(d)), since any plane that has been located cannot intersect ∆∗.
However, it is not obvious how many hyperplanes intersect other regions ∆ ∈ A(R).
If the same bound applies, then we have a (1 − B(d))-cutting. This is indeed so,
since Megiddo’s algorithm selects, at the bottom-most level of recursion, a fixed set
of hyperplanes and does the location with respect to these. Irrespective of where the
query point lies, the previous bound holds. The size of this cutting is less obvious.
We reduce the number of hyperplanes intersecting ∆∗ by iterating a fixed number of
times c on the lower dimensional problem. This is an adaptive improvement that is
local to ∆∗, and it is not clear how it affects other regions. However, modifying (2)
from section 4 as follows will give us a bound on the size of a 1/r-cutting.

πd ≥ 1

n
(n− 2(1− πd−1) · n(r − 1)− n/r).(4)

We have set the exponent c = 1 for the reasons mentioned above, and we have re-
placed n/

√
r with n/r since we may do exact splitting in the present context. In (4),

it can be verified that πd ≥ 1 − 2/r if πd−1 ≥ 1 − 1
2r2 . Applying this inductively,

we find that π1 ≥ 1 − 1

2d−1r2d−1 implies πd ≥ 1 − 2/r. This implies a 2/r cutting in

R
d. For any m, a 1/m-cutting of R

1 has size (m − 1) (by choosing (m − 1) equally

spaced values). Thus the overall cutting contains 2d−1r2d−1

hyperplanes. This is ex-
ponentially larger than the cuttings of size O(rd) obtained from ε-net constructions.
However, for small constants r and d, this may be a reasonable alternative to the de-
randomized schemes for constructing 1/r-cuttings. We may summarize the discussion
of this section as follows.

Observation 6.1. Megiddo’s algorithm implies a simple linear-time method (with-

out derandomization) for constructing 1/r-cuttings of size (2d−1r2d−1

)
d
in R

d, where
d is a fixed constant.

7. Concluding remarks. This paper makes two main contributions to parallel
fixed-dimensional linear programming. First, we show that an alternative implemen-
tation of Megiddo’s [32] technique enables efficient processor utilization. Second, we
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circumvent the bottleneck of median-finding, found in earlier adaptations of Megiddo’s
approach, by substituting approximate selection algorithms. (Note that even random-
ized selection has the same bottleneck.) However, the underlying approximate algo-
rithms have large associated constants, and the algorithms of Goldberg and Zwick [22]
use expanders. We can eliminate the need for expanders by settling for a somewhat
slower algorithm (by a factor of O(log log3 n)), using the method of Hagerup and
Raman [24]. On the other hand, the running time of Theorem 5.5 can be improved
somewhat by using the selection algorithm of [22]. Finally, we remark that reducing
the dependence on d of the running time of our algorithm for LPd is a challenging
open problem.

8. Appendix. We give a brief outline of the proof of Lemma 3.1. The ideas
are adapted mainly from Hagerup and Raman [24], where the reader can find more
detailed proofs. Throughout, we will use ν(r) to denote a factor of the form 1 +

1
polylog(r) .

Proof of Lemma 3.1. Hagerup and Raman [24] describe a method for computing
r approximate splitters in O(log log5 n) CRCW time, using rn processors. Below we
describe how to speed up their method by substituting faster routines for approximate
prefix computation due to Goldberg and Zwick [22]. The problem approximate prefix
sum is defined as follows.

A sequence 0 = b0, b1, . . . , bn is said to be an ε-approximate prefix sum of a given
nonnegative sequence a1, . . . , an if we have

i∑
j=1

aj ≤ bi ≤ (1 + ε)

i∑
j=1

aj

and bi − bi−1 ≥ ai (1 ≤ i ≤ n). Lemma 3.3 is actually derived from the following
result on approximate prefix sums.

Lemma 8.1 (see [22]). For any fixed α > 0 and fixed δ > 0, a 1/(logα n)-
approximate prefix sum sequence can be computed in O(1) CRCW time, using n1+δ

processors.

Substituting the previous result in the proof of Lemma 11 of [24], we obtain the
following.

Lemma 8.2. A set of n keys can be padded-sorted with padding factor ν(n) in
O(log log n) time, using a polynomial number of processors.

To improve the processor bound in the previous lemma, we apply Lemma 8.1
recursively to a sample-sort algorithm. For this we compute a group sample as follows.

Let A be a set of n numbers, let m be an integer, and let s = n
m2 . Partition A into s

groups A1, . . . , As, each of size m2. Padded-sort the Ai’s into subarrays of size ν(n)m2,
and let Bi be the multiset consisting of the elements with rank νm, 2νm . . . νm2 in Ai.
Then B =

⋃
iBi is a group sample of A.

Remark. Computing a group sample of size n/m involves sorting sets of size
O(m2). By choosing a group sample of appropriate size and using its members as
splitters in a quicksort-like algorithm (but for only a constant depth of recursion), we
obtain the following result, along the same lines as Hagerup and Raman [24].

Lemma 8.3. For any fixed ε > 0, n keys can be padded-sorted in O(log log n)
CRCW time, with padding-factor ν(n), using n1+ε processors.

An (m,λ)-sample of a set A is a subset B such that, for each pair of elements
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x, y ∈ B,

|rankA(x)− rankA(y)| ≤ m|A|
|B| |rankB(x)− rankB(y)|+ λ|A|.

By choosing a group sample B ⊆ A, using the procedure described previously, we can
show the following.

Lemma 8.4. B is a (ν(m), ν(m)/m)-sample of A, computable in O(log log n)
CRCW time, using mn processors. Moreover, |B| = n/m.

The proof follows by summing (|rankBi(x) − rankBi(y)| + 1) over all Bi. From
the definition of an (m,λ) sample, the following can easily be verified.

Lemma 8.5 (see [24]). Let B be an (r, λ)-sample of A, and let C be an (r′, λ′)
sample of B. Then C is an (rr′, rλ′ + λ) sample of A.

We now describe the algorithm for finding r approximate splitters of a set X of
n numbers. We may assume we have nr processors initially. Thus, using Lemma 8.4,
we compute a subset B1 ⊂ X, which is a (ν(m), ν(m)/m)-sample, where m = r.
Note that |B1| = n/r, so we now have a processor advantage of r2. Next we com-
pute B2, which is a (ν(r2), ν(r2)/r2)-sample of B1. At stage i, we will compute a

(ν(r2i

), ν(r2i

)/r2i

)-sample of Bi. By induction, we can show that |Bi| = n/r2i−1.

Now, from Lemma 8.5, we can show that Bi is a (
∏
i ν(r

2i

),
∏
i ν(r

2i

)/r)-sample of
X. We continue this process until Bj ≤ n3/4 for the first time, and we call this subset
D. Clearly, j < log log n and from r ≤ n1/4 it follows that n1/4 ≤ |D| ≤ n3/4. Thus

we can ensure that D is a (
∏
i ν(r

2i

),
∏
i ν(r

2i

)/r)-sample of X. Since (1+x) ≤ ex, it
follows that

∏
i

(
1 + 1

2i

)
= O(1). So D is a (c′, c′/r) sample of X for some constant c′.

Suppose |D| = q, then choose r equally spaced elements from D, and call this set S.
We claim that S is a set of r elements which approximately splits X with expansion
factor

√
r. To see this, note that between two consecutive elements of S there are

q/r elements of D. Since D is a (c′, c′/r) sample of X, it follows (from the definition
of an (m,λ)-sample) that there are a maximum of c′(n/q)(q/r) + c′(1/r)n elements

of X. Substituting c′′ = c′2, the number of elements can be bounded by O(
√

c′′n/r).
For r ≥ c′′, this is less than n√

r
. This completes the proof of Lemma 3.1. Note that

C = c′′ in the statement of Lemma 3.1.
Remark. The running time of the above algorithm for finding approximate

splitters can be improved to O(log log n) time by noting that only the first group
sampling step takes O(log log n) and O(1) thereafter by exploiting processor advan-
tage carefully. This was pointed out by one of the reviewers.
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Abstract. An exponential lower bound for the size of tree-like cutting planes refutations of
a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refu-
tations is proved. This implies an exponential separation between the tree-like versions and the
dag-like versions of resolution and cutting planes. In both cases only superpolynomial separations
were known [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425–467; J. Johannsen, Inform. Pro-
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metics, Amer. Math. Soc., Providence, RI, 1998, pp. 93–117]. In order to prove these separations,
the lower bounds on the depth of monotone circuits of Raz and McKenzie in [Combinatorica, 19
(1999), pp. 403–435] are extended to monotone real circuits.

An exponential separation is also proved between tree-like resolution and several refinements of
resolution: negative resolution and regular resolution. Actually, this last separation also provides
a separation between tree-like resolution and ordered resolution, and thus the corresponding super-
polynomial separation of [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425–467] is extended.

Finally, an exponential separation between ordered resolution and unrestricted resolution (also
negative resolution) is proved. Only a superpolynomial separation between ordered and unrestricted
resolution was previously known [A. Goerdt, Ann. Math. Artificial Intelligence, 6 (1992), pp. 169–
184].
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1. Introduction. The motivation for research on the proof length of proposi-
tional proof systems is double. First, by the work of Cook and Reckhow [10] we know
that the claim that for every propositional proof system there is a class of tautologies
that have no polynomial size proofs is equivalent to NP �= co-NP . This connection
explains the interest in developing combinatorial techniques to prove lower bounds
for proof systems. The second motivation comes from the interest in studying effi-
ciency issues in automated theorem proving. The question is which proof systems
have efficient algorithms to find proofs. Actually, the proof system most widely used
for implementations is resolution or refinements of resolution. Our work is relevant
to both motivations. On one hand, all the separation results of this paper improve
previously known superpolynomial separations to exponential. On the other hand,
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these exponential separations harden the known results showing inefficiency of several
widely used strategies for finding proofs, especially for the resolution system.

Haken [16] was the first to prove exponential lower bounds for unrestricted reso-
lution. He showed that the pigeonhole principle requires exponential size resolution
refutations. Urquhart [28] found another class of tautologies with the same property.
Chvátal and Szemerédi [7] showed that in some sense, almost all classes of tautologies
require exponential size resolution proofs (see [2, 3] for simplified proofs of these re-
sults). These exponential lower bounds are bad news for automated theorem proving,
since they mean that often the time used in finding proofs will be exponentially long
in the size of the tautology, just because the shortest proofs are exponentially long in
the size of the tautology.

Many strategies for finding resolution proofs are described in the literature (see,
e.g., Schöning’s textbook [27]). One commonly used type of strategy is to reduce
the search space by defining restricted versions of resolution that are still complete.
Such restricted forms are commonly referred to as resolution refinements. One par-
ticularly important resolution refinement is tree-like resolution. Its importance stems
from the close relationship between the complexity of tree-like resolution proofs and
the runtime of a certain class of satisfiability testing algorithms, the so-called DLL
Algorithms (cf. [24, 1]). We prove an exponential separation between tree-like reso-
lution and unrestricted resolution (Corollary 4.3), thus showing that finding tree-like
resolution proofs is not an efficient strategy for finding resolution proofs. Until now
only superpolynomial separations were known [29, 8].

We also consider three more of the most commonly used resolution refinements:
negative resolution, regular resolution, and ordered resolution. We show an exponen-
tial separation between tree-like resolution and each one of the above restrictions. (See
Corollary 4.3 for negative resolution and Corollary 4.6 for both regular and ordered
resolution.)

Goerdt [14, 13, 15] gave several superpolynomial separations between unrestricted
resolution and some refinements of resolution; in particular, he gave a superpolynomial
separation between ordered resolution and unrestricted resolution. In this paper we
consider the case of ordered resolution and we improve his separation to exponential.
We prove that a certain conjunctive normal form (CNF) formula requires exponential
size ordered resolution refutations but can be refuted with a polynomial size nega-
tive resolution proof (Corollary 5.7), thus, in particular, showing that unrestricted
resolution can have an exponential speed-up over ordered resolution.

The cutting planes proof system, CP from now on, is a refutation system based
on manipulating integer linear inequalities. Exponential lower bounds for the size
of CP refutations have already been proven. Impagliazzo, Pitassi, and Urquhart
[17] proved exponential lower bounds for tree-like CP. Bonet, Pitassi, and Raz [6]
proved a lower bound for the subsystem CP*, where the coefficients appearing in
the inequalities are polynomially bounded in the size of the formula being refuted.
This is a very important result because all known CP refutations fulfill this property.
Finally, Pudlák [23] and Cook and Haken [9] gave general circuit complexity results
from which exponential lower bounds for CP follow. To this day it is still unknown
whether CP is more powerful than CP*, i.e., whether it produces shorter proofs or
not.

Since there is an exponential speed-up of CP over resolution, it would be nice
to find an efficient algorithm for finding CP proofs and a question to ask is whether
trying to find tree-like CP proofs would be an efficient strategy for finding CP proofs.



1464 M. BONET, J. ESTEBAN, N. GALESI, AND J. JOHANNSEN

Johannsen [18] gave a superpolynomial separation, with a lower bound of the form
Ω(nlogn), between tree-like CP and dag-like CP. (This was previously known for CP*
from [6].) Here we improve that separation to exponential (Corollary 4.3). This shows
that searching for tree-like proofs is also not a good strategy for finding proofs in CP.

The separation between tree-like and dag-like versions of resolution and CP is
obtained using the technique of the interpolation method introduced by Kraj́ıček
[21]. Closely related ideas appeared previously in the mentioned works that gave
lower bounds for fragments of CP [17, 6]. The interpolation method applied on CP
translates proofs of certain formulas to monotone real circuits (a generalization of
boolean circuits). The translation has two important features. First, it preserves the
size; that is, the size of the circuit is similar to the size of the proof from which the
circuit is built. Second, if the proof is tree-like, the circuit will be also tree-like, i.e.,
a formula. So we can prove size lower bounds for tree-like CP proofs by proving size
lower bounds for monotone real formulas.

In section 3 we prove that a certain boolean function Genn requires exponential
size monotone real formulas. This is a consequence of extending the result of Raz and
McKenzie [25], proving linear depth lower bounds for monotone boolean circuits to
the case of monotone real circuits. We use these circuit complexity lower bounds to
obtain proof complexity lower bounds using the interpolation method.

2. Preliminaries and outline of the paper. In this section we introduce the
notions we use and our main results. We also discuss the structure of the paper and
the dependency among our main results.

2.1. Proof systems. We start by giving a short description of the proof systems
studied in this paper. Most proof systems can be used in a tree-like or dag-like fashion.
In a tree-like proof any line in the proof can be used only once as a premise. Should
the same line be used twice, it must be rederived. A proof system that only produces
tree-like proofs is called tree-like. Otherwise we will call it dag-like, or when nothing
is said it is understood that the system is dag-like.

2.1.1. Resolution. Resolution is a refutation proof system for CNF formulas,
which are represented as sets of clauses, i.e., disjunctions of literals. Clauses that
contain the same literals are considered equal. The only inference rule is the resolution
rule

C ∨x D ∨ x̄
C ∨D

.

That is, from clauses C ∨x and D ∨ x̄ we get clause C ∨D, called the resolvent . We
say that the variable x is eliminated in this resolution step. A resolution refutation
of a set Σ of clauses is a derivation of the empty clause from Σ using the resolution
rule. Resolution is a sound and complete refutation system, i.e., a set of clauses has
a resolution refutation if and only if it is unsatisfiable.

Several refinements of the resolution proof system have been proposed. These
refinements reduce the search space by restricting the choice of pairs of clauses to
which the resolution rule can be applied. In this paper we consider the following
three refinements, all of which are still complete.

1. The regular resolution system: Viewing the refutations as graph, in any path
from the empty clause to any initial clause, no variable is eliminated twice.
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2. The ordered1 resolution system: There exists an ordering of the variables in
the formula being refuted, such that if a variable x is eliminated before a
variable y on any path from an initial clause to the empty clause, then x
is before y in the ordering. As no variable is eliminated twice on any path,
ordered resolution is a restriction of regular resolution.

3. The negative resolution system: To apply the resolution rule, one of the two
clauses must consist of negative literals only.

There is an algorithm (see, e.g., Urquhart [29]) that transforms a tree-like resolu-
tion proof into a possibly smaller regular tree-like resolution proof; therefore, tree-like
resolution proofs of minimal size are regular. This means that from the point of view
of proof complexity, tree-like resolution and tree-like regular resolution are equivalent.

2.1.2. Cutting planes. The CP proof system is a refutation system for CNF
formulas, as resolution is. It works with linear inequalities. The initial clauses are
transformed into linear inequalities. A generic clause

k∨
i=1

pji ∨
m∨
i=1

¬pli

is transformed into a linear inequality

k∑
i=1

pji +

m∑
i=1

(1− pli) ≥ 1.

The CP rules are basic algebraic manipulations, additions of two inequalities, multi-
plication of an inequality by a positive integer, and the following division rule:

∑
i∈I aixi ≥ k∑
i∈I

ai
b xi ≥

⌈
k
b

⌉ ,
where b is a positive integer that evenly divides all ai, i ∈ I. A CP refutation of a set E
of inequalities is a derivation of 0 ≥ 1 from the inequalities in E and the axioms x ≥ 0
and −x ≥ −1 for every variable x, using the CP rules. It can be shown that a set of
inequalities has a CP refutation iff it has no {0, 1}-solution. Any assignment satisfying
the original clauses is actually a {0, 1}-solution of the corresponding inequalities,
provided that we assign the numerical value 1 to True and the value 0 to False. It is
easy to translate (see [11]) resolution refutations into CP refutations similar in size to
the original resolution refutations. Moreover, if the resolution refutation is tree-like,
the resulting CP refutation is also tree-like.

2.2. Monotone real circuits. An important part of this paper is concerned
with monotone real circuits, which were introduced by Pudlák [23]. A monotone real
circuit is a circuit of fan-in 2 computing with real numbers where every gate computes
a nondecreasing real function. We require that monotone real circuits output 0 or 1
on every input of 0’s and 1’s only, so that they are a generalization of monotone
boolean circuits. The depth and size of a monotone real circuit are defined as for
boolean circuits. A formula is a circuit in which every gate has at most fan-out 1,
i.e., a tree-like circuit.

1In Goerdt’s paper [13] and in the preliminary version [5] of this paper, this refinement is called
the Davis–Putnam resolution. In the meantime, we have learned that it is better known as the
ordered resolution.
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Pudlák [23], Cook and Haken [9], and Fu [12] gave lower bounds on the size of
monotone real circuits. Rosenbloom [26] showed that they are strictly more power-
ful than monotone boolean circuits, since every slice function can be computed by
a linear-size, logarithmic-depth monotone real circuit, whereas most slice functions
require exponential size general boolean circuits. On the other hand, Jukna [19]
gives a general lower bound criterion for monotone real circuits, and uses it to show
that certain functions in P/poly require exponential size monotone real circuits, and
hence the computing power of monotone real circuits and general boolean circuits is
incomparable.

For a monotone boolean function f , we denote by dR(f) the minimal depth of a
monotone real circuit computing f , and by sR(f) the minimal size of a monotone real
formula computing f .

2.3. Deterministic and real communication complexity. The use of com-
munication complexity as a tool to prove depth lower bounds for monotone circuits
was introduced by Karchmer and Wigderson [20]. They gave an Ω(log2 n) lower bound
on the depth of monotone circuits computing st-connectivity.

Kraj́ıček [22] introduced a notion of real communication complexity, generalizing
ordinary communication complexity, that is suitable to prove depth lower bounds for
monotone real circuits. This was used by Johannsen [18] to extend the depth lower
bound for st-connectivity to monotone real circuits.

Raz and McKenzie [25] proved an Ω(nε) lower bound on the depth of monotone
circuits computing a certain function Genn, which, on the other hand, can be com-
puted by monotone circuits of polynomial size. This gives a strong separation of
the depth and size complexity of monotone circuits. We extend this lower bound to
monotone real circuits, again using the notion of real communication complexity.

2.3.1. Communication complexity. Let R ⊆ X × Y × Z be a multifunction,
i.e., for every pair (x, y) ∈ X × Y , there is a z ∈ Z with (x, y, z) ∈ R. We view such
a multifunction as a search problem, i.e., given input (x, y) ∈ X × Y , the goal is to
find a z ∈ Z such that (x, y, z) ∈ R.

A deterministic communication protocol P over X×Y ×Z specifies the exchange
of information bits between two players, I and II, that receive as inputs, respectively,
x ∈ X and y ∈ Y and finally agree on a value P (x, y) ∈ Z such that (x, y, P (x, y)) ∈ R.
The deterministic communication complexity of R, CC(R), is the number of bits
communicated between players I and II in an optimal protocol for R.

2.3.2. Real communication complexity. A real communication protocol over
X × Y × Z is executed by two players I and II who exchange information by simul-
taneously playing real numbers and then comparing them according to the natural
order of R. This generalizes ordinary deterministic communication protocols in the
following way: in order to communicate a bit, the sender plays this bit, while the
receiver plays a constant between 0 and 1, so that he can determine the value of the
bit from the outcome of the comparison.

Formally, such a protocol P is specified by a binary tree, where each internal node
v is labeled by two functions f Iv : X → R, giving player I’s move, and f IIv : Y → R,
giving player II’s move, and each leaf is labeled by an element z ∈ Z. On input
(x, y) ∈ X×Y , the players construct a path through the tree according to the following
rule:

At node v, if f Iv (x) > f
II
v (y), then the next node is the left son of v

and otherwise the right son of v.
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The value P (x, y) computed by P on input (x, y) is the label of the leaf reached by
this path.

A real communication protocol P solves a search problem R ⊆ X × Y × Z if for
every (x, y) ∈ X × Y , (x, y, P (x, y)) ∈ R holds. The real communication complexity
CCR(R) of a search problem R is the minimal depth of a real communication protocol
that solves R.

For a natural number n, let [n] denote the set {1, . . . , n}. Let f : {0, 1}n → {0, 1}
be a monotone boolean function, let X := f−1(1) and Y := f−1(0), and let the
multifunction Rf ⊆ X × Y × [n] be defined by

(x, y, i) ∈ Rf iff xi = 1 and yi = 0.

The Karchmer–Wigderson game for f is defined as follows. Player I receives an input
x ∈ X and player II an input y ∈ Y . They have to agree on a position i ∈ [n]
such that (x, y, i) ∈ Rf . The Karchmer–Wigderson game for a monotone boolean
function f is also denoted by Rf . As happens with monotone boolean functions
and communication complexity, there is a relation between the real communication
complexity of Rf and the depth of monotone real circuits (and the size of a monotone
real formulas) computing f .

Lemma 2.1 (see Kraj́ıček [22]). Let f be a monotone boolean function. Then

1. CCR(Rf ) ≤ dR(f);
2. CCR(Rf ) ≤ log3/2 sR(f).

For a proof see [22] or [18]. Notice that by Lemma 2.1 a linear lower bound for
the real communication complexity of Rf gives an exponential lower bound for the
size of the smallest monotone real formula computing f .

2.4. DART games and structured protocols. Raz and McKenzie [25] in-
troduced a special kind of communication games, called DART games, and a special
class of communication protocols, the structured protocols, for solving them.

For m, k ∈ N, DART(m, k) is the set of communication games specified by a
relation R ⊆ X × Y × Z such that the following hold.

• X = [m]k; i.e., the inputs for player I are k-tuples of elements xi ∈ [m].
• Y = ({0, 1}m)k; i.e., the inputs for player II are k-tuples of binary colorings
yi of [m].

• For all i = 1, . . . , k let ei = yi(xi) ∈ {0, 1} (i.e., the xi-th bit in the m-bits
string yi). The relation R ⊆ X × Y × Z defining the game only depends on
e1, . . . , ek and z, i.e., we can describe R(x, y, z) as R((e1, . . . , ek), z).
• R((e1, . . . , ek), z) can be expressed as a disjunctive normal form (DNF)-
search-problem, i.e., there exists a DNF-tautology FR defined over the vari-
ables e1, . . . , ek such that Z is the set of terms of FR, and R((e1, . . . , ek), z)
holds iff the term z is satisfied by the assignment (e1, . . . , ek).

A structured protocol for a DART game is a communication protocol for solving
the search problem R, where player I gets input x ∈ X, player II gets input y ∈ Y ,
and in each round, player I reveals the value xi for some i, and II replies with yi(xi).
The structured communication complexity of R ∈ DART(m, k), denoted by SC(R),
is the minimal number of rounds in a structured protocol solving R. In [25] it was
proved that CC(R) = SC(R) · Ω(logm) for R ∈ DART(m, k). We generalize this
result to real communication complexity, proving

CCR(R) = SC(R) · Ω(logm).
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Observe that at each structured round the two players transmit �logm�+1 bits. The
first player transmits a number in [m] and the second answers with a bit. Since both
players know the structure of the protocol for the game, at each round they both
know the coordinate i of the inputs they are talking about and they have no need to
transmit it. So for a DART game R we have CCR(R) ≤ SC(R) · Ω(logm).

Proving the opposite inequality, which is one of our main results, is much harder.
In Theorem 3.4 we show that for every relation R ∈ DART(m, k), where m ≥ k14,
CCR(R) ≥ SC(R) · Ω(logm).

2.5. The interpolation method. The separations between tree-like CP (re-
spectively, tree-like resolution) and CP (resolution) are among our main results about
proof complexity. The lower bound part of the separation is obtained employing the
following theorem which relates the size of CP refutations with size of monotone real
circuits.

Theorem 2.2 (see Pudlák [23]). Let $p, $q, $r be disjoint vectors of variables, and
let A($p, $q) and B($p, $r) be sets of inequalities in the indicated variables such that the
variables $p either have only nonnegative coefficients in A($p, $q) or have only nonpositive
coefficients in B($p, $r).

Suppose there is a CP refutation P of A($p, $q)∪B($p, $r). Then there is a monotone
real circuit C($p) of size O(|P |) such that for any vector $a ∈ {0, 1}|�p|

C($a) = 0 → A($a, $q) is unsatisfiable,

C($a) = 1 → B($a, $r) is unsatisfiable.

Furthermore, if P is tree-like, then C($p) is a monotone real formula.
The fact that the interpolant C($p) is a monotone real formula if the refutation is

tree-like is not stated explicitly in [23], but it can be checked easily by analyzing the
original proof of Theorem 2.2 in [23].

We use this theorem to get lower bounds for CP refutations from lower bounds
for monotone real formulas. Recall that a minterm (respectively, a maxterm) of a
boolean function f : {0, 1}n → {0, 1} is a set of inputs x ∈ {0, 1}n such that f(x) = 1
(respectively, f(x) = 0) and for each y ∈ {0, 1}n obtained from x by changing a
bit from 1 to 0 (respectively, by changing a bit from 0 to 1) it holds that f(y) = 0
(respectively, f(y) = 1).

For a certain boolean function f we will apply Theorem 2.2 to a CNF formula
A($p, $q) ∪ B($p, $r) such that A($p, $q) will encode that $p is a minterm of f and B($p, $r)
will encode that $p is maxterm of f . Clearly the formula is unsatisfiable. Using the
interpolation theorem, from any tree-like CP refutation of A($p, $q)∪B($p, $r) we will get
an interpolant which is a monotone real formula computing f . Therefore if we prove
exponential lower bounds for the size of the tree-like monotone real circuits computing
f , we immediately obtain an exponential lower bound for tree-like CP refutations for
A($p, $q) ∪B($p, $r). The same result also holds for tree-like resolution.

To get the separation results we need a monotone boolean function with some
nice properties, namely,

1. exponential lower bounds for monotone real formulas computing the function,
and

2. the corresponding A($p, $q) ∪ B($p, $r) formula must have polynomial-size reso-
lution (and, therefore, also CP) refutations.

The chosen monotone boolean function f is the function Genn : {0, 1}n3 → {0, 1}
considered by Raz and McKenzie [25]. The input bits are called ta,b,c for a, b, c ∈ [n].
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The function is defined as follows: Genn(t111 · · · tnnn) = 1 iff � n, where for c ∈ [n],
� c (meaning c is generated) is defined recursively by

� c iff c = 1 or there are a, b ≤ n with � a , � b, and ta,b,c = 1 .

From now on we will write a, b � c for ta,b,c = 1.
To get the exponential separation the task to be done is as follows.
1. Prove exponential lower bounds for the size of monotone real formulas com-

puting Genn.
2. Find CNF formulas A($p, $q) and B($p, $r) expressing, respectively, a minterm

and a maxterm of Genn.
3. Show polynomial size resolution (and CP) refutations for A($p, $q) ∪B($p, $r).

In section 3 we will show, among other things, that CCR(RGenn) ≥ Ω(nε) for
some ε > 0. From this, it follows by part 2 of Lemma 2.1 that sR(Genn) ≥ 2Ω(nε);
thus task 1 is achieved. Tasks 2 and 3 will be developed in section 4.

3. Lower bounds for real communication complexity. In this section we
prove an Ω(nε) lower bound for the real communication complexity of the Karchmer–
Wigderson game associated to Genn, denoted by RGenn

.
Theorem 3.1. For some ε > 0 and sufficiently large n

CCR(RGenn) ≥ Ω(nε).

To prove Theorem 3.1 we define a DART game PyrGen(m, d) in section 3.1
related to the Genn function. This game is used with parameters m = d28 and
n =

(
d+1
2

)
m + 2, so that d ≈ n1/30. Then we will prove the following results from

which Theorem 3.1 directly follows:

SC(PyrGen(m, d)) ≥ d (Lemma 3.2),

CCR(PyrGen(m, d)) ≥ SC(PyrGen(m, d)) Ω(logm) (Theorem 3.4),

CCR(RGenn) ≥ CCR(PyrGen(m, d)) (Lemma 3.3).

Lemma 3.2 is proved in [25]; therefore, we omit its proof. Theorem 3.4 is proved in
section 3.2 for any DART game R. Lemma 3.3 is proved in section 3.1. In section 3.3
we deduce some lower bounds for monotone real circuits from these results.

3.1. The pyramidal generation game. For d ∈ N, let

Pyrd := { (i, j) : 1 ≤ j ≤ i ≤ d } .
Following [25], a communication game in DART (m,

(
d+1
2

)
) called PyrGen(m, d) is

defined as follows. We regard the indices as elements of Pyrd, so that the inputs for
the two players I and II in the PyrGen(m, d) game are, respectively, sequences of
elements xi,j ∈ [m] and yi,j ∈ {0, 1}m with (i, j) ∈ Pyrd, and we picture these as laid
out in a pyramidal form with (1, 1) at the top and (d, j), 1 ≤ j ≤ d, at the bottom.
The goal of the game is to find either an element colored 0 at the top of the pyramid,
or an element colored 1 at the bottom of the pyramid, or an element colored 1 with
the two elements below it colored 0. That is, we have to find indices (i, j) such that
one of the following holds:

1. i = j = 1 and y1,1(x1,1) = 0, or
2. yi,j(xi,j) = 1 and yi+1,j(xi+1,j) = 0 and yi+1,j+1(xi+1,j+1) = 0, or
3. i = d and yd,j(xd,j) = 1.
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Observe that, setting ei,j = yi,j(xi,j) for 1 ≤ j ≤ i ≤ d, this search problem can be
defined as a DNF-search-problem given by the following DNF-tautology:

ē1,1 ∨
∨

1≤j≤i≤d−1

(ei,j ∧ ēi+1,j ∧ ēi+1,j+1) ∨
∨

1≤j≤d
ed,j .

Therefore, PyrGen(m, d) is a game in DART(m,
(
d+1
2

)
).

A lower bound on the structured communication complexity of PyrGen(m, d)
was proved in [25].

Lemma 3.2 (see Raz and McKenzie [25]). SC(PyrGen(m, d)) ≥ d.
The following reduction shows that the real communication complexity of

the game PyrGen(m, d) is bounded by the real communication complexity of the
Karchmer–Wigderson game for Genn (denoted by RGenn

) for a suitable n. The proof
is taken from [25]. It is included because it can help the reader to understand other
parts of this paper.

Lemma 3.3. Let d,m ∈ N and let n := m · (d+1
2

)
+ 2. Then

CCR(PyrGen(m, d)) ≤ CCR(RGenn
).

Proof. We prove that any protocol solving the Karchmer–Wigderson game for
Genn can be used to solve the PyrGen(m, d) game. Recall that PyrGen(m, d) is
a DART(m,

(
d+1
2

)
) game, so the two players I and II receive inputs, respectively, of

the form (x1,1, . . . , xd,d), where xi,j ∈ [m] for all (i, j) ∈ Pyrd and (y1,1, . . . , yd,d),
where yi,j ∈ {0, 1}m for all (i, j) ∈ Pyrd.

From their respective inputs for the PyrGen(m, d) game, players I and II com-
pute, respectively, a minterm txa,b,c and a maxterm tya,b,c, for Genn, and then they
play the Karchmer–Wigderson game applying the protocol P .

As in [25] we consider fixed the element 1 as a bottom generator and the element
n as the element we want to generate. We interpret the remaining n − 2 =

(
d+1
2

)
m

elements between 2 and n− 1 as triples (i, j, k), where (i, j) ∈ Pyrd and k ∈ [m].
Now player I computes from his input (x1,1, . . . , xd,d) an input txa,b,c for Genn

such that Genn(t
x
a,b,c) = 1 by setting the following (recall that a, b � c means ta,b,c =

1):

1, 1 � gd,j for 1 ≤ j ≤ d,
g1,1, g1,1 � n,
gi+1,j , gi+1,j+1 � gi,j for (i, j) ∈ Pyrd−1,

where gi,j := (i, j, xi,j) ∈ {2, . . . , n − 1} and all the other bits txa,b,c = 0. This
completely determines txa,b,c, and obviously Genn(t

x
a,b,c) = 1 since we have forced a

generation of n (in a pyramidal form).
Likewise, player II computes from his input (y1,1, . . . , yd,d) a coloring col of the

elements from [n] by setting col(1) = 0, col(n) = 1, and col((i, j, k)) = yi,j(k) (the kth
bit of y(i,j)). From this coloring, he computes an input tya,b,c by setting tya,b,c = 1 iff it

is not the case that col(c) = 1 and col(a) = col(b) = 0. Obviously, Genn(t
y
a,b,c) = 0.

Running the protocol for the Karchmer–Wigderson game for Genn now yields a
triple (a, b, c) such that txa,b,c = 1 and tya,b,c = 0. By definition of ty, this means that
col(a) = col(b) = 0 and col(c) = 1, and by definition of tx one of the following cases
must hold.

• a = b = 1 and c = gd,j for some j ≤ d. By definition of col, yd,j(xd,j) = 1.
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• c = n and a = b = g1,1. In this case, y1,1(x1,1) = 0.
• a = gi+1,j , b = gi+1,j+1, and c = gi,j . Then we have yi,j(xi,j) = 1, and
yi+1,j(xi+1,j) = yi+1,j+1(xi+1,j+1) = 0.

In either case, the players have solved PyrGen(m, d) without any additional com-
munication.

3.2. Relation between structured complexity and real communication
complexity. We prove here the following general theorem for DART games.

Theorem 3.4. Let m, k ∈ N. For every relation R ∈ DART(m, k), where
m ≥ k14,

CCR(R) ≥ SC(R) · Ω(logm) .

We first need some combinatorial notions from [25] and some lemmas. Let A ⊆
[m]k and 1 ≤ j ≤ k. For x ∈ [m]k−1, let degj(x,A) be the number of ξ ∈ [m] such
that (x1, . . . , xj−1, ξ, xj , . . . , xk−1) ∈ A. Then we define

A[j] :=
{
x ∈ [m]k−1 : degj(x,A) > 0

}
,

AVDEGj (A) :=
|A|
|A[j]| ,

MINDEGj (A) := min
x∈A[j]

degj(x,A),

Thickness(A) := min
1≤j≤k

MINDEGj (A) .

The following lemmas about these notions were proved in [25].
Lemma 3.5 (see [25]). For every A′ ⊆ A and 1 ≤ j ≤ k,

AVDEGj (A
′) ≥ |A

′|
|A| AVDEGj (A),(3.1)

Thickness(A[j]) ≥ Thickness(A).(3.2)

Lemma 3.6 (see [25]). Let 0 < δ < 1 be given. If for every 1 ≤ j ≤ k,
AVDEGj (A) ≥ δm, then for every α > 0 there is A′ ⊆ A with |A′| ≥ (1− α)|A| and

Thickness(A′) ≥ αδm
k
.

In particular, setting α = 1
2 and δ = 4m−

1
14 , we get the following corollary.

Corollary 3.7. If m ≥ k14 and for every 1 ≤ j ≤ k, AVDEGj (A) ≥ 4m
13
14 ,

then there is A′ ⊆ A with |A′| ≥ 1
2 |A| and Thickness(A) ≥ m 11

14 .
For a relation R ∈ DART(m, k), A ⊆ X and B ⊆ Y , let CCR(R,A,B) be the

real communication complexity of R restricted to A×B.
Definition 3.8 ((α, β, 3)-game). Let m ∈ N, m ≥ k14. Let A ⊆ X and B ⊆ Y .

A triple (R,A,B) is called an (α, β, 3)-game if the following conditions hold:
1. R ∈ DART(m, k),
2. SC(R) ≥ 3,
3. |A| ≥ 2−α|X| and |B| ≥ 2−β |Y |,
4. Thickness(A) ≥ m 11

14 .
The following lemma and its proof are slightly different from the corresponding

lemma in [25], because we use the strong notion of real communication complexity



1472 M. BONET, J. ESTEBAN, N. GALESI, AND J. JOHANNSEN

where [25] uses ordinary communication complexity. The modification we apply is
analogous to that introduced by Johannsen [18] to improve the result of Karchmer
and Wigderson [20] to the case of real communication complexity. This modification
will affect the proof of the first point of the next lemma. We include a proof of the
second part for completeness.

Lemma 3.9. For every α, 3 ≥ 0 and 0 ≤ β ≤ m 1
7 , m ≥ 100014, and every

(α, β, 3)-game (R,A,B),

1. if for every 1 ≤ j ≤ k, AVDEGj (A) ≥ 8m
13
14 , then there is an (α+2, β+1, 3)-

game (R′, A′, B′) with

CCR(R
′, A′, B′) ≤ CCR(R,A,B)− 1;

2. if 3 ≥ 1 and for some 1 ≤ j ≤ k, AVDEGj (A) < 8m
13
14 , then there is an

(α+ 3− logm
14 , β + 1, 3− 1)-game (R′, A′, B′) with

CCR(R
′, A′, B′) ≤ CCR(R,A,B) .

Proof (proof of Lemma 3.9 (part 1)). Let (R,A,B) be an (α, β, 3)-game. First we
show that CCR(R,A,B) �= 0. Assume by contradiction that CCR(R,A,B) = 0. Then
the players have no need to transmit information to solve R. This means that the
answer to the game is implicit in the domain A×B and, therefore, by requirement (4)
of DART games there is a term in the DNF-tautology FR defining R that is satisfied
for every (x, y) ∈ A × B. Therefore, there is at least a coordinate j, 1 ≤ j ≤ k,
such that yj(xj) is constant (i.e., is always 0 or always 1). If γ denotes the number of
possible different values of xj in elements of A, then this implies that |B| ≤ 2mk−γ . On
the other hand, |B| ≥ 2mk−β , and hence it follows that β ≥ γ, which is a contradiction

since β ≤ m 1
7 , whereas AVDEGj (A) ≥ 8m

13
14 implies γ ≥ 8m

13
14 .

Let an optimal real communication protocol solving R restricted to A × B be
given. For a ∈ A and b ∈ B, let ρa and σb be the real numbers played by I and II
in the first round on input a and b, respectively. Without loss of generality we can
assume that these are |A|+ |B| pairwise distinct real numbers.

Now consider a {0, 1}-matrix of size |A| × |B| with columns indexed by the ρa
and rows indexed by the σb, both in increasing order, and where the entry in position
(ρa, σb) is 1 if ρa > σb and 0 if ρa ≤ σb. Thus this entry determines the outcome of the
first round, when these numbers are played. It is now obvious that either the upper
right quadrant or the lower left quadrant must form a monochromatic rectangle.

Hence there are A◦ ⊆ A and B′ ⊆ B with |A◦| ≥ 1
2 |A| and |B′| ≥ 1

2 |B| such that
R restricted to A◦ × B′ can be solved by a protocol with one round fewer than the
original protocol. This means that CCR(R,A

◦, B′) ≤ CCR(R,A,B)− 1. By (3.1) of

Lemma 3.5, AVDEGj (A
◦) ≥ 4m

13
14 for every 1 ≤ j ≤ k; hence by Corollary 3.7 there

is A′ ⊆ A◦ with |A′| ≥ 1
2 |A◦| ≥ 1

4 |A| and Thickness(A′) ≥ m 11
14 . Thus (R,A′, B′) is

an (α + 2, β + 1, 3)-game; moreover, since A′ ⊆ A◦, we have that CCR(R,A
′, B′) ≤

CCR(R,A
◦, B′), from which the lemma follows.

(Part 2). We proceed like in the proof of the corresponding lemma of [25], with the
numbers slightly adjusted. Assume without loss of generality that k is the coordinate
for which AVDEGk (A) < 8m

13
14 . Let R0 and R1 be the restrictions of R in which the

kth coordinate ek = yk(xk) is fixed to 0 and 1, respectively. Obviously, R0 and R1

are DART(m, k − 1) relations, and therefore at least one of SC(R0) and SC(R1) is
at least 3− 1. Assume without loss of generality that SC(R0) ≥ 3− 1. We will prove
that there are two sets A′ ⊆ [m]k−1 and B′ ⊆ ({0, 1}m)k−1 such that the following
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properties hold:

|A′| ≥ mk−1

2α+3− log m
14

,(3.3)

|B′| ≥ 2m(k−1)

2β+1
,(3.4)

Thickness(A′) ≥ m 11
14 ,(3.5)

CCR(R0, A
′, B′) ≤ CCR(R,A,B).(3.6)

This means that there is an (α + 3 − logm
14 , β + 1, 3 − 1)-game (R0, A

′, B′) such that
CCR(R0, A

′, B′) ≤ CCR(R,A,B) and this proves part 2 of Lemma 3.9.
Given any set U ⊂ [m], consider the sets AU ⊆ [m]k−1 and BU ⊆ ({0, 1}m)k−1

associated to the set U by the following definition of [25]:
• (x1, . . . xk−1) ∈ AU iff there is an u ∈ U such that (x1, . . . xk−1, u) ∈ A;
• (y1, . . . yk−1) ∈ BU iff there is a w ∈ {0, 1}m such that w(u) = 0 for all u ∈ U
and (y1, . . . yk−1, w) ∈ B.

The following two claims can be proved exactly as the corresponding claims of [25]
and we omit their proof.

Claim 3.10. For a random set U of size m
5
14 , with m ≥ 100014, we have that

ProbU
[
AU = A[k]

] ≥ 3

4
.

Claim 3.11. For a random set U of size m
5
14 , with m ≥ 100014, we have that

ProbU

[
|BU | ≥ |B|

2m+1

]
≥ 3

4
.

Moreover, it is immediate to see that the same reduction used in Claim 6.3 of [25] also
works for the case of real communication complexity. Therefore, we get the following
claim.

Claim 3.12. For every set U ⊂ [m],

CCR(R0, AU , BU ) ≤ CCR(R,A,B) .

Take a random set U which, with probability greater than 1
2 , satisfies both the

properties of Claim 3.10 and Claim 3.11, and define A′ := AU and B′ := BU . This

means that with probability at least 1
2 both A′ = A[k] and |B′| ≥ |B|

2m+1 hold.

Recall that |A||A′| =
|A|
|A[k]| = AVDEGk (A) and that, by hypothesis on part 2 of the

lemma |AVDEGk (A)| ≤ 8m
13
14 . Therefore, we have that

|A′| ≥ |A|
8m

13
14

≥ mk

2α8m
13
14

=
mk−1

2α+3− log m
14

.

This proves (3.3). For (3.4) observe that by Claim 3.11 we have

|B′| ≥ |B|
2m+1

≥ 2mk

2β2m+1
=

2m(k−1)

2β+1
.

The property (3.5) follows directly from Lemma 3.5 (3.2), and finally (3.6) follows
from Claim 3.12.
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3.2.1. Proof of Theorem 3.4.

Proof. Let k ∈ N, k ≥ 1000. We prove that for any α, β, 3,m ≥ 0, with β ≤ m1/7,
3 ≥ 1, and m ≥ k14, every (α, β, 3)-game (R,A,B) is such that

CCR(R,A,B) ≥ 3 ·
(
logm

42
− 4

3

)
− α+ β

3
.(3.7)

Observe that by the definition of an (α, β, 3)-game, when α = β = 0 we have that
A = X and B = Y . Therefore, CCR(R,A,B) = CCR(R). Moreover, the right side of
(3.7) reduces to 3 · Ω(logm). Since by the same definition 3 ≤ SC(R) for α = β = 0
we get the claim of the theorem:

CCR(R) ≥ SC(R) · Ω(logm).

To prove (3.7), we proceed by induction on 3 ≥ 1 and β ≤ m1/7. In the base case

3 < 1 (that is, 3 = 0) and β > m
1
7 , the inequality (3.7) is trivial, since the right-hand

side gets negative for large m. In the inductive step consider (R,A,B) as an (α, β, 3)-
game, and assume that (3.7) holds for all (α′, β′, 3′)-games with 3′ ≤ 3 and β′ > β.
For the sake of contradiction, suppose that CCR(R,A,B) < 3 · ( logm

42 − 4
3 ) − α+β

3 .

Then either for every 1 ≤ j ≤ k, AVDEGj (A) ≥ 8m
13
14 , and Lemma 3.9 gives an

(α+ 2, β + 1, 3)-game (R′, A′, B′) with

CCR(R
′, A′, B′) ≤ CCR(R,A,B)− 1

< 3 ·
(
logm

42
− 4

3

)
− (α+ 2) + (β + 1)

3
,

or for some 1 ≤ j ≤ k, AVDEGj (A) < 8m
13
14 , and Lemma 3.9 gives an (α + 3 −

logm
14 , β + 1, 3− 1)-game (R′, A′, B′) with

CCR(R
′, A′, B′) < 3 ·

(
logm

42
− 4

3

)
− α+ β

3

= (3− 1) ·
(
logm

42
− 4

3

)
− (α+ 3− logm

14 ) + (β + 1)

3
,

both contradicting the assumption.

3.3. Consequences for monotone real circuits. As a first corollary to Theo-
rem 3.4, we observe that for DART games, real communication protocols are no more
powerful than deterministic communication protocols.

Corollary 3.13. Let m, k ∈ N. For R ∈ DART(m, k) with m ≥ k14,

CCR(R) = Θ(CC(R)) .

Proof. CC(R) ≥ CCR(R) ≥ SC(R) · Ω(logm) ≥ Ω(CC(R)).

From Theorem 3.1 we obtain consequences for monotone real circuits analogous
to those obtained in [25] for monotone boolean circuits. An immediate consequence
of Theorem 3.1 and Lemma 2.1 is the following theorem.

Theorem 3.14. Any tree-like monotone real circuit computing the boolean func-
tion Genn must have size 2Ω(nε) for some ε > 0.
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Definition 3.15 (pyramidal generation). Let $t be an input to Genn. We say
that n is generated in a depth d pyramidal fashion by $t if there is a mapping m :
Pyrd → [n] such that the following hold (recall that a, b � c means ta,b,c = 1):

1, 1 � m(d, j) for every j ≤ d,
m(i+ 1, j),m(i+ 1, j + 1) � m(i, j) for every (i, j) ∈ Pyrd−1,

m(1, 1),m(1, 1) � n.

We can obtain an analogue of Theorem 3.14 also for the simpler case in which
the generation is restricted to be only in a pyramidal form.

Corollary 3.16. Every monotone real formula that outputs 1 on every input to
Genn for which n is generated in a depth d pyramidal fashion, and outputs 0 on all
inputs where Genn is 0, has to be of size Ω(2n

ε

) for some ε > 0.
Proof. To simplify, let Pyrgenn be any monotone boolean function that outputs 1

on every input to Genn for which n is generated in a depth d pyramidal fashion, and
outputs 0 on all inputs where Genn is 0. Note that there are many such functions,
since the output is not specified in the case where n can be generated, but not in
a depth d pyramidal fashion. Observe that in Lemma 3.3, player I builds from his
input an input for Genn which enforces a depth d pyramidal generation. So the proof
of Lemma 3.4 also shows that CCR(PyrGen(m, d)) ≤ CCR(RPyrgenn). Lemma 3.2
and Theorem 3.4 then imply that CCR(RPyrgenn) ≥ Ω(nε) for some ε > 0. Finally,
Lemma 2.1 gives the statement of the corollary.

The other consequences drawn from Theorem 3.4 and Lemma 3.2 in [25] apply to
monotone real circuits as well, e.g., we just state without proof the following result.

Theorem 3.17. There are constants 0 < ε, γ < 1 such that for every function
d(n) ≤ nε, there is a family of monotone functions fn : {0, 1}n → {0, 1} that can be
computed by monotone boolean circuits of size nO(1) and depth d(n), but cannot be
computed by monotone real circuits of depth less than γ · d(n).

The method also gives a simpler proof of the lower bounds in [18] in the same
way that [25] simplifies the lower bound of [20].

4. Separation between tree-like and dag-like versions of resolution and
cutting planes. We will define an unsatisfiable CNF formula Gen($p, $q) ∧ Col($p, $r)
that fulfills the assumptions of Theorem 2.2, so any CP refutation of it can be trans-
formed into a monotone real circuit, and any tree-like CP refutation into a monotone
real formula. This circuit (or formula) is similar in size to the original CP refuta-
tion. We will show that it computes a boolean function related to Genn: It out-
puts 1 if n is generated in a pyramidal way, so the exponential size lower bound in
Corollary 3.16 implies an exponential size lower bound for tree-like CP refutations
of Gen($p, $q) ∧ Col($p, $r). Besides, we give a polynomial size resolution refutation of
Gen($p, $q)∧Col($p, $r). As CP polynomially simulates resolution, we get the separation
between tree-like CP and CP; in fact, we also get a separation of tree-like resolution
from resolution.

Let n and d be natural numbers whose values are to be fixed. Recall that the
set Pyrd is { (i, j) : 1 ≤ j ≤ i ≤ d }. The vector $p, that is, the variables pa,b,c for
a, b, c ∈ [n], represent the input to Genn.

The set of clauses Gen($p, $q) is designed to be satisfiable if in the input $p, n is
generated in a depth d pyramidal fashion. To this end, the variables qi,j,a for (i, j) ∈
Pyrd and a ∈ [n] encode a mapping m : Pyrd → [n] as in the definition of pyramidal
generation in section 3.15, where qi,j,a is intended to express that m(i, j) = a.
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On the other hand, the set of clauses Col($p, $r) is designed to be satisfiable if for
the input $p, Genn($p) = 0. To achieve this, the variables ra for a ∈ [n] encode a
coloring of the elements of [n] such that element 1 is colored 0, element n is colored
1, and the elements colored 0 are closed under generation, i.e., if a and b are colored
0 and a, b � c, then c is also colored 0.

The set Gen($p, $q) is given by (4.1)–(4.4), and Col($p, $r) by (4.5)–(4.7).∨
1≤a≤n

qi,j,a for (i, j) ∈ Pyrd,(4.1)

q̄d,j,a ∨ p1,1,a for 1 ≤ j ≤ d and a ∈ [n],(4.2)

q̄1,1,a ∨ pa,a,n for a ∈ [n],(4.3)

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ pa,b,c for (i, j) ∈ Pyrd−1 and a, b, c ∈ [n],(4.4)

p̄1,1,a ∨ r̄a for a ∈ [n],(4.5)

p̄a,a,n ∨ ra for a ∈ [n],(4.6)

ra ∨ rb ∨ p̄a,b,c ∨ r̄c for a, b, c ∈ [n].(4.7)

Obviously, Gen($p, $q) ∧ Col($p, $r) is unsatisfiable. Observe that the variables $p occur
only positively in Gen($p, $q) and only negatively in Col($p, $r); thus Theorem 2.2 yields
an interpolating monotone real formula C($p).

Now if, for a assignment $t to the variables $p, n is generated in a depth d pyra-
midal fashion, then Gen($t, $q) is satisfiable by setting the values of the variables qi,j,a
according to the mapping m. Therefore, Col($t, $r) must be unsatisfiable, and thus
C($t) = 1.

If, on the other hand, Genn($t) = 0, then Col($t, $r) can be satisfied by assigning
the color 0 to precisely those elements that can be generated in $t. Therefore, Gen($t, $q)
must be unsatisfiable, and so C($t) = 0.

Thus C($p) is a monotone real formula satisfying the assumptions of Corollary 3.16,
and therefore it has to be of size 2Ω(nε). Note that Theorem 2.2 gives no information
about the behavior of C($t) in the case where Gen($t, $q) and Col($t, $r) are both unsatis-
fiable; thus we need Corollary 3.16 in precisely the general form in which it is stated.
From the size bounds in Theorem 2.2 we now obtain the following theorem.

Theorem 4.1. Every tree-like CP refutation of the clauses Gen($p, $q)∪Col($p, $r)
has to be of size 2Ω(nε) for some ε > 0.

On the other hand, there are polynomial size dag-like resolution refutations of
these clauses.

Theorem 4.2. There are (dag-like) resolution refutations of size nO(1) of the
clauses Gen($p, $q) ∪ Col($p, $r).

Proof. First we resolve clauses (4.2) and (4.5) to get

q̄d,j,c ∨ r̄c(4.8)

for 1 ≤ j ≤ d and 1 ≤ c ≤ n.
Now we want to derive q̄i,j,c ∨ r̄c for every (i, j) ∈ Pyrd and 1 ≤ c ≤ n, by

induction on i downward from d to 1. The induction base is just (4.8).
Now by induction we have

q̄i+1,j,a ∨ r̄a and q̄i+1,j+1,b ∨ r̄b .

We resolve them against (4.7) to get q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ p̄a,b,c ∨ r̄c for 1 ≤ a, b, c ≤ n
and then resolve them against (4.4) and get

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ r̄c
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for every 1 ≤ a, b ≤ n. All of these are then resolved against two instances of (4.1),
and we get the desired q̄i,j,c ∨ r̄c for every 1 ≤ c ≤ n.

Finally, we have, in particular, q̄1,1,a ∨ r̄a for every 1 ≤ c ≤ n. We resolve them
with (4.6) and get q̄1,1,a ∨ p̄a,a,n for every 1 ≤ a ≤ n. These are resolved with (4.3) to
get q̄1,1,a for every 1 ≤ a ≤ n. Finally, this clause is resolved with another instance
of (4.3) (the one with i = j = 1) to get the empty clause.

It is easy to check that the above refutation is a negative resolution refutation.
The following corollary is an easy consequence of the above theorems and known
simulation results.

Corollary 4.3. The clauses Gen($p, $q) ∪ Col($p, $r) exponentially separate tree-
like resolution from dag-like resolution; in fact, they separate tree-like resolution from
dag-like negative resolution. They also separate tree-like cutting planes from dag-like
cutting planes.

The resolution refutation of Gen($p, $q) ∪ Col($p, $r) that appears in the proof of
Theorem 4.2 is not regular. We do not know whether Gen($p, $q) ∪ Col($p, $r) has poly-
nomial size regular resolution refutations. To obtain a separation between tree-like
resolution and regular resolution we will modify the clauses Col($p, $r).

4.1. Separation of tree-like cp from regular resolution. The clauses Col($p, $r)
are modified (and the modification is called RCol($p, $r)), so that Gen($p, $q)∪RCol($p, $r)
allow small regular resolutions, but in such a way that the lower bound proof still ap-
plies. We replace the variables ra by ra,i,D for a ∈ [n], 1 ≤ i ≤ d, and D ∈ {L,R},
giving the coloring of element a, with auxiliary indices i being a row in the pyramid
and D distinguishing whether an element is used as a left or right predecessor in the
generation process.

The set RCol($p, $r) is defined as follows:

p̄1,1,a ∨ r̄a,d,D for a ∈ [n] and D ∈ {L,R},(4.9)

p̄a,a,n ∨ ra,1,D for a ∈ [n] and D ∈ {L,R},(4.10)

ra,i+1,L ∨ rb,i+1,R ∨ p̄a,b,c ∨ r̄c,i,D for i < d, a, b, c ∈ [n], and D ∈ {L,R},(4.11)

r̄a,i,D ∨ ra,i,D̄ for 1 ≤ i ≤ d and D ∈ {L,R},(4.12)

r̄a,i,D ∨ ra,j,D for 1 ≤ i, j ≤ d and D ∈ {L,R}.(4.13)

Due to the clauses (4.12) and (4.13), the variables ra,i,D are equivalent for all values
of the auxiliary indices i,D. Hence a satisfying assignment for RCol($p, $r) still codes
a coloring of [n] such that elements a with 1, 1 � a are colored 0, the elements b with
b, b � n are colored 1, and the 0-colored elements are closed under generation. Hence
if RCol($t, $r) is satisfiable, then Gen($t) = 0.

Hence any interpolant for the clauses Gen($p, $q)∪RCol($p, $r) satisfies the assump-
tions of Corollary 3.16, and we can conclude the following theorem.

Theorem 4.4. Tree-like CP refutations of the clauses Gen($p, $q) ∪ RCol($p, $r)
have to be of size 2Ω(nε).

On the other hand, we have the following upper bound on (dag-like) regular
resolution refutations of these clauses.

Theorem 4.5. There are (dag-like) regular resolution refutations of the clauses
Gen($p, $q) ∪RCol($p, $r) of size nO(1).

Proof. First we resolve clauses (4.2) and (4.9) to get

q̄d,j,a ∨ r̄a,d,D(4.14)
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for 1 ≤ j ≤ d, 1 ≤ a ≤ n, and D ∈ {L,R}. Next we resolve (4.3) and (4.10) to get

q̄1,1,a ∨ ra,1,D(4.15)

for 1 ≤ a ≤ n, and D ∈ {L,R}. Finally, from (4.4) and (4.11) we obtain

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ ra,i+1,L ∨ rb,i+1,R ∨ r̄c,i,D(4.16)

for 1 ≤ j ≤ i < d, 1 ≤ a, b, c ≤ n, and D ∈ {L,R}.
Now we want to derive q̄i,j,a ∨ r̄a,i,D for every (i, j) ∈ Pyrd, 1 ≤ a ≤ n, and

D ∈ {L,R}, by induction on i downward from d to 1. The induction base is just
(4.14).

For the inductive step, resolve (4.16) against the clauses

q̄i+1,j,a ∨ r̄a,i+1,L and q̄i+1,j+1,b ∨ r̄b,i+1,R ,

which we have by induction to give

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ r̄c,i,D

for every 1 ≤ a, b ≤ n. All of these are then resolved against two instances of (4.1),
and we get the desired q̄i,j,c ∨ r̄c,i,D.

Finally, we have, in particular, q̄1,1,a ∨ r̄a,1,L, which we resolve against (4.15) to
get q̄1,1,a for every a ≤ n. From these and an instance of (4.1) we get the empty
clause.

Note that the refutation given in the proof of Theorem 4.5 is actually an ordered
refutation. It respects the following elimination order:

p1,1,1 . . . pn,n,n

r1,d,L r1,d,R . . . rn,d,L rn,d,R

q1,d,1 . . . q1,d,n . . . qd,d,1 . . . qd,d,n

r1,d−1,L . . . rn,d−1,R q1,d−1,1 . . . qd−1,d−1,n

...

r1,1,L r1,1,R q1,1,1 . . . q1,1,n .

Corollary 4.6. The clauses Gen($p, $q)∪RCol($p, $r) exponentially separate tree-
like resolution from ordered resolution; therefore, they also separate exponentially tree-
like resolution from regular resolution.

5. Lower bound for ordered resolution. Goerdt [13] showed that ordered
resolution is strictly weaker than unrestricted resolution by giving a superpolynomial
lower bound (of the order Ω(nlog log n)) for ordered resolutions of a certain family
of clauses, which, on the other hand, has polynomial size unrestricted resolution
refutations. In this section we improve this separation to an exponential one; in fact,
we give an exponential separation of ordered resolution from negative resolution.

To simplify the exposition, we apply the method of [13] to a set of clauses SPn,m
expressing a combinatorial principle that we call the string-of-pearls principle. From
a bag of m pearls, which are colored red and blue, n pearls are chosen and placed on
a string. The string-of-pearls principle SPn,m says that if the first pearl is red and
the last one is blue, then there must be a blue pearl next to a red pearl somewhere
on the string.
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SPn,m is given by an unsatisfiable set of clauses in variables pi,j and qj for i ∈ [n]
and j ∈ [m], where pi,j is intended to say that pearl j is at position i on the string,
and qj means that pearl j is colored blue. The clauses forming SPn,m are

m∨
j=1

pi,j , i ∈ [n],(5.1)

p̄i,j ∨ p̄i,j′ , i ∈ [n], j, j′ ∈ [m], j �= j′,(5.2)

p̄i,j ∨ p̄i′,j , i, i′ ∈ [n], j ∈ [m], i �= i′.(5.3)

These first three sets of clauses express that there is a unique pearl at each position.

p̄1,j′ ∨ q̄j′ , j′ ∈ [m],(5.4)

p̄n,j ∨ qj , j ∈ [m],(5.5)

p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′ , 1 ≤ i < n, j, j′ ∈ [m], j �= j′.(5.6)

These last three sets of clauses express that the first pearl is red, the last one is blue,
and that a pearl sitting next to a red pearl is also colored red. The clauses SPn,m are
a modified and simplified version of the clauses related to the st-connectivity problem
that were introduced by Clote and Setzer [8].

Proposition 5.1. The clauses SPn,m have negative resolution refutations of size
O(nm2).

Proof. For every i ∈ [n], we will derive the clauses p̄i,j ∨ q̄j for j ∈ [m] from SPn,m
by a negative resolution derivation. For i = 1, these are the clauses (5.4) from SPn,m.
Inductively, assume we have derived p̄i,j′ ∨ q̄j′ for j′ ∈ [m], and we want to derive
p̄(i+1),j ∨ q̄j from these.

Consider the clauses (5.6) of the form p̄i,j′ ∨ p̄(i+1),j ∨ qj′ ∨ q̄j for j′ ∈ [m]. Using
the inductive assumption, we derive from these the clauses p̄i,j′ ∨ p̄(i+1),j ∨ q̄j for j′ ∈
[m]. Note that these are negative clauses.

By a derivation of length m, we obtain p̄(i+1),j ∨ q̄j from these and the clause∨
j′∈[m] pi,j′ from SPn,m. The whole derivation is of length O(m), and we need m of

them, giving a total length of O(m2) for the induction step.
We end up with a derivation of the clauses p̄n,j ∨ q̄j for j ∈ [m] of length O(nm2).

In another m steps we resolve these with the initial clauses (5.5), obtaining the sin-
gleton clauses p̄n,j for j ∈ [m]. Finally, we derive a contradiction from these and the
clauses

∨
j∈[m] pn,j .

The above refutation of SPn,m is not ordered, since it is not even regular: the
variables qj for every pearl j are eliminated at every stage of the induction. Neverthe-
less, we are unable to show that there are no short ordered refutations of SPn,m. In
order to obtain a lower bound for ordered resolution refutations, we shall modify the
clauses SPn,m. The lower bound is then proved by a bottleneck counting argument
similar to that used in [13], which is based on the original argument of Haken [16].
Note that the clauses (5.1)–(5.3) are similar to the clauses expressing the pigeonhole
principle, which makes the bottleneck counting technique applicable in our situation.

We call the pearls numbered 1 through n
4 (we assume n

4 to be an integer, for
simplicity) the special pearls. The positions 1 to n

2 on the string are called the left
half, and the positions n2 + 1 to n are called the right half of the string.

For each special pearl j placed on the string, an associated position ı̂ = ı̂(j) is
defined, depending on where on the string j is placed. If j is placed in the left half,



1480 M. BONET, J. ESTEBAN, N. GALESI, AND J. JOHANNSEN

then ı̂ is in the right half; say, ı̂ = n
2 +2j − 1 for definiteness, and if j is placed in the

right half, then ı̂ is in the left half, say, ı̂ = 2j.
The set SP ′n,m is obtained from SPn,m by adding additional literals to those

clauses that restrict the coloring of the special pearls placed on the string. First, the
clauses (5.4) and (5.6) for 1 ≤ i < n

2 , where j
′ ≤ n

4 is special, are replaced by m
clauses each, namely,

p̄ı̂,$ ∨ p̄1,j′ ∨ q̄j′ ,(5.7)

p̄ı̂,$ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′(5.8)

for every 3 ∈ [m], where ı̂ := n
2 + 2j′ − 1, since j′ is placed in the left half. Similarly,

the clauses (5.5) and (5.6) for n2 < i < n and special j ≤ n
4 are replaced by

p̄ı̂,$ ∨ p̄n,j ∨ qj ,(5.9)

p̄ı̂,$ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′(5.10)

for every 3 ∈ [m], where now ı̂ := 2j, since j is placed in the right half. All other
clauses remain unchanged. The modified clauses SP ′n,m do not have an intuitive
combinatorial interpretation different from the meaning of the original clauses SPn,m.
The added literals only serve to make the clauses hard for ordered refutations. The
idea is that for the clauses (5.7)–(5.10) to be used as one would use the original (5.4)–
(5.6) in the natural short, inductive proof above, the additional literals p̄ı̂,$ have to
be removed first. The positions ı̂ are chosen in such a way that this cannot be done
in a manner consistent with a global ordering of the variables.

Theorem 5.2. The clauses SP ′n,m have negative resolution refutations of size
O(nm2).

Proof. We modify the refutation of SPn,m given above for the modified clauses
SP ′n,m. First, note that the original clauses (5.4) can be obtained from (5.7) by a
negative derivation of length m.

Next, we modify those places in the inductive step where the clauses (5.6) are used
that have been modified. First, we resolve the modified clauses (5.8), respectively,
(5.10) with the inductive assumption, yielding the negative clauses

p̄ı̂,$ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ q̄j′

for 3 ∈ [m]. These are then resolved with the clause
∨m
j=1 pı̂,j , after which we can

continue as in the original refutation.
In the places where the clauses (5.5) are used in the original refutation, we first

resolve (5.9) with the clauses p̄n,j ∨ q̄j , yielding p̄ı̂,$ ∨ p̄n,j , which can be resolved with∨m
j=1 pı̂,j to get the singleton clauses p̄n,j as in the original refutation.
In particular, there are polynomial size unrestricted resolution refutations of the

clauses SP ′n,m. The next theorem gives a lower bound for ordered resolution refuta-
tions of these clauses.

Theorem 5.3. For sufficiently large n and m ≥ 9
8n, every ordered resolution

refutation of the clauses SP ′n,m contains at least 2k(log n−5) clauses.
For the sake of simplicity, let n be divisible by 8, say, n = 8k. Let N := nm+m

be the number of variables, and let an ordering x1, x2, . . . , xN of the variables be
given, i.e., each xν is one of the variables pi,j or qj . Let R be an ordered resolution
refutation of SP ′n,m respecting this elimination ordering, i.e., on every path through
R the variables are eliminated in the prescribed order. We shall show that R contains
at least k! different clauses, which is at least 2

n
8 (log n−5) for large n.
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For a position i ∈ [n] and ν ≤ N , let S(i, ν) be the set of special pearls j ≤ 2k = n
4

such that pi,j is among the first ν eliminated variables, i.e.,

S(i, ν) := { j ≤ 2k : pi,j ∈ {x1, . . . , xν} } .

Let ν0 be the smallest index such that |S(i, ν0)| = k for some position i, and call this
position i0. It follows that for all i �= i0, |S(i, ν0)| < k. In other words, i0 is the first
position for which k of the variables pi0,j with j ≤ 2k special are eliminated.

Let the elements of S(i0, ν0) be denoted by j1, . . . , jk, enumerated in increasing
order for definiteness. For each 1 ≤ µ ≤ k, let iµ be the position ı̂(jµ) associated to
jµ when jµ is placed on the string at position i0, i.e.,

iµ :=

{
n
2 + 2jµ − 1 if i0 ≤ n

2 ,

2jµ if i0 >
n
2 .

Further, we define for the set Rµ := [2k]\S(iµ, ν0), i.e., Rµ is the set of special pearls j
with the property that on every path in the refutation, the variable piµ,j is eliminated
only after all the variables pi0,jκ for 1 ≤ κ ≤ k have been eliminated. Note that by
the definition of ν0, |S(iµ, ν0)| < k and therefore |Rµ| ≥ k for all 1 ≤ µ ≤ k.

Definition 5.4. A critical assignment is an assignment that satisfies all the
clauses of SP ′n,m except for exactly one of the clauses (5.1). From a critical assignment
α, we define the following data.

• The unique position iα ∈ [n] such that no pearl is placed at position iα by α,
i.e., α(piα,j) = 0 for every j ∈ [m]. We call iα the gap of α.

• A 1-1 mapping mα : [n] \ {iα} → [m], where for every i �= iα, mα(i) is the
pearl placed at position i by α, i.e., the unique j ∈ [m] such that α(pi,j) = 1.

For every j ∈ [m], we refer to the value α(qj) as the color of j, where we identify the
value 0 with red and 1 with blue.

A critical assignment α is called 0-critical if the gap is iα = i0 and mα(iµ) ∈ Rµ
for each 1 ≤ µ ≤ k, and, moreover,

• if i0 is in the left half, then j1, . . . , jk are colored blue (i.e., α(qj1) = · · · =
α(qjk) = 1), and

• if i0 is in the right half, then j1, . . . , jk are colored red (i.e., α(qj1) = · · · =
α(qjk) = 0).

Note that the positions i0, i1, . . . , ik and the pearls j1, . . . , jk, and thus the no-
tion of 0-critical assignment, only depend on the elimination order and not on the
refutation R.

As in other bottleneck counting arguments, the lower bound will now be proved
in two steps. First, we show that there are many 0-critical assignments. Second, we
will map each 0-critical assignment α to a certain clause Cα in R, and then show that
not too many different assignments α can be mapped to the same clause Cα, and thus
that there must be many of the clauses Cα.

The first goal, showing there are many 0-critical assignments, is attained with the
following claim.

Claim 5.5. For every choice of pairwise distinct pearls b1, . . . , bk with bµ ∈ Rµ
for 1 ≤ µ ≤ k, there is a 0-critical assignment α with mα(iµ) = bµ for 1 ≤ µ ≤ k.
In particular, there are at least k! 0-critical assignments that disagree on the values
mα(iµ) for 1 ≤ µ ≤ k.

Proof (proof of Claim 5.5). For those positions i such that mα(i) is not defined
yet, i.e., i /∈ {i0, i1, . . . , ik}, assign pearls mα(i) ∈ [m] \ {j1, . . . , jk} arbitrarily but
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consistently, i.e., choose an arbitrary 1-1 mapping from [n] \ {i0, i1, . . . , ik} to [m] \
{b1, . . . bk, j1, . . . , jk}. This is always possible, since by assumption m ≥ 9k.

Finally, color those pearls that are assigned to positions to the left of the gap
red, and those that are assigned to positions to the right of the gap blue, i.e., set
α(qmα(i)) = 0 for i < i0 and α(qmα(i)) = 1 for i > i0. The pearls j1, . . . , jk are
colored according to the requirement in the definition of a 0-critical assignment.

This coloring of the pearls is well defined even if some of the pearls b1, . . . bk are
among the j1, . . . , jk, because the positions i1, . . . , ik and i0 are in opposing halves of
the string: if i0 is in the left half, then every iµ is in the right half, and, in particular,
iµ > i0. Similarly, if i0 is in the right half, then iµ < i0, so in both cases, the pearls
j1, . . . , jk get the same color as b1, . . . , bk. The remaining pearls can be colored
arbitrarily.

Now we map 0-critical assignments to certain clauses in R. For a 0-critical as-
signment α, let Cα be the first clause in R such that α does not satisfy Cα, and

{ j : pi0,j occurs in Cα } = [m] \ {j1, . . . , jk} .
This clause exists because α determines a path through R from the clause

∨
j∈[m] pi0,j

to the empty clause, such that α does not satisfy any clause on this path. The
variables pi0,j with j ≤ 2k are eliminated along that path, and pi0,j1 , . . . pi0,jk are the
first among them in the elimination order.

Claim 5.6. Let α be a 0-critical assignment. For every 1 ≤ µ ≤ k, the literal
p̄iµ,$µ , where 3µ := mα(iµ), occurs in Cα.

Proof (proof of Claim 5.6). Let α′ be the assignment defined by α′(pi0,jµ) := 1
and α′(x) := α(x) for all other variables x. As pi0,jµ does not occur in Cα, α

′ does
not satisfy Cα either.

There is exactly one clause in SP ′n,m that is not satisfied by α′, depending on
where the gap i0 is; this clause is

i0 = 1 : p̄iµ,$µ ∨ p̄1,jµ ∨ q̄jµ ,

1 < i0 ≤ n
2

: p̄iµ,$µ ∨ p̄i0−1,h ∨ p̄i0,jµ ∨ qh ∨ q̄jµ , where h = mα(i0 − 1),

n

2
< i0 < n : p̄iµ,$µ ∨ p̄i0,jµ ∨ p̄i0+1,h ∨ qjµ ∨ q̄h, where h = mα(i0 + 1),

i0 = n : p̄iµ,$µ ∨ p̄n,jµ ∨ qjµ .

The requirement for the coloring of the jµ in the definition of a 0-critical assignment
entails that these clauses are not satisfied by α′ and that all other clauses are satisfied
by α′.

In any case, the literal p̄iµ,$µ occurs in this clause, and there is a path through R
leading from the clause in question to Cα, such that α′ does not satisfy any clause on
that path. The variable that is eliminated in the last inference on that path must be
one of the pi0,jκ for 1 ≤ κ ≤ k, by the definition of Cα. Since 3µ ∈ Rµ, the variable
piµ,$µ appears after pi0,jκ in the elimination order, by the definition of Rµ . Therefore,
piµ,$µ cannot have been eliminated on that path, so p̄iµ,$µ still occurs in Cα.

Finally, we are ready to finish the proof of the theorem. Let α, β be two 0-
critical assignments such that 3µ := mα(iµ) �= mβ(iµ) for some 1 ≤ µ ≤ k, so that
β(piµ,$µ) = 0. By Claim 5.6, the literal p̄iµ,$µ occurs in Cα; therefore, β satisfies Cα,
and hence Cβ �= Cα.

By Claim 5.5, there are at least k! 0-critical assignments α that disagree on at
least one of the values mα(iµ). Thus R contains at least k! distinct clauses of the
form Cα.
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The following corollary is a direct consequence of Theorems 5.3 and 5.2.

Corollary 5.7. The clauses SP ′n,m for m ≥ 9
8n exponentially separate ordered

resolution from unrestricted resolution and negative resolution.

A modification similar to the one that transforms SPn,m into SP ′n,m can also be
applied to the clauses Gen($p, $q), yielding a set DPGen($p, $q). Then for the clauses
DPGen($p, $q) ∪ Col($p, $r), an exponential lower bound for ordered resolutions can be
proved by the method of Theorem 5.3 (this was presented in the conference version
[5] of this paper). Also the negative resolution proofs of Theorem 4.2 can be modified
for these clauses. Thus the clauses DPGen($p, $q) ∪ Col($p, $r) exponentially separate
ordered from negative resolution as well.

6. Open problems. We would like to conclude by stating some open problems
related to the topics of this paper.

1. For boolean circuits (monotone as well as general), circuit depth and formula
size are essentially the same complexity measure, as they are exponentially
related by the well-known Brent–Spira theorem. Is there an analogous theo-
rem for monotone real circuits, i.e., is dR(f) = Θ(log sR(f)) for every mono-
tone function f? This would be implied by the converse to Lemma 2.1, i.e.,
dR(f) ≤ CCR(Rf ). Does this hold for every monotone function f?

2. The separation between tree-like and dag-like resolution was recently im-
proved to a strongly exponential one, with a lower bound of the form 2n/ logn

[3, 4, 24]. Can we prove the same strong separation between tree-like and
dag-like CP?

3. A solution for the previous problem would follow from a strongly exponential
separation of monotone real formula size from monotone circuit size. Such a
strong separation is not even known for monotone boolean circuits.

4. Can the superpolynomial separations of regular and negative resolution from
unrestricted resolution [14, 15] be improved to exponential as well? And is
there an exponential speed-up of regular over ordered resolution?
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Abstract. We study the set of incompressible strings for various resource bounded versions
of Kolmogorov complexity. The resource bounded versions of Kolmogorov complexity we study
are polynomial time CD complexity defined by Sipser, the nondeterministic variant CND due to
Buhrman and Fortnow, and the polynomial space bounded Kolmogorov complexity CS introduced
by Hartmanis. For all of these measures we define the set of random strings RCD

t , RCND
t , and RCS

t
as the set of strings x such that CDt(x), CNDt(x), and CSs(x) is greater than or equal to the length
of x for s and t polynomials. We show the following:

• MA ⊆ NPRCD
t , where MA is the class of Merlin–Arthur games defined by Babai.

• AM ⊆ NPRCND
t , where AM is the class of Arthur–Merlin games.

• PSPACE ⊆ NPcRCS
s .

In the last item cRCS
s is the set of pairs 〈x, y〉 so that x is random given y. These results

show that the set of random strings for various resource bounds is hard for complexity classes under
nondeterministic reductions.

This paper contrasts the earlier work of Buhrman and Mayordomo where they show that for
polynomial time deterministic reductions the set of exponential time Kolmogorov random strings is
not complete for EXP.
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1. Introduction. The holy grail of complexity theory is the separation of com-
plexity classes like P, NP, and PSPACE. It is well known that all of these classes
possess complete sets and that it is thus sufficient for a separation to show that a
complete set of one class is not contained in the other. Therefore lots of effort was
put into the study of complete sets. (See [11].)

Kolmogorov [19], however, suggested focusing attention on sets which are not
complete. His intuition was that complete sets possess a lot of “structure” that
hinders a possible lower bound proof. He suggested to look at the set of time bounded
Kolmogorov random strings. In this paper we will continue this line of research and
study variants of this set.

Kolmogorov complexity measures the “amount” of regularity in a string. Infor-
mally the Kolmogorov complexity of a string x, denoted as C(x), is the size of the
smallest program that prints x and then stops. For any string x, C(x) is less than or
equal to the length of x (up to some additive constant). Those strings for which it
holds that C(x) is greater than or equal to the length of x are called incompressible
or random. A simple counting argument shows that random strings exist.
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In the sixties, when the theory of Kolmogorov complexity was developed, Mar-
tin [23] showed that the coRE set of Kolmogorov random strings is complete with
respect to (resource unbounded) Turing reductions. Kummer [18] has shown that
this can be strengthened to show that this set is also truth-table complete.

The resource bounded version of the set of random strings was first studied by
Ko [17]. The polynomial time bounded Kolmogorov complexity Cp(x) for p a polyno-
mial is the smallest program that prints x in p(|x|) steps [14]. Ko showed that there
exists an oracle such that the set of random strings with respect to this time bounded
Kolmogorov complexity is complete for coNP under strong nondeterministic polyno-
mial time reductions. He also constructed an oracle where this set is not complete for
coNP under deterministic polynomial time Turing reductions.

Buhrman and Mayordomo [10] considered the exponential time Kolmogorov ran-
dom strings. The exponential time Kolmogorov complexity Ct(x) is the smallest

program that prints x in t(|x|) steps for functions t(n) = 2n
k

. They showed that the
set of t(n) random strings is not deterministic polynomial time Turing hard for EXP.
They showed that the class of sets that reduce to this set has p measure 0 and hence
that this set is not even weakly hard for EXP.

The results in this paper contrast those from Buhrman and Mayordomo. We
show that the set of random strings is hard for various complexity classes under
nondeterministic polynomial time reductions.

We consider three well-studied measures of Kolmogorov complexity that lie in

between Cp(x) and Ct(x) for p a polynomial and t(n) = 2n
k

. We consider the
distinguishing complexity as introduced by Sipser [25]. The distinguishing complexity,
CD t(x), is the size of the smallest program that runs in time t(n) and accepts x and
nothing else. We show that the set of random strings RCD

t = {x | CD t(x) ≥ |x|} for
t a fixed polynomial is hard for MA under nondeterministic reductions. MA is the
class of Merlin–Arthur games introduced by Babai [1]. As an immediate consequence

we obtain that BPP and NPBPP are in NPRCD
t .

Next we shift our attention to nondeterministic distinguishing complexity [6],
CND t(x), which is defined as the size of the smallest nondeterministic algorithm that
runs in time t(n) and accepts only x. We define RCND

t = {x : CND t(x) ≥ |x|}
for t a fixed polynomial. We show that AM ⊆ NPRCND

t , where AM is the class of
Arthur–Merlin games [1]. It follows that the complement of the graph isomorphism

problem, GI, is in NPRCND
t and that if for some polynomial t, RCND

t ∈ NP ∩ coNP,
then GI ∈ NP ∩ coNP.

The s(n) space bounded Kolmogorov complexity CS s(x|y) is defined as the size
of the smallest program that prints x, given y, and uses at most s(|x| + |y|) tape
cells [14]. Likewise we define cRCS

s = {〈x, y〉 : CS s(x|y) ≥ |x|} for s(n) a polynomial.
We show that PSPACE ⊆ NPcRCS

s .
For the first two results we use the oblivious sampler construction of Zucker-

man [29], a lemma [6] that measures the size of sets in terms of CD complexity, and
we prove a lemma that shows that the first bits of a random string are in a sense
more random than the whole string. For the last result we make use of the interactive
protocol [22, 24] for quantified boolean formulas (QBFs).

To show optimality of our results for relativizing techniques, we construct an or-
acle world where our first result cannot be improved to deterministic reductions. We
show that there is an oracle such that BPP 
⊆ PRCD

t for any polynomial t. The con-
struction of the oracle is an extension of the techniques developed by Beigel, Buhrman,
and Fortnow [4].
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2. Definitions and notations. We assume the reader is familiar with standard
notions in complexity theory as can be found, e.g., in [2]. Strings are elements of Σ∗,
where Σ = {0, 1}. For a string s and integers n,m ≤ |s| we use the notation s[n..m]
for the string consisting of the nth through mth bit of s. We use λ for the empty
string. We also need the notion of an oblivious sampler from [29].

Definition 2.1. A universal (r, d,m, ε, γ)-oblivious sampler is a deterministic
algorithm which on input a uniformly random r-bit string outputs a sequence of points
z1, . . . , zd ∈ {0, 1}m such that for any collection of d functions f1, . . . , fd : {0, 1}m �→
[0, 1] it is the case that

Pr

[∣∣∣∣∣
1

d

d∑
i=1

(fi(zi)− Efi)
∣∣∣∣∣ ≤ ε

]
≥ 1− γ

(where Efi = 2−m
∑
z∈{0,1}m fi(z)).

In our application of this definition, we will always use a single function f .

Fix a universal Turing machine U and a nondeterministic universal machine UN.
All our results are independent of the particular choice of universal machine. For
the definition of Kolmogorov complexity we need the fact that the universal machine
can, on input p, y, halt and output a string x. For the definition of distinguishing
complexity below we need the fact that the universal machine on input p, x, y can
either accept or reject. We also need resource bounded versions of this property.

We define the Kolmogorov complexity function C(x|y) (see [20]) by C(x|y) =
min{|p| : U(p, y) = x}. We define unconditional Kolmogorov complexity by C(x) =
C(x|λ). Hartmanis [14] defined a time bounded version of Kolmogorov complexity,
but resource bounded versions of Kolmogorov complexity date back as far as [3]. (See
also [20].) Sipser [25] defined the distinguishing complexity CD t.

We will need the following versions of resource bounded Kolmogorov complexity
and distinguishing complexity.

• CSs(x|y) = min


|p| :

(1) U(p, y) = x;
(2) U(p, y) uses at most

s(|x|+ |y|) tape cells


.

(See [14].)

• CD t(x|y) = min



|p| :

(1) U(p, x, y) accepts;
(2) (∀z 
= x)U(p, z, y) rejects;
(3) (∀z ∈ Σ∗)U(p, z, y) runs in at most

t(|u|+ |y|) steps



.

(See [25].)

• CND t(x|y) = min



|p| :

(1) UN(p, x, y) accepts;
(2) (∀z 
= x)UN(p, z, y) rejects;
(3) (∀z ∈ Σ∗)UN(p, z, y) runs in at most

t(|z|+ |y|) steps



.

(See [6].)

For 0 < ε ≤ 1 we define the following sets of strings of “maximal” CDp and CNDp

complexity.

• RCD
t,ε = {x : CD t(x|λ) ≥ ε|x|}.

• RCND
t,ε = {x : CND t(x|λ) ≥ ε|x|}.

Note that for ε = 1 these sets are the sets mentioned in the introduction. In this
case we will omit the ε and use RCD

t and RCND
t . We also define the set of strings of



1488 HARRY BUHRMAN AND LEEN TORENVLIET

maximal space bounded complexity.

cRCS
s = {〈x, y〉 : CSs(x|y) ≥ |x|}.

The c in the notation is to emphasize that randomness is conditional. Also, cRCS
s

technically is a set of pairs rather than a set of strings. The unconditional space
bounded random strings would be

RCS
s = {x : 〈x, λ〉 ∈ cRCS

s }.

We have no theorems concerning this set.
The C complexity of a string is always upperbounded by its length plus some

constant depending only on the choice of the universal machine. The CD and CND
complexities of a string are always upperbounded by the C complexity of that string
plus some constant depending again only on the particular choice of universal machine.
All quantifiers used in this paper are polynomially bounded. Often the particular
polynomial is not important for what follows, or it is clear from the context and is
omitted. Sometimes we need explicit bounds. Then the particular bound is given as
a superscript to the quantifier. For example, we use ∃my to denote “there exists a y
with |y| ≤ m,” or ∀=nx to denote “for all x of length n.”

The classes MA and AM are defined as follows.
Definition 2.2. L ∈ MA iff there exists a |x|c time bounded machine M such

that
1. x ∈ L =⇒ ∃yPr[M(x, y, r) = 1] > 2/3;
2. x /∈ L =⇒ ∀yPr[M(x, y, r) = 1] < 1/3,

where r is chosen uniformly at random in {0, 1}|x|c .
L ∈ AM iff there exists a |x|c time bounded machine M such that
1. x ∈ L =⇒ Pr[∃yM(x, y, r) = 1] > 2/3;
2. x /∈ L =⇒ Pr[∃yM(x, y, r) = 1] < 1/3,

where r is chosen uniformly at random in {0, 1}|x|c .
It is known that NP ∪ BPP ⊆ MA ⊆ AM ⊆ PSPACE [1].
Let #M(x) represent the number of accepting computations of a nondeterministic

Turing machine M on input x. A language L is in ⊕P if there exists a polynomial
time bounded nondeterministic Turing machine M such that for all x

• x ∈ L⇒ #M(x) is odd;
• x 
∈ L⇒ #M(x) is even.

Let g be any function. We say that advice function f is g-bounded if for all n it
holds that |f(n)| ≤ g(n). In this paper we will be interested only in functions g that
are polynomial.

The notation ≤snT is used for strong nondeterministic Turing reductions, which
are defined by A ≤snT B iff A ∈ NPB ∪ CoNPB .

3. Distinguishing complexity for derandomization. In this section we prove
hardness of RCD

t and RCND
t for AM andMA games, respectively, under NP-reductions.

Theorem 3.1. For any t with t(n) ∈ ω(n log n), MA ⊆ NPRCD
t .

Theorem 3.2. For any t with t(n) ∈ ω(n), AM ⊆ NPRCND
t .

The proof of both theorems is roughly as follows. First guess a string of high
CDpoly complexity, respectively, CNDpoly complexity. Next, we use the nondetermin-
istic reductions once more to play the role of Merlin and use the random string to
derandomize Arthur. Note that this is not as straightforward as it might look. The
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randomness used by Arthur in interactive protocols is used for hiding and cannot in
general be substituted by computational randomness.

The idea of using strings of high CD complexity and Zuckerman’s sampler deran-
domization stems from [7, section 8], which is the full version of [6]. Though they do
not explicitly define the set RCD

t , they use the same approach to derandomize BPP
computations there.

The proof needs a string of high CDp, respectively, CNDp complexity for p some
polynomial. We first show that we can nondeterministically extract such a string from
a longer string with high CD t complexity (respectively, CND t complexity) for any
fixed t with t(n) ∈ ω(n log n).

Lemma 3.3. Let f be such that f(n) < n, and let t, t′, and T be such that

T (n) = (t′(f(n)) + n− f(n)), limn 	→∞
T (n) log T (n)

t(n) = 0. Then for all sufficiently large

s with CD t(s) > |s|, it holds that CD t′(s[1..f(|s|)]) ≥ f(|s|)− 2 log |f(|s|)| −O(1).
Proof. Suppose for a contradiction that for any constant d0 and infinitely many

s with CD t(s) ≥ |s|, it holds that CD t′(s[1..f(|s|)]) < f(|s|) − 2 log |f(|s|)| − d0.
Then for any such s there exists a program ps that runs in t′(f(|s|)) and recognizes
only s[1..f(|s|)] where |ps| < f(|s|) − 2 log |f(|s|)| − d0. The following program then
recognizes s and no other string.

Input y.
Check that the first f(|s|) bits of y equal s[1..f(|s|)], using ps. (Assume
|f(|s|)| is stored in the program for a cost of log |f(|s|)| bits.)
Check that the last |s| − f(|s|) bits of y equal s[f(|s|) + 1..|s|]. (These bits
are also stored in the program.)

This program runs in time T (|s|) = t′(f(|s|))+ |s|− f(|s|). Therefore it takes at most
t(|s|) steps on U for all sufficiently large s [16]. We lose the log n factor here because
our algorithm must run on a fixed machine and the simulation is deterministic.

The program’s length is |ps|+ |s|−f(|s|)+log |f(|s|)|+d1 < f(|s|)−2 log |f(|s|)|−
d0 + |s| − f(|s|) + log |f(|s|)| + d1, which is less than |s| for almost all s. Hence
CD t(s) < |s|, which contradicts the assumption.

Corollary 3.4. For every polynomial nc, t ∈ ω(n log n) and sufficiently large

string s with CD t(s) ≥ |s|, if m = |s| 1c and s′ = s[1..m], then CDnc

(s′) ≥ |s′| −
2 log |s′| −O(1).

Proof. Take t′(n) = nc, f(n) = n
1
c and apply Lemma 3.3.

Lemma 3.3 and Corollary 3.4 have the following nondeterministic analogon.

Lemma 3.5. For every polynomial nc, t ∈ ω(n) and sufficiently large string s with
CND t(s) ≥ |s|, if m = |s| 1c and s′ = s[1..m], then CNDnc

(s′) ≥ |s′|−2 log |s′|−O(1).
Proof. The same proof applies, with a lemma similar to Lemma 3.3. However, in

the nondeterministic case the simulation costs only linear time [5].

Before we can proceed with the proof of the theorems, we also need some earlier
results. We first need the following theorem from Zuckerman.

Theorem 3.6 (see [29]). There is a constant c such that for γ = γ(m), ε = ε(m),
and α = α(m) with m−1/2 log∗m ≤ α ≤ 1/2 and ε ≥ exp(−α2 log∗mm), there exists a
universal (r, d,m, ε, γ)-oblivious sampler which runs in polynomial time and uses only
r = (1 + α)(m + log γ−1) random bits and outputs d = ((m + logγ−1)/ε)cα sample
points, where cα = c(logα−1)/α.

We also need the following lemma by Buhrman and Fortnow.

Lemma 3.7 (see [6]). Let A be a set in P. For each string x ∈ A=n it holds that
CDp(x) ≤ 2 log(||A=n||) +O(log n) for some polynomial p.
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As noted in [6], an analogous lemma holds for CNDp and NP.
Lemma 3.8 (see [6]). Let A be a set in NP. For each string x ∈ A=n it holds

that CNDp(x) ≤ 2 log(||A=n||) +O(log n) for some polynomial p.
From these results we can prove the theorems. If we want to prove, for Theo-

rem 3.1, that an NP machine oracle with oracle RCD
t can recognize a set A in MA,

then the positive side of the proof is easy: If x is in A, then there exists a machine M
and a string y such that a 2/3 fraction of the strings r of length |x|c makes M(x, y, r)
accept. So an NP machine can certainly guess one such pair x, y as a “proof” for
x ∈ A. The negative side is harder. We will show that if x /∈ A and we substitute for
r a string of high enough CD complexity (CND complexity for Theorem 3.2), then
no y can make M(x, y, r) accept.

To grasp the intuition behind the proof let us look at the much simplified example
of a BPP machine M having a 1/3 error probability on input x and a string r of
maximal unbounded Kolmogorov complexity. There are 2|x|

c

possible computations
on input x, where |x|c is the runtime of M . Suppose that M must accept x. Then at
most a 1/3 fraction, i.e., at most 2|x|

c

/3 of these computations reject x. Each rejecting
computation consists of a deterministic part described by M and x and a set of |x|c
coin flips. Identify such a set of coin flips with a binary string and we have that each
rejecting computation uniquely identifies a string of length |x|c. Call this set B. We
would like to show by contradiction that a random string cannot be a member of this
set, and hence that any random string, used as a sequence of coin flips, leads to a
correct result. Any string in B is described by M , x, and an index in B, which has
length log ||B|| ≤ |x|c − log 3. So far there are no grounds for a contradiction since a
description consisting of these elements can have length greater than |x|c. However,
we can amplify the computation of M on input x by repetition and taking majority.
Suppose we repeat the computation |x|2 times. This will increase the number of

incorrect computations to (at most) ( 8
9 )
|x|2/22|x|

c+2

. An index in this set has length

|x|c+2 − (|x|2/2)log 9
8 . However, |x|+ |x|c+2 − (|x|2/2)log 9

8 cannot describe a random

string of length |x|c+2
, which is the length of such a computation.

Unfortunately, in our case the situation is a bit more complicated. The factor
2 in Lemma 3.7 renders standard amplifaction of randomized computation useless.
Fortunately, Theorem 3.6 allows for a different type of amplification using much less
random bits, so that the same type of argument can be used. We will now proceed
to show how to fit the amplification given by Theorem 3.6 to our situation.

Lemma 3.9.
1. Let L be a language in MA. For any constant k and any constant 0 < α ≤ 1

2 ,
there exists a deterministic polynomial time bounded machine M such that

(a) x ∈ L =⇒ ∃myPr[M(x, y, r) = 1] = 1;
(b) x /∈ L =⇒ ∀myPr[M(x, y, r) = 1] < 2−km,

where m = |x|c and r is chosen uniformly at random in {0, 1}(1+α)(1+k)m.
2. Let L be a language in AM. For any constant k and any constant 0 < α ≤ 1

2 ,
there exists a deterministic polynomial time bounded machine M such that

(a) x ∈ L =⇒ Pr[∃yM(x, y, r) = 1] = 1;
(b) x /∈ L =⇒ Pr[∃yM(x, y, r) = 1] < 2−km,

where m = |x|c and r is chosen uniformly at random in {0, 1}(1+α)(1+k)m.
Proof.
1. Fürer et al. showed that the fraction 2/3 (see Definition 2.2) can be replaced by

1 in [13]. Now letML be the deterministic polynomial time machine corresponding to
L in Definition 2.2, adapted so that it can accept with probability 1 if x ∈ L. Assume
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ML runs in time nc (where n = |x|). This means that for ML the ∃y and ∀y in the
definition can be assumed to be ∃nc

y and ∀nc

y, respectively. Also, the random string
may be assumed to be drawn uniformly at random from {0, 1}nc

.
To obtain the value 2−km in the second item, we use Theorem 3.6 with γ = 2−km,

and ε = 1/6. For given x and y let fxy be the FP function that on input z computes
ML(x, y, z). If |y| = |z| = nc = m, then fxy : {0, 1}m �→ [0, 1]. We use the oblivious
sampler to get a good estimate for Efxy. That is, we feed a random string of length
(1+α)(1+k)m in the oblivious sampler and it returns d = ((1+k)m/ε)cα sample points

z1, . . . , zd on which we compute 1
d

∑d
i=1 fxy(zi). M is the machine that computes this

sum on input x, y, and r and accepts iff its value is greater than 1/2.

If x ∈ L, there is a y such that Pr[ML(x, y, r) = 1] = 1. This means 1
d

∑d
i=1 fxy(zi)

= 1 no matter which sample points are returned by the oblivious sampler. If x /∈ L,
then (∀y)[Efxy < 1/3]. With probability 1 − γ the sample points returned by the

oblivious sampler are such that | 1d
∑d
i=1 fxy(zi)− Efxy| ≤ ε, so 1

d

∑d
i=1 fxy(zi) >

1
2

with probability ≤ 2−km.
2. The proof is analogous to the proof of part 1. We just explain the differences.

For the 1 in the first item of the claim we can again refer to [13]. In this part ML is
the deterministic polynomial time machine corresponding to the AM-language L and
we define the function fx : {0, 1}m �→ [0, 1] as the function that on input z computes
∃nc

yML(x, y, z) = 1. Now fx is an FPNP computable function. The sample points
z1, . . . , zd that are returned in this case have the following properties. If x ∈ L,
then fx(zi) = 1 no matter which string is returned as zi. That is, for every possible
sample point zi, there is a yi such that ML(x, yi, zi) = 1. So for any set of sample
points z1, . . . , zd that the sampler may return, there exists a y = 〈y1, . . . , yd〉 such
that ML(x, yi, zi) = 1 ∀i. If x /∈ L, then fx(zi) = 1 for less than half of the sample
points with probability 1− γ. That is,

Pr

[
(∃y = y1 . . . yd)

[
1

d

d∑
i=1

ML(x, yi, zi) >
1

2

]]

is less than 2−km. So if we letM(x, y, r) be the deterministic polynomial time machine
that uses r to generate d sample points and then interprets y as 〈y1, . . . , yd〉 and counts
the number of accepts of ML(x, yi, zi) and accepts if this number is greater than 1

2d,
we get exactly the desired result.

In the next lemma we show that a string of high enough CDpoly (CNDpoly) can
be used to derandomize an MA (AM) protocol.

Lemma 3.10.
1. Let L be a language in MA and 0 < ε ≤ 1. There exists a deterministic

polynomial time bounded machine M , a polynomial q, α > 0, and integers k and c
such that for almost all n and every r with |r| = (1+ α)(1 + k)nc and CDq(r) ≥ ε|r|,
∀=nx[x ∈ L ⇐⇒ ∃yM(x, y, r) = 1].

2. Let L be a language in AM and 0 < ε ≤ 1. There exists a deterministic
polynomial time bounded machine M a polynomial q, α > 0, and integers k and c
such that for almost all n and every r with |r| = (1+α)(1+k)nc and CNDq(r) ≥ ε|r|,
∀=nx[x ∈ L ⇐⇒ ∃yM(x, y, r) = 1].

Proof.
1. Choose α < ε

2 and k > 6
ε−2α . Let M be the deterministic polynomial time

bounded machine corresponding to L, k, and α of Lemma 3.9(1). The polynomial nc

will be the time bound of the machine witnessing L ∈ MA of that same lemma. We
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will determine q later, but assume for now that r is a string of length (1+α)(1+k)nc

such that CDq(r) ≥ ε|r|, and for ease of notation set m = nc.
Suppose x ∈ L. Then it follows that there exists a y such that for all s of length

(1 + α)(1 + k)nc, M(x, y, s) = 1. So in particular it holds that M(x, y, r) = 1.
Suppose x 
∈ L. We have to show that (∀y)[M(x, y, r) = 0]. Suppose that this is

not true and let y0 be such that M(x, y0, r) = 1. Define

Ax,y0 = {s :M(x, y0, s) = 1}.
It follows that Ax,y0 ∈ P by essentially a program that simulates M and has x and
y0 hardwired. (Although Ax,y0 is finite and therefore trivially in P it is crucial here
that the size of the polynomial program is roughly |M | + |x| + |y0|.) Because of the
amplification of the MA protocol we have that

||Ax,y0 || ≤ 2(1+α)(1+k)m−km.

Since r ∈ Ax,y0 it follows by Lemma 3.7 that there is a polynomial p such that

CDp(r) ≤ 2[(1 + α)(1 + k)m− km] + |x|
+ |y0|+O(logm)

≤ 2αm+ 2αkm+ 5m.

On the other hand, we chose r such that

CDq(r) ≥ ε|r|
= (1 + α)(1 + k)mε

> 2αm+ 2αkm+ 5m,

which gives a contradiction for q ≥ p.
2. Choose α < ε

2 and k > 5
ε−2α . Let M be the deterministic polynomial time

bounded machine corresponding to L, α, and k of Lemma 3.9(2). Again, nc will
be the time bound of the machine now witnessing L ∈ AM, m = nc, and q will be
determined later. Assume for now that r is a string of length (1 + α)(1 + k)nc such
that CNDq(r) ≥ ε|r|. Suppose x ∈ L. Then it follows that for all s there exists a
y such that M(x, y, s) = 1. So in particular there is a yr such that M(x, yr, r) = 1.
Suppose x /∈ L. We have to show that ∀yM(x, y, r) = 0. Suppose that this is not
true. Define Ax = {s : ∃yM(x, y, s) = 1}. Then Ax ∈ NP by a program that has
x hardwired, guesses a y, and simulates M . Because of the amplification of the AM
protocol we have that ||Ax|| ≤ 2(1+α)(1+k)m−km. Since r ∈ Ax it follows by Lemma 3.8
that there exists a polynomial p such that

CNDp(r) ≤ 2[(1 + α)(1 + k)m− km] + |x|+O(logm)

≤ 2αm+ 2αkm+ 4m.

On the other hand, we chose r such that

CNDq(r) ≥ ε|r|
= (1 + α)(1 + k)mε

> 2αm+ 2αkm+ 4m,

which gives a contradiction whenever q ≥ p.
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The following corollary shows that a string of high enough CDpoly complexity can
be used to derandomize a BPP machine (see also [7, Theorem 8.2]).

Corollary 3.11. Let A be a set in BPP. For any ε > 0 there exists a polynomial
time Turing machineM and a polynomial q such that if CDq(r) ≥ ε|r| with |r| = q(n),
then for all x of length n it holds that x ∈ A ⇐⇒ M(x, r) = 1.

Proof of Theorem 3.1. Let A be a language in MA. Let q, M , and q′(n) =
(1 + α)(1 + k)q(n) be as in Lemma 3.10(1). The nondeterministic reduction behaves
as follows on input x of length n. First guess an s of size q(q′(n)) and check that
s ∈ RCD

t . Set r = s[1..q′(n)] and accept iff there exists a y such that M(x, y, r) = 1.
By Corollary 3.4 it follows that CDq(r) ≥ |r|/2 and the correctness of the reductions
follows directly from Lemma 3.10(1) with ε = 1/2.

Proof of Theorem 3.2. This follows directly from Lemma 3.10(2). The NP-
algorithm is analogous to the one above.

Corollary 3.12. For t ∈ ω(n log n)
1. BPP and NPBPP are included in NPRCD

t ;
2. GI ∈ NPRCND

t .

It follows that if RCND
t ∈ NP ∩ coNP, then the graph isomorphism (GI) problem

is in NP ∩ coNP.
4. Limitations. In the previous section we showed that the set RCD

t is hard for
MA under NP reductions. One might wonder whether RCD

t is also hard for MA under
a stronger reduction like the deterministic polynomial time Turing reduction. In this
section we show that, if true, this will need a nonrelativizing proof. We will derive
the following theorem.

Theorem 4.1. There is a relativized world where for every polynomial t and

0 < ε ≤ 1, BPP 
⊂ PRCD
t,ε .

The proof of this theorem is given in Lemma 4.2, which says that the statement

of Theorem 4.1 is true in any world where PA = ⊕PA and EXPNPA ⊆ NPA/poly,
and in Theorem 4.3, which precisely shows the existence of such a world.

Lemma 4.2. For any oracle A and 0 < ε ≤ 1 it holds that if EXPNPA ⊆
NPA/poly and ⊕PA = PA, then BPPA 
⊂ PRCD

t,ε
A

.

Proof. Suppose for a contradiction that the lemma is not true. If EXPNP ⊆
NP/poly, then EXP ⊆ NP/poly, so EXP ⊆ PH [27]. Furthermore, if EXPNP ⊆
NP/poly, then certainly EXPNP ⊆ EXP/poly. It then follows from [9] that EXPNP =
EXP, so EXPNP ⊆ PH.

If ⊕P = P, then unique-SAT (see [8] for a definition) is in P. Then NP = R
by [26] and so NP ⊆ BPP which implies PH ⊆ BPP by [28].

Finally, the fact that unique-SAT is in P is equivalent to the following: for all x
and y, Cpoly(x|y) ≤ CDpoly(x|y)+O(1), as shown in [12]. We can use the proof of [12]
to show that unique-SAT in P also implies that RCD

t,ε ∈ coNP for a particular universal
machine. (Note that we need only contradict the assumption for one particular type
of universal machine.) This then in its turn implies by assumption that BPP and
hence EXPNP are in PNP. This, however, contradicts the hierarchy theorem for
relativized Turing machines [15]. As all parts of this proof relativize, we get the result

for any oracle. There’s one caveat here. Though RCD
t,ε

A
clearly has a meaningful

interpretation, to talk about PRCD
t,ε

A

one must of course allow P to have access to the
oracle. It is not clear that P can ask any question if the machine can only ask a

question about the random strings. Therefore, one might argue that PRCD
t,ε

A⊕A should



1494 HARRY BUHRMAN AND LEEN TORENVLIET

actually be in the statement of the lemma. This does not affect the proof.
Our universal machine, say, US , is the following. On input p, x, y, US uses the

Cook–Levin reduction to produce a formula f on |x| variables with the property that
x satisfies f iff p accepts x. Then US uses the self-reducibility of f and the assumed
polynomial time algorithm for unique-SAT to make acceptance of x unique. That is,
first if the number of variables is not equal |y|, it rejects. Then, using the well-known
substitute and reduce algorithm for SAT, it verifies for i = 1, . . . , |x| and assignments
xj = vj successively obtained from the algorithm that the algorithm for unique-SAT
precisely accepts f(v1 . . . vi) or rejects if this algorithm accepts both f(v1 . . . vi) and
f(v1 . . . (1 − vi)). Using this universal machine every program accepts at most one
string and therefore RCD

t,ε ∈ coNP via an obvious predicate. As argued above, this
gives us our contradiction.

Now we proceed to construct the oracle.

Theorem 4.3. There exists an oracle A such that EXPNPA ⊂ NPA/poly ∧ ⊕PA

= PA.
Proof. The proof parallels the construction from Beigel, Buhrman, and Fort-

now [4], who construct an oracle such that PA = ⊕PA and NEXPA = NPA. We will
use a similar setup.

LetMA be a nondeterministic linear time Turing machine such that the language
LA defined by

w ∈ LA ⇔ #MA(w) mod 2 = 1

is ⊕PA complete for every A.
For every oracle A, let KA be the linear time computable complete set for NPA.

Let NKA

be a deterministic machine that runs in time 2n and for every A accepts
a language HA that is complete for EXPNPA

. We will construct A such that there
exists a n2 bounded advice function f such that for all w

w ∈ LA ⇔ 〈0, w, 1|w|2〉 ∈ A (Condition 0),
w ∈ HA ⇔ ∃v |v| = |w|2 and

〈1, f(|w|), w, v〉 ∈ A (Condition 1).

Condition 0 will guarantee that P = ⊕P, and Condition 1 will guarantee that
EXPNP ⊂ NP/poly.

We use the term 0-strings for the strings of the form 〈0, w, 1|w|2〉 and 1-strings
for the strings of the form 〈1, z, w, v〉 with |z| = |v| = |w|2. All other strings we
immediately put in A.

First we give some intuition for the proof. M is a linear time Turing machine.
Therefore setting the 1-strings forces the setting of the 0-strings. Condition 0 will be
automatically fulfilled by just describing how we set the 1-strings because they force
the 0-strings as defined by Condition 0.

Fulfilling Condition 1 requires a bit more care since NKA

(x) can query exponen-
tially long and double exponentially many 0- and 1-strings. We consider each 1-string
〈1, z, w, v〉 as a 0-1 valued variable y〈z,w,v〉 whose value determines whether 〈1, z, w, v〉
is in A. The construction of A will force a 1-1 correspondence between the compu-

tation of NKA

(x) and a low-degree polynomial over variables with values in GF [2].
To encode the computation properly we use the fact that the OR function has high
degree.

We will assign a polynomial pz over GF[2] to all of the 0-strings and 1-strings z.
We ensure that for all z
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1. if pz = 1, then z is in A;
2. if pz = 0, then z is not in A.

First for each 1-string z = 〈1, z, w, v〉 we let pz be the single variable polynomial
y〈z,w,v〉.

We assign polynomials to the 0-strings recursively. Note that MA(x) can only
query 0-strings with |w| ≤√|x|. Consider an accepting computation path π of M(x)
(assuming the oracle queries are guessed correctly). Let qπ,1, . . . , qπ,m be the queries
on this path and bπ,1, . . . , bπ,m be the query answers with bπ,i = 1 if the query was
guessed in A, and bπ,i = 0 otherwise. Note that m ≤ n = |x|.

Let P be the set of accepting computation paths of M(x). We then define the

polynomial pz for z = 〈0, x, 1|x|2〉 as follows:

pz =
∑
π∈P

∏
1≤i≤m

(pqπ,i + bπ,i + 1).(1)

Remember that we are working over GF[2] so addition is parity.
Setting the variables y〈z,w,v〉 (and thus the 1-strings) forces the values of pz for the

0-strings. We have set things up properly so the following lemma is straightforward.
Lemma 4.4. For each 0-string z = 〈0, x, 1|x|2〉 we have pz = #MA(x) mod 2 and

Condition 0 can be satisfied. The polynomial pz has degree at most |x|2.
Proof. The proof is simple by induction on |x|.
The construction will be done in stages. At stage n we will code all the strings of

length n of HA into A setting some of the 1-strings and automatically the 0-strings
and thus fulfilling both Conditions 0 and 1 for this stage.

We will need to know the degree of the multivariate multilinear polynomials
representing the OR and the AND function.

Lemma 4.5. The representation of the function OR(u1, . . . , um) and the function
AND(u1, . . . , um) as multivariate multilinear polynomials over GF[2] requires degree
exactly m.

Proof. Every function over GF[2] has a unique representation as a multivariate
multilinear polynomial.

Note that AND is just the product and by using De Morgan’s laws we can write
OR as

OR(u1, . . . , um) = 1 +
∏

1≤i≤m
(1 + ui).

The construction of the oracle now treats all strings of length n in lexicographic
order. First, in a forcing phase in which the oracle is set so that all computations

of NKA

remain fixed for future extensions of the oracle, and then in a coding phase
in which first an advice string is picked and then the computations just forced are
coded in the oracle in such a way that they can be retrieved by an NP machine with
this advice string. Great care has of course to be taken so that the two phases don’t
disturb each other and do not disturb earlier stages of the construction.

We first describe the forcing phase. Without loss of generality, we will assume
that machine N queries only strings of the form q ∈ KA. Note that since N runs in
time 2n it may query exponentially long strings to KA.

Let x1 be the first string of length n. When we examine the computation of N(x1)
we encounter the first query q1 to KA. We will try to extend the oracle A to A′ ⊇ A
such that q1 ∈ KA′

. If such an extension does not exist we may assume that q1 will
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never be in KA no matter how we extend A in the future. We must, however, take
care that we will not disturb previous queries that were forced to be in KA. To this
end we will build a set S containing all the previously encountered queries that were
forced to be in KA. We will only extend A such that ∀q ∈ S it holds that q ∈ KA′

.
We will call such an extension an S-consistent extension of A.

Returning to the computation of N(x1) and q1 we ask whether there is an S-
consistent extension of A such that q1 ∈ KA′

. If such an extension exists, we will
choose the S-consistent extension of A which adds a minimal number of strings to A

and puts q1 in S. Next we continue the computation of NKA

(x1) with q1 answered
yes, and otherwise we continue with q1 answered no. The next lemma shows that a
minimal extension of A will never add more than 23n strings to A.

Lemma 4.6. Let S be as above and q be any query to KA and suppose we are in
stage n. If there exists an S-consistent extension of A such that q ∈ KA′

, then there
exists one that adds at most 23n strings to A.

Proof. Let MK be a machine that accepts KA when given oracle A and consider
the computation of machine MA

K(q). Let o1, . . . , ol be the smallest set of strings such

that adding them to A is an S-consistent extension of A such that MA′
K (q) accepts.

(A′ = A ∪ {o1, . . . , ol}.) Consider the leftmost accepting path of MA′
K (q) and let

q1, . . . , q2n be the queries (both 0- and 1-queries) on that path. Moreover let bi be 1
iff qi ∈ A′. Define for q the following polynomial:

Pq =
∏

1≤i≤2n

(pqi + bi + 1).(2)

After adding the strings o1, . . . , ol to A we have that Pq = 1. Moreover by
Lemma 4.4 the degree of each pqi is at most 22n and hence the degree of Pq is at
most 23n. Now consider what happens when we take out any number of the strings
o1, . . . , ol of A

′ resulting in A′′. Since this was a minimal extension of A it follows that
MA′′
K (q) rejects and that Pq = 0. So Pq computes the AND on the l strings o1, . . . , ol.

Since by Lemma 4.5 the degree of the unique multivariate multilinear polynomial that
computes the AND over l variables over GF[2] is l, it follows that l ≤ 23n.

After we have dealt with all the queries encountered on NKA

(x1) we continue
this process with the other strings of length n in lexicographic order. Note that since

we only extend A S-consistently we will never disturb any computation of NKA

on
lexicographic smaller strings. This follows since the queries that are forced to be
yes will remain yes, and the queries that could not be forced with an S-consistent
extension will never be forced by any S′-consistent extension of A for S ⊂ S′. After
we have finished this process we have to code all the computations of N on the strings
of length n. It is easy to see that ||S|| ≤ 22n and that at this point by Lemma 4.6 at
most 25n strings have been added to A at this stage. Closing the forcing phase we
can now pick an advice string and proceed to the coding phase. A standard counting
argument shows that there is a string z of length n2 such that no strings of the form
〈1, z, w, v〉 have been added to A. This string z will be the advice for strings of
length n.

Now we have to show that we can code every string x of length n correctly in A
to fulfill Condition 1. We will do this in lexicographic order. Suppose we have coded
all strings xj (for j < i) correctly and that we want to code xi. There are two cases.

Case 1. NKA

(xi) = 0. In this case we put all the strings 〈1, z, xi, w〉 in A
and thus set all these variables to 0. Since this does not change the oracle it is an
S-consistent extension.
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Case 2. NKA

(xi) = 1. We properly extend A S-consistently adding only strings
of the form 〈1, z, xi, w〉 to A. The following lemma shows that this can always be
done. A proper extension of A is one that adds one or more strings to A.

Lemma 4.7. Let ||S|| ≤ 22n be as above. Suppose that NKA

(xi) = 1. There exists
a proper S-consistent extension of A adding only strings of the form 〈1, z, xi, w〉 with
|w| = n2.

Proof. Suppose that no such proper S-consistent extension of A exists. Consider
the following polynomial:

Qxi = 1−
∏
q∈S

(Pq),(3)

where Pq is defined as in Lemma 4.6, equation (2). Initially Qxi = 0 and the degree
of Qxi ≤ 25n. Since every extension of A with strings of the form 〈1, z, xi, w〉 is not
S-consistent it follows that Qxi computes the OR of the variables y〈z,xi,w〉. Since

there are 2n
2

many of those variables we have by Lemma 4.5 a contradiction with the
degree of Qxi

. Hence there exists a proper S-consistent extension of A adding only
strings of the form 〈1, z, xi, w〉, and xi is properly coded into A.

Stage n ends after coding all the strings of length n.

This completes the proof of Theorem 4.3.

Theorem 4.3 together with the proof of Lemma 4.2 also gives the following corol-
lary.

Corollary 4.8. There exists a relativized world where EXPNP is in BPP and
⊕P = P.

Our oracle also extends the oracle of Ko [17] to CDpoly complexity as follows.

Corollary 4.9. There exists an oracle such that RCD
t,ε for any t ∈ ω(n log(n))

and ε > 0 is complete for NP under strong nondeterministic reductions and PNP


= Σp2.

Proof. The relativized world constructed in the proof of Theorem 4.3 is a world
where coNP ⊆ BPP and Cpoly(x|y) = CDpoly(x|y) + O(1). Hence it follows that

RCD
t,ε ∈ NP. Moreover Corollary 3.12 relativizes so by item 1 we have that BPP ⊆

NPRCD
t,ε .

As a by-product our oracle shows the following.

Corollary 4.10. ∃A unique-SAT A ∈ PA and PNPA 
= Σp,A2 .

This corollary indicates that the current proof that shows that if unique-SAT
∈ P, then PH = Σp2 cannot be improved to yield a collapse to PNP using relativizing
techniques.

5. PSPACE and cRCS
s . In this section we further study the connection be-

tween cRCS
s and interactive proofs. So far we have established that strings that have

sufficiently high CNDpoly complexity can be used to derandomize an IP protocol that
has two rounds in such a way that the role of both the prover and the verifier can
be played by an NP oracle machine. Here we will see that this is also true for IP
itself provided that the random strings have high enough space bounded Kolmogorov
complexity. The set of QBFs is defined as the closure of the set of boolean variables
xi and their negations xi under the operations ∧, ∨, ∀xi, and ∃xi. A QBF in which
all the variables are quantified is called closed. Other QBFs are called open. We need
the following definitions and theorems from [24].
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Definition 5.1 (see [24]). A QBF B is called simple if in the given syntactic
representation every occurrence of each variable is separated from its point of quan-
tification by at most one universal quantifier (and arbitrarily many other symbols).

For technical reasons we also assume that (simple) QBFs can contain negated
variables, but no other negations. This is no loss of generality since negations can be
pushed all the way down to variables.

Definition 5.2 (see [24]). The arithmetization of a (simple) QBF B is an
arithmetic expression obtained from B by replacing every positive occurrence of xi by
variable zi, every negated occurrence of xi by (1 − zi), every ∧ by ×, every ∨ by +,
every ∀xi by

∏
zi∈{0,1}, and every ∃xi by

∑
zi∈{0,1}.

It follows that the arithmetization of a (simple) QBF in closed form has an in-
teger value, whereas the arithmetization of an open QBF is equivalent to a (possibly
multivariate) function.

Definition 5.3 (see [24]). The functional form of a simple closed QBF is the
univariate function that is obtained by removing from the arithmetization of B ei-
ther

∑
zi∈{0,1} or

∏
zi∈{0,1} where i is the least index of a variable for which this is

possible.

Notation. Let B be a (simple) QBF with quantifiers Q1, . . . , Qk. For i ≤ k we
let ×+i = + if Qi = ∃ and ×+i = × if Qi = ∀. Let B be a QBF. Let B′ be the
boolean formula obtained from B by removing all its quantifiers. We denote by B̃ the
arithmetization of B′. It is well known that the language of all true QBFs is complete
for PSPACE. The restriction of true QBFs to simple QBFs remains complete.

Theorem 5.4 (see [24]). The language of all closed simple true QBFs is complete
for PSPACE (under polynomial time many-one reductions).

It is straightforward that the arithmetization of a QBF takes on a positive value
iff the QBF is true. This fact also holds relative a not-too-large prime.

Theorem 5.5 (see [24]). A simple closed QBF B is true iff there exists a prime
number P of size polynomial in |B| such that the value of the arithmetization of B is
positive modulo P . Moreover if B is false, then the value of the arithmetization of B
is 0 modulo any such prime.

Theorem 5.6 (see [24]). The functional form of every simple QBF can be rep-
resented by a univariate polynomial of degree at most 3.

Theorem 5.7 (see [24]). For every simple QBF there exists an interactive pro-
tocol with prover P and polynomial time bounded verifier V such that

1. when B is true and P is honest, V always accepts the proof;
2. when B is false, V accepts the proof with negligible probability.

The proof of Theorem 5.7 essentially uses Theorem 5.6 to translate a simple QBF
to a polynomial in the following way. First, the arithmetization of a simple QBF B in
closed form is an integer value V which is positive iff B is true. Then B’s functional
form F (recall that this is arithmetization of the QBF that is obtained from B by
deleting the first quantifier) is a univariate polynomial p1 of degree at most 3 which
has the property that p1(0)×+1 p1(1) = V . Substituting any value r1 in p1 gives a new
integer value V1, which is of course the same value that we get when we substitute r1 in
F . However, F (r1) can again be converted to a (low-degree) polynomial by deleting its
first

∑
or
∏

sign, and the above game can be repeated. Thus, we obtain a sequence of
polynomials. From the first polynomial in this sequence V can be computed. The last
polynomial pn has the property that pn(r1, . . . , rn) = B̃(r1, . . . , rn). Two more things
are needed: First, if any other sequence of polynomials q1, . . . , qn has the property
that q1(0)×+1 q1(1) 
= V , qi+1(0)×+i+1 qi+1(1) = qi(ri), and qn(rn) = B̃(r1, . . . , rn),
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then there has to be some i where qi(ri) = pi(ri), yet qi 
= pi. That is, ri is an
intersection point of pi and qi. Second, all calculations can be done modulo some
prime number of polynomial size (Theorem 5.5). We summarize this in the following
observation, which is actually a skeleton of the proof of Theorem 5.7.

Observation 5.8 (see [24, 22]). Let B be a closed simple QBF wherein the
quantifiers are Q1, . . . Qn if read from left to right in its syntactic representation. Let
A be its arithmetization, and let V be the value of A. There exist a prime number P
of size polynomial in |B| such that for any sequence r1, . . . , rn of numbers taken from
[1..P ] there is a sequence of polynomials of degree at most 3 and size polynomial in
|B| such that

1. p1(0)×+1 p1(1) = V and V > 0 iff B is true;
2. pi+1(0)×+i+1 pi+1(1) = pi(ri);
3. pn(rn) = B̃(r1, . . . , rn);
4. for any sequence of univariate polynomials q1, . . . , qn such that

(a) p1(0)×+1 p1(1) 
= q1(0)×+1 q1(1) and
(b) qi+1(0)×+i+1 qi+1(1) = qi(ri) and
(c) qn(rn) = B̃(r1, . . . , rn),
there is a minimal i such that pi 
= qi, yet pi(ri) = qi(ri). That is, ri is an
intersection point of pi and qi.

Where all (in)equalities hold modulo P and hold modulo any prime of polynomial size
if B is false. Moreover, pi can be computed in space (|B| + |P |)2 from B, P , and
r1, . . . , ri−1.

From this reformulation of Theorem 5.7 we obtain that for any sequence of uni-
variate polynomials q1, . . . , qn and sequence of values r1, . . . , rn that satisfy items 2
and 3 in Observation 5.8 it holds that either q1(0)×+1 q1(1) is the true value of the
arithmetization of B, or there is some polynomial qi in this sequence such that ri
is an intersection point of pi and qi (where pi is as in Observation 5.8). As pi can
be computed in quadratic space from B, P , and r1, . . . , ri−1 it follows that in the
latter case ri cannot have high space bounded Kolmogorov complexity relative to B,
P , q1, . . . , qi, r1, . . . , ri−1. Hence, if ri does have high space bounded Kolmogorov
complexity, then ri is not an intersection point, so the first case must hold (i.e., the
value computed from q1 is the true value of the arithmetization of B). The following
lemma makes this precise.

Lemma 5.9. Assume the following for B, P , n, q1, . . . , qn, r1, . . . , rn, and y1, . . . , yn.

1. B is a simple false closed QBF on n variables.
2. P is a prime number ≥ 2|B| of size polynomial in |B|.
3. q1 . . . qn is a sequence of polynomials of degree 3 with coefficients in [1..P ].
4. r1, . . . , rn are numbers in [1..P ].
5. y1 = B#P#q1# . . .#qn and yi+1 = yi#ri.

6. CSn
2

(ri | yi) ≥ |P |.
7. (∀i ≥ 2)[qi−1(ri−1) = qi(0)×+i qi(1) mod P ].
8. B̃(r1, . . . , rn) = qn(rn) mod P .

Then q1(0)×+1 q1(1) = 0 mod P .

Proof. Take all calculations modulo P . Suppose q1(0)×+1 q1(1) 
= 0. It follows from
Observation 5.8 that there exists a sequence p1, . . . , pn satisfying items 1 through 3
of that lemma. Furthermore since B is false p1(0)×+1 p1(1) = 0 modulo any prime, so
p1(0)×+1 p1(1) 
= q1(0)×+1 q1(1). It follows that there must be a minimal i such that
pi 
= qi and ri is an intersection point of pi and qi. However, pi can be computed in
space (|B|+ |P |)2 from B, P , and r1, . . . , ri−1. As both pi and qi have degree at most
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3, it follows that CSn
2

(ri | yi) is bounded by a constant—a contradiction.
This suffices for the main theorem of this section. Let s be any polynomial.

Theorem 5.10. PSPACE ⊆ NPcRCS
s .

Proof. We prove the lemma for s(n) = n2, but the proof can by padding be
extended to any polynomial. There exists an NP oracle machine that accepts the
language of all simple closed true QBFs as follows. On input B first check that B
is simple. Guess a prime number P ≥ 2|B| of size polynomial in |B|, a sequence of
polynomials p1, . . . , pn of degree at most 3 and with coefficients in [1..P ]. Finally
guess a sequence of numbers r1, . . . , rn all of size |P |. Check that

1. p1(0)×+1 p1(1) > 0 and
2. pi+1(0)×+i+1 pi+1(1) = pi(ri) and
3. pn(rn) = B̃(r1, . . . , rn) and

4. finally that (∀i ≤ n)[CSn
2

(ri|yi) ≥ |P |].
If B is true, Lemma 5.8 guarantees that these items can be guessed such that all

tests are passed. If B is false and no other test fails, then Lemma 5.9 guarantees that
p1(0)×+1 p1(1) = 0, so the first check must fail.

By the fact that PSPACE is closed under complement and the fact that cRCS
s is

also in PSPACE Theorem 5.10 gives that cRCS
s is complete for PSPACE under strong

nondeterministic reductions [21].
Corollary 5.11. cRCS

s is complete for PSPACE under strong nondeterministic
reductions.

Buhrman and Mayordomo [10] showed that for t(n) = 2n
k

, the set RCt = {x :
Ct(x) ≥ |x|} is not hard for EXP under deterministic Turing reductions. In The-
orem 5.10 we made use of the relativized Kolmogorov complexity (i.e., CS s(x|y)).
Using exactly the same proof as in [10] one can prove that the set cRCt = {〈x, y〉 :
Ct(x|y) ≥ |x|} is not hard for EXP under Turing reductions. On the other hand the

proof of Theorem 5.10 also works for this set: PSPACE ⊆ NPcRC
t . We suspect that

it is possible to extend this to show that EXP ⊆ NPcRC
t . So far, we have been unable

to prove this.
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[13] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos, On completeness and
soundness in interactive proof systems, in Randomness and Computation, Advances in
Computing Research 5, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 429–442.

[14] J. Hartmanis, Generalized Kolmogorov complexity and the structure of feasible computations,
in Proceedings of the 24th IEEE Symposium on Foundations of Computer Science, Tucson,
AZ, 1983, pp. 439–445.

[15] J. Hartmanis and R. Stearns, On the computational complexity of algorithms, Trans. Amer.
Math. Soc., 117 (1965), pp. 285–306.

[16] F. Hennie and R. Stearns, Two tape simulation of multitape Turing machines, J. ACM, 13
(1966), pp. 533–546.

[17] K.-I Ko, On the complexity of learning minimum time-bounded turing machines, SIAM J.
Comput., 20 (1991), pp. 962–986.

[18] M. Kummer, On the complexity of random strings (extended abstract), in Proceedings of the
13th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Comput. Sci. 1046, Springer-Verlag, Berlin, 1996, pp. 25–36.

[19] L. Levin, personal communication, 1994.
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Abstract. We study the problem of constructing the deterministic equivalent of a nondetermin-
istic weighted finite-state automaton (WFA). Determinization of WFAs has important applications
in automatic speech recognition (ASR). We provide the first polynomial-time algorithm to test for
the twins property, which determines if a WFA admits a deterministic equivalent. We also give upper
bounds on the size of the deterministic equivalent; the bound is tight in the case of acyclic WFAs.
Previously, Mohri presented a superpolynomial-time algorithm to test for the twins property, and
he also gave an algorithm to determinize WFAs. He showed that the latter runs in time linear in
the size of the output when a deterministic equivalent exists; otherwise, it does not terminate. Our
bounds imply an upper bound on the running time of this algorithm.

Given that WFAs can expand exponentially in size when determinized, we explore why those
that occur in ASR tend to shrink when determinized. According to ASR folklore, this phenomenon
is attributable solely to the fact that ASR WFAs have simple topology, in particular, that they are
acyclic and layered. We introduce a very simple class of WFAs with this structure, but we show
that the expansion under determinization depends on the transition weights: some weightings cause
them to shrink, while others, including random weightings, cause them to expand exponentially. We
provide experimental evidence that ASR WFAs exhibit this weight dependence. That they shrink
when determinized, therefore, is a result of favorable weightings in addition to special topology.
These analyses and observations have been used to design a new, approximate WFA determinization
algorithm, reported in a separate paper along with experimental results showing that it achieves
significant WFA size reduction with negligible impact on ASR performance.
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1. Introduction. Finite-state machines and their relation to rational functions
and power series have been extensively studied [2, 3, 13, 19] and widely applied in
fields ranging from image compression [10, 11, 12, 17] to natural language processing
[20, 21, 22, 28, 30]. A subclass of finite-state machines, the weighted finite-state au-
tomata (henceforth simply weighted finite automata (WFAs)), has recently assumed
new importance, because WFAs provide powerful method for representing and ma-
nipulating models of human language in automatic speech recognition (ASR) systems
[23, 24]. This new research direction also raises a number of challenging algorithmic
questions [5].

A WFA is a nondeterministic finite automaton (NFA), A, that has both an alpha-
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bet symbol and a weight, from some set K, on each transition. Let R = (K,⊕,⊗, 0, 1)
be a semiring. Then A together with R generates a partial function from strings to
K: the value of an accepted string is the semiring sum over accepting paths of the
semiring product of the weights along each accepting path. A partial function that
can be generated this way is a rational power series [29]. An example important
to ASR is the set of WFAs with the min-sum semiring, (�+ ∪ {0,∞},min,+,∞, 0),
which compute for each accepted string the minimum cost accepting path.

In this paper, we study problems related to the determinization of WFAs. A de-
terministic, or sequential, WFA has at most one transition with a given input symbol
out of each state. Not all rational power series can be generated by deterministic
WFAs. A determinization algorithm takes as input a WFA and produces a determin-
istic WFA that generates the same rational power series, if such a deterministic WFA
exists. The importance of determinization to ASR is well established [20, 23, 24].

To the best of our knowledge, Mohri [20] presented the first determinization pro-
cedure for WFAs, extending the seminal ideas of Choffrut [8, 9] and Weber and
Klemm [31] regarding string-to-string transducers. Mohri gives a determinization
procedure with three phases. First, A is converted to an equivalent unambiguous,
trim WFA At, using an algorithm analogous to one for NFAs [13]. (We define unam-
biguous and trim below.) Mohri then gives an algorithm, TT, that determines if At

has the twins property (also defined below). If At does not have the twins property,
then there is no deterministic equivalent of A. If At has the twins property, a second
algorithm of Mohri’s, DTA, can be applied to At to yield A′, a deterministic equiva-
lent of A. Algorithm TT runs in O(m4n2

) time, where m is the number of transitions
and n the number of states in At. Algorithm DTA runs in time linear in the size of
A′. In practice, DTA is run directly on A, which is assumed to admit a deterministic
equivalent; conversion to At and testing for twins are theoretical steps needed to make
the procedure well defined. Mohri observes that A′ can be exponentially larger than
A, because WFAs include classical NFAs. He gives no upper bound on the worst-case
state-space expansion, however, and because of the weights on transitions, the classi-
cal NFA upper bound does not apply. Finally, Mohri gives an algorithm that takes a
deterministic WFA and outputs the minimum-size equivalent, deterministic WFA.

We present several results related to the determinization of WFAs. In section 3 we
give the first polynomial-time algorithm to test whether an unambiguous, trim WFA
satisfies the twins property. It runs in O(m2n6) time. We then provide a worst-case
time complexity analysis of DTA. The number of states in the output deterministic
WFA is at most 2n(2 log n+n2 log |Σ|+1), where Σ is the input alphabet. If the weights
are rational, this bound becomes 2n(2 log n+1+min(n2 log |Σ|,ρ)), where ρ is the maximum
bit-size of a weight. When the input WFA is acyclic, the bound becomes 2n log |Σ|.
The acyclic bound holds for real weights, and it is tight (up to constant factors) for
any alphabet size. It remains open whether there exists a polynomial-time procedure
to determine whether an arbitrary WFA admits a deterministic equivalent, because
the determinization process above requires converting a WFA to an unambiguous
equivalent prior to testing for twins.

In sections 4–6 we study questions motivated by the use of WFA determinization
in ASR [23, 24]. Although determinization causes exponential state-space expansion
in the worst case, in ASR systems the determinized WFAs are often smaller than
the input WFAs [20], and they are seldom very large. This is fortunate, because the
performance of ASR systems depends directly on WFA size [23, 24]. Folklore within
the ASR community credits this phenomenon entirely to the special topology of ASR
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WFAs. (The topology of a WFA is its underlying directed graph and labeling by
input symbols, ignoring weights.) ASR WFAs tend to be acyclic and layered. Such a
WFA always admits a deterministic equivalent. The role that the transition weights
might play in controlling expansion under determinization has not been considered.

In section 4 we study the role of topology in expansion under determinization.
We exhibit a class of layered, acyclic WFAs whose minimum equivalent deterministic
WFAs are exponentially larger regardless of weighting. The languages accepted by
these WFAs are quite unnatural, however.

In section 5 we study the role of transition weights in expansion under deter-
minization. We introduce a class of nondeterministic WFAs, RG . Each WFA in this
class has an extremely simple multipartite, acyclic topology, accepts a very trivial lan-
guage, and in the absence of weights (i.e., with all weights set to zero) has a smaller
deterministic equivalent. We show, however, that for any A ∈ RG and any i ≤ n,
there exists an assignment of weights to the transitions of A such that the minimal
equivalent deterministic WFA has Θ(2i log |Σ|) states. This gives a lower bound to
match the upper bounds of section 3. Using ideas from universal hashing, we also
show that similar results hold when the weights are random i-bit numbers.

This motivates us to examine experimentally the effect of varying weights on
actual WFAs from ASR applications. In section 6 we give the results of these ex-
periments. We call a WFA weight-dependent if its expansion under determinization
is strongly determined by its weights. Most of the examples from ASR were weight-
dependent. These experimental results together with the theory we develop show
that the folklore explanation is insufficient: ASR WFAs shrink under determinization
because both the topology and weighting tend to be favorable.

Some of our results help explain the nature of WFAs from the algorithmic point
of view, i.e., how weights assigned to the transitions of a WFA can affect the perfor-
mance of algorithms manipulating it. Others relate directly to the theory of weighted
automata. We have used our results to design an approximate variant of Mohri’s
determinization algorithm. We describe this algorithm separately [6], along with ex-
perimental results showing that it achieves size reductions in ASR language models
that significantly exceed those of previous methods, with negligible effects on ASR
performance (time and accuracy).

2. Definitions and terminology. Given a semiring (K,⊕,⊗, 0, 1), a WFA is
a tuple G = (Q, q̄,Σ, δ, Qf ). Q is the set of states, q̄ ∈ Q is the initial state, Σ is
the set of symbols, δ ⊆ Q × Σ ×K × Q is the set of transitions, and Qf ⊆ Q is the
set of final states. We assume that |Σ| > 1. A deterministic, or sequential, WFA
has at most one transition t = (q1, σ, ν, q2) for any pair (q1, σ); a nondeterministic
WFA can have multiple transitions on a pair (q1, σ), differing in target state q2. The
problems examined in this paper are motivated primarily by ASR applications, which
work with the min-sum semiring, (�+ ∪ {0,∞},min,+,∞, 0), and we therefore limit
further discussion to the min-sum semiring. (Some of the algorithms considered use
subtraction. To be well defined, therefore, they require a skew field. The min-sum
semiring is indeed embedded in a skew field [16].)

Let �t = (t1, . . . , t�) be some sequence of transitions, such that ti = (qi−1, σi, νi, qi);
�t induces string w = σ1 · · ·σ�. String w is accepted by �t if q0 = q̄ and q� ∈ Qf ; w is
accepted by G if some �t accepts w. Let c(ti) = νi be the weight of ti. Then the weight
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of �t is

c(�t) =

�∑
i=1

c(ti).

Let T (w) be the set of all sequences of transitions that accept string w. Then the
weight of w is

c(w) = min
�t∈T (w)

c(�t).

The weighted language of G is the set L(G) = {(w, c(w)) | w is accepted by G} ; i.e.,
the weighted strings accepted by G. Intuitively, the weight on a transition of G can
be seen as the “confidence” one has in taking that transition. The weights need not,
however, satisfy stochastic constraints, as do the probabilistic automata introduced
by Rabin [26].

Fix two states q and q′ and a string v ∈ Σ∗. Let c(q, v, q′) be the minimum of c(�t),
taken over all transition sequences �t from q to q′ inducing v. We refer to c(q, v, q′)
as the optimal cost of inducing v from q to q′. We generally abuse notation so that
δ(q, w) can represent the set of states reachable from state q ∈ Q on string w ∈ Σ∗.
We extend the function δ to strings in the usual way: q′ ∈ δ(q, v), v ∈ Σ+, means that
there is a sequence of transitions from q to q′ inducing v.

The topology of G is the projection πQ×Σ×Q(δ); i.e., the transitions of G without
respect to the weights. We also refer to the topology of G as the graph underlying G.

A WFA is trim if every state appears in an accepting path for some string and
no transition is weighted 0 (∞ in the min-sum semiring). A WFA is unambiguous if
there is exactly one accepting path for each accepted string.

Determinization of G is the problem of computing a deterministic WFA G′ such
that L(G′) = L(G), if such a G′ exists. We denote the output of algorithm DTA by
dta(G). We denote the minimal deterministic WFA accepting L(G) by min(G), if one
exists. We say that G expands if dta(G) has more states and/or transitions than G.

Let n = |Q| and m = |δ|, and let the size of G be |G| = n + m. We also
use #G to mean |Q|, the number of states of G. We assume that each transition
is labeled with exactly one symbol, so |Σ| ≤ m. Recall that the weights of G are
nonnegative real numbers. Let C be the maximum weight. In the general case,
weights are incommensurable real numbers, requiring “infinite precision.” In the
integer case, weights can be represented with ρ = �lgC� bits. We denote the integral
range [a, b] by [a, b]Z . The integer case extends to the case in which the weights are
rationals requiring ρ bits. We assume that in the integer and rational cases, weights
are normalized to remove excess least-significant zero bits.

For our analyses, we use the RAM model of computation as follows. In the general
case, we charge constant time for each arithmetic-logic operation involving weights
(which are real numbers). We refer to this model as the �-RAM [25]. The relevant
parameters for our analyses are n, m, and |Σ|. In the integer case, we also use a
RAM, except that each arithmetic-logic operation now takes O(ρ) time. We refer to
this model as the CO-RAM [1]. The relevant parameters for the analyses are n, m,
|Σ|, and ρ.

3. Determinization of WFAs.

3.1. An algorithm for testing the twins property.
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a/0

a/0

c/0

d/0

b/1

b/0

0

1

2

3

Fig. 1. A nondeterministic, trim, unambiguous WFA G. Arcs labeled σ/w correspond to
transitions labeled σ with weight w. For this and succeeding figures, the start state is the unique
source, and final states are denoted by double circles. G accepts the language {(abnc, 0), (abnd, n) |
n ≥ 0}. States 1 and 2 do not have the twins property: each is reachable from state 0 via string a,
yet the costs of the cycles labeled b at each differ. It is easily shown that no deterministic WFA can
accept L(G).

Definition 3.1. Two states, q and q′, of a WFA G are twins if ∀u, v ∈ Σ∗

such that q ∈ δ(q̄, u), q′ ∈ δ(q̄, u), q ∈ δ(q, v), and q′ ∈ δ(q′, v), the following holds:
c(q, v, q) = c(q′, v, q′). G has the twins property if all pairs q, q′ ∈ Q are twins.

That is, if states q and q′ are reachable from q̄ by a common string, then q and
q′ are twins only if any string that induces a cycle at each induces cycles of equal
optimal cost. Note that two states having no cycle on a common string are twins.
Mohri [20, Theorems 11 and 12] proves that any WFA G over the min-sum semiring is
determinizable if it has the twins property; furthermore, ifG is trim and unambiguous,
the twins property becomes a necessary and sufficient condition. For an example of a
nondeterminizable WFA, see Figure 1.

The twins property for WFAs is analogous to that defined by Choffrut [8, 9] and
(in different terms) by Weber and Klemm [31] to identify necessary and sufficient
conditions for a string-to-string transducer to admit a sequential transducer realizing
the same rational transduction. In spite of the strong analogy, the proof techniques
used for WFAs differ from those used to obtain analogous results for string-to-string
transducers. In particular, the efficient algorithm we derive here to test a WFA for
twins is not related to the polynomial-time algorithm of Weber and Klemm [31] for
testing twins in string-to-string transducers. We reduce the problem of testing the
twins property to that of computing shortest paths on some suitably defined graphs,
which we introduce next.

Let Tq̄,q̄ be the multipartite acyclic, labeled, weighted graph having 2n2 layers
and inductively defined as follows. The root vertex r̂ is at layer zero and corresponds
to (q̄, q̄). The vertices at layer one correspond to a subset of Q×Q obtained as follows:
r̂ is connected to a vertex u, corresponding to (q1, q2), if and only if there are two
distinct transitions t = (q̄, a, c1, q1) and t′ = (q̄, a, c2, q2) in G. The arc connecting r̂
to u is labeled with a ∈ Σ and has cost c = c1− c2. Assume that we have the vertices
at layer i − 1. The vertices at layer i are obtained as follows. Let u be the vertex
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at layer i − 1 corresponding to (q1, q2) ∈ Q ×Q; u is connected to u′, corresponding
to (q′1, q

′
2), at layer i if and only if there are two distinct transitions t = (q1, a, c1, q

′
1)

and t′ = (q2, a, c2, q
′
2) in G. The arc connecting u to u′ is labeled with a ∈ Σ and

has cost c = c1 − c2. This graph has O(n4) vertices and O(m2n4) arcs. Let (q, q′)i
denote the vertex corresponding to (q, q′) ∈ Q × Q at layer i of Tq̄,q̄, if any. Let
RT ⊆ {(q, q′) | q �= q′} be the set of pairs of distinct states of G that are reachable
from (q̄, q̄)0 in Tq̄,q̄. For each (q, q′) ∈ RT , define Tq,q′ analogously to Tq̄,q̄. Notice
that Tq,q′ has O(n4) vertices and O(m2n4) arcs. We need the following.

Lemma 3.2. Fix two distinct states q and q′ of G. They can be reached from the
initial state q̄ of G by the same string z ∈ Σ+ if and only if there exists some string
z′ ∈ Σi for some 1 ≤ i ≤ 2n2 − 1 such that q and q′ are both reached from q̄ using z′.
In that case, there is at least one path in Tq̄,q̄ that goes from (q̄, q̄)0 to (q, q′)i.

Proof. Fix a string z ∈ Σ+, and assume that q and q′ can be reached from q̄ by
z. Assume that |z| > 2n2 − 1, or else we are done. Since there are only n2 distinct
pairs of states of G and |z| > 2n2 − 1, there must exist two states q1 and q2 and a
string v ∈ Σ+ such that (a) z = xvu; (b) q1 (resp., q2) is on a path from q̄ to q (resp.,
q′) inducing z; and (c) q1 ∈ δ(q1, v) (resp., q2 ∈ δ(q2, v)). But then, z′ = xu also
reaches both q and q′ from q̄. If |z′| ≤ 2n2 − 1, we are done; otherwise we iterate the
argument. The second part of the lemma follows by construction of Tq̄,q̄.

Lemma 3.3. Let G be trim and unambiguous. Fix a string y ∈ Σi, 1 ≤ i ≤ 2n2−1,
and two distinct states q and q′ of G. Then q ∈ δ(q, y) and q′ ∈ δ(q′, y) if and only if
there is exactly one path p in Tq,q′ that starts at (q, q′)0, ends at (q, q′)|y|, and induces
y. Moreover, the cost of p is c(q, y, q′)− c(q′, y, q′).

Proof. We prove the sufficient case; the necessary case should be clear from the
construction of Tq,q′ .

First observe that, since G is trim and unambiguous, the following holds: for each
string y ∈ Σ+ such that q ∈ δ(q, y), there is exactly one cycle starting and ending at
q and inducing y.

Let (q = q0, q1, q2, . . . , q|y| = q) be the unique sequence of states of G origi-
nating in q and inducing y in G. Therefore, c(q, y, q) is the sum of the weights
on the transitions in that sequence. Similarly define (q′ = q′0, q

′
1, q
′
2, . . . , q

′
|y| = q′).

By the above construction, there exists a path p in Tq,q′ , consisting of the vertices
((q, q′)0, (q1, q′1)1, . . . , (q, q

′)|y|) and inducing y. This path must be unique, and its
cost is c(q, y, q)− c(q′, y, q′).

Lemma 3.4 (see [20, Lemma 2]). Let G be a trim, unambiguous WFA. G has the
twins property if and only if ∀u, v ∈ Σ∗, such that |uv| ≤ 2n2− 1, the following holds:
when there exist two states q and q′ such that (i) {q, q′} ⊆ δ(q̄, u) and (ii) q ∈ δ(q, v)
and q′ ∈ δ(q′, v), then (iii) c(q, v, q) = c(q′, v, q′) must follow.

Fix two distinct states q and q′ of G. Let (q, q′)i1 , (q, q
′)i2 , . . . , (q, q

′)is , 0 < i1 <
i2 < · · · < is, be all the occurrences of (q, q

′) in Tq,q′ , excluding (q, q′)0. This sequence
may be empty. A symmetric sequence can be extracted from Tq′,q. We refer to these
sequences as the common cycles sequences of (q, q′). We say that q and q′ satisfy the
local twins property if and only if (1) their common cycles sequences are empty, or (2)
zero is the cost of any shortest path from (q, q′)0 to (q, q′)ij in Tq,q′ and from (q′, q)0
to (q′, q)ij in Tq′q ∀ 1 ≤ j ≤ s.

Lemma 3.5. Let G be a trim, unambiguous WFA. G satisfies the twins property
if and only if (i) RT is empty, or (ii) all (q, q′) ∈ RT satisfy the local twins property.

Proof.
⇒) Assume that G satisfies the twins property. If RT is empty, we are done.
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Assume then that RT �= ∅. The proof is by contradiction. Assume that some (q, q′) ∈
RT does not satisfy the local twins property. The common cycles sequences of (q, q′)
cannot be empty, or else they would satisfy the local twins property. By assumption,
there exists some j for which the cost of some shortest path from (q, q′)0 to (q, q′)ij in
Tq,q′ is not zero, while the cost of a shortest path from (q′, q)0 to (q′, q)ij in Tq′q may
be any value, including zero (or vice versa). Fix any such shortest path p in Tq,q′ .
According to Lemma 3.3, p corresponds to cycles around q and q′ that each induce
the same string y for some y ∈ Σij . Moreover, we must have c(q, y, q)−c(q′, y, q′) �= 0.
By definition of RT , q and q′ are each reachable by some string u from the initial
state of G. Therefore, G does not satisfy the twins property, which is a contradiction.
⇐) Assume that RT is empty. Then, by Lemma 3.2, no two distinct states q, q′

of G can both be reached by some string z ∈ Σ+ from the initial state q̄. Therefore,
G satisfies the twins property. Assume now that RT is not empty. We have two
subcases.

Subcase A. Assume that all states in RT satisfy the local twins property because
their common cycles sequences are empty. This implies that all pairs of distinct states
reachable from the initial state of G through the same string z ∈ Σ+ do not have any
cycles in common inducing identical strings. Thus, G satisfies the twins property.

Subcase B. Assume that some states in RT satisfy the local twins property and
their common cycles sequences are not empty. Let RT ′ be such a set. Assume that
G does not satisfy the twins property. We derive a contradiction. Since RT ′ is not
empty, we have that the set of pairs of states for which (i) and (ii) are satisfied in
Lemma 3.4 is not empty. But since G does not satisfy the twins property, there
must exist two distinct states q and q′ and a string uv ∈ Σ∗, |uv| ≤ 2n2 − 1, such
that (i) both q and q′ can be reached from the initial state of G through string u;
(ii) q ∈ δ(q, v) and q′ ∈ δ(q′, v); and (iii) c(q, v, q) �= c(q′, v, q′). We now argue that
(q, q′) must be in RT ′. Because q �= q′ and G has only one initial state, we have
that |u| ≥ 1. Thus, 1 ≤ |u| ≤ 2n2 − 1, implying that (q, q′) ∈ RT . v cannot be the
empty string ε because c(q, ε, q) = c(q′, ε, q′) = 0. Since |uv| ≤ 2n2 − 1, we have that
1 ≤ |v| ≤ 2n2−1. But then, by Lemma 3.3 and (ii) above, we have that (q, q′)|v| can be
reached from (q, q′)0 in Tq,q′ through the nonempty string v. Therefore, the common
cycles sequences of (q, q′) cannot be empty, implying that (q, q′) ∈ RT ′. Without loss
of generality, assume that c(q, v, q)− c(q′, v, q′) < 0. Since 1 ≤ |v| ≤ 2n2 − 1, we have
by Lemma 3.3 that there is exactly one path p in Tq,q′ starting at (q, q)0, ending in
(q, q′)|v|, inducing v, and with cost c(q, v, q) − c(q′, v, q′) < 0. Since p has negative
cost, the cost of the shortest path from (q, q′)0 to (q, q′)|v| in Tq,q′ cannot be zero,
which contradicts that q and q′ satisfy the local twins property and have nonempty
common cycles sequences.

Our algorithm for testing whether a trim, unambiguous WFA has the twins prop-
erty works as follows. First, compute Tq̄,q̄ and the set RT . Then, for each pair of
states (q, q′) ∈ RT that have not been processed yet, compute Tq,q′ and Tq′,q, extract
the common cycles sequences, and compute the single source (from the root) shortest
paths to vertices in Tq,q′ and Tq′,q.

Theorem 3.6. Let G be a trim unambiguous WFA. In the general case, whether
G satisfies the twins property can be checked in O(m2n6) time using the �-RAM model
of computation. In the integer case, the bound becomes O(ρm2n6) using the CO-
RAM model of computation.

Proof. Lemma 3.5 implies correctness. We now analyze the algorithm, starting
with the general case. Recall that each arithmetic-logic operation can be done in
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Fig. 2. (a) A nondeterministic weighted automaton, A. Arcs labeled σ/w correspond to tran-
sitions labeled σ with weight w. (b) The result of applying DTA to A. This is derived from Figures
11 and 12 of Mohri [20].

constant time. Tq̄,q̄ can be easily obtained in O(m2n4) time by visiting the automaton
G. Now, visiting Tq̄,q̄, we can obtain the set RT in the same amount of time.

Fix a pair of distinct states q and q′ of G. It is sufficient to discuss how to
compute shortest paths from the root vertex of Tq,q′ to the other vertices in the
graph. Notice that the edges of Tq,q′ may have negative cost. However, Tq,q′ is
a multipartite acyclic graph. In that case, it is a simple exercise to show how to
perform the required computation in time linear in the size of Tq,q′ , i.e., O(m2n4)
time. Since |RT | = O(n2), the total time of the algorithm is O(m2n6).

For the integer case, we multiply the above bound by ρ.
We also mention, omitting the details, that the exponential-time algorithm for

testing the twins property originally devised by Mohri [20] can be simplified and
implemented to run in pseudopolynomial time in the integer case. The algorithm we
devise here is weakly polynomial in the integer case.

3.2. The DTA algorithm. Mohri [20] describes a determinization algorithm
for a finite-state automaton with weights drawn from a general semiring. What we
refer to as DTA is that algorithm restricted to the min-sum semiring. DTA is a
generalization of the classic power-set construction for finite automata. We describe
the algorithm, starting with an example.

Consider the weighted automaton, A, in Figure 2(a). WhileA is not unambiguous,
it has the twins property, and so we can apply DTA directly to it, proceeding as
follows. From the initial state q0, we can reach states q1 and q2 using the input
symbol a. Analogously to the determinization of finite-state automata, we establish
a new state {q1, q2} in A′, reachable from q0 with input symbol a. The transitions to
q1 and q2, however, have different weights in A. DTA selects the smaller weight to
be the weight of the transition to {q1, q2} and records the difference between the two
weights in the new state. In the example, the weight of the q0 → q1 transition is 3,
and that of the q0 → q2 transition is 1. Therefore, the new transition to {q1, q2} gets
weight 1, and the difference of 2 = 3 − 1 is assigned as a remainder to component
q1. For completeness, a remainder of 0 = 1 − 1 is assigned to q2. The new state is
thus encoded as {(q1, 2), (q2, 0)} in A′. Similarly, from state q0 in A, we can reach
states q1 and q2 via symbol b. Again the minimum weight among these transitions is
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1, so we assign this weight to the new arc and encode the remainder weights (0 and
3, respectively) in the new state {(q1, 0), (q2, 3)} in A′.

In general, the states in A′ are of the form q̂ = {(qi1 , ri1), . . . , (qi� , ri�)}. The qi’s
are states from A, and the ri’s are called remainders. Each such q̂ is interpreted as
follows. Consider any string w ∈ Σ∗ such that there is a (single) path inducing w
from the start state, q0, to q̂. As in classical automata determinization, there is at
least one path inducing w from q0 to each qij in the nondeterministic input, A. Let
cj be the weight of the minimum weight path inducing w from q0 to qij in A. Let c
be the weight of the path from q0 to q̂ in A′. The remainders are constructed so that
rij = cj − c. In this way, all necessary path length information is encoded into the
transition weights and remainders in A′.

Returning to the example, consider state {(q1, 2), (q2, 0)} in A′ and the input
symbol b. In A, we can reach state q3 from both q1 and q2. Recalling the above
discussion of remainders, we consider the sum of the weight of the transition in A
(3 for the q1 → q3 transition and 1 for the q2 → q3 transition) plus the remainder
associated with the original source state encoded in state {(q1, 2), (q2, 0)} in A′. That
is, we consider the sums 3+2 = 5 and 1+0 = 1. We take the minimum among those
values, i.e., 1, as the weight of the transition from {(q1, 2), (q2, 0)} to {(q3, r)} (r to be
determined) in A′. Since there is only one destination state (q3) in A, the remainder
r is 0, so we encode the new destination state as {(q3, 0)}. Similarly, we construct an
arc with weight 3 on symbol b from {(q1, 0), (q2, 3)} to {(q3, 0)}. (3+0 = 3, 1+3 = 4,
and we take the minimum, which is 3.) The end result is shown in Figure 2(b).

Generalizing to an arbitrary WFA G = (Q, q̄,Σ, δ, Qf ), the deterministic WFA G′

is obtained as follows. The start state of G′ is {(q̄, 0)}, which forms an initial set P .
While P �= ∅, we remove any state q = {(q1, r1), . . . , (qn, rn)} from P , where qi ∈ Q
and ri ∈ �+ ∪ {0,∞}. The remainders encode path length information, as described
above. For each σ ∈ Σ, let {q′1, . . . , q′m} be the set of states reachable by σ-transitions
out of all the qi. For 1 ≤ j ≤ m, let

ρj = min
1≤i≤n;(qi,σ,ν,q′j)∈δ

{ri + ν}

be the minimum of the weights of σ-transitions into q′j from the qi plus the respective
ri. Let ρ = min1≤j≤m{ρj}. Let q′ = {(q′1, s1), . . . , (q′m, sm)}, where sj = ρj − ρ for
1 ≤ j ≤ m. If q′ is a new state, we add it to P . We add transition (q, σ, ρ, q′) to G′.
This is the only σ-transition out of state q, so G′ is deterministic.

Let TG(w) be the set of sequences of transitions in G that accept a string w ∈ Σ∗;
let �tG′(w) be the (one) sequence of transitions in G′ that accepts the same string.
Mohri [20] shows that

c(�tG′(w)) = min
�t∈TG(w)

{c(�t)},

and thus L(G′) = L(G). Moreover, let TG(w, q) be the set of sequences of transitions
in G from state q̄ to state q that induce string w. Again, let �tG′(w) be the (one)
sequence of transitions in G′ that induces the same string; �tG′(w) ends at some state
{(q1, r1), . . . , (qn, rn)} in G′ such that some qi = q. Mohri [20] shows that

c(�tG′(w)) + ri = min
�t∈TG(w,q)

{c(�t)}.

Thus each remainder ri encodes the difference between the weight of the shortest path
to some state that induces w in A and the weight of the path inducing w in A′, as
described above. Hence at least one remainder in each state is zero.



ON THE DETERMINIZATION OF WEIGHTED FINITE AUTOMATA 1511

3.3. An analysis. We first bound #dta(G), the number of states in dta(G). The
results of section 5 show that our upper bound is tight to within polynomial factors.

Lemma 3.7. Assume that G satisfies the twins property. Let R̃ be the set of
remainders generated by DTA when computing dta(G). Let R be the set of remainders
r for which the following holds: ∃w ∈ Σ∗, |w| ≤ n2 − 1, and two states q1 and q2,
such that r = |c(q̄, w, q2)− c(q̄, w, q1)|. Then R̃ ⊆ R.

Proof. Let R′ be the set of remainders r′ such that ∃w′ ∈ Σ∗ and two states q1
and q2 such that r′ = |c(q̄, w′, q2) − c(q̄, w′, q1)|. Consider a state-remainder tuple in
dta(G) reached by w′ from the initial state, and assume that q1 is the optimal state
in that tuple, i.e., the one with zero remainder. Then the remainder associated to q2
is r′. Thus, R̃ ⊆ R′. We next show that R = R′.

Clearly R ⊆ R′. To prove the other inclusion we only need to show that the
remainder r generated by any string of length at least n2 is generated by a string of
length at most n2 − 1. Let p1 and p2 be the paths of minimum cost in G, starting
at q̄, ending at q1 and q2, respectively, and each inducing u. Because |u| ≥ n2 and
there are only n2 distinct pairs of states in G, there exist two (not necessarily distinct)
states, q′1 and q′2, in p1 and p2, respectively, and a partition of u = xvz, v ∈ Σ+,
such that {q′1, q′2} ⊆ δ(q̄, x), q′1 ∈ δ(q′1, v) and q′2 ∈ δ(q′2, v) (there are cycles at q′1 and
q′2 inducing v), and, finally, q1 ∈ δ(q′1, z) and q2 ∈ δ(q′2, z). Since q′1 and q′2 are twins,
we have that |c(q̄, u, q1)− c(q̄, u, q2)| = |c(q̄, ū, q1)− c(q̄, ū, q2)|, where ū = xz is in Σ+

and |ū| < |u|. If ū is of the required length, we are finished; otherwise, we iterate the
argument.

Theorem 3.8. Let G be a WFA satisfying the twins property. In the general
case, #dta(G) < 2n(2 log n+n2 log |Σ|+1); in the integer (or rational) case, #dta(G) <

2n(2 log n+1+min(n2 log |Σ|,ρ)); and if G is acyclic, #dta(G) < 2n log |Σ| independent of
any assumptions on weights. The acyclic bound is tight (up to constant factors) for
any alphabet.

Proof. Let R̃ be the set of remainders in dta(G). Each state in dta(G) is an i-
tuple of states from G with a corresponding i-tuple of remainders. In the worst case,
each i-state tuple from G will appear in dta(G), and there are |R̃|i distinct i-tuples
of remainders it can assume. (This over-counts by including tuples without any zero
remainders.) Therefore,

#dta(G) ≤
n∑

i=1

(
n

i

)
|R̃|i ≤ (2|R̃|)n.

Let R be the set of remainders r for which the following holds: ∃w ∈ Σ∗, |w| ≤ n2−1,
and two states q1 and q2, such that r = |c(q̄, w, q2) − c(q̄, w, q1)|. By Lemma 3.7,
R̃ ⊆ R, so we can bound |R̃| in different settings by bounding |R|.

General case. The weights on the transitions of G are incommensurable real
numbers, i.e., they require “infinite precision” as binary numbers. Since each string
induced by G corresponds to at least one path in G, we have by definition of R that
the cardinality of this set is bounded by the number of distinct pairs of paths of

length at most n2 − 1. There are at most
∑n2−1

i=1 mi < mn2

such paths, where m is

the number of edges in G. Therefore |R| < m2n2

. On the other hand, the number of

strings of length at most n2 − 1 is bounded by |Σ|n2

. Since each of those strings can

reach a pair of (not necessarily distinct) states in G, we have that |R| < n2|Σ|n2

. But

|Σ| ≤ m, so n2|Σ|n2

is a tighter bound on |R|. Our first estimate follows.
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Integer case. The weights are nonnegative integers. Fix a state q and a string w
that reaches q from the initial state. Then c(q̄, w, q) is in [0, (n2 − 1)C]Z . Therefore,
the remainders in R must also be in that range. It follows that (2|R|)n < (2n2C)n =
2n(2 log n+ρ+1). Since the topological bound on |R| we derived for the general case
does not depend on the magnitude of weights and it holds also for the case we are
considering, we have that (2|R|)n < 2n(2 log n+1+min(n2 log |Σ|,ρ)). Our second estimate
follows. Notice that this result also holds for the case in which the weights are rational
numbers represented by ρ bits.

Acyclic case. The graph underlying G is acyclic. Thus, each string induced by G
is of length at most n− 1. There are |Σ|n = 2n log |Σ| such strings. Each of the strings
induced by G will reach exactly one state in dta(G) (which is a deterministic automa-
ton). Therefore, the number of states of dta(G) is bounded by 2n log |Σ|. Tightness
follows from Theorem 5.10.

Processing each tuple of state-remainders generated by DTA takes O(|Σ|(n+m))
time, excluding the cost of arithmetic and min operations involving two weights and/or
remainders, yielding the following.

Theorem 3.9. Let G be a WFA satisfying the twins property. DTA takes
O(|Σ|(n+m) ·#dta(G)) time using the �-RAM and O(ρ|Σ|(n+m) ·#dta(G)) time
using the CO-RAM. For the general case, using the �-RAM, the time is O(|Σ|(n +

m)2n(2 log n+n2 log |Σ|+1)). For the (rational or) integer case, using the CO-RAM, the

time is O(ρ|Σ|(n + m)2n(2 log n+1+min(n2 log |Σ|,ρ))). For the acyclic case, the time is
O(|Σ|(n +m)2n log |Σ|) using the �-RAM and O(ρ|Σ|(n +m)2n log |Σ|) using the CO-
RAM.

Theorems 3.8 and 3.9 do not require G to be unambiguous. DTA terminates
within the stated resource bounds on any WFA that has the twins property. Consider
in the integer case the interplay between the growth of G when determinized, the time
complexity of the algorithm, and the magnitude of the weights.

In the acyclic case first, we have that #G ≤ S ≤ 2n log |Σ|, where S is the number
of distinct strings accepted by G. In some sense, S gives the “expressive power” of
G, i.e., how much information is compactly stored in G with the aid of nondeter-
minism. For small weights, i.e., ρ ≤ n log |Σ|, the worst-case time complexity of the
algorithm is dominated by the number of strings accepted by G. Therefore, we can
actually “uncompact” some or all of the information contained in G by eliminating
nondeterminism. On the other hand, when ρ > n log |Σ|, the bigger weights add no
information and actually slow down the algorithm to the point that, for very large
weights, the arithmetic and logic operations dominate the cost of the entire algorithm.

For the cyclic case, the situation is analogous, with weights playing an even more
prominent role. Let ρmax = n2 log |Σ|. For ρ < ρmax, the estimate of #dta(G)
depends on ρ, although we do not know how tight that estimate is. For ρ � ρmax,
the expansion of G depends only on its topology, but the large weights slow down the
algorithm.

3.4. Computing a worst-case weighting. The results of section 3.3 can be
used to generate hard instances for any determinization algorithm. Let G be a WFA.
A reweighting function (or simply reweighting) f is such that, when applied to G,
it preserves the topology and labeling of G, but possibly changes the weights on
its transitions. We want to determine a reweighting f such that min(f(G)) exists
and #min(f(G)) is maximized among reweightings for which min(f(G)) exists. We
restrict attention to the integer case and, without loss of generality, we assume that
G is trim and unambiguous.
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Fig. 3. A nondeterministic finite-state automaton accepting language L =
⋃n

i=1 (Σ− {ai})n.
Arcs labeled ˜ai denote transitions on all symbols in Σ− {ai}.

Theorem 3.8 shows that for weights to have an effect on the growth of dta(G), it
must be that ρ ≤ n2 log |Σ|. Set ρmax = n2 log |Σ|. To find the required reweighting,
we simply consider all possible weight assignments to G satisfying the twins prop-
erty and requiring at most ρmax bits, choosing the one that leads to the minimum
deterministic equivalent of maximum size. There are (2ρmax)m = 2mρmax possible

reweightings, and it takes 2O(n(2 log n+(n2 log |Σ|))) time to compute the size expansion
or decide that the resulting machine cannot be determinized. The total time is thus
bounded by 2O(n(2 log n+(n2 log |Σ|))+mρmax).

4. Hot automata. This section provides a family of acyclic, multipartite WFAs
that are hot: when determinized, they expand independently of the weights on their
transitions. Given some alphabet Σ = {a1, . . . , an}, consider the language

L =
n⋃

i=1

(Σ− {ai})n ;

i.e., the set of all n-length strings that do not include all symbols from Σ. It is
simple to obtain an acyclic, multipartite NFA H of poly(n) size that accepts L. (See
Figure 3.) One can also show that the minimal DFA accepting L has Θ(2n+logn)
states. Furthermore, we can construct H so that these bounds hold for a binary
alphabet: encode the symbols in Σ as binary strings of length logn, and replace arcs
in the above NFA with n-vertex, (log n)-depth trees appropriately. H corresponds
to a WFA with all arcs weighted identically. Since acyclic WFAs satisfy the twins
property, they can always be determinized. Altering the weights can only increase
the expansion.

Continuing, Kintala and Wotschke [18] provide a set of NFAs that produces a
hierarchy of expansion factors when determinized. Consider the set of languages

Lh,k = {x1y | x, y ∈ {0, 1}∗; |x| ≤ k − 1; |y| = k;x has at most h 1’s in it}

for k ≥ 1, h < k. They show that for each Lh,k, there is an O(k2)-state acyclic (but
not multipartite) NFA that accepts Lh,k, yet any DFA accepting Lh,k must have at

least
∑2 log h

i=0

(
k
i

)
states. These provide additional examples of hot WFAs.
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Fig. 5. The result of determinizing RG(k) when all arc weights are 0. In the result, all arcs
are again weighted 0, and the remainders in the vertices are all 0; these values are omitted from the
figure.

5. Weight-dependent automata. In this section we address the effect of
weights on the size of the deterministic equivalent of an input WFA. We study a
simple family of WFAs with multipartite, acyclic topology. When the arcs are all
weighted zero, all WFAs in this family shrink when determinized. We show, however,
that even though the topology is by itself very benign, certain weightings can cause
exponential increases in size when the WFA is determinized. This study is related
in spirit to works that measure amounts of nondeterminism and ambiguity in finite
automata [14, 15, 18]. We first discuss the case of a binary alphabet and then gener-
alize to arbitrary alphabets. In this section, we use the terms automaton and graph
interchangeably.

5.1. The rail graph. We denote by RG(k) the k-layer rail graph. See Figure 4.
RG(k) has 2k+1 vertices, which we denote by {0, T1, B1, . . . , Tk, Bk}. There are arcs
(0, T1, a), (0, T1, b), (0, B1, a), (0, B1, b), and then, for 1 ≤ i < k, arcs (Ti, Ti+1, a),
(Ti, Ti+1, b), (Bi, Bi+1, a), and (Bi, Bi+1, b). (It should be clear from Figure 4 that T
stands for “top” and B for “bottom.”)

Note that RG(k) is (k + 1)-partite and also has fixed in- and out-degrees. (All
vertices have in- and out-degrees 2, except the root, which has in-degree 0 and out-
degree 4, and the vertices Tk and Bk, which have out-degree 0.) If we consider the
strings induced by paths from 0 to either Tk or Bk, then the language of RG(k) is the
set of strings LRG(k) = {a, b}k. The only nondeterministic choice is at the state 0,
where either the top or bottom rail may be selected. Hence a string w can be accepted
by one of two paths: one following the top rail and the other the bottom rail.

Technically, the rail graph is ambiguous. We can easily disambiguate RG(k) by
adding transitions from Tk and Bk, each on a distinct symbol, to a new final state.
Our results extend to this case. For clarity of presentation, however, we discuss the
ambiguous rail graph.

The rail graph is weight-dependent. In section 5.2 we provide weightings such
that DTA produces a trivial (k + 1)-vertex series-parallel graph. (See Figure 5 for
an example.) On the other hand, in section 5.3 we exhibit weightings for the rail
graph such that, when input to DTA, we get an exponential increase in the number
of states. (See Figures 6 and 7 for an example.) Notice that we cannot get more
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Fig. 6. “Worst-case” weighting of RG(k). Arc label σ/w means the arc is labeled with symbol
σ and has weight w.
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Fig. 7. Result of determinizing RG(5), weighted as in Figure 6. States have been renamed. All
arcs are weighted 0. The remainders are not shown.

than 2k vertices, one per string in LRG(k), in the last layer of the determinized graph,
and thus the weighting in Figure 6 is in some sense worst case. In that section we
also explore the relationship between the magnitude of the weights and the amount
of expansion that is possible. In section 5.4, we show that random weightings induce
the behavior of worst-case weightings. We discuss variants of the rail graph in section
5.5, and finally, in section 5.6 we generalize the rail graph to arbitrary alphabets.

5.2. A framework for examining weightings of RG(k). Consider deter-
minizing RG(k) with DTA. The set of states reachable on any string w = σ1 · · ·σj of
length j ≤ k is {Tj , Bj}. For a given weighting function c, let cT (w) denote the cost
of accepting string w if the top path is taken; i.e.,

cT (w) = c(0, σ1, T1) +

j−1∑
i=1

c(Ti, σi+1, Ti+1).

Analogously define cB(w) to be the corresponding cost along the bottom path. Let
R(w) be the remainder vector for w, which is a pair of the form (0, cB(w) − cT (w))
or (cT (w)− cB(w), 0). A state at layer 0 < i ≤ k in the determinized WFA is labeled
({Ti, Bi}/R(w)) for any string w leading to that state; i.e., all strings leading to a
particular state induce the same remainder vector. Two strings w1 and w2 of identical
length lead to distinct states in the determinized version of the rail graph if and only
if R(w1) �= R(w2).

It is convenient simply to write R(w) = cT (w) − cB(w). The sign of R(w) then
determines which of the two forms (0, x) or (x, 0) of the remainder vector occurs.

Suppose that w has length j and can be written w′σ, where σ ∈ {a, b}. Let rTi (σ)
denote the weight on the (top) arc labeled σ into vertex Ti and rBi (σ) denote the
weight on the (bottom) arc labeled σ into vertex Bi. Then we can write R(w) =



1516 A. L. BUCHSBAUM, R. GIANCARLO, AND J. R. WESTBROOK

R(w′) + rTj (σ)− rBj (σ). Abbreviating rTi (σ)− rBi (σ) by δi(σ), we have

R(w) =

j∑
i=1

δi(σi).

The rail graph with a specific weighting can also be regarded as a function that
hashes a k-bit string w into a number R(w). Define symbol a to be 0 and symbol b to
be 1, so that a string w can be viewed as a sequence of bits b1, . . . , bk. We can write

R(b1, . . . , bk) = R(b1, . . . , bk−1) + δk(bk).

Also, we can write δk(bk) = bk · δk(1)+ (1− bk)δk(0). Rearranging gives δk(bk) =
δk(0) + bk(δk(1)− δk(0)). Summing over all i gives

R(w) =

k∑
i=1

(δi(0) + bi(δi(1)− δi(0))).

Alternatively,

R(w) = Ra +

k∑
i=1

bi(δi(1)− δi(0)),(1)

where Ra =
∑k

i=1 δk(0) is fixed for a given weighting function on RG(k).
Theorem 5.1. There is a reweighting f such that both dta(f(RG(k))) and

min(f(RG(k))) realize the topology of the (k + 1)-vertex trivial series-parallel graph
(exemplified in Figure 5).

Proof. Any weighting in which δi(a) = δi(b) for i = 1 to k suffices, since in this
case R(w1) = R(w2) for all pairs of strings {w1, w2}. In particular, giving zero weights
suffices.

5.3. Worst-case weightings of RG(k). See Figures 6 and 7.
Theorem 5.2. For any j ∈ [0, k]Z there exists a reweighting f such that

dta(f(RG(k))) has the following form: Layers 0 through j form the complete binary
tree on 2j+1 − 1 vertices, and the remaining layers j + 1 through k consist of trivial
series-parallel graphs, each rooted at a leaf of the tree.

Proof. Choose any weighting such that δi(a) = 2i−1 and δi(b) = 0 for 1 ≤ i ≤ j,
and let δi(a) = δi(b) = 0 for j < i ≤ k. Consider a pair of strings w1, w2 of identical
length that differ in position i′ ≤ j. Let σ1

i = 1 if the ith symbol of w1 is a and
σ1
i = 0 otherwise; similarly define σ2

i with respect to w2. Then we can write R(w1) =∑j
i=1 σ

1
i 2

i−1 and R(w2) =
∑j

i=1 σ
2
i 2

i−1. Since σ1
i′ �= σ2

i′ , R(w1) must differ from
R(w2). Hence the two strings must lead to different states. If on the other hand they
differ only in positions i′ > j they will lead to the same state. There are 2i strings
that differ in positions 1 through i; thus for i ≤ j, there are 2i distinct vertices in the
ith layer of the graph. Since each vertex has out-degree 2, one arc for each symbol,
the graph must have the desired form.

Note that if we set all weights on the bottom rail to zero, and the weights rTi (a) =
2i−1 and rTi (b) = 0 ∀ 1 ≤ i ≤ k, we get a weighting that yields a complete binary tree
of depth k when DTA is applied. It is easy to show that the minimum deterministic
graph preserving shortest paths, however, consists of a trivial series-parallel graph in
which all edges have weight zero, corresponding to the lower rail. We can remedy this
by choosing weights more judiciously.
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Fig. 8. Result of minimizing dta(RG(6)), weighting RG(6) as follows: rTi (a) = rBi (b) = 2i for
1 ≤ i ≤ 4; all other weights were 0. States have been renamed, and remainders are not shown.

Theorem 5.3. For any j ∈ [0, k]Z there is a reweighting f such that both
dta(f(RG(k))) and min(f(RG(k))) have the following form: Layers 0 through j − 1
form the complete binary tree on 2j−1 vertices, and the remaining layers j through k
form a trivial series-parallel graph with incoming arcs to the layer-j vertex from each
vertex at layer j − 1.

See Figure 8. Theorem 5.3 is generalized by Theorem 5.10, and therefore we omit
its proof here. Theorems 5.2 and 5.3 show that the bound obtained in Theorem 3.8
for the acyclic case is tight for binary alphabets.

We now address the sensitivity of the size expansion to the magnitude of the
weights. Note that RG(k) has 2k + 1 vertices and 4k arcs, but we use Θ(k) bits to
encode the weight of each arc in the proofs of Theorems 5.2 and 5.3; the input size
of the WFA is thus n = Θ(k2) bits. The determinized WFA has 2k+1 − 1 states
and 2k+1 − 2 transitions. Again we need Θ(k) bits to encode the weight of each
transition, so the bit size of the determinized WFA is Θ(k2k), or 2Θ(

√
n) bits. So

while the determinized WFA has exponentially more states than the original WFA,
the size expansion in bits, while superpolynomial, is not exponential. We argue that
exponential state-space expansion requires exponentially big weights for the rail graph.

Theorem 5.4. Let f be a reweighting. If #dta(f(RG(k))) = Ω(2k), then Ω(k2)
bits are required to represent f(RG(k)).

Proof. Consider the Ω(2k) vertices at depth k in the determinized graph. Each
such state is labeled by a distinct R(w) for some string w = σ1 · · ·σk. Hence if there
are Ω(2k) states in dta(f(RG(k))), there must be Ω(2k) distinct values of R(w). In
addition, there must be Ω(2k) distinct values of the absolute value of R(w).

Recalling the formulation of R(w) from (1), there can be at most 2k
′
distinct

values of R(w), where k′ is the number of distinct values of (δi(1)−δi(0)). Each value
may be included in the sum or not, and at best a choice of inclusions and exclusions
will lead to a unique sum. Therefore, the assumption of Ω(2k) distinct remainders
implies there must be Ω(k) distinct values of the (δi(1)− δi(0)).
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Now ignore the �k2 � low-order bits of the absolute values of the remainders, and

consider only the remaining high-order bits. There must be Ω(2

k
2 �) distinct values

induced by the high-order bits, or else there cannot be Ω(2k) distinct values overall. By
the same argument as above, there must be Ω(�k2 �) distinct values of the (δi(1)−δi(0))
that affect the high-order bits of a large remainder, i.e., one with one of its high-order
�k2 � bits set to 1.

For a particular (δi(1) − δi(0)) to affect a high-order bit of a large remainder,
(δi(1)− δi(0)) must have a nonzero bit at least as high as position �k2 � − log k. This
is only true if one of the four arc weights for layer i has a nonzero bit at least that
high. Therefore, Ω(k) arc weights require some nonzero bit at least as high as position
�k2 � − log k. Hence Ω(k2) bits are required to represent all the arc weights.

Corollary 5.5. Let f be a reweighting. If #min(f(RG(k))) = Ω(2k), then
Ω(k2) bits are required to represent f(RG(k)).

Proof. Theorem 5.4 applies, because #min(f(RG(k))) = Ω(2k) implies that
#dta(f(RG(k))) = Ω(2k).

Finally, consider the following analogy between the hot graphs in section 4 and
the rail graph. Observe that the hot graphs in section 4 contain some nondeterministic
choices that cannot be resolved until the end of the input. This causes the respective
deterministic expansions. In those graphs, these choices are part of the strings being
accepted. The rail graph manifests this same phenomenon, but in terms of weights
rather than strings. The weighted variants of the rail graph that expand when de-
terminized do so because it is not clear until the end of the expansion which rail will
provide the shorter path: at any point, the choice of top or bottom rail depends on
the symbols that follow. Therefore, the determinization must maintain enough state
information to provide for all possible outcomes. Furthermore, in the nonminimizable
cases, whereas the language LRG(k) itself could be accepted by a (k + 1)-state DFA,
the weights on RG(k) necessitate an exponential number of states and arcs in any
deterministic WFA that induces all the appropriate path lengths.

5.4. Random weightings of RG(k). An i-bit reweighting function (or simply
i-bit reweighting) is a reweighting function f such that the weights on the arcs of f(G)
are constrained to be in [0, 2i − 1]Z . A function fR is a random reweighting function
(or simply random reweighting) if and only if it chooses the weights to assign to the
transitions of G uniformly and independently at random from �+ ∪ {0,∞}. Finally,
let x ∈R Y denote that x is selected uniformly and independently at random from set
Y , and let E[X] denote the expected value of some random variable X. We need the
following technical claim.

Claim 5.6. Let X,Y, U, V ∈R [0, 2k − 1]. Then

max
−2k+1+1<i<2k+1−1

Pr(X − Y − (U − V ) = i) ≤ 2

3 · 2k +O
(
1/4k

)
.

Proof. See Appendix A.1.
Theorem 5.7. Let fR be a random k-bit reweighting. E[#dta(fR(RG(k)))] =

Θ(2k).
Proof. As before, let R(w) be the remainder induced by string w of length k; i.e.,

the difference between the cost of the upper path and the cost of the lower path that
respectively induce w. Let δi(σ) be the cost of the (top) arc labeled σ into vertex Ti

minus the cost of the (bottom) arc labeled σ into vertex Bi. Recall from (1) that the
rail graph with a specific weighting can be regarded as a function that hashes a k-bit
string w = σ1 · · ·σk into a number R(w).
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Suppose w1 �= w2. We can adapt a standard analysis from the theory of universal
hash functions [7] to calculate the probability that R(w1) = R(w2). Let w1 = α1 · · ·αk

and w2 = β1 · · ·βk. Without loss of generality, assume αk �= βk. (The strings must
differ somewhere.) Suppose R(w1) = R(w2). Then by definition (with some manipu-
lation)

(αk − βk)(δk(1)− δk(0)) =

k−1∑
i=1

(βi − αi)(δi(1)− δi(0)).

Fix a set of weights on the arcs in the first k − 1 layers, so the right-hand side of the
equation is a constant. The value (αk − βk) is either −1 or 1, by assumption. Hence,
for the given set of weights on the first k − 1 layers, there is exactly one value of
(δk(1)− δk(0)) that makes R(w1) = R(w2). If we assign the weights randomly in the
kth layer, the probability that (δk(1)−δk(0)) has the necessary value is upper-bounded
by

max
−2k+1+1<C<2k+1−1

Pr[X1 −X2 − (X3 −X4) = C],

where the Xis are uniform random variables in the range [0, 2k − 1]Z . (It is strictly
upper-bounded, since the value of (δk(1)− δk(0)) lies in [−2k+1 + 2, 2k+1 − 2], which
is in general smaller than the range of values that the right-hand side of the equation
can assume.)

By Claim 5.6, therefore, for any fixed assignment of the first k − 1 values, the
probability that R(w1) = R(w2) is bounded above by 2

3·2k +O(1/4k). Hence, summing
over all possible assignments to the first k−1 values, the total probability thatR(w1) =
R(w2) is also bounded above by 2

3·2k + O(1/4k). We will use this result to compute
the expected number of vertices at layer k in the determinized graph.

First, we compute the expected number of collisions: the number of strings of
length k that have the same remainder. Since the number of strings is 2k, this is
simply

∑
w1,w2

(
2

3 · 2k +O(1/4k)

)
=

2

3
2k +O(1).

Suppose x1, . . . , x� form the set of layer-k vertices in the deterministic graph. Let
Si be the set of strings that map to vertex xi, and let random variable si be |Si|. The
expected number of collisions can thus be written as E[

∑�
i=1

(
si
2

)
]. Since the expected

value is 2
32

k + O(1), it must be the case that in one-half of the weight assignments,
the actual value of the sum is at most 4

32
k +O(1).

We now consider the minimum number of sets so that there is an assignment of
strings to sets that satisfies

�∑
i=1

(
si
2

)
≤ 4

3
2k +O(1)

and

�∑
i=1

si = 2k.
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Fig. 9. A rail tree of depth 4, with ten-bit random weights.

Elementary calculus shows that the binomial sum is minimized when the si’s are all
equal, which implies that the minimal value of 5 is Ω(2k).

Therefore, in at least half the weight assignments, there are Ω(2k) distinct re-
mainders and so Ω(2k) distinct states in the determinized graph. Hence the expected
number of states in the determinized graph is also Ω(2k).

Since the arcs weights of ASR WFAs are (negated) log probabilities, we consider
the behavior of determinization when the arcs are weighted with log-random numbers,
i.e., logarithms of uniform random variables. On the rail graph, we find the same
behavior with log-random weights as with random weights, including the increasing
expansion as more bits are employed. As the following claim shows, retaining enough
bits of the log-random weights drives the collision probability (as discussed in the
proof of Theorem 5.7) low enough to ensure this behavior.

Claim 5.8. Let X,Y, V, Z ∈R [1, 2k − 1]. Let R = �2b logX�, S = �2b log Y �,
T = �2b log V �, and U = �2b logZ� for some b ≥ k −O(1). Then

max
−k2b+1+1<i<k2b+1−1

Pr(R− S − (T − U) = i) =
1

4 · 2k +O
(
1/4k

)
.

Proof. See Appendix A.2.
Thus we derive the analogue to Theorem 5.7 for log-random weights.
Theorem 5.9. Let G be RG(k) weighted with logarithms of numbers chosen

independently and uniformly at random from [1, 2k−1]Z . Then E[#dta(G)] = Θ(2k).
Proof. Apply Claim 5.8 instead of Claim 5.6 in the proof of Theorem 5.7, and alter

the ensuing discussion appropriately to account for the respective constants.

5.5. Variations of the rail graph. We remark that all of the above results
extend even when we simplify the rail graph as follows.

1. Eliminate the b-arcs out of state 0.
2. Allow the symbols on the arcs at any layer i to differ from a and b. Enforce

only that the symbols on the top rail at layer i be the same as those on the
bottom rail at layer i.

Using the original definition of RG(k) simplifies the presentation of the theorems and
proofs.

Although the rail graph allows us to investigate the relationship between deter-
ministic expansion and weighting in WFAs, the general problem of characterizing this
relationship seems difficult. Consider, for example, a rail tree, as in Figure 9, in which
the rail graph is extended into a tree in a straightforward manner. As shown in Figure
10, when determinized, the resulting tree has the same number of vertices and half
the arcs of the original. This is because the language of the original tree contains only
24 distinct strings, and so the determinized tree can have only 24 leaves. So while
many individual rail graphs are embedded in the rail tree, when determinized, it is as
if only one expands at the expense of the others.
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Fig. 10. The result of determinizing the rail tree of Figure 10.
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Fig. 11. Topology of RG(3, 6).

5.6. Extending RG(k) to arbitrary alphabets. We can extend the rail
graph to arbitrary alphabets, defining RG(r, k), the k-layer r-rail graph, as follows.
RG(r, k) has rk + 1 vertices: vertex 0 and, for 1 ≤ i ≤ r and 1 ≤ j ≤ k, vertex vij .

Assume the alphabet is {1, . . . , r}. RG(r, k) has arcs (0, vi1, s) ∀ 1 ≤ i, s ≤ r and also
arcs (vij , v

i
j+1, s) ∀ 1 ≤ i, s ≤ r and 1 ≤ j < k. See Figure 11.

The subgraph induced by vertex 0 and vertices vij for some i and ∀ 1 ≤ j ≤ k

comprises rail i of RG(r, k). The subgraph induced by vertices vij ∀ 1 ≤ i ≤ r and
some j comprises layer j of RG(r, k). Vertex 0 comprises layer 0 of RG(r, k). Thus,
RG(2, k) is the k-layer rail graph, RG(k), defined in section 5.1.

Denote by c(i, j, s) the weight of the arc labeled s into vertex vij . Theorem 5.3
generalizes to RG(r, k) as follows. (See Figure 12.)

Theorem 5.10. For any j ∈ [0, k]Z there is an assignment of weights such that
the minimal deterministic realization of RG(r, k) has the following form: Layers 0

through j− 1 form the complete r-ary tree on rj−1
r−1 vertices, and the remaining layers

j through k form a trivial series-parallel graph with incoming arcs to the layer-j vertex
from each vertex at layer j − 1.

Proof. Choose the following weighting. Set c(i, 5, s) = [(i + s) mod r] · r� ∀
1 ≤ i, s ≤ r and 1 ≤ 5 ≤ j. Set c(i, 5, s) = 0 ∀ 1 ≤ i, s ≤ r and j < 5 ≤ k.

We show that there are no two strings of length less than j that lead to the same
vertex in any deterministic realization of the graph that preserves shortest paths.
Hence the number of vertices at layer 5 < j is equal to the number of strings of length
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Fig. 12. Result of minimizing dta(RG(3, 10)), weighting RG(3, 10) as follows. c(i, �, s) = [(i+s)
mod r] · r� ∀ 1 ≤ i, s ≤ 3 and 1 ≤ � ≤ 4. c(i, �, s) = 0 ∀ 1 ≤ i, s ≤ 3 and 4 < � ≤ 10. Only topology
is shown.

5, which is r�. The proof is by contradiction. Suppose that strings w1 �= w2 lead to
the same vertex x. Let 5 < j be the length of strings w1 and w2. Now consider all
strings that have w1 or w2 as a prefix. Let {w′1, w′2, . . . , w′m} be the set of possible
suffixes, of length k − 5, that can follow any of these prefixes. (In our case, this is
simply the set {1, . . . , r}k−�.)

Let c(w1w
′
i) and c(w2w

′
i) denote the costs of strings w1w

′
i and w2w

′
i, respectively,

in the nondeterministic graph, i.e., the sums of the costs of the arcs along the shortest
paths inducing the respective strings in RG(r, k). The deterministic graph must
satisfy c(w1w

′
i) = cd(w1) + cd(w

′
i|x) and c(w2w

′
i) = cd(w2) + cd(w

′
i|x) ∀ 1 ≤ i ≤ m,

where cd denotes the cost function in the deterministic graph, and cd(w
′
i|x) denotes the

cost of string w′i starting from vertex x. Hence we have that ∀ i, c(w1w
′
i)− c(w2w

′
i) =

cd(w1)− cd(w2). The right-hand side of this equation is a fixed value, say, ∆.
Now consider the pair of suffixes xσ1y and xσ2y, such that σ1 �= σ2 and, for

i ∈ {1, 2}, |σi| = 1, |xσi| = j − 5, and |xσiy| = k − 5; i.e., xσiy appended to w1

or w2 results in a string of length k with σi as the jth symbol. We claim that
there exists some choice of σ1, σ2 ∈ {1, . . . , r} such that c(w1xσ1y) − c(w2xσ1y) �=
c(w1xσ2y)−c(w2xσ2y). This contradicts the requirement that both differences should
be equal to ∆ and hence proves the theorem.

To see the claim, observe that the given weighting on RG(r, k) forces the minimum
cost path for any string with some symbol σ in position j to follow rail (r − σ).
Consider any position i ≤ 5 in which w1 and w2 differ. Denote the ith symbol of w1

(resp., w2) by w1(i) (resp., w2(i)). Then that position contributes [(w1(i) + r − σ1)
mod r − (w2(i) + r − σ1) mod r] · ri to the difference ∆1 = c(w1xσ1y) − c(w2xσ1y)
and [(w1(i) + r − σ2) mod r − (w2(i) + r − σ2) mod r] · ri to the difference ∆2 =
c(w1xσ2y) − c(w2xσ2y). Picking σ1 = w1(i) and σ2 = w2(i) implies that position
i contributes δ1 = −[(w2(i) − w1(i)) mod r] · ri to ∆1 and δ2 = [(w1(i) − w2(i))
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mod r] · ri to ∆2. ∆1 and ∆2 are sums of the form
∑j

i=1 cir
i, where −r < ci < r.

For some 1 ≤ c1, c2 < r, δ1 = −c1ri and δ2 = c2r
i are the only terms involving ri in

∆1 and ∆2, respectively. It follows that ∆1 �= ∆2, thereby proving the claim.
We point out that Theorem 5.10 shows that the bounds in Theorem 3.8 for the

acyclic case are tight for general alphabets. We also point out that Theorems 5.1 and
5.2 generalize easily to the k-layer r-rail graphs. As for the remaining results stated
for binary alphabets in sections 5.3 and 5.4, it would be of some interest to extend
them to arbitrary alphabets: while those extensions would not change the “nature”
of the lower bound stated in Theorem 5.4, they might shed some more light on the
relationship between hashing and DTA.

6. Experimental observations on ASR WFAs. In this section, we study
whether the WFAs that are generated by ASR systems are weight-dependent. This
possibility had not previously been considered by the ASR community, and if true,
it suggests that the weights of ASR WFAs, which are generated from training sets
with considerable manual intervention, must be carefully monitored to preserve their
favorable characteristics.

6.1. Data. We experimented on 100 WFAs generated by the AT&T North
American Business speech recognizer [27], using a grammar for the Air Travel In-
formation System (ATIS), a standard 5000-word vocabulary DARPA test bed [4].
Each transition was labeled with a word from the ATIS vocabulary and weighted by
the recognizer with the negated log of the probability of realizing that transition out
of the source state; we refer to these weights as speech weights.

6.2. Method. For each input WFA, we varied the weights on the given topology.
We determinized each with its speech weights, with zero weights, and with weights
assigned independently and uniformly at random from the integral range [0, 2i − 1]
(for each 0 ≤ i ≤ 8). One WFA could not be determinized with speech weights due to
computational limitations, and it is omitted from the data. The experiments were run
on an SGI R4400 processor with 1 GB of main memory and an SGI R10000 processor
with 1.5 GB of main memory.

Figure 13 shows how many WFAs expanded when determinized with different
weightings. Figure 14 classifies the 63 WFAs that expanded with at least one weight-
ing. For each WFA, we took the weighting that produced maximal expansion. This
was usually the 8-bit random weighting, although due to computational limitations
we were unable to determinize some WFAs with large random weightings. The x-axis
indicates the open intervals within which the value log(|dta(G)|/|G|) falls.

Figure 15 provides additional classification of the eighteen WFAs that expanded
when determinized with speech weights. The x-axis indicates the open intervals within
which the ratio |dta(G)|/|G| falls when G is determinized with its speech weights.

Since the utility of determinization in ASR includes the reduction in size achieved
with actual speech weights, we provide some data on how much the WFAs shrink.
In our sample, 82 WFAs shrank when determinized. For each of these WFAs, we
computed the value log(|G|/|dta(G)|). In Figure 16, we plot the number of WFAs
whose corresponding values fell in various ranges.

Figure 17 demonstrates the relationship between the (log of the) expansion ratio
|dta(G)|/|G| and the number of bits used in the random weights for the ten WFAs

with highest final expansion value. For reference the functions i2, 2
√
i, and 2i are

plotted, where i is the number of bits. Most of the WFAs exhibit subexponential
growth as the number of bits increases, although some, like q0t063, have increased
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Fig. 13. Number of WFAs that expanded when determinized with various weightings.
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by 128 times even with four random bits.

6.3. Discussion. The WFA that could not be determinized with speech weights
was “slightly hot,” in that the determinized zero-weighted variant had 2.7% more arcs
than the original WFA. The remaining 99 WFAs shrank with zero weights: none was
hot. If one expanded, it did so due to weights rather than topology.

Figure 13 indicates that many of theWFAs have some degree of weight-dependence,
since 63 expanded when sufficiently large random weights were used. Finally, Fig-
ure 17 suggests that random weights are a good way to estimate the degree to which
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a WFA is weight-dependent. Note that the expansion factor is some superlinear, pos-
sibly exponential, function of the number of random bits. This suggests that using
large random weights, 32 bits, for example, should cause expansion if anything will.
Analogous experiments on the minimized determinized WFAs yield results that are
qualitatively the same, although fewer WFAs still expand after minimization. Hence
weight-dependence seems to be a fundamental property of these WFAs rather than
an artifact of this particular determinization algorithm.

We have used the analyses and experimental observations above to design an
approximate WFA determinization algorithm: a variant of Mohri’s algorithm that
unifies state tuples whose remainders differ within a specified relative factor. Using
this algorithm, we achieve size reductions in ASR language models that significantly
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exceed those of previous methods, with negligible effects on ASR performance (time
and accuracy). We detail the algorithm and these results separately [6].

The experimental results show that ASR WFAs are generally not hot. This
suggests the following open problem: characterize a class of WFAs that are not hot
and to which many of the ASR examples belong. Such a characterization might be
useful in generating ASR WFAs, so that hot WFAs are guaranteed not to occur.

Appendix. Proofs of claims.
Lemma A.1. Let Y1 and Y2 be random variables from the same probability dis-

tribution. Let X be a random variable such that

Pr(X = i) =

T∑
j=B+|i|

Pr(Y1 = j) Pr(Y2 = j − |i|)

for any i and some fixed B and T . Then Pr(X = i) ≤ Pr(X = 0) for any i.
Proof. Using the fact ab ≤ 1

2

(
a2 + b2

)
, we derive

Pr(X = i) =

T∑
j=B+|i|

Pr(Y1 = j) Pr(Y2 = j − |i|)

≤ 1

2

T∑
j=B+|i|

(
Pr(Y1 = j)2 + Pr(Y2 = j − |i|)2)

=
1

2

T∑
j=B+|i|

Pr(Y1 = j)2 +
1

2

T∑
j=B+|i|

Pr(Y2 = j − |i|)2.(2)

By definition, Pr(X = 0) =
∑T

j=B Pr(Y1 = j) Pr(Y2 = j). By symmetry, therefore,

Pr(X = 0) =

T∑
j=B

Pr(Y1 = j)2 =

T∑
j=B

Pr(Y2 = j)2,

which, combined with (2), completes the proof.
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A.1. Proof of Claim 5.6. It should be clear that, for −(2k − 1) ≤ i ≤ 2k − 1,

Pr(X − Y = i) = Pr(U − V = i) =

(
1

2k

)2 (
2k − |i|) .

Consider Pr(X − Y − (U − V ) = i) and the following cases.

Pr(X − Y − (U − V ) = i | i ≥ 0) =

2k−1∑
j=−2k+1+i

Pr(X − Y = j) Pr(U − V = j − i).

Pr(X − Y − (U − V ) = i | i < 0) =

2k−1∑
j=−2k+1−i

Pr(X − Y = j + i) Pr(U − V = j).

Unifying the cases and exploiting symmetry yields

Pr(X − Y − (U − V ) = i) =

2k−1∑
j=−2k+1+|i|

Pr (X − Y = j) Pr (U − V = j − |i|) .

By Lemma A.1, it suffices to solve for i = 0.

Pr(X − Y − (U − V ) = 0) =

2k−1∑
j=−2k+1

Pr(X − Y = j) Pr(U − V = j)

=

2k−1∑
j=−2k+1

(
1

2k

)4 (
2k − |j|)2

=

(
1

2k

)4

(2k)2 + 2

2k−1∑
j=1

(
2k − j

)2



=

(
1

2k

)4

(2k)2 + 2

2k−1∑
j=1

j2




=

(
1

2k

)4
[(

2k
)2

+ 2

((
2k − 1

) (
2k
) (

2k+1 + 1
)

6

)]

≈
(

1

2k

)4 [(
2k
)2

+
2

3

(
2k
)3]

=
2

3 · 2k +O
(
1/4k

)
.

A.2. Proof of Claim 5.8. For 0 ≤ i ≤ k2b − 1, Pr(R = i) = Pr(S = i) =
Pr(T = i) = Pr(U = i), and

Pr(R = i) = Pr
(
i ≤ 2b logZ < i+ 1

)
= Pr

(
2i/2

b ≤ Z < 2(i+1)/2b
)

=
1

2k − 1

[
2i/2

b
(
21/2b − 1

)]
.
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Now consider Pr(R − S = i) (which equals Pr(T − U = i)). Exploiting symmetry as
before, we derive that, for −k2b + 1 ≤ i ≤ k2b − 1,

Pr(R− S = i) =

k2b−1∑
j=|i|

Pr(R = j) Pr(S = j − |i|)

=

k2b−1∑
j=|i|

[
1

2k − 1

(
21/2b − 1

)]2
2j/2

b

2(j−|i|)/2b

=

[
1

2k − 1

(
21/2b − 1

)]2 1

2|i|/2b

k2b−1∑
j=|i|

22j/2b

=

[
1

2k − 1

(
21/2b − 1

)]2 1

2|i|/2b



(
22/2b

)k2b

− 1

22/2b − 1
−
(
22/2b

)|i|
− 1

22/2b − 1




=

[
1

2k − 1

(
21/2b − 1

)]2 1

2|i|/2b

(
22k − 22|i|/2b

22/2b − 1

)

=
1

(2k − 1)
2 ·

22k − 22|i|/2b

2|i|/2b · 2
1/2b − 1

21/2b + 1
.

By Lemma A.1, Pr(R− S = i) maximizes at i = 0.

Pr(R− S = 0) =

(
2k + 1

) (
21/2b − 1

)
(2k − 1)

(
21/2b + 1

) .

As k gets large, 2k+1
2k−1

tends to 1. We also have 2 < 21/2b

+1 ≤ 3. Finally, 21/2b − 1 ≤
1/2k as long as b ≥ k −O(1). Thus,

max
−k2b+1≤i≤k2b−1

Pr(R− S = i) ≈ 1

2 · 2k .

Now consider Pr(R− S − (T − U) = i). As before, by symmetry we derive that

Pr(R− S − (T − U) = i) =
k2b−1∑

j=−k2b+1+|i|
Pr(R− S = j) Pr(T − U = j − |i|)

for −k2b+1 + 1 < i < k2b+1 − 1. By Lemma A.1, it suffices to solve for i = 0.
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Pr(R− S − (T − U) = 0) =

[
21/2b − 1

(2k − 1)
2 (

21/2b + 1
)
]2 k2b−1∑

j=−k2b+1

(
22k − 22|j|/2b

2|j|/2b

)2

<

[
21/2b − 1

(2k − 1)
2 (

21/2b + 1
)
]2

(22k − 1

)2
+ 2

k2b−1∑
j=1

(
24k

22j/2b + 22j/2b

)


=

(
21/2b − 1

)2 (
22k − 1

)2
(2k − 1)

4 (
21/2b + 1

)2 +
2
(
21/2b − 1

)2

(2k − 1)
4 (

21/2b + 1
)2

24k

k2b−1∑
j=1

1

22j/2b +

k2b−1∑
j=1

22j/2b


 .

(3)

24k
k2b−1∑
j=1

1

22j/2b = 24k



(

1

22/2b

)k2b

− 1

1

22/2b
− 1

− 1




= 24k

[
1/22k − 1

1

22/2b
− 1
− 1

]
<

24k(
21/2b + 1

) (
21/2b − 1

) .(4)

k2b−1∑
j=1

22j/2b

<

(
22/2b

)k2b

− 1

22/2b − 1

=
22k − 1

22/2b − 1
=

(
2k + 1

) (
2k − 1

)
(
21/2b + 1

) (
21/2b − 1

) .(5)

Combining (3)–(5) yields

Pr(R− S − (T − U) = 0) <

(
21/2b − 1

)2 (
22k − 1

)2
(2k − 1)

4 (
21/2b + 1

)2

+
2
(
21/2b − 1

)2

(2k − 1)
4 (

21/2b + 1
)2
[

24k(
21/2b + 1

) (
21/2b − 1

) +
(
2k + 1

) (
2k − 1

)
(
21/2b + 1

) (
21/2b − 1

)
]

=

(
21/2b − 1

)2 (
22k − 1

)2
(2k − 1)

4 (
21/2b + 1

)2
︸ ︷︷ ︸

A

+
2 · 24k

(
21/2b − 1

)

(2k − 1)
4 (

21/2b + 1
)3

︸ ︷︷ ︸
B

+
2
(
2k + 1

) (
21/2b − 1

)

(2k − 1)
3 (

21/2b + 1
)3

︸ ︷︷ ︸
C

.

Recall 2 ≤ 21/2b

+ 1 < 3 and 21/2b − 1 ≤ 1/2k as long as b ≥ k −O(1). Thus,

max {A} ≈ 1

4

(
1

2k

)2

;

max {B} ≈ 1

4
· 1
2k

;

max {C} ≈ 1

4

(
1

2k

)3

.
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Abstract. The typical online bin-packing problem requires the fitting of a sequence of rationals
in (0, 1] into a minimum number of bins of unit capacity, by packing the ith input element without
any knowledge of the sizes or the number of input elements that follow. Moreover, unlike typical
online problems, this one issue does not admit any data reorganization, i.e., no element can be moved
from one bin to another.

In this paper, first of all, the “Relaxed” online bin-packing model will be formalized; this model
allows a constant number of elements to move from one bin to another, as a consequence of the
arrival of a new input element.

Then, in the context of this new model, two online algorithms will be described. The first presents
linear time and space complexities with a 1.5 approximation ratio and moves, at most once, only
“small” elements; the second, instead, is an O(n logn) time and linear space algorithm with a 1.33 . . .
approximation ratio and moves each element a constant number of times. In the worst case, as a
result of the arrival of a new input element, the first algorithm moves no more than three elements,
while the second moves as many as seven elements. Please note that the number of movements
performed is explicitly considered in the complexity analysis.

Both algorithms are below the theoretical 1.536 . . . lower bound, effective for the online bin-
packing algorithms without the movement of elements. Moreover, our algorithms are “more online”
than any other linear space online bin-packing algorithm because, unlike the algorithms already
known, they allow the return of a (possibly relevant) fraction of bins before the work is carried out.
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1. Introduction.

1.1. The bin-packing problem. The bin-packing problem (see survey in [7]
and in [8]) is a major issue in theoretical computer science: it consists of “packing”
a set of nonoverlapping objects into a minimum number of well-defined areas. More
formally [7], [8], given a positive integer C, it provides for the packing of a set of integer
size elements L = {a1, a2, . . . , an}, with size(ai) ∈ (0, C]∩N0, into a minimum number
of bins of equal capacity C.

This problem models the variable partitioning storage management in multipro-
grammed computer systems and the assignment of commercials to mass media station
breaks and truck packing. Bin-packing also models a variant of the scheduling prob-
lem in multiprocessors where the objective is to minimize the number of processors in
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which all tasks are to be completed within a given deadline. (When the common dead-
line is the capacity, processors are represented by bins and elements are represented
by tasks whose size is given by the execution time.)

An interesting case is when C = 1 and size(ai) ∈ (0, 1]
⋂
Q, which results in

a combinatorial optimization problem that is NP-hard in the strong sense1 since it
contains 3-Partition as a special instance [15].

We are interested in searching for approximated fast (polynomial) online bin-
packing algorithms that require the packing of the ith element without information
on the sizes or the number of the following input elements and whose solution is far
from the optimal for a small, fixed, multiplicative constant.

All the known online algorithms share the approach that no element can be moved
from the bin it was first inserted in. Moreover, all the Θ(n)-space algorithms are offline
on output, i.e., no algorithm releases any of the used bins until the end of the input
list has been reached, while all the Θ(1)-space algorithms release all the bins except
for a constant number of them.2

As pointed out in [23] a bin-packing algorithm is an algorithm made up of two
parts: the first part reorders the list according to a preprocessing rule; the second
part generates the packing. An online algorithm has no preprocessing step.

1.2. The relaxed model for the online bin-packing problem. In this pa-
per, we will focus our attention on online algorithms, according to the classical defi-
nition [1], which states the following.

Definition 1.1. The online execution of a sequence of instructions σ requires
that the instructions in σ be executed from left to right and that the ith instruction in
σ be executed without looking at any of the instructions that follow.

The above definition corresponds to the definition of online algorithms considered
in task systems and server problems (see, for example, [4] and [28]). Please note that
the above definition admits internal data reorganization, which is a frequent practice
in most online algorithms.

According to these definitions, we introduce a new online bin-packing model,
named “Relaxed,” which allows a constant number of elements to be moved from one
bin to another consequent to the arrival of new input elements. This new model calls
for a careful definition of a cost function on the set of the possible item movements,
in order to account explicitly for them in the overall algorithm complexity analysis.

Please note that a very limited number of applications of the bin-packing problem
cannot be represented by our model. A typical example of such an application is the
cutting stock problem, where the more abstract operation “assign an element of size
s to a bin” is interpreted in terms of “cut a piece of length s from a stock element.”

On the other side there are many real-life situations where the rearrangement of
an allocated element is possible and this affects (by lowering) the cost of the resolution
process, i.e., packing trucks and multiprocessor memory management strategies. The
“Relaxed” model works very well in all situations in which the operation modeled by
the assignment of an element to a bin can be “undone” by paying something. Such

1Note that, when the number of possible element sizes is a priori bounded, or (it is the same)
in the integer formulation C is fixed, the problem can be exactly solved in polynomial time by
exhaustive search, although the degree of the polynomial can be very high [7], [8] or it can be exactly
solved asymptotically using special linear programming techniques [16], [17]; moreover, the decision
problem “Is there a partition of L into disjoints sets L1, L2, . . . , Lk such that

∑
a∈Li

size(a) ≤ C,

for each Li” is NP-complete and solvable in pseudopolynomial time for each fixed k ≥ 2.
2Online algorithms which are not offline on output were considered in [10].
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a situation arises, for example, when the input list is not known in advance (it could
be infinite, too) and each element (that could arrive with a considerable delay from
the previous one) needs to be processed online, while the guaranteed performance
needs to be maintained at any time for the set of elements currently involved. In this
situation a classical online algorithm (BEST-FIT, HARMONICM , etc.) or an offline
algorithm could be applied in correspondence to each element arrival. In the first case
no known algorithm uses, in the worst case, more than 63% of the bin space, while
no algorithm can use, in the worst case, more than 65% of the bin space (since 1.53
is the theoretical lower bound). In the second case whenever an element arrives all
other elements can be moved out from the bin they are contained in and be assigned
to some other bin, according to the new computed solution. In our model only a
(known) limited number of element movements is admitted, in correspondence to the
arrival of a new element.

In general, this new model is particularly suitable when the elapsed time between
two consecutive input elements is ≥ δK, where δ is the maximum cost for each ele-
ment movement, and K is the maximum number of element movements occurring in
correspondence to each input element (so this model permits us to take advantage of
the “dead times” between two successive input elements).

In [11] and [13] we informally introduced the “Relaxed” model and gave an
O(n log n)-time O(n)-space class of algorithms that, for each prefix of the input se-
quence, returns a 1.5 asymptotical approximation ratio. This value is below the 1.53 . . .
theoretical lower bound [5], [26] well grounded for the restricted case and indicates
that the relaxation of the classical online bin-packing problem conditions is convenient
and theoretically interesting. Some experimental simulations allow us to guess that
this class of algorithms has (on the average) very good behavior.

Our paper shows how this result is improved in two different ways by giving two
linear space algorithms: the first presents a 1.5 approximation ratio with an O(n) time
complexity; the second presents a 1.33 . . . approximation ratio with an O(n log n) time
complexity (they fill each bin in the worst case at least for 66% and 75%). Moreover,
at the arrival of each input element, in the worst case the first algorithm moves no
more than three elements while the second may move up to seven elements.

Last, please note that these algorithms are “more online” than all the other linear
space online bin-packing ones because, unlike the known algorithms, they allow the
return of a (possibly relevant) fraction of the bins before the work is carried out.

Section 2 gives definitions and a brief summary of the previous results on the
online bin-packing problem; section 3 shows the “Relaxed” model, with regard to
element movement, small element grouping operations, and definition of movement
evaluation function; section 4 introduces the linear algorithm A1 while section 5 gives
an analysis of its performance; the O(n log n) algorithm A2 is introduced in section
6 and its performance is analyzed in section 7; section 8 examines some conclusions
and open problems.

2. Definitions and previous results.

2.1. Problem definition. The classical one-dimensional bin-packing problem
can be stated [15] as follows.

Definition 2.1. Given a finite set L = {a1, a2, . . . , an} of “elements” and a
rational “size,” size(a) ∈ (0, 1], for each element a ∈ L, find a partition of L into
disjoint subsets L1, L2, . . . , Lk such that the sum of the sizes of the elements in each
Li is no greater than 1 and such that k is as small as possible.
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Since the bin-packing problem contains 3-partition as a special case, it is an NP-
hard problem in the strong sense [15], [21]. It is therefore very unlikely that there are
fast (polynomial) algorithms for finding the best solution, unless P = NP, even if the
magnitude of the numbers involved is bounded by a polynomial in n.

Given an (approximate) algorithm A for the bin-packing problem and a set L of
elements, let A(L) be the number of bins used by A to pack L. Therefore

OPT (L) ≥
∑
ai∈L

size(ai)(2.1)

is a lower bound for the number of bins necessary to pack L.
Now we are able to give some algorithm performance definitions [7], [8].
Definition 2.2. The performance of A with respect to OPT on the list L is

RA(L) ≡ A(L)

OPT (L)
.(2.2)

Definition 2.3. The absolute performance ratio RA of the algorithm A is

RA ≡ inf{r ≥ 1|RA(L) ≤ r, ∀ list L}.(2.3)

Definition 2.4. The asymptotic performance ratio R∞A of the algorithm A is

R∞A ≡ inf{r ≥ 1| for some N > 0, RA(L) ≤ r, ∀ L with OPT (L) ≥ N}(2.4)

Note that RA ≥ R∞A .

2.2. Previous results on the online version. The classical problem presents
a variety of cases [7], [8]. In the online version [10] the following definition exists.3

Definition 2.5. “Items are assigned to bins in order (a1, a2, . . .), with item ai
assigned only according to the size of the previous items and the bins to which they
were assigned, without considering the size or number of items that follow.”

The simplest bin-packing algorithm is Next-Fit [7], [8] which is O(n)-time and
O(1)-space, but whose asymptotical performance, both in the worst and in the average
cases, is very poor, respectively, 2.0 and 1.33 [7], [8], [9], [12].

The bin-packing algorithms most extensively used are BEST-FIT and FIRST-FIT
[23]. Both algorithms are O(n log n)-time and O(n)-space and present an acceptable
asymptotical worst-case performance (i.e., 1.7, [23]) but an optimal asymptotically
average performance [2], [3], [12], [32].4

Until now, the best online algorithms for the bin-packing problem, without moving
elements from the bins they have been assigned to, belonged to the HARMONIC class,
first introduced in [25], where an approximated algorithm called HARMONICM was
introduced; this algorithm is the optimal among all the O(1)-space algorithms. Such
an algorithm has an O(n)-time complexity and a ratio R∞H (M) ≤ 1.692 for allM ≥ 12.
Lee and Lee [25], moreover, proved that R∞A ≥ 1.6910 for all constant space algorithms
and that limM→∞R∞H (M) = 1.6910.

3More appropriately in such a case, we deal with a sequence of elements to be packed and not
with a set.

4Note that in [10] it is proved that BEST-FIT obtains its worst-case performance even if a
constant (k ≥ 2) number of bins is maintained online; this reduces the computation time to O(n log k),
that is, O(n) since k is a small constant.
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The same authors gave a more complex O(n) algorithm, REFINED HARMONIC,
which uses O(n) space and presents a ratio R∞RH = 373

228 = 1.636 . . ..
Later, the MODIFIED HARMONIC algorithm was introduced in [31], which is

O(n) both in time and in space complexity with a ratio R∞MH = 1.61(561)
∗
. The

authors also showed how an online algorithm with R∞A < 1.59 can be obtained.

3. The relaxed model.

3.1. Motivations and previous results. All the algorithms mentioned in sec-
tion 2.2 introduce the additional limit that the solution for 〈a1 a2 . . . ai〉 must derive
from the one for 〈a1 a2 . . . ai−1〉 without performing any reorganization of the ele-
ments in the bins; that is, none of the elements among a1, a2, . . . , ai−1 can be moved
from the bin it belongs to. In other words, all of these algorithms only search for
a suitable bin to which to assign element ai in order to obtain a good asymptotic
approximation of the optimal solution. In this context some interesting lower bounds
have been proved, as already pointed out.

A question arising from the above considerations is the following: “What happens
if we interpret the online property of bin-packing in a less restricted way, just like the
large majority of online models? Is it possible to obtain more efficient performances
if a bin-packing algorithm can move the elements a certain number of times from one
bin to another?”

In [11] and [13] an affirmative answer to this question is given by presenting a
class of online algorithms, HARMONICREL(M),5 with time complexity O(n log n),
space complexity O(n), and asymptotic ratio R∞HREL(M) ≤ 1.5. In the worst case, the
approximation ratio is independent of M, for M ≥ 3, and the number of movements
is limited in an amortized way by a (small) constant (2, for M = 3).

3.2. Grouping elements. In this paper we introduce a new operation: the
“grouping of elements,” i.e., we assume that a certain number of very small items in
the same bin can be collected together and considered as a single unit. More formally,

Given a constant 0 < c < 1, we assume that any set of elements smaller than c
in the same bin can be collected together in a single group of overall size ≤ c. This
group will be considered as a single unit from now on.

Obviously, the grouping of elements does not modify the approximation ratio of
OPT, since OPT is measured as the sum of the elements in the input list. We also
assume that there is no kind of movement inside any group.

In the bin-packing problem the grouping operation is possible and convenient.
For example, in the truck-packing problem it is useful to fit a collection of very
small elements in the same box and then move them as a whole by moving the box.
In multiprocessor storage management strategies, the grouping simply consists in
collecting a subset of pages.

3.3. Moving elements. In the relaxed model, the critical operation regards
moving (part of) the contents from one bin to another.

In the following, i, j are two bins and σ is a subsequence of (not necessarily
contiguous) input element(s), all contained in the same bin.

The fundamental operation could therefore be stated as

MOVE(i, j, σ), i �= j,(3.1)

which means that σ is moved from bin i to bin j.

5Where REL stands for “Relocation.”
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This approach is quite natural for all the applications in which we may assume
that several small elements can be “carried” from one bin to another in a single step.

3.4. MOVE operation cost. An online algorithm processes the input data one
at a time, possibly modifying its internal data structures. Thus the evaluation of the
performance of an algorithm is more realistic if it takes into account the number of
movements of the elements in its data structures.

In a bin-packing algorithm when the elements move, several kinds of cost functions
for the MOVE(i, j, σ) operation could be defined.

Definition 3.1. The cost of the MOVE operation is equal to the total size of all
elements moved (

∑
x∈σ size(x)).

Definition 3.2. The cost of the MOVE operation is equal to the number of
elements moved (|σ|).

In this paper we will consider a third way to define such a function. In our ap-
proach we assume that each group can be moved at unitary cost. That is, while moving
a “large” element always has a cost equal to 1, we assume that “small” elements can be
grouped together and moved as a whole, at unit cost. Therefore we have the following.

Definition 3.3. The cost associated to the MOVE(i, j, σ) operation is equal to
the number of elements and groups contained in σ.

If the element moving cost would only be a function of the size of the elements,
any reasonable algorithm would tend to move a lot of small elements because the
performance is better and there is no cost difference in moving a lot of small elements
instead of a few big elements. If the element moving cost would only be a function
of the number of the elements moved, there will be no cost difference between an
algorithm that moves light elements and another that moves the same number of
heavy elements. Therefore, the third cost function is the most likely. It should be clear
that for any c, σ this function has a value which is in between the values assumed by
the first two cost functions above defined.

3.5. Formal definition of grouping. Let us consider the following nonuniform
partition of (0, 1] in M + 1 subintervals:

(0, 1] =
M⋃
k=0

Ik,

I0 =

(
3

4
, 1

]
; I1 =

(
2

3
,
3

4

]
; I2 =

(
1

2
,
2

3

]
; . . . ; IM−1 =

(
1

M − 1
,
1

M

]
; IM =

(
0,

1

M

]
.

Let c = 1
M be the border item size. The grouping operation consists of collecting a

set of elements smaller than c in a single group g (that will be a sort of “superitem”),
so that, in each bin B (let size(g) =

∑
a∈g size(a)),

• for all g ∈ B, size(g) ≤ c;
• there are no pairs of groups g ∈ B, h ∈ B, such that size(g) + size(h) ≤ c;
• each group g ∈ B, except at most one, has size(g) ≥ 1

2c.

3.6. Grouping primitives.

3.6.1. Create group. This primitive regards the arrival of a new element in
(0, 1

M ] that cannot be merged in any group of the target bin. The operation consists
in creating an empty group and in inserting this new element in it. At all times, there
will be no more than one IM -bin open.



1538 A. POSTIGLIONE, M. TALAMO, AND G. GAMBOSI

3.6.2. Append. This primitive regards the arrival of a new element in (0, 1
M ]

that has to be merged into an existing group.

3.6.3. Primitive performances. Since we are not interested in any kind of
arrangement of the elements within the group, a suitable representation (i.e., linked
lists) allows all of these operations to be executed in constant time and space. This
leads to the “packing” of such elements together, so that they can/must be moved as
a whole, in one single step.

3.7. Evaluation function. Below we will show that each bin will contain a
constant number of groups. Since the algorithm performance is measured as a function
of the space wasted with respect to the sum of the sizes of the elements in the input
list, the grouping of the elements does not affect the performance in any manner.

We will not detail the operations involved in inserting and deleting elements to
and from bins nor the ones involved in the maintenance of the support data structures,
mainly in empty conditions, because they can be easily performed in constant time.

In the following, let
m be the maximum number of MOVE operations performed upon the arrival of

a new element6;
r be the asymptotic performance of the algorithm.

Thus, we can assign to an approximation algorithm a pair of numbers, such as

A(m, r).

For example, the well-known BEST-FIT algorithm is A(1,1.7) since its performance
ratio is 1.7. In general, we can say that a classical online bin-packing algorithm is
A(1,r) (r ≥ 1.53) since it does not move the elements already fitted in the bins
and 1.53 is the lower bound for this kind of algorithm. Please note that the exact
algorithm is A(m,1), for some m ≥ 0, while our first algorithm, A1, is A(3,1.5), and
A2 is A(7,1.33).

4. The linear algorithm A1. A1 is based on a nonuniform partition of interval
(0, 1] into four subintervals (levels):

(0, 1] =

3⋃
k=0

Ik,

I0 =

(
2

3
, 1

]
; I1 =

(
1

2
,
2

3

]
; I2 =

(
1

3
,
1

2

]
; and I3 =

(
0,

1

3

]
.

In order to describe it, let us introduce the following points:
• S = 〈a1 a2 . . . an . . .〉 is the “input list.”
• Let ai ∈ Ik (0 ≤ k ≤ 2) be an element of S. Then ai is called “Ik-element.”
• Let ai ∈ I3 be an element of S. Then ai is called “I3-group.”
• Let B be a bin. Then B is an “Ik-bin (I3-bin)” (0 ≤ k ≤ 2) if the first element

that was initially assigned to it were an Ik-element (I3-group).
By subinterval definition, each Ik-bin (1 ≤ k ≤ 2) contains no more than k
Ik-elements and each I0-bin contains no more than one I0-element.

6the first insertion of a new element corresponds to a MOVE from outside into a bin
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If an Ik-bin (1 ≤ k ≤ 2) exactly contains k Ik-elements it is “filled”; otherwise
it is “unfilled”. An I0-bin with an I0-element is “filled” and an I3-bin is filled
only when its gap is < 1

3 .
7

• For each k (0 ≤ k ≤ 3) let Ak be the name of the only unfilled Ik-bin.
• “gap(B)” is the space available in an Ik-bin, B (0 ≤ k ≤ 2), to insert
Il-elements (I3-groups) (k < l ≤ 2). If B is filled, then gap(B) = 1 −∑
a∈B size(a); otherwise we conventionally assume that gap(B) = 0.

Algorithm A1 is reported below (where l denotes the level of the next input
element, x). Please note that if x ∈ I1 is a “small” I1-element (i.e., size(x) < 2

3 ), A1

tries to insert some I3-groups in its gap; if this is not possible A1 will mark this bin
for a future I3-group insertion. Please note that if x ∈ I3, then A1 first tries to insert
it in the gap of some marked I1-bin with enough room.

The algorithm uses two stacks of bins, L1 and L3, respectively associated with
levels 1 and 3. L1 maintains all the bins whose gap is still “fat” (i.e., ≥ 1

3 ), while L3

maintains all the I3-bins. If there is an unfilled I3-bin, then it is the first bin in L3.
Please note that in every moment no more than one between L1 and L3 can be “not
empty.”

We do not explicitly consider the management of unfilled bins. For example, we
assume that an unfilled bin is automatically generated at the arrival of an element
which can be assigned to no other bin available at that time.

Algorithm A1

For each input element x:
if x ∈ I0 then “Insert x in A0”.
if x ∈ I1 then

• “Insert x in A1”;
• while (gap(A1) ≥ 1

3 ) AND (“There still exists an I3-group”, g) do “Move g to A1.”

• if “There is no more I3-groups” AND (gap(A1) ≥ 1
3 ) then “Push A1 in L1.”

if x ∈ I2 then
• “Insert x in A2”;

if x ∈ I3 then
• if “There exists an I1-bin, B, in L1”

then “Insert x in B, removing B from L1 if its gap becomes < 1
3 .”

else “Insert x in A3”

5. Performance analysis of A1. In order to analyze the performance of A1

we must first consider the total number of element movements within the bins at the
arrival of a new element. Next, we will consider its asymptotic performance ratio.

5.1. Time, space, and movements.
Lemma 5.1. Each filled I1-bin contains no more than two groups in its gap.
Proof. Let us assume there are more than two groups in a filled I1-bin. Let x, y, z

be three of them. Since an I1-bin B has gap(B) < 1
2 , it follows that size(x)+size(y)+

size(z) < 1
2 . By definition, we know that in every bin all the groups except for one

(at most) are ≥ 1
6 in size. Without loss of generality (w.l.o.g.) let us assume that

size(x) ≥ 1
6 . Therefore

1

2
> size(x) + size(y) + size(z) ≥ 1

6
+ size(y) + size(z)⇒ size(y) + size(z) <

1

3
,

which is a contradiction, since every pair of groups in each bin has a total size
> 1

3 .

7Note that we distinguish among “Ik-filled bins” (that is, bins no more able to receive all possible
items of their class, but still active) and “Ik-full bins” (that is, bins whose gap is empty or that are
never used afterwards).
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Please note that this bound is tight. It is easy to show that two groups can be fitted
together in the gap of this bin. An example is the following: (12 + ε), (

1
6 −2ε), ( 16 +3ε).

Corollary 5.2. No more than three movements will be performed at each in-
sertion.

Proof. The above lemma proves how the movements only occur at the arrival of
I1-elements with size < 2/3. However, the algorithm performs no more than three
movements since each I1-bin has a gap < 1

2 and each pair of groups has size > 1
3 .

This implies that, in the worst case, it is sufficient to move one group from A3 and
two groups from another bin in L3.

Theorem 5.3. Algorithm A1 has space complexity O(n) and time complexity
Θ(n).

Proof. The space complexity easily derives from the observation that each element
is represented no more than once in L1 and L3.

As far as time complexity, according to the above lemma we know that the max-
imum number of element insertions in a bin is bounded by 3n. Each insertion can be
performed in O(1) time. Moreover, the movement of an existing element is performed
in O(1) time since this movement uses the first element in the first bin on the list,
accessed in constant time. Therefore, the time complexity is easily derived.

5.2. Performance ratio. In order to derive the approximation ratio for A1, the
following lemmas are needed.

Lemma 5.4. If, after all elements have been considered, L3 is not empty, then
R∞A1

< 3
2 .

Proof. The gaps of I0-bin and Ik-bin (k ≥ 2) are < 1
3 , by definition.

As far as I1-bins please note that there is at least one element in L3 whose size
is ≤ 1

3 , which has not been moved to the gap of any I1-bin; this implies that all the
gaps of I1-bins have size ≤ 1

3 .

In conclusion, the maximum gap in each bin is < 1
3 and, consequently,

R∞A1
<

3

2
.

Lemma 5.5. If, after all the elements have been considered, L3 is empty and in
the input sequence L = {a1, a2, . . . , an} there was no pair of ai, aj , so that ai ∈ I1
and aj ∈ I2, then R∞A1

= 1.

Proof. In this case A1 uses N0 +N1 or N0 +
N2

2 bins, where Nj is the number of
Ij-elements in the input set, since no I1-elements or I2-elements could be inserted in
any bin which already has an I0-element and 2 I2-elements are inserted in the same
I2-bin. Since OPT cannot use fewer bins, then

R∞A1
= 1.

Lemma 5.6. If, after all the elements have been considered, L3 is empty and
in the input sequence L = {a1, a2, . . . , an} there was at least one pair ai, aj , so that
ai ∈ I1 and aj ∈ I2, then R∞A1

≤ 3
2 .

Proof. Let Bi be the number of bins of level i used by OPT. We can derive the
maximum number of bins used by A1 as a function of the Bi’s.

By definition,

OPT = B0 +B1 +B2.
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Since in each I1-bin OPT could have inserted no more than one I2-element, the extra
bins for A1 are no more than B1

2 . Thus,

A1 ≤ B0 +B1 +B2 +
B1

2
≤ 3

2
(B0 +B1 +B2) =

3

2
OPT.

Theorem 5.7. Algorithm A1 has a ratio R∞A1
≤ 3

2 .

Proof. The proof derives directly from the previous three lemmas.

Theorem 5.8. Algorithm A1 is A(3, 1.5).

Proof. The proof derives directly from Corollary 5.2 and Theorem 5.7.

6. The O(n logn) Algorithm A2.

6.1. Main features. A2 is based on a nonuniform partition of the interval (0, 1]
into six subintervals (levels):

(0, 1] =
5⋃
k=0

Ik,(6.1)

I0 =

(
3

4
, 1

]
; I1 =

(
2

3
,
3

4

]
; I2 =

(
1

2
,
2

3

]
; I3 =

(
1

3
,
1

2

]
; I4 =

(
1

4
,
1

3

]
; I5 =

(
0,

1

4

]
.(6.2)

The definitions of Ik-element, Ik-bin, Ak-bin, “filled” bin, and gap are similar
to the ones given for Algorithm A1, while the definition of I5-group is similar to
the definition of I3-group given for Algorithm A1. Please note that an I5-group B is
“filled” if gap(B) < 1

4 . Thus, A2 considers I5-elements as “little” elements which can
be collected in groups gi and moved together. As pointed out in section 3.6, all the
grouping primitives are constant in time and space.

6.2. Packing strategy. The algorithm operates as reported in Algorithm A2,
where l denotes the level of the next input element, x. When the input element is
a “big” one (i.e., size(x) > 1

2 ), A2 inserts it in a new bin and tries to “fill” its gap
with smaller elements from some other bin(s). If the input element is a “small” one
(i.e., size(x) ≤ 1

2 ), the algorithm first tries to insert it in the gap of a filled bin which
already exists; only if there is no room for x in any other existing bin, the algorithm
inserts it in a new bin. During its execution, A2 refers to an unfilled bin for each
level.8 The guidelines of the algorithm are the following:

• A2 encourages the pairing of elements x, y, where (x ∈ I1, y ∈ I4) or (x ∈
I2, y ∈ I3).

• A2 tries to fill the gap of I1-, I2-, I3-filled bins with smaller elements (I4-
elements or I5-groups) since there are no more I5-groups or no bin B has
gap(B) > 1

4 .

Both of these guidelines may imply the move of a few elements from one bin to another.
Bins may be emptied as an effect of element moving: in this case, the emptied bins
are considered as automatically disregarded. Finally, please note that the algorithm
may return some of the used bins as output before the end of the input list.

8As for Algorithm A1, we do not explicitly consider the management of unfilled bins.
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6.3. Data structures. The algorithm requires the use of
• one stack S, containing all the I5-bins; the unfilled bin is the top one;
• three dictionaries, D2, D3, and D4, maintaining all the Ik-elements contained
exclusively in Ik-bins (not necessarily filled), for k = 2, 3, 4.

• three dictionaries (tournaments), G1, G2, and G3, maintaining the size of the
gap of all the I1-, I2-, I3-filled bins.

We will not give details of the operations involved in inserting and deleting el-
ements to and from the bins and the ones involved in the lists and in I5-groups
maintenance, since they can be easily performed in constant time. Moreover, we will
not give details of the operations regarding the tree data structures since they are
well known and they may be executed in O(log n) time. G1, G2, and G3 can be im-
plemented as binary trees of depth �log2 n� with n leaves corresponding to the n bins
in sequence from left to right. Each internal node is labeled with the largest label
among the labels of its sons and each leaf is labeled with the current gap of the bin
it represents. Please note that bins containing pairs x ∈ I1 and y ∈ I4 or x ∈ I2
and y ∈ I3 are immediately returned as output by the algorithm, hence they are not
represented in these directories. The tree representation chosen is similar to the one
Johnson used to implement the FIRST-FIT algorithm [23]. Last, we will not refer to
the possible output of any bin (e.g., either all the I0-bins or all the bins containing
an I2-element and an I3-element could be sent to the output).

6.4. Algorithm primitives.

6.4.1. Insert(b,A). This primitive inserts object b, which could be either an
item or a group, into bin A and updates, if necessary, one or two of the dictionaries.

Insert (b,A)
• “Insert b in A.”
• if b ∈ I5 then “Append b to an existing group or Create a new group with only b.”
• “Update, if necessary, D2, D3 or D4 and G1, G2 or G3”

The updating operation is an O(log n)-time operation and will be carried out only if
• both (b ∈ Ik) and (A ∈ Ik) (k = 2, 3, 4) (“enter b in Dk”);
• both (b ∈ Ik) and (A ∈ Ik) (k = 1, 2, 3) AND A is filled as a consequence of
this new element insertion (“enter A in Gk”);
• (A ∈ Ik) and (b /∈ Ik) (k = 1, 2, 3) (“Update the size of the gap of A in Gk”).

This case occurs only if A is filled and b has to be inserted in its gap.
In conclusion, the Insert operation is O(log n) worst case time.

6.4.2. Extract(b,A). This primitive extracts object b, which could be either an
item or a group, from bin A and updates, if necessary, one or two of the dictionaries.

Extract (b,A)
• “Pop b from A”
• “Update, if necessary, D2, D3 or D4 and G1, G2 or G3”

The updating operation is an O(log n)-time operation and will be carried out only if
• both (b ∈ Ik) and (A ∈ Ik) (k = 2, 3, 4) (“extract b from Dk”);
• both (b ∈ Ik) and (A ∈ Ik) (k = 1, 2, 3), AND A becomes “unfilled” as a
consequence of this element extraction (“extract A from Gk”);
• (A ∈ Ik) and (b /∈ Ik) (k = 1, 2, 3) (“Update the size of the gap of A in Gk).
This case occurs only if A is filled and b has to be extracted from its gap.

In conclusion, the Extract operation is O(log n) worst case time.
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6.4.3. Move(b,B,A). This primitive moves object b from bin B to bin A. It is
a composition of Extract(b,B) and Insert (b,A), so it is O(log n) worst case time.

6.4.4. Fill(C). This primitive fills the gap of the “filled” bin C ∈ Ik(1 ≤ k ≤ 3)
with smaller elements since there is no room in C (i.e., gap(C) < 1

4 ) or there are no
more of these little elements. This operation easily is O(log n) worst case time.

Fill (C)
if “there exists an I4-bin B containing an element b ∈ D4 such that size(b) ≤ gap(C)” then

Move(b,B,C)
if B 
= A4 then Move(x,A4,B), “for whatever element x ∈ A4”

else while “there exists g ∈ A5 such that size(g) ≤ gap(C) AND gap(C) ≥ 1
4 ” do Move(g,A5, C)

6.4.5. MoveTheGap(C). This primitive moves all the objects (I5-groups and
eventually the only I4-element) from the gap of bin C and distributes them among
all the other bins. This operation easily is O(log n) worst case time.

MoveTheGap(C)
if “C contains an I4-element, b” then Move(b,C,A)(where A is, in the sequence of checks, an I1-bin,

an I2-bin, an I3-bin or the A4-bin)
for “every group g ∈ C” do if “there exists some I1, I2, I3-bin C

′ with size(g) ≤ gap(C′)” then
Move (g,C,C′) else Move(g,C,A5)

6.5. The algorithm.

Algorithm A2

For each element x:
if x ∈ I0 then

• Insert(x,A), where A is a new I0-bin;
if x ∈ I1 then

• Insert(x,A), where A is a new I1-bin;
• Fill(A);

if x ∈ I2 then
• Insert(x,A), where A is a new I2-bin;
• If there is a b ∈ I3 in some I3-bin B, so that size(b) + size(x) ≤ 1,
then ∗ Move (b,B,A); MoveTheGap (B);

∗ if B 
= A3 then “Move(b,A3,B) for whatever element b ∈ A3; Fill(B)”
else ∗ Fill(A);

if x ∈ I3 then
• If there is a b ∈ I2 in some I2-bin B so that size(b) + size(x) ≤ 1
then ∗ If size(x) > gap(B) then MoveTheGap (B);

∗ Insert(x,B);
else ∗ Insert(x,A3); if A3 becomes filled, then Fill(A3);

if x ∈ I4 then
• If there is an I1-bin B so that size(x) ≤ gap(B), then Insert( x,B);
• else Insert (b,A) (where A is, in the sequence of checks, an I2-bin, an I3-bin or, at

last, the A4-bin).
if x ∈ I5 then• Create a group g containing only x;

• If there is an I1, I2, I3-bin B such that size(g) ≤ gap(B) then Insert(g,B) else
Insert(g,A5)

7. Performance analysis of A2. In order to analyze the performance of the
algorithm we must first consider the number of element movements caused by the
arrival of a new input element and then its asymptotic performance ratio.

7.1. Time, space, and movements.

Lemma 7.1. Each filled I1-bin may contain, in its gap, no more than two I5-
groups.
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Proof. If we assume there are more than two I5-groups in a filled I1-bin and let
x, y, z be three of them, by definition it follows that

x ≤ 1

4
, y ≤ 1

4
, z ≤ 1

4
; x+ y >

1

4
, x+ z >

1

4
, y + z >

1

4
.

Moreover, an I1-bin B, has gap(B) < 1
3 , thus x+ y + z <

1
3 . Hence

1

3
> x+ y + z >

1

4
+ z ⇒ z <

1

12
.

Therefore

x >
1

4
− z > 1

6
; y >

1

4
− z > 1

6
; x+ y + z >

1

3
,

which is a contradiction.
Lemma 7.2. Each filled I2-bin may contain no more than three I5-groups or one

I4-element plus one I5-group in its gap.
Proof. Let us assume there are more than three I5-groups in a filled I2-bin. Let

x, y, z, w be four of them. By definition of group we have that

x ≤ 1

4
, y ≤ 1

4
, z ≤ 1

4
, w ≤ 1

4
, x+ y >

1

4
, x+ z >

1

4
,

x+ w >
1

4
, y + z >

1

4
, y + w >

1

4
, z + w >

1

4
.

By construction, an I2-bin, B, has gap(B) < 1
2 , so x+ y + z + w <

1
2 .

Therefore

1

2
> x+ y + z + w >

1

4
+ z + w ⇒ z + w <

1

4
,

which is a contradiction.
Similarly, let us assume that the group contains one I4-element together with two

I5-groups. Let x be the I4-element and let y, z be the I5-groups. By definition, we
have that x ≥ 1

4 , y + z ≥ 1
4 .

By construction, an I2-bin, B, has gap(B) < 1
2 , so x+ y + z <

1
2 .

Therefore

1

2
> x+ y + z >

1

4
+ y + z ⇒ y + z <

1

4
,

which is a contradiction.
Lemma 7.3. Each filled I3-bin may contain no more than two I5-groups or one

I4-element plus one I5-group in its gap.
Proof. The first bound is proved as in Lemma 7.1.
To prove the second bound let us assume that the group contains one I4-element

and one I5-group. Let x be the I4-element and let y, z be the I5-groups. By definition,
we have that x ≥ 1

4 , y + z ≥ 1
4 .

By construction, an I3-bin, B, has gap(B) < 1
3 , so x+ y + z <

1
3 .

Therefore

1

3
> x+ y + z >

1

4
+ y + z ⇒ y + z <

1

12
,
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which is a contradiction.
Lemma 7.4. Each I5-bin may contain no more than seven I5-groups.
Proof. It follows from the definition of I5-group.
The bound of the previous lemma is tight. The sequence matching this bound is

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 + ε, when no one of the these elements has to be fitted in any of the

Ik-bins (0 ≤ k ≤ 3) and there is no (unfilled) I5-bin at the arrival of the first element
of the subsequence.

Theorem 7.5. In every moment, Algorithm A2 maintains at most a constant
number of I5-groups and I4-elements, and no other different level element, in the gap
of each bin.

Proof. It derives from Lemmas 7.1, 7.2, 7.3, and 7.4 and by the fact that I0-bins
contain only I0-elements and I4-bins contain only I4-elements.

The remaining part of the theorem is proved by observing that no I3-element can
be fitted in the gap of any I0-, I1-, I4-, I5-bin while those fitted in the gap of I2-bins
are immediately returned as output. Note that, for the same reason, no I4-element is
maintained in the gap of any I1-bin.

Lemma 7.6. When procedure Fill is called to “fill” an Ik-bin (1 ≤ k ≤ 3) it
performs no more than two I4-element movements or three I5-group movements.

Proof. The first bound is simply inferred from the algorithm structure.
The second one is easily obtained by considering that, in every moment, there

is only one “unfilled” I5-bin, named A5. If SIZE(A5) >
1
4 procedure Fill moves no

more than two groups from it since, whatever is the I5-bin, any pair of groups has a
total size ≥ 1

4 , each filled bin has a gap < 1
2 , and the loop ends when gap(A) < 1

4 . If
SIZE(A5) ≤ 1

4 then it contains only one group. Let ε be its size. If SIZE(A)+ ε < 3
4

and there is another I5-bin (that is necessarily filled) the situation is the same as the
above. Thus, the total number of group movements is three.

The bound of the previous lemma is tight. In fact let us suppose that the input
sequence starts with the following elements: 1

8 ,
1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 + ε, ε,

1
2 + ε; in this case

the first seven elements will be fitted in one I5-bin, the eighth will be fitted in another
I5-bin and the last will be fitted in an I2-bin. The Fill procedure will move ε, then
1
8 + ε, and at last 1

8 to the gap of the I2-bin.
Theorem 7.7. In correspondence to each insertion, a constant number of element

or group movements is performed.
Proof. Let x be the current input element to be fitted in any bin. Then the

algorithm makes
x ∈ I0 • 0 movements
x ∈ I1 • no more than three movements (Lemma 7.6) as a consequence of

(two I4-element movements) OR (three I5-group movements)
x ∈ I2 • no more than seven movements9 as a consequence of

– one I3-element movement
– two movements (Lemma 7.3) as a consequence of

(one I4-element and one I5-group movement) OR (two I5-group
movements)

– one I3-element movement
– no more than three movements (Lemma 7.6) as a consequence of

(two I4-element movements) OR (three I5-group movements)
OR, alternatively,
• no more than three movements (Lemma 7.6) as a consequence of

9If there exists a b ∈ I3 such that size(x) + size(b) ≤ 1.
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(two I4-element movements) OR (3 I5-group movements)
x ∈ I3 • no more than three movements10 (Lemma 7.2) as a consequence of

(one I4-element and one I5-group movements) OR (three I5-group
movements)

OR, alternatively,
• no more than three movements (Lemma 7.6) as a consequence of

(two I4-element movements) OR (three I5-group movements)
x ∈ I4 • 0 movements.
x ∈ I5 • 0 movements.

Therefore, in each case, the total number of element (or group) movements is
constant.

Corollary 7.8. No more than seven element movements occur at the arrival of
a new input element when A2 is applied to a list of n elements.

Proof. The proof is easily derived from Theorem 7.7.

Theorem 7.9. Algorithm A2 has space complexity O(n).

Proof. The theorem is easily proved when observing that each element is repre-
sented no more than once in the list S or in the data structures involved and that the
maximum number of gaps is n.

Theorem 7.10. Algorithm A2 has time complexity O(n log n).

Proof. According to Theorem 7.7, the time complexity is bounded by n times the
cost of an element insertion or movement. Each insertion and each movement of an
element already in the structure is performed at most in O(log n) time, when the tree
data structures are involved. In fact the directory representation for the gaps of I1-,
I2-, I3-bins allows the finding of the right element in no more than �log2 n� binary
comparisons and the update operations may be performed by using no more than
�log2 n� comparisons [23]. This same principle is valid for the heaps maintaining the
I3-and I4-elements [33].

7.2. Performance ratio. In the following items we assume that

• Nj is the total number of Ij-elements in the input list L.
• H is the size of the best matching between I2-and I3-elements, that is, the
maximum number of pairs x2 ∈ I2, x3 ∈ I3 which can be coupled. Note
that this corresponds to the maximum matching in a bipartite graph G =
(N2 ∪N3, E) so that

– N2 = {x ∈ I2},
– N3 = {x ∈ I3},
– E = {(x, y)|x ∈ N2, y ∈ N3, size(x) + size(y) ≤ 1}.

• K is the size of the best matching between I1-and I4-elements, that is, the
maximum number of pairs x1 ∈ I1, x4 ∈ I4 which can be coupled. Please
note that this corresponds to the maximum matching in a bipartite graph
G = (N1 ∪N4, E) so that

– N1 = {x ∈ I1},
– N4 = {x ∈ I4},
– E = {(x, y)|x ∈ N1, y ∈ N4, size(x) + size(y) ≤ 1}.

Lemma 7.11. If S is not empty after all the elements have been considered, then
RA2 <

4
3 .

Proof. By hypothesis, since there is at least one group with size ≤ 1
4 which cannot

be moved to a different gap, all of the I0-, I1-, I2-, I3-bins have a gap < 1
4 .

10If there exists a b ∈ I2 such that size(x) + size(b) ≤ 1.
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Moreover, each Ik-bin (k ≥ 4) has a gap < 1
4 .

Consequently, the maximum gap in each bin is < 1
4 , and

RA2
<

4

3
.

Lemma 7.12. If H = 0 and S is empty after all the elements have been considered,
then RA2

≤ 4
3 .

Proof. We can observe two different situations:
• In the input list there is no I4-element.
In this case A2 uses no more than N0+N1+N2+

N3

2 bins, since no I2-element
or I3-element could be inserted in any bin already containing an I1-element
or an I0-element and no more than two I3-elements may be inserted in any
other bin. OPT cannot use fewer bins, since H = 0 implies that no bin can
contain both an I2-element and an I3-element. Therefore

RA2 = 1.

• In the input list there were some I4-elements.
Let α = N1 +N2 +

N3

2 . In this case we can still obtain two situations:
N4 ≤ α then

– OPT uses at least α+N0 bins.
– A2 uses no more than N0+α+

N4

3 bins, in case it does not insert any
I4-element into some other bin. Then A2 ≤ N0 + α+ α

3 = N0 +
4
3α

and so

RA2
≤

4
3α+N0

α+N0
<

4

3
.

N4 > α then let β = N4 − α.
– OPT cannot use fewer than N0 + α + β

3 bins, since no more than
one I4-element can fit into an I1-, I2-, or I3-bin.

– A2 uses no more than N0+α+
N4

3 bins. Then A2 ≤ N0+α+
α+β
3 =

N0 +
4
3α+ β

3 . Therefore we have

A2

OPT
≤

4
3α+ β

3 +N0

α+ β
3 +N0

<
4

3
.

Lemma 7.13. If H �= 0 and in the input sequence L = {a1, a2, . . . , an} there are
no Ik-elements (k ≥ 4), then RA2

< 5
4 .

Proof. OPT uses at least
N0 bins to pack all the I0-elements;
N1 bins to pack all the I1-elements;
N2 bins to pack all the I2-elements;
N3−H

2 bins to pack all the I3-elements, since H of them are inserted in the gap
of the H I2-elements.

Hence,

OPT ≥ N0 +N1 +N2 +
N3

2
− H

2
.

A2 uses no more than
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N0 bins to pack all the I0-elements;
N1 bins to pack all the I1-elements;
N2 bins to pack all the I2-elements;
N3−H

2

2 bins to pack all the I3-elements, since H2 of them are necessarily packed
with a corresponding I2-element [22].

Hence

A2 ≤ N0 +N1 +N2 +
N3

2
− H

4
.

In conclusion, since H ≤ N3 and H ≤ N2, it follows that

A2

OPT
≤ 4N0 + 4N1 + 4N2 + 2N3 −H

4N0 + 4N1 + 4N2 + 2N3 − 2H
≤ 4N0 + 4N1 + 5N2 + 2N3 − 2H

4N0 + 4N1 + 4N2 + 2N3 − 2H
<

5

4
.

Lemma 7.14. If H �= 0 and in the input sequence L = {a1, a2, . . . , an} there are
some Ik-elements (k ≥ 4), and S is empty after all elements have been considered,
then RA2 ≤ 4

3 .

Proof. Let Bi be the number of bins of level i used by OPT and let B′i be the
number of bins of level i used by A2. We calculate the maximum number of bins used
by A2 as a function of the Bi’s.

We can obtain two different situations:

• In the case that no I4-bins are returned as output, since in such a case there
are no I5- and I4-bins, we can say that OPT = B0 +B1 +B2 +B3:
B′0 = B0;
B′1 = B1;
B′2 = B2;

B′3 ≤ B3 +
H
2

2 ;
Therefore, since H ≤ B2,

A2 ≤ B0 +B1 +
5

4
B2 +

5

4
B3 ≤ 5

4
OPT.

• In the case that some I4-bins are returned as output, since in such a case
there are no I5-bins, we can say that OPT = B0 +B1 +B2 +B3 +B4:
B′0 = B0;
B′1 = B1;
B′2 = B2;

B′3 ≤ B3 +
H
2

2 ;

B′4 = B4 + [K + (B2 −H) +B3]
1
3 = B2

3 + B3

3 +B4 +
K
3 − H

3 .
Therefore, since K ≤ B1 and H ≥ 0,

A2 ≤ B0 +B1 +
4
3B2 +

4
3B3 +B4 +

k
3 − H

12≤ B0 +
4
3B1 +

4
3B2 +

4
3B3 +B4 ≤ 4

3 OPT.

Theorem 7.15. Algorithm A2 has a ratio of RA2 ≤ 4
3 .

Proof. The proof is easily given by the previous lemmas.

Theorem 7.16. Algorithm A2 is A (7, 1.33).

Proof. The proof is given by Corollary 7.8 and Theorem 7.15.
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8. Conclusions and open problems. This paper focuses its attention on the
possibility of maintaining a guaranteed approximation of the optimal solution for the
online bin-packing problem in terms of time computation and element movements and
with a limited reorganization of the previous solutions.

The problem is equivalent to the one considered in the more general bin-packing
model where the elements can move (for a limited number of times) from the bin they
are currently assigned to. Please note that this model still fits the general definition
of online algorithms.

It would be interesting to see if these algorithms frequently touch any particular
element and move it many times: it is also possible to demonstrate that the first
algorithm (A1) moves an element no more than once.

Contrarily to the offline model, the requests arriving to this model reach it online
and the bins are always ready to be closed with no additional effort. This model is
suitable in many different fields (for example in multiprocessor storage management
and in packing trucks).

In the environment of this less restricted model, we have presented two new
algorithms with the best approximation ratio available at this time, respectively, for
linear and O(n log n) algorithms.

These algorithms are also “more” online than all the other linear space online
bin-packing algorithms, because they allow the return of a fraction of the bins before
the end of the execution.

There are still a lot of problems which remain to be solved in this area. First, it
would be interesting to check if algorithms more efficient than A2 can be found (as far
as approximation ratio and/or time complexity are concerned). Generally speaking,
it would also be interesting to define the lower bounds of the approximation ratio of
the O(n log n) algorithms that allow the element to freely move between the bins.

It would also be interesting to verify if there is some kind of relation between the
(amortized) number of movements allowed at the arrival of each input element and
the asymptotic performance ratio. In other words: is there an algorithm that for each
ε constant is A( 1ε , f(ε))?

It would also be useful to gain more knowledge about whether the approxima-
tion ratio can be maintained and if it is possible to send output the bins containing
“enough” of the elements contained therein (e.g., what happens when all the bins
with gap less than k

3 (k ≤ 1) are send output?).
Other interesting questions concern the capacity of deleting elements from the

bins maintaining the guaranteed algorithm performance (the target is to minimize the
space wasted considering the actual element involved) and the analytical evaluation
of the average performance of this algorithm compared to the ones characterized in
[27], [30], [29], [32]. It would be very interesting to study the performances of the
algorithm as a function of the number of movements admitted.
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TIGHT BOUNDS FOR SEARCHING A SORTED ARRAY OF
STRINGS∗

ARNE ANDERSSON† , TORBEN HAGERUP‡ , JOHAN HÅSTAD§ , AND OLA PETERSSON¶
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Abstract. Given a k-character query string and an array of n strings arranged in lexicographical
order, computing the rank of the query string among the n strings or deciding whether it occurs in
the array requires the inspection of

Θ

(
k log logn

log log (4 + k log logn
logn

)
+ k + logn

)

characters in the worst case.

Key words. string searching, character comparisons, dictionaries, potential functions, lower
bounds
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1. Introduction. Given n strings, each of k characters, arranged in lexicograph-
ical order (i.e., a string precedes a string from which it differs if it has the smaller
character in the first position in which the two strings differ), how many characters
must we inspect to determine whether a k-character query string is present? We
assume that the n strings are given in a k × n array and that no extra information
is available. If k is a constant, we can solve the problem with Θ(logn) character in-
spections by means of binary search, and this is optimal; but what happens for larger
values of k? In the presence of preprocessing and extra storage, there are efficient
methods, such as using a tree, each node of which can be implemented as a weighted
tree as suggested by Mehlhorn [7, Sect. III.6.3], or the suffix array of Manber and
Myers [6]; but what if we are given just the sorted strings?
The question is a basic one; we are simply asking for the complexity of searching

a dictionary for a string, where the common assumption that entire strings can be
compared in constant time is replaced by the assumption that only single characters
can be compared in constant time. For sufficiently long strings, the latter assumption
seems more realistic. At first glance the problem may appear easy—some kind of
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generalized binary search should do the trick. However, closer acquaintance with the
problem reveals an unexpected intricacy.

Given the relevance of this problem, surprisingly few results have been reported.
Hirschberg [4] indicated a lower bound of Ω(k+log n) and upper bounds of O(k log n)
and O(k+n) and combined the upper bounds to derive a bound of O(k log(2+n/k)),
all of which is straightforward. A later publication by the same author [3] mentions
a first nontrivial upper bound of O(k log n/log k). Kosaraju [5] gave an algorithm
with a running time of O(k

√
log n + log n). The only nontrivial lower bound deals

with constant factors: Kosaraju [5] showed that at least roughly logn+ 1
2

√
k log n =

O(k + log n) characters need to be inspected. We determine the exact complexity of
the problem, up to a constant factor.

Before formulating our result, we describe two relevant computational problems
more formally. For all integers k, n ≥ 1 and all ordered sets Σ, an instance of the
string-ranking problem of size k×n over the alphabet Σ is given by a list s, s1, . . . , sn
of n+1 strings, each consisting of k characters drawn from Σ, such that s1 � · · · � sn,
where � denotes the lexicographical order derived from the order on Σ. The task is to
compute |{j : 1 ≤ j ≤ n and sj � s}|, i.e., the rank of s in the multiset {s1, . . . , sn}.
An instance of the string-membership problem of size k × n over Σ is given by a list
of the same form, and the task is to output “yes” if s = sj for some j ∈ {1, . . . , n},
and “no” otherwise.

The string-membership problem clearly is no harder than the string-ranking prob-
lem in the sense that after solving the latter, we can solve the former after inspecting
at most k additional characters. An algorithm for the string-ranking problem also
allows us to determine the indices of the first and last occurrences, if any, of the query
string. As implied by our result, stated below, these problems in fact all have the
same deterministic complexity, up to a constant factor. The logarithm function to
base 2 is denoted by “log.”

Theorem 1.1. For all integers k ≥ 1 and n ≥ 4 and all ordered sets Σ of at least
two elements, the solution of instances of size k×n of the string-ranking problem and
of the string-membership problem over the alphabet Σ requires the inspection of

Θ

(
k log log n

log log (4 + k log log n
logn )

+ k + log n

)

characters in the worst case.

As a curiosity we note that for the special case k = Θ(logn), natural in view of
the lower bound of Ω(k + log n), we get a tight bound of

Θ

(
log n log log n

log log log logn

)
,

which would have been hard to guess in advance.

This paper is based on the two conference presentations [1] and [2]. The proofs
given here are significantly shorter and simpler due to the use of potential functions.
All four authors contributed equally to both upper-bound and lower-bound parts of
the paper.

After introducing notation and terminology in section 2, we provide intuition in
section 3, and we prove the upper bound in section 4 and the lower bound in section 5.
Sections 3, 4, and 5 can be read independently of each other.



1554 ANDERSSON, HAGERUP, HÅSTAD, AND PETERSSON

2. Preliminaries.

2.1. The leftmost-all-1 problem. To simplify the presentation, we introduce
a simplified searching problem called the leftmost-all-1 problem and demonstrate the
upper bound first for this problem. For all integers k, n ≥ 1, the leftmost-all-1 problem
of size k × n is the special case of the string-ranking problem of size k × n obtained
by fixing the alphabet to be {0, 1} and the query string to be 1k−10 (i.e., k − 1 1’s
followed by one 0). We assume an instance of the leftmost-all-1 problem of size k×n
to be given in a k×n matrix I in the following way: for i = 1, . . . , k and j = 1, . . . , n,
I[i, j] is the ith character of the jth string; i.e., each string is written vertically from
top to bottom, and the strings are ordered from left to right. The rows and columns
of I are numbered from top to bottom and from left to right, respectively, the number
of a row or column also being called its index. The task is to determine the number
of columns in I that contain at least one 0. An alternative formulation, which gives
the problem its name, is that the task is to compute one less than the index of the
leftmost column in I containing the string 1k, or n if there is no such column. An
algorithm for the leftmost-all-1 problem is said to perform a probe when it examines
an entry in I, and we charge the algorithm according to how many probes it performs.

2.2. Surface and fence algorithms. In this subsection we introduce terminol-
ogy convenient for discussing solutions to the leftmost-all-1 problem. The terminology
is illustrated in Figures 2.1 and 2.2.

11 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 1 11 1 11 1 1 11 1 1
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Fig. 2.1. Terminology related to surface algorithms.



SEARCHING A SORTED ARRAY OF STRINGS 1555

Consider an algorithm for the leftmost-all-1 problem that inspects entries in a k×n
input matrix I one by one. Once the algorithm has established that certain positions
in I contain 1’s, it may be able to deduce from the sortedness of I and without
actual probes that certain other positions in I must also contain 1’s. Specifically, let
1 ≤ r ≤ k and 1 ≤ c ≤ n, and suppose that the algorithm has already established
that I[i, c] = 1 for i = 1, . . . , r. Then, clearly, we also have I[i, j] = 1 for i = 1, . . . , r
and j = c+ 1, . . . , n. We say that these additional occurrences of 1 in I are deduced
by 1-extension.

If a column in I is known to contain at least one 0 because a 0 was found in the
column itself or in a column to its right, the column and all positions in the column
are said to be rejected ; such a column cannot be the leftmost column containing
the string 1k. The rightmost rejected column is called the 0-barrier ; initially, before
any columns have been rejected, we take the 0-barrier to be an imaginary column of
index 0. The remaining positions are classified as follows. If a nonrejected position is
known to contain a 1, either because it was explicitly probed or by way of 1-extension,
it belongs to the matching area—the entries in this area are known to match those
of the string 1k. A nonrejected position outside of the matching area is a surface
position if all positions above it belong to the matching area, and a buried position
otherwise. Of course, each column contains at most one surface position.

For r = 1, . . . , k, row r is said to be excluded if none of the rows 1, . . . , r contains a
surface position. The part of an excluded row outside of the rejected columns is known
to contain only 1’s. If and when an algorithm for the leftmost-all-1 problem manages
to exclude the last row, it can therefore output the number of rejected columns as
its result. As long as at least one row is not excluded, we define the top row to be
the topmost nonexcluded row. Initially, no columns are rejected and no rows are
excluded, row 1 is the top row, all positions in the top row are surface positions, and
all other positions are buried positions.

A surface probe is a probe that inspects the entry in a surface position, and a
surface algorithm is an algorithm all of whose probes are surface probes. We call a
surface probe successful if it returns a 1 (the string probed still matches the string
1k) and unsuccessful if it returns a 0. The following observations are helpful.

Whenever a surface algorithm finds a 1 in some position, that position and all
positions above it and to its right subsequently are part of the matching area. If the
position containing the 1 is in the column next to the 0-barrier, the row containing
the 1 is excluded and the top row moves down by one position.

Whenever a surface algorithm finds a 0 in a particular column, the 0-barrier moves
to that column, and that column and all nonrejected columns to its left are rejected.
Since the newly rejected columns may have contained all surface positions of some
rows, this may also cause the top row to move downwards. The new top row will be
either the row in which the 0 was found or a row below it; the latter happens when
the position immediately to the right of the 0 belongs to the matching area.

It can be seen that at all times during the execution of a surface algorithm, a
position above or to the right of a position in the matching area also belongs to the
matching area—we express this by saying that the matching area is monotonic—so
that the boundary between the matching area and the remaining positions forms
a “staircase” going down and to the right. The part of a column contained in the
matching area but outside of the excluded rows is called a fence if at least one position
immediately to its left is not part of the matching area (i.e., a fence resides in a column
where the matching area becomes “deeper”). A fence algorithm is a surface algorithm
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each of whose probes is a top-row probe, i.e., a probe in the (current) top row, or an
extending probe, i.e., a probe of an entry immediately below an existing fence.

The height of a fence F , denoted |F |, is defined as the number of positions con-
tained in F . It is obvious that every fence is strictly higher than every fence to its
left. When a fence algorithm executes a probe below a fence F , we will say that it
attempts to extend F . If the extension is successful, the height of F usually increases
by 1, i.e., the position probed and the positions belonging to F before the probe form
a fence that we identify with F ; two exceptions are noted below. If the extension
is unsuccessful, F and all fences to the left of F (equivalently, shorter than F ) are
excluded, since they are now completely contained in the excluded rows (and in the
rejected columns), while the height of every other fence decreases by the number of
rows excluded.

An exceptional case of a successful extension of a fence F or of a successful top-
row probe that creates F occurs if, before the probe, some fence F ′ to the right of F
had the same height as F after the probe; i.e., a “stair” of the “staircase” vanishes. In
this case we will say that F and F ′ merge to create a new fence. We shall frequently
need to distinguish between new fences that result from merges and new fences that
result from successful top-row probes (without a merge or before a merge triggered
by the probe); we shall say that the latter fences are created from scratch.

Another exceptional situation happens when a fence algorithm finds a 1 in the
column next to the 0-barrier or a 0 in the column immediately to the left of some
fence. In either case, no new fence is created, no merge takes place, one or more rows
are excluded, and one or more fences may be excluded. We call a probe excluding if
it causes one or more rows to be excluded.

The gap of a fence F is defined as its distance from the 0-barrier, i.e., as cF − cZ,
where cF and cZ are the indices of the column containing F and of the 0-barrier,
respectively. Observe that the gap of every fence is at least 2. The index of a fence
is one more than the number of fences strictly to its right; in other words, the fences
are numbered from right to left. The proofs of both the upper bound and the lower
bound associate with each fence F an integer weight , denoted ‖F‖. We define the
cumulative weight of a fence as the sum of its own weight and the weights of all fences
of strictly smaller index; i.e., if the weights are summed from right to left, the partial
sum obtained for each fence is its cumulative weight.

We will denote by F the (current) list of fences, ordered from left to right. For
example, if F = (FN , . . . , F1), then FN and F1 are the leftmost and rightmost fences,
respectively, and 1 ≤ |FN | < · · · < |F1|. For i = 2, . . . , N , we call Fi the left neighbor
of Fi−1 and Fi−1 the right neighbor of Fi.

Figure 2.2 illustrates the various possibilities for a surface probe. Rejected col-
umns and excluded rows are separated from the remaining positions by double vertical
and horizontal lines, respectively, the matching area is filled with 1’s, and unknown
entries that are still of interest are represented by dark squares. Consider the situation
in (a), in which we have two fences: F1 of height 3 in column 10 and F2 of height 2
in column 7. The six situations in (b)–(g) show possible results of performing one
probe, starting from (a). The contents of the probed position are circled. (b) shows a
successful top-row probe, creating a new fence of height 1 from scratch in column 5.
(c) shows an unsuccessful top-row probe in column 5. (d) shows a successful extension
of F2, leading to a merge of F1 and F2. (e) shows an unsuccessful attempt to extend F2.
(f) shows a successful top-row probe in the column next to the 0-barrier; no new
fence is created, but one row is excluded. (g) shows an unsuccessful top-row probe
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in the column next to the leftmost fence F2; F2 and the rows that it spans are
excluded. Finally, starting from the situation in (b), (h) shows a successful top-row
probe performed when the leftmost fence is of height 1; the new fence immediately
merges with its right neighbor to form a new leftmost fence.

(a)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

(b)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1

(c)

1 1 1 1 1 1

1 1 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1

1 1

(d)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

(e)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 1

(f)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

(g)

1 1 1 1 1

1 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1

1 1

(h)

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

Fig. 2.2. Possible outcomes of a surface probe.

3. Intuitive sketch. Before delving into the formal arguments, let us try to
provide intuition behind some important parameters used in the proofs of the upper
and lower bounds. The reader should keep in mind that we do not claim to prove
anything in this section, but merely to show how one may arrive at the parameter
values of the proofs through plausible reasoning. Exact values of the parameters and
rigorous proofs are given in the remainder of the paper. This section can be skipped
without loss of continuity.
First, fence algorithms do come naturally—and one conclusion of our work is that

they are optimal, up to a constant factor—so let us concentrate on fence algorithms.
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Since the goal of a fence algorithm can be viewed as that of excluding all k rows, a
natural measure of its progress is the number of rows that it has managed to exclude
so far. Excluding a row comes at a certain price, however, since, in some sense, all
probes of positions in a row become worthless when the row is excluded. Our main
concern, therefore, will be not to perform too many probes per row, at least in an
amortized sense. A symmetric argument could be made concerning rejected columns
instead of excluded rows, but this appears to offer less useful insights.
Important properties of a fence algorithm are the number of fences, their spatial

distribution, and their heights. Suppose that we aim for a bound of the form kt for
some value of t. That is, we wish to spend an average of t probes per row. We must
analyze what happens when we fail to extend a fence. One the one hand, we gain
one or more rows, i.e., they are excluded, but on the other hand we lose probes. We
identify two kinds of losses.

1. All fences contained in the excluded rows disappear, and thus all probes spent
to create these short fences are now useless.

2. If N fences remain after the row exclusions, N probes per row used in building
these fences are now useless. This suggests that we should keep the number
of fences bounded by t.

Let us define some quantities needed to analyze losses of the first kind. When
creating a new fence from scratch, it is natural to probe the middle entry of the
unknown part of the top row, that is, to make one step of a binary search for locating
the rightmost 0 in that row. Suppose that we perform more such probes, all of which
find 1’s. In effect, the new fence moves leftward and away from its neighboring fence,
while still being of height 1. It is intuitively clear that as the new fence F moves
to the left, it becomes more and more valuable to the fence algorithm. In order to
quantify this, we count the number of binary-search steps used to move F to its
current position and call this number the weight of F , denoted ‖F‖. When two fences
merge, we define the weight of the resulting fence to be the sum of the weights of the
two fences from which it is formed. It can be seen that with this rule, the total weight
of all fences can grow to around logn, but not beyond that.
A second important quantity associated with a fence F is the total number of

probes spent to construct F . We call this the investment in F and denote it by
Invest(F ). Investments also add up when fences merge. Investments differ from
weights in that vertical extensions of fences are counted in the former, but not in the
latter. As a consequence, Invest(F ) ≥ ‖F‖ for every fence F .
As observed above, we want at most t fences, and a natural way to spread the

fences is to make sure that, going from left to right, they are of exponentially increasing
weights. If weights increase by a factor of a from each fence to the next, then we should
have at = log n or, equivalently,

log a =
log log n

t
,(3.1)

since the maximum weight of any fence is around logn.
Consider a loss of the first kind. As stated above, we choose the weights of the

existing fences to be exponentially increasing from left to right, and it turns out that
the same will be true for the investments in the fences. Hence a constant fraction of
the loss is due to the disappearance of the tallest excluded fence; for simplicity, we
assume that this is the only loss.
We want the height of a fence to be a function simply of its weight, and we denote

the relevant function by T . Now consider the situation when we fail to extend a fence
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F . We gain T (‖F‖) rows and lose the investment Invest(F ). To keep the cost of t
probes per row, this means that we need

T (‖F‖) ≥ Invest(F )/t ≥ ‖F‖/t.(3.2)

It is natural to assume that it is optimal for the first inequality to hold with equality.
Under this assumption, let us analyze the key operation of merging two fences.
Consider two fences F and F ′ that merge, with F ′ to the left of F . The merge is

caused by a number of probes that extend F ′. Assume that before these probes are
made, F and F ′ are of heights T (‖F‖) and T (‖F ′‖), respectively, and that tT (‖F‖)
and tT (‖F ′‖) probes, respectively, have been invested in them. Furthermore, since
the weight of the new fence is the sum of the weights of the old fences, assume
that after its creation it is extended to height T (‖F‖ + ‖F ′‖). The extension needs
T (‖F‖+ ‖F ′‖)− T (‖F‖) probes, so that afterwards the investment in the new fence
will be

t(T (‖F‖) + T (‖F ′‖)) + T (‖F‖+ ‖F ′‖)− T (‖F ′‖).
If we disregard the last term (which turns out to be insignificant) and observe that
T grows at least linearly, by (3.2) we see that this expression is at least (t+1)(T (‖F‖)+
T (‖F ′‖)). As the investment in the new fence should be at most tT (‖F‖+ ‖F ′‖), we
obtain the relation

(t+ 1)(T (‖F‖) + T (‖F ′‖)) ≤ tT (‖F‖+ ‖F ′‖).
Combining this with the relation

‖F‖+ ‖F ′‖ = (1 + 1/a)‖F‖,
which expresses the intended meaning of the parameter a, yields

(t+ 1)T (‖F‖) ≤ tT ((1 + 1/a)‖F‖)
or

(1 + 1/t)T (‖F‖) ≤ T ((1 + 1/a)‖F‖).
Setting T (x) = dxp for arbitrary constants d > 0 and p ≥ 1 + a/t is sufficient to
satisfy this requirement, and choosing

T (x) =
x1+a/t

t

also takes care of the condition of (3.2).
Finally, the biggest possible weight of a fence (namely, logn) should correspond

to the biggest possible height of a fence (namely, k), i.e.,

T (log n) =
(log n)1+a/t

t
= k.

Together with (3.1), this implies a log a = log(kt/log n). After some simplification,
this and (3.1) yield suitable values for a and t.
Essentially, the algorithm can be derived from this discussion by defining every-

thing precisely and adjusting a few constants. This is done in the next section.
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The lower bound is proved by means of an adversary that keeps track of the
investments made by an algorithm. Whenever the algorithm has not protected its
investment by erecting tall enough fences, the adversary reveals information that
makes the algorithm lose part of its investment at too high a cost. The adversary’s
actions basically force the algorithm to behave as the algorithm in the proof of the
upper bound, or it will do worse.

4. The upper bound. In this section we first describe a fence algorithm that
solves the leftmost-all-1 problem using a number of probes that is within the upper
bound of Theorem 1.1. Later, in section 4.4, we extend the methods to solve the
original string-ranking problem using at most twice as many probes, where a probe,
in the case of the string-ranking and string-membership problems, is the inspection
of a character in the sorted sequence of input strings.

Consider an input I of size k × n, where k ≥ 1 and n ≥ 4 (the condition n ≥ 4
simply ensures that log logn is well defined and at least 1). We begin by defining a
number of parameters in terms of k and n. First,

a =

√
max

{
log

(
k log log n

log n

)
, 4

}
and t =

⌈
log log n

log a

⌉
+ 2.

Second, for all real x ≥ 0, take

T (x) =
x1+ea/t

t
,

where e = 2.718 . . . is the base of the natural logarithm function. T maps the set of
nonnegative real numbers to itself, and its derivative T ′ satisfies T ′(x) ≥ 1/t for all
x ≥ 1. The only other properties of T of relevance to us are expressed in the two
lemmas below.

Lemma 4.1. T (2 log n) = O(k + log n/log log n).

Proof.

T (2 log n) =
(2 log n)1+ea/t

t
≤ (2 log n)

1+ea log a/log log n · log a
log log n

≤ 21+2ea log a · log a · log n
log log n

= O

(
2a

2 · log n
log log n

)
.

Since 2a
2 · log n/log log n = k if a > 2, the lemma follows.

Lemma 4.2. Let x, y, and ε be nonnegative real numbers with 0 ≤ ε ≤ 1 and
y ≥ x ≥ εy. Then

T (x+ y) ≥ (1 + εa/t)(T (x) + T (y)).

Proof. By the mean-value theorem, eε/e ≤ 1 + ε, and therefore

x+ y ≥ (1 + ε)y ≥ eε/e · y

and
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tT (x+ y) = (x+ y)1+ea/t

≥ (eε/e · y)ea/t(x+ y)
= eεa/t · yea/t(x+ y)
≥ (1 + εa/t)yea/t(x+ y)
≥ (1 + εa/t)(x1+ea/t + y1+ea/t)

= (1 + εa/t)t(T (x) + T (y)).

Using the lemma with x = y and ε = 0, we obtain the following.

Corollary 4.3. For all x ≥ 0, T (2x) ≥ 2T (x).
4.1. The algorithm. Whenever the fence algorithm to be described performs

a top-row probe, it probes in the middle of the surface part of the top row. More
precisely, if the leftmost and rightmost surface positions in the top row are in columns
cL and cR, respectively, the top-row probe is performed in column �(cL + cR)/2� or
in column �(cL + cR)/2�. (If cL + cR is odd, either choice is acceptable.) It will be
convenient to allow probes below the actual input, i.e., in “row r” for r > k. By
convention, such probes always return 1.

As mentioned earlier, the algorithm associates with each fence F a positive integer,
called the weight of F and denoted by ‖F‖. The target height of F is defined as
H(F ) = �T (‖F‖)�. We say that F is of target height if |F | = H(F ) and below target
height if |F | < H(F ).

The algorithm repeatedly performs one probe using the procedure Probe, specified
below, until all k rows have been excluded and then outputs the number of rejected
columns, which is easily seen to be the correct answer even if fictitious probes below
row k were performed. Upon entry to the procedure, the notation is assumed to be
fixed so that F = (FN , . . . , F1). (Recall that F is the list of all fences in the order
from left to right.)

Probe:
if some fence is below target height
then perform an extending probe below the rightmost such fence
else
if N ≥ 2 and ‖FN‖ > ‖FN−1‖/a
then perform an extending probe below FN
else perform a top-row probe.

In the interest of succinctness, the description given above does not specify the
manipulation of fence weights. When a new fence is created from scratch, it is given
weight 1. When two fences F and F ′ merge, the resulting fence acquires ‖F‖+ ‖F ′‖
as its weight. Finally, when a nonexcluding top-row probe encounters a 0 and N ≥ 1,
the weight of the leftmost fence is increased by 1. No other weight changes take place.
In particular, only the leftmost fence ever changes its weight.

It may be helpful to visualize how a second fence is created by the algorithm. As
long as there is only one fence and this fence is of height 1, the new fence created by a
top-row probe that encounters a 1 immediately merges with the old fence. Informally,
the net effect can be viewed as the old fence moving to the left and increasing its
weight by 1. When the weight of the single fence has increased sufficiently for its
target height to reach 2, the fence may be extended beyond height 1, after which a
second fence can be created.
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4.2. Properties of the algorithm.

Lemma 4.4. Suppose that F = (FN , . . . , F1) before a probe that extends a fence
Fi such that 2 ≤ i ≤ N and ‖Fi‖ ≤ ‖Fi−1‖/a before the probe. Then the probe will
not cause Fi and Fi−1 to merge.

Proof. Consider the situation before the probe. Fi is below target height, whereas
Fi−1 is not, since otherwise Fi would not be extended. In particular, T (‖Fi‖) ≥
1. Since a ≥ 2 and T (x) ≥ 2T (x/2) for all x ≥ 0 (Corollary 4.3), T (‖Fi−1‖) ≥
2T (‖Fi‖) ≥ T (‖Fi‖) + 1 and therefore H(Fi−1) > H(Fi). The lemma follows.

The following two lemmas are proved together by induction on the number of
probes executed.

Lemma 4.5. At all times, with F = (FN , . . . , F1), ‖Fi‖ ≤ ‖Fi−1‖/a ≤ ‖Fi−1‖/2
for 2 ≤ i < N .

Lemma 4.6. Every merge combines the two leftmost fences.

Proof. Lemma 4.4 states that if 2 ≤ i < N and ‖Fi‖ ≤ ‖Fi−1‖/a before an
extension of Fi, then the extension will not cause a merge. Conversely, if the condition
of Lemma 4.5 holds before a merge that involves the leftmost fence, it will clearly hold
afterwards. Since the condition of Lemma 4.5 is vacuously satisfied initially, while no
fence is ever created from scratch unless N ≤ 1 or the claim holds even for i = N , it
can be seen that the condition must hold at all times.

Lemma 4.7. At all times, if F = (FN , . . . , F1) and 1 ≤ i ≤ j < N , then
‖Fj‖ ≤ ai−j‖Fi‖ and T (‖Fj‖) ≤ 2i−jT (‖Fi‖).

Proof. The first part of the lemma is obtained by j− i applications of Lemma 4.5.
Since x ≤ y/2 implies T (x) ≤ T (y)/2 for all x, y ≥ 0 (Corollary 4.3), the second part
can be proved in a similar way.

Lemma 4.8. At all times, if F = (FN , . . . , F1) and N ≥ 2, then ‖FN‖ ≤
‖FN−1‖.

Proof. Initially, the claim is vacuously satisfied. We show that if it holds immedi-
ately before a probe, then it holds immediately after the probe. Let F = (FN , . . . , F1)
before the probe.

When a fence is created from scratch, it is given weight 1, and the claim is clearly
satisfied. An unsuccessful top-row probe may increase ‖FN‖ by 1 but is not performed
unless N ≤ 1 or ‖FN−1‖ ≥ a‖FN‖ ≥ ‖FN‖ + 1, so that the claim also holds after
the probe. Lemma 4.6 states that every merge combines the two leftmost fences. By
induction and Lemma 4.5, their combined weight is bounded by the weight of the right
neighbor, if any, of the resulting fence. In symbols: ‖FN‖ + ‖FN−1‖ ≤ 2‖FN−1‖ ≤
‖FN−2‖. Finally, and again using Lemma 4.5, the claim is easily seen to hold after
the exclusion of one or more fences.

Lemma 4.9. At all times, with F = (FN , . . . , F1),
∑N
j=i T (‖Fj‖) ≤ 2T (‖Fi‖) for

i = 1, . . . , N .

Proof. Assume that i < N , since otherwise the claim is trivial. By Lemmas 4.7
and 4.8, T (‖Fj‖) ≤ 2i−jT (‖Fi‖) for j = i, . . . , N − 1 and T (‖FN‖) ≤ T (‖FN−1‖).
Thus

N∑
j=i

T (‖Fj‖) ≤

N−1∑

j=i

2i−j + 2i−N+1


 · T (‖Fi‖) = 2T (‖Fi‖).

Lemma 4.10. At all times, with F = (FN , . . . , F1), H(Fi)/2 ≤ |Fi| ≤ H(Fi) for
i = 1, . . . , N − 1.
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Proof. Initially, the claim is vacuously satisfied. We show that if it holds immedi-
ately before a probe, then it holds immediately after the probe. Let F = (FN , . . . , F1)
before the probe.
Consider first the upper bound of the lemma, i.e., the claim that only the leftmost

fence can have a height exceeding its target height. By induction and since the weight
of a fence never decreases, when a fence becomes the leftmost fence, because of row
exclusions or a merge or because the fence was just created from scratch, its height will
not exceed its target height. Moreover, once the algorithm starts extending a fence
beyond its target height, the fence must be the leftmost fence, and the algorithm will
continue to extend it until an extension is unsuccessful, a merge takes place, or the
algorithm terminates. In all cases, the offending fence disappears before it can acquire
a left neighbor.
The other inequality of the lemma states that only the leftmost fence can have a

height below half its target height. Since no other fence is below target height when a
new fence is created from scratch, while only the leftmost fence can increase its weight,
this could be invalidated only by row exclusions, which decrease fence heights. Before
a top-row probe is performed, no fence is below target height, so that even if the
probe excludes one row, the height of every surviving fence after the probe will still
be at least half its target height. Consider, therefore, a probe that excludes fences
FN , . . . , Fi, and let j be arbitrary with 1 ≤ j < i− 1. Before the probe, Fi−1 and Fj
are both of target height, by the upper bound established above, so that at this time,
by Corollary 4.3 and Lemma 4.5,

|Fj | = H(Fj) ≥ T (‖Fj‖) ≥ T (2‖Fi−1‖)
≥ 2T (‖Fi−1‖) ≥ 2(H(Fi−1)− 1) = 2(|Fi−1| − 1).

Hence, before the probe, |Fi| ≤ |Fi−1| − 1 ≤ |Fj |/2, so that after the probe we still
have |Fj | ≥ H(Fj)/2. This holds for all j with 1 ≤ j < i− 1; i.e., the lower bound of
the lemma is satisfied.
The following consequence of the previous lemma and its proof will be useful

later.
Corollary 4.11. Immediately before the algorithm performs a probe, every fence

strictly to the right of the position probed is of target height.
Lemma 4.12. At all times, if F = (FN , . . . , F1), then for i = 1, . . . , N , the gap

of Fi is at most 2
�logn�+1−wi , where wi =

∑i
j=1 ‖Fj‖ is the cumulative weight of Fi.

Proof. The proof is by induction on the number of probes performed. Since the
gap of a fence never increases, the proof amounts to a simple inspection of the cases
in which a fence is created or its cumulative weight increases.
Consider first the case in which a fence F is created from scratch. If F is created

without a right neighbor (i.e., it is the only fence), it has a cumulative weight of 1,
and its gap is bounded by n, so the claim is satisfied. Immediately after the creation
from scratch of a fence F with a right neighbor F ′, the cumulative weight w of F
is one more than the cumulative weight w′ of F ′, and by the policy of placing new
fences created from scratch in the middle of the surface part of the top row, the gap
of F is at most 1/2 plus half the gap of F ′. By induction, therefore, the gap of F is
at most �2�logn�+1−w′

/2+1/2� = 2�logn�+1−w (recall that the gap of F ′ is at least 2),
and the claim continues to hold.
When two fences merge, the cumulative weight of every fence after the merge is

the same as the cumulative weight of the fence residing in the same column before
the merge. Finally, an unsuccessful top-row probe that increases the weight of the
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leftmost fence by 1 also reduces its gap to at most 1/2 plus half the old gap, and the
claim continues to hold as above.

Corollary 4.13. No weight of a fence ever exceeds �log n�+ 1 < 2 log n.
Lemma 4.14. The number of fences never exceeds t.
Proof. If at some point more than t fences exist, we can apply Lemma 4.7 with

i = 1 and j = t and derive the following contradiction from the previous corollary:

1 ≤ ‖Ft‖ ≤ a1−t · ‖F1‖ < a−log log n/log a−1 · 2 log n = 2/a.

4.3. Analysis of the number of probes. In this subsection we complete the
analysis of the algorithm by showing the number of probes performed to be O(kt +
log n). The approach is simple: we define a potential function Φ of the state of the
algorithm, initially zero, show that every probe increases Φ by at least one, and bound
the maximum value of Φ.
Consider a point in time during the execution of the algorithm at which F =

(FN , . . . , F1), and let XC and XR be the numbers of rejected columns and of excluded
rows, respectively. The potential function Φ has the form Φ = Φ1+Φ2+Φ3+Φ4, where
Φ1 = log(n/(n−XC)) measures the ratio of original columns to remaining columns,

Φ2 = 13tXR is proportional to the number of excluded rows, Φ3 =
∑N
i=1 |Fi| is the

total height of all fences, and

Φ4 = 2t ·
(
min{T (‖FN‖), 3|FN |}+

N−1∑
i=1

T (‖Fi‖)
)
,

taken to be zero if no fences exist. Φ3 and Φ4 decompose naturally into contributions
by the individual fences. The contribution of a fence Fi to Φ3 is its height |Fi|, and
the contribution of Fi to Φ4 is essentially 2t times T (‖Fi‖). An exception concerns
the leftmost fence FN . If the height of FN is less than one third of T (‖FN‖), the
contribution of FN to Φ4 instead is 6t times its height. If and when column n is
rejected, Φ1 becomes undefined; since this also causes the algorithm to terminate
without additional probes, it is of no concern to the proof.

Lemma 4.15. Every nonexcluding successful top-row probe increases Φ by at
least 1.

Proof. The probe leaves Φ1 and Φ2 unchanged. If it does not cause a merge, it
increases Φ3 by 1 and does not decrease Φ4. If the probe causes a merge, it leaves Φ3

unchanged and increases Φ4 by replacing the leftmost fence by a fence of the same
height whose weight is greater by 1. Since the leftmost fence was of target height
before the probe (Corollary 4.11) and T ′(x) ≥ 1/t for all x ≥ 1, the increase in Φ4 is
at least 2. In either case, the net increase in Φ is at least 1.

Lemma 4.16. Every successful extending probe increases Φ by at least 1.
Proof. Even if the probe causes a merge, consider an imagined intermediate

situation in which the fence in question has been extended, but no merge has yet
taken place. Until this point, the probe leaves Φ1 and Φ2 unchanged, increases Φ3

by 1, and does not decrease Φ4. Overall, Φ increases by at least 1, and we are done
if no merge happens.
In the rest of the proof we assume that a merge happens and prove that it does

not decrease Φ. Φ1 and Φ2 are not affected by the merge. Let F = (FN , . . . , F1)
immediately before the merge. By Lemma 4.6, the fences that merge are the leftmost
ones, i.e., FN and FN−1. By Corollary 4.11 and Lemma 4.8, the fences that merge as
well as the resulting fence are all of height |FN | = H(FN−1) ≥ T (‖FN−1‖) ≥ T (‖FN‖).
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The contribution to Φ3 +Φ4 of FN and FN−1 before the merge is at most

2|FN |+ 2t(T (‖FN‖) + T (‖FN−1‖)) ≤ 6t|FN |,

the contribution to Φ3 +Φ4 of the fence resulting from the merge is

|FN |+ 2t ·min{T (‖FN‖+ ‖FN−1‖), 3|FN |},

and no other fence changes its contribution.
If 3|FN | < T (‖FN‖ + ‖FN−1‖), the merge clearly increases Φ3 + Φ4. Otherwise

the increase in Φ caused by the merge is at least

2t[T (‖FN‖+ ‖FN−1‖)− (T (‖FN‖) + T (‖FN−1‖))]− |FN |.

By Lemmas 4.4 and 4.8, we must have ‖FN−1‖ ≥ ‖FN‖ > ‖FN−1‖/a. We can
therefore apply Lemma 4.2 with ε = 1/a, which shows that Φ increases by at least

2t

t
[T (‖FN‖) + T (‖FN−1‖)]− |FN |.

To see that this is nonnegative, observe that T (‖FN−1‖) > 1 (since |FN−1| ≥ 2) and
therefore |FN | = �T (‖FN−1‖)� ≤ 2T (‖FN−1‖).

Lemma 4.17. Every nonexcluding unsuccessful probe increases Φ by at least 1.
Proof. The probe is a top-row probe and leaves Φ2 +Φ3 unchanged. If no fences

are present when the probe is performed, at least half of the remaining columns are
rejected, causing Φ1 to increase by at least 1 while Φ4 remains zero. If one or more
fences are present at the time of the probe, the weight of the leftmost fence increases
by 1. Since the fence was of target height before the probe, by Corollary 4.11, an
argument as in the proof of Lemma 4.15 shows that this increases Φ4 by at least 2,
while Φ1 does not decrease.

Lemma 4.18. Every excluding probe causes all nonrejected columns to be rejected
or increases Φ by at least 1.

Proof. Let F = (FN , . . . , F1) immediately before the probe under consideration.
Suppose that the probe leads to the exclusion of m rows but not to the rejection of
all nonrejected columns. Then the probe does not decrease Φ1, increases Φ2 by 13tm,
and, since there are at most t fences (Lemma 4.14), decreases Φ3 by at most tm.
If no fences are excluded and N ≥ 1, |FN | decreases by m and ‖Fi‖ is unchanged

for i = 1, . . . , N , so that Φ4 decreases by at most 6tm.
If at least one fence is excluded, let the excluded fences be FN , . . . , Fi. By Lemmas

4.9 and 4.10, the contribution to Φ4 of the excluded fences FN , . . . , Fi before the probe
was at most 4tT (‖Fi‖) ≤ 8t|Fi| if i < N and at most 6t|Fi| if i = N , so that their
exclusion decreases Φ4 by at most 8t|Fi| ≤ 8tm. If i > 1, the contribution of Fi−1

to Φ4 may also decrease because Fi−1 becomes the new leftmost fence. Since Fi−1

was of target height before the probe under consideration, however (Corollary 4.11),
this happens only if Fi−1 loses more than two thirds of its height, in which case its
contribution to Φ4 before the probe was 2tT (‖Fi−1‖) ≤ 2t|Fi−1| ≤ 3tm. Altogether,
therefore, Φ4 decreases by at most 8tm+ 3tm = 11tm.
In either case Φ4 decreases by at most 11tm, yielding a net increase in Φ of at

least 13tm− tm− 11tm = tm ≥ 1.
Lemma 4.19. As long as at least one column has not been rejected, Φ = O(kt+

log n).
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Proof. As long as at least one column has not been rejected, Φ1 ≤ log n, and
Φ2 ≤ 13kt. By Corollary 4.13, the weight of every fence remains bounded by 2 logn.
Coupled with the facts that

∑N
i=1 T (‖Fi‖) ≤ 2T (‖F1‖) if N ≥ 1 (Lemma 4.9), that

T (2 log n) = O(k+log n/log log n) (Lemma 4.1), and that t = O(log log n), this shows
that Φ4 = O(kt + log n). In order to complete the proof by demonstrating that
Φ3 = O(kt+log n), it suffices, since there are at most t fences (Lemma 4.14), to show
that no fence is ever of height more than �T (2 log n)�. Since only the leftmost fence
can have a height exceeding its target height (Lemma 4.10), this follows immediately
from Corollary 4.13 for all other fences. As for the leftmost fence F , its height is
bounded by 1 or by the height of a nonleftmost fence (that may disappear at the
creation of F ) when F is created and whenever it is not the only fence. We finally
observe that the algorithm never extends a fence whose height is no smaller than its
target height if it is the only fence, and we conclude that even the leftmost fence can
never acquire a height of more than �T (2 log n)�.

Lemma 4.20. The total number of probes performed by the algorithm is O(kt +
log n).

Proof. Since Φ = 0 initially, the claim follows immediately from Lemmas 4.15–
4.19.
We can conclude the following theorem.
Theorem 4.21. For all integers k ≥ 1 and n ≥ 4, leftmost-all-1 problems of size

k × n can be solved by a fence algorithm using

O

(
k log log n

log log (4 + k log log n
logn )

+ k + log n

)

probes in the worst case.

4.4. String ranking. In this subsection we extend the algorithm for the leftmost-
all-1 problem to solve the original string-ranking problem using at most twice as many
probes. The upper bound of our main result, Theorem 1.1, follows from Theorem 4.21
and Lemma 4.22 below.

Lemma 4.22. For all integers k, n,m ≥ 1, if there is a surface algorithm that
solves instances of size k × n of the leftmost-all-1 problem using at most m probes,
then there is an algorithm that solves instances of size k × n of the string-ranking
problem using at most 2m probes.

Proof. Let I and s be the input matrix and the query string, respectively, and
denote by si the ith character of s for i = 1, . . . , k. We derive a k×n matrix I ′ from I
as follows. First, for each column of I that coincides with s, the corresponding column
of I ′ contains 1’s in every position. Now assume that 1 ≤ c ≤ n and that column c
of I differs from s in at least one position, and let r be the smallest row index with
I[r, c] �= sr. Then we set I

′[r, c] = 0 if I[r, c] < sr and I
′[r, c] = 2 if I[r, c] > sr, and

all other entries in column c of I ′ are set to 1. It can be seen that I ′ is sorted and
that the task is to compute the number of columns in I ′ that do not contain a 2.
With the understanding that each occurrence of 2 is to be considered equivalent

to a 1, a convention that again preserves sortedness, we can run a process AL that
executes the given surface algorithm for the leftmost-all-1 problem on the input I ′.
This computes the number of columns containing a 0, which is not what we want. On
the other hand, we can instead run a “mirrored” process AR that also executes the
given surface algorithm but interchanges the roles of left and right, < and >, and 0
and 2. (In particular, AR considers 0 to be equivalent to 1.) This process will indeed
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compute the number of columns that do not contain a 2 or, rather, n minus that
number.

There is a catch, however, namely, that it is not clear how to produce the input
I ′ before starting AR without using too many probes. Instead, AR must be able to
convert the outcome of each of its probes in I to the corresponding entry in I ′ without
performing additional probes. This takes a little care and requires us to execute both
AL and AR in an interleaved fashion.

Let us consider the situation from the perspective of AL. Since AL is a surface
algorithm, initially it has no difficulty converting the entries read in I to the corre-
sponding entries in I ′, the reason being that in each column, it probes from the top
towards the bottom. When about to exclude one or more rows, however, AL runs into
a problem. Outside of the rejected columns, the rows of I ′ to be excluded are known
to contain only characters that AL considers to be equivalent to 1, namely, 1’s and 2’s,
and AL will assume that all such characters are in fact 1’s. However, any occurrence
of a 2 changes the interpretation of a 0 that may later be discovered further down in
the same column, and therefore AL may later convert entries of I incorrectly to ones
of I ′ if it excludes a row containing 2’s. Whenever AL is about to exclude a row, it
therefore needs help. In complete symmetry, AR can run until it is about to exclude
one or more rows, at which point, since the rows of I ′ to be excluded might contain
0’s, AR needs help.

Now consider a situation in which both AL and AR are blocked and waiting for
help, and let rL and rR be the indices of the topmost rows about to be excluded by
AL and AR, respectively. Also let zL and zR be the indices of the 0-barriers of AL

and AR, respectively. Assume inductively that up to the present point, neither of
the two processes has ever excluded a row of I ′ with a position containing an entry
different from 1 and rejected by neither AL nor AR. Also assume that AL and AR

are modified so that whenever one of the processes wants to query a position that has
been rejected by the other process, it receives a 1 as the answer to its query without
consulting I. By the inductive hypothesis, the column of I ′ of index zL is known to
contain a string smaller than 1k and therefore must be to the left of the column of I ′ of
index zR, which is known to contain a string larger than 1

k. In other words, zL < zR.
Moreover, for all c with zL < c < zR, every position of the form I[min{rL, rR}, c] is
known to contain an entry that is both ≥ 1 and ≤ 1 and thus equals 1. It follows that
if rL ≤ rR, then AL can proceed and exclude row rL without falsifying the inductive
property, while if rR ≤ rL, AR can resume operation.

Thus AL and AR are never simultaneously blocked. Moreover, once one of the
processes terminates, the other process can finish without being suspended again.
Since the two processes AL and AR are copies of the given surface algorithm, except
that sometimes they wait and that some answers are given to them for free, the total
number of probes performed is bounded by 2m.

Although the upper bounds of Theorems 1.1 and 4.21 specify only the number
of probes performed, we note that the algorithms realizing the upper bounds can be
executed in a total time that is within the bound on the number of probes, each
probe being followed by exactly one (three-way) comparison between two characters.
The only nontrivial observation needed is that during an execution of the algorithm
described in section 4.1, whenever a fence that is not the leftmost fence is of target
height, it remains of target height until the next row exclusion, at which point we can
afford to step through a list of all fences.
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5. The lower bound. The aim of this section is to prove the following theorem,
which implies the lower-bound part of Theorem 1.1.

Theorem 5.1. For all integers k ≥ 1 and n ≥ 4, every deterministic algorithm
for the string-membership problem or the leftmost-all-1 problem performs

Ω

(
k log log n

log log (4 + k log log n
logn )

+ k + log n

)

probes on some input of size k × n.
We prove Theorem 5.1 by exhibiting an adversary that forces every deterministic

algorithm A for either problem to spend as many probes as stated in the theorem
before announcing its answer. In the case of the string-membership problem, the lower
bound is proved for a special case: the alphabet Σ and the string s whose presence is
to be tested are fixed to be {0, 1} and 1k−10, respectively.
The adversary fixes entries of a legal input I online in response to the queries made

by A. Whenever A poses a query (r, c), i.e., asks for the value of I[r, c], the adversary
executes a call Process(r, c), where Process is described in the next subsection, that
fixes zero or more entries of I. Subsequently, I[r, c] will have been fixed to either 0 or
1, and the value to which it was fixed is returned to A as the answer to its query.
We formally define a position to be an element of {1, . . . , k} × {1, . . . , n}. The

adversary maintains information about the part of I already fixed in a k × n array
J with entries drawn from {0, 1, “tentative-1,” “?”} and a set P of pending positions.
For r = 1, . . . , k and c = 1, . . . , n, by definition, if (r, c) ∈ P , then I[r, c] has been
fixed to 1; if (r, c) �∈ P , then I[r, c] has been fixed to the value b ∈ {0, 1} exactly if
J [r, c] = b.
Although the adversary is not a fence algorithm probing the input I, it will be

very convenient for the proof to reuse the terminology introduced for fence algorithms
in section 2.2. In order to make this possible, it suffices to define the rejected positions
and the matching area, since all other relevant concepts (fences, surface positions, the
0-barrier, etc.) were derived from these basic notions. But this is easy: a position (r, c)
is rejected exactly if J [i, j] = 0 for some position (i, j) with j ≥ c, and a nonrejected
position (r, c) belongs to the matching area exactly if J [r, c] ∈ {1, “tentative-1”}. The
adversary will carry out explicit 1-extension (or, rather, “tentative-1-extension”) to
ensure that the matching area remains monotonic. Thus entries of 0 in J correspond to
probes answered 0, and entries of 1 or “tentative-1” correspond to probes answered 1.
The difference between 1 and “tentative-1” is that a 1 is permanent, as is a 0, while a
“tentative-1” may later be changed to 0 or 1. If J [r, c] = “?” for some position (r, c),
the adversary has not yet decided upon the value of I[r, c] (unless (r, c) ∈ P , in which
case I[r, c] = 1).
To a first approximation, the adversary fixes only those entries of I that were

queried by A or whose values can be deduced from such entries by 1-extension.
In order to simplify the book-keeping, however, we let the adversary sometimes fix
additional entries of I. Informally, this allows us to assume that A operates largely
as the algorithm analyzed in the previous section. The lower bound holds even if the
additional information about I volunteered by the adversary in this manner is made
known to A. It is therefore not necessary to distinguish between the information
available to A and that available to the adversary—this is obvious anyway, since the
adversary operates according to a fixed, deterministic strategy.

5.1. The adversary’s strategy. The adversary’s strategy is formulated in
terms of a number of parameters that we introduce next. It will be convenient to
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use the natural logarithm function “ln” to base e instead of the logarithm function to
base 2 employed in the previous section. First, let

a = ln

(
k ln lnn

lnn

)
and v = 3a+ 1.

For k = O(log n/log log n), the bound of Theorem 5.1 reduces to a trivial bound of
Ω(k + log n). This allows us to assume a to be larger than any convenient constant.
In particular, we will assume that a ≥ 4 and hence

v ≤ a2.(5.1)

Next, we take

t =

⌊
ln lnn

8 ln a

⌋
.

Similarly as before, the bound of Theorem 5.1 reduces to the trivial bound of Ω(k +
log n) for t = O(1) and hence for a = (logn)Ω(1), for which reason we will assume
that t ≥ 2 and that the following relations hold:

e1/(3t) ≤ 1 + 1/(2t),(5.2)

4at ≤
√
lnn,(5.3)

kt+ 1 ≤ n1/4.(5.4)

The parameters a and t have essentially the same meaning as in the proof of the
upper bound. In particular, the goal of the adversary is to force A to spend Ω(t)
probes per row. We associate with each fence F (as implied by J) a weight, ‖F‖,
which is maintained, with one exception, as in the proof of the upper bound. Every
new fence created from scratch has weight 1, and when two fences F and F ′ merge
to form a new fence, the new fence is given weight ‖F‖+ ‖F ′‖. The difference to the
proof of the upper bound is that these two rules are the only ones that govern the
weights of fences. In particular, the rejection of a number of columns does not change
the weight of any surviving fence.
For each integer i and all x ≥ 0, take

φi(x) =
x

t

( x

vt−i
)a/t
ln
( x

vt−i
+ e
)
≥ 0,

and note for later use that the derivative

φ′i(x) =
1

t

( x

vt−i
)a/t [(

1 +
a

t

)
ln
( x

vt−i
+ e
)
+

1

1 + e · vt−i/x
]

of φi is a strictly increasing function. Recall that the index of a fence F is one more
than the number of fences to the right of F . We define the value (to A) of a fence F
of index i as

Φ(F ) = |F |+ ‖F‖+ φi(‖F‖).
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The fence will be called dense if Φ(F ) ≥ t|F |. A fence is critical if it is dense or if its
index is t. The following technical lemma is needed later.

Lemma 5.2. If a fence F of index i is not dense, then

|F | ≥ ‖F‖
at
· za/t,

where z = ‖F‖/vt−i.
Proof. Since F is not dense,

|F | ≥ Φ(F )
t
≥ ‖F‖

t
+
‖F‖
t2
· za/t ln(z + e).

If z ≤ at/a, then

|F | ≥ ‖F‖
t
≥ ‖F‖

t
· z

a/t

a
,

as desired. If z > at/a ≥ et/a, on the other hand, then

|F | ≥ ‖F‖
t2
· za/t(t/a) = ‖F‖

at
· za/t.

The adversary exercises tight control over the horizontal placement of fences. As
an aid in describing this mechanism, we introduce a set L of “legal fence-column in-
dices” and a corresponding set of “legal fence columns.” Suppose that F = (FN , . . . , F1),
that Fi is in column ci for i = 1, . . . , N , and that the 0-barrier is in column cZ. Then
L = {c∗, cN , cN−1, . . . , c1}, where c∗ = cZ +max{�e−a · (cN − cZ)�, 1}, with cN taken
to be n+1 if N = 0. A legal fence column is a column whose index belongs to L. Thus
every column that already contains a fence is a legal fence column, and there is one
more legal fence column to the left of the leftmost fence, about e−a of the way from
the 0-barrier to that fence. The adversary rejects the column of every probe to the
left of the leftmost legal fence column and translates every other probe to the nearest
legal fence column to the left of or in the column of the position probed and in this
way allows fences to grow only in legal fence columns. Note that since e−a ≤ 1/2,
this implies that no two fences will ever reside in adjacent columns.
We now describe the strategy of the adversary precisely by giving the procedure

Process and two subroutines PutZero and OneProbe that it employs. Before the first
call of Process, every entry of J is initialized to “?,” and the set P of pending positions
is set to Ø. For the sake of a succinct description of PutZero, we take minØ to be ∞,
i.e., distinct from every integer.

PutZero(c):
for (i, j) ∈ {1, . . . , k} × {1, . . . , c} do
J [i, j] :=

{
0, if i = min{% | 1 ≤ % ≤ k and J [%, j] �= 1},
1, otherwise.

OneProbe(r, c):
if c < minL then PutZero(c) else
c′ := max{j ∈ L | j ≤ c};
for j ∈ {c′, . . . , n} do if J [r, j] = “?” then J [r, j] := “tentative-1”;
if column c′ contains a critical fence then PutZero(c′).

Process(r, c):
if (r, c) is buried then insert (r, c) in P and return 1 else
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if J [r, c] = “?” then
OneProbe(r, c);
while P contains a surface position do
Let (r′, c′) be a surface position in P ;
OneProbe(r′, c′);
Remove from P all positions (i, j) ∈ P with J [i, j] �= “?”;

for (i, j) ∈ {1, . . . , k} × {1, . . . , n} do
if J [i, j] = “tentative-1” then J [i, j] := 1;

Return J [r, c].

We illustrate the adversary’s strategy through an extensive example worked in
Figure 5.1. The symbols “0,” “1,” and “T” denote positions in J containing the
values 0, 1 and “tentative-1,” respectively. Each “P” denotes a position (i, j) ∈ P
with J [i, j] = “?,” while other occurrences of “?” in J are not shown explicitly. The
matching area is separated from the remaining positions by a staircase line, and
surface positions are shown shaded.
Assume that Process(6, 7) is called when the situation is as shown in (a). Since

(6, 7) is a surface position, a call OneProbe(6, 7) is executed. The argument (6, 7)
of OneProbe is indicated by a circle in (a), and the effect of the call OneProbe(6, 7)
is shown in (b). The position (6, 7) is “moved” left until it hits a legal fence col-
umn, the fence F in that column is extended by one position containing the value
“tentative-1,” and “tentative-1-extension” is carried out from the new fence position.
The latter causes several formerly buried positions in P to become part of the sur-
face, and the call of Process proceeds to execute OneProbe(r′, c′) for one such position
(r′, c′). This second extension of F , the result of which is shown in (c), causes F to
merge with its right neighbor. The transition from (c) to (d) gives rise to yet another
merge. We assume that the fence in column 6 resulting from the merge is dense, so
that PutZero(6) is executed. The outcome is shown in (e): four columns were rejected,
and six rows were excluded. Each excluded column contains a 0 in the position that
belonged to the surface in situation (a) and 1’s in all other positions. In situation (e),
the surface still contains elements of P , so another call of OneProbe is executed. Let
us assume that the argument of this call is the leftmost eligible surface position, (9, 8),
and that the condition c < minL is satisfied. Then the call PutZero(8) leads to the
situation in (f). The effect of three more calls of OneProbe, none of which is assumed
to call PutZero, is shown in (g). Since the surface in (g) contains no elements of P ,
no further calls of OneProbe are initiated. The call Process(6, 7) finally converts all
occurrences of “tentative-1” to 1—we call this step, shown in the transition from (g)
to (h), the consolidation—and returns the value of J [6, 7], which is 0.

5.2. Properties of the strategy. We first show in a series of lemmas that the
answers provided by the adversary are consistent with a fixed input I, by which we
mean that each query (r, c) is answered by I[r, c]. We also argue (Lemma 5.8) that
I can be chosen to be sorted, i.e., as a legal input to the string-membership and
leftmost-all-1 problems.

Lemma 5.3. For all (r, c) ∈ {1, . . . , k}×{1, . . . , n}, the value of J [r, c] can change
only according to the transitions indicated in Figure 5.2. Moreover, no occurrences of
“tentative-1” are present in J at the start or end of a call of Process, and no call of
Process returns the value “tentative-1.”

Proof. The claim concerning “tentative-1” is a consequence of the consolidation.
It is clear from a simple inspection of the code that, following the initialization, no “?”
is stored in J and that no occurrence of 1 is replaced by a different value. Moreover, an
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(a)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1

1 1 P P P P 1 1 1 1 1 1 1 1

1 1 P P P 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(b)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P P P P 1 1 1 1 1 1 1 1

1 1 P P P 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(c)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P P P 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(d)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P T T T T T 1 1 1 1 1 1 1 1

1 1 P T T T T T T T T 1 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P 1 1 1 1

1 1 P P P P 1 1 1 1

1 1 P P P 1 1

1 1 P P P 1 1

1 1 P P P

(e)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 T T T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 T T T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 T T T T T T T 1 1 1 1 1

1 1 1 1 1 1 P P P 1 1 1 1

1 1 1 1 1 1 P 1 1 1 1

1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 P P P 1 1

1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 P P

(f)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T T T T 1 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P

(g)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 T T T T T 1 1 1 1 1

1 1 1 1 1 1 1 1 T T T T T 1 1 1 1

1 1 1 1 1 1 1 1 T T T 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P

(h)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P 1 1

1 1 1 1 1 1 1 1 P P

Fig. 5.1. An example execution of Process.
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`?' `tentative-1'

0

1

Fig. 5.2. The possible transitions of an entry in J.

occurrence of 0 could be changed only in a call of PutZero. What remains, therefore, is
to show that no 0 in a column rejected in a call of PutZero is changed by a subsequent
call of PutZero. But this is obvious.

Lemma 5.4. Every call Process(r, c) returns a value in {0, 1}.
Proof. By Lemma 5.3, the claim is obvious if (r, c) is buried or J [r, c] �= “?” at

the start of the call. But otherwise, a call OneProbe(r, c) is executed, which can easily
be seen to store a value different from “?” in J [r, c]. The lemma now follows by a
second appeal to Lemma 5.3.

Lemma 5.5. All positions whose entries are set to 0 during a call of Process were
surface positions at the start of the call of Process.

Proof. The only occasions on which a 1 is stored in a position in J are when the
column containing the position is rejected and during the final consolidation. By this
observation and Lemma 5.3, immediately before a call of Process causes a column to
be rejected, the topmost position in the column that contains a value different from 1
is the same as it was at the start of the call of Process, at which time it was a surface
position.

Lemma 5.6. The matching area at all times is monotonic.

Proof. The matching area initially is empty and hence monotonic. It is changed
through only two types of operations: the removal of a number of leftmost (re-
jected) columns and the inclusion of a surface position and all positions to its right
that do not already belong to the matching area. Both operations preserve mono-
tonicity.

Lemma 5.7. No column of J is ever rejected while it contains the string 1k.

Proof. Suppose that 1 ≤ c ≤ n and that column c of J is rejected while contain-
ing 1k. Then column c must contain 1k already at the start of the call of Process that
rejects it. At that time, by Lemmas 5.3 and 5.6, all columns to the right of column c
also contain 1k, in which case column c cannot be rejected.

Lemma 5.8. The answers provided by the adversary are consistent with a sorted
input.

Proof. Let I be the input obtained from the final value of J by changing to 1 all
entries that are not 0. We prove that each query (r, c) is answered by I[r, c] and that
I is sorted.

A query (r, c) is answered by 0 only if J [r, c] = 0 at the time of the answer and
thus, by Lemma 5.3, only if I[r, c] = 0. The same argument applies to answers of 1,
except that, because of the probes of buried positions, we must additionally show that
no entry in J of a position that belongs to P at some time is ever set to 0. Assume,
to the contrary, that such an entry is set to 0 in some call of Process. By Lemma 5.3,
the value of the entry must have been “?” at the start of the call of Process; i.e., the
corresponding position still belonged to P at that time. But given that P contained
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no surface positions at that time, due to the termination condition of the while loop
in Process, this contradicts Lemma 5.5.
We now show that I is sorted and begin by observing that no column of I contains

more than one 0. Let 1 ≤ c < c′ ≤ n and 1 ≤ r′ ≤ k and suppose that I[r′, c′] = 0.
By Lemmas 5.3 and 5.7, we must have I[r, c] = 0 for some r ∈ {1, . . . , k}. In order to
complete the demonstration that I is sorted, it suffices to show that r ≤ r′.
By Lemma 5.5, (r, c) belongs to the surface at some time τ , and (r′, c′) belongs to

the surface at the same or some later time (since column c′ is rejected simultaneously
with or later than column c). If (r̄, c′) is the surface position in column c′ at time τ ,
we have r ≤ r̄ by the monotonicity of the matching area at time τ (Lemma 5.6) and
r̄ ≤ r′ because, as long as a column contains a surface position, the row index of its
surface position never decreases. (This is a consequence of Lemma 5.3.) Thus indeed
r ≤ r′.

Lemma 5.9. When A terminates, either all rows except at most one have been
excluded, or all entries in the last row outside of the rejected columns have been fixed
to 1.

Proof. Assume that A terminates while the entry of some position (k, c) in the
last row is still unfixed. We complete the tableau J to two inputs I0 and I1: I1 is
obtained simply by fixing all remaining unfixed entries of I to 1. I0 is obtained as
follows. If c > 1, first PutZero(c− 1) is executed. Then the entry in position (k, c) is
fixed to 0, and all remaining unfixed entries of I are fixed to 1.
The inputs I0 and I1 are both consistent with all answers obtained by A. It

was already argued in the preceding proof that I1 is sorted, and, using essentially
the same argument, it can be seen that I0 is sorted as well, so that I0 and I1 are
both legal inputs. Moreover, column c of I0 contains the string 1

k−10, column c of
I1 contains 1

k, and if two or more rows had not been excluded when A terminated,
no column of I1 contains 1

k−10. But in that case, whether A is an algorithm for the
string-membership problem with query string 1k−10 or for the leftmost-all-1 problem,
I0 and I1 are not associated with a common correct output. Thus A cannot produce
its answer, which is a contradiction.
Recall that the gap of a fence is its distance from the 0-barrier and that its

cumulative weight is the sum of its own weight and the weights of all fences to its
right. We define the bias of a fence F of gap g and cumulative weight w as the
quantity

Bias(F ) =
ln(n+ 1)− ln g − 2aw
− ln(1− e−a) .

We apply this definition even to an imaginary fence F0 in column n + 1 and of
cumulative weight 0 and define the maximum bias B as maxNi=0 Bias(Fi), where F =
(FN , . . . , F1).

Lemma 5.10. B = 0 initially, B ≥ 0 always, and a call of PutZero or OneProbe
increases B by at most 1.

Proof. The first two claims are obvious, the second one because Bias(F0) ≥ 0. It
is not difficult to see from the definition of the set of legal fence-column indices that
after the rejection of one or more columns, the gap of every surviving fence is at least
1 − e−a times what it was before the rejection—every potential new 0-barrier is at
most a fraction of e−a of the way from the current 0-barrier to the fence. A call of
PutZero or OneProbe that causes columns to be rejected therefore increases B by at
most 1.
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If a new fence F is created from scratch at a time when the previous leftmost
fence F ′ (F0 if there are no fences) has gap g, we have e

−ag ≥ 2, so that the gap of
F is at least e−ag − 1 ≥ e−2ag. Since the cumulative weight of F is one more than
that of F ′, we will have Bias(F ) ≤ Bias(F ′). Thus a call of OneProbe that does not
cause columns to be rejected also does not increase B.
Note that since a critical fence is excluded immediately after its creation, the

number of fences never exceeds t.

5.3. Analysis of the number of probes. The number of probes needed is
bounded from below using the potential function

Φ = Φ1 +Φ2 +Φ3 +Φ4,

where Φ1 =
∑
F∈F Φ(F ) is the total value of all fences, Φ2 = tXR is t times the

number of excluded rows, Φ3 = 4|P | is four times the number of pending positions,
and Φ4 = B is the maximum bias.

Lemma 5.11. If Φ ≤ kt, then the gap of every fence, including the imaginary
fence F0, is greater than n

1/4.
Proof. Assume that Φ ≤ kt and that the gap g of some fence F (possibly F0) is

at most n1/4, and let w be the cumulative weight of F . By the mean-value theorem,
ln(1 − x) ≥ −2x for 0 ≤ x ≤ 1/2. Using this with x = e−a = lnn/(k ln lnn) and
assuming that Bias(F ) ≥ 0, we obtain

Bias(F ) =
ln(n+ 1)− ln g − 2aw
− ln(1− e−a)

≥ (ln(n+ 1)− ln g − 2aw) · k ln lnn
2 lnn

≥
(
3

4
− 2aw
lnn

)
· 4kt.

Since Bias(F ) ≤ kt, we must have 2aw/lnn ≥ 1/2. This relation holds also if
Bias(F ) < 0. In either case, (5.3) therefore implies that w ≥ t

√
lnn. In particular,

F �= F0. Let F = (FN , . . . , F1). Then 1 ≤ N ≤ t, and, therefore, by (5.1),

w/N

vt−1
≥ w/N

a2t
≥ eln(w/t)−2t ln a ≥ eln(

√
lnn)−(ln lnn)/4 = e(ln lnn)/4.

Now, by the convexity of φ1,

Φ ≥
N∑
i=1

φi(‖Fi‖) ≥
N∑
i=1

φ1(‖Fi‖) ≥ Nφ1

(
1

N

N∑
i=1

‖Fi‖
)

≥ Nφ1(w/N) ≥ w

t

(
w/N

vt−1

)a/t
ln

(
w/N

vt−1

)

≥ lnn
4at
· e(ln lnn)/4·a/t · ln lnn

4
≥ lnn
2a
· e2a ln a · ln a ≥ ea lnn = k ln lnn > kt,

which is a contradiction.
Lemma 5.12. During the execution of A, Φ increases by at least (k − 1)t.
Proof. Φ = 0 initially, so let us consider the situation when A terminates and

show that Φ ≥ (k − 1)t. This is obvious if all except at most one row have been
excluded, so assume that this is not the case and that Φ ≤ kt. Let g be the gap of an
arbitrary fence, or of F0 if no fence exists. By Lemma 5.9, we have |P | ≥ g − 1 and
hence, by (5.4), g ≤ kt + 1 ≤ n1/4. Lemma 5.11 now shows that Φ > kt, which is a
contradiction.
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Lemma 5.13. Every call of PutZero increases Φ by at most 1.
Proof. The call increases neither Φ1 nor Φ3. By Lemma 5.10, Φ4 increases by at

most 1. If the call causes the exclusion of m > 0 rows, some fence of height m was
critical—here we use the fact that no two fences are ever in adjacent columns—so the
corresponding increase in Φ2 of tm is compensated by a decrease in Φ1 of at least tm
caused by the exclusion of a dense fence of height m or by a reduction by m in the
height of each of t fences.

Lemma 5.14. If Φ ≤ kt before a call of OneProbe, the call increases Φ by at
most 4.

Proof. Unless a call of OneProbe simply executes a call of PutZero, which increases
Φ by at most 1 according to the previous lemma, it begins by extending a fence F ′ by
one position or creating a new fence F ′ from scratch. Extending an existing fence by
one position increases its value by 1, and the value of a fence of height and weight 1 is
bounded by 3; we here use the fact that there are never more than t fences, so that we
never employ φi for i > t. Until this point, therefore, Φ has increased by at most 3.
Subsequently to the operation on the fence F ′, it may disappear through exclusion

because it is in the column next to the 0-barrier, as part of the execution of a call of
PutZero, or through merging with its right neighbor. The first case is ruled out by
Lemma 5.11 in conjunction with (5.3), which shows that e−a · n1/4 ≥ n1/4−1/(4t) ≥
n1/8 ≥ 2, where the last inequality follows from the assumption t ≥ 2. The second
case increases Φ by another at most 1, according to Lemma 5.13, for a total increase
in Φ of at most 4. What remains, therefore, is to assume that F ′ merges with its right
neighbor F and to show that this does not increase Φ.
Let the indices of F and F ′ be i and i+ 1, respectively. The new fence resulting

from the merge has index i, and the remaining fences are affected by the merge only
insofar as some of them decrease their index by 1; since this decreases Φ, we need not
account for it here. What is to be shown, hence, is that the value of the new fence
resulting from the merge is no larger than the combined value of the two fences from
which it is formed.
All three fences of interest have the same height |F |. Let us write ‖F ′‖ = u‖F‖,

where u > 0 is a suitable real number. Then the weight of the new fence is (1+u)‖F‖,
so that the relation to be shown is

(|F |+ ‖F‖+ φi(‖F‖)) + (|F |+ u‖F‖+ φi+1(u‖F‖))
− (|F |+ (1 + u)‖F‖+ φi((1 + u)‖F‖)) ≥ 0

or, equivalently,

|F |+ φi(‖F‖) + φi(uv‖F‖)
v

− φi((1 + u)‖F‖) ≥ 0.

The derivative of the left-hand side above with respect to u is

‖F‖φ′i(uv‖F‖)− ‖F‖φ′i((1 + u)‖F‖).
Recall that φ′i is a strictly increasing function. This implies that the original left-hand
side has a unique minimum that occurs for the value of u satisfying uv = 1 + u, i.e.,
u = 1/(v − 1). It therefore suffices to prove the original claim for this value of u, i.e.,
to show that

|F |+ φi(‖F‖) + 1
v
φi

(
v

v − 1‖F‖
)
− φi

(
v

v − 1‖F‖
)
≥ 0
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or, equivalently, that

1

q
φi(q‖F‖)− φi(‖F‖) ≤ |F |,

where we introduced the abbreviation q = v/(v − 1). Note that q = 1 + 1/(3a) and
hence

qa/t =

(
1 +

1

3a

)a/t
≤ e1/(3t).

Take z = ‖Fi‖/vt−i. Then
1

q
φi(q‖F‖)− φi(‖F‖) = ‖F‖

t
(qz)a/t ln(qz + e)− ‖F‖

t
za/t ln(z + e)

≤ ‖F‖
t
za/t[qa/t(ln q + ln(z + e))− ln(z + e)]

=
‖F‖
t
za/t[(qa/t − 1) ln(z + e) + qa/t ln q]

≤ ‖F‖
t
za/t

[
(e1/(3t) − 1) ln(z + e) + e1/(3t) 1

3a

]
.

By (5.2), we can bound the right-hand side above by

‖F‖
2t2
· za/t ln(z + e) + ‖F‖

2at
· za/t = φi(‖F‖)

2t
+
‖F‖
2at
· za/t.

Since critical fences are excluded as soon as they arise, F is not dense at the time of
the merge. Thus the first term of the right-hand side above is bounded by |F |/2, and
Lemma 5.2 shows that the same is true of the second term. This completes the proof
of the lemma.

Lemma 5.15. If Φ ≤ kt − 4 before a call of Process, the call increases Φ by at
most 4.

Proof. Consider a call Process(r, c). If (r, c) is buried, the call increases |P | by
at most 1 and Φ by at most 4. Otherwise, the call executes a call of OneProbe and,
subsequently, zero or more times, executes a call of OneProbe and decreases |P | by
at least 1 and hence Φ by at least 4. By a simple induction based on Lemma 5.14,
Φ ≤ kt at the start of each call of OneProbe, and Φ altogether increases by at most 4.
The final consolidation does not affect Φ.
Theorem 5.1 follows from Lemmas 5.8, 5.12, and 5.15.

6. Conclusions. We have given tight bounds for a fundamental searching prob-
lem. The problem is natural and easy to formulate, yet the solution—the bound
achieved as well as its proof—is surprisingly complicated.
As mentioned in the introduction, the problem becomes much easier if preprocess-

ing and extra space are allowed. It should be noted that our lower bound imposes no
restrictions on the model of computation other than the absence of preprocessing; a
search algorithm is allowed to use extra memory and arbitrary data structures during
its execution.

Acknowledgment. We thank Jyrki Katajainen for bringing the papers by
Hirschberg [3, 4] to our attention.
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Abstract. In this paper we use the variational method to systematically study properties of
minimum networks connecting any given set of points (called terminals) in a λ-plane, in which all
lines are in λ uniform orientations iπ/λ (0 ≤ i < λ). We prove a number of angle conditions for
Steiner minimum λ-trees, which are similar to the ones in the Euclidean case. In particular, we show
that there exists a Steiner minimum λ-tree whose minimum angles at Steiner points are �2λ/3�π/λ
and whose maximum angles are �2λ/3�π/λ. We also investigate the assignment of nonstraight edges
and unequal angles in Steiner minimum λ-trees, and we prove that there exists a Steiner minimum
λ-tree in which every full component has at most one nonstraight edge. From these properties we are
able to devise a number of finite methods for constructing Steiner minimum λ-trees. One of these
methods is based on using algorithms for finding graphical Steiner minimum trees, and the other
uses a generalization of the method of Melzak for Euclidean Steiner trees.

Key words. VLSI design, Steiner tree, fixed orientations, variational method

AMS subject classifications. 05C05, 90B99, 94C15
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1. Introduction. Given λ orientations iω (i = 1, 2, . . . , λ) in the Euclidean
plane, where λ(≥ 2) is an integer and ω = π/λ is a unit angle, we represent the
orientations by the angles with the x-axis of corresponding straight lines. For a given
λ, a line or line segment with one of these orientations is said to be in a legal direction.
Define the distance between two points p and q to be the length of the shortest path
joining p and q with all edges in legal directions. This definition of distance induces a
metric, called the λ-metric, in the Euclidean plane. The plane in which a λ-metric is
defined is called λ-oriented, or a λ-plane. Note that a λ-plane is a Minkowski plane in
which the unit disc is a regular 2λ-gon with the x-axis being a diagonal direction. A
network (or tree) in the plane, composed of line segments in legal directions, is called
a λ-network (respectively, λ-tree). Such objects are said to belong to a λ-geometry.

Let N be a set of n points in a λ-plane. The Steiner problem in a λ-plane asks
for a shortest λ-network interconnecting the given points possibly incorporating some
additional nodes to shorten the network. The network T , which must be a λ-tree,
is called the Steiner minimum λ-tree for N . The given points are referred to as
terminals, and the additional points are referred to as Steiner points.

The study of Steiner minimum λ-trees is of both theoretical and practical interest.
Note that the λ-metric is the rectilinear metric when λ = 2, the hexagonal metric when
λ = 3, and the Euclidean metric when λ =∞ [11]. Hence it represents an important
generalization of some of the key areas of research on this problem. The study of the
hexagonal metric formed part of the basis of the solution of the Steiner ratio conjecture
for the Euclidean Steiner problem [2]. Rectilinear Steiner minimum trees (Steiner
minimum λ-trees for λ = 2) have been employed in the design of printed circuit
boards and VLSI chips for a long time. Recent developments in VLSI fabrication
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technology are beginning to make it possible to design chips with wires running in
more than two directions. In particular, the λ-metric for λ = 4 is already being
introduced into VLSI design. The literature to date on λ-metrics includes the papers
[14],[3],[11],[7], and [15].

A Steiner minimum λ-tree is called full if all terminals are of degree 1. Moreover,
as in the rectilinear Steiner problem, a λ-tree is called fulsome if the number of full
components is maximized. Hence, for any N there is a Steiner minimum λ-tree that
is fulsome. By the topology of a network we mean its graph structure. The topology
of a (full) Steiner tree is called a (full) Steiner topology. Unlike Euclidean Steiner
trees, not all edges in a Steiner minimum λ-tree are necessarily straight, and not all
angles at degree 3 Steiner points must equal 120◦. Therefore, a λ-tree is not uniquely
determined by its Steiner topology but also depends on a knowledge of the assignments
of nonstraight edges and unequal angles.

In this paper we use the variational argument [10] to make a systematic study of
the Steiner λ-tree problem. Our methods provide a powerful theoretical framework
from which we can easily derive the known basic properties of Steiner minimum λ-
trees [11] and prove a number of significant new results. The paper is organized as
follows. In section 2 we prove angle conditions for Steiner minimum λ-trees, which
are similar to those that apply in the Euclidean case. In particular, we show that
there exists a Steiner minimum λ-tree whose minimum angles at Steiner points are
�2λ/3�π/λ and whose maximum angles are �2λ/3�π/λ. It follows that degree 4 Steiner
points exist only for λ = 2, 3, 4, or 6. In section 3 we investigate the assignment of
nonstraight edges and unequal angles in Steiner minimum λ-trees. We prove that
there exists a Steiner minimum λ-tree in which every full component has at most one
nonstraight edge. Consequently, there exists a Steiner minimum λ-tree such that all
its Steiner points are grid points of GGn−2(N), a grid point set defined recursively
from the terminal set N . This implies that algorithms for constructing graphical
Steiner minimum trees can be applied to Steiner minimum λ-trees. Moreover, we also
prove some restrictions on angle assignments in Steiner minimum λ-trees. Finally, in
section 4 the Melzak method for Euclidean Steiner trees [9] is generalized to Steiner
λ-trees. It follows that a Steiner λ-tree with a specified assignment of nonstraight
edges and unequal angles can be constructed in linear time, independently of λ.

2. Angle conditions. The basic elements in a geometry are line segments be-
tween points and angles between lines. Let p, q be distinct points in the plane. Let
|pq| and |pq|λ denote the length of pq in the Euclidean geometry and λ-geometry,
respectively. Recall that ω = π/λ, the smallest positive angle between line segments
in λ-geometry. If the Euclidean line segment pq lies in a legal direction, then pq
is a straight edge in λ-geometry and |pq|λ = |pq|. Otherwise, there is an infinite
number of shortest paths joining p, q in λ-geometry. The union of all these paths
forms a parallelogram prqr′ whose interior angles at r and r′ are π − ω (see Fig-
ure 2.1(b)) [14],[11]. In this case the edge pq in λ-geometry is a nonstraight edge,
which can be represented by either of the two critical paths prq and pr′q. Therefore,
|pq|λ = |pr| + |rq| = |pr′| + |r′q|. As in the rectilinear metric, the points r, r′ are
referred to as corner points. The following lemma follows immediately from the above
discussion.

Lemma 2.1. Any angle in λ-geometry is a multiple of ω. Furthermore, the angle
at any corner point is (λ− 1)ω.

Given three distinct points p, q, p′, let ∠qpp′ and ∠λqpp′ denote the angle at p
in Euclidean geometry and λ-geometry, respectively. If both pq and pp′ are straight
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Fig. 2.1. A one-point variation for a straight edge (a) and a nonstraight edge (b).

edges, then ∠λqpp′ = ∠qpp′; otherwise, ∠λqpp′ depends on the positions of the corner
points. To most easily accommodate our variational methods, it is convenient to
define ∠λqpp′ to be the smallest angle between the shortest paths of pq and pp′ (see
Figure 2.1(b)).

Let p, q be distinct points in the plane. Suppose q is fixed and p is perturbed to
p′ in a given legal direction. Let α = ∠λqpp′. By the above definition of angles, if pq
is a straight edge, then α = ∠qpp′ (Figure 2.1(a)), whereas if pq is a nonstraight edge,
then α = ∠rpp′, where r is the corner point lying on the same side of the straight
line pq as p′ (Figure 2.1(b)). Assume the perturbation is sufficiently small that there
exists a point d on pq (or pr) such that ∠p′dp = ω. Then dp′ is in a legal direction
and |qp′|λ = |qd|λ + |dp′|. Let l = |pq|λ, v = |pp′|. We have

l̇ =
d

dv
|pq|λ = lim

v→0

|qp′ |λ − |qp|λ
v

= lim
v→0

|dp′| − |dp|
v

= lim
v→0

v sinα− v sin(α+ ω)

v sinω

= −cos(α+ ω/2)

cos(ω/2)
.(2.1)

Remark 2.1. When λ goes to infinity, ω goes to 0 and l̇ approaches − cosα, which
corresponds to the derivative of l in the Euclidean plane [10].

Remark 2.2. Although we have assumed above that p is perturbed in a legal
direction, it is easy to see that formula (2.1) still holds if pp′ is not in a legal direction.
Note, however, that in that case α is no longer a multiple of ω.

Lemma 2.2. Define

f(k) = −cos(k + 1/2)ω

cos(ω/2)
.

Then, for any fixed λ, f is an increasing function for all positive k ≤ λ− 1/2, and
f(m− 1) < −1/2, f(2m− 1) < 1/2 if λ = 3m,(2.2)

f(m− 1) + f(m) < −1, f(2m) < 1/2 if λ = 3m+ 1,(2.3)
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f(m) < −1/2, f(2m) + f(2m+ 1) < 1 if λ = 3m+ 2.(2.4)

Proof. The first statement follows immediately from a consideration of the deriva-
tive of f .

The three sets of inequalities have similar proofs to each other. We prove inequal-
ities (2.3) as an example. When λ = 3m+ 1,

f(m− 1) + f(m) = −cos((m− 1/2)ω) + cos ((m+ 1/2)ω)

cos (ω/2)

= −2 cos(mω) = −2 cos
(

mπ

3m+ 1

)
< −1,

and

f(2m) = −cos((2m+ 1/2)ω)

cos (ω/2)
< 1/2

because df(2m)
dm > 0 and limm→∞ f(2m) = 1/2.

It is well known that any angle in a Euclidean Steiner minimum tree is at least
2π/3, and hence there are exactly three angles at each Steiner point, each of which
is 2π/3 [6]. We will show that in the λ-plane, there are similar angle conditions. Let
λ = 3m+ i, i = 0, 1, 2. Note that 2π/3 ≥ �2λ/3�ω.

For a given value of λ, define φmin to be the minimum angle that can occur in
any Steiner minimum λ-tree.

Lemma 2.3. For every (finite) λ, φmin < 2π/3.

Proof. Since the sum of the angles at a Steiner point of degree 3 is 2π, it im-
mediately follows that φmin ≤ 2π/3. It remains to show that φmin 
= 2π/3 when
λ = 3m. Let T be the unique Steiner minimum λ-tree (with λ = 3m) for the vertices
of an equilateral triangle with horizontal axis. This tree contains three straight edges
meeting at a single Steiner point. By perturbing one of the terminals at right angles
to the incident edge, the resulting Steiner minimum λ-tree will, by continuity, contain
a nonstraight edge incident to the Steiner point. One of the choices of a critical path
for this nonstraight edge must result in an angle at the Steiner point being strictly
less than 2π/3.

Theorem 2.4. 1. Let λ = 3m+ i. Then

φmin =




(�2λ/3� − 1)ω = (2m− 1)ω if i = 0,
�2λ/3�ω = (2m)ω if i = 1,
�2λ/3�ω = (2m+ 1)ω if i = 2.

2. If λ = 3m, then for any terminal set N there exists a Steiner minimum λ-tree
T ′ such that the minimum angle in T ′ is at least �2λ/3�ω = 2π/3.

Proof. Let T be a Steiner minimum λ-tree, and let ∠qpr be an angle between
two straight line segments in a Steiner minimum λ-tree T . We begin by proving
statement 1 for the case where i = 0.

So assume λ = 3m. By Lemma 2.1 the largest legal angle less than (�2λ/3�−1)ω
is 2(m− 1)ω. Suppose, contrary to the theorem, that ∠qpr ≤ 2(m− 1)ω. We regard
p as being a (possibly degenerate) Steiner point, so that all variations on p result in
a point of degree 3 connected to p, q, and r. Then we can choose a variation of p to
p′ in a legal direction between the two legs of the angle such that ∠qpp′ ≤ (m− 1)ω
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Fig. 2.2. Variations for φmin and φmax. The labels at angles represent multiples of ω.

and ∠p′pr ≤ (m − 1)ω (Figure 2.2(a)). It follows from Lemma 2.2 that, under this
perturbation,

Ṫ =
d|pq|λ
dv

+
d|pr|λ
dv

+
d|pp′|λ
dv

≤ 2f(m− 1) + 1 < 0,

contradicting the minimality of T . This shows φmin ≥ (�2λ/3� − 1)ω, and equality
immediately follows from Lemma 2.3. The other two cases, i = 1 and i = 2, follow
by a similar argument.

To prove statement 2, suppose ∠qpr = (2m− 1)ω. Consider the variation of p to
p′ such that ∠qpp′ = (m − 1)ω and ∠p′pr = mω (Figure 2.2(a)). Note that, under
this perturbation,

Ṫ = f(m− 1) + f(m) + 1 = −2 cos(mω) + 1 = 0,

and hence the length of T remains unchanged. Now choose critical paths for the
nonstraight edges qp′ and rp′ such that the corner point of qp′ lies on qp but the
corner point of rp′ does not lie on rp (as in Figure 2.2(b)). Then it follows that the
angles at p′ all equal 2mω = 2π/3. In this way we can transform T into an equally
long Steiner λ-tree T ′ in which any angle is at least equal to 2π/3.

Corollary 2.5. Any Steiner point in a Steiner minimum λ-tree has degree 3
or 4. Degree 4 Steiner points exist only if λ = 2, 4, or 6. If λ = 2, 4, or 6, then the
angles at degree 4 Steiner points are all equal to π/2.

For any given value of λ, we define φmax to be the maximum angle that can occur
at a Steiner point in any Steiner minimum λ-tree.

Theorem 2.6. 1. Let λ = 3m+ i. Then

φmax =




(�2λ/3�+ 1)ω = (2m+ 1)ω if i = 0,
�2λ/3�ω = (2m+ 1)ω if i = 1,
�2λ/3�ω = (2m+ 2)ω if i = 2.

2. If λ = 3m, then for any terminal set N there exists a Steiner minimum λ-tree
T ′ such that the maximum angle in T ′ at a Steiner point is �2λ/3�ω = 2π/3.

Proof. Clearly, this theorem is symmetric to Theorem 2.4. Hence, it holds
by symmetry and by using the second inequalities in formulae (2.2)–(2.4) (Figure
2.2(c)).
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Fig. 3.1. Two variations for a degree 4 Steiner point s1 and its neighboring Steiner point s2.

If the angles at a degree 3 Steiner point are α, β, γ, and α ≤ β ≤ γ, then we define
the angle set at this point to be the triple (α, β, γ). Combining Theorems 2.4 and 2.6,
we have the following corollary.

Corollary 2.7. The only possible angle sets at a degree 3 Steiner point in a
Steiner minimum λ-tree are

1. (2m− 1, 2m, 2m+ 1)ω and (2m, 2m, 2m)ω if λ = 3m,
2. (2m, 2m+ 1, 2m+ 1)ω if λ = 3m+ 1,
3. (2m+ 1, 2m+ 1, 2m+ 2)ω if λ = 3m+ 2.

There are also extra restrictions on which angles can appear next to a given
nonstraight edge.

Corollary 2.8. Let ps be a nonstraight edge in a Steiner minimum λ-tree, such
that s is a Steiner point. Let c be the corner point of ps, and let q and r be the other
two vertices or corner points immediately adjacent to s. If c lies on the same side of
ps as q (that is, ∠λpsq = ∠csq), then ∠csq 
= φmax and ∠csr 
= φmin.

3. Possible structures of Steiner minimum λ-trees. First, we prove a the-
orem involving degree 4 Steiner points.

Theorem 3.1. For any N there exists a Steiner minimum λ-tree on N such that
the vertices adjacent to degree 4 Steiner points are all terminals.

Proof. By Corollary 2.5, λ = 2, 3, 4, or 6. This theorem is well known for λ = 2
(see, for example, [6]) and follows from statement 2 of Theorem 2.4 when λ = 3 or 6.
So let λ = 4, and let T be a Steiner minimum λ-tree. By Corollary 2.7, the angle set
at any degree 3 Steiner point of T is (π/2, 3π/4, 3π/4).

Assume that s1 is a degree 4 Steiner point in T . Suppose one of the adjacent
vertices of s1, say s2, is not a terminal. Clearly, s1s2 must be a straight edge, since
otherwise the other choice of corner point for that edge would give a contradiction
to Corollary 2.4. There are two cases to consider. If s2 is Steiner point with a π/2
angle sharing s1s2 (Figure 3.1(a)), then we can slide s1s2 between two parallel line
segments without changing the length of T . This results in a degree 3 Steiner point
whose angle set contradicts Corollary 2.7. If a π/2 angle does not share s1s2, then
s2 is a degree 3 Steiner point as in Figure 3.1(b). In this case we can transform T
into an equally long Steiner λ-tree T ′ (shown in dotted lines in the figure) by moving
s2 along one of the legs of this angle and moving s1 an equal distance in the same
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direction. In this way the degree 4 Steiner point s1 is eliminated since it has been
split into two degree 3 Steiner points s1, s

′
1.

This theorem means we can often restrict our attention to full Steiner minimum
λ-trees with degree 3 Steiner points. Hence it can help reduce the number of tree
topologies that need to be considered for a given set of terminals. Unlike the Euclidean
case, however, there may be many Steiner minimum λ-trees with the same topology
but with different assignments of nonstraight edges and unequal angles. Using the
variational argument, we can significantly reduce the number of possible assignments.

We first consider how to minimize the number of nonstraight edges when λ = 3.
(See [3] for details of the case when λ = 3.) Note that the process of removing degree
4 Steiner points (as illustrated in Figure 3.1(b)) may create extra bent edges. Hence
it is still necessary to consider Steiner trees with degree 4 Steiner points when λ = 4
or 6.

Define a shift v of a straight edge pq to be a move of p to p′ and a simultaneous
move of q to q′ such that p′q′‖pq (Figure 3.2). Note that the rate of change in the
length of pq under a shift, d|pq|/dv, is independent of |pq| but depends only on the
angles ∠p′pq and ∠pqq′. Clearly, the concept of a shift can be generalized to a path
P composed of straight line segments and is well defined once one has specified the
directions in which the endpoints of line segments are permitted to move. A variation
is said to be reversible if Ṗv = −Ṗ−v. It is easy to see that a shift is reversible if each
endpoint of a line segment of P is restricted to moving along the same line through
that point for both shifts.

Lemma 3.2. Let λ = 4 or 6. Let T be a Steiner minimum λ-tree containing at
least two nonstraight edges. If the path, P , between the two nonstraight edges contains
a Steiner point s of degree 4, then the angle between the two edges of P incident with
s is π.

Proof. Clearly we can choose the path P in T such that ps1 and skq are non-
straight edges in T and such that all other edges on the path P = ps1s2 . . . skq are
straight.

Suppose, for the moment, that, for any Steiner point on P with degree 4 in T ,
the two incident edges in P meet at an angle of π. For each si on P , let ri be a vertex
or corner point adjacent to si not lying on P . Let the corner points on ps1 and skq
be c and d, respectively. Let v be the variation of shifting cs1s2 . . . skd to one side
of the path such that c moves towards p, each point si moves along the line through
siri, and d moves along the line through dq. This is illustrated in Figure 3.3. In this
case the variation is clearly reversible, that is, Ṫv = −Ṫ−v.

Now suppose, contrary to the lemma, that P contains a Steiner point s with
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Fig. 3.4. Two variations for a degree 4 Steiner point s and two of its incident edges.

degree 4 in T such that the two incident edges in P meet at an angle of π/2. By
Figure 3.4 there exist two perturbations on s and its two incident edges in P such
that these perturbations have the following properties.

(1) They each split s into two Steiner points (s and s′ in Figure 3.4(a), and s′

and s′′ in Figure 3.4(b)).
(2) One perturbation shifts the two incident edges to one side of P , while the

other shifts them to the opposite side of P .

(3) In each case they reduce the length of T in the vicinity of s.

By property (2) we can incorporate these perturbations into the shift variations v
and −v described above. It then follows, by property (3), that Ṫv < 0 or Ṫ−v < 0,
contradicting the minimality of T .

Theorem 3.3. For any N there exists a fulsome Steiner minimum λ-tree on N
such that in each component at most one edge is nonstraight.

Proof. Assume that λ > 3, and suppose that T is a full component of a fulsome
Steiner minimum λ-tree on N containing more than one nonstraight edge. We begin
with a similar construction to the previous lemma. There exists a pair of nonstraight
edges ps1 and skq in T such that all other edges on the path P = ps1s2 . . . skq are
straight. For each si on P let ri be a vertex or corner point adjacent to si not lying
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on P . Let the corner points on ps1 and skq be c and d, respectively. Let v be the
variation of shifting cs1s2 . . . skd to one side of the path such that c moves towards p,
each point si moves along the line through siri, and d moves along the line through
dq. By Lemma 3.2, v is well defined and is reversible, that is, Ṫv = −Ṫ−v.

It follows that Ṫv = 0 since T is minimal. Therefore, such a shift does not change
the length of T . We can continue to perform this shift without changing the length
of T until one of the following occurs.

(1) Two points si and si+1 coincide, or a point si coincides with a Steiner point
ri.

(2) A point si coincides with a terminal ri.
(3) A point si coincides with a corner point ri, or c or d coincides with a terminal

or Steiner point.
If (1) occurs and λ 
= 4 or 6, then we have a contradiction to the fact that T

is minimum. If (1) occurs and λ = 4 or 6, then by Lemma 3.2 the two edges in
P incident to this point must meet at an angle of π, and hence we can continue to
perform the shift. If (2) occurs, we have a contradiction to the fact that T is fulsome.
Hence, one of the possibilities in (3) must eventually occur, reducing the number of
nonstraight edges. In this way T can be transformed into a λ-tree of equal length
containing at most one nonstraight edge.

Remark 3.1. We conjecture that Theorems 3.1 and 3.3 can always hold simulta-
neously; that is, if λ = 4 or 6, there exists for any terminal set a Steiner minimum
tree such that each full component contains at most one nonstraight edge, and each
degree 4 Steiner point is adjacent to four terminals. In light of Theorem 3.1 and
this conjecture, it will be convenient for the remainder of this paper to use the term
“Steiner topology” to refer to a tree topology in which all nonterminals have degree
no more than 3.

Suppose N is a set of n terminals. Let GG0(N) = N , and recursively define
GGi(N) to be the set of grid points that are intersections of the legal lines through
all points in GGi−1(N). The so-called multilevel grid theorem in [8] is now a simple
corollary of the above theorem.

Corollary 3.4. For each set N of n terminals, there exists a Steiner minimum
λ-tree T for N such that all Steiner points in T are grid points of GGn−2(N).

Proof. If all edges of T are straight edges, then each Steiner point adjacent to
two terminals lies on GG1(N), and each Steiner point adjacent to two vertices of T
on GGi−1(N) lies on GGi(N). Since we can assume, in general, that T contains at
most one nonstraight edge, it follows that all Steiner points in the two connected
components of T minus that nonstraight edge lie on GGn−2(N).

The shift technique also helps us to reduce the number of feasible angle assign-
ments. Consider again the shift of pq shown in Figure 3.2. Let α = ∠p′pq, β = ∠pqq′,
and l = |pq|. Then we have

d

dv
|pq| = l̇(v) = − cosα− cosβ.

Now assume all edges are in λ-geometry and hence α = k1ω, β = k2ω. Define a
function g(k1, k2) as follows:

g(k1, k2) = − cos(k1ω)− cos(k2ω).

This is similar to f(k) which expresses the variation of moving a point, except that
g expresses the variation of shifting a straight edge. Just as for the inequalities in
Lemma 2.2, it is easy to show that the following inequalities hold.
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1. If λ = 3m, then

2f(m− 1) + g(m,m) < −2,(3.1)

2f(2m) + g(2m− 1, 2m− 1) < 2,(3.2)

2f(2m− 1) + g(2m, 2m) < 2,(3.3)

f(2m) + f(2m− 1) + g(2m, 2m− 1) < 2.(3.4)

2. If λ = 3m+ 1, then

2f(m) + g(m,m) < −2.(3.5)

3. If λ = 3m+ 2, then

2f(2m+ 1) + g(2m+ 1, 2m+ 1) < 2.(3.6)

Suppose that s1s2 is a straight edge joining two Steiner points. The angles at
s1, s2, sharing s1s2 and lying on the same side of s1s2, are referred to as neighboring
angles. Some restrictions occur on neighboring angles when they are either both φmin

or both φmax.
Theorem 3.5. In a Steiner minimum λ-tree T two neighboring angles cannot

both be
1. φmin or both be φmax if λ = 3m,
2. φmin if λ = 3m+ 1,
3. φmax if λ = 3m+ 2.
Proof. Consider the case of λ = 3m. First, suppose, to the contrary, that there

are two neighboring angles ∠ps1s2 = ∠s1s2q = φmin = 2m − 1 in T . Then perform
a variation by shifting s1s2 so that s1 and s2 each move at an angle of mω to s1s2,
as shown in Figure 3.5(a). We have Ṫ ≤ 2f(m− 1) + g(m,m) + 2 < 0 by inequality
(3.1). Next, if ∠ps1s2 = ∠s1s2q = φmax = 2m + 1, then there are 3 cases as shown
in Figures 3.5(b)–3.5(d) corresponding to the different assignments of angles around
s1 and s2. In each case, we perform the shift by shrinking the third edges at s1 and
s2, effectively stretching s1s2. Then Ṫ < 0 by inequalities (3.2)–(3.4). The other
two statements of the theorem can be proved similarly by inequalities (3.5) and (3.6)
using the shifts illustrated in Figures 3.5(e) and 3.5(f).

Remark 3.2. The above proof demonstrates that in order to show Ṫ < 0 for the
given cases it suffices to shrink s1s2 for two neighboring angles φmin and to stretch s1s2

for two neighboring angles φmax. Note, however, that there are other possible shifts we
could have chosen in the proof. For example, in the case shown in Figure 3.5(b), the
nonminimality of T can be derived from the fact that it is covered by Figure 3.5(a).

Remark 3.3. Theorem 3.5 does not exhaust all possibilities for assignments of
angles that cannot occur at two neighboring Steiner points in a Steiner minimum
λ-tree. There is one remaining infeasible configuration, which occurs for λ = 3m.
In this case the neighboring angles at s1, s2 are, respectively, (2m − 1)ω, 2mω on
one side of s1s2 and 2mω, (2m + 1)ω on the other, as shown in Figure 3.6. Now
perform a shift variation as shown in the figure, where s1 and s2 both move in the
same direction and the critical paths are chosen so that the new corner points p′ and
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Fig. 3.6. Another infeasible angle configuration for λ = 3m.

q′ both lie on edges of the original λ-tree. Then |p′s1|+ |s2q
′| > |p′s′1|+ |s′2q′| because

p′s′1 ‖ s′2q′. Hence, the original tree is not minimal.
The λ-metric for λ = 3 (hexagonal metric) is a special metric in λ-metrics because

ω = φmin = π − φmax. When λ = 3, for any point set N in the λ-plane there is a
Steiner minimum λ-tree such that all Steiner points are vertices of GG�(n−2)/2	 [15],
which is a significant improvement on Corollary 3.4. It is not difficult, however, to
see that this result cannot be generalized to larger values of λ. Moreover, it has
been proved in [12] that for any set N and any given Steiner topology there exists
a Steiner λ-tree (with λ = 3) such that the unique nonstraight edge in each full
component is incident to a terminal, and that all angles at Steiner points are 2π/3.
Therefore, it directly follows that Melzak’s construction for Euclidean Steiner trees
[9] can also be used to construct Steiner λ-trees for λ = 3. An algebraic algorithm,
which is equivalent to Melzak’s construction but much more suitable for computer
implementation, was developed [13],[5]. In the next section we show that in a certain
sense Melzak’s construction can apply to λ-trees for any λ.
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4. Steiner trees with fixed angles. To generalize Melzak’s construction for
Euclidean Steiner trees, which is a geometric construction using only ruler and com-
pass, to Steiner λ-trees, we first give a brief description of the method in the Euclidean
setting. Suppose the topology of a Steiner tree T spanning a terminal set N in the
Euclidean plane is given. Since each full component is constructed independently, we
can assume T is full. Melzak’s construction is divided into two stages. The basic
operation at the first stage (orientation stage) is as follows. Suppose a Steiner point
si in T is adjacent to two terminals e1, e2, and suppose the third adjacent vertex is
sj . Let ei be the third vertex of the equilateral triangle e1eie2 that lies on the side
of e1e2 opposite to si. (The correct side can be determined by the other terminals,
as shown in [4].) Without loss of generality, assume e1, ei, e2 are in counterclockwise

order. An easy trigonometric argument shows that si must lie on the minor arc
︷ ︷
e1e2

of the circle circumscribing e1, e2, and ei, and that the point ei lies on the major arc︷ ︷
e1e2 (Figure 4.1) and satisfies the properties

(P1) ei lies on the extension of sjsi, and
(P2) |e1si|+ |e2si| = |eisi|.
From these properties it follows that we can replace e1, e2 with ei. (Hence, ei is

referred to as a merging point.) Repeat this operation until only two points are left.
Then the line segment joining the two points, called a Simpson line of T , gives

1. the orientation of an edge of T by (P1), and
2. the length of T , which equals the length of the Simpson line, by (P2).
Once the Simpson line is determined, all Steiner points can be determined by

backtracking at the second stage (reconstruction stage).
Related to this method, a notation describing a full Steiner topology was proposed

[1]. Since e1, e2 are replaced by a merging point in this construction, the association
of e1, e2 can be denoted as (e1e2). In this way, the topology of T can be represented
by a sequence of terminals that are bracketed in pairs according to the order of
the association of terminals. For example, the topology in Figure 4.2(b) can be
represented as (a(bc))(de).
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Property (P1) is very much the core of Melzak’s construction, whereas property
(P2), though useful, is not essential. Without using (P2), we can still find the length
of T since it is the sum of all edge lengths. These edge lengths can be computed
after the Steiner points are determined at the reconstruction stage. Thus, Melzak’s
construction can be generalized to a wide range of Steiner trees in which all angles at
Steiner points are fixed.

A full Steiner topology accompanied by information about the size of all angles
at Steiner points will be referred to as a Steiner pattern. A suitable notation for
Steiner patterns can be developed by generalizing the notation for a Steiner topology.
As before, suppose si is a Steiner point adjacent to two terminals e1, e2, and the
third adjacent vertex is sj . Suppose the angles at si are ∠e1sisj = αi, ∠e2sie1 =
βi, and ∠sjsie2 = γi (Figure 4.2(a)). Then, the association of e1, e2 is denoted as
(αi(e1βie2)γi). In this way the pattern in Figure 4.2(b) can be represented as

(α1(aβ1(α3(bβ3c)γ3))γ1)(α2(dβ2e)γ2).

It is easy to see that this pattern can be simplified by removing all brackets because
the insertion of angles makes it possible to find the order of association of terminals.
For example, the above pattern can be easily retrieved from the simplified pattern

α1aβ1α3bβ3cγ3γ1α2dβ2eγ2.

In fact, this pattern is the sequence of terminals and angles occurring in turn in a
counterclockwise tour of the topology.

Suppose T is a full Steiner tree with a given pattern. Then the basic operation
in constructing the tree can be modified as follows. Let ei be the third vertex of the
triangle e1eie2 in which ∠e2e1ei = π − γi,∠eie2e1 = π − αi. Clearly, e1, ei, e2, si
lie on a circle (as in Figure 4.1). Since the angles at si are fixed, property (P1)
holds: that is, the extension of sjsi must go through ei no matter where si lies on︷ ︷
e1e2. Hence we still can find the orientation of an edge of T , and we can construct
T by backtracking. However, (P2) does not hold unless all angles at each si equal
2π/3. Otherwise, the length of the tree can be computed after all Steiner points are
determined, as mentioned above.

We can now generalize the Steiner pattern and Melzak’s construction to Steiner
λ-trees. Suppose T is a full Steiner λ-tree in which s1s2 is the unique nonstraight
edge by Theorem 3.3. Then the angles at all Steiner points other than s1, s2 are fixed.
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If one of the critical paths of s1s2, say, s1rs2, is chosen as the nonstraight edge, then
the angles at s1, s2 are also fixed. Thus T can be regarded as the union of two full
subtrees T1, T2 joined at the corner point r. Let w1, w2 be the patterns of the subtrees
T1, T2, respectively. Then we define w1 ̂w2 to be the pattern of the λ-tree T . Note
that all edges in T1, T2 are straight and that all angles correspond to the possibilities
given in Corollary 2.7. In the simplified pattern of λ-trees, let φmin be denoted by 0,
let φmax be denoted by 2, and let the angle 2m for λ = 3m, which is between φmin and
φmax, be denoted by 1. Then, for example, the pattern of the λ-tree in Figure 4.3(a),
whose topology is the same as the tree in Figure 4.2(b), is

0a22b0c22̂ 2d2e0.
Remark 4.1. If the other critical path s1r

′s2 is chosen as the nonstraight edge,
then the pattern becomes 2a22b0c20 ̂ 0d2e2 (Figure 4.3(a)). Although the merging
points are different for the two patterns, as shown in the figure, the Steiner points
s1, s2 are the same. Therefore, the two patterns can be regarded as equivalent.

Because both T1, T2 are full Steiner trees with fixed angles, they can be con-
structed by Melzak’s method as stated above. Hence, as shown in Figure 4.3, we
can find merging points e1, e2 after merging all terminals in T1, T2, respectively. Now
there may exist two choices of the nonstraight edge e1e2 as shown in Figure 4.3(b),
and two λ-trees T, T can be constructed. Because (P2) does not hold, |T |λ may not
equal |T |λ though two paths of e1e2 (e1re2 and e1re2) are equally long. Only by
comparing the lengths of T and T are we able to determine which one is shorter.

5. Concluding remarks. Sections 3 and 4 essentially give two finite exact al-
gorithms for solving the Steiner problem in a λ-plane. The strategy suggested by
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Corollary 3.3 is to treat the problem as a graphical Steiner tree problem on the
grid GGn−2(N), and then use standard techniques for Steiner trees on graphs (see,
for example, [6]). Unfortunately, the number of grid points in GGn−2(N) has order

O(n2n−2

), making such an approach impractical for large n. The alternative algorithm
suggested by section 4 is to run through all possible patterns for a Steiner minimum
λ-tree. The modified version of Melzak’s theorem then allows the minimum λ-tree
for each pattern to be constructed in linear time (independently of λ). The practical
disadvantage of this approach lies in the fact that the number of Steiner topologies
increases at an exponential rate as n increases. Furthermore, for each Steiner topol-
ogy the number of different patterns that needs to be considered is potentially also
an exponential function of n. Noting that a Steiner minimum λ-tree can be found
in linear time for a given Steiner topology if λ = 2, 3, or ∞, we have the following
tantalizing but apparently difficult open question.

Open question. Given λ > 3 and a terminal setN , does there exist a polynomial-
time algorithm for finding a Steiner minimum λ-tree for any given Steiner topology
on N?

We will consider a number of issues connected with this question in a forthcoming
paper, in which we will also develop a more practical exact algorithm for solving the
Steiner minimum problem in the λ-plane.
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Abstract. A central issue in the design of modern communication networks is that of providing
performance guarantees. This issue is particularly important if the networks support real-time traffic
such as voice and video. The most critical performance parameter to bound is the delay experienced
by a packet as it travels from its source to its destination.

We study dynamic routing in a connection-oriented packet-switching network. We consider a
network with arbitrary topology on which a set of sessions is defined. For each session i, packets are
injected at a rate ri to follow a predetermined path of length di. Due to limited bandwidth, only one
packet at a time may advance on an edge (link). Session paths may overlap subject to the constraint
that the total rate of sessions using any particular edge is at most 1 − ε for any constant ε ∈ (0, 1).

We address the problem of scheduling the sessions at each switch, so as to minimize worst-case
packet delay and queue buildup at the switches. We show the existence of a periodic schedule that
achieves a delay bound of O(1/ri + di) with only constant-size queues at the switches. This bound
is asymptotically optimal for periodic schedules.

A consequence of this result is an asymptotically optimal schedule for the static routing problem,
wherein all packets are present at the outset. We obtain a delay bound of O(ci + di) for packets on
path Pi, where di is the number of edges in Pi and ci is the maximum congestion along edges in Pi.
This improves upon the previous known bound of O(c+ d), where d = maxidi and c = maxici.

We also present a simple distributed algorithm that, with high probability, delivers every session-
i packet to its destination within O(1/ri + di log(m/rmin)) steps of its injection, where rmin is the
minimum session rate and m is the number of edges in the network. Our results can be generalized
to (leaky-bucket constrained) bursty traffic, where session i tolerates a burst size of bi. In this case,
our delay bounds become O(bi/ri + di) and O(bi/ri + di log(m/rmin)), respectively.
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1. Introduction.

1.1. Motivation. Motivated by the need for quality-of-service guarantees, net-
work designers today offer connection-oriented service in many networks, e.g., ATM
(asynchronous transfer mode) networks. In this medium, a user requests a particular
share of the bandwidth and injects a stream of packets along one particular session
at the agreed-upon rate. An important consequence of the user’s predictability is
that the network can, in return, guarantee the user an end-to-end delay bound, i.e.,
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an upper bound on the time that any packet takes to move from its source to its
destination. In order to provide this delay guarantee, the network must determine
how to schedule the packets that contend for the same edge simultaneously. Apart
from delay bounds, it is also important to guarantee small queues at each switch due
to limited buffer size. In this paper we show how to design schedules that guarantee
asymptotically optimal per-session delay bounds as well as small queues.

1.2. Model and problem. Consider a network N of arbitrary topology and a
set of sessions defined on this network. A session i is associated with a source node,
a destination node, and a simple path from the source to the destination. (A path
is simple if it uses each edge at most once.) Packets are injected to the network N
in sessions. A packet injected in session i enters the system at the source node of
i, traverses the path associated with i, and then is absorbed at its destination. The
length di is the number of edges on the path from the source to the destination of
session i.

Each session i has an associated injection rate ri. This rate constrains the injection
of new packets from the session so that, during any interval of t consecutive steps, at
most tri + 1 packets can be injected in session i for any t.

We assume that all packets have the same size and all edges have the same
bandwidth. We also assume a synchronized store-and-forward routing, where at each
step at most one packet can traverse each edge. When two packets simultaneously
contend for the same edge, one packet has to wait in a queue. During the routing,
packets wait in two different kinds of queues. After a packet has been injected but
before it leaves its source, the packet is stored in an initial queue. Once the packet
has left its source, during any time it is waiting to traverse an edge, the packet is
stored in an edge queue. The end-to-end delay (delay for short) for a packet is the
total time from the packet injection until it reaches its destination. This includes the
total time the packet spends waiting in both types of queues, plus the time it spends
traversing edges.

Our goal is to minimize both the end-to-end delay for each packet and the length
of all edge queues. In order to achieve delay guarantees and bounded queue sizes, it
is necessary to require that, for all edges e, the sum of the rates of the sessions that
use edge e is at most 1. Throughout, we shall assume that the sum of the rates of the
sessions using any edge e is at most 1 − ε for a constant ε ∈ (0, 1). This constant ε
will appear throughout our subsequent bounds.

Our paper focuses on the problem of timing the movements of the packets along
their paths. A schedule specifies which packets move and which packets wait in queues
at each time step. Most of the schedules obtained in this paper are template-based.
The schedule defines a fixed template for each edge in advance. A template of size
M is a wheel with M slots, each of which contains at most one token. Each token is
affiliated with some session. The wheel spins at the speed of one slot per time step.
A session-i packet can traverse the edge if and only if a session-i token appears. For
each session-i token, the session-i packet that uses it will be the one that has been
waiting to cross the edge for the longest amount of time, i.e., the session-i packets
use the session-i tokens in a first-come-first-served manner. The template size and
associated tokens do not change over time.

We show that per-session delay bounds that are asymptotically optimal for template-
based schedules can be achieved. Meanwhile, constant-size edge queues can be achieved
as well.
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1.3. Lower bounds. We observe that di is always a lower bound on the delay
for session i, since every session-i packet has to cross di edges. It is also easy to see
that Ω(1/ri) is an existential lower bound. For instance, consider n sessions, all of
which have the same rate r = (1 − ε)/n and the same initial edge e. If a packet is
injected in each session simultaneously, one of the packets requires n = Ω(1/r) steps
to cross e.

Furthermore, for any given set of sessions, Ω(1/ri) is a lower bound for some
session i in template-based schedules. Consider the template for an edge e where∑

e ri = 1− ε. By the pigeon-hole principle, the tokens for some session i can occupy
at most an ri/(1 − ε) fraction of the slots on the template. Hence, there exist two
session-i tokens that are separated by at least (1−ε)/ri slots. As a result, an adversary
can make sure a session-i packet arrives just after the first token has passed, thereby
forcing the packet to wait Ω(1/ri) steps.

If the schedule is not restricted to being template-based, the scheduler is more
powerful. The scheduler does not have to decide on a fixed schedule in advance,
but rather can make a new decision at each step, based on seeing the adversary’s
injections. In this case it is unknown if for any given set of sessions Ω(1/ri) is a lower
bound.

1.4. Previous work. The problem of dynamic packet routing in the above set-
ting is well studied. Until recently, the best delay bound known was O(di/ri) for
packets of session i. It is tempting to believe that this is the best possible delay
bound, since a session-i packet may need to wait Ω(1/ri) steps to cross each of the di
edges on its route. However, this upper bound of O(di/ri) can be much improved.

In 1990, Demers, Keshav, and Shenker [8] proposed a widely studied routing al-
gorithm called Weighted Fair Queueing (WFQ). WFQ is a packetized approximation
of the idealized fluid model algorithm Generalized Processor Sharing (GPS). WFQ is
simple and distributed. This same algorithm was proposed independently by Parekh
and Gallager [14, 15] in 1992 under the name of Packet-by-Packet Generalized Proces-
sor Sharing (PGPS). Parekh and Gallager prove that the algorithm has an end-to-end
delay guarantee of 2di/ri [15, p. 148] in the case when all packets have the same size.

In their 1996 paper, Rabani and Tardos [16] produce an algorithm that routes
every packet to its destination with probability 1− p in time

O(1/rmin) + (log∗ p−1)O(log∗ p−1)dmax + poly(log p−1),

where rmin = mini ri and dmax = maxi di. Ostrovsky and Rabani improve the bound
to O(1/rmin + dmax + log1+ε p−1) [13]. These bounds are not session-based, meaning
that if one session has a small rate or a long path, then the delay bounds for all
sessions will suffer. The algorithms of [13, 16] are distributed, where knowledge of the
entire network is not assumed, but each packet carries some information.

The main technique of [13, 16] is based on “delay-insertion.” The intuition here
is that if each packet receives a large random initial delay, then the packets are
sufficiently spread out to ensure that they only need to wait O(1) steps at each
successive edge rather than Ω(1/ri) steps. This delay-insertion technique is used
extensively by Leighton et al. in [10, 11] in the context of static routing. (In the
static routing problem, all packets are present in the network initially.) Since our
main result employs many techniques from [10], we give a detailed summary of [10]
in section 4.1.

A contrasting model, the connectionless adversarial queueing model, is also much
studied, e.g., [4, 1]. Here the paths on which packets are injected can change over
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time, giving the adversary more power. In the adversarial queueing model the best
delay bound known is polynomial in the maximum path length [1].

1.5. Our results. We first provide a randomized, distributed scheduler that
achieves a delay bound for session-i packets of O(1/ri + di log (m/rmin)) and a bound
on the queue size of O(log (m/rmin)), where m is the number of edges in the network
and rmin = mini ri. While this bound is not optimal, it nevertheless conveys some
intuition for our main result.

The main contribution of this paper is an asymptotically optimal template-based
schedule. We prove that a schedule exists for the dynamic routing problem such that
the end-to-end delay of each session-i packet is bounded by O(1/ri + di).

1 Our result
improves upon previous work in several aspects.

• We provide a session-based delay guarantee. That is, packets from sessions
with short paths and high injection rates reach their destinations quickly. This
is a big improvement over the previous bounds, which are stated in terms of
rmin = mini ri and dmax = maxi di. We also guarantee that every packet
always reaches its destination within the delay bound, without dropping any
packets.
• We guarantee constant-size edge queues. This is interesting because edge

queues are much more expensive than initial queues in practice.
• A consequence of our result is a packet-based bound, which improves upon

the O(c + d) bound in [10] for the static problem. (See section 4.1 for the
problem and parameter definitions.) We show that if packet pi follows a route
Pi, then pi can be routed to its destination within O(ci + di) steps, where
ci is the maximum congestion along Pi and di is the number of edges on Pi.
This result trivially follows from our result by creating a different session i
for each packet pi, and defining ri = (1− ε)/ci, where ε is a positive constant
used to ensure that the load on any edge is under 1.

For a template-based schedule, even if the computation of the schedule is time-
consuming, it needs to be done only once. Packets can then be scheduled indefinitely
as long as the sessions do not change.

Leaky-bucket injection model. Our results above can be generalized to bursty
traffic streams that are leaky-bucket regulated. Here, each session i has a maximum
burst size (or bucket size) of bi ≥ 1 and an average arrival rate of ri. During any t
consecutive time steps at most rit + bi session-i packets are injected. Leaky-bucket
regulated traffic is widely used in the literature, e.g., [6, 7, 9, 14, 15, 18].

Leaky-bucket regulated injections allow traffic shaping. When session-i packets
are injected, they first enter the session-i bucket at the source. These packets then
leave the bucket one at a time at the rate of ri. In this way, the end-to-end delay is
separated into two components: delay in the bucket and delay in the network. Since
delay in the bucket is at most bi/ri, the end-to-end delay is increased by at most bi/ri
steps, and the size of the edge queues is unchanged.

The rest of the paper is divided into sections as follows. We first give some
definitions and preliminary results in section 2. Then, in section 3, we describe a
simple distributed scheduler that has a delay bound of O(1/ri + di log(m/rmin)). In
section 4, we overview the major techniques employed to achieve the main result: a
bound of O(1/ri + di) and constant-size edge queues. In section 5 we define a set of

1In this paper, we concentrate on proving the existence of such a schedule. However, the proof
can be made constructive using ideas of Leighton, Maggs, and Richa [11] that are based on Beck’s
algorithm [3]. For details, see [19].
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parameters used in the proof of the main result, and in section 6 we provide a detailed
proof of the main result.

2. Preliminaries. In this section we present some preliminary results. Sec-
tion 2.1 proves a generic fact about “token sequences” for template-based schedules.
Section 2.2 presents two lemmas for probabilistic analysis that will be used extensively
throughout the paper.

2.1. Token sequences. Throughout the paper we define template-based sched-
ules in terms of token sequences. A token sequence for session i consists of di session-i
tokens, K1, . . ., Kdi , one from each template along the session-i path, where Kj+1

appears xj > 0 steps after Kj . Then xj is the token lag for these two tokens and∑di−1
j=1 xj is the end-to-end delay for this token sequence. Two token sequences can-

not have tokens in common.

In the following, we show that in any template-based schedule, bounding the delay
for token sequences is sufficient to bound the packet delays and that bounding the
token lag is sufficient to bound the edge queues. Our proof relies on Lemma 2.1. A
vector �v = [v1, v2, . . . , vn] is sorted if v1 ≤ v2 ≤ · · · ≤ vn. We define perm(�v) to be
a sorted vector whose components form a permutation of the components of �v. We
also use the notation �u < �v to indicate that the jth component of �u is smaller than
the jth component of �v for each j.

Lemma 2.1. Let �u = [u1, u2, . . . , un] and �v = [v1, v2, . . . , vn] be two vectors, each
of which consists of n distinct numbers. Suppose �u is sorted, i.e., perm(�u) = �u, and
suppose �u < �v. Then, the following hold.

1. perm(�u) < perm(�v).
2. If �v < �u+ �z, then perm(�v) < perm(�u) + �z, where �z = [z, . . . , z] is a vector of

n z’s for a scalar z.
3. Let |�v| represent the maximum component of �v; then |perm(�v)− perm(�u)| ≤
|�v − �u|.

Proof. Let perm(�v) = [vσ(1), . . . , vσ(n)], where σ represents the sorted permuta-
tion of �v.

1. Let us compare uj and vσ(j). There are two cases to consider. If j ≤ σ(j), then
uj ≤ uσ(j) < vσ(j). These inequalities hold since �u is sorted by assumption
and �u < �v. If j > σ(j), then there exists j′ ≥ j such that vj′ ≤ vσ(j).
(Otherwise, for all j′ ≥ j, vj′ > vσ(j). However, only n − j components of �v
can be greater than vσ(j).) Combining the fact that �u is sorted and �u < �v, we
have uj ≤ uj′ < vj′ ≤ vσ(j). Therefore, perm(�u) < perm(�v) in both cases.

2. Since perm(�u + �z) = perm(�u) + �z for �z = [z, . . . , z], property 1 implies
perm(�v) < perm(�u + �z) = perm(�u) + �z.

3. Suppose |perm(�v)− perm(�u)| = vσ(j) − uj . There are two cases to consider.
If vσ(j) ≤ vj , then vσ(j)− uj ≤ vj − uj , which implies |perm(�v)− perm(�u)| ≤
|�v−�u|. If vσ(j) > vj , then there exists j′ < j such that vσ(j) ≤ vj′ . (Otherwise,
for all j′ ≤ j, vσ(j) > vj′ . However, only j−1 components of �v can be smaller
than vσ(j).) Since uj′ < uj by the assumption that �u is sorted, we have
vσ(j)−uj ≤ vj′ −uj′ , which implies |perm(�v)− perm(�u)| ≤ |�v− �u|. Property
3 follows.

We are ready to transform a token-sequence-based bound into a packet-based
bound. Although it might seem straightforward, the difficulty is that a packet is
unable to identify a token sequence. This means if a session-i token appears, then the
session-i packet that has been waiting the longest has to move. The first token in a
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token sequence is called an initial token.

Theorem 2.2. Consider any template-based schedule. If the end-to-end delay for
each session-i token sequence is bounded by X, then each session-i packet reaches its
destination within X steps after it obtains an initial token. If the token lag is bounded
by x for all token sequences for all sessions, then the edge queue size is also bounded
x.

Proof. It suffices to show the following. For any y ≥ 1, consider the first y session-
i packets injected. After obtaining its initial token, each of these y packets reaches
the destination within X steps, and it waits at most x steps to advance each edge.

Let Tk1 be the time that the kth packet catches an initial token Kk and advances
its first edge. Let Tkj be the time that the kth packet would cross the jth edge if
it followed the token sequence initiated at Kk. Note that Tkj is not necessarily the
time that the kth packet crosses the jth edge in a template-based schedule. However,
Tkj does represent the time that a token would appear on the jth edge. We have
T11 < T21 < · · · < Ty1, and Tk1 < Tk2 < · · · < Tkd1 for 1 ≤ k ≤ y.

We first apply property 1 of Lemma 2.1 to show that packets 1 through y are able
to cross the jth edge by times perm(T1j , T2j , . . . , Tyj) for 1 ≤ j ≤ di. Take an example
of the second edge. Let perm(T12, T22, . . . , Ty2) = [Tσ(1),2, Tσ(2),2, . . . , Tσ(y),2], where
σ represents the sorted permutation. Property 1 of Lemma 2.1 implies

[T11, T21, . . . , Ty1] < [Tσ(1),2, Tσ(2),2, . . . , Tσ(y),2].

Since packet 1 has left its first edge by time T11 and an unused token for the second
edge appears by Tσ(1),2, packet 1 is able to advance its second edge by Tσ(1),2. Since
packet 1 has left by Tσ(1),2, packet 2 is able to obtain an unused token by Tσ(2),2 and
advance its second edge. Similar reasoning applies to packets 3 through y for the
second edge. Inductively, packets 1 through y are able to advance their last edge by
perm(T1di , T2di , . . . , Tydi). This quantity is bounded by [T11+X,T21+X, . . . , Ty1+X]
by property 2 of Lemma 2.1. Hence, all the session-i packets reach their destination
within X steps after they obtain the initial tokens.

Let us bound the queue size now. Consider the jth edge, where 1 ≤ j ≤ di.
Suppose packet k, for 1 ≤ k ≤ y, uses token Kkj to cross its jth edge at time
tkj . Let Kk,j+1 be the (j + 1)st token on the same token sequence as Kkj , and let
tk,j+1 be the time that Kk,j+1 appears. (Note that Kkj is not necessarily on the
same token sequence as the initial token that packet k used to cross its first edge,
and that Kk,j+1 is not necessarily the token that packet k would use to cross the
(j + 1)st edge.) Since tkj < tk,j+1, property 1 of Lemma 2.1 and our argument
for the delay bound above imply that packets 1 through y are able to cross the
(j + 1)st edge by perm(t1,j+1, t2,j+1, . . . , ty,j+1). Property 3 of Lemma 2.1 shows
that |perm(t1,j+1, t2,j+1, . . . , ty,j+1)− [t1j , t2j , . . . , tyj ]| is bounded by x, the token
lag. Hence, a packet waits at most x steps to advance each edge once it obtains an
initial token.

2.2. Lemmas for probabilistic analysis. Throughout the construction of our
schedules, we use the Lovász local lemma [17, pp. 57–58] and a Chernoff bound [5]
for probabilistic analysis. We include them here for easy reference.

Lovász local lemma. Let E1, . . . , En be a set of “bad events,” each occurring
with probability at most p and with dependence at most d (i.e., every bad event is
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mutually independent of some set of n− d other bad events). If 4pd < 1, then

Pr

[
n⋂

i=1

Ēi

]
> 0.

In other words, no bad event occurs with a nonzero probability.
Chernoff bound. Let Xi be n independent Bernoulli random variables with

probability of success pi. Let X =
∑n

i=1 Xi, and let the expectation µ =
∑n

i=1 pi.
Then for 0 < δ < 1, we have

Pr [ X > (1 + δ)µ ] ≤ e−δ
2µ/3.

We also prove a variation of the Chernoff bound.
Lemma 2.3. Let Xi be n independent Bernoulli random variables with probability

of success pi. Let X =
∑n

i Xi and the expectation E[X] =
∑n

i pi. Then for u ≥ E[X]
and 0 < δ < 1, we have

Pr [ X > (1 + δ)u ] ≤ e−δ
2u/3.

Proof. We prove the lemma by amplifying the success probabilities. If u ≥ n,
then Pr [ X ≥ (1 + δ)u ] = 0 and we are done. Otherwise, let p′i be a value such that
pi ≤ p′i ≤ 1 and

∑n
i p
′
i = u. We have

Pr [ X > (1 + δ)u | success probabilities p1, . . . , pn ]

≤ Pr [ X > (1 + δ)u | success probabilities p′1, . . . , p
′
n ] .

The Chernoff bound implies that the above probability is bounded by e−δ
2u/3.

3. Suboptimal schedules. We present in this section a simple randomized
distributed scheduler that, with high probability, produces a delay bound of

O

(
1

ri
+ di log

m

rmin

)

and edge queues of size O(log m
rmin

), where m is the number of edges and rmin = mini ri.
This preliminary result is substantially simpler to prove than the optimal result of
O(1/ri + di) because of the relaxed bounds. Nevertheless, it illustrates the basic
ideas necessary to prove the main result. We begin with a centralized scheme in
section 3.1 that achieves these bounds, and then we convert it to a distributed scheme
in section 3.2.

3.1. A simple centralized scheduler. As stated above, we now present a
centralized scheduler that achieves the desired delay bound of O( 1

ri
+di log

m
rmin

) with
edge queues of size O(log m

rmin
).

The structure of the proof is as follows. Each session-i packet must traverse di
edges. We prove that the time the packet spends waiting for a token at each edge
along the path (after the first edge) is O(log m

rmin
). Hence the time to traverse all edges

(but the first) is O(di log
m

rmin
). It turns out that the time spent waiting to receive the

very first token (what we refer to as initial waiting time) is O( 1
ri

+ di log
m

rmin
). Hence

the result follows.
The difficulty is to come up with a placement of tokens that achieves the above

bounds. To do this, we will first come up with an illegal placement of tokens, where we
place more than one token in some slots and zero tokens in other slots. We will prove
delay bounds on the illegal placement. We will then apply a smoothing procedure
which “smooths” out the bumps in the illegal placement, making it legal. We will
prove that the smoothing process does not change the bounds very much.
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Template size. We first decide the template size T . Roughly speaking, T needs
to be sufficiently large so that enough tokens can be placed to accommodate arrivals
from all sessions every T steps. We express the injection rate for session i in terms
of r̂i = si/%i, a fraction slightly larger than ri. If T is the least common multiple of
%i for all i, then we can place si session-i tokens every %i consecutive slots on each
template along the path of session i. The quantities of %i and si are defined as follows:

%i = 2
�log 2

εri
�
,(3.1)

si = �%iri(1 + ε/2)�,(3.2)

r̂i = si/%i,(3.3)

where ε is a constant to ensure that the sum of the rates of the sessions using any
edge is less than 1. In other words, %i is the smallest power of 2 that is larger than or
equal to 2/(εri), and si is the largest integer that is less than or equal to %iri(1+ε/2).
The template size T is the least common multiple of %i. Since all the %i’s are powers
of 2, T = O(1/rmin).
Lemma 3.1. We have the following properties for r̂i.
1. ri ≤ r̂i ≤ ri(1 + ε/2) for each session i.
2.
∑

i∈Se
r̂i ≤ 1− ε/2 for each edge e, where Se is the set of sessions that cross

edge e.
Proof. Property 1 is equivalent to

%iri ≤ si ≤ %iri(1 + ε/2).

The difference between the lower bound and the upper bound is %iriε/2, which is
at least 1 by the definition of %i. Therefore, there exists an integer in the range of
[%iri, %iri(1 + ε/2)], and si is such an integer by definition. Property 1 follows.

Given
∑

i∈Se
ri ≤ 1− ε, we have

∑
i∈Se

r̂i ≤ (1− ε)(1+ ε/2) < 1− ε/2. Property
2 follows.

We now define the template size T to be maxi %i, which is Θ( 1
rmin

). Since all the
%i’s are powers of 2, T is also the least common multiple of the %i’s.

Token placement. We describe a procedure to place the tokens for all sessions.
We start with an illegal placement of tokens. For each session i, we first place si initial
tokens in one slot every %i slots on the template that corresponds to the first edge of
session i. We then delay each initial token of session i by an amount chosen uniformly
and independently at random from [L + 1, L + %i], where

L = 2�log(
α
2 log(mT ))�(3.4)

for a constant α. In other words, L is a power of 2 that is greater than or equal
to α

2 log(mT ). As we shall see, this is enough randomness to spread out the tokens.
For every session-i token a placed on the template corresponding to the jth edge, we
place a session-i token b on the template corresponding to the (j + 1)st edge such
that b appears exactly 2L steps after a. In this way, we have partitioned all the
session-i tokens into T r̂i sequences, where each token sequence has di tokens and two
neighboring tokens in each sequence are 2L apart. In the following we show that the
tokens cannot be too clustered.
Lemma 3.2. At most L tokens appear in any consecutive L slots on any template

with probability at least 1−1/(mT ), where L is defined in (3.4) for a sufficiently large
constant α.
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Proof. Since si initial tokens for session i are placed in one slot every %i slots and
each is delayed by an amount chosen independently and uniformly at random from
[L+ 1, L+ %i], the expected number of session-i tokens in a single slot is si/%i, which
is r̂i. Hence by linearity of expectations and property 2 of Lemma 3.1, the expected
number of tokens over all sessions in L consecutive slots is

∑
i r̂iL ≤ (1− ε/2)L. For

a particular interval of L consecutive slots on a particular template, let the random
variable X be the number of tokens in these slots. Whether or not a token lands in
these L slots is a Bernoulli event. Since the delays to the initial tokens are chosen
independently and all session paths are simple, these Bernoulli events are independent.
Since E[X] ≤ (1− ε/2)L, we have the following by Lemma 2.3.

Pr [ X > L ] ≤ Pr [ X > (1 + ε/2)(1− ε/2)L ] ≤ e−ε
2(1−ε/2)L/12.

In m templates there are at most mT intervals of L consecutive slots. Therefore, by
a union bound the probability that more than L tokens appear in any L consecutive
slots is bounded by

mT Pr [ X > L ] ≤ mT e−ε2(1−ε/2)L/12 = mT e−ε2(1−ε/2)α log(mT )/24.

By choosing a sufficiently large constant α, we can bound the above probability by
1/(mT ).

If the first pass of the delay insertion does not produce a token assignment that
satisfies the condition of at most L tokens every L slots, we simply try another pass
until the condition is met.

Smoothing. In order to guarantee one token per slot, we carry out a smoothing
process. Since there are at most L tokens in any consecutive L slots, we partition
each template into intervals of L consecutive slots and arbitrarily place at most one
token in each slot within each interval. (Note the template size T is a multiple of L
since T and L are both powers of 2.) Recall we have defined a token sequence for
each session in the token placement process.
Lemma 3.3. Let K1, . . ., Kdi

be any token sequence for session i; then, after the
smoothing process, we have the following.

1. Token Kj appears after Kj−1 for 1 < j ≤ di.
2. The end-to-end delay of the token sequence is bounded by 2diL+ 2L, and the

token lag is bounded by 4L.
Proof. Before the smoothing, Kj appears exactly 2L steps after Kj−1 for 1 < j ≤

di, i.e., the token lag is 2L. Since the smoothing process shifts each token by at most
L− 1 slots, Kj still appears after Kj−1 after the smoothing. The token lag therefore
increases to at most 4L. The end-to-end delay for the token sequence increases from
2diL to at most 2diL + 2L due to the shift of the first and the last tokens.
Theorem 3.4. With high probability, the above randomized centralized scheme

generates a template-based schedule that produces a delay bound of O( 1
ri

+ di log
m

rmin
)

and edge queues of size O(log m
rmin

).
Proof. We first show that each session-i packet, p, is able to catch an initial token

within 2L + 2%i steps of its injection. Before the initial session-i tokens are delayed,
we have exactly si tokens every %i slots. Since at most si session-i packets can be
injected during %i steps, packet p would be able to obtain an initial token, say K, in
fewer than %i steps if the tokens were not delayed or shifted. Let p be injected at time
t, and let K appear at T before K is delayed and shifted; then t ≤ T < t + %i. Each
initial token is delayed by an amount in the range of [L + 1, L + %i] during the token
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placement process and is shifted by at most L−1 slots during the smoothing process.
Therefore, after the smoothing process, K appears after t but before t + 2L + 2%i.

By Theorem 2.2 and Lemma 3.3, any session-i packet p is able to reach its destina-
tion within 2diL+2L steps after it obtains its initial token. Therefore, the end-to-end
delay for session-i packets is (2L + 2%i) + (2diL + 2L), which is O( 1

ri
+ di log

m
rmin

).
The edge queue size is bounded by the token lag 4L, which is O(log m

rmin
).

3.2. A simple distributed scheduler. The above scheme is centralized since
the session-i tokens on one template are dependent on the previous template. How-
ever, it suggests the following simple distributed scheme for scheduling packets so as
to achieve small delay. As in section 3.1, we place initial tokens on the first edge of
session i; however, this time we delay each initial token by an amount chosen indepen-
dently and uniformly at random from [1, %i], where %i is defined in (3.1). (Note that
the delay is from [L + 1, L + %i] in the centralized scheme.) Suppose that a session-i
packet p now obtains its initial token at time T . Then for the jth edge on the session-i
path, p is given a deadline of T +2L(j−1)+L, where L is defined in (3.4). Whenever
two or more packets contend for the same edge simultaneously, the packet with the
earliest deadline moves. Ties are broken arbitrarily. We call this scheme Earliest-
Deadline-First (EDF). Note that EDF is no longer template based. We show in
Lemma 3.5 that the deadlines do not cluster together with high probability, and we
show in Lemma 3.6 that every packet meets its deadlines.
Lemma 3.5. For any edge, at most L deadlines appear in any consecutive L time

steps with probability at least 1−1/(mT ), where L is defined in (3.4) for a sufficiently
large constant α.

Proof. The deadlines for a packet p are T+L, T+3L, T+5L, . . ., which correspond
to the times that the tokens in a sequence appear. Hence, the proof is identical to
that of Lemma 3.2.
Lemma 3.6. If for any edge at most L deadlines appear in any consecutive L

time steps, then each packet crosses every edge by its deadline by EDF.
Proof. For the purpose of contradiction, let D be the first deadline that is missed.

This implies all deadlines earlier than D are met. Let p be the packet that misses
deadline D for edge e. Since packet p makes its previous deadlines, p must have
crossed its previous edge by time D − 2L, or else e must be p’s first edge and p must
have obtained its initial token at time D − L. Hence, at every time step from time
D − L+ 1 to D, packet p is held up by another packet with a deadline no later than
D. Furthermore, these deadlines must be later than D − L since all deadlines earlier
than D are met. Therefore, at least L+1 packets have deadlines for edge e from time
D − L + 1 to D. Our lemma follows from the contradiction.

By an argument similar to that in Theorem 3.4, a session-i packet obtains its
initial token within 2%i steps of its injection. Combined with Lemmas 3.5 and 3.6, we
have the following theorem.
Theorem 3.7. With high probability, the randomized distributed scheme EDF

generates a schedule that produces an end-to-end delay bound of O( 1
ri

+ di log
m

rmin
).

In [2], simulations were carried out to compare the end-to-end delays produced
by our EDF scheme against those produced by WFQ. The former outperformed the
latter in a range of simulations.

4. Overview of the main result. Our main result for the dynamic routing
problem parallels an earlier result on static routing. In section 4.1 we review the
method used for solving the static case, and in section 4.2 we give an overview of the
additional complexities that need to be addressed in the dynamic case.
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Table 4.1
Frame-refinement for static routing in [10].

Schedule Frame size Relative congestion

S(q) I(q) c(q)

Refinement log5 I(q) (1 + o(1))c(q)

S(q+1) I(q+1) c(q+1)

4.1. A bound of O(c + d) for static routing. Leighton, Maggs, and Rao
consider the static routing problem for arbitrary networks in [10]. For static routing,
all packets are present in the network initially. Each packet is associated with a
source, a destination, and a route. The congestion on each edge is the total number
of routes that require that edge, and the dilation of a route is the number of edges on
the route. Leighton, Maggs, and Rao show that for any set of routes with maximum
congestion c (over all edges) and maximum dilation d (over all routes), there is a
schedule of length O(c + d) and edge queue size O(1). In this schedule, at most one
packet traverses each edge at each time step. A packet waits O(c + d) steps initially
before leaving its source, and it waits O(1) steps to cross each edge thereafter.

We summarize here the techniques in [10]. The strategy for constructing an
efficient schedule is to make a succession of refinements to an initial schedule S(0). In
S(0), each packet moves at every step until it reaches its destination. This schedule
has length d, but as many as c packets may traverse the same edge at the same step.
Each refinement brings the schedule closer and closer to the requirement that at most
one packet uses one edge per time step.

A T -frame is a time interval of length T . The frame congestion, C, in a T -
frame is the largest number of packets that use any edge during the frame. The
relative congestion in a T -frame is the ratio C/T . The frame congestion (resp., relative
congestion) on an edge e during a T -frame is defined to be the frame congestion (resp.,
relative congestion) associated with edge e.

It is obvious that the initial schedule S(0) has relative congestion at most 1 for
any c-frame. A refinement transforms a schedule S(q) with relative congestion at most
c(q) in any frame of size I(q) or larger into a schedule S(q+1) with relative congestion
at most c(q+1) in any frame of size I(q+1) or larger. The resulting frame size I(q+1) is
much smaller than I(q), whereas the relative congestion c(q+1) is only slightly bigger
than c(q). In particular, I(q+1) = log5 I(q) and c(q+1) = (1 + o(1))c(q). After a series
of O(log∗ c) refinements, a schedule S(ζ) is obtained, where the relative congestion is
O(1) for any O(1)-frame. A final schedule, in which at most one packet at a time
crosses each edge, can be constructed by replacing each step of S(ζ) by a constant
number of steps. Each refinement is achieved by inserting delays to the packets. It
is the central issue in [10] to show that a set of delays always exists satisfying the
criteria in Table 4.1.

4.2. A bound of O(1/ri + di) for dynamic routing. Our result for the
dynamic routing problem is parallel to that in [10]. For an arbitrary network where
paths (sessions) are defined, we show that there is a schedule such that every session-i
packet reaches its destination within O(1/ri + di) steps of its injection, where ri and
di are the injection rate and path length for session i, respectively. A session-i packet
waits O(1/ri + di) steps initially before leaving its source, and it waits O(1) steps to
cross each edge afterwards.
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Ti

Tj

Ti

Tj

T 2T

Service time for all sessions

Arrival time for session i

Arrival time for session j

Fig. 4.1. All the session-i packets that arrive during [kT −Ti, (k+1)T −Ti) are serviced during
[kT , (k + 1)T ). In this figure, k = 1.

To achieve a session-based, end-to-end delay bound of O(1/ri+di) for our dynamic
routing problem, we adopt the general approach in [10]. However, there are three
major problems in transforming the solution for the static problem into a solution
for the dynamic problem. In the remainder of this section we present these three
problems and their solutions.

In the remainder of the paper we use the language of “scheduling packets” rather
than “placing tokens.” At the end of the presentation we show how to transform the
packet schedule into a template-based schedule. Although the actual packet arrivals
are not be periodic, the times at which the packets cross the first edge are periodic.
This is the key to the transformation.

Problem 1: Infinite time. In [10] all the packets to be scheduled are present
initially. In the dynamic model, packets are injected over an infinite time line. We
would like to partition the infinite time line into finite time intervals which can be
scheduled independently of each other. We divide time into intervals of length T ,
where T = Θ(1/rmin + dmax). We then independently schedule the time intervals
[0, T ), [T , 2T ), [2T , 3T ), etc.

We associate each session i with a quantity Ti = Θ(1/ri + di). For any integer
k ≥ 0 consider all the session-i packets that are injected during interval [kT −Ti, (k+
1)T −Ti). We provide a schedule in which all these packets leave their sources no earlier
than time kT and reach their destinations before time (k + 1)T . (See Figure 4.1.)
From now on, we concentrate on scheduling the arrivals that would be serviced during
interval [T , 2T ).

The quantity T will also serve as the size of all templates in the template-based
schedule.

Problem 2: Session-based delay guarantees. Once we restrict ourselves to
the interval [T , 2T ), it seems that the dynamic routing problem is similar to the
static problem. However, we cannot simply proceed with the successive refinements
as in section 4.1, since some sessions need tighter delay bounds than others. Session-
i packets can only tolerate a delay proportional to 1/ri + di. We group sessions
according to their associated 1/ri + di value. We start by inserting delays to sessions
having large values of 1/ri + di, reducing the frame size, and bounding the relative
congestion. When the frame size becomes small enough, sessions with smaller 1/ri+di
join in.
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Table 4.2
Refinement and conversion for dynamic routing.

Schedule Integral sessions Frame size Relative congestion

S(q) A(q) I(q) c(q)

Refinement A(q) log5 I(q) (1 + o(1))c(q)

Conversion A(q) ∪B(q+1) log5 I(q) (1 + o(1))2c(q)

S(q+1) A(q+1) I(q+1) c(q+1)

More precisely, we introduce the concept of integral and fractional sessions. When
session i is integral, packets of size 1 are injected at rate ri. When session i is fractional,
a packet of size r̂i is injected at every time step, where r̂i is a value slightly larger
than ri. A packet from a fractional session always crosses one edge at a time, whether
or not other packets are crossing the edge at the same time. Therefore, a fractional
packet from session i always contributes exactly r̂i to the congestion. Integral sessions
are those to which we can afford to insert delays in order to bound the congestion.
Fractional sessions are those to which we cannot insert delays. However, congestion
due to a fractional session i is only r̂i, which is small.

As before, S(q) represents the schedule in the qth iteration. The set of integral
sessions for S(q) is denoted by A(q). For the initial schedule S(0), all the sessions
are fractional and we show that the relative congestion is less than 1. For schedule
S(q) we inductively assume that the relative congestion due to the current integral
and fractional sessions is at most c(q) for any frame of size I(q) or larger. To create
a schedule S(q+1) from schedule S(q) we carry out a frame-refinement step and a
conversion step.

The frame-refinement step reduces the frame size from I(q) to I(q+1) = log5 I(q),
while slightly increasing the relative congestion from c(q) to (1 + o(1))c(q). This step
is achieved by delaying the integral packets by up to Θ

(
(I(q))2

)
steps. We make

sure that if session i is in A(q), then 1/ri + di ≥ (I(q))2, and therefore the delays
inserted can be tolerated. The conversion step converts some sessions from fractional
to integral, while maintaining the frame size of I(q+1) and slightly increasing the
relative congestion to c(q+1) = (1+ o(1))2c(q). These newly-converted sessions form a
set B(q+1) and have associated values 1/ri + di ≥ (I(q+1))2. This bound is chosen so
that the sessions in A(q+1), which is A(q) ∪B(q+1), will be able to tolerate the delays
inserted during the next iteration of frame refinement. During the conversion step
we delay the packets in B(q+1) by up to Θ(1/ri + di) steps. We are able to show the
existence of “good” delays for both frame refinement and conversion steps. Table 4.2
summarizes our approach.

At the termination of our algorithm we have a schedule S(ζ) in which every session
is integral and the relative congestion is at most 1 for all frames of size larger than
a certain constant. In S(ζ) all session-i arrivals during [T − Ti, 2T − Ti) are serviced
during [T , 2T ). Furthermore, all session-i packets reach their destination within O(Ti)
steps of their injections.

Problem 3: Constant-factor stretching in the final schedule. As discussed
above, we repeat the process of refinement and conversion until we have a schedule,
S(ζ), in which all sessions are integral and in which the relative congestion is 1 for all
frames of size larger than a certain constant w. In the static problem, a final schedule
can easily be obtained by stretching S(ζ) by a constant factor. However, we cannot
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Construct new networkM

Schedule intervals independently

Partition time into finite intervals

Convert back to network N
Smooth schedule

Repeat:

Conversion

Refinement

Fig. 4.2. An overview of our approach for the dynamic routing problem.

afford to have a constant blowup in our final schedule for the dynamic problem. This
is because we need to independently schedule all time intervals [0, T ), [T , 2T ), etc.,
and a constant blowup would make these time intervals overlap.

To overcome this problem, we first devise a schedule for a new network M that
is constructed from the original network N as follows. Each edge e of N is replaced
by 2w consecutive edges e1, . . . , e2w, where w is the constant introduced above. The
rates and routes of the sessions are unaffected. In M, session i has length Di =
2wdi = O(di).

All the techniques described earlier are applied to the network M. We carry
out successive conversion and refinement steps for M and obtain a schedule S(ζ),
where the relative congestion is 1 for any frame whose size is larger than w. We then
“smooth” S(ζ) and convert it to a schedule for N where only one packet at a time
traverses any edge.

The idea behind the smoothing process is as follows. In S(ζ), more than one
packet may require some edge ofM during a given time step, but at most w packets
can require any given edge f in M within w time steps. This means we can shuffle
each packet that requires edge f by at most w time steps, so that exactly one packet
traverses f at any step. Unfortunately, this shuffling in time can lead to an illegal
schedule forM, in which a packet can be scheduled to traverse the edges on its path
out of order (timewise). However, one can prove that if we consider the schedule with
respect to the packets traversing edge e2w for all e, then this schedule is legal, i.e.,
the packets cross these edges in order. Hence, we schedule edge e in N in exactly the
same way that the corresponding edge e2w is scheduled inM.

Figure 4.2 is a schematic picture of our overall approach.
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5. Parameter definitions.
Interval length T and Ti. As discussed in section 4.2, we independently schedule

intervals [0, T ), [T , 2T ), etc. Our proof will concentrate on the interval [T , 2T ). All
the session-i packets that arrive during [T − Ti, 2T − Ti) are serviced during [T , 2T ).
We define T and Ti for session i as follows. Recall Di = 2wdi, where w is a constant
defined at the end of this section.

Ti = 4Di + 2 + (8/ε + 2)/ri,

T =

⌈
(1 + 4/ε)maxi Ti

w

⌉
w.

In other words, T is the smallest multiple of w that is greater than or equal to
(1 + 4/ε)maxi Ti. Clearly Ti = O(1/ri + Di) = O(1/ri + di).

In the template-based schedule, all template sizes will be T .
Packet size for a fractional session. In this section we define r̂i, the packet size

for a fractional session i. For reasons that will become clear in the conversion step of
section 6.3, we need r̂i, to be slightly larger than ri, and we shall need to express r̂i
as the ratio of two integers. Let

%i = �8/(εri)�,
si = �%iri(1 + ε/2)�,
r̂i = si/%i.

The following lemma is analogous to Lemma 3.1.
Lemma 5.1. We have the following properties for r̂i.
1. ri(1 + ε/4) ≤ r̂i ≤ ri(1 + ε/2) for each session i.
2.
∑

i∈Se
r̂i ≤ 1− ε/2 for each edge e, where Se is the set of sessions that cross

edge e.
Note that the definition of %i and property 1 of Lemma 5.1 are different from

the ones in section 3.1. We need this stronger lower bound on r̂i to handle the extra
complexity in the conversion step. In particular, r̂i is also used to indicate the rate at
which the initial tokens for session i appear. During the conversion step, the initial
tokens for session i are placed in the interval [T , 2T − Ti). Since these tokens are to
accommodate all the session-i arrivals during [T , 2T ), we need r̂i(T −Ti) ≥ riT . This
condition is guaranteed by the choices of T and Ti and property 1 of Lemma 5.1. (See
Lemma 6.8.)

Parameters for schedule S(q). We shall show later that, in schedule S(q), the
relative congestion, due to all integral and fractional sessions, is at most c(q) for any
frame of size I(q) or larger. For S(q), the set A(q) consists of all the integral sessions.
As we construct schedule S(q+1) from S(q), sessions in B(q+1) become integral and
join A(q). The schedule at the end of the refinement and the conversion is S(ζ). The
parameters I(q), c(q), A(q), and B(q+1) are defined by the following recurrences. Let
Xi = Di + 1/ri for session i, and let Xmax = maxiXi.

I(0) = elog
2/5 Xmax ,

I(q+1) = log5 I(q),

c(0) = 1− ε/2,

c(q+1) = (1 + δ(q))2c(q),

δ(q) = β/
√

log I(q),
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A(0) = ∅,
A(q+1) = A(q) ∪B(q+1),

B(q+1) =

{
i /∈ A(q) :

(
I(q+1)

)2

≤ Xi ≤ e
√
I(q+1)

}
for q �= ζ − 1,

B(q+1) =
{
i /∈ A(q) : Xi ≤ e

√
I(q+1)

}
for q = ζ − 1.

The parameter β is a sufficiently large positive constant. Note that I(q) decreases
polylogarithmically and c(q) increases by a factor of 1+o(1). One can verify that B(q)

forms a partition of all the sessions and that sessions with large Xi values become

integral first. We make use of the bound Xi ≥
(
I(q+1)

)2
in the frame refinement step,

and we use the bound log2 Xi ≤ I(q+1) in the conversion step.

Definition of w. We define a constant w that has two purposes. First, the process
of refinement and conversion terminates when the frame size becomes smaller than
or equal to w. Second, the intermediate network M is constructed from the original
network N by replacing each edge in N with 2w edges. We define w to be a constant
that satisfies the following two bounds:

1. w ≥ x, where x satisfies (1− α√
log x

)2 = 1− ε/2, i.e., x = eα
2(1−
√

1−ε/2)−2

,

2. w ≥ 2 log15 w + 2 log10 w − log5 w.

The first bound ensures that the relative congestion c(ζ) is at most 1. (See Lemma 6.11.)
The second bound is to maintain an invariant throughout the frame refinement steps.
(See section 6.2.)

6. An asymptotically optimal schedule. In this section we show the exis-
tence of an asymptotically optimal schedule. Sections 6.1 through 6.4 concentrate on
problem 2 of section 4.2. We begin with an initial schedule S(0) and transform it
to schedule S(ζ) through a process of refinement and conversion. All these schedules
are designed for the intermediate network M. Section 6.5 concentrates on problem
3 of section 4.2. We describe how to obtain an optimal schedule SN for the original
network N from S(ζ).

We first define or recall several basic concepts. Given some schedule S, a region
R of the schedule is some interval of contiguous time steps in the schedule. A T -frame
is a region of length T . The congestion C in a T -frame is the maximum number of
packets that cross any edge in that interval, and the relative congestion is the ratio
C/T . A fractional packet from session i always contributes exactly r̂i to the relative
congestion of any frame.

6.1. An initial schedule S(0). In S(0), all sessions are fractional, i.e., A(0) = ∅.
Each packet (of a fractional size) crosses one edge per time step whether or not other
packets are using the same edge at the same time. Since the relative congestion is
entirely due to fractional sessions, the relative congestion is at most

∑
r̂i < 1− ε/2 =

c(0) on any edge e. (See Lemma 5.1.)

Note that the above relative congestion holds for any frame size. We choose

the initial frame size I(0) = elog
2/5 Xmax , so that I(1) = log2 Xmax, which implies

Xmax = e
√
I(1)

. This allows the sessions with the largest Xi value to be converted in
the first iteration of the algorithm (see definition of B(1)).

6.2. Frame refinement for schedule S(q). In this section we describe the
frame-refinement process. For each schedule, a frame refinement delays the packets
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from integral sessions in a way that dramatically reduces the frame size but does not
increase the relative congestion and the length of the schedule by much.

To be more precise, for schedule S(q), we inductively assume that the relative
congestion is at most c(q) for frames of size I(q) or larger and that each integral
packet waits at most once every I(q−1) steps after leaving its source. In this frame
refinement step we show that there is a way to delay (by an amount related to the

frame size) the packets from A(q) so that, in the resulting schedule S(q+ 1
2 ), the relative

congestion is at most (1 + δ(q))c(q) for any frame of size I(q+1) = log5 I(q) or larger,

where δ(q) = β/
√

log I(q), and each integral packet waits at most once every I(q)

steps.
The base case of the initial schedule S(0) is described in section 6.1. Since there

are no integral sessions, no delays are inserted in this step. Trivially, the resulting
relative congestion is at most (1 + δ(0))c(0) for any frame of size I(1) or larger at the
end of this step, and no packet ever waits.

Let us now consider refining schedule S(q) for q > 0. The refinement is divided
into two steps. In the first refinement step we divide the current schedule into blocks
of length 2(I(q))3 + 2(I(q))2 − I(q), and we insert delays into each block so that its
length increases to 2(I(q))3 + 2(I(q))2. We show that these delays can be introduced
in such a way that in the central 2(I(q))3 steps of each block the relative congestion
of frames of at least length I(q+1) is only a little larger than c(q). (See Figure 6.1.)
At the beginning and end of each block there are “fuzzy” regions of length (I(q))2

each. In the second step we move the block boundaries so that the fuzzy regions
at the end and beginning of adjacent blocks are at the center of the new blocks of
2(I(q))3 + 2(I(q))2 steps. Again, we insert delays into each block, increasing the size
of the block by (I(q))2 steps. We show that there is a way to insert these delays so
that the final conditions for refining S(q) are indeed satisfied. (See Figure 6.2.)

In the following we present Lemma 6.2, which will be used extensively in both
steps of the refinement. We continue by presenting both steps in detail.

A useful lemma. The following lemma is used to prove Lemma 6.2.
Lemma 6.1. Let X and Y be independent random variables. Let Y be binomially

distributed with mean µy, and let σ1, σ2, and v be values such that σ2 = σ1 − 1/v.
Then,

Pr [ X + µy > (1 + σ1)v ] ≤ 2Pr [ X + Y > (1 + σ2)v ] .

Proof. Let z = (1 + σ1)v − µy. We have

Pr [ X + µy > (1 + σ1)v ] = Pr [ X > z ] ,(6.1)

Pr [ X + Y > (1 + σ2)v ] = Pr [ X + Y > µy + z − 1 ] .(6.2)

Note also that

Pr [ X + Y > µy + z − 1 ] ≥ Pr [ X > µy + z − 1− �µy� and Y ≥ �µy� ]

= Pr [ X > z − 1 + µy − �µy� ] Pr [ Y ≥ �µy� ] .

This last equality follows from the independence of X and Y . Theorem B.1 in [12]
shows that Pr [ Y ≥ �µy� ] ≥ 1/2. Since µy − �µy� < 1, we have

Pr [ X + Y > µy + z − 1 ] ≥ 1

2
Pr [ X > z ] .



GENERAL DYNAMIC ROUTING 1611

Our lemma follows from equalities (6.1) and (6.2) and the above inequality.
We say that a packet is active during some region of a schedule if the packet

belongs to some integral session and it traverses at least one edge during the region.
Since we maintain the invariant that a packet waits at most once every I(q−1) steps
after leaving its source, an inactive packet is either at its source or its destination
during the entire region. Lemma 6.2 below is a stepping stone that allows us to
reduce the frame size from I(q) to poly log I(q). We invoke this lemma for various
values of s, t, r, and R.
Lemma 6.2. Consider some region R of a schedule where the relative congestion

is at most r = Θ(1) for frames of length s or more, where log3 I(q) ≤ s ≤ (I(q))2.
Consider any edge e and any t-frame, where log2 I(q) ≤ t ≤ 2 log2 I(q). Assume each
active packet in the region is delayed between the beginning of R and the beginning of
the t-frame by a number of steps randomly, independently, and uniformly chosen from
[1, s]. Then, for any constant k there is some value γ = Θ(1)/

√
log I(q) such that the

probability of having a relative congestion larger than r(1+γ) on e during the t-frame
is at most (I(q))−k.

Proof. Let the random variable X be the frame congestion on e during the t-
frame due to the active packets after they are delayed. If the relative congestion
due to fractional sessions is rf , the frame congestion due to fractional sessions in the
t-frame is exactly rf t. Since the active packets are the only integral-session packets
that can cross e during the region, the frame congestion on e during the t-frame is
X + rf t after the delay.

Consider now a binomial random variable Y with parameters (rfs, t/s) and mean
E[Y ] = rf t. From Lemma 6.1, the probability p that the congestion in the t-frame is
larger than (1 + γ)rt after the packets have been delayed is

p = Pr [ X + rf t > (1 + γ)rt ] ≤ 2Pr [ X + Y > (1 + σ)rt ] ,

where σ = γ − 1/rt. Since t ≥ log2 I(q) and r = Θ(1), γ = Θ(1)/
√

log I(q) if and only

if σ = Θ(1)/
√

log I(q). Let σ = v/
√

log I(q), where v is a constant. We shall choose
an appropriate value v so that the lemma is satisfied.

We first concentrate on X. Since the active packets are delayed up to s steps, an
active packet that crosses e in the t-frame after the delay could cross e in an interval
of t + s steps before the delay. The relative congestion due to active packets is at
most r − rf in that interval before the delay. Hence, at most (t + s)(r − rf ) active
packets can cross e in the t-frame after the delay, and each of them has a probability
of at most t/s of doing so.

Recall that Y is a binomial random variable with parameters (rfs, t/s). We define
Z to be a binomial random variable with parameters (n, t/s), where n = r(t + s) >
(r − rf )(t + s) + rfs. It is easy to see that

p ≤ 2Pr [ X + Y > (1 + σ)rt ] ≤ 2Pr [ Z > (1 + σ)rt ] .

Therefore, we bound the probability p as follows:

p ≤ 2

r(t+s)∑
i=(1+σ)rt

(
r(t + s)

i

)
(t/s)i(1− t/s)r(t+s)−i.

We bound the sum by observing that (1+σ)rt is larger than E[Z] = (t+s)rt/s, since
t/s ≤ 2/ log I(q). Thus, the first term of the sum is the largest. Hence, from the fact
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that there are at most r(t + s) terms in the sum, we have

p ≤ 2r(s + t)

(
r(t + s)

(1 + σ)rt

)
(t/s)(1+σ)rt(1− t/s)r(t+s)−(1+σ)rt.

By applying the inequality
(
a
b

) ≤ (ae/b)b for 0 < b < a, we get

p ≤ 2r(s + t)

(
(t + s)e

(1 + σ)t

)(1+σ)rt

(t/s)(1+σ)rt(1− t/s)r(t+s)−(1+σ)rt.

Now applying the inequality ln(1 + x) ≥ x− x2/2 for 0 ≤ x ≤ 1, for the case x = σ,

p ≤ 2r(s + t)
(
(1 + t/s)e1−σ+σ2/2

)(1+σ)rt

(1− t/s)r(t+s)−(1+σ)rt.

Finally, by applying the inequality (1 + x) ≤ ex for 1 + x = 1 + t/s in one case and
for 1 + x = 1− t/s in the other, we obtain

p ≤ 2r(t + s)e−rtσ
2(1/2−σ/2−t/σ2s−2t/σs).

The bounds on s and t and the definitions of r and σ imply that we can choose a
constant v large enough so that p < (I(q))−k for any constant k > 0.

The first refinement step for schedule S(q). We first divide the interval
[T , T + |S(q)|) into blocks of length 2(I(q))3 +2(I(q))2−I(q). We shall reschedule each
block B independently. During a block B we only delay active packets.

For each block B, each active packet in B is assigned a delay randomly, uniformly,
and independently chosen from [1, I(q)]. An active packet p, whose assigned delay is x,
is delayed in the first xI(q) steps of B once every I(q) steps. In order to independently
reschedule the next block, packet p is also delayed in the last (I(q)−x)I(q) steps of B
once every I(q) steps. Therefore, a rescheduled block has length 2(I(q))3 + 2(I(q))2.

Before the delays are inserted to reschedule block B, an active packet p is delayed
at most once within the block, provided that 2(I(q))3 +2(I(q))2− I(q) < I(q−1), which
holds as long as I(q) is larger than some constant. Prior to inserting any new delay
to a block, we check if it is within I(q) steps of the single old delay. If the new delay
would be too close to the old delay, then it is simply not inserted. The loss of one
delay in a block has a negligible effect on the probability analysis that follows.

Lemma 6.4 shows that with the insertion of delays we can dramatically reduce the
frame size in the center of the block and increase the relative congestion only slightly.
In order to prove Lemma 6.4, we need the following fact.
Lemma 6.3. If the relative congestion in every frame of size T to 2T − 1 is at

most r, then the relative congestion in any frame of size T or greater is at most r.
Proof. Consider a frame of size T ′, where T ′ > 2T − 1. The first �T ′/T �T − T

steps of the frame can be broken into T -frames, each with relative congestion r. The
remainder of the T ′-frame consists of a single frame of size between T and 2T − 1
steps in which the relative congestion is also at most r.
Lemma 6.4. There exists a way of choosing delays so that in between the first

and last (I(q))2 steps of block B, the relative congestion of any frame of size log2 I(q)

or larger is at most (1 + γ1)c
(q) for some γ1 = Θ(1)/

√
log I(q).

Proof. With each edge e, we associate a bad event. A bad event on e happens
when the frame congestion on edge e is more than (1 + γ1)c

(q)I during any I-frame
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of size log2 I(q) or larger. Due to Lemma 6.3, it is sufficient to prove the statement
for all frames of size between log2 I(q) and 2 log2 I(q). We shall use the Lovász local
lemma to show that the probability that no bad event occurs is nonzero.

We first bound the dependence, d, of bad events. Two bad events on two edges
are dependent only if a packet from a session i ∈ A(q) can use both edges. At most
c(q)(2(I(q))3 + 2(I(q))2− I(q)) packets (from sessions in A(q)) can cross the same edge
in block B, and each packet crosses at most 2(I(q))3 + 2(I(q))2 − I(q) edges in B. As
we shall show later, c(q) ≤ 1. Therefore, a bad event can be dependent on at most
O((I(q))6) other bad events.

We now bound the probability, p, that a bad event happens on e. Consider a
particular I-frame, where log2 I(q) ≤ I ≤ 2 log2 I(q), that lies completely between
the first and last (I(q))2 steps of B. By setting R = B, r = c(q), s = I(q), and
t = I, we apply Lemma 6.2 to show that for any constant k1 there is some value
γ1 = Θ(1)/

√
log I(q) such that the probability p1 of a bad event happening on e in

the I-frame is smaller than (I(q))−k1 .
Since there are O((I(q))3 log2 I(q)) possible I-frames in B, the probability that a

bad event happens on e during any I-frame is p < p1O((I(q))3 log2 I(q)). We can set
the value k1 appropriately so that this probability is upper bounded by O((I(q))−7).

Therefore, we have 4pd < 1, and our lemma follows from the Lovász local
lemma.

2(I(q))3 + (I(q))2

log2 I(q)

1

fuzzy region

2(I(q))3 + 2(I(q))2

time step

fuzzy region

(1 + γ1)c
(q)(I(q))2

Fig. 6.1. Situation after the first refinement step.

At the end of the first refinement step, the center of each block has small relative
congestion for small frame sizes. However there are regions of (I(q))2 steps at the
beginning and end of each block that may have very large relative congestion. We
call these “fuzzy” regions, and we deal with them in the second refinement step.

The second refinement step for schedule S(q). We start the second step of
the refinement by relocating the block boundaries so that blocks still have 2(I(q))3 +
2(I(q))2 steps, but now the fuzzy regions that were at the beginning and end of
adjacent blocks are in the center of new blocks. Then, a new block has two “clean”
regions of (I(q))3 steps each at the beginning and the end, and a fuzzy region of length
2(I(q))2 steps in the center.

As in the first step of the refinement we now concentrate on individual blocks.
We first show that the relative congestion is not very large for frames of size (I(q))2

or larger (even in the fuzzy region).
Lemma 6.5. For any choice of delays in the first step of the refinement, the

relative congestion in any frame of size (I(q))2 or larger is at most (1 + 2/I(q))c(q).
Proof. Without loss of generality we shall assume that all the sessions are integral.

Consider an I-frame with I1 steps before the center of the block and I2 steps after the
center. (I = I1+I2, and either I1 or I2 could be zero.) A packet crosses some edge e in
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(I(q))2I(q+1)

(1 + γ1)c(q) (I(q))3 + 2(I(q))2(I(q))3 2(I(q))3 + 2(I(q))21

fuzzy region

time step

Fig. 6.2. Situation after relocating block boundaries.

the I1-frame only if it did so in some frame of length I1 + I(q) before the delays where
inserted. Therefore, at most (I1 + I(q))c(q) packets can cross edge e in the I1-frame.
Similarly, at most (I2 + I(q))c(q) packets can cross edge e in the I2-frame. Therefore,
the congestion in the I-frame can be at most (I1 + I2 + 2I(q))c(q) = (I + 2I(q))c(q),
and for I ≥ (I(q))2 the relative congestion is at most (1 + 2/I(q))c(q).

Now, in order to reduce the frame size in the fuzzy region, we consider only the
active packets in each block B, and we assign a delay randomly, independently, and
uniformly chosen from [1, (I(q))2] to each active packet. A packet p with delay x waits
once every (I(q))3/x at the beginning of the block and once every (I(q))3/((I(q))2−x)
at the end. As in the first step a delay is not inserted if it is going to be within I(q)

steps of an existing delay for a moving packet.

The block length after the delay insertion is 2(I(q))3 + 3(I(q))2, and the fuzzy
region can be (I(q))2 steps longer, spanning steps (I(q))3 to (I(q))3 + 3(I(q))2.

The next lemma shows that there is some way of inserting delays so that the
frame size in the fuzzy region is reduced, and the frame size and relative congestion
in the rest of the block are increased by only a small amount.

Lemma 6.6. In a block B, there exists a way of choosing delays so that in the
fuzzy region (i.e., interval [(I(q))3, (I(q))3 + 3(I(q))2]) the relative congestion of any

frame of size log2 I(q) or larger is at most (1 + γ2)c
(q) for some γ2 = Θ(1)/

√
log I(q),

and so that in the intervals [I(q) log3 I(q), (I(q))3] and [(I(q))3 + 3(I(q))2, 2(I(q))3 +
3(I(q))2 − I(q) log3 I(q)] the congestion of any frame of size log2 I(q) or larger is at

most (1 + γ3)c
(q) for some γ3 = Θ(1)/

√
log I(q).

Proof. As in Lemma 6.4, we will use the Lovász local lemma to prove the claim.
We associate a bad event with every edge e, so that a bad event happens on e if, for
any I ≥ log2 I(q),

• more than (1 + γ2)c
(q)I packets cross e in any I-frame in [(I(q))3, (I(q))3 +

3(I(q))2] (the fuzzy region), or
• more than (1+γ3)c

(q)I packets cross e in any I-frame in [I(q) log3 I(q), (I(q))3]
or [(I(q))3 + 3(I(q))2, 2(I(q))3 + 3(I(q))2 − I(q) log3 I(q)].

The dependency, d, of the bad events is bounded as in Lemma 6.4. Two bad
events on two edges are dependent if packets from some session i ∈ A(q) can use both
edges. At most O((I(q))3) packets cross any edge in a block, and each of them can
cross at most O((I(q))3) other edges. Therefore, d = O((I(q))6).

Now, to bound the probability p of a bad event happening on some edge e, we
consider the three intervals separately and sum their respective probabilities. From
Lemma 6.3 we only consider frames of length I such that log2 I(q) ≤ I ≤ 2 log2 I(q).

Take first some I-frame in [(I(q))3, (I(q))3 + 3(I(q))2] (the fuzzy region). From
Lemma 6.5 we know that the relative congestion for frames of size (I(q))2 or longer
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is at most (1 + 2/I(q))c(q) = Θ(1). Then, by choosing R = B, r = (1 + 2/I(q))c(q),
s = (I(q))2, and t = I, we can use Lemma 6.2 to show that, for any constant k2, there

is some σ2 = Θ(1)/
√

log I(q) such that the probability p1 of having relative congestion
on e in the I-frame larger than c(q)(1 + 2/I(q))(1 + σ2) = c(q)(1 + γ2) is smaller than

(I(q))−k2 . Note that γ2 = Θ(1)/
√

log I(q).
Take now some I-frame in [I(q) log3 I(q), (I(q))3] which starts at step j. Given

the way delays are inserted, by the jth step an active packet with delay x has been
delayed jx/(I(q))3 steps. Thus, the delay of an active packet at the jth step is
essentially a random value uniformly chosen from [1, j/I(q)]. For j ≥ I(q) log3 I(q) the
value j/I(q) ≥ log3 I(q).

Note that before inserting delays, from Lemma 6.4 the relative congestion in any
frame of length log2 I(q) or larger in the interval [1, (I(q))3] was at most (1 + γ1)c

(q).
Then, we can make R = [1, (I(q))3], r = (1 + γ1)c

(q), s = log3 I(q), and t = I,
and we use Lemma 6.2 to show, for any constant k3, the existence of some σ3 =
Θ(1)/

√
log I(q) such that the probability p2 of having relative congestion larger than

(1+σ3)(1+γ1)c
(q) = (1+γ3)c

(q) on e in the I-frame is smaller than (I(q))−k3 . Again,

γ3 = Θ(1)/
√

log I(q).
By symmetry, the same value γ3 makes the probability of a bad event happening

on e in some I-frame in [(I(q))3 + 3(I(q))2, 2(I(q))3 + 3(I(q))2 − I(q) log3 I(q)] smaller
than (I(q))−k3 .

There are O((I(q))3 log2 I(q)) possible I-frames as described in total. Hence, we
can choose values for k2 and k3 such that the probability of a bad event is bounded as
p ≤ (p1 + 2p2)O((I(q))3 log I(q)) < O((I(q))7). Therefore, we can guarantee 4pd < 1
and invoke the Lovász local lemma to prove the claim.

Finally, we bound the frame size and the relative congestion in the remaining
intervals of the block in the following lemma.
Lemma 6.7. The relative congestion in any frame of size log4 I(q) or larger in

the intervals [1, I(q) log3 I(q)] and [2(I(q))3+3(I(q))2−I(q) log3 I(q), 2(I(q))3+3(I(q))2]
is at most

(1 + γ1)(1 + 1/ log I(q))c(q) = (1 + γ4)c
(q).

Proof. Let us first consider some I-frame in [1, I(q) log3 I(q)]. Recall that, before
inserting delays, the relative congestion for frames of size log2 I(q) or more was at most
(1+ γ1)c

(q). In the interval no packet is delayed more than log3 I(q) steps. Therefore,
the packets crossing some edge e in the I-frame could have crossed e in some interval
of at most I + log3 I(q) steps, and the congestion in the I-frame can be of at most
(I + log3 I(q))(1 + γ1)c

(q). For I ≥ log4 I(q) the claim follows. The proof for interval
[2(I(q))3 + 3(I(q))2 − I(q) log3 I(q), 2(I(q))3 + 3(I(q))2] is similar.

From the above two lemmas we have that any frame of length at least log4 I(q)

in each of the different intervals has at most a relative congestion (1 + γ)c(q), where

γ = max(γ2, γ3, γ4) and γ = O(1)/
√

log I(q). We need to be careful now with the
relative congestion in frames that overlap several intervals or several blocks. We can
safely say that for any frame of size I(q+1) = log5 I(q) or larger in the schedule S(q+ 1

2 )

obtained after the frame refinement, the relative congestion is at most (1 + δ(q))c(q)

for some δ(q) = β/
√

log I(q) large enough.

6.3. Conversion for schedule S(q). In the conversion process we transform
the schedule S(q+ 1

2 ), obtained from the frame refinement step, into a new schedule
S(q+1). In this new schedule, all the sessions in B(q+1) which were fractional in S(q)
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Service time

Arrival time

V

U

�i �i �i

2T − Ti 2TTT − Ti

Fig. 6.3. Session-i packets that are injected in interval U are assigned initial tokens in interval
V . The interval V is divided into consecutive intervals of length �i, each of which has si initial
tokens. The initial tokens are shown in solid dots.

have been made integral, and the relative congestion of frames of size I(q+1) or larger
is at most c(q+1) = (1 + δ(q))2c(q).

At the beginning of this step, we inductively assume that the relative congestion is
at most (1 + δ(q))c(q) for any frame of size I(q+1) or larger, where δ(q) = β/

√
log I(q).

If the set B(q+1) is empty, then we skip this conversion step; clearly, the relative
congestion is at most c(q+1) for any frame of size I(q+1), and we are done.

On the other hand, if the set B(q+1) is not empty, then for each session i ∈ B(q+1)

we apply the following two processes. (a) In the discretization process we convert the
schedule for fractional session-i packets into a schedule for integral packets in which
no packet has to wait too long before it starts moving. (b) In the delay-insertion
process we delay the time at which packets start moving (i.e., we insert initial delays)
in such a way that the relative congestion requirements are satisfied.

Discretization. We first show how to transform a fractional session in B(q+1)

into an integral session. Consider a session i in B(q+1). When session i is fractional,
a packet of size r̂i = si/%i is injected at every time step, where %i and si are integer
constants defined in section 5. A fractional packet marches to its destination one edge
at a time with no delay.

We want to replace these fractional packets by integral packets. An integral
packet waits at its source until it finds an unused initial token. Then, it crosses one
edge every time step until it reaches its destination. The number of initial tokens and
their distribution have to be carefully chosen so that no packet waits at its source for
too long.

To transform session i, we consider the two intervals shown in Figure 6.3, U =
[T − Ti, 2T − Ti) and V = [T , 2T − Ti). When session i is converted, we distribute
enough initial tokens in the interval V to accommodate all the session-i arrivals during
U . Integral packets arrive at a rate ri during U , and initial tokens will appear at a
rate roughly equal to r̂i during V . Recall from section 5 that r̂i is slightly larger than
ri. By choosing the interval U long enough (i.e., T large enough), we guarantee that
there are more initial tokens than arrivals.

Let |V | = T − Ti be the length of interval V . We divide V into consecutive
intervals of length %i (starting from the end), and we put si initial tokens in the last
slot of each %i-interval. Note that if |V | is not an integer multiple of %i, then the first
%i-interval is “incomplete.” (See Figure 6.3.) We show that there are enough initial



GENERAL DYNAMIC ROUTING 1617

tokens and that no packet waits too long for an unused one.
Lemma 6.8. For a converted session i ∈ B(q+1), every session-i packet that is

injected during U finds an unused initial token in V within Ti + %i = O(1/ri + Di)
steps of its injection.

Proof. Let x = T /(T − Ti) be the ratio of the length of interval U to the length
of interval V . It suffices to show that si, the number of initial tokens in an %i-interval
(shown in Figure 6.3), is as large as the number of session-i arrivals during an interval
of length x%i. At most n = x%iri + 1 packets can arrive during x%i steps. Since
T ≥ (1 + 4/ε)maxi Ti by definition, we have x ≤ 1 + ε/4 and n ≤ %iri(1 + ε/4) + 1.
By the left-hand side of property 1 of Lemma 5.1, we have n ≤ si. Therefore, we have
enough initial tokens. Since the initial tokens are at the end of an %i-interval, each
packet can use an initial token that appears after the packet arrival time. It is also
easy to verify that an unused initial token appears within Ti + %i = O(Ti) steps of the
packet injection.

Delay insertion. Before any delay is inserted for a packet from session i ∈
B(q+1), the packet leaves its source at the time of its initial token and marches to its
destination with no more waiting. Now we insert an initial delay for each session-i
packet, which has the effect of deferring the start time of the packet. We choose
the delays uniformly from [1, %i]. After the initial delay each packet travels to its
destination without further delay.
Lemma 6.9. Consider a particular edge e and a particular t-frame during interval

[T , 2T ). Suppose session i requires edge e; then the expected number of session-i
packets that use e in the t-frame is at most tsi/%i = tr̂i.

Proof. Let us assume first that delays have not been inserted yet. Due to the
way initial tokens are distributed, session-i packets cross edge e in a very synchronous
manner: a batch of at most si packets crosses every %i steps. Since we want an upper
bound on the expectation, we assume that exactly si packets cross e every %i steps.

Let us now partition time in %i-intervals, so that each interval ends with a step in
which packets cross e (i.e., all packets cross e in the last step of the intervals). Observe
that, once delayed, all the packets that crossed e in the last step of some %i-interval
will cross it in the following interval. Then, the total number of packets crossing e
in an %i-interval after the delay insertion is exactly si. Also, after the insertion of
delays, the expected number of packets crossing e in some subinterval of length % of
an %i-interval is exactly %si/%i.

Take now the t-frame, and consider the incomplete %i-intervals it contains. There
can be at most one at the beginning and one at the end. Assume they have lengths
t1 and t2, respectively. From the above observations, the expected number of packets
crossing e in the t1 (resp., t2) subinterval is t1si/%i (resp., t2si/%i). In the remainder
of the t-frame the number of packets crossing is exactly (t− t1 − t2)si/%i. Hence, the
expected number of packets crossing e in the t-frame is (t− t1 − t2)si/%i + t1si/%i +
t2si/%i = tsi/%i.

We now use a Chernoff bound and the Lovász local lemma to show the following.
Lemma 6.10. There exists a way of choosing the initial delays for sessions in

B(q+1) such that the relative congestion in any frame of size I(q+1) or bigger is at
most c(q+1) after the delays are inserted.

Proof. Due to Lemma 6.3, it is sufficient to prove the result for all frames of size
I(q+1) to 2I(q+1). We associate a bad event with each edge e and each I-frame, where
I(q+1) ≤ I ≤ 2I(q+1). A bad event E{e,I} happens when more than Ic(q+1) packets
use e during frame I. We use the Lovász local lemma to show that with nonzero
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probability no bad event occurs. Let Dmax = maxi∈B(q+1) Di, rmin = mini∈B(q+1) ri,
X = maxi∈B(q+1) Di + 1/ri, and %max = maxi∈B(q+1) %i.

We first bound the dependency d of bad events. Note that the probability space
is given by the delays assigned to packets from sessions in B(q+1). Hence, a bad event
E{e,I} is dependent on another bad event E{e′,I′} only if there is a packet p from a

session i ∈ B(q+1) such that there is a nonzero probability that p uses e during the
I-frame and there is a nonzero probability that p uses e′ during the I ′-frame.

There are at most 1/rmin sessions in B(q+1), each of which is at most Dmax long.
Therefore, E{e,I} depends on E{e′,I′} for at most Dmax/rmin = O(X2) choices of
e′. Furthermore, intervals I and I ′ cannot be more than Dmax + %max steps apart.
(Otherwise any session-i packet either has probability 0 of crossing edge e during I
or probability 0 of crossing e′ during I ′.) Therefore, the starting point of I ′ is limited
to 2Dmax + 2%max + 4I(q+1) locations, and the total possible choices for I ′ is at most
(2Dmax +2%max +4I(q+1))I(q+1) = O(X(I(q+1))2). We conclude that the dependency
d is O(X3(I(q+1))2).

We now bound the probability p that a bad event E{e,I} happens. By our in-
ductive assumption, the frame congestion on edge e during the I-frame is at most
(1 + δ(q))c(q)I before the conversion. Let S be the set of sessions in B(q+1) that use
edge e. When sessions in B(q+1) are fractional, they contribute exactly I

∑
i∈S r̂i to

the frame congestion. Lemma 6.9 implies that the expected frame congestion due
to the sessions in B(q+1) is at most I

∑
i∈S r̂i after the initial delays are inserted.

The congestion due to sessions not in B(q+1) does not change during the conver-
sion. Hence, the expected frame congestion on edge e during the I-frame is at most
(1 + δ(q))c(q)I = µ. We bound the probability of E{e,I} as follows.

p = Pr
[

Frame congestion on e in I > c(q+1)I
]

= Pr
[

Frame congestion on e in I > (1 + δ(q))µ
]

≤ e−(δ(q))2µ/3

≤ e−(1−ε)β2I(q+1)/(3 log I(q))

≤ e−(1−ε) β2

3 (I(q+1))1/5(I(q+1))3/5

≤ e−(1−ε) β2

3 (I(q+1))1/5 log6/5 X .

The first inequality follows from Lemma 2.3. The second inequality holds since µ >
(1− ε)I ≥ (1− ε)I(q+1) and from the definition of δ(q). The third inequality follows
from the recurrence for I(q+1). The last inequality follows from the fact that log2 X ≤
I(q+1). (This explains the need for log2 Xi ≤ I(q+1) in the definition of B(q+1).)

When β is a sufficiently large constant, we have 4dp < 1. Hence, the Lovász local
lemma implies that with nonzero probability no bad events occur. That is, there
exists a way to choose the initial delays for sessions in B(q+1) such that for all frames
of size I(q+1) or larger the relative congestion is at most c(q+1).

Note that in the proof of this lemma we associate a bad event with each edge e
and each interval I. Why couldn’t we associate a bad event with each edge e only
and then use a union bound on the number of intervals, as in Lemma 6.4? This is
because we are considering all the session-i packets during an interval of length T ,
which can be much bigger than 1/ri + Di for some sessions i.

6.4. Termination at schedule S(ζ). The succession of refinement and con-
version terminates at schedule S(ζ) when the frame size I(ζ) becomes smaller than
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or equal to w, a constant defined in section 5. The following lemma shows that the
relative congestion of S(ζ) is small.

Lemma 6.11. In the schedule S(ζ) all sessions are integral and the relative con-
gestion is at most c(ζ) < 1 for any frame of size I(ζ) or larger.

Proof. One can verify that B(q+1) forms a partition of all the sessions. There-
fore, all the sessions are integral in the schedule S(ζ). By our induction, the relative
congestion is at most c(ζ) for all frames of size I(ζ) or larger. Hence, we only need to
show that c(ζ) < 1.

Due to the termination conditions, x ≤ I(ζ−1), where x is defined in section 5.
Let ∆ = β/

√
log x, and observe that δ(ζ−1) ≤ ∆ < 1. By the recursive definition of

c(ζ), we have

c(ζ) = (1 + δ(ζ−1))2(1 + δ(ζ−2))2 . . . (1 + δ(0))2c(0)

< (1 + ∆)2(1 + ∆2)2(1 + ∆4)2(1 + ∆8)2 . . . c(0)

≤ (1−∆)−2
{
(1−∆)2(1 + ∆)2(1 + ∆2)2(1 + ∆4)2(1 + ∆8)2 . . .

}
c(0)

≤ (1−∆)−2c(0)

=
(
1− β/

√
log x

)−2

c(0)

=
1− ε/2

1− ε/2

= 1.

The first inequality holds since δ(q) < (δ(q+1))2 for all q by the recurrence defined
in section 5. The third inequality holds since ∆ < 1, and therefore the “telescope
product” in the braces is less than 1. The last equality holds by the above choice of
x and the definition of c(0) in section 5.

Now, we have to make sure that in the resulting schedule S(ζ) no packet waits
too long. The conversion step guarantees that when a session i becomes integral, no
packet waits more than O(Di+1/ri) steps before it starts moving, and it does not wait
anymore. The last frame refinement step also guarantees that a moving packet never
waits more than once every I(ζ−1) steps. However, all the frame refinement steps that
an integral packet has to go through can, in fact, delay the time it starts moving.
The following lemma shows that this delay does not add up to a large amount, and
therefore that a session-i packet reaches its destination in at most O(Di +1/ri) steps
in the schedule S(ζ).

Lemma 6.12. During frame-refinement a session-i packet is delayed by at most
2(Di + 1/ri) steps before it starts moving.

Proof. Suppose session i first becomes integral in schedule S(q′). Consider a
session-i packet p. For schedule S(q), where q ≤ q′−1, p is never delayed during frame
refinement. For schedule S(q), where q ≥ q′, p is delayed by at most I(q) + (I(q))2

steps before it starts moving. Therefore, the total delay inserted during all the frame
refinement steps is at most

∑
q≥q′ I

(q) + (I(q))2. Since session i becomes integral for

schedule S(q′), we must have i ∈ B(q′). By the definition of B(q′), Di+1/ri ≥ (I(q
′))2.

Since I(q) decreases polylogarithmically, a session-i packet is delayed during frame
refinement by at most 2(Di + 1/ri) steps before it starts moving.

We proceed to prove that S(ζ) has all the properties.

Theorem 6.13. Given networkM and a set of sessions as defined in section 1.2,
there is a schedule S(ζ) such that the following hold.
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1. The relative congestion is at most 1 for any frame of size larger than a certain
constant.

2. After leaving its source, each packet waits at most once every O(1) steps,
which implies that all edge queues in M have size O(1).

3. For all sessions i, any session-i packet reaches its destination within O(1/ri+
Di) steps of its injection.

4. All session-i arrivals during [T −Ti, 2T −Ti) are serviced during [T , 2T ), i.e.,
all packets leave their source no earlier than T and reach their destination
before 2T .

Proof.

1. By Lemma 6.11, the relative congestion is at most 1 for any frame of size I(ζ)

or larger. Due to the termination conditions I(ζ) is a constant.
2. By the invariant maintained throughout the frame refinement steps, a packet

waits at most once every I(ζ−1) steps once it leaves its source. In addition,
by property 1 above, at most I(ζ) packets cross an edge during any time step.
Therefore, the edge queues have size at most 2I(ζ).

3. We first show that a session-i packet reaches its destination within Ti steps
after it obtains an initial token. After the initial token, a session-i packet
is deferred by an initial delay during the conversion step and other delays
during the frame refinement step before it could leave its source. The initial
delay is at most %i < 1 + 8/(εri), and the delay during the refinement is at
most 2(Di +1/ri) by Lemma 6.12. Once the packet starts moving, it reaches
its destination in at most 2Di steps by property 2. Therefore, a session-i
packet reaches its destination within 4Di + 1 + (8/ε + 2)/ri < Ti steps after
obtaining its initial token.
Since any session-i packet obtains an initial token within Ti + %i steps of its
injection by Lemma 6.8, the packet reaches its destination within 2Ti + %i =
O(1/ri + Di) steps of its injection.

4. For all session-i arrivals during [T − Ti, 2T − Ti), the initial tokens are in
[T , 2T − Ti). From the discussion of property 3, a session-i packet reaches
its destination within Ti steps after it obtains an initial token. Therefore,
all packets leave their sources no earlier than T and reach their destinations
before 2T .

6.5. The final schedule for the original network N . We now describe how
to create a schedule SN for network N from S(ζ). In SN at most one packet at a time
crosses each edge in N . Recall that in the construction ofM from N , each edge e in
N is replaced by 2w consecutive edges e1, . . . , e2w, where w is a constant defined in
section 5.

We first partition the time interval [T , 2T ) into consecutive intervals of length w
(recall that by definition T is a multiple of w). For each w-interval and each edge
f in M, as many as w packets, p1, p2, . . . , pw, can cross f during the w-interval by
schedule S(ζ). We smooth out S(ζ) so that pj is the jth packet to cross f in the w-
interval, where p1, . . . , pw represents an arbitrary ordering. After smoothing, a packet
may not be scheduled to cross the edges on its route in order. For example, a packet
may be scheduled to cross edge f before g, whereas f follows g on the route inM. A
packet may also be scheduled to leave its source before its injection time. However,
S(ζ) after smoothing does have the property that at most one packet at a time crosses
each edge. We define SN as follows. SN schedules a packet p to cross e in N at time
t if and only if S(ζ) after smoothing schedules p to cross e2w inM at time t.
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Lemma 6.14. In SN , each packet is scheduled to leave its source after its injection
and is scheduled to cross the edges on its route in order.

Proof. We first show that each packet crosses the edges on its route in order.
Consider a packet p. Let e and ê be two edges on p’s route in N , where ê follows e.
Let t and t̂ be the times that p crosses e and ê in schedule SN . We shall show that
t < t̂.

Let e2w and ê2w be the edges in M that correspond to e and ê. Let τ and τ̂ be
the times that p crosses e2w and ê2w in the schedule S(ζ) before smoothing. Since p
crosses the edges inM in order before smoothing, we have

τ + 2w ≤ τ̂ .(6.3)

In schedule SN , packet p crosses e at time t, which is shifted by at most w − 1 steps
from τ . Similarly, t̂ is shifted by at most w − 1 steps from τ̂ . Hence we have

τ − (w − 1) ≤ t ≤ τ + (w − 1),
τ̂ − (w − 1) ≤ t̂ ≤ τ̂ + (w − 1).

From (6.3) and the above inequalities, we have t < t̂. Therefore, p crosses the edges
on its route in order.

The proof that packet p leaves its source after its injection time is similar. Suppose
that p is injected into the network at time s. Let edge e be the first edge on the route
of p in network N , and let t be the time that p crosses e in SN . Also, let e2w be
the corresponding edge inM, and let τ be the time that p crosses e2w in S(ζ) before
smoothing. Since in S(ζ) before smoothing p crosses the edges in order and leaves its
source after its injection, we have

s + 2w ≤ τ.

In schedule SN , packet p crosses e at time t, which is shifted by at most w − 1 steps
from τ . Hence we have

τ − (w − 1) ≤ t ≤ τ + (w − 1).

Therefore, s < t and packet p leaves its sources in N after the injection time.
We summarize the properties of SN .
Theorem 6.15. Schedule SN satisfies the following properties.
1. At most one packet at a time crosses each edge in N .
2. After leaving its source, each packet waits a constant number of steps to cross

an edge, which implies all the edge queues in N have a constant size.
3. For all sessions i, any session-i packet reaches its destination within O(1/ri+

di) steps of its injection.
4. All session-i arrivals during [T −Ti, 2T −Ti) are serviced during [T , 2T ), i.e.,

all packets leave their source no earlier than T and reach their destination
before 2T .

Proof. The smoothing process guarantees property 1. Properties 2 and 3 come
from properties 2 and 3 of S(ζ) given in Theorem 6.13, the construction of M from
N , and the fact that each packet is scheduled to reach its destination in SN at most
w steps later than in S(ζ).

To see property 4, recall that the interval [T , 2T ) is partitioned into intervals of
size w (with one interval possibly longer than w), and that schedule S(ζ) is smoothed
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out within each w-interval. Therefore, if a packet is scheduled to cross an edge e
during [T , 2T ) according to S(ζ), the packet must also be scheduled to cross e during
[T , 2T ) according to SN . Property 4 follows. Property 4 of the above theorem implies
that all intervals of [0, T ), [T , 2T ), etc. can be scheduled independently.

6.6. Derivation of the templates. We now describe how to transform SN
into a template-based schedule. Property 4 of Theorem 6.15 says that all packets
considered in schedule SN (those injected in interval [T −Ti, 2T −Ti) for each session
i) move from their sources to their destination during interval [T , 2T ). For this
reason, we choose T as the size of each template. Recall that in the conversion step
of section 6.3, the placement of the initial tokens is independent of the actual packet
arrival times. The placement is simply a result of randomization added onto the fixed
configuration shown in Figure 6.3. As we have shown, even if each session-i initial
token is owned by a session-i packet, we can schedule these packets by schedule SN .
Then, if we place a session-i token in the template of edge e whenever a session-i
packet crosses e in SN , the movement of each packet determines a token sequence,
and these token sequences define the locations of all the tokens. We emphasize that
the placement of these tokens is fixed as the initial tokens are.

Obviously, the token lag is O(1) for all sequences and the end-to-end delay is
O(1/ri + di) for all session-i token sequences. Since each session-i packet is able to
obtain an initial token within O(1/ri + di) steps of its injection, Theorem 2.2 implies
that the template-based schedule defined by the token sequences achieves a delay
bound of O(1/ri + di) and constant-edge queues. Combined with Theorem 2.2, we
have a template-based schedule with desired delay bounds and constant-edge queues.
In summary, we have the following theorem.
Theorem 6.16. Consider an arbitrary network in which sessions are defined.

Each session i is associated with an injection rate ri and path length di. Packets are
injected into the network along these sessions subject to the injection rates. If the
total rate on each edge is at most 1 − ε for a constant ε ∈ (0, 1), then there exists a
template-based schedule such that each session-i packet reaches its destination within
O(1/ri +di) steps of its injection and at most one packet crosses an edge at each time
step. This schedule also maintains constant-edge queues.
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Abstract. A lower bound of Ω(
√

log k/ log log k) is proved for the competitive ratio of ran-
domized algorithms for the k-server problem against an oblivious adversary. The bound holds for
arbitrary metric spaces (having at least k+1 points) and provides a new lower bound for the metrical
task system problem as well. This improves the previous best lower bound of Ω(log log k) for arbitrary
metric spaces [H.J. Karloff, Y. Rabani, and Y. Ravid, SIAM J. Comput., 23 (1994), pp. 293–312]
and more closely approaches the conjectured lower bound of Ω(log k). For the server problem on
k + 1 equally spaced points on a line, which corresponds to a natural motion-planning problem, a
lower bound of Ω( log k

log log k
) is obtained.

The results are deduced from a general decomposition theorem for a simpler version of both the
k-server and the metrical task system problems, called the “pursuit-evasion game.” It is shown that
if a metric spaceM can be decomposed into two spacesML andMR such that the distance between
them is sufficiently large compared to their diameter, then the competitive ratio for this game onM
can be expressed nearly exactly in terms of the ratios on each of the two subspaces. This yields a
divide-and-conquer approach to bounding the competitive ratio of a space.

Key words. lower bounds, randomized algorithms, k-server, task systems, on-line algorithms,
competitive analysis
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1. Introduction and main results. On-line computation is a setting in which
randomization has been shown to have a provable advantage over determinism (see,
e.g., [BE]). An on-line computation problem typically involves responding to a se-
quence of requests in order to minimize some cost function. The standard measure
of success is the competitive ratio [ST, KMRS], which is, roughly, the maximum over
all request sequences of the ratio of the cost charged to the algorithm on a request
sequence, to the optimal off-line cost of servicing that sequence. It is useful and
customary to view the request sequence as chosen by an adversary who knows the
algorithm being used and seeks to force this ratio to be large. Against a deterministic
algorithm, the adversary can completely predict the responses of the algorithm, and
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this gives it great power for forcing the algorithm to perform badly. Against a ran-
domized algorithm the adversary knows the algorithm but not the random choices of
the algorithm. Intuitively, this can be interpreted by saying that after each succes-
sive request, the adversary “knows” only a probability distribution over states of the
algorithm rather than the precise state. This restriction on the adversary provides
the potential advantage of randomization. (Note that here and throughout this pa-
per we are discussing a version of the adversary known as an “oblivious” adversary
[BBKTW, RS]. There are other, more powerful, adversaries that are less vulnerable
to randomization.)

In the well-known k-server problem, an algorithm controls k servers, each of
which occupies some point in a metric space M. At each time step the algorithm
is given a request, which is a point in M, and must serve it by moving a server to
that point if none is there already. The algorithm is charged a cost equal to the total
distance moved. It has been shown that for any metric space having at least k + 1
points no deterministic on-line algorithm can achieve a competitive ratio less than k
[MMS]. (Note that the problem is nontrivial only if there are at least k + 1 points.)
The well-known k-server conjecture [MMS] says that for any metric space, there is
a deterministic on-line algorithm that can achieve a competitive ratio of k. In other
words, if we define the competitive ratio of a metric space to be the minimum ratio
achievable by any algorithm, then the conjecture is that for the k-server problem, the
deterministic competitive ratio of any metric space on at least k+1 points is exactly
k. A breakthrough result [KP] provided a deterministic algorithm with competitive
ratio 2k − 1, improving on the previous exponential upper bounds [FRR, Gro].

The power of randomization in this setting was first demonstrated for the uniform
metric space on k + 1 points, U(k + 1), in which all pairs of distinct points are
equidistant. For this space there is an O(log k)-competitive algorithm, and indeed
this is a lower bound.

Theorem 1.1 (see [FKLMSY, MS, BLS]). The k-server problem for U(k + 1)
has a randomized competitive ratio exactly 1 + 1

2 +
1
3 + · · ·+ 1

k ∼ ln k. In fact, these
bounds hold for uniform metric spaces of any size greater than k. Various people have
speculated on the following conjecture.

Conjecture 1.1. For any k and any metric space M on more than k points,
the randomized competitive ratio of the k-server problem onM is Θ(log k).

Unlike the deterministic case, where the lower bound is relatively easy and only
the upper bound seems difficult, neither bound has been proved in the randomized
case. For the lower bound, the previous best result is the following.

Theorem 1.2 (see [KRR]). Let k be a positive integer, and let M be a metric
space with at least k + 1 points. Then the k-server problem on M has randomized
competitive ratio Ω(min{log k, log log |M|}).

IfM is sufficiently large (exponential in k), then the lower bound in Conjecture
1.1 holds. For arbitrary spaces, in particular those whose size is polynomial in k, the
lower bound is Ω(log log k). One of the main results of this paper is to improve this
lower bound.

Theorem 1.3. For any metric space M with at least k + 1 points, the k-server

problem onM has randomized competitive ratio Ω(
√

log k
log log k ).

The competitive ratio of the k-server problem for M is at least as large as the
ratio for a subspace ofM, as the adversary can restrict its requests to that subspace.
Thus a lower bound on the competitive ratio of the k-server problem for the case that
the space has exactly k+1 points implies the same lower bound for every metric space.
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One way to view this special case is to think of the algorithm as occupying a single
point of the space (corresponding to the unique location where there is no server) and
to think of the adversary as probing points of this space. When the adversary probes
the point on which the algorithm stands, the algorithm must move to a different
location. We call this the pursuit-evasion (PE) game and call the adversary the
pursuer and the algorithm the evader. This paper is about this game. It should be
noted that the PE game bears a superficial resemblance to the cat-and-mouse game
of [CDRS], but that game models the case of randomized algorithms against a more
powerful adversary.

The PE game also models a problem in robotics. Imagine a robot walking down a
long hallway of some width n (e.g., if n = 3, then the robot may walk either down the
left side, the center, or the right side of the hallway). The hallway contains rectangular
obstacles, and when the robot meets an obstacle, it must go left or right around it.
Any algorithm at all must travel the length of the hallway, so we will not charge for
that. Instead we look at the left/right motion of the robot and compare it to the least
possible left/right motion by an algorithm that knew the placement of the obstacles
in advance. If the hallway has width n, then this is the PE game for the metric space
of n equally spaced points on the real line, a metric space we call L(n). The above

lower bound of Ω(
√

log(n−1)
log log(n−1) ) applies, of course, but for this case we have a better

lower bound.
Theorem 1.4. The PE game on L(n) has randomized competitive ratio Ω( logn

log log n ).

Thus if n > k, the k-server problem on L(n) has competitive ratio Ω( log k
log log k ).

This nearly matches the conjectured bounds.
For general spaces M, the special case of Conjecture 1.1 with k = |M| − 1 can

be stated as the following conjecture.
Conjecture 1.2. For any metric spaceM on n points, the randomized compet-

itive ratio of the PE game onM is Θ(logn).
As noted, the lower bounds of Conjectures 1.2 and 1.1 are equivalent. On the

other hand, an upper bound for the PE game does not have immediate application to
the upper bound conjecture for the general k-server problem. (In fact, there is some
evidence that for k = 2 the competitive ratio might be worse for metric spaces with
more than 3 points; see [LR].) In any case, we believe that a solution to the PE game
would be a major step towards the solution of the more general problem and would
also be interesting in its own right. (Since the appearance of a preliminary version
of the present work, significant progress on this problem has been made. Bartal et
al. [BBBT] gave a polylog(n) algorithm for the PE game, and more generally for any
metrical task system.)

Previously, Conjecture 1.2 was known to be true only for the case of uniform (or
nearly uniform) spaces mentioned earlier. Here, we establish Conjecture 1.2 for a dual
situation. If C > 1, a metric space is C-unbalanced if for any three distinct points,
the ratio of the largest distance to the smallest nonzero distance is at least C. For
example, the metric space consisting of four points in a rectangle with side lengths 1
and C is C-unbalanced.

Theorem 1.5. There is a polynomial p(n) such that for all n, the PE problem
on any p(n)-unbalanced metric space with n points has randomized competitive ratio
between lnn and 3 lnn.

It is worth mentioning that bounds on the competitive ratio of the PE game carry
over to the task system model of [BLS]. In particular, Theorems 1.3, 1.4, and 1.5 hold
if we replace “the PE game onM” by “the task system onM.”
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1.1. Overview of the method. Theorems 1.3, 1.4, and 1.5 are proved as a
consequence of a decomposition theorem for the competitive ratio of the PE game.
(Henceforth, when we say “competitive ratio” we will mean the “randomized compet-
itive ratio.”) The theorem concerns metric spaces that can be split into two subspaces,
where the diameter of each subspace is small relative to the overall diameter, and it
asserts that the competitive ratio of the PE game on the whole space can be expressed
almost exactly in terms of the competitive ratios of the games on the two subspaces.

To state this result, we need some notation. For a finite metric spaceM, δ(M)
denotes its diameter and λ(M) denotes the competitive ratio of the associated PE
game. We use the convention that the competitive ratio of a one point space is 0.
A subspace N of M is said to be γ-small in M for γ < 1 if δ(N ) < γδ(M). We
say that M is bipartite if it can be split into two subspaces ML and MR (called,
respectively, the left space and the right space) such that the diameters of ML and
MR are each less than δ(M)/2. We call (ML,MR) a bipartition ofM. It is easy to
see that if a bipartition exists, then it is unique. IfM is bipartite, then we say that
it is γ-bipartite for γ < 1/2 if δ(ML) and δ(MR) are each γ-small inM, and we call
(ML,MR) a γ-bipartition ofM.

The precise statement of our result is a bit long and is given as Theorem 1.7.
We begin with a simpler version, useful when ML and MR have nearly the same
competitive ratio.

Theorem 1.6. For any ε > 0, there exists a polynomial p such that the following
holds. Let M be a metric space with bipartition (ML,MR). If λmin and λmax are
real numbers such that λmin ≤ λ(MR), λ(ML) ≤ λmax, and each part is 1

p(λmax)
-small

inM, then

λmin + 1− ε ≤ λ(M) ≤ λmax + 1 + ε.

In other words, if MR and ML both have a competitive ratio close to λ, then
the competitive ratio ofM is close to 1 + λ.

The decomposition theorem can be used to estimate the competitive ratio of the
PE game on a space by partitioning it into smaller spaces and applying induction.
The lower bound of the theorem can be applied to nonbipartite spaces by applying it
to a bipartite subspace N and using λ(N ) ≤ λ(M). For example, Theorem 1.4 can
be derived as follows. Let ε = 1/2 and let p() be the increasing polynomial whose
existence is given by Theorem 1.6. Let t be the greatest integer such that �p(log n)t ≤
n and let n′ = �p(log n)t. Note that t = Ω( log n

log log n ). Let j = n′/�p(log n) =

�p(log n)t−1 and let ML and MR be the leftmost j points and rightmost j points
of M = L(n′), respectively. By choice of j, either λ(ML) > log n and we are done,
or else the condition on δ of Theorem 1.6 is satisfied. So λ(L(n)) ≥ λ(L(n′)) ≥
λ(ML ∪MR) ≥ λ(ML) + 1/2. We can continue on ML, letting j

′ = j/�p(log n)
and so forth until after t steps we have run out of points. The competitive ratio of
L(n) is thus at least t/2, which is Ω( logn

log log n ).

The full decomposition theorem provides sharp bounds on λ(M) even ifML and
MR have different competitive ratios. Define the function Z(x) on nonnegative reals
by Z(x) = x/(ex − 1) if x > 0 and Z(0) = 1. The theorem says that λ(M) is well
approximated by max{λ(ML), λ(MR)}+ Z(|λ(ML)− λ(MR)|).

Theorem 1.7. LetM be a metric space with at least three points, having biparti-
tion (MR,ML). Let αR, αL ≥ 0 and set αmax = max{αR, αL} and αdiff = |αR−αL|.
Let δ = δ(M) and δmax = max{δ(ML), δ(MR)}. Suppose that αmax ≥ 1 and that
each part is 1/max{324αmax, α3max}-small inM. Then
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1. if αL ≥ λ(ML) and αR ≥ λ(MR), then λ ≤ αmax + Z(αdiff)(1 + ζ),
and

2. if αL ≤ λ(ML) and αR ≤ λ(MR), then λ ≥ αmax + Z(αdiff)(1− ζ),
where ζ = 23eαdiff

√
δmax

δ α
3
max.

The proof of Theorem 1.7 consists of two parts. We introduce and completely
analyze a new game, called the walker-jumper game, which abstracts the essential
elements of the analysis of a decomposed problem. Then we formally demonstrate
that the competitive ratio of a decomposed problem can be tightly bounded by the
competitive ratio of an associated walker-jumper game.

Theorem 1.6 follows easily by applying the first part of Theorem 1.7 with αL =
αR = λmax and the second part of the Theorem with αL = αR = λmin.

Theorem 1.7 is combined with a Ramsey-type theorem for metric spaces to prove
Theorem 1.3. The cases of Theorem 1.7 needed are the case where ML and MR

have nearly the same competitive ratio, and the “highly unbalanced” case whereML

is large and MR is a single point. The Ramsey-type theorem, which can be viewed
as an extension of a theorem from [KRR], says, roughly, that any metric space of n
points must contain at least one of the following three objects: (a) a roughly uniform

space of around 2
√
logn/ log log n points, (b) two highly separated spaces with small

diameter, each having around n/2
√
logn log log n points, or (c) one point very far from

a small diameter subspace containing nearly all the rest (around n−n/2
√
logn/ log log n

points). (For other Ramsey-like theorems for metric spaces, see [Mat].)

In section 3, we present an informal discussion of the proof to motivate the con-
nection with the walker-jumper game. In section 4 we define the walker-jumper game
and state a theorem which gives its exact competitive ratio, and we describe and prove
the optimal strategies for each of the two players. The precise statement and proof
of the lemma connecting the walker-jumper game to the decomposition theorem is
given in section 5. The applications of the decomposition theorem needed to prove
Theorems 1.3 and 1.5 are given in section 6, which can be read independently of the
previous ones. It requires only the statement of the main decomposition theorem.

Section 5 is long and technical, although the underlying idea as sketched in section
3 is fairly intuitive. Two technical lemmas stated in that section, Lemmas 5.2 and 5.3,
provide quantitative bounds on the additive constant that occurs in the definition of
competitive ratio, and may be of independent interest. The proofs of these lemmas
are deferred to the last section.

2. On-line games: Definitions and preliminary results.

2.1. Notation. As usual, R and N denote, respectively, the sets of real numbers
and the set of nonnegative integers. The set {x ∈ R : x ≥ 0}∪{∞} is denoted by R∞.

We will need the following notation for sequences. Let X be a set. We denote
by Xn the set of sequences consisting of n terms from X and X∗ =

⋃
n≥1X

n. An
element of X∗ is denoted in boldface as x = (x1, x2, . . . , xt); sequences are indexed
from 1 unless otherwise noted. The number t of terms is called the term length of
x and is denoted |x|. If j ≤ t, then we use xj to denote the sequence consisting of
the first j terms of x. If x and y are sequences such that xj = y for some integer j,
then we say that y is a prefix of x and that x is an extension of y. If x and y are
sequences, then xy denotes their concatenation.

If x is a sequence of real numbers of term length n, then ∆x denotes the sequence
of differences: ∆x1 = x1 and for 2 ≤ j ≤ n, ∆xj = xj − xj−1.
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A metric space M consists of a set of points P and a symmetric nonnegative
valued distance function defined on P × P that satisfies the triangle inequality and
is zero only on the diagonal. We abuse notation and use M to denote both the
metric space and the underlying set of points P . The associated metric is denoted by
d = dM. M is assumed to be a finite set unless otherwise noted. The diameter of the
space, δ = δ(M), is the maximum distance between any pair of points.

A sequence of points in a metric space is referred to as a walk in the space. The
domain of the distance function can be viewed as the set of walks of term length 2.
We extend the domain of d to the set of all walks by defining d(x) to be the sum of
the distances between successive pairs of points. We refer to this as the metric length
of the walk.

2.2. Two-player zero-sum games. The on-line algorithmic problems consid-
ered in this paper can be viewed as two-person zero-sum games. We recall some basic
definitions and results about such games. A two-player zero-sum game G with players
MAX and MIN is a triple (SMAX, SMIN, C), where SMAX and SMIN are sets, and a cost
function C = CG, where C : SMIN×SMAX → R∞. An element of SMAX (resp., SMIN)
is called a pure strategy of MAX (resp., MIN). The game is finite if SMAX and SMIN
are finite sets. It will be convenient to use an asymmetric notation: Cq(r) denotes
the value of this function for strategies q ∈ SMIN and r ∈ SMAX. The value Cq(r) is
intuitively the cost to MIN given these two strategies.

In a randomized instance of the game, each player selects a probability distribution
over its strategy set; such a distribution is called a mixed strategy. The set of mixed
strategies for player X is denoted by S̃X . Similarly, we denote a mixed strategy by a
letter with a ∼ over it.

The cost of two mixed strategies q̃ ∈ S̃MIN and r̃ ∈ S̃MAX, denoted by Cq̃(r̃), is the
expected value of Cq(r) with respect to the product distribution of the two strategies.

The value of a mixed strategy r̃ ∈ S̃MAX, denoted by VMAX(r̃), is the infimum of
Cq̃′(r̃) over all q̃

′ ∈ S̃MIN (which may be 0.) Similarly, for q̃ ∈ S̃MIN, VMIN(q̃) is the
supremum of Cq̃(r̃

′) over all r̃′ ∈ S̃MAX (which may be +∞.)
It is well known (and easy to show) that the value of a mixed strategy is deter-

mined by its cost with respect to pure strategies for the other player.
Lemma 2.1. Let G be a two-player zero-sum game.
1. For any mixed strategy r̃ for MAX, VMAX(r̃) is equal to the infimum of Cq(r̃)
over all pure strategies q ∈ SMIN.

2. For any mixed strategy q̃ for MIN, VMIN(q̃) is equal to the supremum of Cq̃(r)
over all pure strategies r ∈ SMAX.

The supremum of VMAX(r̃) over all r̃ ∈ S̃MAX is called the MAX-value of game
G, and is denoted by VMAX(G). A strategy r̃ that attains this supremum is called
an optimal strategy for MAX. Similarly, the infimum of VMIN(q̃) over all q̃ ∈ S̃MIN
is called the MIN-value of game G, and is denoted by VMIN(G), and a strategy q̃
that attains this infimum is called an optimal strategy for MIN. In general, optimal
strategies may exist for one, both, or neither player.

The following elementary result is easily proved.
Lemma 2.2. For any game G, VMAX(G) ≤ VMIN(G).
A game G is said to have the min-max property if (i) VMAX(G) = VMIN(G) and

(ii) both players have an optimal strategy. For such a game, the common value is
denoted V (G) and is called the value of the game. The following fundamental theorem
of two-person games, known as the min-max theorem, was proved by von Neumann
(see, e.g., [vNM]).
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Theorem 2.2.1. Any finite two-player zero-sum game has the min-max prop-
erty.

A subgame of the game G = (SMAX, SMIN, C) is a game G′ = (TMAX, TMIN, C),
where TMAX ⊆ SMAX and TMIN ⊆ SMIN. We say that G′ is equivalent to G if (i)
VMAX(G

′) = VMAX(G), (ii) VMIN(G′) = VMIN(G), and (iii) MAX (resp., MIN) has an
optimal strategy in G′ if and only if MAX (resp., MIN) has an optimal strategy in G.

A subset TMAX ⊆ SMAX dominates SMAX with respect to the game G if for any
strategy r ∈ SMAX, there is a strategy r′ ∈ TMAX such that Cq(r

′) ≥ Cq(r) for all
q ∈ SMIN. Similarly, a subset TMIN ⊆ SMIN dominates SMIN with respect to G if for
any strategy q ∈ SMIN, there is a strategy q′ ∈ TMIN such that Cq′(r) ≤ Cq(r) for all
r ∈ SMAX. We have the following proposition.

Proposition 2.1. Let G = (SMAX, SMIN , C) be a game, let TMAX ⊆ SMAX, and
let TMIN ⊆ SMIN.

1. If TMAX dominates SMAX relative to G, then the subgame (TMAX, SMIN, C)
is equivalent to the game G.

2. If TMIN dominates SMIN relative to G, then the subgame (SMAX, TMIN, C) is
equivalent to the game G.

Finally, we define the notion of the competitive ratio of a two-person game. Let G
be a game whose payoff function is nonnegative. A base-cost function CBASE for the
game G is an R∞-valued function defined on SMAX. We say that the mixed strategy
q̃ for MIN is κ-competitive with respect to CBASE if there exists a constant K such
that for any strategy r for MAX,

Cq̃(r) ≤ κCBASE(r) +K.
The competitive ratio λ = λ(G), with respect to CBASE, is the infimum over all κ

for which there is a κ-competitive algorithm, with respect to CBASE.
A natural choice for a base-cost function is the optimal cost function, COPT(r),

which is defined as the infimum of Cq(r) over all MIN-strategies q. (Notice that
COPT(r) = VMAX(r).) In the context of on-line algorithms, the competitive ratio with
base-cost COPT(r) corresponds to the standard notion of the randomized competitive
ratio of the associated on-line problem. We call COPT the standard base-cost function.
In this paper, we will also have need to refer to nonstandard base-costs.

The following result gives a criterion for upper bounding the competitive ratio
(which is slightly more general than the definition).

Proposition 2.2. Let G be a game with base-cost function CBASE. Let κ > 0

and f : R −→ R be a function such that limx→∞
f(x)
x = κ. Suppose that q̃ is a strategy

for MIN such that for any strategy r for MAX,

Cq̃(r) ≤ f(CBASE(r)).
Then λ(G) ≤ κ.

Proof. It is easy to check that the hypothesis of the proposition implies that q̃ is
κ+ ε competitive for any positive ε, which implies that λ ≤ κ.

The following result gives a criterion for lower bounding the competitive ratio.
Proposition 2.3. Let G be a game with base-cost function CBASE. Let κ > 0

and f : R −→ R be a function such that limx→∞
f(x)
x = κ. Suppose that {r̃i : i ∈ N} is

a sequence of mixed strategies for MAX and {ui : i ∈ N} is a sequence of real numbers
tending to ∞, such that for each i, CBASE(r̃i) ≤ ui, and for each pure MIN-strategy q,

Cq(r̃i) ≥ f(ui).



BOUNDS FOR RANDOMIZED SERVER PROBLEMS 1631

Then λ(G) ≥ κ.
Proof. It suffices to show that if ε > 0, there is no (κ− ε)-competitive algorithm

q̃. Suppose, to the contrary, that q̃ is (κ − ε)-competitive. Then there is a constant
K such that for any pure strategy r

Cq̃(r) ≤ (κ− ε)CBASE(r) +K.
Now by taking expectation with respect to the distribution r̃i, we get

Cq̃(r̃i) ≤ (κ− ε)CBASE(r̃i) +K
≤ (κ− ε)ui +K.

For each i, there is a deterministic strategy qi such that Cqi(r̃i) ≤ Cq̃(r̃i). For that
strategy we have Cqi(r̃i) ≤ (κ− ε)ui+K. Thus by the hypothesis of the proposition,

f(ui) ≤ (κ−ε)ui+K for every i. This contradicts the hypothesis that limx→∞
f(x)
x =

κ.
Taking ui = CBASE(r̃i) in the above Proposition yields the following corollary.
Corollary 2.3. Let G be a game with base-cost function CBASE. Let κ > 0 and

f : R −→ R be a function such that limx→∞
f(x)
x = κ. Suppose that {r̃i : i ∈ N} is a

sequence of mixed strategies for MAX such that CBASE(r̃i) tends to ∞ and such that
for each i and for each pure MIN-strategy q

Cq(r̃i) ≥ f(CBASE(r̃i)).
Then λ(G) ≥ κ.

2.3. The PE game: Definitions and preliminary results. The PE game
for a metric spaceM, denoted PE(M), is a two-person zero-sum game between two
players, the pursuer (the MAX player) and the evader (the MIN player). Intuitively,
the game is played as a sequence of rounds. At all times the evader is located at
some point of the space. In each round, the pursuer probes some point of the metric
space. If she picks the point containing the evader, then the evader must move to
some other point; otherwise, the evader may stay where he is. The cost to the evader
in responding to a sequence of probes is the total distance he travels.

In the language of two-player zero-sum games, the set of pure strategies of the
pursuer is the setM∗ of all finite sequences from the metric space. Such sequences are
referred to as probe sequences. A sequence σ is said to be a response sequence for the
probe sequence ρ if it has the same term length as ρ and σi �= ρi for all i. The point
σi represents the location of the evader at time i. The pure strategies for the evader
are called deterministic response algorithms or, simply, deterministic algorithms. A
response algorithm A maps each probe sequence ρ to a response sequence A(ρ) subject
to the following consistency requirement: for any probe sequence ρ and point a, A(ρa)
extends A(ρ). The consistency requirement formalizes the intuition that the algorithm
determines the response sequence of the evader in an on-line manner, i.e., the ith
response depends only on the first i probes.

The cost function CA(ρ) is defined to be d(A(ρ)), the metric length of the response
sequence generated by the algorithm A on input ρ. COPT(ρ) denotes the minimum of
CA(ρ) over all algorithms A. It is easy to see that this is the same as the minimum
metric length of a response sequence for ρ. (Note that in our definition, the evader
is allowed to choose his own starting point σ1 at no cost. Other authors specify a
starting point σ0 and charge the evader an additional d(σ0, σ1). This is a matter of
convention that does not affect the results.)
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A mixed strategy for the pursuer is a probability distribution ρ̃ over probe se-
quences. A mixed strategy for the evader, called a randomized response algorithm, is
a probability distribution Ã over response algorithms. Since the set of pure strategies
for the evader is uncountable, a probability distribution cannot be specified simply
by assigning a probability value to each strategy. The general approach to mixed
strategies on infinite strategy spaces requires measure theory; in our case the measure
theoretic definition can be restated in algorithmic terms: in a randomized algorithm
the sth move of the evader is chosen according to some probability distribution onM,
where the probability distribution may depend on the first s moves by the pursuer
and the first s− 1 responses of the evader.

We can define a randomized response algorithm formally via decision trees. Let
T = TM denote the infinite rooted tree of degree |M| where the edges from each node
are in one-to-one correspondence with the points ofM and the nodes are labeled as
follows. The root is labeled P (for pursuer), the children of the root are labeled E
(for evader), and the remaining nodes are labeled inductively P or E so that labels
alternate along each path from the root. We can represent a (randomized) on-line
response algorithm Ã by assigning to each E-node v a probability distribution on
M, i.e., a nonnegative function pv onM whose values sum to 1. On probe sequence
ρ1, ρ2, . . . , ρk, the algorithm follows the branch labeled ρ1 from the root. It chooses its
response according to the probability distribution pv for its node, and it follows the
corresponding branch from v to the next P node. It then processes each successive
probe in the same way, following down the tree to depth 2k.

As in section 2.2, we extend the definition of the cost function C to randomized
strategies by defining CÃ(ρ̃) to be the expectation of CA(ρ) with respect to the product

distribution of Ã and ρ̃. Also, COPT(ρ̃) is the expectation of COPT(ρ) with respect to
the distribution ρ̃. (It is important here to emphasize COPT(ρ̃) is not the same as the
minimum of CA(ρ̃) over all A. In computing the former, we choose the best algorithm
for each deterministic ρ and average the cost with respect to ρ̃, while in the latter we
choose the one algorithm that minimizes the average cost with respect to ρ̃.)

For s > 0, an s-block ofM is a prefix-minimal probe sequence whose optimal cost
is at least s−δ. In other words, ρ is an s-block if COPT(ρ) ≥ s−δ, but COPT(τ) < s−δ
for any proper prefix τ of ρ. In the nondegenerate case thatM has at least two points,
an s-block ρ satisfies s − δ ≤ COPT(ρ) < s since the last step can increase COPT by
at most δ. In the degenerate case that M consists of a single point p, we define an
s-block to be the singleton sequence.

Any probe sequence ρ can be parsed uniquely into subsequences ρ1ρ2 . . . ρk where
each successive ρi except possibly the last is an s-block. We refer to this as the s-block
partition of ρ.

The competitive ratio of PE(M) is defined in terms of the standard base-function
COPT and is denoted by λ(M). For brevity, we often refer to this as the competitive
ratio ofM. It is trivial that the competitive ratio of a two-point space is 1. From the
previously noted result of [MMS] (which was proved for the deterministic competitive
ratio), we have the following lemma.

Lemma 2.4. For anyM, λ(M) ≤ |M| − 1.

The PE game on a one-point space does not really make sense. However, it will
be convenient to adopt the convention that the competitive ratio of a one-point space
is 0. With that definition, the main decomposition theorem will hold when one or
both spaces is a one-point space.

The following fact is both well known and easy to prove.
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Proposition 2.4. For any metric spaceM and subspace N , λ(M) ≥ λ(N ).

3. An overview of the decomposition theorem. We are working in a space
M with bipartition (ML,MR), which we call the left space and the right space. In the
present discussion, we assume that each space has at least two points; the degenerate
case that one of the spaces consists of a single point will require special treatment,
which we delay until later. The assumptions of the theorem imply that the distances
within each subspace are small relative to distances between the two subspaces.

We want to express the competitive ratio of the big space in terms of the com-
petitive ratio of each of the two subspaces. The key idea is to abstract the behaviors
of the pursuer and the evader so as to focus on their movements between the spaces,
treating their movements within each space as a “black box.” This idea leads to the
formulation of a new game, called the walker-jumper game, which abstracts the PE
game for such a partitioned space. This game is defined and analyzed in the next sec-
tion, and the proof of the decomposition theorem is then completed in the following
section.

The proof is technical, but the underlying idea is natural. In this section, we
provide intuition for the proof with an informal discussion that leads naturally to
the definition of the walker-jumper game. Throughout the section we make various
plausible but unjustified assumptions and approximations, which will be cleaned up
in the proof.

At each point in the game, the evader is either “on the left” or “on the right.”
While the pursuer probes the opposite space, the evader need do nothing. While the
pursuer probes the subspace occupied by the evader, it seems apparent that either
the evader should follow his optimal randomized response algorithm for that space
(achieving, over that interval of moves, a competitive ratio equal to that for that
space) or he should move to the other space. By randomizing his choice of when to
switch between spaces, he can hope to “fool” the pursuer as to his location.

We view the probe sequence of the pursuer as a sequence of left phases and right
phases, where a left (resp., right) phase consists of moves in the left (resp., right) space.
When the evader uses a randomized strategy, the pursuer will only have a probability
distribution on the location of the evader. In order to maximize the competitive ratio,
the pursuer wants to construct a probe sequence that (i) has a good chance of catching
the evader often, and (ii) has a low off-line cost. For the first goal, it would seem that
she should always probe on the side with higher probability of containing the evader,
while for the second goal, it would seem that she would do well to avoid switching
between spaces too often (this will make it easier for an off-line algorithm to “hide”
safely in one space for long intervals of moves) and thus should tend to make each
phase long.

For s > 0, we defined an s-block to be a prefix-minimal probe sequence of cost at
least s − δ, and we observed that its cost is at most s. For some large integer D (to
be specified later) we define s = δ/D, where δ is the diameter ofM, and define a left
block (resp., right block) to be a probe sequence which is an s-block with respect to the
spaceML (resp.,MR). Note that an s-block forML orMR is not an s-block with
respect to the entire space; indeed, any such block has 0 optimal cost with respect to
the entire space since an off-line evader will respond by staying at one location on the
opposite space.

Recall that the s-block partition provides a canonical way to parse every probe
sequence from a space as a concatenation of sequences, each of which, except possibly
the last, is an s-block. For a given probe sequence of M, parse each left phase
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according to its s-block partition with respect to ML and parse each right phase
similarly. It is reasonable to expect that if s is small relative to the typical cost of
a phase, then we may ignore the “remainder” block of the phase and simply assume
that each left (resp., right) phase is a concatenation of left (resp., right) blocks.

With this assumption, we view the entire probe sequence as a sequence of left and
right blocks. If the pursuer chooses to add a right block, it would seem natural that she
select the right block so that, assuming the evader is on the right, the expected cost to
the evader is maximized. This expected cost cannot exceed sλR (by much) since the
evader can follow his λR-competitive strategy for the spaceMR. On the other hand,
the pursuer can force an evader who stays on the right to incur nearly this much (in
expectation) by selecting her right block according to her optimal randomized s-block
strategy ρ̃s = ρ̃s(MR). Similarly, when the pursuer picks a left block, she can force
an evader who stays on the left to pay roughly sλL.

To summarize, when the pursuer adds a block, if the evader is on the opposite
side, he pays nothing. If the evader is on the same side, he either moves to the other
side immediately, paying roughly δ, or he stays on the original side and incurs an
expected cost of sλR or sλL depending on the side. We assume that δ is much larger
than both sλR and sλL so that it would not pay for him to move to the opposite side
at the beginning and back at the end of the block.

Thus we have a good approximation to the cost of each block to the evader,
depending only on (i) the side from which each block is chosen by the pursuer, and
(ii) the side on which the evader finishes responding to each block.

We would like to get a similar estimate for the off-line cost. For each probe
sequence ρ, define CL(ρ) to be the minimum cost of a response sequence σ whose last
point is on the left and CR(ρ) in the analogous way. We refer to these, respectively, as
the left-optimal and right-optimal cost of ρ. The optimal cost of ρ is just the minimum
of these. Since they clearly differ by at most the diameter δ ofM, we may take CR(ρ)
as a good estimate of COPT(ρ). We want to understand how CL and CR change when
the pursuer adds a left block or a right block. So let ρ be the sequence constructed
so far and consider adding a right block β. It is easy to see that CL(ρβ) = CL(ρ), as
CL(ρβ) = min{CL(ρ), CR(ρ)+δ} and CL(ρ) ≤ CR(ρ)+δ. On the other hand, we can
estimate CR(ρβ) ≈ min{CL(ρ) + δ, CR(ρ) + s}, where the two terms correspond to
the two choices of the off-line evader: either finish the previous block on the left and
move right only at the end of β or finish the previous block on the right and respond
to β on the right.

Let us summarize this discussion by considering the evolution of the parameter
w = (CR − CL)/s. Note that w is always between −D and D. Each right block
increases w by (roughly) 1, subject to w ≤ D and, similarly, each left block decreases
w by 1, subject to w ≥ −D. It is useful to visualize the evolution of w as a walk on
the integer points between −D and D. A right step corresponds to w being increased
by 1, and CR being increased by s. Similarly, a left step corresponds to w being
decreased by 1, and CL being decreased by s.

Notice that if the pursuer adds a right block that causes w to reach D, then the
pursuer may add an arbitrary number of right blocks without affecting CL, CR, or
w. Let us assume that she does this, i.e., a right step from D − 1 to D corresponds
to a huge number of right blocks. The effect of this on the evader is clear: on such a
step he must move to the left space (if he is not there already) or incur a huge cost.
(Note that the evader can compute CR, CL, and w on-line and thus recognize this
situation). Similarly, we may assume that a left step from 1−D to −D corresponds
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to a huge number of left blocks and the evader must move to the right space.
Having associated the pursuer’s probe sequence to a walk on the integer line, we

now can make the following estimates of the off-line cost and the evader’s cost. The
off-line cost is estimated by s times the number of steps to the right. The evader’s
cost is 0 on any step that is taken in the direction opposite the space he occupies.
On a step taken in the direction of the space that he occupies, his cost is sD if he
chooses to move to the other space and is sλR or sλL (depending on his space) if he
chooses to stay in his space. Whenever a right (resp., left) step is taken that reaches
D (resp.,−D), the evader must move to the left (resp., right) space.

This idealization suggests that we can model our problem by a game between two
players, the walker who walks on the line (and corresponds to the pursuer) and the
jumper who jumps between the left and right side (and corresponds to the evader).
In the next section we define this game precisely and analyze it. In the succeeding
section, we then formally show how to use the analysis of this game to establish the
decomposition theorem.

4. Walker-jumper games. The walker-jumper game WJ [D,αR, αL] has pa-
rameters D, a positive integer, and nonnegative real numbers αR and αL. The players
are referred to as the walker (Wendy) and the jumper (Jack). The game “board” is
the set ID = {−D,−D + 1, . . . , D − 1, D}. At each integer time t ≥ 0, the posi-
tion of the game is the ordered pair (wt, jt), where wt ∈ ID is Wendy’s position and
jt ∈ {−D,D} is Jack’s location. The initial position for Wendy is w0 = 0, and Jack
can choose either j0 = −D or j0 = D.

At each time t, a legal move for Wendy consists of one step either to the left
(wt = wt−1 − 1) or to the right (wt = wt−1 + 1). If |wt| = D, Wendy has only one
legal move. Thus the sequence ∆w defined by (∆w)i = wi − wi−1 has entries in the
set {−1, 1}. We refer to ∆wi as the direction of move i. A move of −1 (resp., +1) will
be referred to as a left move (resp., right move). Also, for convenience of notation,
we sometimes use α−1, α1 in place of αL, αR.

Jack’s answer to request wt is either to stay where he is (jt = jt−1) or to jump
to his other allowed position (jt = −jt−1). Jack’s moves are subject to the constraint
that jt �= wt, i.e., if Wendy arrives at Jack’s location (wt = jt−1), then Jack must
jump (jt = −wt).

If jt = (∆w)tD, i.e., Wendy’s move at time t brought her closer to the location
that Jack occupies after his move, then we say that Wendy hit Jack; it is a left hit or
a right hit depending on the direction of Wendy’s move.

Formally, a (pure) strategy for Wendy (a request sequence) is given by a sequence
w = (w0 = 0, w1, w2, . . .) having entries in ID and satisfying |wt −wt−1| = 1 for each
t > 0. A pure strategy for Jack is a function (algorithm) A that maps each finite
request sequence w = (0, w1, . . . , ws) to a sequence (j0, j1, j2, . . . js) in {−D,D}s+1.
The map satisfies the constraint A(w)i �= wi for each i, and it also satisfies the
consistency constraint that if w is an extension of v, then A(w) is an extension
of A(v); this constraint means that A is an on-line algorithm. As usual, we also
consider randomized strategies for both players. A randomized strategy for Wendy is
a probability distribution w̃ on request sequences and a randomized strategy for Jack
is a probability distribution Ã on algorithms.

The cost function for algorithm A on request sequence w, CA(w) (representing
the cost to Jack), is given as follows.

1. Each jump by Jack costs him D.
2. Each right hit by Wendy costs Jack αR.



1636 A. BLUM, H. KARLOFF, Y. RABANI, AND M. SAKS

3. Each left hit by Wendy costs Jack αL.
Thus the cost of step t to Jack, (∆CA(w))t = CA(w

t) − CA(wt−1), can be
written as

(∆CA(w))t = Dχ(jt = −jt−1) + α((∆w)t)χ(jt = (∆w)tD),

where for the predicate P , χ(P ) = 1 if P is true and 0 otherwise.
As usual, if Ã and w̃ are randomized strategies, then CÃ(w̃) is defined to be the

expectation of CA(w) with respect to the distributions.
We are interested in the competitive ratio λ = λ(WJ [D,αR, αL]) of this game

with respect to a nonstandard base-cost function: CBASE(w) is the total number of
steps to the right. Note that CBASE(w) is within ±D of |w|/2. Applying Proposition
2.2, we obtain the following criterion for upper bounding λ.

Corollary 4.1. Let Ã be an algorithm for Jack. Suppose that b is a positive
real such that for all j ∈ N and sequences w of term length j

CÃ(w) ≤ j(b+ g(j)),

where g(j) is a function that tends to 0 as j tends to ∞. Then λ ≤ 2b.
Proof. Let g′(x) = max{d:−D≤d≤D} g(x+ d). The hypothesis implies that for any

w, CÃ(w) ≤ (CBASE(w) + D/2)(b + g′(CBASE(w))). So the corollary follows if we
take f(x) = (x+D/2)(b+ g′(x)), and c = 2b in Proposition 2.2.

Similarly, we get a criterion for lower bounding λ from Corollary 2.3. Recall that
wj denotes the prefix of w up to wj .

Corollary 4.2. Let g(j) → 0 as j → ∞. Let w̃ be a distribution over infinite
sequences for Wendy. Suppose that b is a positive real such that for any algorithm A
for Jack and j ∈ N,

CA(w̃
j) ≥ j(b− g(j)).

Then λ ≥ 2b.
An algorithm A for Jack is called lazy if Jack never jumps when Wendy moves

away from him, i.e., if (∆w)t �= jt−1/D, then jt = jt−1. It is easy to show that any
nonlazy strategy is dominated by some lazy one in the sense that the lazy strategy
performs at least as well on any request sequence by Wendy. Thus we may assume
that Jack is restricted to lazy strategies.

We consider only the case that D is at least αmax = max{αR, αL}. To develop
some intuition for this game, let us first show that αmax ≤ λ ≤ αL + αR + 1.

To see the lower bound assume, without loss of generality, that αL ≥ αR and
consider the following pure strategy for Wendy: move right D times to position D,
and then, alternately, move between D − 1 and D. Each time Wendy moves from D
to D−1, Jack must start at −D and pays αmax (if he doesn’t move) or D (if he does).
After j steps by Wendy, Jack’s cost is at least α j−D

2 = j(αmax

2 − Dαmax

2j ). Applying
Corollary 4.2 yields a lower bound of αmax on the competitive ratio.

To see the upper bound of αL + αR + 1, consider the following pure strategy
for Jack: never jump unless a jump is required (because Wendy arrives at the same
location). On any j step sequence, Wendy takes at most j/2 + D steps in each
direction (since the number of left steps differs from the number of right steps by at
most D) and Jack jumps at most j/(2D) times (since he jumps at most once every
2D steps). Thus Jack’s cost can be bounded above by (αR + αL)(j/2 + D) + j/2.



BOUNDS FOR RANDOMIZED SERVER PROBLEMS 1637

Applying Corollary 4.1 implies an upper bound of αR + αL + 1 on the competitive
ratio.

As we shall see, the trivial lower bound above is much closer to the truth than
the trivial upper bound. The main result of this section is an exact expression for the
competitive ratio λ(WJ [D,αR, αL]). Define βR = 1− αR/2D and βL = 1− αL/2D.

Theorem 4.2.1. For nonnegative real numbers αR and αL and positive integer
D ≥ max{αL, αR}, the competitive ratio λ of the game WJ [D,αR, αL] is given by

λ =

{
αR + βR if αR = αL,
αRβ

2D
L −αLβ

2D
R

β2D
L
−β2D

R

if αR �= αL.

Using elementary estimates and recalling that we defined Z(x) = x/(ex − 1) for
x > 0 and Z(0) = 1, we obtain the following corollary.

Corollary 4.3. For nonnegative real numbers αR and αL, define αmax =
max{αR, αL} and αdiff = |αR − αL|. Suppose that αmax ≥ 1. Let D ≥ α2max be
a positive integer. Then the competitive ratio λ of WJ [D,αR, αL] satisfies

αmax + Z(αdiff)(1− ε) ≤ λ ≤ αmax + Z(αdiff)(1 + ε),

where ε =
4α2

max

D .
We first deduce the corollary from the theorem.
Proof of Corollary 4.3. The case αR = αL is trivial since Z(0) = 1. So assume

αR �= αL. From the theorem and simple algebraic manipulation, we get

λ =
αRβ

2D
L − αLβ2DR
β2DL − β2DR

= αmax +
αdiff

(1 + αdiff

2D−αmax
)2D − 1

.

To prove the corollary, we need to show that for ε = 4α2max/D∣∣∣∣∣
1

(1 + αdiff

2D−αmax
)2D − 1

− 1

eαdiff − 1

∣∣∣∣∣ ≤
ε

eαdiff − 1
,

or, equivalently, ∣∣∣∣∣
(1 + αdiff

2D−αmax
)2D − eαdiff

(1 + αdiff

2D−αmax
)2D − 1

∣∣∣∣∣ ≤ ε.

Note that (1 + αdiff

2D−αmax
)2D ≥ eαdiff by taking x = (2D − αdiff)/αdiff in the

inequality (1 + 1/x)x+1 ≥ e, which holds for all positive x. Thus we may remove
the absolute value from the inequality to be proved. Replacing the denominator by a
smaller quantity, it now suffices to show that

(1 + αdiff

2D−αmax
)2D − eαdiff

eαdiff − 1
≤ ε.

Next we upper bound (1 + αdiff

2D−αmax
)2D:

(
1 +

αdiff
2D − αmax

)2D
= e2D ln(1+

αdiff
2D−αmax

) ≤ e 2Dαdiff
2D−αmax ≤ eαdiff e

αdiffαmax
2D−αmax

≤ eαdiff e
αdiffαmax

D ≤ eαdiff

(
1 +

2αdiffαmax
D

)
.
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(The last inequality uses the assumption α2max ≤ D.) Thus it suffices to show

eαdiff2αdiffαmax/D

eαdiff − 1
≤ ε.

If eαdiff ≤ 2, then since the denominator is at least αdiff , the expression on the
left is at most 4αmax/D. If e

αdiff > 2, then eαdiff/(eαdiff − 1) < 2, and the expression
is at most 4αdiffαmax/D ≤ 4α2max/D.

We now return to the proof of Theorem 4.2.1. This is proved in two parts.

1. We analyze a specific randomized algorithm for Jack and use Corollary 4.1
to obtain an upper bound on λ.

2. We analyze a specific randomized strategy for Wendy (a probability distribu-
tion on request sequences) and use Corollary 4.2 to obtain a lower bound on λ.

4.1. The upper bound: A strategy for the jumper. We begin with an
explicit description of a randomized strategy for Jack. The strategy is simple but not
particularly intuitive; we will motivate it as we analyze it.

Jumper strategy.

1. The strategy is defined in terms of 2D + 1 parameters 0 = p−D < p−D+1 <
p−D+2 < · · · < pD−1 < pD = 1, which are specified below. Initially, Jack
chooses his initial position to be −D with probability p0. At round t + 1, if
Wendy moves in the direction away from jt, Jack does not move. If jt = D
and Wendy moves rightward from wt = j − 1 to wt+1 = j, then Jack moves
to −D with probability

pj−pj−1

1−pj−1
. The probability of jumping from D to −D

is chosen so that if Jack occupied −D with probability pj−1, then Jack is

now at −D with probability pj−1 + (1− pj−1)pj−pj−1

1−pj−1
= pj . If jt = −D and

Wendy moves leftward from wt = j + 1 to wt+1 = j, then Jack moves to D
with probability

pj+1−pj
pj+1

. Here, the probability of jumping from −D to D is

chosen so that if Jack occupied −D with probability pj+1, then Jack is now

at −D with probability pj+1(1− pj+1−pj
pj+1

) = pj .

Notice that this strategy ensures that at all times t, Jack is at −D with
probability pwt

: at the start, Wendy is at location 0 and Jack is at −D with
probability p0; and, as noted above, this property is maintained inductively.

2. The parameters pi that are used are given by

pi =




1
2 +

i
2D if αR = αL,

βi
Lβ

2D−i
R

−β2D
R

β2D
L
−β2D

R

if αR �= αL.

For a given sequence w for Wendy, let Nj,j′ = Nj,j′(w) be the total number of
steps that Wendy takes from j to j′ (which can be nonzero only if j′ ∈ {j− 1, j+1}).
Recall that each right hit costs Jack αR, each left hit costs Jack αL, and each jump
costs Jack D. So each time Wendy takes a step from j to j + 1, Jack pays αR with
probability 1− pj+1 (the probability Jack is at D after the step is taken) and pays D
with probability pj+1 − pj . Similarly, each time Wendy moves from j +1 to j, Jack’s
expected cost is pjαL+(pj+1− pj)D. Therefore, we can express the expected cost to
Jack of the sequence w as
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CÃ(w) =

D−1∑
j=−D

Nj,j+1((1− pj+1)αR + (pj+1 − pj)D) +Nj+1,j(pjαL + (pj+1 − pj)D)

≤
D−1∑
j=−D

(Nj,j+1 + 1)((1− pj+1)αR + pjαL + 2(pj+1 − pj)D).

The inequality follows from the fact that Nj,j+1 + 1 ≥ Nj+1,j .
The expression rj = (1− pj+1)αR + pjαL + 2(pj+1 − pj)D that multiplies Nj,j+1

can be interpreted as the expected cost to Jack if Wendy makes a “round trip” from
j to j + 1. The specific definition of pj given in Jack’s strategy was chosen so that rj
is the same for all j. These values can be determined by introducing a parameter K,
setting the rj = K for each j, solving the resulting linear recurrence relation for pj ,
and then using

∑
pj = 1 to determine K. As is easily verified, this yields

K =

{
αR + βR if αR = αL,
αRβ

2D
L −αLβ

2D
R

β2D
L
−β2D

R

if αR �= αL.

As noted,
∑D−1

j=−DNj,j+1 ≤ 1
2 |w|+D . This leads to

CÃ(w) ≤
D−1∑
j=−D

(Nj,j+1 + 1)rj

≤ K
D−1∑
j=−D

(Nj,j+1 + 1)

≤ 1

2
|w|K + 3DK.

Applying Corollary 4.1 yields λ ≤ K, as desired.

4.2. The lower bound: A strategy for the walker. We now prove a match-
ing lower bound by describing and analyzing a randomized strategy for Wendy. As
for the upper bound, the strategy is simple; we describe it first and motivate it as we
analyze it. Essentially, Wendy’s strategy is to follow a biased random walk on the line,
where the bias to the left or right depends on the direction taken in the previous step.

Walker strategy.
1. The strategy is defined in terms of two parameters σR and σL, which are

real numbers between 0 and 1. If wt = D or wt = −D, then wt+1 is forced.
Otherwise, |wt| < D and Wendy moves as follows. If move t was to the right
(wt = wt−1 + 1), then Wendy goes left at step t + 1 with probability σL
and to the right with probability 1− σL. Similarly, if move t was to the left
(wt = wt−1−1), then Wendy goes right at step t+1 with probability σR and
to the left with probability 1− σR.

2. The parameters σR and σL are defined by σR = αL/2D = 1− βL and σL =
αR/2D = 1− βR.

The intuition behind this strategy is the following. We want to choose a strategy
for Wendy that guarantees that the ratio of Jack’s cost to the base-cost is at least
a certain value, regardless of what Jack’s algorithm is. This suggests that we seek a
strategy that has the property that the expected cost to Jack is essentially independent
of what Jack does. This was the guiding principle in designing this strategy.
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Fix a lazy deterministic strategy A for Jack and define C(w) = CA(w). We
are interested in lower bounding the expectation of C(w) with respect to the above
distribution for Wendy. It will be convenient to introduce a modified cost function,
C∗(w) = C(w) + ψ(w), where the correction ψ depends only on the final step: if
the last step by Wendy scored a hit on Jack (precisely, js = D(ws − ws−1)), then
ψ(w) = D − αR if the hit was to the right and D − αL if the hit was to the left.
Otherwise, ψ(w) = 0. Thus C(w) ≥ C∗(w)−D.

The purpose of introducing this modified cost is that with respect to this cost
measure, the cost to Jack of any given step does not depend on what Jack does at
that step. More precisely, define Jack’s modified cost at step t to be (∆C∗)t(w) =
C∗(wt) − C∗(wt−1). Since we are assuming that Jack is following a lazy strategy,
Jack has an option to move only if jt−1 = (∆w)tD. In this case, if he does not
jump, then his true cost increases by α(∆w)t , while his modified cost increases by
α(∆w)t + ψ(w

t)− ψ(wt−1) = D− ψ(wt−1). If he jumps at time t, then his true cost
goes up by D, but his modified cost goes up by D+ψ(wt)−ψ(wt−1) = D−ψ(wt−1),
which is the same as if he did not jump. The reader can now check the following
lemma.

Lemma 4.4. For any fixed lazy strategy A for Jack, the change (∆C∗)t(w) in the
modified cost at time t is given by the following table.

(∆w)t (∆w)t−1 jt−1 (∆C∗)t(w)

+1 +1 +D αR

+1 +1 −D 0
−1 +1 +D αR −D
−1 +1 −D D
−1 −1 −D αL

−1 −1 +D 0
+1 −1 −D αL −D
+1 −1 +D D

Recall that if |wt−1| = D, then by the rules of the game, it must be the case
that jt−1 = −wt−1, (∆w)t−1 = wt−1/D, and (∆w)t = jt−1/D. Thus in this case,
(∆C∗)t(w) = D.

If |wt−1| < D, then when Wendy moves at time t, her move can depend on
(∆w)t−1, the direction of her last move, but not on jt−1, which she does not know.
So we try a strategy for Wendy in which her probability of moving in each direction
depends on the direction of her last move. This motivates condition 1 in the definition
of the strategy. So consider a strategy satisfying this condition, with σR and σL as yet
unspecified. We now can write down an expression in terms of wt−1 and jt−1 for the
expectation (with respect to this randomized strategy) in the change of the modified
cost at time t for the case |wt−1| < D.

(∆C∗)t(w̃) =




αR −DσL if ((∆w)t−1, jt−1) = (+1,+D),
DσL = (+1,−D),
αL −DσR = (−1,−D),
DσR = (−1,+D).

By selecting σL and σR so that this expectation is independent of jt−1, we obtain
condition 2 of the strategy.
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Having motivated Wendy’s strategy, we now continue with its analysis. The
change in the expected modified cost at time t can now be written as

(∆C∗)t(w̃) =



D if |wt−1| = D,
αR/2 if |wt−1| < D and (∆w)t−1 = +1,
αL/2 if |wt−1| < D and (∆w)t−1 = −1.

To apply Corollary 4.2, we need to lower bound Jack’s expected cost against the
sequence wj generated by the first j steps of Wendy’s strategy.

Wendy’s strategy can be described by a Markov chain with state space {Li :
−D ≤ i < D}⋃{Ri : −D < i ≤ D}, where Wendy is in state Li at time t − 1 if
wt−1 = i and (∆w)t−1 = −1 (she is at point i and her last move was to the left) and
Wendy is in state Ri at time t − 1 if wt−1 = i and (∆w)t−1 = +1 (she is at point
i and her last move was to the right). For state U , let Nj(U) denote the expected
number of visits to state U during the first j steps by Wendy. Also, let p(U) denote
the steady state probability for state U . For large j, Nj(U) = p(U)j(1 + o(1)). Thus
for a sequence w̃ of j steps chosen according to Wendy’s strategy,

C∗(w̃) = D[Nj(L−D) +Nj(RD)] +
1

2

D−1∑
i=1−D

[Nj(Li)αL +Nj(Ri)αR]

= j(1 + o(1))

[
D(p(L−D) + p(RD)) +

1

2

D−1∑
i=1−D

(p(Li)αL + p(Ri)αR)

]
.

Applying Corollary 4.2, we obtain

λ ≥ 2

[
D(p(L−D) + p(RD)) +

1

2

D−1∑
i=1−D

(p(Li)αL + p(Ri)αR)

]
.

We proceed to determine the steady state probabilities of the Markov chain.
The transition matrix of the chain yields the following equations for the steady state
probabilities:

p(Li) = (1− σR)p(Li+1) + σLp(Ri+1) if −D ≤ i < D − 1,

p(LD−1) = p(RD),

p(Ri) = (1− σL)p(Ri−1) + σRp(Li−1) if 1−D < i ≤ D,
p(R1−D) = p(L−D).

Solving this system and recalling that βR = 1 − αR/2D = 1 − σL and βL =
1 − αR/2D = 1 − σR, we get the following solution (which can be easily checked
against the defining equations):

p(Li) =
J

4D

(
βR
βL

)i

,(4.1)

p(Ri) =
J

4D

(
βR
βL

)i−1
,(4.2)

where

J =

{
1 if αR = αL,
(αR−αL)(βLβR)

D

βL(β2D
L
−β2D

R
)

if αR �= αL
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is chosen so that the sum of the probabilities is 1. Notice that p(Li) = p(Ri+1) for all
i and therefore

∑
i p(Li) =

∑
i p(Ri+1) = 1/2. Thus we can rewrite the lower bound

on λ as

λ = 2

[
D(p(L−D) + p(RD)) +

(
1

2
− p(L−D)

)
αL
2

+

(
1

2
− p(RD)

)
αR
2

]

= 2

[
D(βLp(L−D) + βRp(RD)) +

αL + αR
4

]

=
1

2

[(
J(β2DL + β2DR )

(βD−1L βDR )

)
+ αL + αR

]
.

A routine calculation shows that this simplifies to the expression in the theorem.

5. Proof of the decomposition theorem. This section is devoted to the proof
of Theorem 1.7. Recall the notation of the theorem: M is a metric space partitioned
into subspaces ML and MR. Their respective diameters and competitive ratios are
denoted δ, δL, δR and λ, λL, λR. Also δmax = max{δL, δR}, λmax = max{λL, λR}, and
λdiff = |λL − λR|.

The overview of the proof in section 3 developed the walker-jumper game as a
rough model for the PE game on a partitioned space. We now make this connection
precise.

Lemma 5.1. LetML,MR be a partition ofM such that δ
δmax

is at least 32. Let
αR and αL be nonnegative numbers and αmax be their maximum. Let D be an integer

satisfying max{2λmax + 2,
√

δ
δmax
} ≤ D ≤ δ

4δmax
.

1. If αL ≥ λL and αR ≥ λR, then
λ ≤ λ(WJ [D,αR, αL])(1 + η).

2. If αL ≤ λL and αR ≤ λR, then
λ ≥ λ(WJ [D,αR, αL])(1− η),

where

η ≤ 6
δmaxD

δ
.

Given Lemma 5.1 and the analysis of the walker-jumper game, the decomposition
Theorem 1.7 is easily proved.

Proof of Theorem 1.7. For the first part, we need to show

λ− αmax
Z(αdiff)

− 1 ≤ 23eαdiff

√
δmax
δ
α3max.

Leaving D unspecified for now, let us abbreviate λ(WJ [D,αR, αL]) by λ(WJ).
Then the left-hand side may be written and upper bounded as follows:

λ− λ(WJ)
Z(αdiff)

+
λ(WJ)− αmax
Z(αdiff)

− 1 ≤
∣∣∣∣λ− λ(WJ)Z(αdiff)

∣∣∣∣+
∣∣∣∣λ(WJ)− αmaxZ(αdiff)

− 1

∣∣∣∣ .
We bound the two terms in the sum separately. Corollary 4.3 implies that, as long

as D is chosen larger than α2max, the second term is at most 4α2max/D. The first term
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is bounded using Lemma 5.1, the trivial upper bound λ(WJ) ≤ 2αmax + 1 ≤ 3αmax
observed early in section 4, and the fact that Z(x) ≥ e−x for all nonnegative x:∣∣∣∣λ− λ(WJ)Z(αdiff)

∣∣∣∣ ≤ 3αmaxη

Z(αdiff)

≤ 3αmax · 6 · δmaxD
Z(αdiff)δ

≤ 18αmaxδmaxDe
αdiff

δ
.

Now set D to be an integer satisfying
√
δαmax/δmax ≤ D ≤ 19

18

√
δαmax/δmax. This is

possible because the hypothesis of the theorem implies that
√
δαmax/δmax ≥ 18. It

is easily verified that, under the hypothesis of Theorem 1.7, the resulting D satisfies
both the hypothesis D ≥ α2max of Corollary 4.3 and the conditions in Lemma 5.1.
Summing the upper bounds on the two terms using this value of D yields an upper
bound of

19eαdiff

√
α3maxδmax

δ
+ 4

√
α3maxδmax

δ
≤ 23eαdiff

√
α3maxδmax

δ
,

as required for the first part of the theorem.
For the second part of the theorem, either λmax ≥ αmax + Z(αdiff)(1− ζ) or else

we must prove

αmax − λ
Z(αdiff)

+ 1 ≤ 23eαdiff

√
δmax
δ
α3max.

The proof is similar to that of the first part.
Thus it remains to prove Lemma 5.1. The proof of this follows the outline in sec-

tion 3 but needs a lot of technical work which is divided into three subsections. First,
we state two technical results that bound the constants occurring in the definition of
the competitive ratio; the proofs of these lemmas are deferred until the end of the
paper. Then we prove the upper and lower bounds of the lemma.

5.1. Two technical lemmas. In the proof overview, we related a step to the
left (resp., right) by the walker in the walker-jumper game, to the addition of an
s-block for some appropriately chosen s by the pursuer in the PE game. In sketching
how this works, we approximated the cost of such a left block to the evader by sλR.
When we formalize this argument one of the things we will have to do is to bound
the error in this approximation. For this, we will need two lemmas concerning the
existence of “good” strategies for the pursuer and the evader in the PE game.

The competitive ratio for a two-person game was defined, in general, as an infi-
mum over κ for which there is a κ-competitive algorithm. In general, this infimum
need not be attained, i.e., if the competitive ratio is λ, there need not be a λ com-
petitive strategy for MIN. However, as we will see in the next lemma, for the PE
game there is always a randomized evader strategy that attains the competitive ratio.
Furthermore, we can also upper bound the constant K that occurs in the definition
of the competitive ratio.

Lemma 5.2. Let M be a metric space of diameter δ, and let λ denote the com-
petitive ratio of its PE problem. Then there exists an algorithm Ã such that for any
probe sequence ρ

CÃ(ρ) ≤ λCOPT(ρ) + δλ.
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Corollary 2.3 provides a criterion for lower bounding the competitive ratio of any
game. The sequence of strategies r̃i in the hypothesis of the corollary can be viewed
as a witness to the fact that the competitive ratio is at least κ. To prove tight lower
bounds on the competitive ratio, we would like to be able to find such a witness
sequence in the case c = λ.

Lemma 5.3. Let M be a metric space and λ the competitive ratio of its PE
game. For any s > 0, there is a distribution ρ̃s on s-blocks such that for any response
algorithm A,

CA(ρ̃s) ≥ λ(s− δ)− δ.

The proofs require a somewhat tedious technical formulation, after which the
results follow from elementary analysis. So as not to distract from the flow of the
main argument, we defer the proof to the last section of the paper.

5.2. The upper bound (proof of Lemma 5.1, part 1). We now proceed
with the proof of Lemma 5.1. We assume for now that both the left and right space
have at least two points. In the case that one or both of them is degenerate (has only
one point), the proof is similar but requires some technical modifications which we
indicate at the end of the subsection.

The upper bound is proved by associating for each jumper strategy J̃ for WJ [D,
αR, αL] an evader algorithm Ã(J̃) for PE(M) that satisfies that if J̃ is κ-competitive,
then Ã(J̃) is κ(1+η)-competitive. The evader algorithm Ã(J̃) must specify an on-line
rule for responding to a probe sequence. The idea will be to associate the incoming
probe sequence to a walker sequence, apply J̃ to that walker sequence, and then
translate the jumper’s moves into moves for the evader.

We first describe a rule for associating a probe sequence ρ for M to a walker
sequence w = w(ρ). View ρ as the interleaving of two probe sequences, one forMR

(the right subsequence) and one forML (the left subsequence). Define the parameter
s2 = (δ − 2δmax)/D. (The reader should think of this as approximating δ/D.) Parse
each of these subsequences separately into its s2-block partition, as defined in section
2.3. Now build w in the following on-line manner. Each time a right (resp., left) block
of ρ is completed, a right (resp., left) walker step is added to w unless that step will
take the walker outside the bounds [−D,D]. Let ρi denote the prefix corresponding
to the steps up to wi. Let k = |w| and let µ be the portion of ρ coming after the last
s2-block of either subsequence; thus ρ = ρkµ.

Given the jumper strategy J̃ , the algorithm Ã(J̃) responds to the probe sequence
ρ as follows. As the sequence ρ is received, the evader constructs w(ρ) and simulates
the response of J̃ to this sequence. The evader uses the position (left or right) of the
simulated jumper to determine which space to be in; the response by J̃ to a step of
w determines whether the evader continues in the same space or moves to the other.
The times at which the evader switches spaces delimits a sequence of left and right
intervals. During a right (resp., left) interval, the evader ignores probes on the other
side and responds to the subsequence of right (resp., left) probes by applying the
algorithm ÃR (resp., ÃL), where ÃR (resp., ÃL) is the evader strategy for PE(MR)
(resp., PE(ML)) that satisfies the conclusion of Lemma 5.2.

Now, supposing that J̃ is κ-competitive, we need to verify that Ã(J̃) is κ(1 + η)-
competitive. We will deduce this from the following lemma.

Lemma 5.4. Let J̃ be a jumper strategy for WJ [D,αR, αL]. Then for any probe
sequence ρ for PE(M),
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1. COPT(ρ) ≥ (s2 − δmax)CBASE(w(ρ))− δ,
2. CÃ(J̃)(ρ) ≤ (s2+2δmax)CJ̃(w(ρ))+K for some constant K independent of ρ.

Using this lemma and the assumption that J̃ is κ-competitive, we obtain that for
some constants H and H ′ independent of ρ

CÃ(J̃)(ρ) ≤ (s2 + 2δmax)CJ̃(w(ρ)) +K

≤ (s2 + 2δmax)κCBASE(w(ρ)) +H

≤ s2 + 2δmax
s2 − δmax κCOPT(ρ) +H

′

≤
(
1 +

3Dδmax
δ − (D + 2)δmax

)
κCOPT(ρ) +H

′

≤
(
1 +

6Dδmax
δ

)
κCOPT(ρ) +H

′,

where the last inequality follows from δ ≥ 2(D+2)δmax which is an easy consequence
of the hypotheses of the lemma. This implies that Ã(J̃) is (1 + η)κ-competitive, as
required to prove the upper bound.

So it remains to prove Lemma 5.4.
Proof of Lemma 5.4. Define CL(i) (resp., CR(i)), for 1 ≤ i ≤ k, to be the

minimum cost of a response sequence to ρi whose last point is in ML (resp., MR).
Note that COPT(ρ) ≥ COPT(ρk) = min{CR(k), CL(k)}. Since |CL(i)−CR(i)| ≤ δ, we
have COPT(ρ) ≥ CR(k)− δ.

Lemma 5.5. CR(i) ≥ (s2 − δmax)(i+ wi)/2 and CL(i) ≥ (s2 − δmax)(i− wi)/2.
Since CBASE(w) = (k + wk)/2, the first part of Lemma 5.4 follows.
Proof. We prove this by induction on i; the basis i = 0 is trivial. Suppose i > 0.

Assume that (∆w)i = +1; the case (∆w)i = −1 is proved analogously. Thus ρi marks
the end of a right block.

The induction step for CL(i) follows from CL(i) ≥ CL(i− 1). For CR(i), let j < i
be the least index such that (∆w)h = −1 for j < h < i. Thus either j = 0 and wi is
the first step to the right, or wj is the last step to the right prior to wi. It is easy to
see that this implies that i+ wi = j + wj + 2, and hence j ≥ i+ wi −D − 2.

We need to show that any response sequence for ρi that ends on the right costs at
least (s2 − δmax)(wi + i)/2. Consider such a response sequence, written as στ , where
σ is the portion that is a response sequence to ρj.

Note that d(σ) must be at least the minimum of CL(j) and CR(j), which, by
induction and the above expression for j, is at least (s2 − δmax)(j − D)/2 ≥ (s2 −
δmax)(i + wi − 2D − 2)/2. Any move between the two spaces costs at least δ −
2δmax = Ds2, which can be shown to be larger than (s2 − δmax)(D + 1) using the
hypotheses D ≥ √δ/δmax of the theorem. Thus it follows that if there is any move
between spaces subsequent to σ, then the total cost of the response sequence is at
least (s2 − δmax)(wi + i)/2, as required.

So assume that after σ there is no move between spaces. Then σ ends on the right
and all steps of τ are on the right. Since the portion of ρ between ρj and ρi contains
a right s2-block, it follows that τ has optimal cost at least s2 − δmax. Thus

d(στ) ≥ (s2 − δmax)(wj + j)/2 + s2 − δmax
= (s2 − δmax)(wj + j + 2)/2

= (s2 − δmax)(wi + i)/2,
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as required.
We now turn to the proof of the second part of Lemma 5.4. For this we want

to upper bound the expected cost incurred by Ã(J̃) on ρ, in terms of the expected
cost of J̃ on w(ρ). Consider the cost incurred by the evader during each interval that
begins after a move into one space and ends with the move out of that space, or, in
the case of the last such interval, with the end of the sequence ρ. We will compare the
evader’s cost to the cost of the jumper during the corresponding interval. Without
loss of generality, assume that the evader is on the right during this interval and thus
the jumper is at +D. This implies that the simulated walker cannot be at +D at any
step (except possibly the last one) during this interval.

First, consider the case that the interval is not the last such interval. The evader
responds only to the probes that occur on the right during that interval. In the
definition of the algorithm, the subsequence of right probes was partitioned into right
s2-blocks. Let m be the number of s2-blocks that end during this interval. By the
definition of w and the fact that the walker is not at +D at any time during the
interval, it follows that the walker took m right steps during the interval. Thus the
cost to the simulated jumper is mαR for those steps, plus D for the final jump.

Now consider the cost to the evader corresponding to the interval. Since the
evader is on the right, he responds only to the right probes that occur during the
interval. The subsequence of right probes has optimal cost (with respect to the right
space) at most m(s2 + δR) since it is the concatenation of m sequences, each with
optimal cost at most s2. Since the evader uses algorithm ÃR to respond, the expected
cost of responding is at most αRm(s2 + δR) + λRδR ≤ αRm(s2 + 2δR). Adding the
cost of the final move to the left space, which is at most δ, we obtain an upper bound
on the evader’s cost for the interval of

αRm(s2 + 2δR) + δ = αRm(s2 + 2δR) +Ds2 + 2δmax

≤ αRm(s2 + 2δR) +D(s2 + 2δmax)

≤ (αRm+D)(s2 + 2δmax).

Thus the evader’s cost on every interval except the last is at most (s2 + 2δmax) times
the simulated jumper’s cost on the interval.

For the last interval, the cost to the jumper is αRm. To bound the expected cost
to the evader we must include the portion µ of ρ which occurs after the last step by
the simulated walker. This could increase the optimal cost (with respect to the right
space) of the subsequence of right probes in this interval to (m+1)(s2+δR). Thus the
expected cost to the evader within the interval is bounded above by αR(m+ 1)(s2 +
δR) +αRδR, which is in turn bounded above (s2+2δR) times the simulated jumper’s
cost of mαR plus a constant that does not depend on ρ.

We now indicate how to modify the proof in the case that one or both of the
spaces has exactly one point. First, we have to modify the definition of the walker
sequencew(ρ) associated to a probe sequence. As before, we view ρ as the interleaving
of a right and a left subsequence, and we parse each of these sequences into their s2-
block partitions. Recall that for one-point spaces, we defined an s2-block partition
to be the partition into singleton blocks. As before, at the completion of a left or
right block, the next step of the walker is generated. For a block corresponding to a
nondegenerate subspace, the walker step is generated as before. A block corresponding
to a degenerate subsequence will correspond to not one but a sequence of walker steps
that take the walker all the way to the corresponding endpoint (−D for a left block
and D for a right block). If this is the ith completed block, then we abuse notation
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by setting wi = D for a right block and wi = −D for a left block; thus we compress
all of the walker steps corresponding to a degenerate block into one step.

Lemma 5.4 can be extended to hold in this case. The definitions of CL(i) and
CR(i) need to be modified in Lemma 5.7: if the left (resp., right) space is degenerate
and ρ(i) ends with a left (resp., right) block, then the definition of CL(i) (resp.,
CR(i)) does not make sense and we modify it by defining CL(i) = CR(i) + δ (resp.,
CR(i) = CL(i) + δ). The proof of Lemma 5.7 is then routine.

In the proof of the second part of Lemma 5.4 we analyze intervals defined by
moves of the evader from one space to the other. The case of an interval in which
the evader occupies a degenerate space is different than those analyzed but is actually
easier since during the interval there are no requests inside the degenerate space and
the cost to the evader is the cost of the move to the other space at the end of the
interval which is bounded above by δ. The cost to the jumper during the same interval
is just D.

5.3. The lower bound (proof of Lemma 5.1, part 2). As with the upper
bound, we prove the lower bound in the case that ML and MR each have size at
least two. Afterwards, we indicate how to modify the proof to handle the degenerate
case that one or both spaces has only one point.

The strategy of the lower bound is the “mirror image” of the upper bound proof.
That is, we will define a function which maps each evader algorithm Ã for PE(M) to
a jumper algorithm J̃(Ã) for WJ [D,αR, αL] and has the following property: if Ã is a
κ-competitive algorithm for the PE(M), then J̃(Ã) is a κ

1−η -competitive algorithm

for WJ [D,αR, αL], where η ≤ 6 δmaxD
δ . This immediately implies the lower bound of

the lemma.
There are two main steps. Define the parameter s1 = δ/D.
1. For each walker strategy w for the game WJ [D,αR, αL], we define a distri-

bution µ̃(w) on probe sequences for the pursuer in the PE game onM such
that

CBASE(w)(s1 + δmax) ≥ COPT(µ̃(w)).(5.1)

2. For each (randomized) evader algorithm Ã we define a jumper algorithm J̃(Ã)
for WJ [D,αR, αL] and show that for all evader algorithms Ã and walker
strategies w

CÃ(µ̃(w)) ≥ CJ̃(Ã)(w)(s1 − 2δmax)(5.2)

(where the first cost function is with respect to PE(M) and the second is
with respect to WJ [D,αR, αL]).

It follows immediately from these two steps that if Ã is κ-competitive, then there
is a real number K such that for any walker sequence w

(1− 2δmaxD/δ)(1− δmaxD/δ)CJ̃(Ã) ≤ κCBASE(w) +K,

and thus J̃(Ã) is κ
(1−3δmaxD/δ) -competitive, which will complete the proof.

For this proof, we define a left block (resp., right block) to be an s1-block of the
spaceML (resp.,MR). For a walker sequence w = (w0 = 0, w1, . . . , wk) in the game
WJ [D,αR, αL] we say that probe sequence ν forM is compatible with w if ν is the
concatenation of k probe sequences ν1ν2 . . . νk satisfying the following.
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1. For each i such that |wi| �= D, νi is a single right block if (∆w)i = 1 and is a
single left block if (∆w)i = −1.

2. Let N be a large integer parameter to be specified later. If |wi| = D, then νi
is the concatenation of N right blocks if (∆w)i = 1 and is the concatenation
of N left blocks if (∆w)i = −1.

The sequences νi are referred to as segments and are designated as left or right
segments depending on whether they are fromMR orML. A segment consisting of
a single block is called a small segment, and one consisting of N blocks is called a
large segment.

The distribution µ̃(w) will be a distribution over probe sequences compatible
with w. To define this distribution, we first need the following special case (actually,
a slight weakening) of Lemma 5.3.

Corollary 5.6. There exists a distribution ρ̃L on the set of left s1-blocks and a
distribution ρ̃R on the set of right s1-blocks such that the following hold.

1. For any response algorithm A forML, CA(ρ̃L) ≥ αL(s1 − 2δL).
2. For any response algorithm A forMR, CA(ρ̃R) ≥ αR(s1 − 2δR).

The distribution µ̃(w) is now defined to be the distribution over probe sequences
compatible with w in which each left block is chosen independently from the distri-
bution ρ̃L and each right block is chosen independently from the distribution ρ̃R.

Next, we relate the base-cost of w to the expected optimal cost µ̃(w). The base-
cost ofw equals the number of right steps, which is equal to (k+wk)/2, where k = |w|.
We will show that for any probe sequence ν compatible with w, its optimal cost is at
most (s1 + δmax)(k + wk)/2. Since µ̃(w) is a distribution over such sequences, this
will imply inequality (5.1).

So fix ν compatible with w. Denote by CL(i) (resp., CR(i)) the minimum cost
of a response sequence for the first i segments of ν whose last point is inML (resp.,
MR). Note that |CL(i) − CR(i)| ≤ δ. Then COPT(ν) is equal to the minimum of
CL(k) and CR(k), and thus the desired upper bound on COPT(ν) is an immediate
consequence of the following lemma.

Lemma 5.7. CR(i) ≤ (s1 + δmax)(i+ wi)/2 and CL(i) ≤ (s1 + δmax)(i− wi)/2.
Proof. We prove this by induction on i; the basis case i = 0 is trivial. Now

suppose that i > 0 and that the result holds for i− 1.

We assume (∆w)i = +1; the case (∆w)i = −1 is proved analogously. Thus νi
consists of one or N s1-blocks fromMR.

To prove the induction step for CL(i) it suffices to observe that CL(i) = CL(i−1),
which is obvious since the definition of CL(i − 1) implies that there is a response
sequence for ν1 . . . νi−1 that ends at some point y ∈ ML that costs CL(i − 1). This
sequence can be extended by remaining at y through νi and the cost does not increase.

Next we prove the induction step for CR(i). In the case that segment νi consists of
a single right block, then by the definition of CR(i− 1) there is a response sequence σ
for ν1 . . . νi−1 ending at some point y ∈MR that costs at most CR(i−1). Since νi is an
s1-block forMR, there is a response sequence τ for νi that costs at most s1 and ends in
MR. Then the sequence στ costs at most CR(i−1)+s1+d(y, τ1) ≤ CR(i−1)+s1+δmax
which is bounded by (s1 + δmax)(i+ wi)/2 by the induction hypothesis.

In the case that the segment νi consists of N right blocks, we must have wi = D.
Then we use the fact that CR(i) ≤ CL(i)+δ to obtain CR(i) ≤ (s1+δmax)(i−D)/2+
s1D ≤ (s1 + δmax)(i+D)/2 as required.

Now we turn to the second and final step: the definition of J̃(Ã) and the verifi-
cation of inequality (5.2). Given an evader strategy Ã, the jumper strategy J̃(Ã) will
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be defined as follows. On being presented walker sequence w, J generates a probe
sequence according to the distribution µ̃(w). Note that this generation can be done
on-line with segment i being generated given wi. At the same time, he simulates the
algorithm A on the sequence µ̃(w). At step i, the jumper responds to wi as follows.

1. If |wi| = D, then ji = −wi (which is forced by the rules of the game).
2. If |wi| < D and wi is in the direction opposite to ji−1 (i.e., they have opposite

signs), then the jumper does not move, i.e., ji = ji−1.
3. If |wi| < D and wi is in the direction towards ji−1, then ji = D if Ã is in
MR at the end of segment i and ji = −D otherwise.

It remains to verify inequality (5.2) and it suffices to verify this inequality for
deterministic algorithms A; the result for randomized algorithms will follow by taking
expectation with respect to the distribution over algorithms. So fix a deterministic
algorithm A.

We will say that the simulated evader and the jumper are synchronized at step i
if after the ith step of the jumper the jumper is at +D and the evader is either in the
left space or the jumper is at −D and the evader is in the right space.

For technical reasons, it will be useful to modify the cost to the jumper by adding
D to his cost if at the last step he is not synchronized with the evader. Obviously,
this modified cost is an upper bound on the true cost, so it suffices to work with this
modified cost. What we will show is that the expected change in the cost incurred by
the evader during segment i is at least (s1 − 2δmax) times the expected change in the
modified cost incurred by the jumper at step i. We assume that the jumper is on the
right, ji−1 = D; the other case is handled similarly.

If step i of the walker is to the left, then the change in the jumper’s actual cost
will be 0. His modified cost will go up by D if and only if the evader was inMR and
moved toML during segment i. In this case, the evader’s cost increased by at least
δ − 2δmax which is at least (s1 − 2δmax)D.

Now consider the case that the ith step of the walker is to the right. If the jumper
and evader were not synchronized at step i − 1, then at the end of step i, there are
three possibilities: they both end on the left, they both end on the right, or they
switch places. (This can happen only if wi = D so that the jumper is forced to jump.)
In the first two cases, the expected change in the modified cost of the jumper is less
than or equal to 0, while the evader always incurs a nonnegative cost, and the desired
inequality is trivial. In the third case, the jumper’s modified cost increases by D,
while the evader’s cost increases by at least δ−2δmax which is at least (s1−2δmax)D.

So we may assume that the jumper and evader are both on the right after step
i− 1 and the next step is to the right. As the evader is following a lazy algorithm, we
may assume that if the evader moves left during the block, he does not move again
during the block.

We consider separately the cases that wi < D and wi = D. In the case that
wi < D, then by the definition of the jumper’s strategy, they will still be synchronized
at step i. So either they both stayed on the right, or they both moved to the left.
If they both end on the left, then the jumper’s modified cost increases by D and the
evader’s cost increases by at least δ − 2δmax which we have already noted is good for
us. If they both stay on the right, then the jumper incurs a cost of αR and we’d like to
say that the evader incurs an expected cost of at least (s1−2δR)αR. This would seem
to be true: the pursuer chooses her s1-block from the distribution ρ̃R, and we know
from Corollary 5.6 that any algorithm B incurs expected cost at least (s1 − 2δR)αR
against this distribution.
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However, there is a subtle flaw in this reasoning. The algorithm A does not have
to decide whether to move to the left at the beginning of the s1-block; it can start
on the right and at some point decide to move left. For example, suppose A stays on
the right as long as the cost he has incurred during that block is less than some value
V . The conditional expectation of the cost incurred given that the algorithm finishes
the block on the right is at most V . Since V can be chosen less than (s1 − 2δR)αR,
this demonstrates that the above argument is fallacious.

To argue correctly, we must consider that, conditioned on the probe sequence
up to the beginning of the current block, there is a probability p that A stays on
the right for the entire block. Thus the expected increase in the jumper’s modified
cost is pαR + (1 − p)D. We need to show that the expected increase in the evader’s
cost is at least (s1 − 2δR) times this. The expected increase in the evader’s cost is
(1 − p)(δ − 2δmax) plus the expected cost incurred in responding to probes while on
the right. Now the key point is that when computing this expected cost, not only
must we consider the cost incurred when the evader finishes on the right, but also, in
the case that the evader finishes on the left, we must consider the cost incurred by
the evader before moving to the left.

So let us consider the behavior of the algorithm A from the beginning of this
s1-block until the point that it jumps to the left. We can think of this algorithm as
one for the game PE(MR) which has the additional option of stopping the game in
the middle. Let us call such an algorithm a stopping algorithm.

Lemma 5.8. Let B be a stopping algorithm for PE(MR). Let p be the probability
that B does not stop on input distribution ρ̃R. Let q denote the expected cost incurred
by B before it stops. Then q ≥ pαR(s1 − 2δR)− (1− p)δR(3λR + 1).

Proof. Define the (nonstopping) algorithm B̃′ for PE(MR) as follows: respond
using B until B stops. Then switch to using the algorithm ÃR, the algorithm that
satisfies the conclusion of Lemma 5.2.

Now we upper bound CB̃′(ρ̃R). This cost is at most q plus the cost incurred after

switching to ÃR. The probability of ever switching to ÃR is 1 − p, and conditioned
on switching, ÃR incurs a cost of at most δR for its first move and an expected cost
of at most λR(s1 + δR) for the rest of its moves since it is responding to an s1 block
(or a subsequence of it). Thus CB̃′(ρ̃R) ≤ q + (1 − p)(λR(s1 + δR) + δR). On the
other hand, by Corollary 5.6, CB̃′(ρ̃R) ≥ αR(s1 − 2δR). We conclude, therefore, that
q ≥ pαR(s1 − 2δR)− (1− p)(3λR + 1)(δR).

With Lemma 5.8 in hand, we now can lower bound the expected cost to the evader
in responding to the s1-block by

pαR(s1 − 2δR)− (1− p)δR(3λR + 1) + (1− p)(δ − 2δmax)

≥ pαR(s1 − 2δR) + (1− p)(δ − (3λR + 3)δmax)

≥ (s1 − 2δmax)(pαR) + (1− p)D(s1 − 2δmax),

where the last inequality is obtained by applying the hypotheses about D and s1. The
final term is (s1 − 2δmax) times the change in the jumper’s modified cost, as needed.

Finally, we consider the case that both the jumper and evader begin on the right,
wi−1 = D−1, and the step by the walker is to the right. As before, since the evader is
following a lazy algorithm, either he stays on the right or he moves to the left at some
time and stays there. Let p be the probability that the evader stays on the right. The
idea is that since the segment corresponding to the last step of the walker consists
of N right blocks, where N is a large integer, we want to conclude that either p is
extremely small, or the evader incurs a very large cost. For 1 ≤ j ≤ N , define pj to



BOUNDS FOR RANDOMIZED SERVER PROBLEMS 1651

be the probability that the evader is still on the right after j of the s1-blocks; thus for
all j, pj ≥ pN = p. Note that the conditional probability that he is on the right after
block j given that he is on the right after block j−1 is pj+1/pj . Then by Lemma 5.8,
the expected cost incurred due to responding to requests on the right during block j
is at least pj(αR(s1 − 2δR))− (pj−1 − pj)δR(3λR + 1).

Summing this over j, we find that the expected cost incurred due to responses on
the right is at least pNαR(s1−2δR)−(1−p)δR(3λR+1). Adding in the expected cost
of the final move to the left, and simplifying we get a lower bound on the evader’s cost
of the form (1− p)D(s1− 2δmax)+ pNT , where T is a positive real number. We need
this to be at least (s1 − 2δmax) times the expected change in the jumper’s modified
cost, which is D+ pD since he must move to the left. For this we need pNT to be at
least 2pD(s1 − 2δmax) and this will hold as long as N was chosen large enough.

Finally, let us indicate how the above proof changes if one of the spaces, sayMR,
has exactly one point p. The only change in the definitions of w(ρ) and J̃(Ã) comes
from a change in the definition of compatibility. The modification is that for a step
to the right (∆w)i = 1, the segment νi is defined to be empty if wi < D and is
equal to the single point p if wi = D. The analysis of this strategy involves similar
considerations to the given proof and is left to the reader.

6. Applications of the decomposition theorem. In this section, we use
Theorem 1.7 to prove Theorems 1.3 and 1.5. (Theorem 1.4 was already proved in the
introduction.)

Recall that a subspace N of spaceM is ε-small relative toM if δ(N ) ≤ εδ(M).
We also say thatM is ε-uniform if the distance between any two points inM is at
least εδ(M). The following easy consequence of Theorem 1.1 is left to the reader (see
also [KRR]).

Lemma 6.1. The competitive ratio of an ε-uniform space on n points is between
ε lnn and (2/ε) lnn.

It will be convenient to state three special cases of Theorem 1.7.
Corollary 6.2. LetM be a metric space of at least three points and letMR,ML

be a partition. Let αR and αL be nonnegative numbers with αmax their maximum
and αdiff their absolute difference. Suppose that αmax ≥ 1 and that both spaces are
(e2αdiffα3max2200)

−1-small inM.
1. If αL ≥ λL and αR ≥ λR, then λ ≤ αmax + 3Z(αdiff)/2.
2. If αL ≤ λL and αR ≤ λR, then λ ≥ αmax + Z(αdiff)/2.
Proof. Apply the bounds of Theorem 1.7, noting that the hypothesis of the

Corollary guarantees ζ ≤ 1/2.
The special case where αR = αL is worth noting.
Corollary 6.3. Let M be a metric space and let MR,ML be a partition into

two subspaces of size at least 2. Let β ≥ 1 be a lower bound on both λR and λL and
suppose that both spacesMR andML are (2200β3)−1-small. Then λ ≥ β + 1/2.

We also have the following corollary.
Corollary 6.4. LetM be a metric space of at least three points and let N be a

subspace. Let β ≥ 1 be a lower bound on λ(N ) and suppose that N is (27000e3β)−1-
small. Then λ(M) ≥ β + e−2β.

Proof. Let x, y be points ofM of distance δ. Then by the triangle inequality, one
of the spaces obtained by adding exactly one of x and y to N has diameter at least
δ/2. Assume x is the point and let K be the union of KR = N and KL = {x}. The

hypothesis of the corollary guarantees that the ratio of δ(N ) to δ(K) is at most 2e
−3β

27000

which is less than or equal to β−3e−2β

2200 for any β ≥ 1. Thus we may apply Theorem 1.7
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to the space K with αR = β and αL = 0. We obtain a lower bound on the competitive
ratio of K of β+Z(β)(1− ζ). Finally, note that Z(β) ≥ 2e−2β for β ≥ 1 and that the
hypothesis of the corollary guarantees that ζ ≤ 1/2.

6.1. Tight bounds for highly unbalanced spaces.
Proof of Theorem 1.5. We want to show that for some polynomial p(n), any p(n)-

unbalanced metric space has competitive ratio between lnn and 3 lnn. We prove only
the upper bound here; the lower bound proof is very similar. For n = 1, 2 the result
is trivial. Let n > 2 and letM be a p(n)-unbalanced metric space on n points. Let x
and y be two points of distance δ, the diameter of the space. Then by the imbalance
property, every other point z is close to exactly one of the points x or y, i.e., its distance
to one of them is at most δ

p(n) . This yields a
2

p(n) -bipartition (ML,MR). Let nL =

|ML| and nR = |MR| and assume nL ≥ nR. By induction, λ(ML) ≤ 3 ln(nL) and
λ(MR) ≤ 3 ln(nR). Calling these upper bounds αL and αR, we have αmax = 3 ln(nL)
and αdiff = 3 ln(nL/nR). By choosing p(n) to be a sufficiently large polynomial, the
conditions of Corollary 6.2 apply, and λ ≤ 3 ln(nL) + (3/2)Z(3 ln(nL/nR)). Thus it
suffices to show

3 lnn ≥ 3 ln(nL) +
3

2
Z(3ln(nL/nR)).

For nL = nR, this reduces to ln 2 ≥ 1/2. For nL > nR, let ρ = nL/nR − 1, so
that ρ > 0. Rewriting the desired inequality in terms of ρ, we need

ln

(
1 +

1

1 + ρ

)
≥ 3 ln(1 + ρ)

6ρ+ 6ρ2 + 2ρ3
.

Using x ≥ ln(1 + x) ≥ x − x2/2 to lower bound the left-hand side and upper
bound the right-hand side, it is enough to show

1 + 2ρ

2(1 + ρ)2
≥ 3

6 + 6ρ+ 2ρ2
,

which is easily checked by cross-multiplying.

6.2. A lower bound for all metric spaces. In order to prove Theorem 1.3
we will need a structure lemma for finite metric spaces, which says roughly that every
finite metric space contains at least one of the following: (1) a small set of points whose
removal reduces the diameter by a large fraction, (2) a roughly uniform subspace of
large size, or (3) a bipartite subspace in which both parts are large and have small
diameter relative to their union.

Lemma 6.5. Let k ≥ 0 be an integer and s ≥ 1. Every finite metric spaceM has
a subspace satisfying at least one of the following conditions:

1. a 21−s-small subspace of size at least (1− 1
s )|M|,

2. a 14 -uniform subspace of size at least s,

3. a 21−k-bipartite subspace, each of whose parts has size at least |M|
2sk+2 .

Proof. The first step in the proof is given by the following proposition.
Proposition 6.1. Let k ≥ 0 be an integer and s ≥ 1 be real. Any finite metric

space M that has no 1
4 -uniform subspace of size at least s has a 2−k-small subspace

of size at least |M|
sk
.

We proceed by induction on k; the basis k = 0 is trivial. Suppose k > 0 and that
M has no 1

4 -uniform subspace of size at least s. By the induction hypothesis there
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is a subspace N of size at least |M|
sk−1 and diameter at most δ21−k. Let x1, x2, . . . , xt

be a maximal sequence of points in N such that d(xi, xj) ≥ δ(N )/4 for i �= j. For
each i ∈ {1, . . . , t} let Xi = {y ∈ N : d(y, xi) < δ(N )/4}. By the maximality of t,
∪iXi = N . The largest Xi has size at least |N |/t ≥ |M|/sk and has diameter at most
δ(N )/2 ≤ δ(M)/2k.

Proposition 6.2. Let k ≥ 0 be an integer, s ≥ 1, and γ ∈ (0, 1). Any finite
metric spaceM has at least one of the following:

1. a 1/2-small subspace of size at least (1− γ)|M|,
2. a 1/4-uniform subspace of size at least s,
3. a 21−k-bipartite subspace, each of whose parts has size at least γ

sk
|M|.

Proof. Assume thatM has no 1/4-uniform subspace of size at least s. Define se-
quencesM0,M1, . . . ,Mu and N1, . . . ,Nu as follows. M0 =M. Having constructed
Mi, if |Mi| < γ|M|, then stop and set u = i. Otherwise, the previous proposition

implies that Mi has a 2−k-small subspace of size at least |Mi|
sk
≥ γ

sk
|M|. Let Ni+1

be such a subspace and letMi+1 =Mi −Ni+1.
The union N of the Ni has size at least (1 − γ)|M|. If it is 1/2-small, then

we have a space satisfying the first condition. Otherwise, there exist x, y ∈ N with
d(x, y) ≥ δ/2. If Ni and Nj are the parts containing x and y, respectively, then their
union is a space satisfying the third condition.

To complete the proof of Lemma 6.5, fix k, s as hypothesized. Let M be given
and assume thatM has no 14 -uniform subspace of size at least s and no 21−k-bipartite
subspace in which each part has size at least 1

2sk+2 |M|. We show thatM has a 21−s-
small subset of size at least (1− 1

s )|M|. This is trivial if s = 1, so assume s > 1 and
set γ = 1/s2. We define a sequence of metric spaces M0,M1,M2, . . . ,Ms�, where
Mi has size at least (1− iγ)|M| and has diameter at most δ2−i. ThenMs� has the
desired properties.

To define the sequence, let M0 = M. For 0 < i < �s�, having defined Mi,
apply Proposition 6.2 to it. Our assumption aboutM implies that neither conclusion
(2) nor conclusion (3) of Proposition 6.2 hold for Mi. (For this we need to observe
that since i ≤ �s�, |Mi| ≥ |M|/2.) Mi has a 1

2 -small subspace of size at least
(1− γ)|Mi| ≥ (1− (i+ 1)γ)|M|, which we take to beMi+1.

Proof of Theorem 1.3. Let g(n) denote the minimum competitive ratio over all
n point spaces. Because of the uniform space, g(n) ≤ 2 lnn. We derive a recurrence
inequality for g(n). LetM be an n point space. Fix s = s(n) and an integer k = k(n)
to be specified later and apply Lemma 6.5. If the second conclusion holds, then Lemma
6.1 implies that λ(M) ≥ 1

4+ln s. If the third conclusion of Lemma 6.5 holds, we want
to apply Corollary 6.3 with β = g(� n

2sk+2 ) to conclude that λ(M) ≥ g(� n
2sk+2 )+1/2.

To apply Corollary 6.3 it suffices that 2−k ≤ 1/(2200(2 lnn)3) (using the fact that
g(n) ≤ 2 lnn)). So we choose k = �20 + 3 log lnn ≤ 20 + 6 log log n. Finally, if
the first conclusion of Lemma 6.5 holds, then we want to apply Corollary 6.4 with
β = g(�n(1 − 1

s )) to conclude λ(M) ≥ g(�n(1 − 1
s )) + e−2g(�n(1−

1
s )�). To apply

Corollary 6.4 it suffices that 21−s ≤ 1/(27000e6 lnn) which holds if s ≥ 6 log n + 20.
Thus under this assumption on s,

g(n) ≥ min

{
log s

4
, g

(⌈
n

(
1− 1

s

)⌉)
+ e−2g(�n(1−

1
s )�), g

(⌈ n

2s6 log log n+22

⌉)
+

1

2

}
.

(6.1)

It now suffices to choose s(n) satisfying the above condition, guess a function that
lower bounds g(n), and use the recurrence to verify the lower bound.
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We choose s(n) = 2C0

√
logn/ log log n, where C0 > 0 is a small constant to be

chosen later. We choose n0 = n0(C0) so that for n ≥ n0, s(n) ≥ 6 log n+ 20. Finally
set h(n) = C1 log s(n), where C1 > 0 is chosen to be at most 1/4 and also small
enough so that for 3 ≤ n ≤ n0, h(n) ≤ 1.

We claim that g(n) ≥ h(n) for all n ≥ 3, which suffices to prove the theorem. We
proceed by induction on n.

For n ≤ n0, the result is trivial since g(n) ≥ 1. So assume n > n0. Applying the
recurrence (6.1) and the induction hypothesis, we get

g(n) ≥ min

{
log s

4
, h

(⌈
n

(
1− 1

s

)⌉)
+ e−2h(�n(1−

1
s )�), h

(⌈ n

2s6 log log n+22

⌉)
+

1

2

}
.

(6.2)

In substituting h for g in the second term, we observe that x + e−2x increases
with x for x ≥ ln 2

2 and is at most 1 for x ∈ [0, ln 22 ]. Next, since h increases with n,
we can drop the �·:

g(n) ≥ min

{
log s

4
, h

(
n

(
1− 1

s

))
+ e−2h(n(1−

1
s )), h

( n

2s6 log log n+22

)
+

1

2

}
.(6.3)

Now it suffices to show that each of the terms in the minimum is at least h(n).
This is true for the first term since C1 ≤ 1/4. For the second and third terms, we
bound h(n)− h(n/B) for B > 1 by the following chain of inequalities:

h(n)− h(n/B) = C1C0
√

log n

log log n
− C1C0

√
log(n/B)

log log(n/B)

≤ C1C0
√

log n

log log n

(
1−

√
1− logB

log n

)

≤ C1C0
√

log n

log log n

logB

log n

= C1C0
logB√

log n log log n
.

To show that the second term in (6.3) is at least h(n) we take B = s/(s−1) in the
above inequality. The final expression is then at most C1C0

1

s
√
logn log log n

. We need to

show that this is at most e−2h(n(1−1/s)). This is true, as C1C0 1

s
√
log n log log n

≤ 1/s ≤
1/s2C1/ ln 2 = e−2h(n) ≤ e−2h(n(1−1/s)), where the second inequality uses C1 ≤ 1/4.

To show that the third term in (6.3) is at least h(n) take B = 2s6 log log n+22

in the above inequality. The final expression in the inequality is then at most
C1C

2
0 (6 log log n+22)/ log log n, which is at most 1/2 for sufficiently small C0.

7. Proof of technical lemmas. In this section, we present the proofs of Lem-
mas 5.2 and 5.3. Throughout this section, M is a fixed finite metric space with
distance function d and diameter δ. The minimum distance between (distinct) points
inM is denoted δmin.

We begin with some facts about the topological structure of the set of randomized
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evader algorithms.1 Recall from section 2.3 that an algorithm can be defined as a
function that labels each E-node of TM by a probability distribution onM. The set
P (M) of probability distributions onM can be viewed as a topological subspace of
Euclidean space RM, and so the set of randomized algorithms can be viewed as a
product of copies of this space (where the product is indexed by the E-nodes of TM).

The topological facts we need are summarized in the following proposition.
Proposition 7.1.
1. Any sequence of randomized evader algorithms has a subsequence that con-
verges.

2. Suppose that the sequence Ã1, Ã2, . . . of algorithms converges to algorithm Ã
in the product topology. If ρ is any probe sequence, then the sequence of real
numbers Ã1(ρ), Ã2(ρ), . . . converges to Ã(ρ).

Proof. The topological space of algorithms is equivalent to the product of a
countable number of spaces isomorphic to P (M). Notice that P (M) is metrizable and
compact. By Tychonoff’s theorem (see [Kel, pp. 143–144]), the product of compact
topological spaces is compact with respect to the product topology. Moreover, the
product of a countable number of metrizable topological spaces is metrizable (see
[Kel, p. 122]). The first part follows from the fact that every sequence in a compact
metrizable topological space has a subsequence that converges to a point in the space
(see [Kel, pp. 138–139]). For the second part, we note that for a probe sequence ρ, the
mapping from the set of randomized algorithms to the reals, defined by Ã −→ Ã(ρ)
is continuous.

We need a modification of the PE game. Fix the metric space M and let λ
denote the competitive ratio of the PE game. We define the modified game for M
to be a game whose strategy sets are the same as for the PE game but whose cost
function is fA(ρ) = CA(ρ)−λCOPT(ρ). For s > 0, let Gs (resp., Hs) denote the game
obtained from the modified game by restricting the strategies of the pursuer to be
probe sequences ρ satisfying COPT(ρ) ≤ s (resp., satisfying s − δ ≤ COPT(ρ) ≤ s).
We will prove the following lemma.

Lemma 7.1. For every s > 0,
1. the games Gs and Hs have the min-max property, and
2. the values of Gs and Hs satisfy

−δ ≤ V (Hs) ≤ V (Gs) ≤ λδ.

Assuming this lemma, it is easy to prove the two main technical lemmas.
Proof of Lemma 5.2. For s > 0, let Ãs denote an optimal strategy for Gs. By

the first part of Proposition 7.1, there is a an infinite sequence i1 < i2 < · · · of
positive integers such that the sequence Ãij converges to a limit algorithm Ã. If ρ
is any probe sequence and j is chosen such that ij ≥ COPT(ρ), the second part of

1In the following discussion, we use the following concepts from point set topology (see, e.g.,
[Kel]): A set system F is a topology if and only if the union of any number of elements of F is in F
and the intersection of a finite number of elements of F is in F . The pair (X,F), where X = ∪F ∈ F ,
is called a topological space. The elements of F are called open sets. If Y ⊂ X, then (Y,G), where
G = {F ∩ Y ; F ∈ F}, is a topological subspace of (X,F). (Notice that a topological subspace is a
topological space.) For a metric space M = (X, d), the associated metric topology F is derived by
putting F to be the set of all the unions of open balls inM. A topological space that can be derived
this way is metrizable. Any subset of F whose union equals X is an open cover of the topological
space (X,F). A topological space is compact if and only if every open cover has a finite subset that
is also an open cover. If (X,F) and (Y,G) are topological spaces, then a function f : X → Y is
continuous if and only if for every G ∈ G, f−1(G) ∈ F .
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Lemma 7.1 implies CÃij
(ρ)− λCOPT(ρ) ≤ V (Gij ) ≤ λδ. Letting ij tend to ∞ yields

CÃ(ρ)− λCOPT(ρ) ≤ λδ, as required.
Proof of Lemma 5.3. Fix s > 0 and let ρ̃s denote an optimal strategy for the

pursuer for the game Hs. Then for any evader algorithm Ã, we have CÃ(ρs) −
λCOPT(ρ) ≥ −δ, or CÃ(ρs) ≥ λ(s− δ)− δ, as required.

The remainder of the section proves Lemma 7.1. To prove the first part of the
lemma, it would be enough, by Theorem 2.2.1, to show that the set of pure strategies
is finite. Unfortunately, it is not, in general, true that the set of pure strategies is
finite. However, we will reduce these games to an analysis of games with finite strategy
sets. More precisely, we will define the notion of a standard probe sequence and a
standard evader algorithm and show that the restrictions of the games Gs and Hs to
these sets are essentially finite games and that the the analysis of Gs and Hs can be
reduced to that of the restricted game.

As a preliminary restriction, we say that an evader algorithm A is lazy if it does
not move unless it has to; i.e., the evader moves from its current location only if the
pursuer probes the location he occupies. It is easy to show and well known (see [BE])
that the set of lazy algorithms dominates the set of all algorithms in the sense of
section 2.2. (Actually, the versions of this result that appear in the literature prove
the dominance with respect to the cost function CA(ρ) rather than fA(ρ), but it is
easy to show that the one result implies the other). Thus, applying Lemma 2.1 (2.1),
it suffices to restrict the evader to lazy algorithms, which we do from now on.

By the definition of a lazy algorithm, if the evader is at point a after probe
sequence ρ, the evader will move only if the next probe is to a. Thus for a lazy
deterministic algorithm A, each probe sequence ρ induces a transition function A[ρ]
mapping the metric space to itself where A[ρ](a) is the point the evader moves to if
it is at a after ρ and the next probe is to a.

Before we can define the notion of standard algorithm and standard probe se-
quence, we need to review some basic facts about the PE game and the function
COPT. For the PE game, COPT can be expressed as follows. For probe sequence
ρ and point p ∈ M , let CA(ρ; p) denote the cost incurred by A in responding to ρ
and then moving to point p; this is CA(ρ) + d(a, p), where a is the final point of
A(ρ). Let COPT (ρ; p) denote the minimum of CA(ρ; p) over all algorithms A. Then
COPT(ρ) = min{COPT(ρ; p) : p ∈ M}. For ρ equal to the empty string, we have
COPT(ρ; p) = 0. For any ρ and any points a, p, we have

COPT(ρa; p) =

{
COPT(ρ; p) if a �= p,
minq �=p COPT(ρ; q) + d(q, a) if a = p.

For each ρ, COPT(ρ; p) is a function mapping p ∈ M to the nonnegative reals.
This is the well known work function associated with this game (see, e.g., [BE]) and
will be denoted WF [ρ].

It is easy to check that if τ is an extension of ρ, then WF [τ ] ≥ WF [ρ], where
the inequality of work functions is defined pointwise. τ is a null extension of ρ if they
have the same work function. A point a is said to be null with respect to a sequence
ρ if ρa is a null extension of ρ. Let N(ρ) denote the set of points that are null with
respect to ρ.

We state a few easy facts without proof.
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Proposition 7.2. Let ρ = (ρ1, . . . , ρk) be an arbitrary probe sequence.

1. ρk ∈ N(ρ).
2. If τ has the same work function as ρ, then N(ρ) = N(τ). In particular, if
a ∈ N(ρ), then N(ρa) = N(ρ).

3. If a is any point that minimizes WF [ρ](·), then a �∈ N(ρ). In particular,
there is at least one point that is not null with respect to ρ.

A sequence ρ = (ρ1, . . . , ρk) is said to be standard if the work functions as-
sociated to its prefixes are all different; equivalently, for each i between 2 and k
ρi �∈ N(ρ1, . . . , ρi−1).

A standard algorithm A is a lazy algorithm that ignores null points. More pre-
cisely, a standard algorithm never moves to a point that is null with respect to the
current sequence, and ignores requests to null points in the sense that its present and
future behavior is unaffected by such requests.

Let G′s (resp., H ′s) denote the game obtained from Gs (resp., Hs) by restricting
to standard probe sequences and standard evader algorithms.

Proposition 7.3. For each s > 0 there is an integer t(s) with the property that
any standard probe sequence of optimal cost at most s has term length at most t(s).

Proof. Let ρ = (ρ1, . . . , ρt) be a standard probe sequence. Let wi denote the
work function associated to the prefix ρi. For each i, wi(p) = wi−1(p) if p �= ρi and
wi(ρi) > w

i−1(ρi−1). Let ∆i = w
i(ρi)−wi−1(ρi−1). Induction on s yields

∑
p w

s(p) =∑s
i=1∆i. Since the maximum and minimum work function values associated to any

probe sequence differ by at most δ, wi(p) ≥ 1
n (
∑s

i=1∆i)− δ. Recall that δmin is the
minimum distance between two distinct points in the metric space. We will show the
following.

Claim. In any subsequence of nn consecutive indices there is an i such that
∆i ≥ δmin.

This implies that for any ρ of length t, wi(ρ) ≥ � t
nn �δmin and so for any s > 0 we

can choose t(s) so that for |ρ| ≥ t(s), the minimum work function value is at least s.

So we prove the claim. Fix an arbitrary ordering < on M. For each i, let
pi1, . . . , p

i
n denote the sequence of points ordered so that wi(pir) ≤ wi(pir+1) with ties

broken according to the ordering <. Let Γi denote the directed graph on vertex set
M, with arcs p −→i q if w

i(q) = wi(p) + d(p, q). (Note that a point p is null with
respect to ρi precisely if its in-degree in Γi is positive.) Define di = (di1, . . . , d

i
n) with

dir equal to the outdegree of pir in Γi. We will show that for each i, if ∆i < δmin, then
the sequence di is lexicographically greater than di−1. Since there are at most nn

distinct out-degree sequences, this will prove the claim and the proposition.

Γi differs from Γi−1 only on the arcs incident on ρi. The in-degree of ρi in Γi−1
is 0 since ρi is nonnull with respect to ρi−1 and is positive in Γi since ρi is null with
respect to ρi. Let h be an index such that pi−1h −→i ρi and let j be the index such that
ρi = p

i−1
j . By definition of Γi, w

i(ρi) = w
i(pi−1h ) + d(pi−1h , ρi) ≥ wi−1(pi−1h ) + δmin.

If h > j, then wi−1(ρi) ≤ wi−1(pi−1h ) and we conclude wi(ρi)− wi−1(ρi) ≥ δmin.
So suppose that h < j. For r < j, pir = p

i−1
r and all edges out of pi−1r in Γi−1 are

present in Γi. Thus d
i
r ≥ di−1r . For r = h, we have strict inequality since dih −→i ρi.

This implies that di is lexicographically greater than di−1.
An immediate consequence of Proposition 7.3 is that the number of standard

probe sequences of cost at most s is finite. Also, although the number of deterministic
evader algorithms is infinite, if we call two algorithms equivalent if they respond
identically to any probe sequence of term length at most t(s), then the number of
equivalence classes is finite. Hence G′s (resp., H ′s) is essentially a finite game, and
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thus by Theorem 2.2.1 it has the min-max property. We will show that the game
Gs (resp., Hs) is “essentially” the same as G′s (resp., H ′s), to prove the first part of
Lemma 7.1. For ease of notation, we refer only to Gs in this argument. The argument
holds as well if we replace Gs by Hs and G

′
s by H

′
s.

For an evader algorithm Ã, we write VMIN(Ã) for the value of Ã in the game
Gs, i.e., the supremum over all probe sequences ρ of optimal cost at most s of fÃ(ρ).

We write V ′MIN(Ã) for the value of Ã in the game G′s. Similarly, for a randomized
probe sequence ρ̃, we write VMAX(ρ̃) and V ′MAX(ρ̃), respectively, for the value of ρ̃
with respect to the games Gs and G

′
s.

Proposition 7.4. For any randomized standard evader algorithm Ã, VMIN(Ã) =
V ′MIN(Ã).

Proof. Let ρ = (ρ1, . . . , ρk) be an arbitrary probe sequence. Write wi for the work
function associated to the prefix ρi. We observed earlier that w1 ≤ w2 ≤ · · · ≤ wk

(where the inequality is pointwise). Define the sequence of indices i1 < i2 < · · · < ij ,
where i1 = 1, i2 is the least i such that wi2 �= wi1 and, in general, ih is the least i such
that wih �= wih−1 . It is easy to see that the sequence ρ̂ = ρi1ρi2 . . . ρij is standard and
has the same work function as ρ.

Now let Ã be a randomized standard algorithm. Since Ã ignores all probes to null
points, it behaves the same on ρ as it does on ρ̂. More precisely, the probability that Ã
responds to ρ̂ with the sequence σ1σ2 . . . σj is equal to the probability that it responds

to ρ with σi2−11 σi3−i22 . . . σ
ij−ij−1

j−1 σ
n+1−ij
j , which has the same cost as σ1 . . . σj .

Given an analogous result for pursuer strategies, the first part of Lemma 7.1 would
follow immediately. However, such a result is not true: if ρ̃ is a randomized standard
pursuer strategy, then since the pursuer never probes null points, a nonstandard
algorithm might be able to avoid the pursuer by moving to null points.

So we need to prove something a little subtler about pursuer strategies. The key
property of a null point is that the pursuer can probe a null point without increasing
the work function, and thus probes to a null point are “free” to the pursuer. Thus we
can modify any standard pursuer strategy so that it probes null points often enough
to ensure that it does not benefit the evader to ever visit a null point. If we modify
the optimal standard pursuer strategy in this way, we will get a strategy whose value
in the game Gs is the same as that of the optimal standard strategy in the game G′s.

We now make this argument precise. Let ρ = (ρ1, . . . , ρk) be a probe sequence.
For i between 1 and k, Let ηi be some fixed ordering on N(ρi), the set of points that
are null with respect to ρi. For a nonnegative integer j, we define the j-fold inflation
of ρ to be the sequence ρ1η1

jρ2η2
j . . . ρkηk

j . It is trivial that the work functions
associated with a sequence and its j-fold inflation are identical.

If ρ̃ is a randomized pursuer strategy, i.e., a probability distribution over probe
sequences, then the j-fold inflation of ρ̃ is the distribution obtained by selecting a
sequence according to ρ̃ and applying j-fold inflation to it.

Proposition 7.5. For j a sufficiently large integer (depending onM and s) the
following holds. For any deterministic lazy evader algorithm A there is a deterministic
standard algorithm Ā such that for any randomized pursuer strategy ρ̃ in the game
Gs, if σ̃ is the j-fold inflation of ρ, then CĀ(ρ̃) ≤ CA(σ̃). Consequently, V ′MAX(ρ̃) ≤
VMAX(σ̃).

Before proving the proposition, let us see that it implies the first part of Lemma
7.1. Let Ã∗ and ρ̃∗ be the optimal strategies of evader and pursuer in the game G′s,
and let σ̃∗ be the j-fold inflation of ρ̃∗ (where j is large enough for Proposition 7.5).
From Proposition 7.4, VMIN(Ã

∗) = V ′MIN(Ã
∗). From Proposition 7.5, V ′MAX(ρ̃

∗) ≤



BOUNDS FOR RANDOMIZED SERVER PROBLEMS 1659

VMAX(σ̃
∗). Since G′s has the min-max property, we have that V ′MIN(Ã

∗) = V ′MAX(ρ̃
∗).

Hence VMIN(Ã
∗) ≤ VMAX(σ̃∗), and combining this with Lemma 2.2, we conclude that

VMIN(Ã
∗) = VMAX(σ̃∗), i.e., Gs has the min-max property.

Proof of Proposition 7.5. Fix j sufficiently large. Given A, we need to define Ā.
The behavior of A on a probe sequence ρ = (ρ1, . . . , ρk) is defined using an on-line
simulation of A applied to the j-fold inflation σ = ρ1η1

j . . . ρkηk
j of ρ. Prior to the

ith request, Ā will have processed ρ1, . . . , ρi−1 and responded with σ1σ2 . . . σi−1. It
will also have simulated A on the j-fold inflation of ρ1, . . . , ρi−1. Upon receipt of ρi,
it continues the simulation by giving A the sequence ρiηi

j . Let τi denote the final
point A occupies after processing that sequence.

Ā then chooses its response σi according to the following rule. If σi−1 �= ρi, then
σi = σi−1 (following laziness). Otherwise, if τi is not null with respect to ρ1 . . . ρi,
then σi = τi, else Ā moves to any nonnull point (say, the least one under some
predetermined ordering).

It is immediate that Ā is a standard algorithm. We claim that CĀ(ρ) ≤ CA(σ).
This then extends by linearity to the case of randomized pursuer strategies.

We say that A is well behaved on ρ1, ρ2, . . . , ρk provided that for each i, the
point τi is not null with respect to ρ1 . . . ρi. By the definition of Ā (and the fact
that A itself is lazy), if A is well behaved, then the response sequence σ1, . . . , σk of
Ā is just τ1, τ2, . . . , τk and is thus a subsequence of A’s response sequence. Hence
CĀ(ρ) ≤ CA(σ).

If A is not well behaved, then for some i, τi is null with respect to ρ1 . . . ρi.
Consider the responses of A to ρiη

j
i . If A ever responded with a point that is not

null with respect to ρ1 . . . ρi, then since A is lazy and all requests appearing in ηi are
null, A would have ended in a nonnull point. So it must be that each of A’s responses
to this subsequence was a null point. Now since ηi contains each null point once, A
was forced to move at least j times. Thus cA(σ) ≥ jδmin. Taking j large enough
(depending onM and s) ensures that this is at least CĀ(ρ).

This completes the proof of the first part of Lemma 7.1. We proceed to the proof
of the second part. We state without proof a routine fact concerning the function
COPT.

Lemma 7.2. Let M be a metric space of diameter δ, and let ρ1, ρ2, . . . , ρw be
probe sequences. Then

w∑
i=1

COPT(ρi) ≤ COPT(ρ1ρ2 . . . ρw) ≤
w∑
i=1

COPT(ρi) + (w − 1)δ.

Furthermore, the inequalities extend to the case that the ρi are replaced by ran-
domized probe sequences ρ̃i.

(Recall that the definition of COPT allows the evader to choose its own starting
point. So if each ρi misses some point in M, then

∑w
i=1 COPT(ρi) = 0, and if all ρi

miss the same point inM, then COPT(ρ1ρ2 . . . ρw) = 0.)
We now prove the second part of Lemma 7.1. The middle inequality is trivial

since the only difference between Gs and Hs is that the pursuer strategy set in Hs is
a subset of that in Gs.

Consider the first inequality and suppose for contradiction that there is an s > 0
and an ε > 0 such that V (Hs) = −δ − ε. Let B̃s denote an optimal evader algorithm
forHs. We define an evader algorithm B̃ for the original PE game as follows: for probe
sequence τ determine its s-block partition, τ1τ2 . . . τr, which can be parsed on-line.
The algorithm B̃ is performed by applying B̃s to each τi. We obtain a contradiction
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by showing that B̃ is λ′-competitive for some λ′ < λ. There is some absolute upper
bound K on the cost incurred by B̃s on a sequence of optimal cost at most s. We
have

CB̃(τ) ≤
r−1∑
i=1

(CB̃s
(τi) + δ) + CB̃s

(τr)

≤
r−1∑
i=1

(λCOPT(τi)− ε) +K

≤
r−1∑
i=1

(
λ− ε

s

)
COPT(τi) +K

≤
(
λ− ε

s

)
COPT(τ) +K,

where the first and last inequalities follow from Lemma 7.2, the second inequality
follows from the optimality of B̃s for Hs, and the third inequality follows from the
fact that each τi has optimal cost at most s. We conclude that B̃ is (λ− ε

s )-competitive,
a contradiction that completes the proof of the first inequality.

Turning to the third inequality, we suppose for contradiction that there is an
s > 0 and an ε > 0 such that V (Gs) ≥ λδ+ ε. Let ρ̃s be the optimal pursuer strategy
for Gs. Then for any algorithm B̃, CB̃(ρ̃s) ≥ λ(COPT(ρ̃s) + δ) + ε. For each j ∈ N,
define the distribution τ̃j on probe sequences obtained by concatenating j sequences
generated independently from ρ̃s. Then by Lemma 7.2, COPT(τ̃j) is bounded above
by uj = j(COPT(ρ̃s)+ δ). We will obtain a contradiction by showing that there exists
a real number γ > 0 such that for any deterministic algorithm A, CA(τ̃j) ≥ uj(λ+γ),
which by Proposition 2.3 would imply that the competitive ratio is greater than λ+γ.

LetA be a deterministic algorithm and consider the cost ofA on τ̃j. By Lemma 7.2,
we can lower bound this cost by the sum of costs that are incurred in responding to
each of the j blocks. Note that the way that A responds to the ith block depends
on the previous i − 1 blocks, and we can view A’s behavior on the ith block as a
randomized algorithm B̃i, where the randomization comes from the previous i − 1
blocks. Thus

CA(τ̃j) ≥
j∑

i=1

CB̃i
(ρ̃s)

≥ j[λ(COPT(ρ̃s) + δ) + ε]
= uj

(
λ+

ε

COPT(ρ̃s) + δ

)
,

where the second inequality follows from the optimality of ρ̃s. Thus we have the
desired contradiction, which establishes the claim and the lemma.
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ANDREAS BRANDSTÄDT† , FEODOR F. DRAGAN‡ , AND EKKEHARD KÖHLER§
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Abstract. We prove that claw-free graphs, containing an induced dominating path, have a
Hamiltonian path, and that 2-connected claw-free graphs, containing an induced doubly dominating
cycle or a pair of vertices such that there exist two internally disjoint induced dominating paths
connecting them, have a Hamiltonian cycle. As a consequence, we obtain linear time algorithms
for both problems if the input is restricted to (claw,net)-free graphs. These graphs enjoy those
interesting structural properties.
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dominating pair, dominating path, linear time algorithms
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1. Introduction. Hamiltonian properties of claw-free graphs have been studied
extensively in the last couple of years. Different approaches have been made, and a
couple of interesting properties of claw-free graphs have been established (see [1, 2, 3,
5, 6, 13, 14, 15, 16, 19, 22, 23, 25, 26]). The purpose of this work is to consider the
algorithmic problem of finding a Hamiltonian path or a Hamiltonian cycle efficiently.
It is not hard to show that both the Hamiltonian path problem and the Hamiltonian
cycle problem are NP-complete, even when restricted to line graphs [28]. Hence, it is
quite reasonable to ask whether one can find interesting subclasses of claw-free graphs
for which efficient algorithms for the above problems exist.

Already in the eighties, Duffus, Jacobson, and Gould [12] defined the class of
(claw,net)-free (CN-free) graphs, i.e., graphs that contain neither an induced claw
nor an induced net (see Figure 1.1). Although this definition seems to be rather
restrictive, the family of CN-free graphs contains a couple of graph families that are
of interest in their own right. Examples of those families are unit interval graphs,
claw-free asteroidal triple-free (AT-free) graphs, and proper circular arc graphs. In
their paper [12], Duffus, Jacobson, and Gould showed that this class of graphs has the
nice property that every connected CN-free graph contains a Hamiltonian path and
every 2-connected CN-free graph contains a Hamiltonian cycle. Later, Shepherd [27]
proved that there is an O(n6) algorithm for finding such a Hamiltonian path/cycle in
CN-free graphs. Note also that CN-free graphs are exactly the Hamiltonian-hereditary
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graphs [10], i.e., the graphs for which every connected induced subgraph contains a
Hamiltonian path.

In this paper we give a constructive existence proof and present linear time algo-
rithms for the Hamiltonian path and Hamiltonian cycle problems on CN-free graphs.
The important structural property that we exploit for this is the existence of an in-
duced dominating path in every connected CN-free graph (Theorem 2.3). The concept
of a dominating path was first used by Corneil, Olariu, and Stewart [8] in the context
of AT-free graphs. They also developed a simple linear time algorithm for finding
such a path in every AT-free graph [7]. As we show in Theorem 2.3, for the class of
CN-free graphs, a linear time algorithm for finding an induced dominating path ex-
ists as well. This property is of interest for our considerations since we prove that all
claw-free graphs that contain an induced dominating path have a Hamiltonian path
(Theorem 3.1). The proof implies that, given a dominating path, one can construct
a Hamiltonian path for a claw-free graph in linear time.

For 2-connected claw-free graphs, we show that the existence of a dominating
pair is sufficient for the existence of a Hamiltonian cycle. (A dominating pair is a
pair of vertices such that every induced path connecting them is a dominating path.)
Again, given a dominating pair, one can construct a Hamiltonian cycle in linear time
(Theorem 5.6). This already implies, for example, a linear time algorithm for finding
a Hamiltonian cycle in claw-free AT-free graphs, since every AT-free graph contains a
dominating pair and it can be found in linear time [9]. Unfortunately, CN-free graphs
do not always have a dominating pair. For example, an induced cycle with more
than six vertices is CN-free but does not have such a pair of vertices. Nevertheless,
2-connected CN-free graphs have another nice property: they have a good pair or an
induced doubly dominating cycle. An induced doubly dominating cycle is an induced
cycle such that every vertex of the graph is adjacent to at least two vertices of the
cycle. A good pair is a pair of vertices, such that there exist two internally disjoint
induced dominating paths connecting these vertices. We prove that the existence of
an induced doubly dominating cycle or a good pair in a claw-free graph is sufficient
for the existence of a Hamiltonian cycle (Theorems 5.1 and 5.5). Moreover, given an
induced doubly dominating cycle or a good pair of a claw-free graph, a Hamiltonian
cycle can be constructed in linear time. In section 4 we present an O(m + n) time
algorithm which, for a given 2-connected CN-free graph, finds either a good pair or
an induced doubly dominating cycle.

For terms not defined here, we refer to [11, 17]. In this paper we consider finite
connected undirected graphs G = (V,E) without loops and multiple edges. The
cardinality of the vertex set is denoted by n, whereas the cardinality of the edge set
is denoted by m.

A path is a sequence of vertices (v0, . . . , vl) such that all vi are distinct and
vivi+1 ∈ E for i = 0, . . . , l − 1; its length is l. An induced path is a path where
vivj ∈ E if and only if i = j − 1 and j = 1, . . . , l. A cycle (k-cycle) is a path
(v0, . . . , vk) (k ≥ 3) such that v0 = vk; its length is k. An induced cycle is a cycle
where vivj ∈ E if and only if |i − j| = 1 (modulo k). A hole Hk is an induced cycle
of length k ≥ 5.

The distance dist(v, u) between vertices v and u is the smallest number of edges
in a path joining v and u. The eccentricity ecc(v) of a vertex v is the maximum
distance from v to any vertex in G. The diameter diam(G) of G is the maximum
eccentricity of a vertex in G. A pair v, u of vertices of G with dist(v, u) = diam(G)
is called a diametral pair.
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Fig. 1.1. The claw K(a; b, c, d) and the net N(a, b, c; x, y, z).

For every vertex we denote by N(v) the set of all neighbors of v, N(v) = {u ∈ V :
dist(u, v) = 1}. The closed neighborhood of v is defined by N[v] = N(v) ∪ {v}. For a
vertex v and a set of vertices S ⊆ V , the minimum distance between v and vertices
of S is denoted by dist(v, S). The closed neighborhood N[S] of a set S ⊆ V is defined
by N[S] = {v ∈ V : dist(v, S) ≤ 1}.

We say that a set S ⊆ V dominates G if N[S] = V , and S doubly dominates
G if every vertex of G has at least two neighbors in S. An induced path of G
which dominates G is called an induced dominating path. A shortest path of G which
dominates G is called a dominating shortest path. Analogously one can define an
induced dominating cycle of G. A dominating pair of G is a pair of vertices v, u ∈ V ,
such that every induced path between v and u dominates G. A good pair of G is a pair
of vertices v, u ∈ V , such that there exist two internally disjoint induced dominating
paths connecting v and u.

The claw is the induced complete bipartite graph K1,3, and for simplicity, we
refer to it by K(a; b, c, d) (see Figure 1.1). The net is the induced six-vertex graph
N(a, b, c;x, y, z) shown in Figure 1.1. A graph is called CN-free or, equivalently, (claw,
net)-free if it contains neither an induced claw nor an induced net. An asteroidal triple
of G is a triple of pairwise nonadjacent vertices, such that for each pair of them there
exists a path in G that does not contain any vertex in the neighborhood of the third
one. A graph is called AT-free if it does not contain an asteroidal triple. Finally, a
Hamiltonian path or Hamiltonian cycle of G is a path or cycle, respectively, containing
all vertices of G.

2. Induced dominating path. In this section we give a constructive proof
for the property that every connected CN-free graph contains an induced dominating
path. In fact, we show that there is an algorithm that finds such a path in linear time.
To prove the main theorem of this section we will need the following two lemmas.

Lemma 2.1 (see [12]). Let P = (x1, . . . , xk) be an induced path of a CN-free
graph G, and let v be a vertex of G such that dist(v, P ) = 2. Then any neighbor y of
v with dist(y, P ) = 1 is adjacent to x1 or to xk.

Lemma 2.2. Let P be an induced path connecting vertices v and u of a CN-free
graph G. Let also s be a vertex of G such that s /∈ N[P ] and dist(v, s) ≤ dist(v, u).
Then

1. for every shortest path P ′ connecting v and s, P ′
⋂
P = {v} holds, and

2. if there is an edge xy of G such that x ∈ P \ {v} and y ∈ P ′ \ {v}, then both
x and y are neighbors of v.

Proof. Let y be the vertex of P ′ \ {v} which is closest to s and has a neighbor
x on P \ {v}; clearly, y �= s. Let s′, v′ be the neighbors of y on the subpaths of P ′

connecting y with s and y with v, respectively. Since s′ /∈ N[P ], by Lemma 2.1, vertex
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y must be adjacent to v or to u. If yu ∈ E, then v′u ∈ E, too (otherwise, we have
a claw K(y; s′, v′, u)). But now dist(v, u) ≤ dist(v, v′) + 1 = dist(v, y) < dist(v, s) ≤
dist(v, u), and a contradiction arises. Therefore, y is adjacent to v, and since y /∈ P ,
the paths P and P ′ have only the vertex v in common. Moreover, to avoid a claw
K(y; s′, v, x), vertex x has to be adjacent to v.

Theorem 2.3. Every connected CN-free graph G has an induced dominating
path, and such a path can be found in O(n+m) time.

Proof. Let G be a connected CN-free graph. One can construct an induced
dominating path in G as follows. Take an arbitrary vertex v of G. Using breadth first
search (BFS), find a vertex u with the largest distance from v and a shortest path P
connecting u with v. Check whether this path P dominates G. If so, we are done.
Now, assume that the set S = V \N[P ] is not empty. Again, using BFS, find a vertex s
in S with largest distance from v and a shortest path P ′ connecting v with s. Create a
new path P ∗ by joining P and P ′ in the following way: P ∗ = (P \{v}, P ′\{v}) if there
is a chord xy between the paths P and P ′ (see Lemma 2.2), and P ∗ = (P \ {v}, P ′),
otherwise. By Lemma 2.2, the path P ∗ is induced. It remains to show that this path
dominates G.

Assume there exists a vertex t ∈ V \ N[P ∗]. First, we claim that t is dominated
neither by P nor by P ′. Indeed, if t ∈ (N[P ]

⋃
N[P ′])\N[P ∗], then necessarily tv ∈ E

and v /∈ P ∗, i.e., neighbors x ∈ P and y ∈ P ′ of v are adjacent. Therefore, we get
a net N(v, y, x; t, s′, u′), where s′ and u′ are the vertices at distance two from v on
paths P ′ and P , respectively. Note that vertices s′, u′ exist because dist(v, s) ≥ 2.

Thus, t is dominated neither by P nor by P ′. Moreover, from the choice of u
and s we have 2 ≤ dist(v, t) ≤ dist(v, s) ≤ dist(v, u). Now let P ′′ be a shortest path,
connecting t with v, and let z be a neighbor of v on this path. Applying Lemma
2.2 twice (to P, P ′′ and to P ′, P ′′), we obtain a subgraph of G depicted in Figure
2.1. We have three shortest paths P, P ′, P ′′, each of length at least 2 and with only
one common vertex v. These paths can have only chords of type zx, zy, xy. Any
combination of them leads to a forbidden claw or net. This contradiction completes
the proof of the theorem. Evidently, the method described above can be implemented
to run in linear time.

✇ ✇✇✇ ✇

✇

✇

t uxz

y

v

s

Fig. 2.1.

It is not clear whether CN-free graphs can be recognized efficiently. But, to apply
our method for finding an induced dominating path in these graphs, we do not need
to know in advance that a given graph G is CN-free. Actually, our method can be
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applied to any graph G. It either finds an induced dominating path or returns either
a claw or a net of G, showing that G is not CN-free.

Corollary 2.4. There is a linear time algorithm that for a given (arbitrary)
connected graph G either finds an induced dominating path or outputs an induced claw
or an induced net of G.

Proof. Let G be a graph. For an arbitrary vertex v of G, we find a vertex u with
the largest distance from v and a shortest path P connecting u with v. If P dominates
G, then we are done. Else, we find a vertex s ∈ V \ N[P ] with the largest distance
from v and a shortest path P ′ connecting v with s. If there are vertices in P ′ \ {v}
which have a neighbor on P \ {v}, we take the vertex y that is closest to s and check
whether y is adjacent to v and u. If it is adjacent neither to u nor to v, then G has a
net or a claw (see the proof of Lemma 2.1). If yu ∈ E or yv ∈ E and a neighbor x of
y on P \ {v} is not adjacent to v, then G has a claw (see Lemma 2.2). Now, if we did
not yet find a forbidden subgraph, then the only possible chord between the paths P
and P ′ is xy with xv, yv ∈ E, and we can create an induced path P ∗ as described in
the proof of Theorem 2.3. Hence, it remains to check whether P ∗ dominates G. If
there exists a vertex t ∈ V \ N[P ∗], then again we will find a net or a claw in G (see
Theorem 2.3). It is easy to see that the total time bound of all these operations is
linear.

3. Hamiltonian path. In what follows we show that for claw-free graphs the
existence of an induced dominating path is a sufficient condition for the existence of
a Hamiltonian path. The proof for this result is constructive, implying that, given an
induced dominating path, one can find a Hamiltonian path efficiently.

Theorem 3.1. Every connected claw-free graph G containing an induced domi-
nating path has a Hamiltonian path. Moreover, given an induced dominating path, a
Hamiltonian path of G can be constructed in linear time.

Proof. Let G = (V,E) be a connected claw-free graph and let P = (x1, . . . , xk)
(k ≥ 1) be an induced dominating path of G. If k = 1, vertex x1 dominates G
and, since G is claw-free, there are no three independent vertices in G − {x1}. (By
G − {x1} we denote a subgraph of G induced by vertices V \ {x1}.) If G − {x1} is
not connected, then, again because G is claw-free, it consists of two cliques C0, C1

and a Hamiltonian path of G can easily be constructed. If G − {x1} is connected,
we can construct a Hamiltonian path as follows. First, we construct a maximal path
P1 = (y1, . . . , yl), i.e., all vertices that are not in P1 are neither connected to y1 nor
to yl. Let R be the set of all remaining vertices. If R = ∅, we are done. If there is
any vertex in R, it follows that y1yl ∈ E since otherwise there are three independent
vertices in G−{x1}. Furthermore, any two vertices of R are joined by an edge, since
otherwise they would form an independent triple with y1 (and with yl as well). Hence,
R induces a clique. Since G−{x1} is connected, there has to be an edge from a vertex
vR ∈ R to some vertex yi ∈ P1 (1 < i < l). Now we can construct a Hamiltonian
path P of G: P = (x1, yi+1, yi+2, . . . , yl, y1, y2, . . . , yi, vR, R̃), where R̃ stands for an
arbitrary permutation of the vertices of R \ {vR}.

For k ≥ 2 we first construct a Hamiltonian path P2 for G′ = G(N[x1] \ {x2}) as
described above, using x1 as the dominating vertex. At least one endpoint of P2 is
adjacent to x2 since if G′−{x1} is not connected, x2 has to be adjacent to all vertices
of either C0 or C1 (otherwise, there is a claw in G), and if G′−{x1} is connected, the
construction gives a path ending in x1 which is, of course, adjacent to x2. To construct
a Hamiltonian path for the rest of the graph we define for each vertex xi (i ≥ 2) of P

a set of vertices Ci = N(xi) \
⋃i−1
j=1 N[xj ]. Each set Ci forms a clique of G since if two
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vertices u, v ∈ Ci are not adjacent, then the set u, v, xi, xi−1 induces a claw. Hence
we can construct a path P ∗ = (P2, x2, P

C
2 , x3, P

C
3 , x4, . . . , xk−1, P

C
k−1, xk, P

C
k ), where

PCi stands for an arbitrary permutation of the vertices of Ci \{xi+1}. This path P ∗ is
a Hamiltonian path of G because it obviously is a path, and, since P is a dominating
path, each vertex of G has to be either on P , P2, or in one of the sets Ci.

For the case k = 1 both finding the connected components of G − {x1} and
constructing the path P1 can easily be done in linear time. For k ≥ 2 we just have to
make sure that the construction of the sets Ci can be done in O(n+m), and this can
be realized easily within the required time bound.

Theorem 3.2. Every connected CN-free graph G has a Hamiltonian path, and
such a path can be found in O(n+m) time.

Proof. By Theorem 2.3, every connected CN-free graph has an induced dominat-
ing path P , and it can be found in linear time. Using the path P , by Theorem 3.1,
one can construct a Hamiltonian path of G in linear time.

Analogously to Corollary 2.4, we can state the following.
Corollary 3.3. There is a linear time algorithm that for a given (arbitrary)

connected graph G either finds a Hamiltonian path or outputs an induced claw or an
induced net of G.

Proof. The proof follows from Corollary 2.4 and the proof of Theorem 3.1.

4. Induced dominating cycle, dominating shortest path, or good pair.
In this section we show that every 2-connected CN-free graph G has an induced doubly
dominating cycle or a good pair. Moreover, we present an efficient algorithm that, for
a given 2-connected CN-free graph G, finds either a good pair or an induced doubly
dominating cycle.

Lemma 4.1. Every hole of a connected CN-free graph G dominates G.
Corollary 4.2. Let H be a hole of a connected CN-free graph G. Every vertex

of V \H is adjacent to at least two vertices of H.
A subgraph G′ of G (doubly) dominates G if the vertex set of G′ (doubly) domi-

nates G.
Lemma 4.3. Every induced subgraph of a connected CN-free graph G which is

isomorphic to S3 or S−3 (see Figure 4.1) dominates G.
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Fig. 4.1.

Proof. Let G contain an induced subgraph isomorphic to S−3 , and assume that it
does not dominate G. Then, there must be a vertex s such that dist(s, S−3 ) = 2. Let
x be a neighbor of s from N[S−3 ]. If x is adjacent neither to a, nor to b, nor to c (see
Figure 4.1), then G contains a claw (e.g., if xf ∈ E, then a claw K(f ; b, c, x) arises).
Thus, without loss of generality, x has to be adjacent to a or b.



1668 A. BRANDSTÄDT, F. F. DRAGAN, AND E. KÖHLER

If xa ∈ E, then x is adjacent neither to b nor to c, since otherwise we will get a
claw (K(x; a, b, s) or K(x; a, c, s)). To avoid a net N(a, e, d;x, b, c) vertex x must be
adjacent to e or d. But, if ex ∈ E, then xd ∈ E too. (Otherwise, we will have a claw
K(e; b, d, x).) Analogously, if xd ∈ E, then also xe ∈ E. Hence, x is adjacent to both
e and d, and a net N(x, e, d; s, b, c) arises.

Now, we may assume that x is adjacent to b and not to a, c. To avoid a claw
K(b;x, e, f), x must be adjacent to e or f . But again, xe ∈ E if and only if xf ∈ E.
(Otherwise, we get a net N(x, b, e; s, f, a) or N(x, b, f ; s, e, c).) Hence x is adjacent to
both e and f and a claw K(x; s, e, f) arises.

Consequently, S−3 dominates G. Similarly, every induced S3 (if it exists) domi-
nates G.

Lemma 4.4. Let P be an induced path connecting vertices v and u of a connected
CN-free graph G. Let s be a vertex of G such that s /∈ N[P ] and dist(v, s) ≤ dist(v, u),
dist(u, s) ≤ dist(v, u). Then G has an induced doubly dominating cycle, and such a
cycle can be found in linear time.

Proof. Let Pv and Pu be shortest paths connecting vertex s with v and u, re-
spectively. Both these paths as well as the path P have lengths at least 2. Since
dist(v, s) ≤ dist(v, u) and dist(u, s)≤ dist(u, v), by Lemma 2.2, we have P

⋂
Pv = {v}

and P
⋂
Pu = {u}. Moreover, if there is a chord between P and Pv, then it is unique

and both its endvertices are adjacent to v. The same holds for P and Pu; both
endvertices of the chord (if it exists) are adjacent to u.

Now, without loss of generality, we suppose that dist(s, u) ≤ dist(s, v). Then,
from u /∈ N[Pv] and Lemma 2.2 we deduce that Pu

⋂
Pv = {s} and between paths Pv

and Pu at most one chord is possible, namely, the one with both endvertices adjacent
to s. Consequently, we have constructed an induced subgraph of G shown in Figure
4.2 (only chords s′s′′, v′v′′ and u′u′′ are possible).
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Fig. 4.2.

If the lengths of all three paths P, Pv, Pu are at least 3, then it is easy to see
that G has a hole Hk (k ≥ 6). Furthermore, if at least one of these paths has length
greater than or equal to 4, or two of them have lengths 3, then G must contain a hole
Hk (k ≥ 5). It remains to consider two cases: lengths of both Pv and Pu are 2 and
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the length of P is 3 or 2. Clearly, in both of these cases the graph G contains either a
hole Hk (k ∈ {5, 6, 7}) or an induced subgraph isomorphic to S−3 or S3. By Corollary
4.2, every hole of G doubly dominates G.

Let G contain an S−3 with vertex labeling shown in Figure 4.1. We claim that the
induced cycle (e, b, f, d, e) dominates G or G contains a hole H6. Indeed, if a vertex
s of G does not belong to S−3 , then, by Lemma 4.3, it is adjacent to a vertex of S−3 .
Suppose that s is adjacent to none of e, b, f, d. Then, without loss of generality, sa ∈ E,
and we obtain an induced subgraph of G isomorphic either to a net N(e, a, d; b, s, c) or
to H6 = (s, a, e, b, f, c, s), depending on whether vertices s and c are adjacent. Hence,
we may assume that (e, b, f, d, e) dominates G, and since G is claw-free, this cycle is
doubly dominating.

Now let G contain an S3 with vertex labeling shown in Figure 4.1. We will show
that every vertex of G is adjacent to at least two vertices of the cycle (e, f, d, e) or G
contains a hole H5. Suppose vertex s of G is adjacent to none of e, d. Then, by Lemma
4.3, s is adjacent to at least one of a, b, c, f . Let sf ∈ E. To avoid a claw, vertex s
is adjacent to both b and c. But then a hole H5 = (s, b, e, d, c, s) arises. Assume that
sf /∈ E and, without loss of generality, sa ∈ E. To avoid a net N(a, e, d; s, b, c), s
must be adjacent to b or c. In both cases a hole H5 occurs.

Clearly, the construction of an induced doubly dominating cycle of G given above
takes linear time.

Theorem 4.5. There is a linear time algorithm that, for a given connected CN-
free graph G, either finds an induced doubly dominating cycle or gives a dominating
shortest path of G.

Proof. Let G be a connected CN-free graph. One can construct an induced doubly
dominating cycle or a dominating shortest path of G as follows (compare with the
proof of Theorem 2.3). Take an arbitrary vertex v of G. Find a vertex u with the
largest distance from v and a shortest path P connecting u with v. Check whether
P dominates G. If so, we are done; P is a dominating shortest path of G. Assume
now that the set S = V \ N[P ] is not empty. Find a vertex s in S with the largest
distance from v and a shortest path Pv connecting v with s. Create again a new path
P ∗ by “joining” shortest paths P and Pv as in the proof of Theorem 2.3. We have
proven there that P ∗ dominates G. Now let Pu be a shortest path between s and u.
If dist(s, u) ≤ dist(v, u) or both dist(s, u) > dist(v, u) and v /∈ N[Pu], then Lemma
4.4 can be applied to get an induced doubly dominating cycle of G in linear time.
Therefore, we may assume that dist(s, u) > dist(v, u) ≥ dist(v, s) and v ∈ N[Pu].
Now we show that the shortest path Pu dominates G. If v lies on the path Pu, then
P ∗ = Pu and we are done. Otherwise, let x be a neighbor of v in Pu. Note that
dist(v, s) > 1 and so x �= s, u. Since G is claw-free, v is adjacent to a neighbor
y ∈ Pu of x. Assume, without loss of generality, that x is closer to s than y. If
we show that dist(v, s) = 1 + dist(x, s) and dist(v, u) = 1 + dist(y, u), then again,
by the proof of Theorem 2.3, the path Pu will dominate G (as a path obtained by
“joining” two shortest paths that connect v with u and v with s, respectively). By the
triangle condition, we have dist(u, s) < dist(v, u)+dist(v, s) (strict inequality because
v /∈ Pu) and dist(v, s) ≤ 1 + dist(x, s), dist(u, v) ≤ 1 + dist(y, u). Consequently,
dist(v, u) + dist(v, s) > dist(u, s) = dist(u, y) + 1 + dist(x, s) ≥ dist(v, u) − 1 + 1 +
dist(v, s)−1 = dist(v, u)+dist(v, s)−1. That is, dist(u, s) = dist(v, u)+dist(v, s)−1
and dist(v, s) = 1 + dist(x, s), dist(u, v) = 1 + dist(y, u).

Since all our proofs were constructive, we can conclude the following.
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Corollary 4.6. There is a linear time algorithm that, for a given (arbitrary)
connected graph G, either finds an induced doubly dominating cycle, or gives a domi-
nating shortest path, or outputs an induced claw or an induced net of G.

Lemma 4.7. Let P = (v, x2, . . . , xk−1, u) be a dominating shortest path of a graph
G. Then max{ecc(v), ecc(u)} ≥ diam(G)− 1.

Proof. Let x, y be a diametral pair of vertices of G; that is, diam(G) = dist(x, y).
If both x and y are on P , then necessarily {x, y} = {v, u} and therefore dist(v, u) =
diam(G) = ecc(v) = ecc(u). If x ∈ P and y ∈ N[P ] \ P , then either x �= v, u
and diam(G) = dist(x, y) = dist(v, u) holds or, without loss of generality, v = x
and ecc(v) = diam(G). Finally, if both x and y are in N[P ] \ P and dist(v, u) <
dist(x, y), then we may assume that at least one of x, y belongs to N(v), say, x.
Hence, dist(x, y) ≤ 1 + dist(v, y) ≤ 1 + ecc(v); that is, ecc(v) ≥ diam(G)− 1.

A pair of vertices u, v of G with dist(u, v) = ecc(u) = ecc(v) is called a pair of
mutually furthest vertices.

Corollary 4.8. For a graph G with a given dominating shortest path, a pair of
mutually furthest vertices can be found in linear time.

Proof. Let P = (v, x2, . . . , xk−1, u) be a dominating shortest path of G with
ecc(v) ≥ ecc(u). Then, by Lemma 4.7, ecc(v) ≥ diam(G) − 1 holds. Denote by x a
vertex of G such that dist(v, x) = ecc(v). Note that both the eccentricity of v and a
vertex furthest from v can be found in linear time by BFS. Now, if ecc(x) = ecc(v),
then v, x are mutually furthest vertices of G. Else, ecc(x) > ecc(v) ≥ diam(G) − 1
must hold and vertices x and y, where y is a vertex with dist(x, y) = ecc(x), form a
diametral pair of G; dist(x, y) = ecc(x) = ecc(y) = diam(G).

In what follows we will use the fact that in a 2-connected graph every pair of
vertices is joined by two internally disjoint paths. In order to actually find such a
pair of paths, one can use Tarjan’s linear time depth first search- (DFS)-algorithm
for finding the blocks of a given graph. For the proof of Lemma 4.9, we refer to [21].

Lemma 4.9. Let G be a 2-connected graph, and let x, y be two different nonad-
jacent vertices of G. Then one can construct in linear time two induced, internally
disjoint paths, both joining x and y.

Theorem 4.10. There is a linear time algorithm that, for a given 2-connected
CN-free graph G, either finds an induced doubly dominating cycle or gives a good pair
of G.

Proof. By Theorem 4.5, we get either an induced doubly dominating cycle or a
dominating shortest path of G in linear time. We show that, having a dominating
shortest path of a 2-connected graph G, one can find in linear time a good pair or
an induced doubly dominating cycle. By Corollary 4.8, we may assume that a pair
x, y of mutually furthest vertices of G is given. Let also P1, P2 be two induced in-
ternally disjoint paths connecting x and y in G. They exist and can be found in
linear time by Lemma 4.9 (clearly, we may assume that xy /∈ E, because otherwise
N[x] = V = N[y] and x, y together with a vertex z ∈ V \ {x, y} will form a doubly
dominating triangle). If one of these paths, say, P1, is not dominating, then there
must be a vertex s ∈ V \ N[P1] . Since x, y are mutually furthest vertices of G,
we have dist(s, x) ≤ dist(x, y), dist(s, y) ≤ dist(x, y). Hence, we are in the condi-
tions of Lemma 4.4 and can find an induced doubly dominating cycle of G in linear
time.

Corollary 4.11. There is a linear time algorithm that, for a given (arbitrary)
2-connected graph G, either finds an induced doubly dominating cycle, or gives a good
pair, or outputs an induced claw or an induced net of G.
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5. Hamiltonian cycle. In this section we prove that, for claw-free graphs, the
existence of an induced doubly dominating cycle or a good pair is sufficient for the
existence of a Hamiltonian cycle. The proofs are also constructive and imply linear
time algorithms for finding a Hamiltonian cycle.

Theorem 5.1. Every claw-free graph G that contains an induced doubly domi-
nating cycle has a Hamiltonian cycle. Moreover, given an induced doubly dominating
cycle, a Hamiltonian cycle of G can be constructed in linear time.

Proof. Let DC = (x1, . . . , xk, x1) (k ≥ 3) be an induced doubly dominating cycle

of G. As before, we define Ci = N(xi) \
⋃i−1
j=1 N[xj ] (2 ≤ i ≤ k). Each set Ci forms

a clique of G; otherwise, we would have a claw. Furthermore, Ck = ∅ holds, and
the sets N[x1], C2, . . . , Ck−1 form a partition of the vertex set of G. Note that any
vertex adjacent to xk and not to xj (1 < j < k) belongs to N[x1], since the cycle DC
is doubly dominating. Let G′ = G(N[x1] \ {x2, xk}) be the subgraph of G induced
by N[x1] \ {x2, xk}. If we show that there is a Hamiltonian path P in G′ starting
at a neighbor of xk and ending at a neighbor of x2, then we are done; the cycle
(xk, P, x2, P

C
2 , x3, P

C
3 , x4, . . . , xk−1, P

C
k−1, xk), is a Hamiltonian cycle of G (recall that

PCi stands for an arbitrary permutation of the vertices of Ci \ {xi+1}).
Since G′ is a connected graph, by Theorem 3.1, there exists a Hamiltonian path

P ′ = (s, y1, . . . , yl, t) of G′. Assume that xks, xkt /∈ E. Then, to avoid a claw
K(x1;xk, s, t), vertices s and t have to be adjacent, giving a new Hamiltonian path
P ′′ of G′ starting at x1 and ending at a vertex y. If y is adjacent neither to xk nor
to x2, then a claw K(x1;xk, x2, y) occurs. (Note that in case k = 3, i.e., xkx2 ∈ E, y
is adjacent to at least one of xk, x2 because the cycle DC = (x1, x2, x3, x1) is doubly
dominating.) Without loss of generality, yx2 ∈ E and the path P ′′ is a desired path
of G′.

So, we may assume that xk is adjacent to t or s. Analogously, x2 is adjacent to
one of t, s. If xk, x2 are adjacent to different vertices, then we are done; the path P ′

starts at a neighbor of xk and ends at a neighbor of x2. Otherwise, let both xk and
x2 be adjacent to t and not to s. Then a claw K(x1;xk, x2, s) arises when k > 3,
or we get a contradiction with the property of DC = (x1, x2, x3, x1) to be a doubly
dominating cycle.

Corollary 5.2. Every claw-free graph, containing an induced dominating cycle
of length at least 4, has a Hamiltonian cycle, and, given that induced dominating
cycle, one can construct a Hamiltonian cycle in linear time.

Let G = (V,E) be a graph, and let P = (x1, . . . , xk) be an induced dominating
path ofG. P is called an enlargeable path if there is some vertex v in V \P that is either
adjacent to x1 or to xk but not to both of them and, additionally, to no other vertex
in P . Consequently, an induced dominating path P is called nonenlargeable if such
a vertex does not exist. Obviously, every graph G that has an induced dominating
path has a nonenlargeable induced dominating path as well. Furthermore, given an
induced dominating path P , one can find in linear time a nonenlargeable induced
dominating path P ′ by simply scanning the neighborhood of both x1 and xk. For the
next theorem we will need an auxiliary result.

Lemma 5.3. Let G be a claw-free graph, and let P = (x1, x2, . . . , xk) (k > 2) be
an induced nonenlargeable dominating path of G such that there is no vertex y in G
with N(y) ∩ P = {x1, xk}. Then there is a Hamiltonian path in G that starts in x1

and ends in xk and, given the path P , one can construct this Hamiltonian path in
linear time.
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Proof. Let Ci = N(xi) \
⋃i−1
j=1 N[xj ] (i ≥ 2). Since P is nonenlargeable, Ck

is empty. Using the method described in the proof of Theorem 3.1, we can easily
construct a path, starting in x1 and ending in xk, that contains all vertices of C2, . . . ,
Ck−1. This implies that we have to worry only about how to insert the vertices of the
neighborhood of x1 into this path. We have to consider two cases.

Case 1. H = G(N(x1) \ {x2}) consists of two connected components C0, C1.

Since G is claw-free, both C0 and C1 induce cliques in G. Furthermore, x2 is
adjacent to all vertices of at least one of C0 and C1, say, C1, because otherwise we
have a claw in G.

Let y be an arbitrary vertex of C0. Since P is nonenlargeable, y has at least one
neighbor on P \{x1}, and let xj be the one with smallest index. By the preconditions
of our lemma, j �= k. If j > 2, then y has to be adjacent to xj+1 as well, since
otherwise K(xj ; y, xj−1, xj+1) is a claw. Furthermore, y is adjacent to all vertices
cj ∈ Cj , since otherwise K(xj ; y, xj−1, cj) is a claw. Hence, when constructing the
Hamiltonian path, we can simply add y to Cj .

Now we consider the set Y of all vertices y of C0 with yx2 ∈ E. Suppose there is a
vertex c2 in C2 with c2 �= x3. If there is a vertex c1 ∈ C1 that is nonadjacent to vertex
c2, then there is an edge from every vertex c0 ∈ Y to c2; otherwise, K(x2; c0, c1, c2) is
a claw of G. This implies that we can construct a Hamiltonian path with the required
properties. If, on the other hand, all vertices of C1 are adjacent to all vertices of C2,
we can construct such a path by starting in x1, traversing through Y , x2, C1, C2, and
proceeding as before. Now suppose that there is no vertex c2 ∈ C2 with c2 �= x3. In
this case either all vertices c0 ∈ Y or all vertices c1 ∈ C1 have to be adjacent to x3,
because otherwise K(x2; c0, c1, x3) is a claw. Suppose, without loss of generality, that
all vertices of Y are adjacent to x3. Then we construct the path by starting in x1,
traversing through C1, x2, Y , x3, and proceeding as before.

Case 2. H = G(N(x1) \ {x2}) induces a connected graph.

If x2 is not adjacent to any of the vertices in H, then H has to be a clique and
we can apply the method described in case 1.

Suppose now that x2 is adjacent to some vertex in H. First, we construct a
Hamiltonian path P ′ = (y1, . . . , yl) in H, which is done as in the proof of Theorem
3.1, since there is no independent triple in H. Now we claim that either x2 is adjacent
to one of y1 or yl, or P

′ does in fact induce a Hamiltonian cycle of H implying again
the existence of a path with an end-vertex adjacent to x2. Indeed, suppose x2 is not
adjacent to any of the endvertices of P ′. Then, since G is claw-free, y1 has to be
adjacent to yl, because otherwise K(x1; y1, yl, x2) would induce a claw in G. Hence
P ′ induces a Hamiltonian cycle in H.

Using P ′, we can easily construct a Hamiltonian path in N[x1] starting in x1

and ending in x2. The rest of the Hamiltonian path of G can be constructed as
before.

In fact, we can prove a slightly stronger result. Let A = N(x1) \
⋃k
j=2 N[xj ],

B = N(xk)\
⋃k−1
j=1 N[xj ], and, as usual, Ci = N(xi)\

⋃i−1
j=1 N[xj ] (i ≥ 2). Each of these

sets forms a clique of G.

Lemma 5.4. Let G be a claw-free graph, and let P = (x1, x2, . . . , xk) (k > 2) be
an induced dominating path of G such that there is no vertex y in G with N(y)∩P =
{x1, xk}. Let also P be enlargeable but only to one end, e.g., A = ∅, B �= ∅, and
assume that there exists an edge zb with z ∈ Ck−1 \ {xk} and b ∈ B. Then there is
a Hamiltonian path in G that starts in x1 and ends in xk and, given the path P , one
can construct this Hamiltonian path in linear time.
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Proof. First, we can easily construct a path, starting in x1 and ending in xk−1,
that contains all vertices of C2, . . . , Ck−2. Then we attach to this path a path which
starts at xk−1, goes through Ck−1, B using all their vertices, and ends in xk. Finally,
we insert the vertices of the neighborhood of x1 into the obtained path as we have
done in the proof of Lemma 5.3.

Theorem 5.5. Let G be a 2-connected claw-free graph with a good pair u, v.
Then G has a Hamiltonian cycle and, given the corresponding induced dominating
paths, one can construct a Hamiltonian cycle in linear time.

Proof. Let P1 = (u = x1, . . . , v = xk), P2 = (u = y1, . . . , v = yl) be the induced
dominating paths, corresponding to the good pair u, v. By the definition of a good
pair both k and l are greater than 2. We may also assume that, for any induced
dominating path P = (a1, . . . , as) of G with s > 2, no vertex y ∈ V \ P exists such
that N(y)

⋂
P = {a1, as}. Otherwise, P together with y would form an induced

dominating cycle of length at least 4, and we can apply Corollary 5.2 to construct a
Hamiltonian cycle of G in linear time.

Let A1 be the set of vertices a1 that are adjacent to x1 but to no other vertex of
P1; let B1 be the set of vertices b1 that are adjacent to xk but to no other vertex of
P1. A2 and B2 are defined accordingly for P2. Of course, each of the sets A1, A2, B1,
B2 forms a clique of G.

First we assume that one of these paths, say, P1, is nonenlargeable, i.e., A1 = ∅,
B1 = ∅. In this case we do the following. We remove the inner vertices of P2 from G
and get the graph G− (P2), where (P2) denotes the inner vertices of P2. Then, using
P1, we create a Hamiltonian path in G− (P2) that starts at u and ends at v (Lemma
5.3), and we add (P2) to this path to create a Hamiltonian cycle of G.

We can use this method for creating a Hamiltonian cycle of G whenever we have
two internally disjoint paths P, P ′ of G both connecting u with v such that one of
them is an induced dominating and nonenlargeable path of the graph obtained from
G by removing the inner vertices of the other path.

Now we suppose that both paths P1, P2 are enlargeable. Because of symmetry
we have to consider the following three cases.

Case 1. There exist a vertex a1 ∈ A1 \A2 and a vertex b1 ∈ B1 \B2.

In this case there must be edges from a1, b1 to inner vertices yi, yj of P2. Con-
sequently, we can form a new path P ′2 by starting in u and traversing through A1,
yi, . . . , yj , B1, v, where (yi, . . . , yj) is the subpath of P2 between yi and yj . Evi-
dently, P ′2 contains all vertices of B1, A1 and is internally disjoint from P1, which is
nonenlargeable in G− (P ′2).

Case 2. B1 = B2 and either A1 = A2 or there exists a vertex a1 ∈ A1 \A2.

In this case none of the vertices of B := B1 = B2 (if B �= ∅) has a neighbor in
P1

⋃
P2 other than v. As G is 2-connected, for some vertex b ∈ B there has to be a

vertex z ∈ V \ (P1

⋃
P2

⋃
B) with zb ∈ E. Since P2 dominates G and z /∈ B, vertex

z must be adjacent to a vertex y ∈ P2 \ {v}. If z is only adjacent to y1 = u but to no
other vertex of P2, then z necessarily belongs to A2 and we can form a new path P ′1
by starting in u, using all vertices of A2, B and ending in v. Again, P ′1 is internally
disjoint from P2 and P2 is nonenlargeable in G− (P ′1). If N(z)

⋂
P2 = {u, v}, then we

can apply Corollary 5.2.

Therefore, we may assume that z is adjacent to an inner vertex y of P2. Now, if
there exists a vertex a1 ∈ A1 \ A2, then a1 is adjacent to some vertex y′ of (P2) and
we can construct a new path P ′2 by using u, A1, y

′, . . . , y, z, B, v. (If B was empty,
then P ′2 ends at . . . , y′, . . . , yl−1, v.) This path is internally disjoint from P1, which
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is nonenlargeable in G − (P ′2). If A1 = A2, then from the discussion above we may
assume that either A := A1 = A2 is empty or there is a vertex z′ ∈ V \ (P1

⋃
P2

⋃
A)

which is adjacent to a vertex of A and has a neighbor y′ in (P2). Hence, we can
construct a path P ′2 by using u, A, z′, y′, . . . , y, z, B, v, which is internally disjoint
from P1. (If z

′ = z, then P ′2 is constructed by using u, A, z, B, v.)

Case 3. A2 is strictly contained in A1, and B1 is strictly contained in B2.

Consider vertices b ∈ B1, z ∈ B2 \ B1, and z′ ∈ A1 \ A2 and cliques Ci =

N(xi) \
⋃i−1
j=1 N[xj ] (i ≥ 2). If zz′ ∈ E, then we can construct a new path P ′2 by using

u,A1, z, B1, v. This path is internally disjoint from P1, which is nonenlargeable in
G− (P ′2).

Since z′ /∈ A2, there must be a neighbor y′ ∈ (P2) of z
′. If vertex b is adjacent to

some vertex in Ck−1\{v}, then we construct a new path P ′2 by using u,A1, y
′, . . . , v. It

will be internally disjoint from P1, which is enlargeable only to one end (at xk = v) in
G−(P ′2). We are now in the conditions of Lemma 5.4 and can construct a Hamiltonian
path of G− (P ′2) that starts in u and ends in v. Adding (P ′2) to this path, we obtain
a Hamiltonian cycle of G.

So, we may assume that zz′ /∈ E for any vertex z′ ∈ A1 \A2 and that vertex b is
not adjacent to any vertex of Ck−1 \ {v}. From this we conclude also that z /∈ Ck−1.
But since z /∈ B1, there must be a neighbor xj ∈ (P1) of z. We choose vertex xj ∈ (P1)
with the smallest j. Clearly, 1 < j < k − 1 and z ∈ Cj .

First we define a new induced path P ′1 := (P1 \{xj+1, . . . xk−1})∪{z} and cliques
A′1 := N(u) \ ⋃x∈P ′

1\{u}N[x], B′1 := N(v) \ ⋃x∈P ′
1\{v}N[x]. We have z′ ∈ A′1, since

otherwise from the construction of P ′1, z
′ would be adjacent to z, and that is impos-

sible.

Note that vertex xj+1 is dominated by the path P2. If it is adjacent to only
vertex v from P2, then j + 1 = k − 1 and a claw K(v;xk−1, yl−1, b) arises. Therefore,
xj+1 must be adjacent to an inner vertex y of P2. Now we define a new path P ′2
by using u,A′1, y

′, . . . , y, xj+1, Cj+1, xj+2, . . . , Ck−1, v. It is internally disjoint from
P ′1 and contains all vertices of A′1 and Ci (j + 1 ≤ i ≤ k − 1). It is clear from the
construction that the path P ′1 dominates the graph G − (P ′2). (Every vertex which
was not dominated by the path P ′1 in G belongs to some set Ci (j + 1 ≤ i ≤ k − 2).)

It remains to show that the path P ′1 is nonenlargeable in G − (P ′2). Assume by
way of contradiction that it is enlargeable. Since A′1 ⊂ (P ′2), this is possible only if
B′1 �= ∅. Let p be a vertex of B′1. Then p does not belong to B1, since otherwise it
should be adjacent to z, which is contained in (P ′1). (Recall that B1, B2 are cliques,
B1 ⊂ B2, and z ∈ B2 \ B1.) Now, from p ∈ B′1 \ B1 we conclude that the neighbors
of p in P1 \ {v} are only vertices from {xj+1, . . . , xk−1}, i.e., p belongs to a set Cs for
some s ≥ j + 1. Consequently, a contradiction to Cs ⊂ (P ′2) arises.

It is not hard to see that the above method can be implemented to run in linear
time.

Theorem 5.6. Every 2-connected claw-free graph G that contains a dominating
pair has a Hamiltonian cycle, and, given a dominating pair, a Hamiltonian cycle can
be constructed in linear time.

Proof. Let v, u be a dominating pair of a 2-connected graph G. If vu /∈ E, then
by Lemma 4.9, there exist two internally disjoint induced paths connecting v and u.
Both these paths dominate G, and, therefore, u, v is a good pair of G. Thus, the
statement holds by Theorem 5.5.

Now let vu ∈ E. Define sets A := N(u) \ N[v], B := N(v) \ N[u], and S :=
N(v)

⋂
N(u). Since G is claw-free, the sets A and B are cliques of G. Notice also that
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sets A, B, S, and {v, u} form a partition of the vertex set of G.
If there is an edge ab in G such that a ∈ A and b ∈ B, then vertices a, u, v, b induce

a 4-cycle which dominates G. Hence, we can apply Corollary 5.2 to get a Hamiltonian
cycle of G. Therefore, assume that no such edge exists. But since G is 2-connected,
there must be edges ax, by with x, y ∈ S, a ∈ A, and b ∈ B. We distinguish between
two cases. Let GS denote the subgraph of G induced by S.

Case 1. GS is disconnected.
Then, it consists of two cliques S1 and S2. Now, if vertices x, y are in differ-

ent components of GS , say, x ∈ S1 and y ∈ S2, then (u, PA\{a}, a, x, PS1\{x}, v,
PB\{b}, b, y, PS2\{y}, u) is a Hamiltonian cycle of G. (PM stands for an arbitrary
permutation of the vertices of a set M .) If x, y are in one component, say, S1, then
(u, PA\{a}, a, x, PS1\{x,y}, y, b, PB\{b}, v, PS2 , u) is a Hamiltonian cycle of G.

Case 2. GS is connected.
Then, by Theorem 3.1, there exists a Hamiltonian path P = (s, y1, . . . , yl, t) of

GS . Assume that as, at /∈ E. Then, to avoid a claw K(u; a, s, t), vertices s and t have
to be adjacent, giving a Hamiltonian cycle HC := (s, y1, . . . , yl, t, s) of GS . Vertices
x and y split this cycle into two paths P1 = (x, . . . , y) and P2 = HC \ P1. Hence, a
cycle (u, PA\{a}, a, P1, b, P

B\{b}, v, P2, u) is a Hamiltonian cycle of G.
Now, we may assume that a is adjacent to s or t. Analogously, b is adja-

cent to one of t, s. If a, b are adjacent to different vertices, say, as, bt ∈ E, then
(u, PA\{a}, a, P, b, PB\{b}, v, u) is a Hamiltonian cycle of G. Finally, if a, b are ad-
jacent only to s (similarly, to t), then (u, P \ {s}, v, PB\{b}, b, s, a, PA\{a}, u) is a
Hamiltonian cycle of G.

Theorem 5.7. Every 2-connected CN-free graph G has a Hamiltonian cycle, and
such a cycle can be found in O(n+m) time.

Proof. The proof follows from Theorems 4.10, 5.1, and 5.5.
Corollary 5.8. There is a linear time algorithm that for a given (arbitrary)

2-connected graph G either finds a Hamiltonian cycle or outputs an induced claw or
an induced net of G.

Corollary 5.9. A Hamiltonian cycle of a 2-connected (claw,AT)-free graph can
be found in O(n+m) time.

Remark. Corollary 5.8 implies that every 2-connected unit interval graph has
a Hamiltonian cycle, which is, of course, well known (see [24, 20]). The interesting
difference of the above algorithm compared to the existing algorithms for this problem
on unit interval graphs is that it does not require the creation of an interval model.
It also follows from Corollaries 3.3 and 5.8 that both the Hamiltonian path problem
and the Hamiltonian cycle problem are linear time solvable on proper circular arc
graphs. Note that previously known algorithms for these problems had time bounds
O(m+ nlogn) [18].

✇
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✇
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Fig. 5.1. Claw-free graph, containing a dominating pair and a net.
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It should also be mentioned that Theorems 3.1 and 5.5 do cover a class of graphs
that is not contained in the class of CN-free graphs. Figure 5.1 shows a graph that
is claw-free, does contain a dominating/good pair and, consequently, a dominating
path, but, obviously, it is neither AT-free nor net-free.

REFERENCES

[1] A.S. Asratian, Every 3-connected, locally connected, claw-free graph is Hamilton-connected,
J. Graph Theory, 23 (1996), pp. 191–201.
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Abstract. We modify the k-d tree on [0, 1]d by always cutting the longest edge instead of
rotating through the coordinates. This modification makes the expected time behavior of lower-
dimensional partial match queries behave as perfectly balanced complete k-d trees on n nodes. This
is in contrast to a result of Flajolet and Puech [J. Assoc. Comput. Mach., 33 (1986), pp. 371–407],
who proved that for (standard) random k-d trees with cuts that rotate among the coordinate axes,
the expected time behavior is much worse than for balanced complete k-d trees. We also provide
results for range searching and nearest neighbor search for our trees.

Key words. k-d trees, partial match query, range search, expected time, probabilistic analysis
of algorithms, data structures
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1. Introduction. The k-d tree, or k-dimensional binary search tree, was pro-
posed by Bentley (1975). In this paper, we propose a modification, the squarish k-d
tree, and analyze its expected time performance for partial match queries, orthogonal
range searching, and nearest neighbor search under the standard random model for
the input (n points independently and uniformly distributed on the unit hypercube).
We point out its superiority over the standard k-d tree for this model.

Bentley’s k-d tree is a binary search tree that generalizes the 1-d tree or ordinary
binary search tree to R

k. A partition of space into hyperrectangles is obtained by
splitting alternating coordinate axes by hyperplanes through data points. Figure 1
shows the partition and the corresponding k-d tree. Insertion and search are imple-
mented as for the standard binary search tree algorithms. These trees are used for
a variety of other operations, including orthogonal range searching (report all points
within a given rectangle), partial match queries (report all points whose values match
a given k-dimensional vector with possibly a number of wild cards, e.g., we may search
for all points with values (a1, ∗, ∗, a4, a5, ∗), where ∗ denotes a wild card). Addition-
ally, nearest neighbor searching is greatly facilitated by k-d trees. For orthogonal
range searching, a host of particular data structures have been developed, such as
the range tree and variations or improvements of it (for surveys, see Bentley and
Friedman (1979); Bentley (1979); Yao (1990); Samet (1990a), (1990b); and Agarwal
(1997)). However, the k-d tree offers several advantages: it takes O(kn) space for
n data points, it is easily updated and maintained, it is simple to implement and
comprehend, and it is useful for other operations besides orthogonal range search.

Bentley’s orthogonal range search algorithm simply visits recursively all subtrees
of the root that have a nonempty intersection with the query rectangle. In Figure 1,
for example, the left and right subtrees of the root are visited. Note that each node in
the tree represents both a point of the data and a rectangle in the partition, namely,
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Fig. 1. The query rectangle is shaded.

the rectangle split by that point. Leaf regions thus have no points strictly in their
interior. The query time for orthogonal search depends upon many factors, such as the
location of the query rectangle and the distribution of the points. One may construct
a median k-d tree off-line by splitting each time about the median, thus obtaining a
perfectly balanced binary tree, in which ordinary point search takes Θ(logn) worst-
case time, and a partial match query with s coordinates specified takes worst-case
time O(n1−s/k+N), where N is the number of points returned (see, for example, Lee
and Wong (1977)).

For on-line insertion, balancing is notoriously difficult. If we assume that the
data are independent and have a common distribution, then the expected query time
is clearly of interest. For standard random binary search trees, it is known (Knuth
(1997); Pittel (1984); Devroye (1986), (1987); Mahmoud (1992)) that most properties
of balanced search trees are inherited: the expected depth of a randomly selected
node is about 2 logn and the expected height is O(log n). One would hope that the
random k-d tree, constructed by consecutive insertion of n data points, would also
have a performance close to that of the median (off-line) k-d tree. Assuming that the
data points are drawn from the uniform distribution on the unit k-cube, Flajolet and
Puech (1986) showed that a random partial match query (carried out with s values
also drawn uniformly and independently on [0, 1] so there are k − s wild cards) has
expected time performance Θ(n1−s/k+θ(s/k)), where θ(u) is a strictly positive function
of u ∈ (0, 1), with maximum not exceeding 0.07. Thus, random k-d trees behave a
bit worse than their balanced counterparts, the median k-d trees. Surveys of related
known probabilistic results are provided by Vitter and Flajolet (1990) and Gonnet
and Baeza-Yates (1991).

We propose a minor modification of the insertion procedure, namely, each time
a rectangle is split by a newly inserted leaf point, the longest side of its rectangle
is cut, that is, the cut is a (k − 1)-dimensional hyperplane through the new point
perpendicular to the longest edge of the rectangle. It was shown by Chanzy, Devroye,
and Zamora-Cura (1999) that elongated rectangles explain the poor performance of
random k-d trees. In this paper, we show to what extent the proposed k-d trees have
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more squarish-looking rectangles, and we will therefore call these trees squarish k-d
trees. For the probabilistic model of Flajolet and Puech, it will be shown that the
expected time for a partial match query is Θ(n1−s/k), just as for random median
k-d trees. Furthermore, the expected complexity of any orthogonal range search in
median k-d trees is asymptotically equivalent to that for the simple squarish k-d trees
proposed here.

In the last part of the paper, we deal with orthogonal range search in general
when the query rectangles may have dimensions that depend upon n in an arbitrary
fashion. The proofs are probabilistic, rather than analytical, and do not offer explicit
constants for expected times but only Θ(·) results. However, they are short and
explain many of the phenomena at work. Interestingly, very little probability beyond
Hölder’s inequality is needed. We conclude the paper by showing that a natural
nearest neighbor search (with a randomly selected probe point) takes O(log n log log n)
expected time in any dimension.

We should note that there are indeed more sophisticated data structures for some
of the subproblems dealt with here. For example, if one is just interested in partial
match queries, then one could just make j-d trees for each of the 2k − 1 nonempty
subsets of size j of the k coordinates separately, so that search in the proper tree is
just a point search, taking expected worst-case time O(log n), while the space used is
still O(n2k). However, these would not be helpful for general orthogonal, simplex, or
convex range searches. For an analysis of range search based on multiattribute trees
see Gardy, Flajolet, and Puech (1989).

2. The random processes. In this section, we will try to explain the differ-
ences between alternating cuts and longest-edge cuts in sequences of randomly cut
rectangles. To explain the processes at work, we consider the following simplification
of our problem: in R

2, start with a rectangle with one vertex permanently pegged
at the origin and the opposite one at (1, 1), and let (Un, Vn) denote the coordinates
of the top right vertex after n iterations, with (U0, V0) = (1, 1). The rectangle will
be reduced in size, first by alternating uniform cuts, that is, if Z1, Z2, . . . are inde-
pendently and identically distributed (i.i.d.) uniform [0, 1] random variables, then we
set

(Un, Vn) =

{
(ZnUn−1, Vn−1) if n is odd;
(Un−1, ZnVn−1) if n is even.

If we denote by
L
= equality in distribution, clearly, at time 2n, we have

U2n
L
=V2n

L
=
n∏
i=1

Zi
L
= e−

∑n

i=1
Ei
L
= e−Gn ,

where the Ei are independent exponential random variables, and Gn denotes a gamma
random variable with parameter n. As Uk and Vj are independent of each other for
all k, j, we see that the ratio

U2n

V2n

L
= eGn−G′

n ,

where Gn, G
′
n are i.i.d. gamma random variables. By the central limit theorem, it is

easy to see that

1√
n
log

(
U2n

V2n

)
L→ N −N ′,
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Fig. 2. Two random k-d tree partitions clearly show the elongated rectangles.

a difference of two independent standard normal random variables. Thus, the raw
ratio behaves asymptotically like exp(

√
n(N − N ′)), and thus exhibits wide swings.

In fact, if we stop at a large value for n, the rectangle will look very skinny indeed
(see Figure 2).

Since we would like to preserve squarish rectangles, we may opt instead to always
cut the longest side of the rectangle. More formally, with notation as above, (U0, V0) =
(1, 1), we have

(Un, Vn) =

{
(ZnUn−1, Vn−1) if Un−1 > Vn−1;
(Un−1, ZnVn−1) if Un−1 < Vn−1.

In case of equality Un−1 = Vn−1, which only occurs at n = 1, we flip a perfect coin
and pick an edge to cut at random.

Lemma 1. With the longest-edge cutting method, the sequence Un/Vn, n ≥ 1,
is identically distributed. The common distribution is that of Z1/Z2, the ratio of two
independent uniform [0, 1] random variables.

Proof. Clearly, U1/V1 is distributed as Z1 with probability 1/2 and as 1/Z1 other-
wise. It is easy to verify that this has the required density 1/(2max(z, 1))2, z > 0. By
induction, we need to show that if Z1, Z2, Z are i.i.d. uniform [0, 1] random variables,
then the random variable ZZ1/Z2IZ1>Z2 + Z1/(ZZ2)IZ1<Z2 is in turn distributed as
Z1/Z2. This can be done by standard calculations, or even the method of characteris-
tic functions. However, by far the quickest way to see this is by embedding. We note
that Z1/Z2 is distributed as the random variable ZS4 where S = 1 and S = −1 with
equal probability, and Z4 is another uniform [0, 1] random variable. The case Z1 > Z2

corresponds to S = −1, and thus we see that ZZ1/Z2IZ1>Z2 + Z1/(ZZ2)IZ1<Z2

is distributed as (Z4/Z)
S , which was to be shown, as S is independent of Z and

Z4.
Lemma 1 shows that cutting the longest edge is extremely stabilizing. Never-

theless, as Un/Vn has Cauchy-like tails, its mean does not exist, and we will often
see skinny rectangles, although by and large the rectangles will be rather squarish
(see Figures 3 and 4). The above observations explain why the squarish k-d trees are
useful. Our analysis is of course more involved, as rectangles participate in an evolv-
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Fig. 3. For the two processes above, log(Un/Vn) is plotted versus n. The alternating cuts
process wanders off just as a random walk. The largest edge cut strategy induces a sequence Un/Vn
that hovers near one and remains stationary.

Fig. 4. For the two processes above, let Ln and Sn be the long and short dimensions of a leaf

rectangle in the 2-d partition. The values
√
Ln/Sn are plotted versus

√
LnSn (normalized so that

the largest value is one) for the two k-d trees. For squarish k-d trees (on the right), there are many
more rectangles in which Ln and Sn are close. And nearly all big rectangles are squarish. For the
ordinary random 2-d tree (on the left) most rectangles have very small edge ratios.

ing collection of rectangles, with very intricate dependencies. As soon as a rectangle
becomes too small, it is unlikely to be picked again soon, and thus, the ratio of the
sides of the rectangles must be considered in conjunction with the sizes. For this, we
introduce a few new analysis methods.

3. Notation and preliminaries. In k-d trees, nodes represent rectangular re-
gions. Bentley’s algorithm for orthogonal range search and partial match queries starts
at the root of a k-d tree and recursively visits all subtrees that have a nonempty over-
lap with the rectangular regions of the children, and reports all points that fall in
the search region. Let u1, u2, . . . , un, n ≥ 1, denote the nodes in the k-d tree, and
let U1, . . . , Un denote the data points, which are i.i.d. and uniformly distributed on
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[0, 1]k. Thus, Ui is the data point corresponding to ui. The rectangle split by ui is
Ri. Thus, R1 = [0, 1]k. Let |Ri| denote the volume of rectangle i. The n + 1 leaf
rectangles (the dangling edges in Figure 1) are also denoted Ri, with the index i now
running from n + 1 to 2n + 1. The collection of rectangles is denoted by Rn. The
collection of the indices of the n + 1 final rectangles is Fn. We will denote by T the
k-d tree constructed by inserting successively u1, u2, . . . , un into an initially empty k-d
tree. Given a node u in T , we will denote by Tu the subtree of T rooted at u. With
rotating coordinate cuts, such a tree is called a random k-d tree. With our method of
cutting the longest edges, it will be called a random squarish k-d tree.

The dimensions of rectangle Ri are Xij , 1 ≤ j ≤ k. For 2-d trees, we will use
the lighter notation Xi, Yi for the x and y dimensions of Ri. The query rectangle
Q is Z + [−m1,m1] × · · · × [−mk,mk], mi ≥ 0 for all i, where the mi’s are fixed
(that is, they may depend upon n only) and Z is uniformly distributed on [0, 1]k and
independent of (U1, . . . , Un). Bentley’s range search applied to Q is called a random
orthogonal range search. Note that a node ui is visited by the range search algorithm
if and only if the query rectangle Q intersects Ri. Any rectangle Ri is visited if and
only if it intersects Q. Let Nn be the time complexity of Bentley’s orthogonal range
search. Then,

Nn =

2n+1∑
i=1

1[Ri∩Q�=∅],

where 1[A] is the characteristic function of the event A. This quantity will be analyzed
further on for random squarish k-d trees.

In a random partial match query, we specify a subset of s dimensions, j1, . . . , js,
and perform an orthogonal range query with the ith interval in the rectangle either
{Zi} (a uniform random number on [0, 1]) if i ∈ {j1, . . . , js}, or (−∞,∞) otherwise.
It is assumed that the Zi’s are independent, and independent of (U1, . . . , Un). In this
paper, we first study random partial match queries for random squarish k-d trees and
obtain results that should be compared against the following result for random k-d
trees.

Theorem 1 (Flajolet and Puech (1986)). For a random k-d tree and a random

partial match query, in which s of the k fields are specified with k > s ≥ 0, let N
(s)
n be

the number of comparisons that Bentley’s orthogonal range search performs. Define

α(u) = max
0≤t≤1

{
t+ 2

(
1− t
1− u

)1−u(
t

u

)u
− 2

}
, 0 < u < 1,

and note in particular that α is decreasing on (0, 1), α(0) = 1, and that 1 − u <
α(u) < 1.07− u, 0 < u < 1. Then, the expected value of N

(s)
n is such that

E
{
N (s)
n

}
= (c+ o(1))nα(s/k),

where c is a constant depending on the indices of the s fixed coordinates.
The following proposition is useful in relating partial random partial match queries

to the range search problem.
Proposition 1. Given is a random k-d tree based on i.i.d. random variables

U1, . . . , Un, distributed uniformly on [0, 1]k. Consider a random partial match query,

in which s ≥ 0 of the k fields are specified. Let N
(s)
n be the number of comparisons that
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Bentley’s orthogonal range search performs. Let S be the set of specified coordinates.
Then

E
{
N (s)
n

}
= E




2n+1∑
i=1

∏
j∈S
Xij


 ,

where Xij , 1 ≤ j ≤ k, are the lengths of the sides of rectangle Ri in Rn.
Proof. Let Q be the query rectangle. Note that P {Q ∩Ri �= ∅ |U1, . . . , Un} =∏

j∈S Xij . Thus we have

E
{
N (s)
n

}
= E

{
2n+1∑
i=1

1[Q∩Ri �=∅]

}
=

2n+1∑
i=1

P {Q ∩Ri �= ∅} = E



2n+1∑
i=1

∏
j∈S
Xij


 .

The next observation is important. It follows immediately by considering the
random growth of our k-d trees, and, of course, it implies that the joint distribution
of the ordered volumes of the n + 1 leaf rectangles is identical for both random k-d
trees considered here!

Lemma 2. Consider a random k-d tree or a random squarish k-d tree. Then,
the volumes of the rectangles in Fn are distributed as the set Vn of the consecutive
spacings between the order statistics of n i.i.d. random variables, uniformly distributed
on [0, 1].

4. Random partial match queries with squarish 2-d trees. In a vertical
random partial match query on a 2-d tree, we take a uniformly distributed value Z
and visit all nodes in the tree whose rectangle cuts the vertical line at Z. Horizontal
partial match queries on 2-d trees are defined in an analogous manner. The probability
of hitting a rectangle with dimensions Xi × Yi is of course Xi, so that the expected
number of nodes visited, and hence the expected time for a partial match query,
is simply E{∑2n+1

i=1 Xi}, where the sum is taken over all 2n + 1 rectangles in the
partition. A similar formula holds, of course, for horizontal partial match queries. In
this section, we prove that a random partial match query in a random squarish 2-d
tree takes expected time Θ(

√
n) as opposed to Θ(n0.5616) for random 2-d trees (see

Theorem 1).
Theorem 2. For random squarish 2-d trees,

√
πn

3
≤ E

{
2n+1∑
i=1

Yi

}
≤ 180

√
n.

The same result holds for E{∑2n+1
i=1 Xi}. Hence, the expected time for a random

partial match query is Θ(
√
n).

Of course, no attempt was made to optimize the constants. A few technical results
will be needed in what follows. In particular, the next lemma is valid for squarish k-d
trees in arbitrary dimension.

Lemma 3. For random squarish k-d trees, let p ≥ 0, n ≥ 1; then

(
1

1 + p

)�p�+1
Γ(p+ 1)

np−1
≤ E

{∑
i∈Fn

|Ri|p
}
≤ 4Γ(p+ 1)

np−1

for all n.



SQUARISH k-d TREES 1685

Proof. Let V1, . . . , Vn+1 be the spacings induced by n independent uniformly

distributed random variables on [0, 1]. It is known that Vi
L
=Beta(1, n). Thus, by

Lemma 2, with B(s, t) = Γ(s)Γ(t)
Γ(s+t) ,

E

{∑
i∈Fn

|Ri|p
}

= E

{
n+1∑
i=1

V pi

}
=

n+1∑
i=1

∫ 1

0

vp
(1− v)n−1

B(1, n)
dv

= (n+ 1)
B(p+ 1, n)

B(1, n)
= Γ(p+ 1)

Γ(n+ 2)

Γ(p+ n+ 1)
.

Now, Γ(x+1) = xΓ(x) for any x > 0, and for any natural number n and any s ∈ [0, 1],
n1−s ≤ Γ(n+ 1)/Γ(n+ s) ≤ (n+ 1)1−s (see Mitrinović (1970)). Thus,

E

{∑
i∈Fn

|Ri|p
}

= Γ(p+ 1)(n+ 1)
Γ(n+ 1)

(n+ p) · · · (n+ p− �p�)Γ(n+ p− �p�)

≤ Γ(p+ 1)(n+ 1)2−p+�p�

n�p�+1

=
Γ(p+ 1)

np−1

(
n+ 1

n

)2+�p�−p

≤ 4Γ(p+ 1)

np−1
,

as 2 + �p� − p ≤ 2. Now, for the lower bound, note that

E

{∑
i∈Fn

|Ri|p
}

= Γ(p+ 1)(n+ 1)
Γ(n+ 1)

(n+ p) · · · (n+ p− �p�)Γ(n+ p− �p�)

≥ Γ(p+ 1)

np−1

n�p�+1

(n+ p) · · · (n+ p−�p�)

≥ Γ(p+ 1)

np−1

(
n

n+ p

)�p�+1

≥ Γ(p+ 1)

np−1

(
1

1 + p

)�p�+1

.

Lemma 4. In a random squarish 2-d tree constructed from the insertion of
U1, . . . , Un independent and uniformly distributed random vectors on [0, 1]2 we have
that for every q ≥ 1,

E

{∑
i∈Fn

Y qi

}
≤




8
1−q/2n

1−q/2 for q ∈ [1, 2);

8e log n for 2− 2
logn ≤ q ≤ 2;

5Γ(q/2+1)
q/2−1

(
q
2 − 1

nq/2−1

)
for q > 2,

and for q ∈ [1, 2),

E

{∑
i∈Fn

Y qi

}
≥
(

1

q/2 + 1

)�q/2�+1

Γ(q/2 + 1)n1−q/2.

The same result holds for E
{∑

i∈Fn
Xqi
}
.
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Proof. Let r > 1, and define S
(q)
r =

∑
i∈Fr

Y qi . Note that, given U1, . . . , Ur,

S
(q)
r+1 − S(q)

r is distributed as Y q when X > Y and as Y q(Uq + (1 − U)q − 1) when
X ≤ Y , where U is a uniform [0, 1] random variable, and (X,Y ) are the dimensions
of the rectangle split when Ur+1 is added. Thus,

E
{
S

(q)
r+1 − S(q)

r

}
= E

{∑
i∈Fr

XiYi
(
1[Xi>Yi]Y

q
i + 1[Xi<Yi]Y

q
i (U

q + (1− U)q − 1)
)}
.

Notice that Uq + (1 − U)q − 1 ≤ 0 for q ≥ 1, and as min{a, b} ≤ √ab, for a, b ≥ 0,
then by Lemma 3,

E
{
S

(q)
r+1 − S(q)

r

}
≤ E

{∑
i∈Fr

XiYi
(
1[Xi>Yi]Y

q
i

)}

≤ E
{∑
i∈Fr

(XiYi)
q/2+1

}
≤ 4Γ(q/2 + 2)

rq/2
.

By summing the differences, we get

E
{
S(q)
n

}
= E

{
n−1∑
r=1

(
S

(q)
r+1 − S(q)

r

)
+ S

(q)
1

}

≤
n−1∑
r=1

4Γ(q/2 + 2)

rq/2
+ 2

≤ 2 + 4Γ(q/2 + 2)

(
1 +

∫ n−1

1

1

xq/2
dx

)

≤
{
10 + 4Γ(q/2+2)

1−q/2 (n1−q/2 − 1) (q ∈ [1, 2)),

5Γ(q/2 + 2) + 4Γ(q/2+2)
q/2−1 (1− n1−q/2) (q > 2)

≤
{

8
1−q/2n

1−q/2 (q ∈ [1, 2)),
5Γ(q/2+2)
q/2−1

(
q
2 − n1−q/2) (q > 2).

Because 8
1−q/2n

1−q/2, as a function of q, reaches its minimum at q0 = 2(1− 1/ log n),

and E{S(q)
n } is a decreasing function of q, we have that E{S(q)

n } ≤ 8e log n, for q0 ≤
q ≤ 2. The result for E

{∑
i∈Fn

Xqi
}
can be obtained similarly just by replacing the

y-lengths for the x-lengths in the appropriate places.
Now, for the lower bound, note that as the Xi’s and the Yi’s are identically

distributed,

E

{∑
i∈Fn

Y qi

}
=

1

2
E

{∑
i∈Fn

(Y qi +Xqi )

}

≥ E
{∑
i∈Fn

(YiXi)
q/2

}

≥
(

1

q/2 + 1

)�q/2�+1
Γ(q/2 + 1)

nq/2−1
,

by Lemma 3, for q ∈ [1, 2).
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Proof of Theorem 2. Note that the lower bound follows from Lemma 4, as

E
{∑

i∈Fn
Yi
}
is less than E{∑2n+1

i=1 Yi}. For the upper bound we will use the same

technique as in the proof of Lemma 4. Let Sn =
∑2n+1
i=1 Yi. Note that as the sum is

over all the rectangles generated by U1, . . . , Un, we have now that for r ≥ 1, as Xi
and Yi are identically distributed,

E {Sr+1 − Sr} = E
{∑
i∈Fr

XiYi
(
1[Xi>Yi]2Yi + 1[Xi<Yi](YiU + Yi(1− U))

)}

≤ 3E

{∑
i∈Fr

XiY
2
i

}
,

where U
L
=Uniform[0, 1], and independent of all U1, . . . , Un. Let q ∈ (1, 2) and p > 1

such that 1
p +

1
q = 1, then by Hölder’s inequality used twice,

E

{∑
i∈Fr

XiY
2
i

}
≤ E

{∑
i∈Fr

(XiYi)
p

}1/p

E

{∑
i∈Fr

Y qi

}1/q

≤
(
4Γ(p+ 1)

rp−1

)1/p(
8

1− q/2
1

rq/2−1

)1/q

by Lemmas 3 and 4. Take p = 3, q = 3/2, and verify that the upper bound is not
more than 241/3322/3/

√
r < 30/

√
r. By summing the differences we finally obtain

E

{
2n+1∑
i=1

Yi

}
≤ 5

2
+ 90

n−1∑
r=1

1√
r
≤ 5

2
+ 90(2

√
n− 1− 1) ≤ 180

√
n.

The result for E{∑2n+1
i=1 Xi} can be obtained similarly just by replacing the y-lengths

for the x-lengths in the appropriate places.

5. The k-dimensional case. In this section, we obtain the k-dimensional gen-
eralization of the results in the previous section by induction. Given U1, . . . , Un, we
define for each Ri ∈ Rn, X∗i = maxj=1,...,kXij and j

∗
i as the index j ∈ {1, . . . , n} for

which Xij = X
∗
i . Note that j∗i is unique with probability one. Our main result gen-

eralizes Theorem 2 and establishes the expected time optimality of random squarish
k-d trees.

Theorem 3. Consider a random squarish k-d tree. For - ∈ {1, . . . , k − 1}, there
exist C,C ′ > 0 such that

C ′n1− �
k ≤ E




2n+1∑
i=1

∏
j∈I
Xij


 ≤ Cn1− �

k ,

for any I ⊆ {1, . . . , k} of cardinality - and all n ∈ N. In particular, by Proposition 1
the expected time of a random partial match query with s specified coordinates is
Θ(n1−s/k).

The next lemma complements Theorem 3 when - = k.
Lemma 5. Let U1, . . . , Un be independent uniformly distributed random variables

over [0, 1]k. Let Rn = {R1, R2, . . . , R2n+1} be the hyperrectangles in the partition
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defined by the random squarish k-d tree based on U1, . . . , Un. Let Xij be the length on
the jth coordinate of the ith hyperrectangle. Then,

E

{
2n+1∑
i=1

Xi1 · · ·Xik
}

= 2hn+1 − 1,

where hn is the nth harmonic number.

We prove the following lemma that will allow us to prove the lower bound in the
previous theorem.

Lemma 6. Let - ∈ {1, . . . , k}; then for every x1, . . . , xk > 0,


 k∏
j=1

xj




1
k

≤ max
I: I⊆{1,...,k}
|I|=�


∏
j∈I
xj




1
�

.

Proof. Let I∗ be the subset of {1, . . . , k} of cardinality - for which the maximum
above is reached. It suffices to observe that


 k∏
j=1

xj



�

=

k∏
s=1


s+�−1∏
j=s

xj


 ≤

k−1∏
s=0


∏
j∈I∗

xj


 =


∏
j∈I∗

xj



k

,

where the subindice j must be understood as (j mod k), if j > k.

Proposition 2. Let I ⊆ {1, . . . , k} of cardinality - ∈ {1, . . . , k} and p ∈ [1, k� );
then there are positive constants C and C ′ such that

C ′n1−p �
k ≤ E



∑
i∈Fn


∏
j∈I
Xij



p
 ≤ Cn1−p �

k

for all n ∈ N.

Proof. For I ⊆ {1, . . . , k} with |I| = -, we define

SI,pr =
∑
i∈Fr


∏
j∈I
Xij



p

.

We first look at the upper bound. We define recursively the constants Ck(-, p) for
any integer k > 0, - ∈ {1, . . . , k} and real number p ∈ [1, k� ) as follows:

Ck(-, p) =

{
4Γ(p+ 1) if - = k;

(k − -)
(

1

1− p�
k

)
Ck(k, q̃)

1/q̃Ck(-+ 1, pp̃-/(-+ 1))1/p̃ + 2 if - < k,

where p̃, q̃ > 1 depend on p, k, and -, they are such that 1
p̃ +

1
q̃ = 1, and 1 ≤ pp̃ ��+1 <

k
�+1 . For the sake of clarity we will choose p̃ later.

For - ∈ {2, . . . , k}, we define the hypothesis H� stating that the upper bound
holds for all n ∈ N, all I ⊆ {1, . . . , k} such that |I| = -, and all p ∈ [1, k� ), with
constant Ck(-, p). We will prove H� with an inductive argument. First, note that Hk
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holds by Lemma 3. Assuming that H� is true, we will prove H�−1. Let I ⊆ {1, . . . , k}
such that -− 1 = |I| ≥ 1, and p ∈ [1, k�−1 ). Then for any integer r ≥ 1, we have

E
{
SI,pr+1 − SI,pr |U1, . . . , Ur

}
=
∑
i∈Fr


 k∏
j=1

Xij




1[j∗i �∈I]


∏
j∈I
Xij



p

+1[j∗i ∈I]


∏
j∈I
Xij



p ∫ 1

0

(xp + (1− x)p − 1)dx


 ,

as we are using the longest-edge cut method. Since
∫ 1

0
(xp + (1 − x)p − 1)dx ≤ 0 for

any p ≥ 1, we can drop the second term above and take expected values so that

E
{
SI,pr+1 − SI,pr

}
≤
∑
t�∈I
E



∑
i∈Fr


 k∏
j=1

Xij


1[j∗i =t]


∏
j∈I
Xij



p
 .

Let us denote by E(t) the expected value of the tth term above. Observe that

1[j∗i =t]Xij ≤ X
�−1
�
ij X

1
�
it . Thus we can bound each E(t) as follows:

E(t) ≤ E



∑
i∈Fr


 k∏
j=1

Xij




 ∏
j∈I∪{t}

Xij




�−1
� p

 .

Now, for any p̃, q̃ > 1 such that 1
p̃ +

1
q̃ = 1, we have by applying Hölder’s inequality

twice that

E(t) ≤ E



∑
i∈Fr


 k∏
j=1

Xij



q̃



1
q̃

E



∑
i∈Fr


 ∏
j∈I∪{t}

Xij




�−1
� pp̃




1
p̃

.

We can apply hypothesis H� to bound the second term above, if we can choose p̃ > 1
such that pp̃ �−1

� ∈ [1, k/-). Note that k
p(�−1) > 1, as p ∈ [1, k�−1 ). Let us define

p̃ = max
{√
k/p(-− 1), �

(�−1)p

}
, so that p̃ > 1, yet 1 ≤ pp̃ �−1

� <
k
� . This completely

defines the constant Ck(-, p). We can therefore use hypothesis H� and obtain

E(t) ≤
(
Ck(k, q̃)

rq̃−1

)1/q̃ (
Ck(-, pp̃(-− 1)/-)

r
�−1
k pp̃−1

)1/p̃

=
Ck(k, q̃)

1/q̃Ck(-, pp̃(-− 1)/-)
1
p̃

r
�−1
k p

.

We can thus bound the differences as follows:

E
{
SI,pr+1 − SI,pr

}
≤
∑
t�∈I
E(t) ≤ (k − -+ 1)Ck(k, q̃)

1/q̃Ck(-, pp̃(-− 1)/-)1/p̃

r
�−1
k p

.

Since p < k
�−1 , we have that

∑n
r=1

1

r
p
�−1
k

≤ 1
1−p �−1

k

n

n
p
�−1
k

. So, by summing the

differences, we get

E
{
SI,pn

} ≤ [Ck(-− 1, p)− 2]n1−p �−1
k + 2 ≤ Ck(-− 1, p)n1− p(�−1)

k
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as E{SI,p1 } ≤ 2, for every p ≥ 1, and any nonempty I ⊆ {1, . . . , k}. Thus, hypothesis
H�−1 is proved.

We now prove the lower bound. As we flip a perfect coin at the beginning of the
process to choose the side of R1 that we cut, all the coordinates Xi1, . . . , Xik of a
hyperrectangle Ri are exchangeable. So, denoting by S the set of all I ′ ⊆ {1, . . . , k}
of cardinality -, all the random variables

∑
i∈Fn

∏
j∈I′ X

p
ij are equally distributed so

that

E



∑
i∈Fn

∏
j∈I
Xpij


 =

1

|S| E


∑
I′∈S

∑
i∈Fn

∏
j∈I′

Xpij


 .

Then, by Lemmas 3 and 6,

E



∑
i∈Fn


∏
j∈I
Xij



p
 ≥

1

|S| E



∑
i∈Fn


 k∏
j=1

Xij




p�
k


 ≥ C

′ n

n
p�
k

.

We must note that by Lemma 3, if - = k, then for any p ≥ 0, there are positive
constants C and C ′, depending on p such that the previous result holds. We are now
ready to prove Theorem 3.

Proof of Theorem 3. The lower bound follows immediately from the previous
proposition. For any subset I ⊆ {1, . . . , k} of cardinality - ∈ {1, . . . , k− 1}, we define

SIn =

2n∑
i=1

∏
j∈I
Xij .

As we are using the longest-edge cut method we have that

E
{
SIr+1 − SIr |U1, . . . , Un

}
=
∑
i∈Fr

k∏
j=1

Xij


1[j∗i �∈I]2

∏
j∈I
Xij + 1[j∗i ∈I]

∏
j∈I
Xij




≤ 3
∑
i∈Fr

k∏
j=1

Xij
∏
j∈I
Xij .

We choose now p =
√
k/-, q = 1/(1−√-/k), so that 1

p +
1
q = 1, and apply Hölder’s

inequality with these values to get

E
{
SIr+1 − SIr

} ≤ 3E



∑
i∈Fr


 k∏
j=1

Xij



p


1/p

E



∑
i∈Fr


∏
j∈I
Xij



q


1/q

.

Then by Lemma 3 and Proposition 2, there exists a positive constant C depending
upon - and k such that

E
{
SIr+1 − SIr

} ≤ C

r
�
k

.

We add the differences to get

E
{
SIn
} ≤ C

(
n∑
r=1

1

r
�
k

)
+ 2 ≤ C

1− �k

(
n

n
�
k

)
+ 2.
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Proof of Lemma 5. First, note that for any 1 ≤ i ≤ n, Xi1 · · ·Xik is the volume
|Ri| of the hyperrectangle Ri. Note that if U1, . . . , Ui have already been inserted in
[0, 1]k, and Ui+1 is a new point, then the size of the two hyperrectangles generated by
Ui+1 is equal to the size of the hyperrectangle in the final partition of [0, 1]k in which
Ui+1 falls. Let us denote by R(Ui+1) this hyperrectangle. Thus,

E

{
2n+1∑
i=1

Xi1 · · ·Xik
}

= 1 +

n−1∑
i=0

E {E {|R(Ui+1)| |U1, . . . , Ui}} ,

where the 1 accounts for the root hyperrectangle. We claim that E {|R(Ui+1)|} = 2
i+2 .

Note that the claim is obviously true for i = 0. Now, suppose that U1, . . . , Ui have
already been inserted in the squarish k-d tree, so that there are i+ 1 external nodes.
These external nodes represent the i + 1 hyperrectangles partitioning [0, 1]k. Let
these hyperrectangles be S1, . . . , Si+1, and let the numbering be so that the leaves are
taken from left to right, in order of appearance as leaves in the squarish k-d tree of
U1, . . . , Ui. Then,

E {|R(Ui+1)|} = E
{
E

{
i+1∑
�=1

1[Ui+1∈S�] |S�|
∣∣ U1, . . . , Ui

}}

= E

{
i+1∑
�=1

|S�|P
{
Ui+1 ∈ S�

∣∣ U1, . . . , Ui
}}

= E

{
i+1∑
�=1

|S�|2
}
.

By Lemma 2, (|S1|, . . . , |Si+1|) are jointly distributed as uniform spacings. All these
spacings are identically distributed following a Beta(1, i) distribution. If B is a
Beta(1, i) random variable, then we have E {B} = 1/(i + 1) and E

{
B2
}
= 2/((i +

1)(i+ 2)). Therefore,

E {|R(Ui+1)|} = (i+ 1)E
{
B2
}
=

2

i+ 2
,

and thus

1 +
n−1∑
i=0

E {|R(Ui+1)|} = 1 + 2(hn+1 − 1).

6. Orthogonal range search. In this section, we obtain tight upper bounds for
the expected complexity for Bentley’s range search algorithm. For random orthogonal
range search, the following theorem establishes the standard for comparisons. Theo-
rem 5 below then states that random squarish k-d trees are superior to random k-d
trees for any kind of random orthogonal range search.

Theorem 4 (Chanzy, Devroye, and Zamora-Cura (1999)). Given is a random
k-d tree of size n. Let Q be a random query hyperrectangle of dimensions ∆1×· · ·×∆k
(which are deterministic functions of n taking values in [0, 1]), with center at Z which
is uniformly distributed on [0, 1]k, and independent of the k-d tree. Let Nn be the
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number of comparisons that Bentley’s orthogonal range search algorithm performs.
Then, there exist constants γ > γ′ > 0 depending upon k only such that

γ′ ≤ E {Nn}(
log n+

∑
I⊆{1,...,k}
0≤|I|<k

(∏
j /∈I ∆j

)
nα(|I|/k)

) ≤ γ,

where α(·) is the function defined in Theorem 1.
Theorem 5. Given is a random squarish k-d tree of size n. Let Q be a random

query hyperrectangle of dimensions ∆1 × · · · ×∆k (which are deterministic functions
of n taking values in [0, 1]), with center at Z which is uniformly distributed on [0, 1]k,
and independent of the k-d tree. Let Nn be the number of comparisons that Bentley’s
orthogonal range search algorithm performs. Then, there exist constants γ > γ′ > 0
depending upon k only such that

γ′ ≤ E {Nn}(
log n+

∑
I⊆{1,...,k}
0≤|I|<k

∏
j /∈I ∆jn

1− |I|
k

) ≤ γ .

We can rewrite the previous result as

E {Nn} ≤ γ


n

k∏
j=1

∆j +

k−1∑
�=1

n1− �
k

∑
I⊆{1,...,k}
|I|=�

∏
j /∈I

∆j + log n


 ,

and therefore by allowing any r of the ∆j ’s to be zero, the term that will dominate
the previous bound is

n1− r
k

∑
I;|I|=r

∏
j /∈I

∆j .

For example, when k = 2, ∆ = Θ(1/nα), and ∆′ = Θ(1/nβ), then

E {Nn} ≤ γ
(
n1−α−β + n

1
2−α + n

1
2−β + log n

)
.

By looking at the different regions in the α-β plane, we obtain

E {Nn} ≤


Θ(logn) for α ≥ 1/2 and β ≥ 1/2;
Θ(max{n1/2−αn1/2−β}) for α > 1/2, β < 1/2, or α < 1/2, β > 1/2;
Θ(n1−α−β) for α ≤ 1/2, β ≤ 1/2.

Note that if α = 0 and β ≥ 1/2, or β = 0 and α ≥ 1/2, we recover the expected
complexity time of the random partial match query problem (see Figure 5).

Lemma 7. Let U1, . . . , Un be independent and uniformly distributed over [0, 1]
k

random variables; let X∗i be the largest side of the ith hyperrectangle generated by
U1, . . . , Un. Then, for all n ≥ 0,

E

{∑
i∈Fn

1[X∗
i
> 1

2 ]

}
≤ 24k−3.
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Fig. 5. The complexity regions for ∆ = Θ(1/nα) and ∆′ = Θ(1/nβ).

Proof. Note that E{∑i∈Fn
1[X∗

i
> 1

2 ]
} ≤ 2kE{∑i∈Fn

∏
j∈Ii Xij}, where Ii =

{j : Xij >
1
2}. Define Sn =

∑
i∈Fn

(
∏
j:Xij>

1
2
8Xij). We are going to prove that

E {Sn} is decreasing so that for n ≥ 1,

E

{∑
i∈Fn

1[X∗
i
> 1

2 ]

}
≤ 2k−3

E {Sn} ≤ 2k−3
E {S0} = 24k−3.

To show E {Sn} ≤ E {S0}, we look at the differences once again. Set Pi =
∏
j∈Ii 8Xij .

Then,

Sr+1 − Sr =
∑
i∈Fr

|Ri|1[X∗
i
> 1

2 ]

{
−Pi + 1[XX∗

i
> 1

2 ]

(
PiX + 1[|Ii|>1]

Pi
8X∗i

)

+1[(1−X)X∗
i
> 1

2 ]

(
Pi(1−X) + 1[|Ii|>1]

Pi
8X∗i

)

+1[XX∗
i
≤ 1

2 ; (1−X)X∗
i
≤ 1

2 ]

(
21[|Ii|>1]

Pi
8X∗i

)}
,

where X
L
=Uniform[0, 1], and it is independent of U1, . . . , Ur. Therefore,

E {Sr+1 − Sr|U1, . . . , Ur} ≤
∑
i∈Fr

|Ri|1[X∗
i
> 1

2 ]
Pi


−1 +

∫ 1

1
2X∗

i

(
x+

1

4

)
dx

+

∫ 1− 1
2X∗

i

0

((1− x) + 1/4)dx+

∫ 1
2X∗

i

1− 1
2X∗

i

1/2dx




=
∑
i∈Fr

|Ri|1[X∗
i
> 1

2 ]
Pi

(
1

4X∗i
− 1

(2X∗i )2

)

≤ 0.
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Proof of Theorem 5. Let T be the squarish k-d tree constructed from U1, . . . , Un.
Note that a node Ui in T is visited if and only if the query hyperrectangle Q inter-
sects Ri, where Ri is the hyperrectangle in the final partition of [0, 1]k generated by
U1, . . . , Ui−1, in which Ui falls. Thus, the running time of the range search algorithm
is exactly the number of hyperrectangles in Rn that Q intersects

Nn =

2n∑
i=0

1[Ri∩Q�=∅].

Also, given U1, . . . , Un, the probability that Q intersects Ri is the probability that Z
has some coordinate that is within distance ∆j/2 of Ri, and this probability is clearly
bounded by the volume of Ri expanded by ∆j in the jth direction for all j. Therefore,

E {Nn} ≤ E



2n∑
i=1

k∏
j=1

(Xij +∆j)




=
∑

I⊆{1,...,k}

∏
j /∈I

∆j E




2n∑
i=1

∏
j∈I
Xij


+ 1

≤ γ




∑
I⊆{1,...,k}
0≤|I|<k

∏
j /∈I

∆jn
1− |I|

k + log n




for some γ > 0 by Theorem 3 and Lemma 5. For the lower bound we may assume
that ∆j ≤ 1/2 and do the following:

E {Nn} ≥ E
{∑
i∈Fn

1[Q∩Ri �=∅]1[∀j∈{1,...,k}:Xij≤1/2]

}

≥ E


∑
i∈Fn

k∏
j=1

(
Xij +

∆j
2

)
1[∀j∈{1,...,k}:Xij≤1/2]




= E



∑
i∈Fn

k∏
j=1

(
Xij +

∆j
2

)
−E



∑
i∈Fn

k∏
j=1

(
Xij +

∆j
2

)
1[∃j∈{1,...,k}:Xij>1/2]




=
∑

I⊆{1,...,k}

∏
j /∈I

∆j
2
E



∑
i∈Fn

∏
j∈I
Xij




−
∑

I⊆{1,...,k}

∏
j /∈I

∆j
2
E



∑
i∈Fn

∏
j∈I
Xij1[∃j∈{1,...,k}:Xij>1/2]


 .

We can bound the second term above for any given I ⊆ {1, . . . , k} as

E



∑
i∈Fn

∏
j∈I
Xij1[∃j∈{1,...,k}:Xij>1/2]


 ≤ E

{∑
i∈Fn

1[X∗
i
>1/2]

}
≤ 24k−3
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by the previous lemma. Thus, for all n large enough, we can choose γ′ > 0 such that

E {Nn} ≥ γ′




∑
I⊆{1,...,k}
0≤|I|<k

∏
j /∈I

∆jn
1− |I|

k + log n


 .

7. Nearest neighbor search. We consider two natural nearest neighbor search
algorithms. In algorithm A, start with an orthogonal range search with a square box
of size 1/n1/k centered at the query point X. Repeat with boxes of sizes ki/2/n1/k for
i = 0, 1, 2, 3, . . . until i+1, where i is the index of the first nonempty box. Report the
nearest point in the (i + 1)st box. Each orthogonal range search taken individually
(for fixed i) takes expected time O(log n) by Theorem 5. We show in fact that the
total expected time is O(log n log log n).

Theorem 6. Let X be a point uniformly distributed on [0, 1]k. Consider a
squarish k-d tree based on n i.i.d. points on [0, 1]k. Then the expected time of algorithm
A is O(log n log log n).

Proof. Let T be the total time it takes algorithm A to finish. Let Ti be the
running time of Bentley’s range search algorithm on n i.i.d. points on [0, 1]k and a
cube Qi centered at X of length ki/2/n1/k, and let Mi be the number of points in Qi.
Note that

E {T } ≤ O(log n) +E
{
T1 + T2 +

m∑
i=3

Ti1[Mi−2=0]

}
,

where m = � 2k logk(2kn)� bounds the maximum number of iterations the algorithms
can perform. Thus, it is enough to prove thatE

{∑m
i=3 Ti1[Mi−2=0]

}
= O(log n log log n).

Let t = � 2k logk(2k log n)�; then

E

{
m∑
i=3

Ti1[Mi−2=0]

}
≤ (t+ 1)E {Tt+1}+ 2n

m∑
i=t+2

P {Mi−2 = 0} .

Now, by Theorem 5,

(t+ 1)E {Tt+1}

≤ γ
(
2

k
logk(2

k log n) + 2

)

k(t+1)k/2 +

k−1∑
�=1

n1−�/k ∑
I⊆{1,...,k}
|I|=�

∏
j /∈I

k(t+1)/2

n1/k
+ log n




= γ

(
2

k
logk(2

k log n) + 2

)(
k(t+1)k/2 +

k−1∑
�=1

n1−�/k
(
k

-

)
k(t+1)(k−�)/2

n1−�/k + log n

)

= γ

(
2

k
logk(2

k log n) + 2

)(
k(t+1)k/2 + k(t+1)k/2

k−1∑
�=1

(
k

-

)
k−(t+1)�/2 + log n

)

≤ γ
(
2

k
logk(2

k log n) + 2

)(
k(t+1)k/2

(
k−(t+1)/2 + 1

)k
+ log n

)

≤ γ
(
2

k
logk(2

k log n) + 2

)(
kk2k log n

(
1√

k(2k log n)1/k
+ 1

)k
+ log n

)

= O(log n log log n)
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for all n ≥ e. Finally, for i ≤ m,

P {Mi−2 = 0} ≤
(
1− k

k(i−2)/2

2kn

)n
≤ e−kk(i−2)/2/2k

,

and therefore P {Mt+2 = 0} ≤ 1/n. Thus,

2n
m∑
i=t+2

P {Mi−2 = 0} ≤ 2m = O(log n).

Theorem 6 is in contrast with the situation for standard random k-d trees, where
algorithm A is shown to take expected time Θ(nρ), where ρ ∈ (0.061, 0.064) depends
upon k only (Chanzy, Devroye, and Zamora-Cura (1999)). In algorithm B, insert X
in the squarish k-d tree, and let Q be the rectangle associated with X. Let X ′ be the
parent of X in the tree (note: X ′ ∈ Q). Perform an orthogonal range search centered
at X with dimensions 2‖X ′−X‖ in all directions. Report the nearest neighbor among
all points returned by this orthogonal range search. We will analyze this algorithm
for k = 2 only.

Theorem 7. Let X be a point uniformly distributed on [0, 1]2. Consider a
squarish 2-d tree based on n i.i.d. points on [0, 1]2. Then the expected time of algorithm
B is O(log2 n).

The bound on algorithm B is a bit worse than that for algorithm A, because
while most rectangles are squarish, a sufficient number of them are elongated. In fact,
for given M > 1, about 1/M of the final (leaf) rectangles or more should have an
edge ratio exceeding M . For edge ratio M , and considering that all rectangle areas
are about 1/n, we see that the orthogonal range search should take about M points.
(The longest edge is about

√
M/n.) The expected number of returned elements is

at least Θ(log n). And the expected number of leaf rectangles visited is of the same
order. But each visited leaf rectangle also induces a visit to all of its ancestors, and
there are about logn of those, hence the claim. The remainder of this section contains
the proof of Theorem 7.

Lemma 8. Let Z,U1, . . . , Un be independent and uniformly distributed random
variables on [0, 1]2. Let Xn(Z) and Yn(Z) be the x-length and y-length of the rectangle
in the final partition (of the squarish 2-d tree) induced by U1, . . . , Un in which Z falls.
Then, both nE

{
X2
n(Z)

}
and nE

{
Y 2
n (Z)

}
are O(log2 n).

Proof. By Lemmas 3 and 4, for any p, q > 1 such that 1
p +

1
q = 1, we have that

E
{
X2
n(Z)

}
= E

{∑
i∈Fn

X3
i Yi

}

≤ E
{∑
i∈Fn

(XiYi)
p

}1/p

E

{∑
i∈Fn

X2q
i

}1/q

≤
(
4Γ(p+ 1)

np−1

)1/p(
5Γ(q + 1)

q − 1

(
q − 1

nq−1

))1/q

=
41/p51/q (Γ(p+ 1))

1/p
(Γ(q + 1))

1/q

(q − 1)1/q
(qnq−1 − 1)1/q

n
.

Let us choose q = 1 + 1
logn , p = log n + 1, and assume n > e. As Γ(p + 1) ≤√

2π
(
p
e

)p
e1/12p (see, for example, Abramowitz and Stegun (1970)), there is c > 0,
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such that (Γ(p+1))1/p ≤ cp = c(log n+1), and there is c′ > 0, such that (Γ(q+1))1/q ≤
c′q ≤ 4c′. Furthermore, (q − 1)−1/q = (logn)

log n
log n+1 ≤ log n, and (qnq−1 − 1)1/q ≤

2e − 1. Therefore nE
{
X2
n(Z)

}
= O(log2 n). The result for nE

{
Y 2
n (Z)

}
follows in

the same manner.
Lemma 9 (see Devroye (1986)). Let Hn be the height of a random binary search

tree of size n; then for any integer k ≥ max{1, log n} we have

P {Hn ≥ k} ≤ 1

n

(
2e log n

k

)k
.

Lemma 10. Let Z,U1, . . . , Un be independent and uniformly distributed ran-
dom variables over [0, 1]2. Let Xn(Z) and Yn(Z) be the x-length and y-length of
the rectangle in the final partition induced by U1, . . . , Un in which Z falls. Then
E{Xn(Z)

∑2n
i=1Xi}, E{Yn(Z)

∑2n
i=1 Yi}, E{Xn(Z)

∑2n
i=1 Yi}, and E{Yn(Z)

∑2n
i=1Xi}

are O(log2 n).
Proof. Let Fn denote the collection of final rectangles in the squarish 2-d tree

T constructed from U1, . . . , Un. For a final rectangle Ri, denote by D(Ri) its depth.

Then
∑2n
i=1Xi ≤

∑
i∈Fn

D(Ri)Xi + 1. Thus if Hn is the height of T ,

E

{
2n∑
i=1

XiXn(Z)

}
≤ E



∑
i∈Fn

D(Ri)Xi
∑
j∈Fn

X2
j Yj


+ 1

≤ E

Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


+ 1

≤ t log nE


∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


+ 1

+E


1[Hn≥t log n]Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


+ 1

for any t > 1. Using Lemma 9, we see that

E


1[Hn≥t logn]Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


 ≤ n3P {Hn ≥ t log n} ≤ n2nt log(

2e
t ).

We choose t such that t log
(

2e
t

)
< −2 so that

E


1[Hn≥t logn]Hn

∑
i∈Fn

Xi
∑
j∈Fn

X2
j Yj


 = O(1).

We complete the proof by showing that E{∑i∈Fn
Xi
∑
j∈Fn

X2
j Yj} = O(log n). For

this, let Sr =
∑
i∈Fr

Xi
∑
j∈Fr

X2
j Yj , for r = 1, . . . , n− 1. Note that

Sr+1 − Sr =
∑
m∈Fr

XmYm

[
1[Xm<Ym]Xm

∑
j∈Fr

X2
j Yj

+ 1[Xm>Ym]((XXm)
2Ym + ((1−X)Xm)

2Ym −X2
mYm)

∑
i∈Fr

Xi

]
,



1698 LUC DEVROYE, JEAN JABBOUR, AND CARLOS ZAMORA-CURA

where X
L
=Uniform[0, 1], and is independent of all U1, . . . , Un. Now, as (XXm)

2Ym+
((1−X)Xm)

2Ym −X2
mYm ≤ 0, we have that

Sr+1 − Sr ≤
∑
i∈Fr

(XiYi)
3/2

∑
j∈Fr

X2
j Yj .

Note that for any p, q > 1, such that 1
p +

1
q = 1,

E {Sr+1 − Sr} ≤ E
{(∑

i∈Fr

(XiYi)
3/2

)p}1/p

E




∑
j∈Fr

X2
j Yj



q


1/q

,

and again by Hölder’s inequality, and Lemma 3, by choosing q =
√
1.4 and p =

√
1.4√

1.4−1
,

E

{(∑
i∈Fr

(XiYi)
3/2

)p}1/p

≤ E
{
rp/q

∑
i∈Fr

(XiYi)
3p/2

}1/p

≤ 12√
r
.

By applying Hölder’s inequality inside the expected value,

E




∑
j∈Fr

X2
j Yj



q


1/q

≤ E

rq/p

∑
j∈Fr

(X2
j Yj)

q




1/q

≤ r1/p

E



∑
j∈Fr

(XjYj)
qp




1/p

E



∑
j∈Fr

Xq
2

j




1/q



1/q

≤ 46 r1/p

((
1

rqp−1

)1/p(
1

rq2/2−1

)1/q
)1/q

=
46√
r
.

Thus, E {Sr+1 − Sr} ≤ 552/r, and by summing the differences we finally can conclude
that E{∑i∈Fn

Xi
∑
j∈Fn

X2
j Yj} is indeed O(log n). The other expected values can

be bounded in the same way.
Proof of Theorem 7. Given U1, . . . , Un, we define Ln(Z) = 2(Xn(Z) + Yn(Z)).

Note that as the expected height of T is O(log n), the expected time complexity of the
nearest neighbor algorithm is bounded by O(log n) plus the expected time of random
orthogonal range search with query rectangle Q having all sides of length Ln(Z),
and centered at Z. Let Nn be the time complexity of a range search. By the same
arguments followed in Theorem 3, we have

E {Nn} ≤ E
{

2n+1∑
i=1

XiYi

}
+ 2E

{
2n+1∑
i=1

Ln(Z)(Xi + Yi)

}
+ 8nE

{
L2
n(Z)

}
+ 1.

By Lemma 5, E{∑2n+1
i=1 XiYi} = O(log n). For E{

∑2n+1
i=1 Ln(Z)(Xi+Yi)}, Lemma 10

above shows that it is O(log2 n). As nE {Xn(Z)Yn(Z)} = nE
{∑

i∈Fn
(XiYi)

2
}
,

Lemma 3 shows that it is O(1). Finally, by Lemma 8 we have that nE
{
L2
n(Z)

}
=

O(log2 n). Thus the expected running time of algorithm B is O(log2 n).
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8. Further work and open problems.
quadtrees. For quadtree splitting in k dimensions (Finkel and Bentley (1974),

Bentley and Stanat (1975)), it is easy to see that the analysis and thus Theorem 1 are
not valid. In fact, for random quadtrees, the expected performance for partial match
queries was shown to be of the order of that for standard random k-d trees (Flajolet,
Gonnet, Puech, and Robson (1991), (1992)). For orthogonal range search with query
rectangles depending upon n, see Chanzy, Devroye, and Zamora-Cura (1999).

expected worst-case complexity. We conjecture that the expected worst-
case complexity over all range search rectangles of dimensions ∆i (but with worst-case
location of the center) is also bounded from above by the bound given in Theorem 2.
And the expected worst-case time for an s-dimensional partial match query is con-
jectured to be O(n1−s/k) for s < k. (For s = k, the complexity is clearly bounded by
the expected height of the tree, O(log n).)

nonuniform distributions. Finally, we also intend to study the behavior of
squarish k-d trees for nonuniform distributions, although it appears once again that
the upper bound of Theorem 2 remains valid for all distributions with a joint density
on [0, 1]k.
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Abstract. We consider a system of uniform recurrence equations of dimension 1 and we show
how its computation can be carried out using minimal memory size with several synchronous proces-
sors. This result is then applied to register minimization for digital circuits and parallel computation
of task graphs.

Key words. uniform recurrence equation, register minimization, circuit design, task graph,
(max,+) linear system
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1. Introduction. We start by the definition of uniform recurrence equations.
Definition 1.1 (uniform recurrence equations). We consider Q-valued variables

Xi(n), i ∈ V, n ∈ K, where Q is an arbitrary set, V is a finite set, and K ⊂ Z
p for

some p ∈ N. These variables satisfy

Xi(n) = Fi

(
Xj(n − γ), (j, γ) ∈ ∆i

)
∀n ∈ K .(1)

The sets ∆i, called dependence sets, are finite subsets of V × Z
p. The collection of

equations (1) is called a set of uniform recurrence equations (UREs).
There is no restriction on the generality of the functions Fi except the fact that

they are computable. The system S defined by (1) is said to be uniform because the
dependence sets ∆i do not depend on n. The integers γ are called the delays. It is
possible to have two delays γ, γ′ ∈ Z

p, γ �= γ′, such that (j, γ) ∈ ∆i and (j, γ′) ∈ ∆i.
There are various motivations to study UREs. They appear in the description of

differential equations using finite difference methods and in the study of discrete event
systems. The case p > 1 and K = Z

p has often been studied in the literature; see [16].
In this case, some of the major issues are constructivity [16] and loop parallelization
[8]. These problems and others appearing in this framework will be discussed in
Appendix A.

In this paper, we consider only the simple case where K = Z (systems of dimen-
sion 1). The computational model considered is that of parallel processors with a
shared memory (CREW-PRAM model: concurrent read exclusive write parallel ran-
dom access memory ). More precisely, a computation is performed by a processor,
using data stored in the memory. For example, to compute Xi(n), it is necessary
to have at least |∆i| memory locations, each location containing one of the data
{Xj(n− γ), (j, γ) ∈ ∆i}. In a model of parallel processors with shared memory, there
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are several processors that can make computations simultaneously and also access the
same memory locations simultaneously.

The problem investigated consists in minimizing the “memory size”:

What is the minimal number of memory locations that is needed to
compute all the variables Xi(n) of (1) using a CREW-PRAM com-
putational model?

We solve this problem in the recycled case (see section 2.2 for the definition) by
proving that it is equivalent to the search for minimal cuts in the dependence graph
associated with the system of UREs. This provides polynomial algorithms to compute
the minimal memory requirements.

We show that the solution of this problem has many applications. Indeed, UREs
appear in the modeling of logical circuits, systolic arrays, and program loops. Our
result can be used practically for the optimization of circuit design. Given a digital
circuit, we show how to find another circuit with the same functional behavior and
using a minimal number of registers. This application will be discussed in section 7.

Our results can also be used in another context, namely, in order to obtain the
most efficient representation of task graph systems for parallel computation purposes.
The evolution of a task graph can be represented as a linear system over the (max,+)
algebra of the form x(n + 1) = A(n)x(n), where x(.) ∈ R

k
max and A(n) ∈ R

k×k
max . Our

results enable us to obtain a linear representation of a task graph with a minimal
dimension k for the matrices A(n). This application will be treated in section 8.

The paper is organized as follows. In section 2, we make more precise the definition
of a system of UREs and present two associated graphs, the dependence graph and
the reduced graph. In section 3 we describe the problem that we are going to address.
In particular, we restrict our attention to recycled systems of UREs. Sections 4 and
5 investigate the relations that can be found between cuts in the dependence graph
and the memory size required for an execution of the URE; section 6 presents the
interpretation of the above quantities in the reduced graph. Finally in sections 7
and 8, two applications are described, for digital circuits and (max,+) linear systems,
respectively. In Appendices A and B, we consider the related problems of scheduling
and sequential executions.

2. Basic models. From now on, we consider UREs of dimension 1. More pre-
cisely, we consider the set of variables Xi(n), i ∈ V, n ∈ Z, and the equations

Xi(n) = Fi

(
Xj(n − γ), (j, γ) ∈ ∆i

)
, n ∈ Z ,(2)

where the sets ∆i are finite subsets of V × Z.

A system of UREs is constructive if given the values of the “negative” variables
Xi(n), n ≤ 0 (initial data), there exists an ordering of the equations such that, ∀i,∀n >
0, all the variables present in the right-hand side of the equation defining Xi(n) can be
computed before Xi(n). Equivalently, the constructivity assumption can be written as
follows: For each cycle (i1, γ1), . . . , (ip, γp), ip+1 = i1 such that (ij+1, γj+1) ∈ ∆ij , j ∈
{1, . . . , p}, then

∑p
j=1 γj > 0.

Remark 2.1. Under the constructivity assumption, Farkas’ lemma states that it
is possible to come back to (1) with all the sets ∆i included in V × N using a simple
renumbering of the variables (i.e., Xi(n) := Xi(n + ci) for some constants ci ∈ Z

independent of n). This renumbering actually amounts to a retiming of the system.
This notion will be studied in detail in section 6.1.
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1

Fig. 1. Dependence graph associated with the system S of (3).

From now on, the system S that we consider is always assumed to be construc-
tive. We present two equivalent ways of describing S: the dependence graph and the
reduced graph.

Example 2.2. The illustrative examples in this section correspond to the system




X1(n) = F1(X3(n − 1)),
X2(n) = F2(X1(n − 2)),
X3(n) = F3(X2(n), X4(n − 2)),
X4(n) = F4(X3(n − 1), X4(n − 1)).

(3)

2.1. Dependence graph. We introduce the graph D of the dependences be-
tween the variables Xi(n).

Definition 2.3 (dependence graph). The dependence graph associated with a
system of UREs is the graph D with (V × Z) as the set of nodes. There is an arc
from the node (i, n) to the node (j, m) if Xj(m) = Fj(Xi(n), . . . ) or, equivalently, if
(i, m − n) ∈ ∆j (notation: (i, n) → (j, m)).

The nth column in D is the set of nodes {(i, n), i ∈ V }. The ith line in D is the
set of nodes {(i, n), n ∈ Z}. In the following, we will refer to nodes (i, n), n ≤ 0, as
negative nodes and nodes (i, n), n ≥ 0, as positive nodes.

It is immediate from the definition of a URE that D is 1-periodic, i.e.,

(i, n) → (j, m) ⇐⇒ (i, n + 1) → (j, m + 1) .

The constructivity assumption implies that the graph D is acyclic. We have repre-
sented in Figure 1 the dependence graph corresponding to the system of Example
2.2.

The dependence graph appears under various forms and names in the literature,
for example, developed graph, PERT graph, unfolded process graph, and activity
network.

2.2. Reduced graph. Since the dependence graph D is 1-periodic, it can be
folded into a reduced graph R.

Definition 2.4 (reduced graph). The reduced graph is an arc-valued graph
R = (V, E, Γ). The set of nodes is V and there is an oriented arc e ∈ E from i
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1

21
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2 3

1

4

2

Fig. 2. Reduced graph associated with the system S of (3).

to j if

∃γ ∈ Z such that (s.t.) (i, γ) ∈ ∆j .(4)

This arc is valued with the delay Γ(e) = γ. If there exist several delays γ verifying
condition (4), E contains several arcs between the nodes i and j, with corresponding
values. Furthermore, we consider the functions Fi, i ∈ V , to be associated with the
nodes of R.

There is an arc from i to j in E if and only if there are arcs from the line (i, .)
to the line (j, .) in the dependence graph. The system S is constructive if and only if
the sum of the delays along any circuit in R is strictly positive.

The reduced graph associated with the system S of Example 2.2 is represented
in Figure 2. The delays γ associated with the arcs are depicted in boxes.

Reduced graphs appear in the literature under the following names: computation
graph, synchronous data flow graphs, process graphs, and uniform graphs.

It should be clear from the definitions that there is a one-to-one correspondence
between the three models. Indeed, a system can be given by its reduced graph as well
as its dependence graph or system of equations.

2.3. Recycled assumption. In the following (sections 4, 5, 7, and 8), we will
study only a special case of URE, where the computation of the variable Xi(n) cannot
be completed before the computation of Xi(n − 1). This case appears naturally in
task graphs (see section 8) and in other applications. This constraint can be modeled
by imposing a dependence between Xi(n−1) and Xi(n) ∀i and n. Formally, it results
in having (i, 1) ∈ ∆i ∀i for the system of UREs. Equivalently, it results in having a
self loop with delay 1 (hence the name recycled) at each node of R, or in having arcs
between the nodes (i, n) and (i, n + 1) in D. Such arcs will be called recycling arcs in
what follows. Figure 3 depicts an example of a recycled system.

2.4. Connectedness. We say that a system of UREs is (strongly) connected if
the graph R is (strongly) connected. In the remainder of the paper, we will always
consider systems of connected (but not necessarily strongly connected) UREs.

In fact, we will see that, for a recycled connected URE and for games M1,M2,
and M3 (to be defined below), a valid computation with a minimal number of mem-
ory locations requires all its memories at each instant. It implies that the minimal
number of memories necessary to compute a nonconnected recycled URE is the sum
of the minimal numbers of memories necessary to compute the different connected
components independently.
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Fig. 3. Recycled reduced graph and recycled dependence graph.

3. Synchronous executions. We want to minimize the memory size required
in the synchronous computation of a system S.

Among the related problems that have been studied in the field of UREs, we
can mention the basic scheduling problem and the sequential computations. These
questions and their relation with the one considered in this paper are discussed in
Appendices A and B.

3.1. Pebble games. Let us work with a URE and its associated dependence
graph D as defined in section 2.1. We want to compute iteratively all the variables
Xi(n), n ∈ N. At each step, the variables which are necessary to carry out the
computations have to be stored in some memory locations. Our general objective will
be to solve the following problem:

What is the minimal number of memory locations
needed to compute all the variables Xi(n)?

We give a description of this problem in terms of a pebble game. A pebble game is
played on a graph. At each step, a finite number of pebbles are located on the nodes
of the graph, with at most one pebble per node. The position of the pebbles evolves
by adding or removing pebbles according to some rules.

Different variants of pebble games have been used in the literature to model
memory allocation problems; see, for example, [21, 25]. A pebble corresponds to a
memory location, and putting a pebble on a node corresponds to the computation of
the variable associated with the node and its storage into the memory. Removing a
pebble from a node corresponds to erasing these data from the memory.

Now, we give a more formal definition of the pebble game in our framework. Here,
the graph considered is the dependence graph D of a URE.

Definition 3.1 (configuration). A configuration is a finite subset of V × Z, the
set of nodes of D. A configuration represents the position of the pebbles at some stage
of the game. There is at most one pebble per node.

Definition 3.2 (execution, successful execution, step). An execution of the
pebble game is a sequence of configurations e = {A(t), t ∈ N}, such that ∀t, the
configuration A(t+ 1) can be obtained from A(t) through the rules of the pebble game.
The passage from A(t − 1) to A(t) is called the step t of the game. An execution of
the game is successful if all positive nodes receive a pebble during the execution, i.e.,
∀(i, n) ∈ V × N, ∃ t ∈ N, s.t. (i, n) ∈ A(t).

In the following, we will always consider successful executions and refer to them
simply as executions. An execution corresponds to a computation of all the variables
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{Xi(n), i ∈ V, n ∈ N}. The number of pebbles used by an execution e = {A(t), t ∈ N}
is

P(e)
def
= sup

t∈N

|A(t)| ,(5)

where |A(t)| represents the cardinal of A(t). Our general objective is redefined below.
It will be referred to as the problem MinPeb.

Problem 1 (MinPeb). Determine mine P(e) and an execution eo such that
P(eo) = mine P(e).

In the following, we define several sets of rules, each of them defining a different
pebble game. The different sets of rules, called M1,M2, and M3, correspond to
different computation models for the URE and are related to different notions of
cuts and delays (see sections 4 and 5). Also, their relevance will be justified by the
applications given in sections 7 and 8. We use the expressions “set of rules Mi” or
“game Mi” indifferently.

M1 : Synchronous execution. The set of rules M1 is as follows:

• (R1) (starting rule). Initially, a finite number of pebbles are put on negative
nodes only, with at least one pebble on column 0: A(0) ⊂ V × Z

−, A(0) ∩
(V × {0}) �= ∅.

• (R2) (playing rule). One step of the game consists of any number of moves
of type (R3), followed by any number of moves of type (R4).

• (R3) (adding pebbles). Put a pebble on an empty node (i, n). At step t, this
is possible if and only if each infinite oriented path (see Definition 4.1) ending
in (i, n) intersects A(t − 1).

• (R4) (removing pebbles). Remove a pebble from a node.

Remark 3.3 (comments of rule (R2)). Note that our definition of P(e) considers
only the number of pebbles at the end of the step and not at intermediate stages (after
(R3) and before (R4), for example). It corresponds to the assumption that all the
moves done in one step can be performed simultaneously. This is why this is called a
synchronous execution. This remark also applies to games M2 and M3.

Remark 3.4 (comments on rule (R3)). Rule (R3) may look cumbersome since
one may put a pebble on a node which is very far to the right from the current
position of the pebbles. Its intuitive meaning for the calculation in a system of UREs
is the following: At the beginning of step t, the variables which are in memory are
the ones corresponding to A(t − 1). A new pebble can be put on a node (i, n) if the
corresponding variable Xi(n) can be computed given the variables in memory. This
does not mean that this computation has to be direct. It may be done using the
variables in memory and the appropriate compositions of the initial functions Fi.
Since the initial functions are arbitrary, no notion of the “complexity of a function”
is used here. Hence the function obtained by composition of a finite number of initial
functions can be considered just as yet another arbitrary function, and its computation
does not require any additional memory.

However, it seems reasonable to consider that function compositions should have
a “cost,” not in terms of space as mentioned above, but in terms of time. A step of the
game may have a duration which depends on the “complexity” of the compositions.
The discussion of this aspect of the problem is postponed until Appendix A.2.

We illustrate rule M1 with the example of Figure 4. We have represented a small
part of the dependence graph of the URE: X1(n) = F1(X1(n− 1), X2(n− 1), X3(n−
1)), Xi(n) = Fi(Xi−1(n), X1(n − 1), X2(n − 1), X3(n − 1)) for i = 2, 3.
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Fig. 4. Rule M1. Three pebbles are needed.

At step 0, we have three pebbles on nodes (i, 0), i = 1, 2, 3 (rule (R1)). At step 1,
it follows from rule (R3) that a pebble can be put on any positive node. For instance,
let us consider node (2, 1). The associated variable can be computed as follows:

X2(1) = F2

(
F1 (X1(0), X2(0), X3(0)) , X1(0), X2(0), X3(0)

)
.

By keeping the original pebbles untouched, we can use one additional pebble to mark
all the nodes one by one. In this way, we obtain a successful execution using four
pebbles. It is, however, possible to do better.

Consider the following execution, illustrated in Figure 4. After step t−1, assume
there are three pebbles on nodes (i, t − 1), i = 1, 2, 3. At step t, we can put simul-
taneously three pebbles on nodes (i, t), and we remove the initial pebbles (rule (R3)
used three times followed by rule (R4) applied three times). At step t + 1, we put the
three pebbles on nodes (i, t + 1) and so on. The number of pebbles needed by this
execution is three.

Game M1 can be seen as a model of computation of a URE where several syn-
chronous processors are used in parallel during the computations. These processors
can access the same memory locations at the same time. More precisely, this is a
model of a CREW-PRAM (see, for instance, Reif [22]) computation of the URE. The
number of processors needed at one step is equal to the number of moves of type (R3)
(i.e., the number of computations realized). For more details, see Appendix A.2.

M2 : Synchronous regular execution. The rules of M2 are obtained by restricting
M1 as follows:

• (R1). Unchanged.
• (R2b) (playing rule). Same as before, with the additional restriction that

configurations must be 1-periodic, i.e., A(t + 1) = A(t) + 1, where

(i, n) ∈ A(t) + 1 ⇐⇒ (i, n − 1) ∈ A(t).(6)

• (R3). Unchanged.
• (R4). Unchanged.

The example of Figure 4 was also verifying the set of rules M2. To see that M1

and M2 are indeed different, let us consider the example of Figure 5. It corresponds
to the URE X1(n) = F1(X2(n − 1)), X2(n) = F2(X1(n)).

In Figure 5(I), only one pebble is needed under rule M1. The corresponding exe-
cution verifies rule (R2) (game M1) but not rule (R2b) (game M2). In Figure 5(II),
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Fig. 5. Rule M1 (I) and rule M2 (II).

two pebbles are needed. The corresponding execution verifies rule (R2b). The com-
putations are performed according to the following patterns:

(a) Rule M1 (Figure 5(I)).
Step t: X2(n) = F2(X1(n)).
Step t + 1: X1(n + 1) = F1(X2(n)).
Step t + 2: X2(n + 1) = F2(X1(n + 1)) . . .

(b) Rule M2 (Figure 5(II)).
Step t: (X1(n + 1), X2(n + 2)) (F1 ◦ F2(X1(n)), F2 ◦ F1(X2(n + 1))).
Step t+1: (X1(n + 2), X2(n + 3)) = (F1 ◦ F2(X1(n + 1)), F2 ◦ F1(X2(n + 2))).

Note that in the execution under rule M2, we have to perform the function
compositions F2 ◦F1 and F1 ◦F2. In Appendix A.2, we discuss the “cost” of function
compositions.

Game M2 corresponds to the same computational model as game M1, which
is the CREW-PRAM model. The difference is that in an execution of M2, the
variables in A(t) are obtained from those in A(t − 1) by always applying the same
operator. This is interesting for implementation purposes. A nonregular execution
of M1 would be practically very intricate to implement since each step would be
essentially different. Another advantage of an execution of M2 is that the number of
memory locations needed to carry out the calculations is easy to compute: it is equal
to |A(t)| (independent of t).

M3: Synchronous one-pass execution. The rules of M3 are obtained by restrict-
ing the ones of M2 as follows:

• (R1). Unchanged.
• (R2c) (playing rule). Same as (R2b), with the following additional restriction.

Each node in D must be computed only once during the whole execution.
• (R3). Unchanged.
• (R4). Unchanged.

In rule (R2c), the important point is the difference that exists between computing
a node and keeping the result in memory.

Let us consider the example of Figure 6(I). Each node on line 1 is computed
twice, whereas each node on line 2 is computed only once. Let us detail this. Node
(1, n + 2) is computed at step t (it is needed as an auxiliary for the computation of
node (2, n + 2)), but it is not kept in memory. Node (1, n + 2) is then computed a
second time at step t + 1. On the other hand, node (2, n + 2) is computed at step t
and is kept in the memory. It does not have to be computed a second time at step
t + 1, as the computed value is just moved from one register to another.
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Fig. 6. Rule M2 (I) and rule M3 (II).

In Figure 6(I), we have an example of an execution satisfying rule M2 but not
M3. On the other hand, in Figure 6(II), we have an execution which verifies rule
M3. The corresponding computation pattern is as follows:

• Rule M3 (Figure 6(II)).
Step t: (X1(n + 1), X2(n + 1)) = (F1(X1(n), X2(n)), F2(F1(X1(n), X2(n)),
X2(n))).
Step t+1: (X1(n+2), X2(n+2)) = (F1(X1(n+1), X2(n+1)), F2(F1(X1(n+
1), X2(n + 1)), X2(n + 1))).

The computational model corresponding to game M3 is still the CREW-PRAM
model. Rule (R2c) may look cumbersome, but it actually corresponds to a natural
notion for the applications to be detailed later on.

Notation. We will use the following notation:
• E : the set of all possible (synchronous) executions under rule M1.
• RE : the set of all possible executions under rule M2. Elements of RE will

be called regular executions.
• ORE : the set of all possible executions under rule M3. Elements of ORE

will be called one-pass regular executions.
Since the rules are increasingly restrictive, we have ORE ⊂ RE ⊂ E .

4. Cuts in the dependence graph and their relation with M1,M2. From
now on, it is always implicitly assumed that the system under study is recycled; see
section 2.3. In this section, we concentrate on games M1 and M2.

We introduce the notions of cuts and consecutive cuts in a dependence graph.
We show that cuts (resp., consecutive cuts) are closely related to executions of the
pebble game under game M1 (resp., game M2).

We show that there always exists a minimal cut which is consecutive (Lemma
4.7). It will allow us to prove Theorem 4.11, the main result of the section:

min
e∈RE

P(e) = min
e∈E

P(e) = min
C cut of D

|C| ,

where the notation is defined in section 3.1. As a direct consequence, we show in
section 4.3 that problem MinPeb can be solved with a polynomial algorithm for games
M1 and M2.
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A nonconsecutive cut A consecutive cut

Fig. 7. Consecutive and nonconsecutive cuts.

4.1. Definitions. Let us recall some classical definitions of graph theory, all
defined on the dependence graph D. For further references, see [9, 14], for example.

Definition 4.1 (path). A path is a sequence of nodes and arcs in D of the form
· · · → (i0, n0) → (i1, n1) → (i2, n2) → · · · → (ik, nk) → · · · . A path is bi-infinite if
it contains an infinite number of negative nodes and an infinite number of positive
nodes.

Definition 4.2 (cut). A cut C is a set of nodes in D such that any bi-infinite
path contains at least one node of C. A cut with a minimal number of nodes is called
a minimal cut.

Definition 4.3 (flow). A flow is a set of bi-infinite paths such that any two
paths do not share any node. A flow containing a maximal number of paths is called
a maximal flow. A flow F is 1-periodic if the following holds: the arc (i, n) → (j, m)
belongs to F if and only if (i, n + 1) → (j, m + 1) belongs to F .

The most classical notion of cut involves arcs rather than nodes, and a flow
is a set of paths which do not share arcs rather than nodes. However, a simple
transformation—each node being replaced by two nodes connected by an arc—would
allow us to go back to the original definitions.

Definition 4.4 (section). A section S in D is a set of nodes with exactly one
node per line, S = {(i, ni), i ∈ V }.

Note that since D is recycled, a cut contains at least one node per line. Using
this property, one can define the left and right sections of a cut.

Definition 4.5 (left, right sections). The left (resp., right) section Cw, with w
for west (resp., Ce, with e for east), of a finite cut C is the set of nodes (i, n) in C
such that the nodes (i, n − h), h > 0 (resp., (i, n + h), h > 0), do not belong to C.

Definition 4.6 (consecutive cut). A cut C in D is consecutive if on each line
of D, C contains only consecutive nodes, i.e.,

∀i ∈ V , (i, n) ∈ C and (i, n + 1) �∈ C ⇒ (i, n + k) �∈ C ∀k > 0.

Examples of consecutive and nonconsecutive cuts are displayed in Figure 7.
Lemma 4.7. There exists a minimal cut of D which is a minimal consecutive

cut.
Proof. Let C be a minimal consecutive cut. We will prove that C is a minimal cut.

First, we prove that there are no arcs from Cw to Ce + k, k ≥ 2 (where (i, n) ∈ Ce + k
if and only if (i, n − k) ∈ Ce). Let us assume that there exists such an arc, which we
denote by (i, n) → (j, m). By 1-periodicity, there is an arc between nodes (i, n − 1)
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Fig. 8. Graph G made from the right and left sections of C.

and (j, m − 1). Now consider the bi-infinite path

· · · → (i, n − 3) → (i, n − 2) → (i, n − 1) → (j, m − 1) → (j, m) → (j, m + 1) → · · · .

It does not intersect C, which is a contradiction.
We consider the subgraph G of D made of the nodes Cw ∪ (Ce + 1) and the arcs

between Cw and Ce + 1 in D; see Figure 8. We recall that a cut in a finite graph G
is a set of nodes such that, when removed from G, there is no arc remaining. The
set Cw is a cut in G. Let ∆ be a cut in G of minimal size. We have |∆| ≤ |Cw|. If
|∆| < |Cw|, then (C\Cw) ∪ ∆ would be a consecutive cut in D strictly smaller than
C, which would contradict the fact that C is a minimal consecutive cut. Therefore,
we have |∆| = |Cw|.

An adapted version of a famous “minimax” theorem first proved by König (1931)
states that we can find |∆| node-disjoint arcs in G. Since |∆| = |Cw| = |Ce+ 1|, these
arcs define a one-to-one mapping φ from Cw to Ce + 1. From φ, we construct a flow
in C in the following way. Select all the arcs of the form ((i, n) + k) → (φ(i, n) + k)
∀(i, n) ∈ Cw and ∀k ∈ Z. These arcs form a 1-periodic flow F in D of size |C|.

Let Cm be a minimal cut in D. Since F is formed by node-disjoint paths,
Cm must contain at least |F| nodes, |Cm| ≥ |F| = |C|. We conclude that |Cm| =
|C|.

This lemma is interesting on its own. In particular, it gives a proof of the minimax
theorem (which exists in many versions) for an infinite 1-periodic and recycled graph.

Corollary 4.8. The size of the minimal cut is equal to the size of the maximal
flow in D. Furthermore, there exists a maximal flow F in D which is 1-periodic.

4.2. Cuts and pebbles.
Lemma 4.9. Let C be a finite consecutive cut. There is a regular execution

e ∈ RE such that C is a configuration of e.
Proof. Let C be a consecutive cut in D. We want to prove that it is possible

to have A(t) = C and A(t + 1) = C + 1 (note that C + 1 = (C\Cw) ∪ (Ce + 1)).
It is enough to prove that for each node (i, n) in Ce + 1, there is no infinite path
P terminating in (i, n) that does not intersect the cut. But if such a path could be
found, then the bi-infinite path P ∪{(i, n+h), h ∈ N} would not intersect C. It would
contradict the fact that C is a cut.

The converse of Lemma 4.9 is not true: a configuration of a regular execution
need not be a consecutive cut. This is illustrated in Figure 9(a). Also note that
there are nonconsecutive cuts which are not configurations of a regular execution, as
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Fig. 9. Two counterexamples.

illustrated in Figure 9(b). In this example, the node (2, n + 2) belongs to C + 1 but
cannot be computed using only variables in C (as it depends on (3, n), for example).
Therefore, the cut C cannot belong to a regular execution.

Lemma 4.10. A configuration of any execution e ∈ E is a finite cut in D.
Conversely, let C be a finite cut in D. There is an execution e ∈ E such that C is a
configuration of e.

Proof. Let A(t) be the tth configuration of some execution e belonging to E . All
the configurations of e are finite by definition. Therefore the total number of nodes
that received a pebble up to step t is finite.

Now, assume that A(t) is not a cut. By definition, there exists a bi-infinite path
P which does not have any node in A(t). According to rule (R3) of game M1, no
node on P will receive a pebble during the execution, after step t. Combining this and
the fact that the total number of nodes that received a pebble up to step t is finite,
only a finite number of positive nodes on P receive a pebble during the execution e.
This contradicts the fact that e has to put pebbles on all nodes.

Let us prove the converse result. Let C be a finite cut. Let e = {A(t), t ∈ N}
be any regular execution of game M1. Such executions exist (see Lemma 4.9). Let
N be the set of positive nodes (i, n) such that there exists an infinite path ending
in (i, n) and which does not intersect C. As C is a cut, N is finite. Let T =
sup{t | (N ∪ C) ∩ A(t) �= ∅}. Note that T is finite since {A(t)} is regular and N is
finite. We define ẽ = {Ã(t)} as follows:

Ã(t) =




⋃t
n=0 A(n) if t ≤ T,

C if t = T + 1,

A(t − 1) if t > T + 1 .

Let us show that ẽ is an execution of M1. We have C ⊂ ⋃T
n=0 A(n); therefore, it

is possible to set Ã(T + 1) = C. By definition of T , A(T + 1) does not intersect
N ; therefore, we can set Ã(T + 2) = A(T + 1). Finally, ẽ contains all nodes in
{A(t), t ∈ N} and therefore all positive nodes.

We are now ready to give the main result of this section, which states that, within
all executions in E , regular executions are dominant for problem MinPeb.

Theorem 4.11. Let us consider a recycled system of UREs. We play the pebble
game on its associated dependence graph D under rules M1 and M2. We have

min
e∈RE

P(e) = min
e∈E

P(e) = min
C cut of D

|C|,
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that is, there exists a regular execution which requires a minimal number of pebbles,
this number being equal to the size of a minimal cut.

Proof. It is a direct consequence of Lemmas 4.10, 4.9, and 4.7. First, note that
all configurations are cuts, according to Lemma 4.10. Let C be a consecutive cut of
minimal size, which exists by Lemma 4.7. By Lemma 4.9, C is a configuration of a
regular execution.

Theorem 4.11 has several interesting corollaries. First, it allows one to focus on
regular executions since no fancy irregular execution of the URE can be done with
fewer pebbles. Then it provides a polynomial method to find an optimal execution as
shown in section 4.3.

4.3. Complexity results for M1 and M2.
Proposition 4.12. Let R = (V, E, Γ) be the reduced graph associated with a re-

cycled system of UREs with nonnegative delays. We set ΓA =
∑
e∈E Γ(e). For games

M1 and M2, problem MinPeb can be solved using an algorithm having a complexity
O
(
Γ2
A|V |2).
If the system of UREs has negative delays, it is possible to go back to nonnegative

delays (see Remark 2.1) and apply Proposition 4.12 to the new system.
In order to prove Proposition 4.12, we are going to compute a maximal flow in D

and then apply Corollary 4.8. If we want to use the algorithm of Ford and Fulkerson [9]
to compute a maximal flow, we first need to restrict ourselves to a finite graph.

The span of a cut is the difference between the largest and the smallest of the
numberings of columns containing a node of the cut.

A slice of D of dimension n is defined as the subgraph of D having nodes {(i, k), i ∈
V, 0 ≤ k ≤ n} ∪ {T, B}, where T (top) and B (bottom) are two special nodes. There
is an arc T → (i, k), 0 ≤ k ≤ n, if ∃(j, l), l < 0, such that there is an arc (j, l) → (i, k)
in D. There is an arc (i, k) → B, 0 ≤ k ≤ n, if ∃(j, l), l > n, such that there is an arc
(i, k) → (j, l) in D.

If a consecutive minimal cut spans less than n columns, then D and a slice of
dimension n have the same minimal consecutive cut (the special nodes T and B are
not allowed to belong to the cut). So it is important to determine, or at least to
bound, the span of a consecutive minimal cut.

Lemma 4.13. If all the delays are nonnegative, the span of a minimal con-
secutive cut is smaller than the total sum of the delays in R, i.e., smaller than
ΓA =

∑
e∈E Γ(e).

Proof. Let C be a minimal consecutive cut, and let F be a maximal 1-periodic
flow; see Corollary 4.8.

The associated maximal 1-periodic flow (see Corollary 4.8) F is a set of paths in
D. First, these paths cover all the nodes in D. Indeed, by the 1-periodicity of F , if a
node (i, n) is not in F , then the whole line (i, .) is not in F , but this means that the
bi-infinite path {(i, n), n ∈ Z} can be added to the flow F , and this contradicts the
maximality of F .

Let P1 be any path in F . It follows from the 1-periodicity of F that P1 is periodic.
Let i0, i1, . . . , il1 , i0, i1, . . . be the successive lines visited by the path P1. Let (i0, n)
and (i0, n + k1) be the consecutive nodes visited by the path P1 on line (i0, .). Using
the 1-periodicity of F , the total number of paths intersecting lines i0, i1, . . . , il1 in F is
k1. It implies that the cardinal of C over the lines i0, i1, . . . , il1 is exactly k1 (Corollary
4.8). Assume that the span of C on lines i0, i1, . . . , il1 is strictly greater than k1. Then
there exists a column, say, n, not intersecting C and such that on some of the lines
{i0, i1, . . . , il1}, C is on the “right” of column n and on some others C is on the “left”
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of column n. Let l be such that C is on the “right” of n at line il and on the “left” at
line il+1. There exists an arc of the type (il, n) → (il+1, n + h), h ≥ 0 (the delays are

n

il

il+1

nonnegative) in the flow F . Then the path {(il, n−u), (il+1, n+h+v), u, v ∈ N} does
not intersect the cut C; see the above figure. This is a contradiction. We conclude
that the span of C over the lines i0, i1, . . . , il1 is smaller than k1. By definition of R,
there exists a circuit L1 in R containing the nodes i0, i1, . . . , il1 and of total delay k1.

The path P1 and all its shifts are in the flow F and contain all the nodes in the
lines i0, i1, . . . , il1 . If i0, i1, . . . , il1 do not cover all the lines, a new path P2 in F not in-
tersecting the lines i0, i1, . . . , il1 ranges over different lines, say, il1+1, il1+2, . . . , . . . , il2 ,
and defines a circuit L2 in R similarly. The span of C on the lines il1+1, . . . , il2 is
smaller than k2, the total delay of circuit L2. We apply the same argument until all
lines in D are covered. This defines a set H of circuits partitioning the nodes of R.

We build a new multigraph G starting with R and where each circuit in H is
merged into one single node. The graph G has |H| nodes and the arcs of G correspond
to the arcs of R which do not belong to any circuit in H. Considering two nodes in
G, say L1 and L2, the span of C over lines i0, . . . , il2 can be chosen to be smaller than
k1 +k2 +d, where d is the maximum delay on all arcs between the nodes L1 and L2 in
G. Overall, the cut C can be chosen to have a span which is smaller than the sum of
the delays on all the circuits in H plus the sum of the delays on all the arcs in G. No
delay is counted twice in this upper bound. Therefore, the total span of C is smaller
than the total sum of the delays in R.

Proof of Proposition 4.12. A slice of D of size ΓA has the same minimal consecutive
cut as D itself. The computation of the maximal flow in a finite slice can be done
using the augmenting path algorithm; see [9, 14]. Starting with a 1-periodic flow (the
recycled lines) and maintaining the 1-periodicity throughout the construction yields a
maximal 1-periodic flow. The complexity of this construction of the maximal flow is
O(Γ2

A|V |2). By Corollary 4.8, it provides the size of a minimal cut in D. Furthermore,
a standard procedure provides a minimal consecutive cut starting from a maximal flow
(with a complexity O(ΓA|V |)). Using Lemma 4.9, an execution of game M2 (or M1),
using a minimal number of pebbles, is obtained from the minimal consecutive cut.

For the game M3, the problem MinPeb is solved by working on the reduced
graph. A polynomial algorithm is given in section 6.5.

5. Compatible cuts and their relation with M3. We introduce the notion
of compatible cuts. It enables us to show Theorem 5.5, the main result of the section,
which is the analogue of Theorem 4.11:

min
e∈ORE

P(e) = min {|C|, C compatible cut of D} .

Let us introduce some new definitions.
Definition 5.1 (crossings). We say that an arc crosses a section S = {(i, ni), i ∈

V } from left to right if it is an arc of the form (i, ni−h) → (j, nj + l) with h ≥ 0 and
l ≥ 1. An arc (i, ni + l) → (j, nj − h) crosses S from right to left if l ≥ 1 and h ≥ 0.
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Definition 5.2 (compatible section, compatible cut). A section in D is com-
patible if no arc crosses the section from right to left. A consecutive cut is said to be
compatible if its right section is compatible.

Roughly speaking a compatible cut is a consecutive cut which agrees with the
dependence relations in the system of UREs. Compatible cuts are connected to one-
pass executions through the next two lemmas.

Lemma 5.3. Let C be a compatible cut. There is a one-pass regular execution
e ∈ ORE such that C is a configuration of e.

Proof. Let C be a compatible cut. Since C is consecutive by definition, Lemma
4.9 tells us that C is a configuration of a regular execution which can be written as
e = {C + t, t ∈ N}. Suppose that e is not one-pass. This means that there exists a
node, say, (j, m), that is computed twice in e.

Let us assume that node (j, m) receives a pebble at step t0 and that this pebble is
removed at step t1, t1 > t0. By regularity of the execution e, node (j, m) will not be
used at step t > t1 + 1. Indeed, a node in C + t depends only on variables in C + t− 1
or “below.”

Now assume that node (j, m) is used at step t < t0 to compute another node, say,
(i, n). The path (j, m) → (i, n) crosses the right section of C + t from right to left.
Therefore it contains an arc that crosses the right section of C + t from right to left.
This contradicts the fact that C is compatible.

Lemma 5.4. The configuration of a one-pass regular execution is a compatible
cut.

Proof. Let e = {C + t, t ∈ N} be a one-pass regular execution. First, C is a cut by
Lemma 4.10. Next, C is consecutive. Indeed, if C is not consecutive on line i, then
each variable Xi(n) receives a pebble at least twice in e, and a fortiori this means it
is computed at least twice.

It remains to show that C is compatible. Assume that C is not compatible. Then
there exists a node (i, n) belonging to the right section of C + t, a positive integer k,
and a node (j, m) ∈ (C + t + k)\(C + t) such that the arc (j, m) → (i, n) belongs to
D. But this implies that in the execution e, the computation of Xj(m) is performed
twice, once as an auxiliary computation at step t to compute Xi(n) and once at step
t + k. This contradicts the fact that e is one-pass.

Theorem 5.5. Let us consider a recycled system of UREs. We play the pebble
game on its associated dependence graph D under rules M3. We have

min
e∈ORE

P(e) = min {|C|, C compatible cut of D} .

Proof. The proof is an immediate corollary of Lemmas 5.3 and 5.4.
It can be that no minimal consecutive cut in D is compatible. This is the case

in Figure 10, where the minimal compatible cut contains 5 nodes while there is a
minimal consecutive cut of size 4.

Therefore, rule M3 requires more memory in general than rule M2.

6. Delays in the reduced graph. In the previous sections, we have investi-
gated the relations between executions of a system of UREs and cuts in the dependence
graph. In this section, we connect these two notions with values of the delays in the
reduced graph.

Let us consider a system of URE S with variables {Xi(n), i ∈ V, n ∈ Z} and a
regular execution e = {A(t), t ∈ N} of the system. We introduce the modified system
S̃ with variables {X̃i(n), i ∈ V, n ∈ Z} and the execution ẽ = {Ã(t), t ∈ N} defined as
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Minimal compatible cutMinimal (noncompatible) cut

Fig. 10. Noncompatible and compatible cuts.

follows:

ci = max{n ∈ Z
− | (i, n) ∈ A(0)},

X̃i(n) = Xi(n + ci),

Ã(t) = {(i, n) s.t. (i, n + ci) ∈ A(t)}.

The above definition is such that the right section of Ã(0) is S0 = {(i, 0), i ∈ V }.
Viewed on the dependence graphs, the passage from S to S̃ corresponds to a shift
of the lines. Viewed on the reduced graphs, it corresponds to a retiming, i.e., a
modification of the value of the delays, while preserving the graph topology.

We show (Lemma 6.6 and 6.7) that the total number of delays in R̃ is closely
related to regular executions. As a consequence, we obtain a polynomial algorithm to
solve problem MinPeb under rule M3; see section 6.5.

6.1. Retiming.
Definition 6.1 (retiming). Let R be the reduced graph of a system of UREs. A

retiming of R is a node function r : V → Z which specifies a new graph Rr, with the
same nodes and arcs as R. The value of the delay on an arc e = (i, j) in Rr is equal
to Γr(e) = Γ(e) + r(i) − r(j).

The notion of retiming is classic in digital circuits (see [17] and section 7, where
we provide a detailed discussion of its usefulness in this context) and in Petri nets,
where it corresponds to the firing of transitions (see section 8).

In the example of Figure 11, the new values of the delays correspond to a retiming
r such that r(1) = 1, r(2) = 1, and r(3) = 0.

Retiming may create negative delays, as in Figure 11.
Lemma 6.2. Two retimings r and r′ yield the same value of the delays in a

connected graph R if and only if there exists a constant h ∈ Z such that ∀i ∈ V, r(i) =
r′(i) + h.

Proof. First, if r(i) = r′(i) + h ∀i ∈ V , then on any arc e = (i, j), Γr(e) =
Γ(e) + r(i) − r(j) = Γ(e) + r′(i) − r′(j) = Γr′(e). Conversely, if Γr′(e) = Γr(e), then
r(i) = r′(i) + h and r(j) = r′(j) + h for some h ∈ Z. As R is connected, the constant
h is the same for all the nodes in V .

The question that arises now is, What is the notion corresponding to retiming
in the system of UREs S and in the dependence graph D? To answer this question,
let us consider the graph Dr associated with the retimed reduced graph Rr. This
dependence graph can be constructed directly from D by shifting the lines as described
in Lemma 6.3.
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Fig. 11. Retimed reduced graph and dependence graph.

Lemma 6.3. A retiming r in R corresponds to a transformation fr between D
and Dr defined by

fr : D → Dr
(i, n) → (i, n − r(i)).

The transformation fr is an isomorphism of graphs, meaning that there is an arc
between u and v in D if and only if there is one between fr(u) and fr(v) in Dr. It
will also be called a retiming of D.

Proof. By definition of D, there is an arc from (i, n) to (j, m) in D if the delay in
R on arc (i, j) is γ = m − n. The delay in Rr on arc (i, j) is γr = γ + r(i) − r(j) =
(m − r(j)) − (n − r(i)). It implies that there is an arc between (i, n − r(i)) and
(j, n − r(j)) in Dr. Therefore, fr is an isomorphism between D and Dr.

We recall that the notion of section was introduced in Definition 4.4. We associate
with a retiming r in R the section Sr = {(i, r(i)), i ∈ V } in D.

Lemmas 6.2 and 6.3 tell us that two retimings r and r′ are similar (in the sense
that they yield the same value of the delays) if and only if they are associated with
two sections Sr and S′r with Sr = Sr′ + h for some h ∈ Z. This relation enables us to
define an equivalence relation between sections in D as well as between retimings in R.
We say that section Sr (resp., retiming r) is equivalent to section Sr′ (resp., retiming
r′) if Sr = Sr′ + h for some h ∈ Z. In the following, we will always consider one
arbitrary section among the equivalence class and call it the section associated with
the retiming r; for instance, S0 corresponds to the equivalence class of {(i, 0), i ∈ V }.
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6.2. Counting the delays. Given a graph R = (V, E, Γ), we define the total
number of delays of R as follows:

ΓA(R) =
∑
i∈V

∑
(j,γ)∈∆i

γ .(7)

It corresponds to the number of delays appearing in the graphical representation
of the reduced graph R as defined in section 2.2. See, for example, the graph R on
Figure 12.

Given a graph R = (V, E, Γ), another quantity of interest is the following:

ΓB(R) =
∑
j∈V

max{γ | ∃i s.t. (j, γ) ∈ ∆i} .(8)

When the delays are positive (∀e ∈ E, Γ(e) ≥ 0), ΓB corresponds to the total
number of delays (ΓA) in a modified reduced graph obtained by performing a forward
splitting of the nodes. In the context of digital circuits, this is also called register
sharing; see section 7.2. Given under the form of an algorithm, here is the formal
construction of the Forward Splitting algorithm.

Algorithm 6.4 (Forward Splitting).
Input: Reduced graph R = (V, E, Γ) with Γ ≥ 0, functions associated with the

nodes {Fi, i ∈ V }.
1. Set V ′ = V and E′ = ∅. Associated functions F ′i = Fi, i ∈ V .

2. For all node v ∈ V , let δ be the maximum delay on all the output

arcs of v.
• Set v0 = v.
• If δ > 0, create δ new nodes in V ′, called v1, . . . , vδ.
Set F ′vi = Id, the identity function, for i = 1, . . . , δ.

• For each arc e = (v, u) ∈ E with delay Γ(e) = γ, create an arc

e′ = (vγ , u) in E′ with delay Γ′(e′) = 0.
• Add the arcs (vi, vi+1), 0 ≤ i ≤ δ − 1, in E′, with delay Γ′ = 1.

Output: Split reduced graph R′ = (V ′, E′, Γ′) with Γ′ ≥ 0, functions associated
with the nodes {F ′i , i ∈ V }.

It is important to remark that the split graph R′ is not necessarily recycled, as
opposed to R. We will come back to this point in section 6.4.

The following proposition, easy to prove, justifies the Forward Splitting oper-
ation.

Proposition 6.5. Let R be a reduced graph with positive delays and R′ the
associated split graph.

(i) The associated systems of UREs S and S ′ have the same behavior. More
precisely, borrowing the notation of the algorithm, we have

∀v ∈ V, n ∈ Z, X ′v(n) = Xv(n) and ∀vi ∈ V ′ \ V, n ∈ Z, X ′vi(n) = Xv(n − i) .

(ii) Furthermore, we have

ΓB(R) = ΓA(R′) = ΓB(R′) .(9)

Note that in order for (9) to make sense, it is necessary to extend the definitions
of ΓA and ΓB to nonrecycled graphs.

In Figure 12, R′ is the Forward Splitting of R. In the split graph, there are two
“dummy” nodes (associated with the identity function), represented by black dots.
We have ΓA(R) = 8 and ΓB(R) = ΓA(R′) = ΓB(R′) = 5.
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Fig. 12. A reduced graph and the associated split graph.

6.3. Delays, cuts, and pebbles. Given a section S = {(i, ni), i ∈ V } in D, we
define the cut C(S) in the following way:

C(S)
def
= {(i, n), i ∈ V, n ≤ ni | ∃j ∈ V, m > nj , (i, n) → (j, m)} .(10)

The cut C(S) is consecutive and its right section is S. Furthermore, if any node is
removed from the left section of C(S), then it is not a cut anymore.

In a cut C, a node (i, n) ∈ C is redundant if C\{(i, n)} is a cut. Any consecutive
cut C with no redundant node on its left section is characterized by its right section
S only. More precisely, it verifies C = C(S).

We are now ready to state the relations between delays in R and consecutive cuts
in D.

Lemma 6.6. (i) The number of delays ΓB(R) is equal to the cardinal of C(S0).
(ii) Let r be a retiming of R and Sr an associated section in D. Then the number of
delays ΓB(Rr) is equal to the cardinal of the cut C(Sr) in D (resp., C(S0) in Dr).

Proof. The isomorphism fr transforms the section Sr in D into the section S0 in
Dr. Hence (ii) is implied by (i). Let us work on graph D. We are going to prove that
ΓB(R) = |C(S0)|. We consider a node i of R. Let m = max{γ | ∃j, (i, γ) ∈ ∆j} (we
have m ≥ 1 as (i, 1) ∈ ∆i) and let j be such that (i, m) ∈ ∆j . There is an arc in D
from (i,−m) to (j, 0) and no arc from a node on the “left” of (i,−m) (and on line i)
to a node on the “right” of S0. Hence C(S0) contains the nodes (i,−m + 1), . . . , (i, 0)
on line i. The same argument repeated on each line finishes the proof.

We recall that the arcs crossing a section from right to left and from left to right
are defined in Definition 5.1.

Lemma 6.7. (i) The number of delays ΓA(R) is equal to the number of arcs
crossing S0 from left to right minus the number of arcs crossing it from right to left.
(ii) Let r be a retiming of R and Sr an associated section in D. The number of delays
ΓA(Rr) is equal to the number of arcs in D (resp., Dr) crossing section Sr (resp., S0)
from left to right minus the number of arcs crossing Sr (resp., S0) from right to left.

Proof. For the same reason as in Lemma 6.6, it is enough to prove (i). Let (i, j)
be an arc of R with delay γ ≥ 0. In D, this arc induces exactly γ arcs crossing S0

from left to right, the arcs

(i,−γ + 1) → (j, 1) · · · (i,−1) → (j, γ − 1), (i, 0) → (j, γ) .

Similarly, an arc (i, j) with delay γ < 0 induces exactly −γ arcs crossing S0 from right
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Fig. 13. Compatible and noncompatible cuts, nonnegative and negative delays.

to left:

(i, 1) → (j, γ + 1) · · · (i,−γ − 1) → (j,−1), (i,−γ) → (j, 0) .

The same argument applied to all the lines finishes the proof.
The notion of compatible cuts introduced in Definition 5.2 has a very natural

interpretation in terms of delays.
Lemma 6.8. Let r be a retiming of R and Sr an associated section in D. The

retimed reduced graph Rr has only nonnegative delays if and only if the cut C(Sr) is
compatible in D (equivalently, the cut C(S0) is compatible in Dr).

Proof. If Rr has only nonnegative delays, the argument used in the proof of
Lemma 6.7 shows that all the arcs crossing Sr in D cross it from left to right. It implies
that the cut C(Sr) is compatible. The converse result is proved by contradiction, using
again the proof of Lemma 6.7.

In Figure 13 (this example is the same as the one in Figure 10), we have repre-
sented the retimed reduced graphs associated with two sections (cuts) of D. One of
them is compatible and the other one is not compatible.

6.4. Summary. In section 4.2, we have established the relations between exe-
cutions of the pebble game and cuts in the dependence graph. In section 6.3, we have
established the relations between cuts and delays. As a by-product, we obtain the
relations between delays and pebble configurations.

More precisely, let e = {A(t), t ∈ N} be an execution such that A(t) is a consec-
utive and nonredundant (see section 6.3) cut ∀t. Note that we did not assume that e
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is regular. With the configurations A(t), we associate a retiming r(t) and a reduced
graph Rr(t) as follows:

r(t)i = max{ni | (i, ni) ∈ A(t)} .

We have the following situations:

• If the execution e belongs to E , the configurations A(t) may have different
shapes at each step. Then the reduced graphs Rr(t) may have changing values
for the delays.

• For an execution e belonging to RE , the configurations are just shifted be-
tween two steps. It implies that the reduced graphs Rr(t) are all identical,
with a fixed value of the delays.

• Finally, an execution e belonging to ORE corresponds to identical reduced
graphs Rr(t) with fixed and nonnegative values of the delays.

In the following table, we provide a summary of the main relations established so
far between executions of a system of UREs, cuts in D, and delays in R.

Games Executions Cuts in D Delays in R
M1 execution in E arbitrary cut changing delays
M2 regular execution, RE consecutive cut fixed delays
M3 one-pass reg. exec., ORE compatible cut nonnegative fixed delays

A general remark is that the main theoretical results, Theorems 4.11 and 5.5,
apply only to recycled graphs. Using them, we have been able to solve problem
MinPeb for an initial graph which is recycled. However, the solution proposed involves
the construction of an associated graph, which is not recycled. It is not a problem,
as we do not need to apply Theorems 4.11 or 5.5 on this associated graph.

6.5. Complexity results for M3.

Proposition 6.9. Let R = (V, E, Γ) be the reduced graph associated with a
recycled system of UREs. Under game M3, problem MinPeb can be solved using an
algorithm of complexity O(|E|2 log |V | + |V ||E| log2 |V |).

Proof. As detailed above, there is a one-to-one correspondence between minimal
one-pass regular executions and retimed reduced graphs with nonnegative delays.

In Leiserson and Saxe (section 8 of [17]) an algorithm is given to solve the fol-
lowing problem: find a retimed reduced graph Rr with only nonnegative delays and
minimizing ΓB(Rr). It is a minimum-cost flow algorithm; it provides an explicit solu-
tion and its complexity is O(|E|2 log |V |+ |V ||E| log2 |V |). Using Lemmas 5.3 and 6.6,
the cut C(Sr) is compatible and the execution {C(Sr) + t, t ∈ N} is one-pass regular
and solves problem MinPeb under rules M3 according to Theorem 5.5.

The algorithm of [17] was developed in the context of digital circuits; see section
7. An efficient implementation of this algorithm can be found in Shenoy and Rudell
[24].

7. Application 1: Registers in circuit design. In this section we will show
how the previous results relate to the problem of register minimization in digital
circuits. The interest of the relation is two-fold. First, algorithms developed for
digital circuits can be used to get optimal executions of a system of UREs; see the
previous section. Second, we will show that the results proved so far enable us to
prove some new results for recycled digital circuits; see Theorem 7.4 below.
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7.1. Definition of a circuit. A digital circuit is constituted by functional gates,
wires, and registers. More precisely, (i) a functional element computes output data
from one or several input data. For example, in the case of a logical circuit, the
functional elements will be boolean logical gates (AND, OR, . . . ); (ii) a wire between
element i and element j enables us to transfer the output data of i which becomes an
input data for j; (iii) a register corresponds to a storage facility, or a memory cell of
finite size. If there are p registers between elements i and j, it enables us to keep in
memory the last p values computed by the element i.

The model of the behavior of the system is the following. There is a global clock
for the system. Between two clock ticks, here are the operations taking place.

• Functional element: (1) receive the input data from upstream registers or
elements; (2) compute a new output data; (3) send the output data to down-
stream registers or elements.

• Register: (1) transmit the stored data downstream to another register or a
functional element; (2) remove the stored data; (3) receive and store new data
from upstream from another register or a functional element.

Between two clock ticks, these operations are performed at all functional elements
and registers.

Let Xi(n) be the nth variable computed at element i. Since registers are finite
size memory cells, the variables Xi(n) can only take a finite number of values. The
set of all these possible values is denoted by W.

After n clock ticks, for each element i, the variables {Xi(m), m ≤ n} have been
computed. The number of registers on a wire between i and j corresponds to the
number of variables Xi(n− k) which need to be still in the memory in order to carry
on the computation of the variables Xj(n + m), m > 0.

It follows from the previous description that a digital circuit can be viewed as
the reduced graph R of some system of UREs. The functional elements of the circuit
correspond to the nodes of R, the wires to the arcs, and the registers to the delays.
The computation operation corresponding to the functional element i is denoted by Fi
to be consistent with previous notations. In the remainder of the section, we will use
interchangeably the terminology of digital circuits and the one of reduced graphs. We
consider only constructive circuits, i.e., circuits whose associated URE is constructive,
and recycled circuits, i.e., circuits whose associated reduced graph is recycled.

The specificity of digital circuits (with respect to general reduced graphs) is that
only nonnegative registers (delays) have a physical meaning.

In Figure 14, we have represented the flow of data between clock ticks in a digital
circuit. The graphical convention is consistent with that of reduced graphs.

7.2. Minimizing the number of registers. We consider problem MinReg,
which is classic in circuit design; see, for instance, Leiserson and Saxe [17, section 8].

Problem 2 (MinReg). Given a recycled circuit, find a new circuit preserving
the functional behavior and having a minimal number of registers.

To make this statement precise, we have to define rigorously the functional be-
havior and the number of registers of a circuit.

Let {Xi(n), i ∈ V, n ∈ Z} and {X̃i(n), i ∈ Ṽ , n ∈ Z} be the variables computed
by the original and the new circuits, respectively. The preservation of the functional
behavior means that we have

∀i ∈ V, ∃u ∈ Ṽ , ∃ci ∈ Z s.t. ∀n ∈ Z, Xi(n) = X̃u(n + ci) .(11)
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Fig. 14. Digital circuit computing Xj(n) = Fj(Xi(n− 2), . . . ).

Registers can be viewed as delays in a reduced graph and the number of registers
of a circuit R is the quantity ΓA(R) defined in section 6.2. Now, starting from a
circuit R, we can always perform the Forward Splitting algorithm (Algorithm 6.4)
to obtain a circuit R′. As an illustration, consider the example given in Figure 12.
The Forward Splitting algorithm is called register sharing in the context of circuits;
see [17].

The problem MinReg is directly connected with the notions introduced in sections
4 and 5. It enables us to propose some complements to the results of [17] for the special
case of recycled circuits.

In [17], Leiserson and Saxe define a notion of retiming which is exactly that of
Definition 6.1. They restrict their attention to legal retimings, as they are the only
ones to have a physical meaning for circuits.

Definition 7.1. A retiming r is legal if Rr has only nonnegative delays.

An example of legal retiming is given in Figure 15. If we perform register sharing
on the original circuit (Figure 15(a)), we would obtain a circuit with six registers.
After a legal retiming and register sharing, we have only five registers (Figure 15(c)).

Leiserson and Saxe proved that retiming and register sharing preserve the func-
tional behavior of the circuit (this is also a direct consequence of Lemma 6.3 and
Proposition 6.5). Then they proposed an algorithm to compute the optimal legal re-
timing and also the optimal legal retiming when register sharing is allowed; see section
6.5.

However, the question whether other circuit transformations can be used to get
a circuit with even fewer registers remains to be answered.

Let us consider the best possible retiming in the original circuit without restricting
ourselves to legal retimings. It corresponds to the choice of a minimal consecutive (but
not necessarily compatible) cut in the associated dependence graph D; see section 6.4.
In the corresponding reduced graph, there may be some negative delays that cannot
represent registers. However, it is possible to perform some appropriate modifications
to go back to positive delays. It is done by duplicating some nodes in the circuit.

The Duplicate algorithm takes as input a graph R = (V, E, Γ) and produces a
new graph R′ = (V ′, E′, Γ′), Γ′ ≥ 0. In the description to follow, we use the notion of
delays on paths: if P is an oriented path in R, then the delay of P is the sum of all
the delays on the arcs of P .
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Fig. 15. Reducing the number of registers using legal retiming and register sharing.

Algorithm 7.2 (Duplicate).

Input: Reduced graph R = (V, E, Γ), functions associated with the nodes {Fi, i ∈
V }.

1. Set V ′ = V and E′ = ∅. Associated functions F ′i = Fi, i ∈ V .

2. For each node v in V , let k(v) be the minimum delay of all paths

in R starting in v.
• Set v0 = v.
• If k(v) < 0, then create |k(v)| additional nodes in V ′,

v1, . . . , v|k(v)|, with associated functions, F ′vi = Fv.
3. For each arc (u, v) ∈ E with delay Γ(u, v) = γ, create in E′ all the

arcs of type (umax(0,j−γ), vj) with delay max(0, γ−j) ∀0 ≤ j ≤ max(0, k(v)).

Output: Reduced graph R′ = (V ′, E′, Γ′), Γ′ ≥ 0. Associated functions {F ′i , i ∈
V ′}.

For each node v ∈ V , k(v) is finite and is reached on a finite path since the
constructivity of R implies that all circuits in R have a strictly positive delay.

The following proposition justifies the use of the Duplicate algorithm.

Proposition 7.3. Let S and S ′ be the systems of UREs associated with R and
R′, respectively.

(i) S and S′ have the same functional behavior. More precisely, borrowing the



COMPUTATION OF UREs WITH MINIMAL MEMORY 1725

11

1

1

0

0

0

0

0

0 1

11 0

1

0

0

0

0

2

1 13

1

1

1

1

1

1

4

-1

2

1

1

4

13

1

1

(b) After duplication.

0

0

0

3

4

2

(a) Circuit after optimal general retiming.

(c) After duplication and register sharing (4 registers).

11

10

10 11

Fig. 16. Reducing the number of registers using retiming, duplication and register sharing.

notation of the Duplicate algorithm, we have

X ′vj (n) = Xv(n + j) ∀vj ∈ V ′,∀n ∈ Z .(12)

(ii) We have ΓB(R) = ΓB(R′).
Proof. The proof of (i) follows directly from the construction rules of R′. Con-

sidering (12), specialized to j = 0, we get X ′v0(n) = Xv(n). The original circuit is
embedded in the new circuit. As for (ii), note that all the arcs exiting a duplication
node (of type vj , j > 0) have a zero delay. As for the new arcs from the nodes of type
v0, they all have delays smaller than or equal to the delays of the arcs of the original
graph. The original arcs are kept with their original delays unchanged. We conclude
that ΓB(R) = ΓB(R′).

It is important to remark that the reduced graph R′ (hence the associated system
of UREs) obtained by duplication is not recycled anymore.

We illustrate the algorithm Duplicate on an example. The circuit of Figure
16(a) is obtained from the one of Figure 15(a) by performing a nonlegal retiming. By
applying the Duplicate algorithm, we obtain the circuit of Figure 16(b), where node
1 has been duplicated into nodes 10 and 11.

Now, after performing register sharing, the resulting circuit has only 4 registers
(see Figure 16(c)). The minimal number of registers we could get with only legal
retimings and register sharing was 5; see Figure 15(c).

We now state the general result.
Theorem 7.4. Let us consider a recycled digital circuit. When the functions

computed at each node are general, a circuit with the same functional behavior and a
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minimal number of registers can be obtained by performing solely the three following
operations (in this order):

1. General retiming; 2. Duplicate algorithm; 3. Forward Splitting algorithm
(register sharing).

Proof. Let us consider a recycled graph R = (V, E, Γ) (associated dependence
graph D). We realize the following operations: 1. Perform the optimal general retim-
ing to obtain a graph R1. 2. Apply the Duplicate algorithm to R1 to obtain the
graph R2. 3. Transform the graph R2 into R3 by applying the Forward Splitting

algorithm.

Let us detail the first operation. We find a minimal consecutive cut C of D
(Proposition 4.12). Let {(i, r(i)), i ∈ V } be the right section of C. We define the
retimed graph R1 = Rr. Using Lemma 6.6, ΓB(R1) is equal to the cardinal of C.

The three operations preserve the functional behavior of the circuit; see Lemma
6.3 and Propositions 6.5 and 7.3. Furthermore, as a consequence of Proposition 7.3
and (9), we have ΓB(R1) = ΓB(R2) = ΓA(R3). We conclude that ΓA(R3) = |C|. It
remains to be proved that there exists no other circuit having the same functional
behavior as R and with fewer registers than R3.

We consider R′ = (V ′, E′, Γ′) another circuit which has the same functional be-
havior as R. Let D′ be the dependence graph associated with R′. The preservation
of the functional behavior implies that the set of nodes in D is included in the set of
nodes in D′. The mapping of the nodes of D onto D′ that preserves the functional
behavior is denoted by φ. By definition, Xi(n) = X ′φ(i)(φ(n)) if the node (i, n) in D
is mapped on the node (φ(i), φ(n)) = φ(i, n) in D′.

We consider a minimal cut C of D. In D′, we suppose that there exists a cut C ′

such that |C ′| < |C|. We can assume that in D′, we have φ(C) on the “left” of C ′

and φ(C + k) on the “right” of C ′ by choosing k large enough.

We recall that W denotes the finite set of possible values for a variable Xi(n).
In the dependence graph D, there exists a periodic flow (node-disjoint paths) from
C to C + k of size |C| (Corollary 4.8). It implies that there is a general dependence
between the variables attached to C and the variables attached to C + k, which can
be put under the form of a general function F : W |C| → W |C|. In particular, the
functions Fi in (2) can be chosen such that F is bijective and does not depend on
n. For example, choose Fi(Xj(n − γ), . . . ) = Xj(n − γ) if the arc (j, n − γ) → (i, n)
belongs to the periodic flow. In this case, the function F is merely a permutation of
the coordinates.

Now let us consider the graph D′; using the existence of the cut C ′, the function
F can be decomposed as F : W |C| → W |C′| → W |C|. As W is finite, it contradicts
the fact that F can be bijective.

The smallest cut C ′ in D′ is at least as large as C. Finally, by using Lemma 6.6,
we conclude that ΓA(R′) ≥ ΓB(R′) = |C ′| ≥ |C| = ΓA(R3).

Recall that, in Leiserson and Saxe [17], only legal retimings were considered. In
Theorem 7.4, by considering all possible retimings, we were able to obtain a circuit
with fewer registers, and even a minimal number of registers. However, in doing so,
we obtain a circuit with a possibly larger number of functional elements. Hence, the
practical interest of Theorem 7.4 also needs to be discussed in terms of the compared
costs of functional elements and registers. In fact, the number of functional elements
is increased both by the Duplicate and by the Forward Splitting algorithms. On
the one hand, in the Forward Splitting case, only “dummy functions” are added.
In the context of circuits, they consist of simple wire connections and do not perform
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any operation, so that they should be very cheap to implement. On the other hand,
in the Duplicate case, the added elements are equivalent to some of the original
functional elements. Hence they could be more expensive to implement.

7.3. Summary and complexity. The transformations done to a circuit in or-
der to obtain an equivalent circuit with the minimal number of registers can be sum-
marized by the following scheme.

optimal forward

retiming duplicate splitting

R −→ R1 −→ R2 −→ R3

Γ(R1) ∈ Z
E1 Γ(R2) ∈ N

E2 Γ(R3) ∈ {0, 1}E3

ΓB(R1) minimal ΓB(R2) = ΓB(R1) ΓA(R3) = ΓB(R2)

Corollary 7.5. Let us consider a recycled digital circuit. A new circuit solving
problem MinReg can be obtained with an algorithm of complexity O(ΓA(R)2|V |2 +
|V |3).

Proof. In the proof of Theorem 7.4, the algorithms used to go from R to R1,
from R1 to R2, and from R2 to R3 are all polynomial, and R3 is a solution to the
problem MinReg.

To obtain R1, we apply the algorithm of Proposition 4.12 whose complexity is
O(Γ2

A|V |2). To obtain R2, we apply the Duplicate algorithm (Algorithm 7.2), whose
complexity is O(|V |3 + ΓA|E|). Let us justify this complexity. The first step consists
of computing the quantities k(u), u ∈ V . It is equivalent to the search of a minimal
weight path in a weighted graph. This can be done using the Floyd algorithm with
a complexity O(|V |3); see, for instance, Gondran and Minoux [14, Chapters 2 and 3].
Let M = maxv∈V (0,−k(v)). From the constructiveness, it follows that M has to be
smaller than ΓA. Now, the second step of the algorithm consists of creating at most
M |V | nodes and M |E| arcs. The complexity of this step is at most O(ΓA|E|).

To obtain R2, we apply the Forward Splitting algorithm (Algorithm 6.4). In
this algorithm, we create at most ΓB nodes and |E| arcs, which accounts for a com-
plexity O(ΓB + |E|).

Corollary 7.5 is interesting, as it is not straightforward to extend the original algo-
rithm of Leiserson and Saxe (for legal retimings, see section 6.5) to general retimings.

8. Application 2: Task graphs evaluation. Task graphs are widely used
in the modeling and analysis of parallel programs and architectures [1]. Yet, the
performance evaluation of task graphs is difficult in general.

The term task graphs covers a wide variety of models, with the following common
feature: each task depends on a finite number of tasks and can be executed only when
all the tasks it depends on are completed. Here, we consider repetitive task graphs,
which are bi-infinite task graphs generated by the periodic replication of a given finite
task graph (with set of nodes V ); see [3].

Let us denote by Xi(n), i ∈ V, n ∈ Z, the epoch when the nth occurrence of task
i is completed. Let the sets ∆i, i ∈ V, describe the dependences between tasks. The
variables Xi(n) are given by a recursion of the following form:

Xi(n) = max
(j,γ)∈∆i

(Xj(n − γ) + σj,i,γ(n)), i ∈ V, n ∈ Z, σj,i,γ(n) ∈ R .(13)

We will present the optimization problem which arises in the fast parallel com-
putation of the evolution equations of task graphs and apply the preceding results to
solve it.
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8.1. Max-plus recurrences. The evolution equations (13) can be viewed as
both a specialization and a generalization of a system of UREs. On the one hand,
the functions have a specific form, implying only the operations max and +. On the
other hand, the functions depend on n. We call a “max-plus recurrence” (MPR) an
equation of the form (13). From now on, we assume that the MPR is constructive
and recycled, i.e., that ∀i, (i, 1) ∈ ∆i. It is a natural assumption for task graphs, as
it means that the nth occurrence of a task cannot start before the completion of the
(n − 1)th occurrence of the same task.

The (max,+) formalism is a convenient tool to work with MPR. We briefly intro-
duce it.

Definition 8.1. The (max,+) semiring Rmax is the set R∪{−∞}, equipped with
the two operations max and + denoted, respectively, by ⊕ and ⊗ (a ⊕ b = max(a, b)
and a ⊗ b = a + b). The elements −∞ and 0 are the neutral elements of the laws ⊕
and ⊗, respectively.

For matrices of appropriate sizes, we define (A⊕B)ij = Aij⊕Bij = max(Aij , Bij),
(A⊗B)ij =

⊕
l Ail⊗Blj = maxl(Ail + Blj), and for a scalar a, (a⊗A)ij = a⊗Aij =

a + Aij . When no confusion is possible, we abbreviate A ⊗ B to AB.
We can rewrite (13) with the previously defined notation. Let X(n) be the

column vectors of coordinates Xi(n), and let A(γ, n) be the matrix with coordi-
nates A(γ, n)ij = σj,i,γ(n) if (j, γ) ∈ ∆i and A(γ, n)ij = −∞ otherwise. Now let
U = {γ | ∃i, j s.t. (j, γ) ∈ ∆i} and γ = maxU γ. We have

X(n) =
⊕
γ∈U

A(γ, n) ⊗ X(n − γ) .(14)

This is a linear system in the (max, +) semiring.

Representation of order 1. A standard step in the analysis of linear systems is
the transformation of a recurrence like (14) into an “equivalent” system of order 1,

such as (15), where X̃(n), X̃(n − 1) ∈ R
Ṽ
max, and A(n − 1) ∈ R

Ṽ×Ṽ
max .

X̃(n) = A(n − 1) ⊗ X̃(n − 1).(15)

The system in (15) is “equivalent” to the original one if it preserves the functional
behavior, meaning that ∀i ∈ V, ∃u ∈ Ṽ , ∃ci ∈ Z s.t. ∀n ∈ Z, Xi(n) = X̃u(n + ci). We
say that the system in (15) is an order 1 representation of the original one.

Assume that all the delays γ in (14) are greater or equal to 1. Then the transfor-
mation can be done by setting

X̃i|V |+j(n) = Xj(n − i), i = 0, . . . , γ − 1, j ∈ V.

In this case, the dimension of the order 1 representation is |Ṽ | = |V |γ. We will see
below that an order 1 representation can be obtained without any assumption on the
delays (except constructivity).

We can now define the main problem to be addressed in this section.
Problem 3 (MinSize). Given a recycled MPR, find an equivalent MPR of order

1 and of minimal dimension.
For strictly positive delays, it follows from the discussion above that the minimal

dimension is at most equal to |V |γ. We will see that in general it is much lower.
Problem MinSize is very natural. A practical motivation for it is provided in next
section.
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Fig. 17. Forward Splitting-II of a reduced graph.

Remark 8.2. In problem MinSize, the optimality of the size of the representation
should be understood as the best possible that can be obtained without making as-
sumptions on the value of the numbers σi,j,γ(n). When these numbers are constant
and known, this knowledge may be exploited to obtain a minimal realization in the
sense of linear system theory [20, 10], which is normally smaller than ours. Finding
a minimal realization is a difficult problem, and algorithms are known only in very
specific cases. A deeper investigation of the relations between the two approaches is
an interesting direction for further research.

8.2. Parallel evaluation of MPR. The evaluation of an MPR consists of com-
puting all the variables X(n). We assume that we want to perform this evaluation
using a parallel machine. If we have an order 1 representation of the system, a possible
and efficient algorithm is the parallel prefix principle: as the multiplication of matrices
in (max,+) is associative, it is possible to divide the computation of A(n)⊗· · ·⊗A(1)
into smaller products A(p)⊗· · ·⊗A(q) which may be computed by different processors.

The number of operations required to compute the variables up to X(n) on a
CREW-PRAM machine with P processors is O(03(n/P +log(P ))), where 0 is the size
of the matrix of the linear system. Since n and P are fixed parameters, the complexity
is minimized by having an order 1 representation of the MPR of minimal dimension.

8.3. Reduced graphs. As for any system of UREs, we can associate a reduced
graph R = (V, E, Γ) to a given MPR. To each node i ∈ V , we associate the sequences
{σj,i,γ(n), n ∈ Z}, (j, γ) ∈ ∆i.

We will show that the solution to problem MinSize is a matrix of dimension
minr ΓB(Rr), r ∈ Z

V . This result seems to be new.

We transform any reduced graph by the following procedure. For each node in
the reduced graph, we create new (dummy) nodes and new arcs in a tree-like fashion,
as in Figure 17, such that each arc in the new reduced graph has a delay at most 1.
The added dummy nodes are recycled. (The recyclings are not shown on the figure.)

More formally, the transformation can be done using the algorithm Forward

Splitting-II described below. We use the notation u• to denote the set of suc-
cessor arcs of u. It is not assumed that the delays are positive.

Algorithm 8.3 (Forward Splitting-II).

Input: Recycled reduced graph R = (V, E, Γ). Sequences {σj,i,γ(n), n ∈ Z}.
1. We set V ′ = V, E′ = ∅.
2. For all node u ∈ V , let δ(u) = maxa∈u• Γ(a).
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(The graph is recycled, so δ(u) ≥ 1)
If δ(u) = 1, then u and u• remain unchanged.

If δ(u) > 1, then

• in E′, set u0 = u and create δ(u) − 1 recycled nodes

u1, . . . , uδ(u)−1.

Create the arcs ai = (ui, ui+1) with delay

Γ′(ai) = 1 for i = 0, . . . , δ(u) − 2.
The sequences associated with nodes ui, i > 0 are

{σ′ui,ui+1,1(n), n ∈ Z} = 0.
• For each arc (u, v) in E with delay γ,

– if γ ≤ 1, then create in E′ the arc (u0, v0)
with delay γ and sequence {σ′u0,v0,γ(n)} = {σu,v,γ(n)}

– else create in E′ the arc (uγ−1, v0)
with delay 1 and sequence {σ′u0,vγ−1,1(n)} = {σu,v,γ(n)}.

Output: Recycled reduced graph R′ = (V ′, E′, Γ′). Sequences {σ′u,v,γ(n), n ∈ Z}.
The new reduced graph has a maximum delay per arc equal to 1.
Proposition 8.4. We use the notation defined in the above algorithm.
(i) The reduced graph R′ has the same functional behavior as the original graph

R:

X ′ui
(n) = Xu(n − i) ∀u ∈ V, ∀n ∈ Z .(16)

(ii) The number of nodes in R′ is |V ′| = ΓB(R).
Proof. Point (i) follows directly from the algorithm. Let us prove point (ii). Us-

ing the notation of Algorithm 8.3, in the new reduced graph, we have δ(u) nodes
(u0, u1, . . . , uδ(u)−1) for each node u in R. The total number of node in R′ is∑
u∈R δ(u) = ΓB(R).

Proposition 8.4 is already an improvement over the standard representation as we
obtain an order 1 MPR of dimension ΓB(R) instead of γ|V |. Another improvement
consists of finding first a retiming r of the graph such that ΓB(Rr) is minimized.

To fix the notation, let R = (V, E, Γ) be the original reduced graph and R1 =
(V, E, Γ1) be a retimed reduced graph minimizing ΓB . We perform the Forward

Splitting-II algorithm on R1 to get a new graph R̃ = (Ṽ , Ẽ, Γ̃) with all delays
smaller or equal to 1.

Some of the delays of Γ̃ might be negative. However, we prove that it is still
possible to get an order 1 representation of dimension |Ṽ | of the MPR associated
with R̃. We denote by a• the ending node of an arc a ∈ Ẽ.

Lemma 8.5. Let {X̃i(n), i ∈ Ṽ , n ∈ Z} be the variables associated with R̃. We
have

X̃(n) = B(n) ⊗ X̃(n − 1),(17)

with Bij(n) = maxπ∈Πj,i

∑
a∈π∩Ẽ σa,Γ̃(a)(n − m(a, π)), where Πj,i is the set of all the

paths from j to i in R̃ with total delay equal to 1 and m(a, π) is the total delay on the
path π from a• to node i.

Proof. The first stage of the proof consists of showing that all paths ending in
node i have a total delay at least 1 provided they are long enough. Let π be a path
ending in i. The length (number of nodes) of π is denoted by l(π). Let h be the sum
of the negative delays in R̃: h =

∑
a∈Ẽ min(0, Γ̃(a)). Assume that l(π) > (−h+2)|Ṽ |.

Therefore, the path π must contain at least −h + 2 cycles. By constructivity, each
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cycle has a total delay which is strictly positive. The set of cycles contained in π is
denoted C(π). Then,

Γ̃(π) =
∑
p∈π

Γ̃(p)

=
∑

p∈C(π)

Γ̃(p) +
∑

p∈π\C(π)

Γ̃(p) ≥ |C(π)| + h ≥ 2 .

All the paths in Πj,i have a length smaller than (−h + 2)|Ṽ |. Since the graph R̃
is finite, then Πj,i is a finite set.

Now, the equation on variables X̃i(n) in R̃ can be written as

X̃i(n) = max
(j,γ)∈∆̃i

(X̃j(n − γ) + σ̃j,i,γ(n))

= max
(j,γ)∈∆̃i,γ=1

(X̃j(n − 1) + σ̃j,i,1(n)) ∨ max
(j,γ)∈∆̃i,γ≤0

(X̃j(n − γ) + σ̃j,i,γ(n)).

In the latest equation, we replace all the variables X̃j(n − γ), γ ≤ 0, by their value

until getting only variables of the type X̃j(n − γ), γ = 1. By using the distributivity
of + with respect to max, we get (17).

Using the results of the previous sections, and in particular Theorems 4.11 and
7.4 and Lemma 6.6, we obtain the following theorem.

Theorem 8.6. Given a recycled MPR, its associated MPR of order 1 and of min-
imal size (problem MinSize) has the same size as the minimal cut in the dependence
graph of the MPR.

Proof. We provide a sketch of the proof, which is an adaptation of that of Theorem
7.4. There, we used in a critical way the existence of a finite set W of possible values
for the variables in a digital circuit. In an MPR, the variables take their value in
R ∪ {∞}, but on the other end, the function involved are all (max,+)-linear. Hence,
we adapt the argument of Theorem 7.4 as follows.

We have to prove that a (max,+)-linear function from R
|C| to R

|C| (|C| being the
size of the minimal cut in the dependence graph D) where the coefficients σijk(n) are
arbitrary may not be further reduced.

Let C = {(i1, n1), . . . , (i|C|, n|C|)} be a minimal cut in D and let {Xij (nj), j =
1, . . . , |C|} be the corresponding set of variables. Now, choose an integer k large
enough such that C and C + k do not share any node. There exists |C| node-disjoint
paths in D from C to C + k. Let FC be the flow constituted by these paths. On
each one of these paths, choose all the σ variables to be equal to 0. On all the arcs
between C and C + k which do not belong to those paths, set the σ variable to be
smaller than −maxj,k |Xij (nj)−Xik(nk)|. Let (il, nl+k) be the successor on (C +k)
of (ij , nj) following the flow FC . We have Xil(nl + k) = Xij (nj).

The set {Xij (nj + k), j = 1, . . . , |C|} is formed by independent variables ∀k and
cannot be reduced. The corresponding matrices B(n) are permutation matrices (i.e.,
there exists a permutation σ such that Bσ(j),j = 0 and Bij = −∞ for i �= σ(j)). The
remainder of the argument follows Theorem 7.4.

8.4. Summary and complexity. A summary of the algorithm to find a solu-
tion to problem MinSize is given by the following scheme.
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Fig. 18. Transformation of a reduced graph (a) into a Petri net (b).

reduced optimal forward

graph retiming splitting II Lemma 8.5
MPR −→ R −→ R1 −→ R2 −→ MPR

order k Γ(R1) ∈ Z
E1 Γ(R2) ≤ 1 order 1

dim. |V | ΓB(R1) minimal |V2| = ΓB(R1) dim. |V2|

Corollary 8.7. Let us consider a recycled MPR. An order 1 representation
solving problem MinSize can be obtained with an algorithm of polynomial complexity
to obtain graph R2 and pseudopolynomial complexity to construct matrix B(n).

Proof. This is a sketch of the proof. Let R = (V, E, Γ). The graph R1 is obtained
using the algorithm of Proposition 4.12 whose complexity is O(ΓA(R)2|V |2). The
graph R3 is obtained by applying the Forward Splitting-II algorithm. In this
algorithm, we create at most ΓB(R2) nodes and ΓB(R2) + |E| arcs. Its complexity
is at most ΓB(R2) + |E|. The computation of an element of matrix B(n) defined
in Lemma 8.5 is NP-complete (reduction of knapsack with multiplicities). However,
it can be obtained with pseudopolynomial complexity using dynamic programming
techniques (similar to knapsack).

Given an initial reduced graph R, problem MinReg in section 7 and problem
MinSize in section 8 are solved using the same graph R̃, which is the retimed graph
of R minimizing ΓB . However, the exact solutions of problems MinReg and MinSize
are obtained by performing two different types of transformations on R̃, yielding two
different graphs, say, Rreg and Rsize.

In general Rreg does not provide a solution to problem MinSize (it does not have
a minimal number of nodes) and Rsize does not provide a solution to problem MinReg
(it does not have a minimal number of registers). To check this, consider, for instance,
the graph of Figure 12 and apply the Forward Splitting-II algorithm to it. We
conclude that the problems MinReg and MinSize are different, although related.

8.5. Event graphs. Event graphs, a subclass of Petri nets, are commonly used
to model discrete event systems [2, 19]. The graphical formalism for event graphs is
close but different from the one of reduced graphs; see Figure 18.

In the case of a timed recycled event graph, the dynamic can be represented by
an MPR as in (13) with σi,j,γ(n) = φi(n) + hi,j , φi(n) ≥ 0, hi,j ≥ 0. Since the
variables σi,j,γ(n) are not general, the MPR of order 1 given by Theorem 8.6 may not
be minimal. For example, the removal of implicit places may reduce the dimension
of an order 1 representation. Let us also mention that preliminary results on the
problem MinSize for event graphs were proved in [4, 11, 13], precisely the existence
of an order 1 representation of dimension ΓA(R) (≥ ΓB(R)).
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9. Conclusion and perspectives. Let us summarize the main results obtained.
We restricted our attention to recycled systems of UREs. We proved that the optimal
solutions for problem MinPeb are the same for games M1 and M2; see Theorem 4.11.
On the other hand, an optimal solution for game M3 may be strictly larger than one
for the games M1 and M2; see the example of Figure 10.

There exist polynomial algorithms to solve problem MinPeb for the games M1,
M2, and M3; see sections 4.3 and 6.5. These results have been applied to minimize
the number of registers in a digital circuit and to minimize the size of a (max,+)
recurrence.

To complete the picture, it would be nice to extend all the previous results to the
nonrecycled case. The key results which would make everything else easy to generalize
are of two types. Results related to cuts (see section 4.1) and results linking cuts and
regular configurations (see section 4.2). For example, is it possible to find a minimal
cut which is consecutive (generalization of Lemma 4.7)? Can we find a minimal
consecutive cut which is a regular configuration (generalization of Lemma 4.9)? We
are currently investigating these different issues.

Appendix A. Scheduling problems. The problem of organizing efficient com-
putations for UREs on parallel computers has been considered by several authors.
However, the investigations have often been oriented toward speeding up the execu-
tion with little or no consideration for memory requirements. We quickly describe the
main results in this area as a way to put our approach into perspective.

A.1. Definition of a schedule. Assume that at time 0, the strictly negative
variables Xi(n), n < 0, are known. Assume also that each computation of a variable
is done in one time unit.

Definition A.1 (schedule). We define a schedule as a set of instants {ti(n), i ∈
V, n ∈ N} such that ti(n) ≥ tj(n − γ) + 1 if (j, γ) ∈ ∆i (with the convention ti(n) =
0 ∀i ∈ V,∀n < 0).

The instant ti(n) is necessarily larger than the length (number of arcs) of a longest
path in D from column -1 to (i, n). A schedule is said to be as soon as possible (asap)
if ti(n) is exactly equal to the length of the longest path from column -1 to (i, n).

A first question that has been addressed is

What is the number of processors required to carry out
a computation asap?

This number is often called the degree of parallelism of the URE. In general, the
solution is given by the size of the maximal anticliques (instead as the minimal cuts
of the present paper) in the dependence graph.

Once this question is settled, and provided a sufficient number of processors is
available (i.e., larger than the degree of parallelism of the system), another problem
is to characterize the asap schedule. This is often called the basic scheduling problem.
For the asap schedule, it has been proved (see [5, 6, 2]) that

∃N, ∀n ≥ N, ti(n) = λin + di(n),(18)

where λi ∈ R
+ and di(n), n ≥ N , is a periodic real function. The real maxi λi is

called the cycle time of the system. A schedule satisfying (18) is said to be linear.
For systems of higher dimension (i.e., when K = Z

p, p > 1, in (1)), there are some
partial results on how to approximate the asap schedule using linear schedules; see
[7, 8].
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When the number of available processors is fixed and less than the degree of
parallelism of the URE, finding an optimal schedule (i.e., a schedule such that the
quantity limn maxi ti(n)/n is minimal) becomes NP-hard; see [15].

All the results mentioned above are more or less related to the problem of mini-
mizing the number of processors used. On the other hand, in this paper, we considered
the dual problem: How many memory locations are necessary to carry out the com-
putation of an URE, the number of processors being unlimited?

First, we should say that, in general, a computation asap requires a lot of memory.
It may not even be bounded when the reduced graph R is connected but not strongly
connected. This makes the alternative of using a smaller memory size attractive.
Second, the usual time-space trade-off tells us that some interesting results can be
expected to arise when minimizing the memory size.

We have shown in the previous sections how to obtain executions using a min-
imal memory size. In general the schedules associated with these minimal-memory
executions are not asap. A natural question to ask is whether they are very far from
the asap execution or not.

For minimal-memory executions, the number of processors needed to carry out
the computations will in general be greater than the degree of parallelism. A second
natural question is whether it is very far from the degree of parallelism or not. These
two questions are now investigated.

A.2. Number of processors and linearity of the schedule. In M1,M2,
and M3, rules (R2), (R2b), or (R2c) do not limit a priori the number of moves of
type (R3) which are feasible in one step. It corresponds to a computational model
where the number of processors available is not limited. However, one can notice a
posteriori that the total number of processors needed in the computation is bounded
by the maximal number of pebbles P(e) used during the execution e. Hence, the
number of processors needed to implement an execution solving problem MinPeb is
kept under control.

In minimal-memory executions, in a single step, we have to compose several of
the functions Fi defining the URE to compute the new variables; see section 3.1.

To take into account the “cost” of function composition, we give to each step a
duration. We assume that step t lasts l(t) units of time, where l(t) is the length of the
longest path in D joining a node of A(t−1) to a node of A(t) and containing no other
node in A(t − 1). Note that l(t) is also the length of the longest chain of function
compositions performed during step t. This is consistent with the assumption that
each function computation requires one unit of time. With this convention, we can
now define the schedule associated with a synchronous execution.

Definition A.2. Let e = {A(t), t ∈ N} be an execution of game M1 (or M2

or M3), and let l(t), t ∈ N, be the time duration of step t. Then the schedule of e,
{τi(n), i ∈ V, n ∈ N} is defined by

τi(n) =

T∑
t=0

l(t), where T = inf{t | (i, n) ∈ A(t)} .

One verifies easily that this is indeed a schedule according to Definition A.1. Let
us justify Definition A.2. Within one step, the computations are done in parallel. The
duration of one step is the one of the longest computation done in the step. After each
step, there is a synchronization barrier which makes the duration of the execution to
be the sum of the durations of the steps.
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One important point is that τi(n) denotes a time instant and not a step of the
game. Indeed, there might be a big difference between the time instant and the step
at which nodes are computed. Here is an illustration for game M1 (see also the
discussion following Figure 4 in section 3.1). The initial pebbles remain untouched
through the whole execution. An additional pebble is used to mark successively all
the positive nodes. In such a case, marking a node on column n takes one step and
Ω(n) units of time. Marking all the nodes up to column n requires Ω(n) steps and
Ω(n2) units of time. The schedule associated with this execution is quadratic.

We proved that minimal-memory executions can always be chosen to be regular
(see section 4). It implies that all steps have a constant duration l(t) = l. Moreover,
exactly one new variable is computed on each line of D at each step. It implies that
the schedule is linear with cycle time l. Therefore, the linear schedules are dominant
for our problem. We conclude that the loss in time efficiency, when compared with
asap executions, is kept under control.

Among regular executions, one-pass regular executions (game M3) are dominant
in terms of execution time, since they never “lose” time by computing the same
variable twice. However, as seen in section 6, they may require more memory than
general regular executions.

To summarize, when compared with asap executions, minimal-memory executions
may lose a bit in terms of numbers of processors needed and execution speed but may
gain a lot in terms of memory size. They provide new insights on the trade-offs
between time and space in the computation of a system of UREs.

Appendix B. Sequential executions. In section 3.1, we introduced different
variants of pebble games. All these games allow simultaneous moves of the pebbles.
Here is another one, defined by rule M4, which is close to the ones defined in [21, 23].
Here, pebbles are put on the nodes one at a time when all direct predecessors already
have a pebble.

B.1. Definition of a sequential game.
M4: Sequential execution rules.
• (R1) (initial position). A(0) ⊂ V × Z

−, A(0) ∩ (V × {0}) �= ∅.
• (R2d) (playing rule). One step of the game consists in using rule (R3b) at

most once followed by any number of moves of type (R4).
• (R3b) (adding pebbles). A pebble can be put on an empty node if all the

direct predecessors of this node have a pebble.
• (R4) (removing pebbles). Remove a pebble from a node.

Let us consider the example of Figure 19. It corresponds to the same URE as in
Figure 4.

Here is a possible execution. At step 0, there are pebbles on the nodes (1, 0), (2, 0),
and (3, 0), so that (R1) is satisfied. After step t, suppose that there are three pebbles
on the nodes (1, n), (2, n), and (3, n), respectively. At step t + 1, we can put a pebble
on node (1, n + 1) since all its predecessors (i, n) have a pebble (rule (R3b)). At step
t + 2, we put a pebble on node (2, n + 1). At step t + 3, we put a pebble on node
(3, n+1) and we remove the pebbles on nodes (i, n) since they are not needed anymore
(rule (R3b) then rule (R4) three times). Then we reiterate the previous three steps.

It is impossible to use fewer pebbles. The minimal number of pebbles required
to compute the graph under rule M4 is five, to be compared with the three pebbles
needed under rules M1 or M2.

As for the computational model of the game, M4 corresponds to performing
sequential computations. It is relevant if we want to model the computation of the
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Fig. 19. Sequential rule M4. Five pebbles are needed.

URE using a sequential computer which has a single processor and makes a single
computation at each step. The removal of pebbles being a “passive” operation, several
such manipulations are allowed in a single step. (The data is not actually removed
from the memory; it will just be overwritten the next time this memory location is
used.)

In game M4, a single processor is used. Furthermore, any reasonable execution
will compute exactly one new node at each step. Hence, the associated schedule is
linear with cycle time |V |.

Remark B.1. Game M4 can be adapted to be played on a finite binary tree (for
more details, see the proof of Proposition B.2). In this case, the minimal number of
pebbles is known as Strahler’s number. This number appears in various fields ranging
from hydrology and combinatorics to molecular biology. For a nice survey paper, the
reader is referred to Viennot [25].

B.2. Complexity results for M4. Under game M4, the problem of deter-
mining the minimal number of pebbles to compute a general directed acyclic graph
(problem MinPeb-DAG) was proved to be NP-complete by Sethi [23]. We prove a
similar result for the problem MinPeb, by showing that an instance of MinPeb-DAG
can be embedded into an instance of MinPeb.

Proposition B.2. Let D be the dependence graph associated with a system of
UREs. Solving problem MinPeb for gameM4 is NP-hard. For the subclass of recycled
UREs, the same problem is still NP-hard.

Proof. First we need to define more precisely what is the pebble game M4 on a
DAG. Let V be the set of nodes of a DAG G. A configuration is a subset of V and
an execution is a finite sequence of configurations {AG(t), t = 0, . . . , L} (where L is
the length of the execution). An execution is successful if all the nodes V receive a
pebble during the execution. Rules (R2d), (R3b), and (R4) remain the same. Rule
(R1) is modified as follows: (R1b) (initial and final position) AG(0) = AG(L) = ∅.

Given a DAG G with set of nodes V , we construct a dependence graph D with set
of nodes V ×Z in the following way. If there is an arc between nodes i and j in G, then
∀k ∈ Z, we put an arc between nodes (i, k) and (j, k) and an arc between nodes (i, k)
and (j, k + 1). We also add the recycling arcs in D ((i, k) → (i, k + 1) ∀i ∈ V,∀k ∈ Z).
An example is given in Figure 20.

Starting from an execution of the pebble game on G, {AG(t), t = 0, . . . , L}, we
construct an execution of the pebble game on D, {A(t), t ∈ N}, as follows. The initial
configuration is A(0) = {(i, 0), i ∈ V }. When a pebble is added on node i in G, we add
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Fig. 20. Embedding of an arbitrary DAG in a dependence graph.

a pebble on node (i, 1) in D. When a pebble is removed from node i in G, we remove a
pebble from node (i, 0) in D. It follows that at step L, we have A(L) = {(i, 1), i ∈ V }.
Then we complete the execution {A(t)} by repeating the same steps periodically, i.e.,
A(t + kL) = A(t) + k ∀t, k ∈ N (see (6)). If the execution in G uses p pebbles, the
execution in D requires p + |V | pebbles.

Conversely, from an execution of the game on D, we construct an execution of
the game on G in the following way. By definition, we have A(0) ⊂ {V × Z

−}. We
set AG(0) = ∅. When a pebble is added on node (i, 1), a pebble is added on node i.
When a pebble is removed from node (i, 0), a pebble is removed from node i. If the
execution in D uses P pebbles, the execution in G requires less than P − |V | pebbles.

One can see that the above transformations map optimal executions into optimal
executions (optimal in the sense of problems MinPeb and MinPeb-DAG). Hence, the
minimal number of pebbles needed in D is the minimal number of pebbles needed
in G plus the number of nodes of G. Therefore, the NP-completeness of the problem
for DAG (see Sethi [23]) implies that the problem for dependence graphs is at least
NP-complete, i.e., NP-hard.

Proposition B.2 contrasts with the results proved for games M1, M2, and M3, for
which a minimal-memory execution was obtained in polynomial time in the recycled
case. See section 4.3 (games M1 and M2) and section 6.5 (game M3).

Remark B.3. Let us consider the dependence graph of Figure 20. The execution
described in the proof of Proposition B.2 solves problem MinPeb with a number of
pebbles which evolves as: 5, 7, 6, 7, 6, 5, . . . . The number of pebbles used during an
optimal execution is not always constant. Hence, if we consider a nonconnected URE,
it is not true that the minimal number of pebbles needed is equal to the sum of
the minimal number of pebbles needed for each connected component independently.
This contrasts with the situation for games M1,M2, and M3; see section 2.4.
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Abstract. Let B be a point robot in the plane, whose path is constrained to have curvature of at
most 1, and let Ω be a set of polygonal obstacles with n vertices. We study the collision-free, optimal
path-planning problem for B. Given a parameter ε, we present an O((n2/ε4) logn)-time algorithm
for computing a collision-free, curvature-constrained path between two given positions, whose length
is at most (1+ε) times the length of an optimal path, provided it is robust. (Roughly speaking, a path
is robust if it remains collision-free even if certain positions on the path are perturbed). Our algorithm
thus runs significantly faster than the previously best known algorithm by Jacobs and Canny whose
running time is O((n+L

ε2
)2 + n2(n+L

ε2
) logn), where L is the total edge length of the obstacles.

More importantly, the running time of our algorithm does not depend on the size of obstacles. The
path returned by this algorithm is not necessarily robust. We present an O((n2.5/ε4) logn)-time
algorithm that returns a robust path whose length is at most (1 + ε) times the length of an optimal
path, provided it is robust. We also give a stronger characterization of curvature-constrained shortest
paths, which, apart from being crucial for our algorithm, is interesting in its own right. Roughly
speaking, we prove that, except in some special cases, a shortest path touches obstacles at points
that have a visible vertex nearby.

Key words. robotics, motion planning, configuration space, approximation algorithms

AMS subject classifications. 68W25, 68W40, 68T40
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1. Introduction. The path-planning problem involves planning a collision-free
path for a robot moving amid obstacles. This is one of the main problems in robotics
and has been widely studied (see, e.g., the books by Latombe [32] and by Hopcroft,
Schwartz, and Sharir [26] and the survey papers by Schwartz and Sharir [47, 48] and
Halperin, Kavraki, and Latombe [25]). In the simplest form of the motion planning,
given a moving robot B, a set O of obstacles, and a pair of placements I and F of B,
we wish to find a continuous, collision-free path for B from I to F . This problem is
PSPACE-complete [11, 44], and efficient algorithms have been developed for several
special cases [48]. Most of these algorithms, however, do not take into account the
dynamic constraints (for instance, velocity/acceleration bounds, curvature bounds),
the so-called nonholonomic constraints, of a real robot imposed by its physical limi-
tations. Although there has been considerable recent work in the robotics literature
(see [3, 6, 8, 10, 17, 23, 28, 30, 31, 33, 34, 36, 37, 38, 40, 45, 51, 52] and references
therein) on nonholonomic motion-planning problems, relatively little theoretical work
has been done on these important problems, because they are considerably harder
than holonomic motion-planning problems.

In holonomic motion planning, the placement of a robot with k degrees of freedom
is determined by a tuple of k (typically real) parameters, each describing one degree
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of freedom. The set of all placements is called the configuration space, and the set
of placements at which the robot does not intersect any obstacles is called the free
configuration space. There exists a path between an initial placement and a final
placement if and only if the two placements lie within the same (path-) connected
component of the free configuration space. This is not necessarily true if the robot
has to obey nonholonomic constraints. In nonholonomic motion planning, usually
a placement is not enough to describe the robot. Instead, a robot is completely
described by its state, consisting of the k parameters and their derivatives (see [32]
for a more detailed discussion), which makes the problem considerably harder.

In this paper, we study the path-planning problem for a point robot whose path
is constrained to have curvature of at most 1. More formally, given a continuous
differentiable path P : I → R

2 parameterized by arc length s ∈ I, the average
curvature of P in the interval [s1, s2] ⊆ I is defined by ‖P ′(s1) − P ′(s2)‖/|s1 − s2|.
We require that the average curvature of the robot’s path is at most 1 in every interval.
This restriction corresponds naturally to constraints imposed by a steering mechanism
on a car-like robot (see [32] for a formal description), because the path traced out
by the middle point between the two rear wheels has an instantaneous curvature of
1
λ tanφ, where φ is the steering angle and λ is a parameter of the car. The maximum
curvature of the path is therefore 1

λ tanφmax, assuming φmax is the maximum steering
angle.

Dubins [21] was perhaps the first to study the curvature-constrained shortest
paths. He proved that, in the absence of obstacles, a curvature-constrained shortest
path from any start position to any final position consists of at most three segments,
each of which is either a straight line or an arc of a unit-radius circle. Reeds and
Shepp [43] extended this obstacle-free characterization to robots that are allowed to
make reversals. Using ideas from control theory, Boissonnat, Cerezo, and Leblond [7]
and Sussmann and Tang [50] gave an alternative proof for both cases, and recently
Sussmann [49] was able to extend the characterization for the 3-dimensional case.

In the presence of obstacles, Fortune and Wilfong [22] gave a 2m
O(1)

-time algorithm,
where m is the number of bits required to specify the coordinates of all vertices of
obstacles, to decide whether a feasible path exists from an initial position to a final
position; their algorithm cannot find a feasible path in all the cases. Jacobs and
Canny [12, 27] gave an O((n+L

ε2 )2 + n2(n+L
ε2 ) log n)-time algorithm (this and the next

time complexities are based on [12] and are more accurate than the ones given in [27])
that finds an approximate path whose length is no more than (1+ε) times the length of
a shortest ε-robust path, where L is the total edge length of the obstacles. (Informally,
a path is ε-robust if perturbations of certain positions along the path by ±ε/2—in
distance or in angle—do not violate the feasibility of the path; a formal definition is
given in section 2.3.) The path returned by this algorithm is not necessarily robust.
They also presented an O(n4 log n+ (n+L

ε2 )2)-time algorithm that computes an (ε/2)-
robust path whose length is no more than (1 + ε)-times the length of an optimal ε-
robust path. For the restricted case of moderate obstacles, i.e., when the obstacles are
convex and the curvature of their boundary is also bounded by 1, Agarwal, Raghavan,
and Tamaki [2] gave efficient approximation algorithms. Boissonnat and Lazard [9]
gave a polynomial-time algorithm for computing the exact shortest paths for the case
when the edges of the obstacles are circular arcs of unit radius and straight line
segments. Wilfong [51] studied a restricted problem in which the robot must stay
on one of m line segments (thought of as “lanes”), except to turn between lanes.
For a scene with n obstacle vertices, his algorithm preprocesses the scene in time
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O(m2(n2 + logm)), following which queries are answered in time O(m2). There has
also been work on computing curvature-constrained paths when B is allowed to make
reversals [3, 30, 31, 35, 39]. Other, more general, dynamic constraints are considered
in [13, 14, 15, 20, 41, 46].

2. Our model and results. Let B be a point robot. Let Ω be a set of disjoint
polygonal obstacles, with a total of n vertices. We refer to edges and vertices of Ω
as obstacle features. We assume that the edges of Ω are relatively open, so they do
not contain their endpoints. A position X for B is a pair (loc(X),vec(X)), where
loc(X) is a point in the plane, representing the location of the robot, and vec(X)
is an angle between 0 and 2π, representing its orientation. Abusing the notation a
little, we will use X to denote loc(X) as well if either vec(X) is not important
or vec(X) is obvious from the context. We will use �X to denote the (oriented)
line passing through loc(X) in direction vec(X), and C+

X (resp., C−X) to denote
the counter-clockwise (resp., clockwise) oriented unit-radius circle tangent to �X at
loc(X) whose center lies to the left (resp., right) of �X . We say that a position X
lies on an obstacle vertex if loc(X) = v and on an obstacle edge e if loc(X) ∈ e and
�X contains e. A path is an oriented curve; ‖ · ‖ denotes the length of a path. A path
is called legal if its average curvature is at most 1 in every interval.

If I and F are the initial and final positions, then we regard loc(I) and loc(F )
as point obstacles. A legal path is feasible (with respect to Ω) if it does not intersect
the interior of any obstacle of Ω (see Figure 2.1). A path Π from a position X to
another position Y is optimal if it is a feasible path with the minimum arc length,
where the minimum is taken over all feasible paths from X to Y . (The minimum
always exists; for a proof, see [27].)

I

F

Fig. 2.1. An example of a feasible path.

2.1. Dubins paths and canonical paths. We call a nonempty subpath of a
feasible path Π a C-segment (resp., L-segment) if it is a circular arc of unit radius
(resp., line segment) and maximal. Suppose Π consists of a C-segment, an L-segment,
and a C-segment; then we say that Π is of type CLC. This notion can be generalized to
an arbitrarily long sequence. If the orientation of a C-segment—counter-clockwise or
clockwise—is important, we use C+ (resp., C−) to denote a counter-clockwise (resp.,
clockwise) oriented C-segment, so C+LC− denotes a path consisting of a counter-
clockwise C-segment, an L-segment, followed by a clockwise C-segment. Dubins [21]
proved the following result.

Theorem 2.1 (Dubins [21]). In an obstacle-free environment, an optimal path
between any two positions is of type CCC or CLC, or a substring thereof (see Figure
2.2).
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Fig. 2.2. Examples of Dubins paths.

We will refer to such paths as Dubins paths. If we fix the orientation of initial
and final C-segments, then there is at most one CLC (resp., CCC) path between two
positions.1

Therefore, there are at most four types of CLC paths, namely, C+LC+, C+LC−,
C−LC+, and C−LC−, and at most two types of CCC paths, namely, C+C−C+ and
C−C+C−. Note that not all types of path exist between two positions X and Y . For
example, if the distance between the centers of C+

X and C−Y is less than 2 (i.e., the
two circles intersect), then the C+LC− path does not exist from X to Y . Similarly, if
the distance between the centers of C+

X and C+
Y is greater than 4, the C+C−C+-type

path does not exist from X to Y . Let

T = {C+LC+, C+LC−, C−LC+, C−LC−, C+C−C+, C−C+C−}.
For a Dubins path Π, we define σ(Π) ∈ T to be the string that characterizes Π. If
the length of a C- or an L-segment is zero, then σ(Π) is not uniquely defined; in this
case we choose one of them, depending on the context.

Fortune and Wilfong [22] proved that in the presence of obstacles an optimal path
consists of a finite sequence of Dubins paths. We call a feasible path from a position
I to a position F canonical if it consists of a finite sequence Π1|| · · · ||Πk of feasible
paths, where each Πi is a Dubins path from a position Xi−1 to a position Xi, such
that X0 = I, Xk = F , and, for 0 < i < k, loc(Xi) ∈ ∂Ω. Since we regard loc(I)
and loc(F ) as point obstacles, X0 and Xk also lie on obstacle boundaries. Jacobs
and Canny [27] proved the following property of optimal paths.

Theorem 2.2 (Jacobs–Canny [27]). Given a set of polygonal obstacles Ω, an
initial position I, and a final position F , every optimal path from I to F is a canonical
path.

This theorem implies that an optimal path is a finite sequence of C- and L-
segments, so it can be represented as a finite string over the alphabet {C,L}.
2.2. Parametrizing canonical paths. Let X be a position lying on the bound-

ary of an obstacle. For the purpose of parametrizing canonical paths, we regard each
obstacle edge pq as two oriented edges −→pq and −→qp. If X lies on an oriented edge
�e = −→pq , then vec(X) is fixed, but loc(X) may lie anywhere on e. We can specify
loc(X), and thus X, by a real number x ∈ [0, ‖e‖], which specifies the distance be-
tween loc(X) and p; see Figure 2.3(a). Similarly, if X lies on an obstacle vertex v,
then loc(X) is fixed and vec(X) may vary. In this case, we can represent X by a
real value x in an angular interval [θl, θr], where θl, θr are the orientations of the edges
adjacent to v; see Figure 2.3(b). (We could also parametrize X by a real value in a

1Actually, there are two CCC paths if we fix the orientations of the initial and final C-segments.
But the length of the middle C-segment is less than π in one of the two paths. It is known that
such a path cannot be an optimal Dubins path. Therefore, we will not consider this CCC path and
assume that there is only one CCC path.
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x
v

(a) (b)

x

X
X=(v,x)e

p

q

Fig. 2.3. Parametrizing positions on obstacle boundaries.

(b) (c) (d)(a)

Y

X

X

X

X

Y Y Y

Fig. 2.4. A few examples of singular points.

linear interval [0, θr−θl] or [0, 2π+θr−θl] depending on whether 0 ∈ [θl, θr].) For two
orientations φ1, φ2 ∈ [θl, θr], we say that φ1 ≤ φ2 if θl, φ1, φ2, θr appear in that order
in the counter-clockwise direction. Hence, a position X lying on an obstacle feature
φ can be represented as a real parameter ψ(X) that lies in an interval [lφ, rφ]; we will
refer to this interval as the feasible domain of the feature φ. If X = I (resp., F ), then
its domain is defined to be the singleton [vec(I),vec(I)] (resp., [vec(F ),vec(F )]).

Let Π be a Dubins path from a position X lying on an obstacle feature φX to
another position Y lying on an obstacle feature φY . Then Π can be represented by
the 3-tuple ψ(Π) = (ψ(X), ψ(Y ), σ(Π)). Let I1, I2 be the feasible domains of two
obstacle features φ1 and φ2, respectively. Then I1×I2×T is the configuration space
of all Dubins paths from a position on φ1 to another position on φ2. The configuration
space of all Dubins paths from a vertex to another vertex is a subset of S

1 × S
1 × T .

By parametrizing ψ(X), ψ(Y ) more carefully, the configuration space can be defined
as a subset of R

2 ×T , which will be useful in the following discussion. We can define
the configuration space for all other cases as well. As mentioned earlier, not every
point in the configuration space defines a path from X to Y .

Consider a point (τ1, τ2, σ) in the configuration space and vary the pair (τ1, τ2),
keeping σ fixed; then the corresponding Dubins path deforms continuously except at
certain values, at which the path either ceases to exist or the length of one of the
C-segments becomes 0 or 2π, i.e., if one of the events occurs:

(i) ψ(X) or ψ(Y ) is an endpoint of its feasible domain (e.g., τ1 is an endpoint of
ψ(X) in Figure 2.4(a));

(ii) σ = C+LC− and C+(X) and C−(Y ) are tangent to each other (see Fig-
ure 2.4(b));

(iii) σ = C−LC+ and C−(X) and C+(Y ) are tangent to each other;
(iv) σ = CCC and the distance between the centers of the first and the last

C-segments is 4 (see Figure 2.4(c)); and
(v) the length of a C-segment is 0 or 2π (e.g., the length of the final C-segment

is 0 in Figure 2.4(d)).

A point in a configuration space (or path) satisfying any of the above five conditions



1744 PANKAJ K. AGARWAL AND HONGYAN WANG

is called singular ; see Figure 2.4 for a few examples of singular points. We call a point
τ = (τ1, τ2, σ) in the configuration space infeasible if the corresponding path is either
not defined or intersects the interior of an obstacle; otherwise, it is called feasible.
The geometry of paths, configuration space of paths, and the topology of infeasible,
free, and singular points are studied in detail by Jacobs and Canny [27].

(b)(a)

Π
Π

ΠΠ’
’

Fig. 2.5. (a) Π and Π′ are neighbors; (b) Π and Π′ are not neighbors.

2.3. Robust paths. Fix two obstacle features φ1, φ2, and let [li, ri] be the fea-
sible domain of φi. Let τ = (τ1, τ2, σ) and τ ′ = (τ ′1, τ

′
2, σ) be two points in the config-

uration space of φ1 × φ2, i.e., τi, τ
′
i ∈ [li, ri] for i = 1, 2. Let R(τ, τ ′) = {(ξ1, ξ2, σ) |

min{τi, τ ′i} < ξi < max{τi, τ ′i}} be the (open) rectangle in the configuration space
formed by τ and τ ′. We call τ and τ ′ neighbors if none of the points in the rectangle
R(τ, τ ′) is singular or infeasible (see Figure 2.5). If τ and τ ′ are neighbors, then τ can
be deformed continuously to any point in the square without intersecting the interior
of obstacles. The analysis in section 5 (see Remark 5.3 (ii)) will show that if τ and τ ′

are neighbors and |τi − τ ′i | ≤ δ for some 0 ≤ δ ≤ 1, then the paths corresponding to
points in R(τ, τ ′) lie in a tube of width O(

√
δ) drawn around the path corresponding

to the center of R(τ, τ ′).

β1

Π

r2

β2

γ2

l2

φ2

φ1

r1l1

R−

R+

Fig. 2.6. δ++- and δ−−-robust paths. Π is δ++-robust (resp., δ−−-robust) if the square R+

(resp., R−) does not contain any singular or infeasible point.

Let Π be a Dubins path from an obstacle feature φ1 to another one φ2, with
ψ(Π) = (τ1, τ2, σ), and let 0 < δ < 1/2 be a real parameter. For i = 1, 2, let [li, ri]
be the feasible domain of φi; set βi = min{ri, τi + δ} and γi = max{li, τi − δ}; see



CURVATURE-CONSTRAINED PLANNING 1745

Figure 2.6. We call Π δ++-robust if ψ(Π) and (β1, β2, σ) are neighbors and δ−−-
robust if ψ(Π) and (γ1, γ2, σ) are neighbors. We define δ+−-robust, δ−+-robust paths
in a similar manner. Intuitively, Π is δ++-robust if for 0 ≤ h1, h2 ≤ δ, the paths
(τ1 + h1, τ2 + h2, σ) are homeomorphic to Π and remain in a neighborhood of Π,
assuming that τi + δ ≤ ri. If ri − τi < δ, i.e., Π lies near the boundary of the
configuration space of φ1 × φ2, then one has to be more careful and vary hi ∈ [τi, ri].
The notion of “directed” robustness and the boundary conditions will be important
in the subsequent discussion. (Jacobs and Canny call Π δ-robust if the points (τ1 −
δ/2, τ2 − δ/2, σ) and (τ2 + δ/2, τ2 + δ/2, σ) are neighbors. Their definition does not
take the boundary conditions into account, so the points near the boundary of feasible
domains are not robust under their definition.)

Now, let Π be a canonical path consisting of Dubins paths Π1‖Π2‖ · · · ‖Πk. Jacobs
and Canny call Π δ-robust if each Πi is (δ/2)σ1σ2-robust for every pair σ1, σ2 ∈ {+,−}.
(More precisely, they call Π δ-robust if each Πi is δ-robust under their definition
of δ-robustness.) A weakness of their definition is that if one of Πi is close to a
singular path, then Πi is not robust even if no obstacle is in the neighborhood of Πi.
For example, the canonical Dubins path Π in Figure 2.7 is not robust under their
definition of δ-robustness. We circumvent this problem by using a somewhat weaker
definition. We call Π δ-robust if there exist σi ∈ {+,−} for 0 ≤ i ≤ k, such that Πi

is δσi−1σi-robust.

Intuitively, Π being robust means that the tube of width O(
√
δ) around Π does

not intersect any obstacle except those which touch Π, and they intersect the tube
only in the neighborhood of the point at which they touch Π.

F

δ/2

ΠΠ
Π+

-

-Π

Π -

+

Π

Π

I

Fig. 2.7. A robust path consisting of three canonical Dubins paths. The second canonical
subpath, Π = (τ2, τ3, C−LC+), is δ++-robust but not δ−+-robust because Π− = (τ2 − δ/2, τ3 +
δ/2, C−LC+) and Π are not neighbors.

2.4. Our results. We first obtain a stronger characterization of optimal paths
(section 3.1), which besides being interesting in its own right is critical for our algo-
rithm. Roughly speaking, we prove that, except in some very special cases, an optimal
path touches an edge e of Ω only at points near a vertex v (v is not necessarily one
of the endpoints of e), such that these points are visible from v. In other words, we
can ignore the portions of the edges of Ω that are not near any vertex of Ω. This
property enables us to develop an algorithm whose running time does not depend on
the length of the boundary of Ω.

We then describe an efficient algorithm for computing a feasible path between two
given positions (section 4) whose length is at most (1 + ε) times that of an optimal
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path, assuming that there exists an optimal path from I to F that is robust. More
precisely, given an obstacle environment Ω with n vertices, two positions I and F ,
and a parameter ε, we present an O((n2/ε4) log n)-time algorithm that computes a
feasible path from I to F whose length is at most (1 + ε) times the length of an
optimal ε-robust path from I to F , provided that an optimal path from I to F is
robust. Compared with the Jacobs–Canny algorithm [27], our algorithm is not only
considerably faster in terms of the complexity of Ω, but, more importantly, the running
time is independent of L, the total edge length of Ω. The second improvement is rather
significant because one cannot assume L to be small. For unconstrained optimal path
planning, one can scale down the environment arbitrarily (to reduce the value of L),
compute a shortest path in the scaled environment, and then scale the optimal path
back. But this scaling idea does not work for curvature-constrained shortest paths,
as the scaling will change the curvature of the path as well. The path returned by
our algorithm is not necessarily robust. We can, however, modify the algorithm to
compute an (ε/2)-robust path in time O((n2.5/ε4) log n), whose length is no more
than (1+ε) times the length of an optimal path, assuming that it is ε-robust. In fact,
an O(n2+γ/ε4)-time algorithm can be obtained, using the recent range-searching data
structures [1], but we will not discuss this improvement in this paper.

3. Characterization of optimal paths. In this section we characterize opti-
mal paths in the plane in the presence of obstacles. Theorem 2.2 implies that an
optimal path Π is a canonical path. However, even if we specify the sequence of
obstacle edges and vertices that Π touches, there are infinitely many paths touching
the same sequence of edges and vertices—an optimal path can touch a vertex at an
arbitrary orientation, or it can touch an arbitrary point of an edge. Jacobs and Canny
[27] observe that if one is interested only in computing (1 + ε)-approximate paths,
one can choose a finite set of orientations at which a path can touch a vertex and can
also choose a finite set of points on each edge e at which a path can touch e. The
number of points chosen on an edge is proportional to the length of the edge. That
is why the running time of their algorithm depends on the total length of edges of Ω.
We circumvent this problem by proving a stronger property of optimal paths.

A feasible C-segment is called free if it does not intersect the interior of Ω, an-
chored if it touches ∂Ω at two or more points (recall that we assume loc(I), loc(F )
to be point obstacles), and semifree if it touches ∂Ω at exactly one point. By The-
orems 2.1 and 2.2, an optimal path cannot have two consecutive free C-segments.
Moreover, there are only finite number of circles that touch ∂Ω at two or more points
(assuming that there are no two edges parallel at distance 1), so there is only a finite
number of circles that may contain anchored C-segments. We thus need a better
understanding of semifree C-segments.

The following theorem states the main result of this section.

Theorem 3.1. If w is a semifree C-segment of an optimal path, then there is
a vertex v of Ω within distance 15 from the intersection point ξ of w and ∂Ω that is
visible from ξ (i.e., the segment ξv does not intersect the interior of Ω).

3.1. Proof of Theorem 3.1. We will prove the theorem by a sequence of lem-
mata. We begin with a few notation and simple observations. For an oriented path
Π and two points a, b ∈ Π, let Π[a, b] denote the subpath of Π from a to b. For an
unoriented circle C and two points a, b ∈ C, let C[a, b] denote the arc of C from a to
b in the clockwise direction. However, if C contains a C-segment of a path, then we
assume that C is oriented the same way as the C-segment.
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Recall that, by our convention, loc(I) and loc(F ) are the vertices of Ω. If ξ
lies within distance 15 from one of the endpoints of the obstacle edge that contains ξ,
then there is nothing to prove. So assume that ξ lies in the interior of an edge e = pq
and d(p, ξ), d(q, ξ) > 15. Without loss of generality, assume that e lies on the x-axis,
that w lies below the x-axis, and that w is oriented clockwise.

We divide the proof of Theorem 3.1 into a few cases. For each case, we prove the
existence of a closed, simply connected region R satisfying the following properties.

P1. R lies on or below the x-axis, R contains ξ, and either ∂R contains a vertex
of Ω or the interior of R contains a point of ∂Ω.

P2. If an edge g ∈ Ω intersects the interior of R, it crosses ∂R in at most one
point, which implies that at least one of the endpoints of g lies inside R.

P3. d(ξ, x) ≤ 15 for all points x ∈ R.

See Figure 3.1 for an example of R. P1–P3 (i.e., P1, P2, and P3) together imply that
there is a vertex of Ω within distance 15 from ξ. In order to prove that there is also a
vertex within distance 15 from ξ that is visible from ξ, we introduce R∗, the convex
hull of R.

Lemma 3.2. If a simply connected region R satisfies P1–P3, then R∗ also satisfies
P1–P3.

Proof. P1 is obvious. If an obstacle edge g crosses ∂R∗ at two points, then, using
the fact that R is simply connected, one can prove that g also crosses ∂R at two
points, which contradicts property P2 of R. Hence, g crosses ∂R∗ in at most one
point, thereby proving P2.

For any point x ∈ R∗, the ray emanating from ξ and passing through x intersects
∂R∗ at one point other than ξ itself, say, y (y may be identical to x). If y ∈ R,
property P3 follows since d(ξ, x) ≤ d(ξ, y) ≤ 15. Otherwise, y lies in the interior of
a line segment, both of whose endpoints, say, u and v, lie on ∂R. Property P3 also
follows since d(ξ, x) ≤ d(ξ, y) ≤ max{d(ξ, u), d(ξ, v)} < 15. This completes the proof
of the lemma.

Lemma 3.3. Let R∗ be a convex region satisfying P1–P3. Then there exists a
vertex v of Ω within distance 15 from ξ that is visible from ξ.

Proof. If no obstacle edge intersects the interior of R∗, the lemma is obvious
because an obstacle vertex lying on ∂R∗ is visible from ξ. Otherwise, for each obstacle
edge e that intersects the interior of R∗, clip it within R∗; e∩R∗ is a segment. Let E
denote the set of clipped segments. By property P1, E �= ∅. We define the following
partial ordering on the segments of E. We say that ei ≺ ej (ei, ej ∈ E) if any ray
emanating from ξ and intersecting the relative interiors of both ei and ej intersects
ei before intersecting ej . (That is, viewed from ξ, ej cannot occlude any portion
of ei.) Using the fact that the segments of E are disjoint, it can be shown that ≺
induces a partial ordering on E; see, e.g., [18, 24]. Moreover, this partial ordering
can be extended to a total ordering. By the definition of the ordering, every point on
the first segment in this ordering is visible from ξ. But one of the endpoints of this
segment, say, v, is a vertex of Ω (because of P2), so we have found an obstacle vertex
v within distance 15 from ξ that is visible from ξ.

The following simple lemma, which will be useful in many cases, follows from
Lemma 3.2.

Lemma 3.4. Let α and β be two points on an optimal path Π from I to F such
that α, ξ, and β appear in that order along Π, such that Π[α, β] lies below or on the
x-axis, and such that d(ξ, x) ≤ 15 for all x ∈ Π[α, β]. Let R be the convex hull of
Π[α, β]. If α is an obstacle vertex or if it lies in the interior of an obstacle edge whose
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supporting line intersects Π[α, β] at a point other than α, then R satisfies P1–P3. See
Figure 3.1.

ξ

β

R

α

Fig. 3.1. Π[α, β] and its convex hull; shaded region is R.

Proof. Following an argument similar to the one in the proof of Lemma 3.2, we
can show that R satisfies P3. Suppose an obstacle edge g intersects the interior of R;
then let γ be the intersection of g with R. If both endpoints of γ lie on the boundary
of ∂R, then a continuity argument implies that g crosses Π[α, β], which is impossible.
Therefore, g crosses ∂R in at most one point, and thus R satisfies P2. If α is a vertex,
R satisfies P1. Otherwise, the obstacle edge containing α lies in the interior of R near
α, because the line supporting this edge intersects the interior of R. Hence, R satisfies
P1 also. This completes the proof.

Since we regard loc(I) and loc(F ) as vertices of Ω and assume that ξ is not a
vertex, the semifree C-segment w is not the first or the last segment of Π. Let w−

(resp., w+) be the segment of Π immediately before (resp., after) w.
Using a perturbation argument similar to the one used in [2, 9] (see Figure 3.2),

one can easily prove the following lemma, whose proof is omitted from here.

(a) (b)

Fig. 3.2. Length reducing perturbations: (a) ‖w‖ ≤ π; (b) both w− and w+ are L-segments.

Lemma 3.5. If w is neither the first segment nor the last segment of Π, then (i)
‖w‖ > π, and (ii) either w− or w+ is a C-segment.

Let us assume that w− is a C-segment. Let ξ− (resp., ξ+) be the point on Π that
lies on ∂Ω immediately before (resp., after) ξ. Since Π[ξ−, ξ] is a Dubins path and
w− is a C-segment, Π[ξ−, ξ] consists of two or three C-segments. In either case,

d(ξ, x) ≤ 6 ∀x ∈ Π[ξ−, ξ].(3.1)

Since e lies on the x-axis and the endpoints of e are at distance ≥ 15 from ξ, the
above inequality implies that Π[ξ−, ξ] lies below the x-axis. If ξ− is a vertex or if ξ−

lies in the interior of an edge e− and the line supporting e− intersects Π[ξ−, ξ], then
Theorem 3.1 follows from an application of Lemma 3.4 on the path Π[ξ−, ξ]. In the
remainder of this section, we will thus assume the following.
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(5) ξ− lies in the interior of an edge e−, and the line, �−, supporting
e− does not intersect Π[ξ−, ξ].

Let σ be the intersection point of �− and the x-axis. Without loss of generality,
assume that σ lies to the left of ξ. If �− is parallel to the x-axis, then σ lies at x = −∞
and the angle ∠ξ−σξ = 0.

We consider the following three cases and prove the existence of a region R sat-
isfying P1–P3 for each case separately.

Case 1. The angle ∠ξ−σξ ≥ π/6; see Figure 3.3.

Case 2. The angle ∠ξ−σξ < π/6.

Case 2.1. d(ξ, x) < 8 for all x ∈ Π[ξ, ξ+]; see Figure 3.4.

Case 2.2. d(ξ, x) ≥ 8 for some x ∈ Π[ξ, ξ+]; see Figure 3.7.

Lemma 3.6. There exists a region R satisfying P1–P3 for Case 1, i.e., when
∠ξ−σξ ≥ π/6.

R

ξp σe

e−

p−

(b)

ξ−

R

e−

≥ π/6

σ

ξ−

p−

p e ξ

(a)

R

ξp e

e−

p−

ξ−

(c)

χ

σ

Fig. 3.3. ∠ξσξ− ≥ π/6: (a) Π[ξ−, ξ] has two C-segments; (b), (c) Π[ξ−, ξ] has three C-segments.

Proof. If Π[ξ−, ξ] is simple (i.e., does not have any self-intersections), we define
R to be the closed region bounded by Π[ξ−, ξ] and the segments σξ and σξ−. See
Figure 3.3(a,b). Otherwise, let χ be the first self-intersection point of Π[ξ−, ξ], and
let Γ be the simple curve obtained by discarding from Π[ξ−, ξ] the cycle formed by
χ. We define R to be the closed region bounded by Γ and the segments σξ and σξ−;
see the shaded region in Figure 3.3(c). Since the x-axis cannot intersect the interior
of Π[ξ−, ξ] and, by assumption (5), �− does not intersect the interior of Π[ξ−, ξ], R
is a simply connected region. For ∠ξσξ− ≤ π/2, using the sine law and the fact that
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d(ξ, ξ−) ≤ 6 (see (3.1)), we obtain

d(ξ, σ) = d(ξ, ξ−)
sin ∠σξ−ξ
sin ∠ξσξ−

≤ d(ξ, ξ−)

sin(π/6)
≤ 6

sin(π/6)
≤ 12.(3.2)

For ∠ξσξ− > π/2, d(ξ, σ) < d(ξ, ξ−) ≤ 6, since the segment ξξ− is the longest edge in
the triangle ∆ξσξ−. Since d(p, ξ) > 15, σ lies on e in both cases. The obstacle edges
are disjoint, so one of the endpoints of e−, say, p−, lies on the segment σξ−, and thus
on the boundary of R, implying that R satisfies P1. R also satisfies P2 because any
obstacle edge g ∈ Ω can cross ∂R only at the segment σp−. Finally, (3.1) and (3.2)
imply that, for any x ∈ R, d(ξ, x) ≤ max{d(ξ, σ), 6} ≤ 12. Therefore, R satisfies P3
as well.

Lemma 3.7. There exists a region R satisfying P1–P3 for Case 2.1, i.e., when
∠ξ−σξ < π/6 and d(ξ, x) < 8 for all x ∈ ξ+.

s′′
e−

u

ξ−
ξ+

s

e ξ v

s′
v′

u′

(a)

ξu v

ξ−

e

(b)

ξ+

e−s s′
v′′

u′
v′

s′′

Fig. 3.4. ∠ξσξ+ < π/6 and d(ξ, ξ+) < 8: (a) ξ+ lies in the interior of R; (b) v′′ lies on ∂R.

Proof. If ξ+ is an obstacle vertex, then the claim follows from Lemma 3.4, so
assume that ξ+ lies in the interior of an obstacle edge e+. Since d(ξ, ξ+) ≤ 8, ξ+ lies
in a disc Dξ of radius 8 centered at ξ. Let u (resp., v) be the point on e at distance
8 from ξ to its left (resp., right). If the left endpoint of e−, the edge containing the
point ξ−, lies to the left of u, let u′ be the point on e− with the same x-coordinate as
u (see Figure 3.4(a)); otherwise, let u′ be the left endpoint of e− (see Figure 3.4(b)).
Similarly, if the right endpoint of e− lies to the right of v, let v′ be the point on e−

with the same x-coordinate as v; otherwise, let v′ be the right endpoint of e−. We set
R to be the quadrilateral uu′v′v.

If u′ or v′ is an endpoint of e− or if any point of obstacle boundary (including ξ+)
lies in the interior of R, then R satisfies P1. Suppose neither of these conditions holds.
Since uu′ and vv′ are vertical segments, d(ξ, x) > 8 for any point x on the segments
uu′ and vv′. Consequently, Π[ξ, ξ+] cannot intersect either of these two segments. We
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will show in Lemma 3.8 that if the vertices of R lie in the interior of e and e− and
no obstacle intersects the interior of R, then ξ+ cannot lie on e− or e+. Hence, R
satisfies P1.

An obstacle edge g cannot intersect uv or u′v′ (as they are portions of obstacle
edges), and g cannot intersect both uu′ and vv′ (as this would imply that g intersects
Π[ξ−, ξ]). Hence R satisfies P2.

Finally, we prove that R satisfies P3. Let v′′ be the point on �− that has the same
x-coordinate as v (v′′ = v′ if the right endpoint of e− lies to the right of v). It can
be shown that, for any x ∈ R, d(ξ, x) ≤ d(ξ, v′′). (Here we are using the assumption
that � and �− intersect to the left of ξ.) Let s (resp., s′) be the point on �−, such
that ξs ⊥ e− (resp., ξs′ ⊥ e). Let s′′ be the point on the segment vv′′ with the same
y-coordinate as that of s′. Notice that ∠sξs′ = ∠v′′s′s′′ = ∠ξσξ− < π/6, where σ is
the intersection point of lines containing e and e−. Since

d(v, s′′) = d(ξ, s′) =
d(ξ, s)

cos ∠sξs′
<

d(ξ, ξ−)

cos π6
≤ 6 · 2√

3
= 4
√

3

and

d(s′′, v′′) = d(s′, s′′) tan ∠v′′s′s′′ < d(ξ, v) tan
π

6
= 8 · 1√

3
=

8√
3
,

we have d(v, v′′) < 20/
√

3. Therefore, for any x ∈ R,

d(ξ, x) ≤ d(ξ, v′′) =
√

d(ξ, v)2 + d(v, v′′)2 ≤
√

82 + (20/
√

3)2 ≤ 15.

This completes the proof of the lemma.
We now prove the missing claim in the proof of the above lemma.
Lemma 3.8. Let R be the quadrilateral defined in the proof of Lemma 3.7. Suppose

the vertices of R lie in the relative interiors of the edges e and e− and the interior
of R does not intersect any obstacle. If ξ+ lies on e− or e, then Π is not an optimal
path.

(b)(a)

ξ

C2

ξ+

ξ−

C3C1

ξ

C2

ξ−

C4C1

C3

q1

q3

ξ+

Fig. 3.5. Shortcutting Π[ξ−, ξ+] when w′ is counter-clockwise oriented and ξ+ lies to the left
of ξ−.

Proof. We assume that ξ+ lies on e− and Π[ξ−, ξ] consists of two C-segments.
We will show that we can shortcut Π[ξ−, ξ+] and obtain a shorter feasible path from
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I to F . A similar shortcutting procedure works if ξ+ ∈ e or Π[ξ−, ξ] consists of three
C-segments. Let w′ be the C-segment containing ξ+, and let C1, C2, C3 be the circles
containing the C-segments w−, w, and w′.

(a) (b)

(c)

ξ

ξ−

C2C1

ξ+

C3

C4q

η

ξ

ξ−

C2

ξ+

C1

e

e− e−

e

ξ

C2

η

C4

C1

C3

e

e−

C3

ξ+

ξ−

q

Fig. 3.6. Shortcutting Π[ξ−, ξ+] when w′ is clockwise oriented; thick arcs denote the shortcut-
ting: (a) C1 and C3 do not intersect, (b) ξ+ lies to the right of ξ−, and (c) ξ+ lies to the left of
ξ−.

Since the interior of R does not intersect any obstacle, we can prove that the
interiors of circles C1, C2, and C3 do not intersect any obstacle. By our assumptions,
C1 is counter-clockwise oriented and C2 is clockwise oriented. First let us assume
that w′, and thus C3, is counter-clockwise oriented. If ξ+ ∈ e− lies to the right of

ξ−, we can shortcut Π[ξ−, ξ+] by the segment
−−−→
ξ−ξ+ (see Figure 3.5(a)), so assume

that ξ+ lies to the left of ξ− (see Figure 3.5(b)). Since Π[ξ, ξ+] is a Dubins path
and the C-segment w is clockwise oriented, it is a C−LC+-type path. This implies
that the L-segment w+ is an inner tangent of C2 and C3, and that C2 and C3 are
disjoint. Let ξ′ be the common endpoint of w− and w. Using the fact that the
common endpoint of w and w+ lies on C2[ξ, ξ′], the other circle (other than C1; e.g.,
C4 in Figure 3.5) tangent to both C2 and the edge e− lies to the right of C1. Let
q1 �= ξ− and q3 �= ξ+ be the point on C1 and C3, respectively, so that the segment
q1q3 is an outer common tangent of C1 and C3. We shortcut Π[ξ−, ξ+] by the path
Λ = C1[ξ−, q1] ‖ −−→q1q3 ‖ C3[q3, ξ

+]. It can be proved that |Λ| ≤ |Π[ξ−, ξ+]|.
Next, let us assume that the C-segment w′ is clockwise oriented. In this case we

shortcut Π[ξ−, ξ+] by a C+LC−, a C+C−L, or an LC+C− path, depending on the
position of ξ+ on e−. If C1 and C3 do not intersect, we shortcut from C1 to C3 by
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the inner tangent of C1 and C3 as shown in Figure 3.6(a). The new path is obviously
shorter.

Suppose C1 and C3 intersect and ξ+ lies to the right of ξ−. Let C4 be the clockwise
oriented circle tangent to e− and C1, and that lies to the right of C1; see Figure 3.6(b).
Let q = C1 ∩ C4 and η = C4 ∩ e−. We shortcut Π[ξ−, ξ+] by the C+C−L-type path

Λ = C1[ξ−, q] ‖C4[q, η] ‖ −−→ηξ+. On the other hand, if ξ+ lies to the left of ξ−, then we
set C4 to be the counter-clockwise oriented circle tangent to C3 and e−, and that lies
to the right of C1; see Figure 3.6(c). Let q = C3 ∩ C4 and η = C4 ∩ e−. We shortcut

Π[ξ−, ξ+] by the LC+C−-type path Λ =
−−→
ξ−η ‖C4[η, q] ‖C3[q, ξ+]. We can show that

in both cases, Λ is feasible and |Λ| ≤ |Π[ξ−, ξ+]|.
Lemma 3.9. There exists a region R satisfying P1–P3 for Case 2.2, i.e., when

∠ξσξ− < π/6 and d(ξ, x) ≥ 8 for some x ∈ Π[ξ, ξ+].

Proof. Let η ∈ Π[ξ, ξ+] be a point for which d(ξ, η) > 8. If w+, the segment of Π
following w, is a C-segment, then, by Theorem 2.1, Π[ξ, ξ+] consists of at most three
C-segments and d(ξ, x) ≤ 6 for all x ∈ Π[ξ, ξ+], which contradicts the assumption
that d(ξ, η) > 8. Hence w+ is an L-segment, Π[ξ, ξ+] is of CLC type, and ‖w+‖ ≥
d(ξ, η)− 4 > 4.

Let C1 and C2 be the circles containing w− and w, respectively, and let h be the
ray supporting w+ and starting at the common point of w+ and w. There are two
cases to consider:

(i) h does not intersect C1,
(ii) h intersects C1.

(a) (b)

C2

C3

b

R

ξ

ξ−

C2

a

b

c

d

C1

R

ξ

c

w+w
w

C1
C3

f

ξ−w− h

h

a

Fig. 3.7. ∠ξσξ− < π/6 and d(ξ, ξ+) ≥ 8: (a) h does not intersect C1; (b) h intersects C1.

Case (i). See Figure 3.7(a). Let C3 be the other (unit-radius) circle tangent to
both h and C1. Let a (resp., b) be the intersection point of C3 with C1 (resp., h).
Since |w+| > 4, b lies on the segment w+.

Let c be the common point of C1 and C2. Since w− is clockwise oriented, we
assume C1 to be clockwise oriented. We consider the two cases: (a) ξ− does not lie
on C1[a, c], and (b) ξ ∈ C1[a, ac. If ξ− �∈ C1[a, c], i.e., a ∈ Π[ξ−, ξ], define R to be
the closed region bounded by Π[a, b] and the segment ab; see the shaded region in
Figure 3.7(a). If the arc C3[a, b] does not cross any obstacle edge, we can shorten Π
by replacing Π[a, b] with C3[a, b], contradicting the optimality of Π. Hence, an edge of
Ω intersects C3[a, b] and thus also intersects the interior of R, thereby implying that
R satisfies P1. Since an edge of Ω can cross ∂R only at ab, P2 is obvious. Finally,
every point on ∂R is within distance 15 from ξ, so P3 also follows.
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If ξ− ∈ C1[a, c], define R to be the closed region bounded by Π[ξ−, b] and the
segment ξ−b. Since ξ− is an interior point of the obstacle edge e−, e− also intersects
the interior of R, proving P1. Since an edge of Ω can cross ∂R only at segment ξ−b,
P2 holds. P3 can also be shown.

Case (ii). See Figure 3.7(b). Let f be the first intersection point of ray h with C1.
Let ab be the segment tangent to C1 and C2 at a and b, respectively, such that b is on
the path Π[ξ, ξ+]. (It is easy to see that such a b exists.) Let C3 be the unit-radius
(clockwise oriented) circle tangent to C2 and the ray h at c and d, respectively. Since
|w+| > 4, both d and f lie on the segment w+.

If a �∈ Π[ξ−, ξ], then the line �− intersects Π[ξ−, ξ], which contradicts the as-
sumption (5). So assume that a ∈ Π[ξ−, ξ]. Define R to be the region bounded by
the segment ab, the circular arc C2[c, b] the segments cd and df , and the circular
arc C1[a, f ]; see the shaded region in Figure 3.7(b). An obstacle edge crosses either
the segment ab or the arc C3[c, d], thus intersecting the interior of R, because other-
wise the path obtained by concatenating the segment ab and the circular arcs C2[c, b]
and C3[c, d] is shorter than the path Π[a, d], contradicting the optimality of Π. This
means that R satisfies P1. An obstacle edge can cross ∂R only at segments cd and ab,
and none of the edges can cross both the segments (because then it would cross Π).
P2 follows. Finally, every point on ∂R is within distance 15 from ξ, so P3 also
follows.

These lemmas together complete the proof of Theorem 3.1.

3.2. Anchored C-segments. Recall that a C-segment is called anchored if it
touches ∂Ω at two (or more) points. We prove a property of anchored C-segments,
which will be useful later. We call an anchored C-segment, touching ∂Ω at two points
p1 ∈ e1 and p2 ∈ e2, shallow if we can find two obstacle vertices v1 and v2 (not
necessarily distinct) such that vi is visible from pi and d(pi, vi) ≤ 15 for i = 1, 2.
Otherwise, it is called deep.

Lemma 3.10. If w is a feasible deep anchored C-segment, then no obstacle edge
intersects the interior of the circle containing w.

Proof. Let w be an anchored C-segment touching ∂Ω at two points p1 ∈ e1 and
p2 ∈ e2. Since w is a deep anchored C-segment, one of pi, say p1, has to be at least
distance 15 away from the endpoints of ei, because otherwise w is shallow. Without
loss of generality, let e = e1, e− = e2, ξ = p1, ξ− = p2, where e, e−, ξ, ξ− are as
defined in the last section.

It can be shown that the angle between e and e− is < π/6. Otherwise, following
the proof of Lemma 3.6, we can find a vertex vi, such that vi is visible to pi and
d(vi, pi) ≤ 15, contradicting the assumption that w is a deep anchored C-segment.

Let C be the circle containing w. We construct a quadrilateral R = uu′v′v, as in
the proof of Lemma 3.7, except that we set d(ξ, u) = d(ξ, v) = 2, since the distance
between ξ and any point on C is ≤ 2. Any obstacle edge crossing both uu′ and vv′ of
R also crosses the C-segment w, but that is impossible because w is feasible. Hence,
R satisfies P2. Obviously, R satisfies P3. If an obstacle edge intersects the interior of
C, it also intersects R, making R satisfy P1. If so, by Lemma 3.3, we can find for each
i = 1, 2 an obstacle vertex vi that is visible from pi and d(vi, pi) ≤ 15, contradicting
that w is a deep anchored C-segment. Thus no obstacle edge intersects the interior
of C. This proves the lemma.

For a pair of nonparallel edges, there is at most one deep anchored circle, but a
pair of parallel edges at distance 2 have infinitely many deeply anchored C-segments.
In the next lemma, we prove that we do not have to consider parallel edges for deeply



CURVATURE-CONSTRAINED PLANNING 1755

anchored C-segments.
Lemma 3.11. An optimal path does not contain a deep C-segment that touches

two parallel obstacle edges at their interior points.

15 p1

p2

e1

e2

p1

p2

e1

e2

Fig. 3.8. (a) Shaded region is R; (b) perturbation scheme for a deeply anchored C-segment.

Proof. Suppose an optimal path Π contains a deep C-segment w anchored at
two parallel edges e1 and e2. Let pi be the intersection point of w and ei. Since
w is deep, no obstacle vertex within distance 15 is visible from one of pi’s, say, p1.
Let R be the region lying inside the disk of radius 15 centered at p1 and the strip
formed by the lines supporting e1, e2 and lying to the left of w[p1, p2] (shaded region
in Figure 3.8(a)). Following the same argument as in the previous lemma, we can
argue that R does not intersect the obstacle boundary. If the segment preceding or
following w is a C-segment, then there is an obstacle within distance 8 from ξ that
lies inside the region R, and therefore both the segments are L-segments. Using a
perturbation shown in Figure 3.8(b), we can now prove that Π is not optimal. This
completes the proof of the lemma.

Lemma 3.12. There are only O(n) circles that can contain a feasible, deep an-
chored C-segment.

p
e′′

e′

De

e

De′′

De′

Fig. 3.9. The straight line edges of De and De′ intersect at p. The unit radius circle centered
at p is tangent to both e and e′, and is crossed by e′′, whose race-track De′′ contains p in its interior.

Proof. For each edge e ∈ Ω, let De be the Minkowski sum of e and the unit-
radius disk centered at the origin.2 De is a race-track bounded by two semicircles
of unit radius and two translated copies of e; see Figure 3.9. An intersection point
p of the straight-line edges of De and De′ corresponds to the center of a unit-radius
circle tangent to e and e′ at their interior points. (Notice that there may be an infinite
number of intersection points if e and e′ are parallel and unit distance apart.) A point
p lies inside De if and only if e intersects the interior of the unit-radius circle centered

2The Minkowski sum of two sets A and B is defined as A⊕B = {a + b | a ∈ A, b ∈ B}.



1756 PANKAJ K. AGARWAL AND HONGYAN WANG

at p. Set D =
⋃
e∈Ω De. A unit-radius circle is tangent to two obstacle edges and does

not intersect any obstacle edge in its interior only if its center lies on the intersection
point σ of the boundaries of two racetracks and does not lie in the interior of any
other racetrack. If the two boundary edges forming the intersection point overlap,
i.e., the two corresponding obstacle edges are parallel, then by Lemma 3.11 such a
circle cannot contain a deep anchored C-segment, so the intersection point σ has to be
a vertex of D. Thus the number of circles that can contain a feasible, deep anchored
C-segment is at most the number of vertices of ∂D, which, by a result of Kedem et
al. [29], is O(n); so the lemma follows.

4. Computing near optimal paths. In this section we present an efficient
algorithm for computing a feasible path whose length is no more than (1 + ε) times
the length of an optimal path for any ε > 0, provided that the optimal path is ε-
robust. As in [27], we construct a weighted directed graph G = (V,E), where V is
a set of discretized positions. These positions are obtained by discretizing the set of
orientations at which a path touches a vertex and the set of points at which a path
touches an edge. Jacobs and Canny [27] choose points uniformly spaced along each
edge. We, on the other hand, use Theorem 3.1 and Lemma 3.12 to choose points more
carefully, as described in section 4.1. There is an edge (X,Y ) ∈ E from a position
X to another position Y if there exists a feasible Dubins path from X to Y . If there
is more than one such path, we choose the one with the minimum arc length. The
weight of an edge is the arc-length of the chosen Dubins path. We claim that by
choosing the proper parameter δ for discretization for any optimal path Π from X to
Y that is robust, there is a path from X to Y along the edges in G whose length is
at most (1 + ε) times the length of Π. The choice of δ and the proof of this claim are
given in section 5. Therefore, the problem reduces to computing a shortest path in
G, which can be done in time O(|V |2), using Dijkstra’s shortest-path algorithm.

4.1. Computing the node set. In this subsection we describe the node set V
and an efficient algorithm for computing it. We set V = {I, F} ∪ V1 ∪ V2 ∪ V3, where
each subset Vi corresponds to a specific type of positions. The first set V1 corresponds
to positions located at the vertices of Ω. More precisely, for each vertex v of Ω with
feasible domain [αv, βv], we add the positions (v, αv + iδ) for 0 ≤ i < �(βv − αv)/δ�
and (v, βv) to V1. V1 can be constructed in O(n/δ) time in a straightforward manner.

The second set V2 corresponds to deeply anchored C-segments. For a pair of
nonparallel edges e1, e2, if the unit-radius circle C tangent to e1 and e2 does not
intersect any other edge of Ω, we add four positions (p1, θ1), (p1, θ1 + π), (p2, θ2), and
(p2, θ2 + π) to V2, where pi is the point at which C is tangent to ei, and θi is the
angle between ei and the x-axis. Using an algorithm of Kedem et al. [29], the set of
unit-radius circles tangent to two edges and not intersecting any other edge can be
computed in O(n log2 n) time, and so can be the set V2.

The third set V3 corresponds to semifree C-segments and shallowly anchored C-
segments. For each edge e ∈ Ω, we first mark a portion ê of it, as described below,
and then choose those points on e that are at distance iδ from its left endpoint for
any integer i ≥ 0, such that the semi-open interval [iδ, (i + 1)δ) intersects ê. Let Se

denote the set of points selected on e. Assuming that the angle between e and the
x-axis is θ, for each point p ∈ Se, we add two positions (p, θ) and (p, θ + π) to V3.

We now describe which portion of each edge is marked. We mark the edges in
two stages. First, for each edge e, we mark the portion that lies within distance 30
from any of its endpoints. Next, for each vertex v ∈ Ω, let Dv be the disk of radius
15 centered at v. Let Ev be the set of edges that contain at least one unmarked point
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v

Fig. 4.1. Segments in Ev; fat edges denote the portion of Ev Ev-visible from v.

inside Dv, i.e., e ∈ Ev if e ∩ Dv contains at least one point whose distance to both
endpoints of e is more than 30. A point is Ev-visible from v if it is visible from v with
respect to the edge set Ev (i.e., we ignore the edges in the set E \Ev). For each edge
e ∈ Ev, we mark the portion of e ∩Dv that is Ev-visible from v. We repeat this step
for all vertices of Ω.

Lemma 4.1. Let p be a point on an edge e ∈ Ω so that there is a vertex v of Ω
visible from p and so that d(p, v) ≤ 15. Then there is a point q ∈ Se within distance
δ from p.

Proof. It suffices to show that every such point p lies on ê because, by construction,
for every point q ∈ ê, there is a point q′ ∈ Se such that d(q, q′) ≤ δ. Since d(p, v) ≤ 15
and v is visible from p, the above algorithm would have been marked p, implying that
p ∈ ê.

Lemma 4.2. Suppose Π is an optimal path from I to F , and let 〈X1, . . . , Xk〉 be
the sequence of positions on Π such that loc(Xi) ∈ ∂Ω for every 1 ≤ i ≤ k. For each
1 ≤ i ≤ k, there exist two (not necessarily distinct) nodes Y −i , Y +

i ∈ V such that
(i) if loc(Xi) is a vertex v of Ω, then loc(Y −i ), loc(Y +

i ) = v, vec(Y −i ) ≤
vec(Xi) ≤ vec(Y +

i ), and |vec(Y −i ) − vec(Xi)|, |vec(Y +
i ) − vec(Xi)| ≤ δ;

or
(ii) if loc(Xi) is an interior point of an obstacle edge e, then loc(Y −i ), loc(Y +

i ) ∈
e, Y −i , X, and Y +

i appear in that order along e,

d(loc(Y −i ), loc(Xi)), d(loc(Y +
i ), loc(Xi)) ≤ δ,

and vec(Y −i ) = vec(Y +
i ) = vec(Xi).

Proof. If loc(Xi) is a vertex, the lemma follows from the definition of V1. If
p = loc(Xi) lies in the interior of an obstacle edge e, then p lies on a semifree C-
segment, a shallow anchored C-segment, or a deep anchored C-segment. In the last
case, Xi is a node in V2. In the first two cases, there is a vertex v ∈ Ω so that v is
visible from p and that d(p, v) ≤ 15. By Lemma 4.1 and the definition of V3, there
exist two nodes Y −i , Y +

i ∈ V3 so that d(loc(Y −i ), loc(Xi)), d(loc(Y +
i ), loc(Xi) ≤ δ

and vec(Y −i ) = vec(Y +
i ) = vec(Xi). This completes the proof of the lemma.

Next, we prove that the size of V is O(n/δ). Since |V1| = O(n/δ) and |V2| = O(n),
it suffices to bound the size of V3.

Lemma 4.3.
∑
e |Se| = O(n/δ).

Proof. For each edge e ∈ Ω, let ê denote the marked portions of e, #ê the number
of connected components of ê, and ‖ê‖ the total length of ê. For each connected
component γ of ê, the algorithm chooses 2 + ‖γ‖/δ points. Therefore, |Se| ≤ 2#ê +
‖ê‖/δ.

The total measure of points marked in the first stage is at most 60n. Recall that
for each vertex v, e ∈ Ev if e∩Dv contains at least one point whose distance to both
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endpoints of e is more than 30. Thus none of the endpoints of Ev lie inside Dv. This
implies that the set of points in (

⋃
Ev) ∩Dv that are Ev-visible from v form a set of

disjoint chords of Dv (see Figure 4.1), and therefore its measure is bounded by the
length of the perimeter of Dv, which is 30π. Therefore,

∑
e∈Ω

‖ê‖ ≤ 60n + 30πn = O(n).

Next, for each connected component γ ∈ ê, if γ is the first or the last connected
component of ê, then we charge γ to e itself. Otherwise, charge γ to any of the vertices
that marked it in the second stage. We will prove in Lemma 4.4 that each vertex is
charged by at most ten connected components, so

∑
e∈Ω

#ê = 2n + 10n = O(n).

This completes the proof.

Lemma 4.4. Each obstacle vertex is charged by at most ten connected compo-
nents.

v

s t

Dv

v

Dv

D′
v

s′ t′

z

(b)(a)

qq

Fig. 4.2. d(s, t) < 15 and ∠s′vt′ > π/2.

Proof. Since the edges of Ev are disjoint and do not contain any of its endpoints
inside Dv and the visibility is taken with respect to the edge set Ev, v marks at most
one connected component of each edge in Ev; see Figure 4.1. That is, for each edge
e ∈ Ev, either v marks the entire chord e ∩ Dv, or it does not mark any point of e.
Hence, the number of connected components charged to v is bounded by the number
of edges in Ev that are Ev-visible from v.

Partition the set of edges that are Ev-visible from v into two subsets Γ1 and Γ2.
An edge e is in Γ1 if the length of the chord e∩Dv is at least 15, and in Γ2 otherwise.
Each edge e ∈ Γ1 ∪ Γ2 splits the circle ∂Dv into two circular arcs; we refer to the
shorter one as the cap induced by e. Since the edges in Γ1 ∪Γ2 are Ev-visible from v,
the caps induced by them are pairwise disjoint.

Each cap induced by an edge of Γ1 spans an angle of at least π/3 because the
length of the chord e ∩ Dv is at least 15 and the radius of Dv is 15. Since the caps
are disjoint, |Γ1| ≤ 6.

Next, let e be an edge of Γ2. Let p (resp., q) denote the left (resp., right) end-
point of e, and let s (resp., t) denote the left (resp., right) endpoint of e ∩ Dv; see
Figure 4.2(a). By definition, d(s, t) < 15, and therefore ∠stv,∠tsv > π/3 and d(t, q) >
15. Since e ∈ Ev, e∩Dv = st contains a point u such that d(u, p), d(u, q) > 30. Hence,
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d(s, q) = d(s, u) + d(u, q) > 30, and

d(v, q) =
√

d(v, s)2 + d(s, q)2 − 2 d(s, q) d(v, s) cos(∠vst)

=

√
d(v, s)2 + d(s, q)2 − 2 d(s, q) d(v, s)

d(s, t)

2d(v, s)

=
√

d(v, s)2 + d(s, q)(d(s, q)− d(s, t))

=
√

d(v, s)2 + d(s, q)d(q, t)

>
√

152 + 30 · 15 = 15
√

3.

Similarly, one can show that d(v, p) > 15
√

3.
Draw a disk D′v of radius 15

√
3 centered at v. Since d(v, p), d(v, q) > 15

√
3, the

endpoints of every edge in Γ2 lie outside D′v. Moreover, each edge of Γ2 is Ev-visible
from v, the caps of ∂D′v induced by the edges of Γ2 are also pairwise disjoint. For an
edge e, let s′, t′ be the endpoints of e ∩D′v, and let z be the midpoint of the segment
s′t′. See Figure 4.2(b). Since d(v, z) ≤ 15 and d(v, t′) = 15

√
3,

∠s′vt′ = 2∠zvt′ = 2 · cos−1 d(v, z)

d(v, t′)
≥ 2 · cos−1 1√

3
> π/2.

Hence, the cap of ∂D′v induced by e ∈ Γ2 spans an angle of at least π/2, which implies
|Γ2| ≤ 4. This completes the proof of the lemma.

We now show that the node set V3 can be computed in time O(n2 log n + n/δ).
For every vertex v, the set Ev can be computed in O(n) time in a straightforward
manner. Let E′v = {e ∩Dv | e ∈ Ev}. An edge e′ of E′v is marked if it is Ev-visible
from v. Recall that either every point on e′ is Ev-visible from v, or no point on e
is Ev-visible from v. This set can be computed in O(n log n) time by performing an
angular sweep around v. Let ρ(θ) be the ray emanating from v in direction θ. Let
θ1, . . . , θk be the orientations such that ρ(θ) passes through an endpoint of an edge
in E′v. We sweep the plane with the ray ρ(θ) by varying θ from 0 to 2π. For each θ,
we maintain the edges of E′v intersecting ρ(θ), sorted in the order they intersect ρ(θ).
Since the segments of E′v are pairwise disjoint, the ordering changes only at θi’s. Let
ei ∈ E′v be the first edge in this ordering in the interval [θi, θi+1). We mark ei. At
each θi, we can update the ordering in time O(log n). Repeating this process for all
the vertices of Ω, V3 can be computed in time O(n2 log n + n/δ). Hence, we conclude
the following lemma.

Lemma 4.5. |V | = O(n/δ) and V can be computed in time O(n2 log n + n/δ).

4.2. Computing the edge set. We now describe how to compute the edge set
E. For each pair of positions X,Y ∈ V , we compute all O(1) Dubins paths from X to
Y , check which of them are feasible, and select the one with the minimum arc length.
The only nontrivial step is to determine whether a given Dubins path is feasible. We
will consider CCC and CLC paths separately.

Testing CCC paths. CCC paths can be further classified into two subcategories:
C+C−C+ and C−C+C−. We consider only C+C−C+ paths; C−C+C− paths can
be handled in a similar manner.

For each position X, let CX denote the clockwise oriented circle passing through
X, and let φ+

X (resp., φ−X) be the intersection point of CX and ∂Ω immediately after
(resp., before) loc(X), so the interiors of the arcs CX [loc(X), φ+

X ] and CX [φ−X , loc(X)]
do not intersect ∂Ω (see Figure 4.3(a)); φ+

X and φ−X can be computed in O(n) time.
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e

p(θ1)

p(θ2)

C(θ2)

C(θ1)

CX

CY

φ−X

a1
CX

φ+X

(b)(a)

Y

a2 χ(θ1)

e

De

θ

(c)

X

CX

Fig. 4.3. (a) C+C−C+ path; (b) p(θ), C(θ), and a critical orientation θ2; (c) the center of Cθ

is an intersection point of ∂De and C′X .

Let w1w2w3 be a C+C−C+ path from a position X to another position Y , with ai
being the common endpoint of wi and wi+1 for i = 1, 2. Obviously, w1 (resp., w3) does
not intersect Ω if and only if a1 ∈ CX [loc(X), φ+

X ] (resp., a2 ∈ CY [φ−Y , loc(Y )]); see
Figure 4.3(a). After computing φ+

X and φ−X for all O(n/δ) positions in time O(n2/δ),
given a C+C−C+ path, we can check in O(1) time whether its first and last C-
segments intersect Ω. Next, we describe how to test whether the middle C-segment
of a C+C−C+ path intersects Ω.

Fix a position X. We construct a linear-size data structure, in O(n log n) time,
which, given a position Y , can determine in O(log n) time whether the middle C-
segment of the C+C−C+ path from X to Y intersects any obstacle edge.

For an orientation θ, 0 ≤ θ < 2π, let p(θ) be the point on CX such that the length
of the arc CX [loc(X), p(θ)] is θ. Let C(θ) be the counter-clockwise-directed circle
tangent to CX at p(θ). Set χ(θ) to be the first edge of Ω intersected by C(θ), as one
walks along it (in the counter-clockwise direction) starting from p(θ). If there is no
such edge, then χ(θ) is undefined (see Figure 4.3(b)).

We call an orientation θ critical (with respect to X) if C(θ) is either tangent to
an obstacle edge or it passes through an obstacle vertex. Let 〈θ1, θ2, . . . , θk〉 be the
sequence of critical angles sorted in the increasing order. Using a simple continuity
argument and the fact that the obstacle edges have pairwise disjoint interiors, we can
prove the following.

Lemma 4.6. For all orientations θ in any interval (θi, θi+1), the set of obstacle
edges that intersect C(θ) and the order in which they intersect C(θ) remain the same.
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This lemma implies that the value of χ(θ) remains the same for all orientations
within each interval [θi, θi+1).

Lemma 4.7. For a fixed position X, there are O(n) critical orientations, and
they can be computed in O(n) time.

Proof. For an edge e ∈ Ω, let De be the Minkowski sum of e and the unit-radius
disk. Let C ′X be the circle concentric with CX and of radius 2. C(θ) is tangent to e or
passes through an endpoint of e if and only if C(θ) is centered at an intersection point
of C ′X and ∂De (see Figure 4.3(c)). There are at most 4 intersection points between
C ′X and ∂De. Thus an edge e can contribute at most O(1) critical orientations,
resulting in O(n) critical orientations for all edges. These critical orientations can
easily be computed in O(n) time.

By sweeping the circle C(θ) for θ ∈ [0, 2π), we can compute the values of χ for
all O(n) intervals (θi, θi+1) in O(n log n) time as follows. For each θ, we maintain
the set of edges intersecting C(θ), sorted in the order in which they intersect C(θ).
By Lemma 4.6, this ordering changes only at critical orientations. At each critical
orientation, we can update the ordering in O(log n) time, thus spending a total of
O(n log n) time. We record the value of χ for each interval [θi, θi+1).

Now, given a C+C−C+ Dubins path w1w2w3, we first compute the orientation θ
of a1, the common endpoint of w1 and w2. Using the above data structure, we can
determine e = χ(θ) in O(log n) time by a binary search. Finally, we check in O(1)
time whether w2 intersects the edge e (That is, we check whether a2, the common
endpoint of w2 and w3, lies before the intersection point of C(θ) and e, in which case
w2 does not intersect any edge of Ω.) This completes the description of the data
structure.

We can thus determine in time O((n2/δ2) log n) all pairs X,Y ∈ V for which
there is a feasible CCC-path from X to Y .

Testing CLC paths. There are four types of CLC paths, namely, C+LC+, C+LC−,
C−LC+, and C−LC−. Consider C+LC+ paths. Let w1w2w3 be a C+LC+ path.
After O(n2/δ) preprocessing as above, we can easily determine whether w1 or w3

intersects Ω. As for w2, we construct a similar data structure. Fix a position X. For
a given θ, we now define �(θ) to be the ray tangent to CX and emanating from p(θ),
and we define χ(θ) to be the first edge of Ω intersected by �(θ). An orientation θ is
critical if �(θ) passes through a vertex of Ω. We can again construct a linear-size data
structure in O(n log n) time that, given a position Y , can determine in O(log n) time
whether the line segment of the C+LC+ path from X to Y intersects Ω.

Hence, we can compute in O((n2/δ2) log n) time all pairs X,Y ∈ V that admit a
feasible C+LC+ path from X to Y . Repeating this procedure for other types of CLC
paths, we can compute in O((n2/δ2) log n) time all the pairs X,Y ∈ V for which there
is a feasible CLC path from X to Y .

After having computed the vertices and edges of G, we can compute a short-
est path in G, using any standard shortest-path algorithm [19]. Putting everything
together, we obtain the following result.

Theorem 4.8. The graph G, as described above, can be constructed in time
O((n2/δ2) log n), and a shortest path from I to F in G can be computed in an addi-
tional O(n2/δ2) time.

5. Error analysis. In this section we prove that our algorithm computes an
(1 + ε)-approximation to an optimal path provided that we choose δ = cε2, where
c is a sufficiently small constant independent of ε, and the optimal path is δ-robust.
We first bound the change in the length of a Dubins path, whose end-positions lie on
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obstacle boundaries, as we perturb the parameters of its end-positions, and then we
bound the length of the path computed by the above algorithm.

5.1. Error induced by a single Dubins path. To give an error bound for
our approximation algorithm, we need to answer the following question: given two
Dubins paths of the same type whose end-positions differ by a small amount, what
is the difference in length of these two paths? Let X and X ′ be two positions on an
obstacle feature (vertex or edge) ϕ. We define ∆(X ′, X) to be the distance between
X and X ′ in the configuration space. If ϕ is a vertex, then loc(X ′) = loc(X) and we
define ∆(X ′, X) = |vec(X ′)−vec(X)|. If ϕ is an edge, i.e., vec(X ′) = vec(X), then
we define ∆(X ′, X) = ‖loc(X ′) − loc(X)‖. For two paths Π and Π′, let ∆(Π′,Π)
be the difference in length of these two paths, i.e., ∆(Π′,Π) = |‖Π′‖ − ‖Π‖|.

Lemma 5.1. Let ϕ1 and ϕ2 be two obstacle features, and let Π be a CLC path
from a position I on ϕ1 to a position F on ϕ2. Let I ′ and F ′ be positions on ϕ1 and ϕ2,
respectively, such that ∆(I ′, I) = δI and ∆(F ′, F ) = δF for any reals 0 ≤ δI , δF ≤ 1.
Let Π′ be the path from I ′ to F ′ of the same type as Π. If Π and Π′ are neighbors,
then

∆(Π′,Π) = O(δI + δF ).

Proof. We will prove that if δF = 0 (i.e., F ′ = F ), then ∆(Π′,Π) = O(δI). By
reversing the direction of Π, this also implies that ∆(Π′,Π) = O(δF ) if δI = 0. If
both δI , δF > 0, then let Π′′ be the CLC path from I ′ to F of the same type as Π;
the existence of Π′′ follows from the fact that Π and Π′ are neighbors. Then

∆(Π′,Π) ≤ ∆(Π′′,Π) + ∆(Π′,Π′′) = O(δI + δF ),

as claimed. We now assume F ′ = F , and set δ = δI .
We will first prove the claim for the case in which ϕ1 is an obstacle vertex u, i.e.,

I = (u, θI) and |vec(I ′) − vec(I)| = δ. Let C1 (resp., C2) be the unit-radius circle
containing the initial (resp., final) C-segment of Π, and let oi (for i = 1, 2) denote the
centers of Ci. Let C ′1 be the circle containing the initial C-segment of Π′, and let o′1
be the center of C ′1. If Π is a C+LC+ or C−LC− type path, then

‖Π‖ = |vec(I)− vec(F )|+ d(o1, o2),

in which case,

∆(Π′,Π) ≤ |vec(I ′)− vec(I)|+ |d(o1, o2)− d(o′1, o2)| ≤ δ + d(o1, o
′
1).

By applying the cosine law to ∆o1uo
′
1 (see Figure 5.1(b)),

d(o1, o
′
1) =

√
1 + 1− 2 cos δ = 2 sin(δ/2) ≤ δ.(5.1)

Therefore, ∆(Π′,Π) ≤ 2δ.
In the following we prove the lemma for the case when Π is a C+LC− type path;

the other case, when Π is a C−LC+ type path, is symmetric. Let p (resp., q) be
the initial (resp., final) point of the L-segment of Π, i.e., it is the point at which the
common tangent of C+

1 and C−2 touches C1 (resp., C2). Let s be the point on C1 such
that so1 ⊥ o1o2 and ∠so1p < π/2, and let S be the position on C1 corresponding
to s, i.e., loc(S) = s and vec(S) is the orientation of the tangent to C1 (assuming
that C1 is clockwise oriented) at s. We define a similar point t and position T on
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Fig. 5.1. Bounding the difference in path length for CLC paths.

C2; see Figure 5.1(a). Instead of considering Π, we consider the C+LC− path from
S to T and let ρ be the length of this path. Let α = ∠so1u ∈ [−∠po1s, 2π − ∠po1s)
and β = ∠to2v ∈ [−∠qo2t, 2π − ∠qo2t), measured in the counter-clockwise direction.
Then

‖Π‖ = ρ + α + β;

see Figure 5.1(a). We define ρ′, α′, and β′ corresponding to Π′. Then ‖Π′‖ =
ρ′ + α′ + β′, and

∆(Π′,Π) ≤ |ρ′ − ρ|+ |α′ − α|+ |β′ − β|.(5.2)

We first bound |α′ − α|. Applying the sine law to �o1o2o
′
1,

sin ∠o1o2o
′
1

d(o1, o′1)
=

sin ∠o′1o1o2

d(o1, o2)
.

Therefore sin ∠o1o2o
′
1 ≤ d(o1, o

′
1)/d(o1, o2). Using (5.1), the fact that d(o1, o2) ≥ 2,

and the inequality sin−1 x ≤ 2x for any 0 ≤ x ≤ 1, we obtain

∠o1o2o
′
1 ≤ sin−1 δ

2
≤ δ.

Let w be the intersection point of lines supporting the segments so1 and s′o′1.
Since so1 ⊥ o1o2 and s′o′1 ⊥ o′1o2, ∠o1wo′1 = ∠o1o2o

′
1 ≤ δ; see Figure 5.2. Moreover,

α′ + ∠o1uo
′
1 = α + ∠o1wo′1,

and therefore,

|α′ − α| ≤ ∠o1uo
′
1 + ∠o1wo′1 ≤ 2δ.(5.3)

Similarly, we can show that |β′ − β| = 2δ.
Next, we bound |ρ′ − ρ|. Notice that

ρ = 2 (d(o, p) + ‖C1[s, p]‖) .

Let µ = d(o1, o) = d(o1, o2)/2; then ∠so1p = ∠poo1 = sin−1(1/µ), and we have

ρ = 2

(
sin−1

(
1

µ

)
+
√

µ2 − 1

)
.
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Fig. 5.2. Bounding |α′ − α|.

Similarly, if we let ν = d(o′1, o2)/2, then

ρ′ = 2

(
sin−1

(
1

ν

)
+
√

ν2 − 1

)
.

As in (5.1), d(o′1, o1) ≤ δ, which implies that |ν−µ| ≤ δ/2 ≤ δ. Consider the function

f(x) = sin−1

(
1

x

)
+
√

x2 − 1.

Then |ρ′ − ρ| = 2|f(ν)− f(µ)|. Since both f(x) and its derivative are monotonically
increasing,

|ρ′ − ρ| ≤ 2(f(µ + δ)− f(µ))

and |ρ′ − ρ| maximizes as µ tends to infinity. Using Taylor expansion, one can write

f(x) = x +

∞∑
i=1

ci
x2i−1

,

where |ci|’s are monotonically decreasing with i. Thus

|ρ′ − ρ| ≤ lim
µ→∞ 2

(
µ + δ +

∞∑
i=1

ci
(µ + δ)2i−1

−
(
µ +

∞∑
i=1

ci
µ2i−1

))
= 2δ.(5.4)

Combining together (5.3) and (5.4), we obtain that

∆(Π′,Π) ≤ 6δ = O(δ).

If I is located in the interior of an obstacle edge, then ‖loc(I ′) − loc(I)‖ = δ.
Let o′1 be the same as defined before. Notice that d(o1, o

′
1) = δ. If Π is of C+LC+ or

C−LC− type,

∆(Π′,Π) = |d(o1, o2)− d(o′1, o2)| < d(o1, o
′
1) = δ.
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If Π is a C+LC− or C−LC+ path, we also bound the difference in path lengths by

∆(Π′,Π) ≤ |ρ′ − ρ|+ |α′ − α|+ |β′ − β|,

where the notations are the same as defined before. It will be easy to see that |α′−α| =
∠o1o2o

′
1. If we look at the triangle �o1o2o

′
1, using the facts that d(o1, o

′
1) = δ and

d(o1, o2) ≥ 2, we can derive that ∠o1o2o
′
1 ≤ δ as we did earlier for the case in which

loc(I) is an obstacle vertex. Therefore, |α′ − α| ≤ δ. Similarly, |β′ − β| ≤ δ. Again
using the fact that d(o′1, o1) = δ, |ρ′ − ρ| ≤ 2δ can be shown in a way similar to the
one given above. This completes the proof of the lemma.

Lemma 5.2. Let ϕ1 and ϕ2 be two obstacle features, and let Π be a CCC path
from a position I on ϕ1 to a position F on ϕ2. Let I ′ and F ′ be positions on ϕ1 and ϕ2,
respectively, such that ∆(I ′, I) = δI and ∆(F ′, F ) = δF for any reals 0 ≤ δI , δF ≤ 1.
Let Π′ be the path from I ′ to F ′ of the same type as Π. If Π and Π′ are neighbors,
then

∆(Π′,Π) = O(
√

δI +
√

δF ).

Proof. As in the proof of Lemma 5.1, we need only to prove the lemma for the
case in which δI > 0 and δF = 0. Let δ = δI . We assume that I is located at an
obstacle vertex; thus loc(I ′) = loc(I) and |vec(I ′) − vec(I)| = δ. We prove the
lemma for the case when Π is a C−C+C− path; the other case, when Π is a C+C−C+

path, is symmetric.

Let p (resp., q) be the initial (resp., final) location of the path Π. Let oi be the
center of the unit circle containing the ith C-segment of Π. Consider the triangle
∆o1o2o3; see Figure 5.3(a). Without loss of generality, assume that p, q �∈ �o1o2o3;
other cases can be handled similarly. Let bi be the angle of the triangle at oi. Then

‖Π‖ = b1 + ∠po1o3 + 2π − b2 + b3 + ∠o1o3q

= (b1 + b3) + 2π − b2 + ∠po1o3 + ∠o1o3q

= π − b2 + 2π − b2 + ∠po1o3 + ∠o1o3q

= 3π − 2b2 + ∠po1o3 + ∠o1o3q.

Let o′1, o
′
2, and o3 be the centers of circles containing the C-segments of Π′. Notice that

∠o′1po1 = δ; see Figure 5.3(b). Let o′3 be the intersection point of the line supporting
the segment o′1p and the line supporting the segment o′2o3; assume that o′1 is situated
so that o3 lies between o′2 and o′3, and consider the triangle ∆o′1o

′
2o
′
3. Let ri be the

angle of the triangle at o′i and γ = ∠o′2o3o1 − r3 (see Figure 5.3). Then

‖Π′‖ = r1 + 2π − r2 + ∠o′2o3o1 + ∠o1o3q

= r1 + 2π − r2 + r3 + γ + ∠o1o3q

= r1 + 2π − r2 + r3 + ∠o′1po1 + ∠po1o3 + ∠o1o3q

= (r1 + r3) + 2π − r2 + δ + ∠po1o3 + ∠o1o3q

= 3π − 2r2 + δ + ∠po1o3 + ∠o1o3q.

Thus

∆(Π′,Π) = |δ + 2b2 − 2r2| ≤ δ + 2|b2 − r2|.
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Fig. 5.3. Bounding the difference in path length for CCC paths.

Let ρ = d(o1, o3) and ρ′ = d(o′1, o3). Applying the cosine law to ∆o1o2o3 and
∆o′1o

′
2o3, and using the fact that d(o1, o2) = d(o2, o3) = d(o′1, o

′
2) = d(o′2, o3) = 2, we

obtain

b2 = cos−1

(
22 + 22 − ρ2

2 · 2 · 2
)

= cos−1

(
1− ρ2

8

)
,

r2 = cos−1

(
22 + 22 − ρ′2

2 · 2 · 2

)
= cos−1

(
1− ρ′2

8

)
.

Define a function

f(x) = cos−1

(
1− x2

8

)
.

Then |b2 − r2| = |f(ρ)− f(ρ′)|. Since f(x) is monotonically increasing for x ≥ 0,

|b2 − r2| ≤ f(ρ)− f(ρ− δ).

Moreover,

df

dx
= 1

/√
4− x2

4

is also monotonically increasing for x ≥ 0 and ρ ≤ 4; therefore, |b2− r2| maximizes at
ρ = 4. Thus

|b2 − r2| ≤ cos−1

(
1− 42

8

)
− cos−1

(
1− (4− δ)2

8

)

≤ π − cos−1(−1 + δ)

= π − 2 cos−1

(√
δ

2

)

≤ π − 2

(
π

2
− sin−1

√
δ

2

)

= 2 sin−1

√
δ

2
≤ 2
√

2δ.
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The last inequality follows froms the fact that sin−1(x/2) ≤ x if x ≤ 1. Since δ ≤ 1,
the above inequalities hold.

For δ ≤ 1, δ <
√
δ, and therefore,

∆(Π′,Π) ≤ δ + 2|b2 − r2| ≤
√
δ + 4

√
2
√
δ = (4

√
2 + 1)

√
δ,

as desired.
Remark 5.3. (i) Notice that ∆(Π,Π′) = O(

√
δ) only if the distance between the

centers o1 and o3 is almost 4. If d(o1, o3) ≤ 4 − c for some constant c > 0, then
∆(Π,Π′) ≈ δ/

√
c.

(ii) Let ϕI , ϕF be two obstacle features, and for i = 1, 2, let Π1 be a path from a
position Ii on ϕI to a position Fi on ϕF . If ∆(I1, I2),∆(F1, F2) ≤ δ for some δ < 1
and Π1 and Π2 are neighbors, then the analysis in this section implies Π2 lies in a
tube of width O(

√
δ) around Π1.

5.2. Goodness of our approximation.
Lemma 5.4. Let δ = cε2, where c is a sufficiently small constant. If there exists

an optimal path Π from I to F that is δ-robust, then there exists a path from I to F
in the graph G computed in section 4 whose length is at most (1 + ε)‖Π‖.

Proof. Let Π = Π1‖ . . . ‖Πk, where each Πi is a Dubins path of type σi ∈ T from
a position Xi−1 to a position Xi, such that X0 = I, Xk = F , and loc(Xi) ∈ ∂Ω for
0 < i < k. Since Π is δ-robust, there exist χ0, . . . , χk ∈ {+,−} so that Πi is δχi−1χi-
robust. Then, by Lemma 4.2 and the robustness of Πi, there exist graph nodes Y χi

i

for 0 ≤ i ≤ k such that ∆(Xi, Y
χi

i ) ≤ δ and such that the Dubins path from Y χi

i to
Y
χi+1

i+1 of type σi is feasible. Therefore, there is an edge from Y χi

i to Y
χi+1

i in G. Let
Π′i be the path corresponding to this edge in G. Π′ = Π′1‖ . . . ‖Π′k is the desired path
from I to F in G. To prove the lemma, it suffices to show that ‖Π′i‖ ≤ (1 + ε)‖Πi‖
for 1 ≤ i ≤ k, provided we choose δ = cε2 small enough.

If Πi is a CLC path, by Lemma 5.1, ∆(Π′i,Πi) ≤ O(δ). Since Πi is an ε-robust
path, its length is at least ε. Therefore,

‖Π′i‖ ≤ ‖Πi‖+ O(δ) ≤ ‖Πi‖+ ε2 ≤ (1 + ε)‖Πi‖,

provided the constant c is chosen sufficiently small. If Πi is a CCC path, by Lemma 5.2,
∆(Π′i,Πi) ≤ O(

√
δ). But the length of a CCC path is at least π; therefore,

‖Π′i‖ ≤ ‖Πi‖+ O(
√
δ) ≤ ‖Πi‖+ ε ≤

(
1 +

ε

π

)
‖Πi‖ ≤ (1 + ε)‖Πi‖,

provided c is chosen small enough. This completes the proof of the lemma.
Plugging δ = O(ε2) in Theorem 4.8, we obtain the following result.
Theorem 5.5. Given a polygonal obstacle environment Ω, an initial position I,

a final position F , and a parameter ε, so that there exists an optimal path from I to
F that is ε-robust. We can compute in time O((n2/ε4) log n) a feasible path from I
to F whose arc length is at most (1 + ε) times the length of an optimal path.

Remark 5.6. Recall that the running time of the algorithm is O((n2/ε4) log n)
because we choose δ = O(ε2), and the graph G has O((n/δ)) vertices and in the
worst-case every pair of vertices is connected by an edge. If the distance between the
centers of initial and final circles of CCC type paths for most pairs of vertices is not
close to 4, one can show that it suffices to add edges between O((n2/δ) log(1/δ)) pairs
of vertices, and that these pairs can be computed in time O((n2/δ2) log(1/δ)). In this
case the time complexity improves to O((n2/ε2) log n log(1/ε)).



1768 PANKAJ K. AGARWAL AND HONGYAN WANG

6. Computing near optimal robust paths. The path computed by the above
algorithm is not necessarily robust because some of the edges in G may not correspond
to robust paths. We can compute a graph G′ = (V,E′), where E′ is the set of edges
corresponding to (ε/2)-robust paths. An easy argument shows that if δ is chosen
correctly, there is an (ε/2)-robust path in G whose length is at most (1 + ε) times the
length of an optimal path from I to F if the optimal path is ε-robust.

Next we show that E′ can be computed in O((n2.5/ε4) log n) time. For each pair
of positions X,Y ∈ V , we compute all O(1) Dubins paths from X to Y , check which
of them are (ε/2)-robust, and select the one with the minimum arc length. Recall
that a canonical Dubins path is δ-robust if it is δχχ

′
-robust for some χ, χ′ ∈ {−,+}.

We will show how to determine which of the Dubins paths are (ε/2)++-robust.

Let Π = (τ1, τ2, σ) be a canonical Dubins path from an obstacle feature φ1 to
another obstacle feature φ2. Let [αi, βi] denote the feasible domain of φi for i = 1, 2,
and let ri = min{τi+ε/2, βi}. Set RΠ = {(τ ′1, τ ′2, σ) | τi ≤ τ ′i ≤ ri} to be the rectangle
in the configuration space. Π is (ε/2)++-robust if RΠ does not contain a singular or
infeasible point in its interior. We can check in O(1) time whether RΠ contains a
singular point, so it suffices to check whether RΠ contains any infeasible point. Let
γΠ be the union of paths (regarding each path as a set of points) corresponding to
the points in RΠ, i.e., the area swept by the paths (τ ′1, τ

′
2, σ), as we vary τ ′i ∈ [τi, ri].

Roughly speaking, γΠ is the union of at most three regions, each of which is the area
swept by a line segment or a circular arc as it moves along an algebraic arc of constant
degree. Therefore, the boundary of γΠ consists of O(1) x-monotone algebraic arcs,
each of O(1) degree, and they can be computed in O(1) time. RΠ does not contain
any infeasible point if and only if γΠ does not intersect the interior of Ω. Since
the endpositions of Π lie on the obstacle boundary, γΠ intersects the interior of any
obstacle if and only if any of the obstacle edges intersect the interior of γΠ. We thus
have the following intersection-detection problem at hand: Let Γ = {γ1, . . . , γm} be
a set of m regions, each of whose boundary consists of O(1) algebraic arcs of constant
degrees, and let S be a set of n disjoint line segments in the plane. Report all regions
in Γ whose interiors do not intersect any segment of S. We present an O((m

√
n +

n) log n)-time algorithm to report such a subset. Since m = O(n2/ε4) in our case, we
conclude that we can compute all (ε/2)-robust paths in time O((n2.5/ε4) log n).

We now present an algorithm for the intersection-detection problem just de-
scribed. It suffices to describe an O(n log n)-time algorithm for the case when m =

√
n,

for otherwise we can partition Γ into �m/
√
n� subsets, Γ1, . . . ,Γs, each of size at most√

n, and solve the intersection-detection problem for each Γi and S separately. The
total running time is obviously O((m

√
n + n) log n).

Let E be the set of x-monotone arcs bounding the regions in Γ. A segment e ∈ S
intersects the interior of a region γ ∈ Γ if at least one of the following two conditions
is satisfied. (i) An endpoint of e lies in the interior of γ, or (ii) e intersects the
boundary of γ. It is possible to check both of these conditions for all regions in Γ in
O(n log n) time, using a single sweep-line algorithm. But for the sake of clarity, we
explain how to check each of the two conditions separately. The first condition can
be checked in O(n log n) time by a variant of the batched point-location algorithm by
Preparata [42]. It basically sweeps a vertical line from left to right and maintains the
subset of regions that intersect the sweep-line. Whenever the sweep-line encounters
an endpoint p of S, it reports and deletes all the regions of Γ whose interior contains
p. These steps can be implemented efficiently using interval trees or segment trees [5].
We omit the rather easy and standard details from here. The total running time of
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the algorithm is O((m2 + n + k) log(m + n)), where k is the number of regions in Γ
that contain an endpoint of S. Since m =

√
n, and each region of Γ is a semialgebraic

region of constant description complexity, k = O(m) = O(
√
n). Hence, the total time

spent is O(n log n).

Next, we explain how to detect condition (ii). This can be done by modifying
the Bentley–Ottman [4] algorithm for segment-intersection reporting, as follows. We
sweep a vertical line from left to right and store the arcs of E∪S intersecting the sweep-
line in a height balanced tree T , sorted in y-direction. The algorithm maintains the
invariant that none of the arcs of E intersecting the sweep-line intersects any segment
of S to the left of the sweep line. A region γ is deleted from Γ as soon as we detect an
intersection between ∂γ and S; all the boundary arcs of γ are deleted from E as well.
The sweep-line stops at the endpoints of E ∪ S and the intersection points of arcs in
E. At the left (resp., right) endpoint of an arc e ∈ E, we insert e into T (resp., delete
e from T ). We do the same at the endpoints of S. At an intersection point σ of two
arcs ρ1, ρ2 ∈ E, we swap the order of ρ1 and ρ2 in T . Whenever one of the adjacent
element of an active arc ρ ∈ E changes (because of insertion, deletion, or swapping of
two arcs), we check whether the new adjacent element is a segment e ∈ S. If e and ρ
intersect, we delete ρ from E and T . Let γ be the region bounded by ρ. We report
and delete γ from Γ, and we delete all the edges bounding γ. Note that deletion of
these arcs from T may change the adjacent elements of other arcs stored in T , so we
have to check for their intersections, but this time can be charged to the arcs deleted.
Since each arc of Γ is deleted only once and there are m =

√
n arcs, the total time

spent in this step is O(
√
n log(m + n)). The sweep-line stops in at most O(m2 + n)

points; hence the overall time spent is also O(n log n). Putting all the steps together,
we obtain the following theorem.

Theorem 6.1. Given a polygonal obstacle environment Ω, an initial position I,
a final position F so that there exists an optimal path from I to F that is robust, and
a parameter ε, we can compute in time O((n2.5/ε4) log n) a feasible (ε/2)-robust path
from I to F whose arc length is at most (1 + ε) times the length of an optimal path.

7. Conclusion. In this paper we presented an efficient and simple approximation
algorithm for computing a curvature-constrained shortest path. The main ingredients
of our algorithm are a stronger characterization of curvature-constrained shortest
paths, by exploiting their geometry, and a fast and simple algorithm for constructing
the graph. We conclude this paper by suggesting a few open problems.

(i) Can one improve the running time of our algorithm to almost linear? Since
we are interested only in computing approximate shortest paths, it may be
sufficient to construct a small subset of the edges of G. Such techniques
have been used to compute approximate unconstrained shortest paths amid
obstacles, e.g., [16].

(ii) How fast can one compute an approximate curvature-constrained shortest
path in 3-space, especially in view of the recent result by Sussmann [49]?

(iii) Can one develop simple and efficient algorithms for more general constraints,
exploiting the geometry of paths?

Acknowledgments. The authors thank John Reif for valuable discussions and
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ON BIPARTITE DRAWINGS AND THE LINEAR ARRANGEMENT
PROBLEM∗
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IMRICH VRŤO¶
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Abstract. The bipartite crossing number problem is studied and a connection between this
problem and the linear arrangement problem is established. A lower bound and an upper bound for
the optimal number of crossings are derived, where the main terms are the optimal arrangement val-
ues. Two polynomial time approximation algorithms for the bipartite crossing number are obtained.
The performance guarantees are O(logn) and O(log2 n) times the optimal, respectively, for a large
class of bipartite graphs on n vertices. No polynomial time approximation algorithm which could
generate a provably good solution had been known. For a tree, a formula is derived that expresses
the optimal number of crossings in terms of the optimal value of the linear arrangement and the
degrees, resulting in an O(n1.6) time algorithm for computing the bipartite crossing number.

The problem of computing a maximum weight biplanar subgraph of an acyclic graph is also
studied and a linear time algorithm for solving it is derived. No polynomial time algorithm for this
problem was known, and the unweighted version of the problem had been known to be NP-hard,
even for planar bipartite graphs of degree at most 3.

Key words. bipartite drawing, bipartite crossing number, biplanar graph, linear arrangement,
approximation algorithms
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1. Introduction. The crossing number problem calls for placing the vertices of
a graph in the plane and drawing the edges with Jordan curves, so that the num-
ber of edge crossings is minimized. This problem has been extensively studied in
graph theory [27], combinatorial geometry [17], and theory of VLSI [12]. Moreover,
this problem has also been studied by the graph drawing community, since one of
the most important aesthetic objectives in graph drawing is reducing the number of
crossings [18]. In this paper we study the bipartite crossing number problem which
is an important variation of the crossing number problem. The problem of obtaining
drawings of graphs on multiple layers with a small number of edge crossings frequently
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arises in graph drawing and the design of VLSI [3, 4, 14, 24]. When the number of
layers is two, the underlying problem is called the bipartite drawing or the two-layer
drawing problem. Throughout this paper G = (V0, V1, E) denotes a connected bipar-
tite graph, where V0, V1 are the two classes of independent vertices, and E is the edge
set. We will assume that |V0∪V1| = n and |E| = m. A bipartite drawing of G consists
of placing the vertices of V0 and V1 into distinct points on two parallel lines and then
drawing each edge using a straight line segment connecting the points representing
the endvertices of the edge. Let bcr(G) denote the bipartite crossing number of G,
that is, bcr(G) is the minimum number of edge crossings over all bipartite drawings
of G.

Computing bcr(G) is NP-hard [8] even when the ordering of vertices in V0 is fixed
[4]. Integer programming methods for computing bcr(G) have been studied by various
researchers [10, 15, 26]. These methods, however, do not guarantee polynomial time
running times. Moreover, although a polynomial time approximation algorithm with
the performance guarantee of O(log4 n) times the optimal is known for the crossing
number of degree bounded graphs [13], no polynomial time approximation algorithm
whose performance is guaranteed has been known for approximating bcr(G). A nice
result in this area is a fast polynomial time algorithm which approximates the bipartite
crossing number by a factor of 3, when the positions of vertices in V0 are fixed [4].

In this paper we explore an important relationship between the bipartite crossing
number problem and the linear arrangement problem which is another well-known
problem in the theory of VLSI [1, 2, 11, 23]. Let δG denote the minimum degree
of G, aG denote the arboricity of G, i.e., the minimum number of acyclic graphs
that G can be decomposed to, and let L(G) denote the optimal value for the linear
arrangement problem. We show (Theorem 3.3) that bcr(G) plus the sum of the
square of degrees in G is Ω(δGL(G)). Moreover, we show (Theorem 3.6) that bcr(G)
is O(aGL(G)). Our general method for constructing the upper bound is shown to
provide for an optimal solution and an exact formula, resulting in an O(n1.6) time
algorithm for computing bcr(G) when G is a tree (Theorem 5.1). A direct consequence
of our results is to obtain the first polynomial time approximation algorithm for
bcr(G) with a performance guarantee of O(log n) from the optimal for a large class
of graphs. This class contains all regular graphs, all degree bounded graphs, and
all genus bounded graphs, provided that these graphs are not too sparse. We also
obtain a polynomial time divide and conquer approximation algorithm in which the
divide phase approximately separates the graph, and show that it has the performance
guarantee of O(log2 n) from the optimal for a variety of graphs. Both algorithms
produce drawings in which the coordinates of all vertices are integers so that the
sums of edge lengths are also provably near-optimal, with the same approximation
factors as for the number of edge crossings. This property of our drawings makes
them very appealing to the graph drawing and theory of VLSI.

We also settle the open problem of computing a largest biplanar subgraph of
an acyclic graph in polynomial time. A bipartite graph G = (V0, V1, E) is called a
biplanar graph if it has a bipartite drawing in which no two edges cross each other. It is
known that the problem of determining a largest biplanar subgraph is NP-hard, even
when G is planar and the vertices in V0 and V1 have degrees at most 3, and at most
2, respectively [5]. No polynomial time algorithm for solving this problem on acyclic
graphs had been known, and the proposed heuristics for computing a large biplanar
subgraph of an acyclic graph such as the one in [25] would not necessarily compute a
largest one. Thus, the question of whether or not a largest biplanar subgraph of an
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acyclic graph can be computed in polynomial time had been an open one. Indeed,
since the NP-hardness result was shown for very sparse planar graphs [5], it was
suggesting that the problem may also be NP-hard for acyclic graphs. Surprisingly,
in this paper we present a linear time algorithm for solving the weighted version of
this problem in any acyclic graph (Theorem 6.2). The weighted version was first
introduced in [15].

Section 2 contains preliminaries and the basic notations. Section 3 contains our
main results and explores the relation between bcr(G) and the linear arrangement
problem. Section 4 contains the applications and includes several observations on
the separator based lower bounds and also contains the approximation algorithms for
bcr(G). In particular, a lower bound of Ω(δGnbβ(G)) for bcr(G) is derived, where
bβ(G), β < 1/2 is the size of the β-separator in G. This lower bound is crucial
in verifying the performance guarantee of the divide and conquer algorithm. Sec-
tion 5 contains our result regarding the bipartite crossing number of a tree T which
is expressed exactly in terms of L(T ) and the degrees of the vertices, resulting in an
O(n1.6) time algorithm for computing bcr(T ). Finally, section 6 contains our linear
time algorithm for computing a largest biplanar subgraph of an acyclic graph.

2. Preliminaries. With the exception of section 6 we consider the connected
graphs only under the term graph. Let G = (V0, V1, E), V = V0 ∪ V1, and v ∈ V .
We denote by dv the degree of v, and denote by d∗v the number of vertices of degree
1 which are adjacent to v. We denote by δG the minimum degree of G. A bipartite
drawing of G is obtained by placing the vertices of V0 and V1 into distinct points on
two horizontal lines y0, y1, respectively, and drawing each edge with one straight line
segment. We will assume that y0 is the line y = 0 and y1 is the line y = 1. Any
bipartite drawing of G is identified by a coordinate function h : V0 ∪ V1 → R, where
for any v ∈ V0 ∪ V1, h(v) is the x coordinate of the vertex v in the drawing. If h is
a coordinate function of a bipartite drawing, then the restrictions h|V0

and h|V1
are

injections and determine the order in which the vertices are placed on the lines y0

and y1, respectively. Conversely, any function h : V0 ∪ V1 → R, whose restrictions to
V0 and V1 are injections, gives rise to a bipartite drawing whose coordinate function
is h. Throughout this paper we do not distinguish between a bipartite drawing and
its coordinate function and refer to a drawing by referring to its coordinate function.

Let h be a bipartite drawing of G = (V0, V1, E). For any e ∈ E, let bcrh(e) denote
the number of crossings of the edge e with other edges. Let bcr(h) denote the total
number of edge crossings in h, i.e., bcr(h) = 1

2

∑
e bcrh(e). The bipartite crossing

number of G, denoted by bcr(G), is the minimum number of edge crossings over all
bipartite drawings of G. Clearly, bcr(G) = minh bcr(h).

Given an arbitrary graph G = (V,E), and a function f : V → R, define the length
of f , denoted by Lf , to be

∑
uv∈E

|f(u)− f(v)|.

The linear arrangement problem is to determine a bijection f : V → {1, 2, 3, . . . , |V |}
of minimum length. This minimum value whose computation is NP-hard [8] will be
denoted by L(G). Let h be a bipartite drawing of G = (V0, V1, E). Note that the
length of h, denoted by Lh, is defined as

∑
uv∈E

|h(u)− h(v)|.
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Let h be a bipartite drawing of G = (V0, V1, E), and let u1, u2, . . . , udv be the
neighbors of a vertex v ∈ V1 satisfying h(u1) < h(u2) < · · · < h(udv ). Define the
median vertex of v, denoted by med(v), to be u� dv2 � if dv ≥ 2, and to be u1 if dv = 1

[4]. We say that h has the median property if the following properties hold:
(i) h is an injection;
(ii) h(V0) = {1, 2, . . . , |V0|};

(iii) h(med(v)) + ε ≥ h(v) > h(med(v)), for any v ∈ V1, where the value of ε is
positive but “infinitesimally small”;

(iv) if med(x) = med(y) for x ∈ V1 of odd degree and y ∈ V1 of even degree, then
h(x) < h(y).

If a bipartite drawing h does not have the median property, then it can be con-
verted to a drawing which has the property using a process which is called the median
construction. This process consists of placing the vertices of V0 in the same order in
which they appear in h into the locations (1, 0), (2, 0), . . . , (|V0|, 0), and then placing
each v ∈ V1 on a proper position so that the median property holds. Eades and
Wormald [4] showed the following remarkable result.

Theorem 2.1 (see [4]). Let h be a bipartite drawing of G = (V0, V1, E). If h′ is
obtained from h by the application of the median construction, then

bcr(h′) ≤ 3bcr(h).

3. Linear arrangement and bipartite crossings. In this section we explore
the relationship between bcr(G) and L(G).

3.1. Lower bounds. Let h be a bipartite drawing of G = (V0, V1, E). Let
e = ab ∈ E, and let u be a vertex in V0 ∪ V1 so that u /∈ {a, b}. We say e covers u
in h if the line parallel to the y axis passing through u has a point in common with
the edge e. Note that for any e = ab, a ∈ V0, b ∈ V1, neither a nor b are covered by
e. However, a vertex c ∈ V1 with h(c) = h(a) is covered by e. Let Nh(e) denote the
number of those vertices in V1 which are covered by e in h. We will use the following
two lemmas later.

Lemma 3.1. Let h be a bipartite drawing of G = (V0, V1, E).
(i) Assume that for any v ∈ V0, h(v) is an integer. Then there is a bijection

f∗ : V0 ∪ V1 → {1, 2, . . . , n} so that for any e = ab ∈ E

|f∗(a)− f∗(b)| ≤ Nh(e) + |h(a)− h(b)|+ 1.

(ii) Assume that h has the median property. Then the bijection f∗ that satisfies
(i) also satisfies

Lf∗ ≤ 8bcr(h)

δG
+ Lh +

∑
a∈V0

dad
∗
a + m.

Proof. To prove (i), we construct f∗ by moving all vertices in V to integer
locations. Formally, let w1, w2, . . . , wn be the order of vertices of V0 ∪ V1 such that
h(w1) ≤ h(w2) ≤ · · · ≤ h(wn). Define f∗(wi) = i, 1 ≤ i ≤ n; then (i) easily follows.

For (ii), let e = ab ∈ E, a ∈ V0, b ∈ V1. Consider the case h(a) > h(b). Let v ∈ V1

be covered by e in h. If dv = 1, then v generates one crossing on e, since v and med(v)
are separated by the line segment e in h. On the other hand, if dv ≥ 2, then at least
�dv/2� ≥ dv/4 of vertices adjacent to v are separated from v in h by the straight line
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segment e, since h has the median property. We conclude that any v ∈ V1 which is
covered by e generates at least δG/4 crossings on e. Thus, bcrh(e) ≥ Nh(e) δG4 .

Now consider the case that h(a) < h(b), and let v ∈ V1 be a vertex covered
by e. Then v generates at least dv − �dv2 � ≥ dv/2 crossings on e provided that v
is not a vertex of degree 1 which is adjacent only to a. Consequently, in this case,
bcrh(e) ≥ (Nh(e)− d∗a)δG/2.

We conclude that in either case, bcrh(e) ≥ 1
4 (Nh(e)− d∗a)δG, and hence Nh(e) ≤

4bcr(e)
δG

+ d∗a. Consequently, using (i),

|f∗(a)− f∗(b)| ≤ 4bcr(e)

δG
+ d∗a + |h(a)− h(b)|+ 1.

To finish the proof of (ii) take the sum over all e = ab ∈ E.
Lemma 3.2. Let h be a bipartite drawing of G = (V0, V1, E). If h has the median

property, then

Lh ≤ ε +
∑

uv∈E,u∈V0,v∈V1
dv≥2

|h(u)− h(v)|,

with an arbitrary small ε > 0.
Proof. To prove the claim, let uv ∈ E with v ∈ V1 so that dv = 1. Since h

has the median property, med(v) = u, and thus v is placed arbitrarily close to u
in h. Therefore we may assume that |h(v) − h(u)| ≤ ε

V1
. Thus, the sum of the

contributions of all edges which are incident to vertices of degree one in V1 to Lh is
at most |V1| ε|V1| = ε, and the claim follows.

We now prove the main result of this section.
Theorem 3.3. Let G = (V0, V1, E); then

bcr(G) +
1

12

∑
v∈V

d2
v ≥

1

36
δGL(G).

Proof. Let h be a bipartite drawing of G. We will construct an appropriate
bijection f∗ : V0 ∪ V1 → {1, 2, . . . , n}. Let h′ be a drawing which is obtained by
applying the median construction to h. Let v ∈ V1 with dv ≥ 2, and let u1, u2, . . . , udv
be its neighbors with h′(u1) < h′(u2) < · · · < h′(udv ). Let i be an integer, 1 ≤ i ≤
�dv/2�, and let u be a vertex in V0 so that h′(ui) < h′(u) < h′(udv−i+1). Observe
that u generates du crossings on the edges uiv and udv−i+1v if it is not adjacent to v.
Similarly, u generates du − 1 crossings on the edges uiv and udv−i+1v if it is adjacent
to v. Thus,

bcrh′(uiv) + bcrh′(udv−i+1v) ≥ (h′(udv−i+1)− h′(ui)− 1)δG − dv

= (h′(udv−i+1)− h′(v) + h′(v)− h′(ui)− 1)δG − dv.(3.1)

Note that h′ has the median property; thus for i = 1, 2, . . . , �dv/2�,
h′(ui) < h′(v) < h′(udv−i+1)

and hence (3.1) implies

bcrh′(uiv) + bcrh′(udv−i+1v) ≥ (|h′(v)− h′(udv−i+1)|+ |h′(v)

− h′(ui)| − 1)δG − dv.(3.2)
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Using (3.2) observe that for any v ∈ V1 with dv ≥ 2,

� dv2 �∑
i=1

(bcrh′(uiv) + bcrh′(udv−i+1v))

≥ δG

� dv2 �∑
i=1

(|h′(v)− h′(ui)|+ |h′(v)− h′(udv−i+1)|)− δG

⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv.(3.3)

It follows using (3.3) that if dv ≥ 2 is even, then

dv∑
i=1

bcrh′(uiv) =

� dv2 �∑
i=1

(bcrh′(uiv) + bcrh′(udv−i+1v))

≥ δG

� dv2 �∑
i=1

(|h′(v)− h′(ui)|+ |h′(v)− h′(udv−i+1)|)− δG

⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv

= δG

dv∑
i=1

|h′(v)− h′(ui)| − δG

⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv.(3.4)

Moreover, if dv ≥ 2 is odd, then

bcrh′(u� dv2 �v) + bcrh′(u	 dv2 
v) ≤
dv∑
i=1

bcrh′(uiv)

and

bcrh′(u� dv2 �v) + bcrh′(u	 dv2 
v) ≥ (h′(u	 dv2 
)− h′(u� dv2 �)− 1)δG,

where the upper bound is obvious, and the lower bound holds since no vertex adjacent
to v is between u	 dv2 
 and u� dv2 �. Consequently, if dv ≥ 2 is odd, then

dv∑
i=1

bcrh′(uiv) ≥ bcrh′(u� dv2 �v) + bcrh′(u	 dv2 
v)

≥ δG|h′(v)− h′(u	 dv2 
)| − δG,

where the last line is obtained by observing that h′(u	 dv2 
) > h′(v) > h′(med(v)) =

h′(u� dv2 �). Combining this with (3.3), for odd dv, we obtain,

2

dv∑
i=1

bcrh′(uiv) ≥ δG

dv∑
i=1

|h′(v)− h′(ui)| − δG − δG

⌊
dv
2

⌋
−
⌊
dv
2

⌋
dv.(3.5)

We note that since (3.5) is weaker than (3.4), it must also hold when dv is even, and
conclude by summing (3.5) over all v ∈ V1 with dv ≥ 2, that

4bcr(h′) ≥ δG
∑

uv∈E,v∈V1
dv≥2

|h′(v)− h′(u)|

− δG|V1| − δG
∑
v∈V1

⌊
dv
2

⌋
−
∑
v∈V1

⌊
dv
2

⌋
dv

≥ δG
∑

uv∈E,v∈V1
dv≥2

|h′(v)− h′(u)| − 2
∑
v∈V1

d2
v.
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Using Lemma 3.2, the above inequality gives

4bcr(h′) ≥ δGLh′ − ε− 2
∑
v∈V1

d2
v.(3.6)

Since h′ has the median property, the bijection f∗ in Part (ii) of Lemma 3.1 satisfies

δGLh′ ≥ δGLf∗ − 8bcr(h′)− δGm− δG
∑
v∈V0

dvd
∗
v.

Observe that if δG ≥ 2, then
∑
v∈V0

dvd
∗
v = 0. Hence, the above inequality can be

rewritten as

δGLh′ ≥ δGLf∗ − 8bcr(h′)− δGm−
∑
v∈V0

dvd
∗
v.

Usage of the above inequality in (3.6) gives

12bcr(h′) ≥ δGLf∗ − δGm− ε−
∑
v∈V0

dvd
∗
v − 2

∑
v∈V1

d2
v.(3.7)

Observing that Lf∗ ≥ L(G), bcr(h′) ≤ 3bcr(h), δGm+ε = ε+
∑
v∈V0

dvδG ≤
∑
v∈V d2

v,

and
∑
v∈V0

dvd
∗
v + 2

∑
v∈V1

d2
v ≤ 2

∑
v∈V d2

v, we obtain

36bcr(h) + 3
∑
v∈V

d2
v ≥ δGL(G),

which finishes the proof.
Next, we investigate the cases for which the error term

∑
v∈V d2

v can be eliminated
from Theorem 3.3.

Corollary 3.4. Let G = (V0, V1, E) so thatm ≥ (1+γ)n and
∑
v∈V (dv − d∗v)

2 ≥
α
∑
v∈V d2

v, where γ and α are positive constants. Then

bcr(G) ≥ Cα,γδGL(G), where Cα,γ =
1

36
· 1

1 + 8+4γ
3α

.

Proof. To prove the result we will first show that for any bipartite drawing h of
G,

bcr(h) ≥
∑
v∈V (dv − d∗v)

2

16
−m.(3.8)

For now assume that (3.8) holds. Since bcr(G) ≥ m − n + 1 [14] and n ≤ γ
1+γm,

we conclude that m ≤ (γ + 1)bcr(G). Combining this inequality with (3.8) gives
(2 + γ)bcr(G) ≥ 1

16

∑
v∈V (dv − d∗v)

2 ≥ α
16

∑
v∈V d2

v, and thus

16(2 + γ)

α
bcr(G) ≥

∑
v∈V

d2
v,

and the claim follows from Theorem 3.3.
To prove (3.8), let h be any bipartite drawing of G, and let v ∈ V0 so that

dv − d∗v ≥ 2. Let u1, u2, . . . , udv−d∗v be the set of vertices of degree at least 2 which
are adjacent to v, and assume with no loss of generality that h(u1) < h(u2) < · · · <
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h(udv−d∗v ). Let i be an integer, 1 ≤ i ≤ �dv−d∗v2 �, and note that any vertex uj ,
dv−d∗v− i+ 1 > j > i, generates at least one crossing on the edges uiv and udv−i+1v.

Thus bcr(vui) + bcr(vudv−d∗v−i+1) ≥ dv − d∗v − 2i, 1 ≤ i ≤ �dv−d∗v2 �, and therefore

� dv−d∗v
2 �∑
i=1

bcrh(uiv) + bcrh(udv−i−d∗v+1v) ≥
� dv−d∗v

2 �∑
i=1

dv − d∗v − 2i

≥ (dv − d∗v)
dv − d∗v − 1

2
− dv − d∗v

2
· dv − d∗v + 2

2

≥ 1

4
(dv − d∗v)

2 − dv.(3.9)

It follows by summing (3.9) over all v ∈ V1 that

2bcr(h) ≥
∑
v∈V1

(dv − d∗v)
2

4
− 2m.

Similarly, we can show that 2bcr(h) ≥ (
∑
v∈V0

(dv − d∗v)
2/4)−2m, and hence the claim

follows.

3.2. An upper bound. We now derive an upper bound on bcr(G). We need
the following obvious lemma.

Lemma 3.5. Let h be a bipartite drawing of G = (V0, V1, E). Let e = uv and ē =
ab be two edges which cross in h, u, a ∈ V0, v, b ∈ V1. If |h(v)− h(u)| ≥ |h(a)− h(b)|,
then either a or b is covered by e in h. Moreover, if a is covered by e, then

|h(b)− h(u)| ≤ |h(v)− h(u)|,

whereas if b is covered by e, then

|h(a)− h(v)| ≤ |h(v)− h(u)|.

Let H be a subgraph of G. We denote by VH and EH , respectively, the vertex

set and the edge set of H. The arboricity of G, denoted by aG, is maxH |EH |
|VH |−1�,

where the maximum is taken over all subgraphs H, with |VH | ≥ 2. Note that δG/2 ≤
aG ≤ ∆G, where ∆G denotes the maximum degree of G. A well-known theorem of
Nash-Williams [16] asserts that aG is the minimum number of edge disjoint acyclic
subgraphs to which edges of G can be decomposed.

Theorem 3.6. Let G = (V0, V1, E), and let f : V0 ∪ V1 → {1, 2, . . . , n} be a
bijection; then

bcr(f) ≤ 5aGLf .

In particular,

bcr(G) ≤ 5aGL(G).

Proof. The mapping f is the coordinate function of a bipartite drawing.
Let e = uv ∈ E, u ∈ V0, v ∈ V1, and let Ie denote the set of those edges crossing

e in the drawing f so that for any ab ∈ Ie,

|f(a)− f(b)| ≤ |f(v)− f(u)|.
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Observe that if any edge e′ /∈ Ie crosses e, then e ∈ Ie′ . Hence, in this case the crossing
of e and e′ contributes one to |Ie′ |. We conclude that

bcr(f) ≤
∑
e∈E
|Ie|,

and will show that |Ie| ≤ aG(4|f(u)−f(v)|+1). For e = uv ∈ E, with u ∈ V0, v ∈ V1,
let V e0 be the set of all those vertices y of V0 so that |f(y) − f(v)| ≤ |f(u) − f(v)|.
Similarly, let V e1 be the set of all those vertices y of V1 so that |f(y) − f(u)| ≤
|f(u) − f(v)|. Note that |V ei | ≤ 2|f(u) − f(v)| + 1, i = 0, 1, since the coordinates
of all vertices are integers. Therefore, we have |V e0 ∪ V e1 | ≤ 4|f(u) − f(v)| + 2. Let
ē = ab ∈ Ie, a ∈ V0, b ∈ V1, and observe that by Lemma 3.5, a ∈ V e0 and b ∈ V e1 .
Consequently, |Ie| ≤ |EH |, where H is the induced subgraph of G on the vertex set
V e0 ∪ V e1 . Clearly,

|Ie| ≤ |EH | ≤ aG(4|f(u)− f(v)|+ 2− 1) = aG(4|f(u)− f(v)|+ 1)

by the definition of aG, and thus, observing that Lf ≥ m, we obtain

bcr(f) ≤
∑
e∈E

Ie ≤ 5aGLf .

To complete the proof we take f to be the optimal solution to the linear arrangement
problem, that is, Lf = L(G), and note that bcr(G) ≤ bcr(f).

4. Applications. It is easy to provide examples of graphs G for which bcr(G) =
Θ(δGL(G)).

Proposition 4.1. Let G = (V0, V1, E) so that m ≥ (1 + γ)n for a fixed γ. Then

bcr(G) = Θ(δGL(G)),

provided that G satisfies any of the following conditions:
(i) δG ≥ 2 and δG = Θ(aG),
(ii) G is connected and has bounded degrees.
Proof. If (i) holds, the claim easily follows from Corollary 3.4 and Theorem 3.6.

Assume that (ii) holds and k is a constant upper bound on the degrees. Note that
dv−d∗v ≥ 1 for any v ∈ V , since G is connected and is not a star, and thus

∑
v∈V (dv−

d∗v)
2 ≥ n. (Note that the star is excluded by the density condition m ≥ (1 + γ)n.)

Now let α = 1
k2 , then, n ≥ 1

k2

∑
v∈V d2

v. Hence this graph satisfies the conditions of
Corollary 3.4; moreover, it is easy to see that aG ≤ k = O(1), and we conclude using
Theorem 3.6 that bcr(G) = Θ(L(G)).

4.1. Bipartite crossings, separators, genus, and page number. The ap-
pearance of aG in the upper bound of Theorem 3.6 relates bcr(G) to other important
topological properties of G such as genus of G, denoted by gG, and page number of
G denoted by pG [27].

Proposition 4.2. Let G = (V0, V1, E), and assume that δG ≥ 2 and m ≥
(1 + γ)n, for a fixed γ > 0. Then bcr(G) = Θ(L(G)), provided that either pG = O(1),
or gG = O(1).

Proof. Assume that aG = O(1) is added to the conditions for G; then δG =
O(1), and one can conclude using Proposition 4.1 that bcr(G) = Θ(L(G)). To prove
the claim, one has to observe that if either pG = O(1), or gG = O(1), then aG =
O(1).
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Let 0 < β ≤ 1
2 be a constant and denote by bβ(G) size of a smallest β-separator

of G. That is,

bβ(G) = min
βn≤|A|≤(1−β)n

|(A, Ā)|,

where (A, Ā) denotes a cut which partitions V into A and Ā. Leighton [12] proved
that for any degree bounded graph G, cr(G) + n = Ω(b21

3

(G)), where cr(G) is the

planar crossing number of G. Another very interesting consequence of Theorem 3.3
is providing a stronger version of Leighton’s result for bcr(G).

Theorem 4.3. Let G = (V0, V1, E); then, for any constant 0 < β < 1
2 ,

bcr(G) +
∑
v∈V

d2
v = Ω(δGnbβ(G)).

Proof. The claim follows from the lower bound in Theorem 3.3 and the well-known
observation that L(G) ≥ (1− 2β)nbβ(G). (See, for instance, [9].)

Remark. After submission of this paper we derived a weaker version of Theo-
rem 4.3 using Menger’s theorem [22].

4.2. Approximation algorithms. Let G = (V0, V1, E). The bipartite arrange-
ment problem is to find a bipartite drawing h of G with smallest Lh, so that for any
v ∈ V0 ∪ V1, h(v) is an integer. We denote this minimum value by L̄(G). Note that
coordinate function h for a bipartite drawing need not to be an injection, since it may
be that h(a) = h(b), for some a ∈ V0, and some b ∈ V1. Thus, in general L̄(G) �= L(G).
Our approximation algorithms construct bipartite drawings in which all vertices have
integer coordinates, so that the number of edge crossings, and at the same time, the
length of the drawings are small. We need the following lemma.

Lemma 4.4. Let G = (V0, V1, E); then

L̄(G) ≥ L(G)− 1

4
.

Proof. Let h be a feasible solution to the bipartite arrangement problem. Let
e = ab ∈ E, and note that Nh(e) ≤ |h(a) − h(b)|, since any vertex in V0 ∪ V1

has an integer x coordinate. Let f∗ be the bijection in (i) of Lemma 3.1; then
|f∗(a) − f∗(b)| ≤ 2|h(a) − h(b)| + 1, and hence it follows by taking the sum over
all edges, that Lf∗ ≤ 2Lh + m. To prove the lemma, we claim that there are at
least m−1

2 edges e = ab, so that h(a) �= h(b), and consequently Lh ≥ m−1
2 , which

implies the result. To prove our claim, note that there are at most n2 edges ab, so that
h(a) = h(b), and hence there are at least m − n

2 ≥ m−1
2 edges ab, with h(a) �= h(b),

since G is connected and therefore has at least n− 1 edges.
Even et al. [6] presented polynomial time approximation algorithms with the

performance guarantees of O(log n log log n) times the optimal for several NP-hard
problems, including the linear arrangement problem. Rao and Richa improved the
quality of the approximation to O(log n) for the linear arrangement problem [19].
Combining the result in [19] with ours, we obtain the following.

Theorem 4.5. Let G = (V0, V1, E), and let f : V0∪V1 → {1, 2, . . . , n} be a bijec-
tion which is a O(log n) times optimal approximate solution to the linear arrangement
problem. Then Lf = O(L̄(G) log n). Moreover, if G meets any of the conditions in
Proposition 4.1, then bcr(f) = O(bcr(G) log n).

Proof. Note that Lf = O(L(G) log n) and thus the claim regarding Lf fol-
lows from Lemma 4.4. To finish the proof, note that Theorem 3.6 gives bcr(f) =
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O(aGL(G) log n), and the claim regarding bcr(f) is verified by the application of
Proposition 4.1.

A nice algorithmic consequence of the lower bound presented in Theorem 4.3 is
that a standard divide and conquer algorithm gives a good approximation for bcr(G)
in polynomial time. The divide stage of the algorithm uses a pseudoapproximation
algorithm for computing a graph separator [7, 13]. Such a pseudoapproximation
algorithm generates a 0.3-separator whose value is O(log n) times the optimal value
of a 1/3-separator [7, 13].

Theorem 4.6. Let A be a polynomial time pseudoapproximation algorithm for
computing a 0.3-separator with a performance guarantee of O(log n) times the opti-
mal value of a 1/3-separator. Consider a divide and conquer algorithm which (a)
recursively separates the graph G in to subgraphs G1 and G2, using A, (b) obtains
the bipartite drawings of G1 and G2, and then (c) inserts the edges of the separa-
tor between these two drawings to obtain a drawing for G. This algorithm gener-
ates, in polynomial time, a bipartite drawing h of G with integer coordinates, so that
Lh = O(L̄(G) log2 n). Moreover, if G meets the conditions in Proposition 4.1, then
bcr(h) = O(bcr(G) log2 n).

Proof. Let b̄(G) denote the number of those edges having one endpoint in the
vertex set of G1 and the other in the vertex set of G2. Let h1 and h2 be the bipartite
drawings that are obtained for G1 and G2, respectively. Let h denote the drawing
of G which is obtained by placing h1 to the left of h2 and then inserting the edges
between G1, and G2. The claim for Lh can be verified using arguments similar to
those in [9] and employing Lemma 4.1. To verify the claim regarding bcr(h), note
that

bcr(h) ≤ bcr(h1) + bcr(h2) + b̄2(G) + b̄(G)m.

Now observing that m ≤ aGn, b̄(G) = O(log nb 1
3
(G)), and that nb 1

3
(G) ≤ 3L(G), we

obtain

bcr(h) ≤ bcr(h1) + bcr(h2) + O(aGL(G) log n)

which implies

bcr(h) = O(aGL(G) log2 n).

Note that by Proposition 4.1, bcr(G) = Θ(aGL(G)), and the claim follows.
Remark. Note that since aG can be computed in polynomial time, the class of

graphs with aG ≤ cδG is recognizable in polynomial time, when c is a given constant.
Hence, those graphs which meet the required conditions in Proposition 4.1 can be
recognized in polynomial time. Also, note that many important graphs such as those
introduced in Proposition 4.2 meet the conditions, and hence for these graphs the
performances of both algorithms are guaranteed. Finally note that the lower bound
of Ω(nδGb 1

3
(G)) for bcr(G) has been crucial to verify the suboptimality of the solution

in Theorem 4.6.

5. Bipartite crossings in trees. We note that if aG is small, then the gap
between the upper bound in Theorem 3.6 and the lower bound in Theorem 3.3 is
small, and hence, it is natural to investigate the case aG = 1, that is, when G is
acyclic. In fact, in this case the method in the proof of Theorem 3.6 provides for an
optimal bipartite drawing.
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Theorem 5.1. Let T be a tree on the vertex set V = V0 ∪ V1, where V0 and V1

are the partite sets, and |V | = n. Let f∗ be a bijection utilizing an optimal solution
to the linear arrangement problem. Then

bcr(f∗) = bcr(T ) = L(T )− n + 1−
∑
v∈T

⌊
dv
2

⌋⌈
dv − 2

2

⌉
.(5.1)

Proof. We prove the theorem by induction on n. The result is true for n = 1, 2.
Let n ≥ 3. Assume that the theorem is true for all l-vertex trees, l < n, and let T be
a tree on n vertices. We first show that the right-hand side (RHS) of (5.1) is a lower
bound on bcr(T ). We then show that bcr(f∗) is equal to the RHS of (5.1). Consider
an optimal bipartite drawing h of T . It is not difficult to see that one of the leftmost
(rightmost) vertices is a leaf. Denote the left leaf by v0, the right leaf by vk, and let
P = v0v1 . . . vk be the path between v0 and vk. Note that P will cross any edge in T
which is not incident to vi, 0 ≤ i ≤ k. It follows that path P will generate at least

cP = n− 1− k −
k−1∑
i=1

(dvi − 2)(5.2)

crossings, where cP counts exactly the number of edges in T which are not incident
to any vertex on P . By deleting the edges of P we obtain trees Ti, on the vertex
sets V i = V i0 ∪ V i1 , rooted in vi, i = 1, 2, . . . , k − 1. Consider the optimal bipartite
drawings of Ti, i = 1, 2, . . . , k − 1, and place them consecutively such that the edges
in the drawing of Ti do not cross the edges in the drawing of Tj , for i �= j. Then
draw the path P without self crossings such that v0 (vk) is placed to the left (right)
of the drawing of T1(Tk−1). Clearly the number of crossings in this new drawing is∑k−1
i=1 bcr(Ti) + cP ; therefore we conclude that

bcr(h) =
k−1∑
i=1

bcr(Ti) + cP =

(
k−1∑
i=1

bcr(Ti)

)
+n− 1− k −

k−1∑
i=1

(dvi − 2),

for otherwise h is not an optimal drawing. For any v ∈ V , let div denote the degree of
v in Ti; applying the inductive hypothesis to Ti, i = 1, 2, . . . , k − 1, we obtain

bcr(T ) =

k−1∑
i=1

(
L(Ti)− |V i|+ 1−

∑
v∈V i

⌊
div
2

⌋⌈
div − 2

2

⌉)

+n− 1− k −
k−1∑
i=1

(dvi − 2)

=

k−1∑
i=1

(
L(Ti)−

∑
v∈V i

(

⌊
dvi
2

⌋⌈
dvi − 2

2

⌉
+ dvi − 2)

)
.(5.3)

Now observe that for v ∈ V i, div = dv if v �= vi; otherwise div = dv−2, i = 1, 2, . . . , k−1.
Consequently,

∑
v∈V i

⌊
div
2

⌋⌈
div − 2

2

⌉
+ dvi − 2 =

⌊
dvi − 2

2

⌋⌈
dvi − 4

2

⌉
+ dvi − 2

+
∑

v∈V i−vi

⌊
dv
2

⌋⌈
dv − 2

2

⌉
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=
∑
v∈V i

⌊
dv
2

⌋⌈
dv − 2

2

⌉
,

where the last line is obtained by observing that⌊
dvi − 2

2

⌋⌈
dvi − 4

2

⌉
+ dvi − 2 =

⌊
dvi
2

⌋⌈
dvi − 2

2

⌉
.

Thus it follows using (5.3) that

bcr(h) =
k−1∑
i=1

L(Ti)−
∑
v∈V

⌊
dv
2

⌋⌈
dv − 2

2

⌉
.(5.4)

Now consider the optimal linear arrangements of the trees Ti, specified by the bijec-
tions fi, 0 ≤ i ≤ k. Place V 0, V 1, . . . , V k consecutively on a line so that the vertices
in each V i are placed in the order specified by fi, 0 ≤ i ≤ k. Let g : V → {1, 2, . . . , n}
denote the bijection associated with this arrangement; then Lg =

∑k−1
i=1 L(Ti)+n−1.

Using this fact (5.4) implies

bcr(T ) ≥ L(T )− n + 1−
∑
v∈T

⌊
dv
2

⌋⌈
dv − 2

2

⌉
,

since Lg ≥ L(T ).
To finish the proof we will show that bcr(f∗) is equal to the RHS of (5.1). Consider

an optimal linear arrangement f∗ of the tree T . It is not difficult to see that f∗−1(1)
and f∗−1(n) are leaves [1, 20]. Let P = v0v1 . . . vk be the path between v0 = f∗−1(1)
and vk = f∗−1(n) in T , and let Ti, 1 ≤ i ≤ k− 1 be the trees defined in the first part

of the proof. Let g be the bijection described earlier; then Lg =
∑k−1
i=1 L(Ti) + n− 1,

and thus we conclude that

Lf∗ = L(T ) =

k−1∑
i=1

L(Ti) + n− 1,(5.5)

and note that the above equation implies that P does not cross itself, in the ar-
rangement associated with f∗. It follows that P does not cross itself in the bipar-
tite drawing f∗. Let f∗i be the restriction of f∗ to V i, i = 1, 2, . . . , k − 1. Note

that bcr(f∗) =
∑k−1
i=1 bcr(f∗i ) + cP . By applying the induction hypothesis to f∗i ,

i = 1, 2, . . . , k − 1, we obtain

bcr(f∗) =

k−1∑
i=1

(
L(Ti)− |Vi|+ 1−

∑
v∈Vi

⌊
dv
2

⌋⌈
dv − 2

2

⌉)
+cP .(5.6)

Substituting cP its value from (5.2), and repeating the same steps used in deriving
(5.4), we obtain

bcr(f∗) =

k−1∑
i=1

L(Ti)−
∑
v∈V

⌊
dv
2

⌋⌈
dv − 2

2

⌉
.(5.7)

To complete the proof, we use (5.5) in (5.7) and obtain

bcr(f∗) = L(T )− n + 1−
∑
v∈T

⌊
dv
2

⌋⌈
dv − 2

2

⌉
.
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Remark. Since the optimal linear arrangement of an n-vertex tree can be found
in O(n1.6) time [1], Theorem 5.1 implies that computing bcr(T ) can also be done in
O(n1.6) time.

6. Largest biplanar subgraphs in acyclic graphs. Throughout this section
T = (V,E) denotes a tree, where V = V0 ∪ V1. Let wij denote the weight assigned to
an edge ij ∈ E. Let w(B) denote the sum of weights for all edges in a subgraph B of
T . In this section we present a linear time algorithm to compute a biplanar subgraph
of T of largest weight.

A tree is called a caterpillar if it consists of a path to which some vertices of degree
1 (leaves) are attached. The path is called the backbone of the caterpillar. There are
four categories of vertices in a caterpillar. First, consider those caterpillars which
are not stars. They have a backbone on at least two vertices, and any vertex on the
backbone is of degree at least 2. An endvertex of the backbone is called an endbone,
any internal vertex of the backbone is called a midbone, and any leaf attached to an
endbone is called an endleaf. Any leaf attached to a midbone is called a midleaf.

For a star with at least three vertices, the nonleaf vertex is considered an endbone,
the backbone consists of this single endbone, and all leaves are endleaves. If a star
has two vertices, then we treat these vertices as endbones. We would not concern
ourselves with a star on only one vertex, as it does not play any role in the nontrivial
instances of our problem.

Let T = (V,E) and r ∈ V . We may view r as the root of T , and for any
x ∈ V, x �= r, define the parent of x to be the vertex adjacent to x on the unique path
between x and r. For any x ∈ V , the set of children of x, denoted by Nx, are those
vertices of T whose parent is x. For any x ∈ V, x �= r, let Tx denote the component
of T containing x, which is obtained by removing the parent of x from T . We define
Tr to be T .

It is well known and easy to show that any graph is biplanar iff all of its connected
components are caterpillars. It is further easy to check that any acyclic graph is a
caterpillar iff it does not contain a double claw (a star on four vertices whose edges
are subdivided) as a subgraph. Hence, any graph is biplanar iff it does not contain a
double claw as a subgraph. Let B be a biplanar subgraph of T = (V,E). We say that
a caterpillar is in B if this caterpillar is a connected component of B. We say that B
spans a vertex a ∈ V if there is an edge ab in B.

For any x ∈ V , let Bx denote the set of all biplanar subgraphs of Tx and w∗(Tx)
denote the maximum weight of any biplanar subgraph in Bx. Our goal is to deter-
mine w∗(Tr). To achieve this goal, for any x ∈ V , we define five additional related
optimization problems as follows:

w1(Tx) = max
B∈Bx

{w(B) : x is endleaf of a caterpillar in B} ,
w2(Tx) = max

B∈Bx

{w(B) : x is midleaf of a caterpillar in B} ,
w3(Tx) = max

B∈Bx

{w(B) : x is endbone of a caterpillar in B} ,
w4(Tx) = max

B∈Bx

{w(B) : x is midbone of a caterpillar in B} ,
w5(Tx) = max

B∈Bx

{w(B) : B does not span x} .

It is obvious that for any x ∈ V , w∗(Tx) = max1≤i≤5 w
i(Tx), and therefore solving

all five problems for Tx determines w∗(Tx). For any leaf v ∈ V , we define w1(Tv) =
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w5(Tv) = 0, w∗(Tv) = 0, and wi(Tv) = −∞ for i = 2, 3, 4. To avoid long displayed
equations, for any x ∈ V and any u ∈ Nx, we denote wxu+w5(Tu) by g(u) and denote
max{wux + w5(Tu), w∗(Tu)} by f(u).

Lemma 6.1.

w1(Tx) = max
y∈Nx

{( ∑
y′∈Nx\{y}

w∗(Ty′)

)
+wxy + max

i=1,3
wi(Ty)

}
,(6.1)

w2(Tx) = max
y∈Nx

{
wxy + w4(Ty) +

∑
y′∈Nx\{y}

w∗(Ty′)

}
,(6.2)

w3(Tx) = max

{
max

y1,y2∈Nx
y1 �=y2

{
wxy1 + max

i=1,3
wi(Ty1) + g(y2)

+
∑

y′∈Nx\{y1,y2}
f(y′)

}
, max
y∈Nx

{
g(y) +

∑
y′∈Nx\{y}

f(y′)

}}
,(6.3)

w4(Tx) = max
y1,y2∈Nx

y1 �=y2

{
wxy1 + wxy2 + max

i=1,3
wi(Ty1) + max

i=1,3
wi(Ty2)

+
∑

y′∈Nx\{y1,y2}
f(y′)

}
,(6.4)

w5(Tx) =
∑
y∈Nx

w∗(Ty).(6.5)

Proof (sketch). The basic idea for the recurrence relations is to describe how an
optimal solution for Tx can be constructed from the optimal solutions for the trees
rooted in Nx. Indeed, (6.1), (6.2), and (6.5) are not difficult to see. For (6.3), let
x be an endbone of a caterpillar C in B ∈ Bx, w(B) = w3(Tx). First, consider the
case that C is not a star. Since x is an endbone of C, it has at least two neighbors
in C, and all but one of its neighbors are leaves in C. Let y1 be the nonleaf neighbor
of x in C and y2 be an endleaf in C. Then y1 is either an endbone or an endleaf
in C \ {x}, for otherwise B will contain a double claw. This justifies the first two
terms in the first inner curly bracket. To justify the third and the fourth terms note
that the leaf y2 will contribute g(y2), and any y′ ∈ Nx \ {y1, y2} will contribute f(y′),
respectively, to w(B). To justify the terms in the second inner bracket, consider the
case that C is a star. Then C must contain at least one vertex of degree 1, y, which
will contribute g(y) to w(B). Furthermore, any y′ ∈ Nx \ y is a leaf of C only if
wxy′ + w5(Ty′) > w∗(Ty′); otherwise B must contain a maximum biplanar subgraph
of Ty which has the weight w∗(Ty). Thus, any y′ ∈ Nx \ y will contribute f(y′) to
w(B). For (6.4), let x be a midbone of a caterpillar C in B ∈ Bx, w(B) = w4(Tx).
Then x has two neighbors y1 and y2 which are located on the backbone of C. By
deleting x from C, we obtain exactly two caterpillars C1 and C2 so that yi is either
an endbone or an endleaf for Ci, i = 1, 2, for otherwise B will contain a double claw.
Now follow arguments similar to those for deriving (6.3).

Theorem 6.2. For an edge-weighted acyclic graph T = (V,E), a biplanar sub-
graph of largest weight can be computed in O(|V |) time.

Proof (sketch). With no loss of generality assume that T is connected, for other-
wise we apply our arguments to the connected components of T . We select a root r
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for T , perform a post order traversal, and show that for any x ∈ V , wi(Tx), 1 ≤ i ≤ 5,
and w∗(Tx) can be computed in O(|Nx|) time if all these quantities are already known
for the children of x. This is obvious for w∗(Tx), and it is obvious for w5(Tx) using
(6.5). For w1(x) and w2(x) we use (6.1) and (6.2), and note that the expressions
in the curly braces can be computed in O(Nx) time if a maximizing y∗ is known.
Therefore the issue is to find a maximizing vertex y∗ ∈ Nx in O(Nx) time. It is easy
to see that for (6.1), y∗ must maximize wxy+maxi=1,3 w

i(Ty)−w∗(Ty), and for (6.2),
y∗ ∈ Nx must maximize wxy + w4(Ty) − w∗(Ty); these can be computed in O(|Nx|)
time.

For computing w3(x) using (6.3), first note that y∗1 , y
∗
2 ∈ Nx can be found in

O(|Nx|) time which maximizes wxy1+maxi=1,3 w
i(Ty1)+g(y2)+

∑
y′∈Nx\{y1,y2} f(y′) =

wxy1 + maxi=1,3 w
i(Ty1)− f(y1) + g(y2)− f(y2) +

∑
y′∈Nx

f(y′). To do so, select dis-

tinct vertices y∗1 , y
∗
2 ∈ Nx in O(|Nx) time which maximize wxy1 + maxi=1,3 w

i(Ty1)−
f(y1) + g(y2) − f(y2). This can be done by observing that for any two sequences of
numbers, a1, a2, . . . , al and b1, b2, . . . , bl, the value of maxi �=j ai + bj can be computed
in O(l) time. Finally, note that y∗ ∈ Nx can be computed in O(|Nx|) time to maxi-
mize g(y) +

∑
y′∈Nx\{y} f(y′) = g(y)− f(y) +

∑
y′∈Nx

f(y′). To do so, select y∗ ∈ Nx
which maximizes g(y)− f(y).

For w4(x) employ (6.4), and use arguments similar to those employed for com-
puting w3(x).

It is easy to maintain for every x not just the values wi(Tx), w∗(Tx), but also
the edge sets which realize these values; therefore, we can store the edge set of a
maximum-weight biplanar subgraph as well.
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Abstract. Given a graph G = (V,E) and a set of κ pairs of vertices in V , we are interested
in finding, for each pair (ai, bi), a path connecting ai to bi such that the set of κ paths so found is
edge-disjoint. For arbitrary graphs the problem is NP-complete, although it is in P if κ is fixed.
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1. Introduction. Given a graph G = (V,E) with n vertices and a set of κ pairs
of vertices in V , we are interested in finding, for each pair (ai, bi) a path connecting
ai to bi such that the set of κ paths so found is edge-disjoint. This problem has
numerous algorithmic applications—in VLSI, for example, or in the context of virtual
circuit routing.

For arbitrary graphs the related decision problem isNP-complete, even for planar
graphs, although Robertson and Seymour [19], as part of their monumental work on
graph minors, have shown that the problem is in P if κ is fixed. The algorithm of
Robertson and Seymour is not considered to be practical and so there has been a lot
of work on developing algorithms in various cases, such as planar graphs and grids,
where there are restrictions on the placement of the endpoints; see, for example, Frank
[5], Wagner and Weihe [21], or Zhou, Tamura, and Nishizeki [22]. Approximation
algorithms have been developed for some classes of planar graphs by Kleinberg and
Tardos [13].

Another class of graphs which has yielded positive results is expanders. Peleg
and Upfal [18] presented a polynomial time algorithm for the case where G is a
(sufficiently strong) bounded degree expander graph, and κ ≤ nε for a small constant
ε that depends on the expansion property of the graph. This result has been improved
and extended by Broder, Frieze, and Upfal [2, 3], Frieze [6], Leighton and Rao [14],
and Leighton, Rao, and Srinivasan [15, 16]. In these papers G has to be a (sufficiently
strong) bounded degree expander and κ can grow as fast as n/(log n)θ, where θ
depends only on the expansion properties of the input graph, but is at least 2. Also,
Kleinberg and Rubinfeld [12] have developed an on-line approximation algorithm.

Let D be the median distance between pairs of vertices in G. Clearly it is not
possible to connect more than O(m/D) pairs of vertices by edge-disjoint paths, for
all choices of pairs, since some choice would require more edges than all the edges
available. In the case of an r-regular expander, this absolute upper bound on κ is
O(n/ log n) (assuming r is independent of n). In this paper, we show that if G has
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sufficiently strong edge expansion properties and r is sufficiently large, then all sets of
κ = Ω(n/ log n) pairs of vertices can be joined. This, therefore, is within a constant
factor of the optimum. The precise definition of “sufficiently strong” is given after
the theorem.

Theorem 1.1. Let G = (V,E) be an n-vertex, r-regular graph. Suppose that G
is a sufficiently strong edge expander. Then there exist ε1, ε2 > 0 such that G has the
following property: For all sets of pairs of vertices {(ai, bi) | i = 1, . . . , κ} satisfying

(i) κ = �ε1rn/ log n�.
(ii) For each vertex v, |{i : ai = v}|+ |{i : bi = v}| ≤ ε2r.

There exist edge-disjoint paths in G, each of length O(log n), joining ai to bi, for each
i = 1, 2, . . . , κ. Furthermore, there is a polynomial time randomized algorithm for
constructing these paths.

ε1, ε2 depend only on certain expansion parameters α, β, γ defined below. They do
not depend on n or r. (For example, conditions (1.3) with ε = α, (2.1), (3.1), and
(4.1) suffice.)

Remark 1. The algorithm is a simplification of an algorithm of [8] for finding
edge-disjoint paths in random regular graphs. There we have a slightly stronger result
in that we can take κ = �ε1rn/ logr n�, i.e., an increase by a factor log r. This is due
to the fact that a random r-regular graph has strong vertex expansion. If G has suf-
ficiently strong vertex expansion properties, then we can also take κ = �ε1rn/ logr n�;
see Remark 2 below.

1.1. Preliminaries. We define expanders in terms of edge expansion (a weaker
property than vertex expansion).

Let G = (V,E) be a graph and let n = |V |. For S ⊂ V let out(S) = outG(S) be
the number of edges with one endpoint in S and one endpoint in V \ S, that is,

out(S) =
∣∣∣{{u, v} | {u, v} ∈ E, u ∈ S, v �∈ S}

∣∣∣ .
Similarly,

in(S) =
∣∣∣{{u, v} | {u, v} ∈ E, u, v ∈ S}

∣∣∣ .
A graph G = (V,E) is a θ-expander if for every set S ⊂ V , |S| ≤ n/2, we have

out(S) ≥ θ|S|.
An r-regular graph G = (V,E) is called an (α, β, γ)-expander if for every set

S ⊂ V

out(S) ≥
{
(1− α)r|S| if |S| ≤ γn,
βr|S| if γn < |S| ≤ n/2.

We naturally assume that β < 1− α.
By “sufficiently strong” in Theorem 1.1, we mean that β, γ are arbitrary and α

is sufficiently small. Then everything will work provided r is sufficiently large.
Since 2in(S) + out(S) = r|S| we see that in an (α, β, γ)-expander

in(S) ≤ αr|S|/2 when |S| ≤ γn.(1.1)

In particular, random regular graphs and the (explicitly constructible) Ramanu-
jan graphs of Lubotsky, Phillips and Sarnak [17] are (α, β, γ)-expanders. (See the
discussion in [2].)
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We have made no real attempt to optimize constants, and, in general, we claim
only that inequalities dependent on n or r hold for n or r sufficiently large.

For a graph G = (V,E) and v ∈ V we let dG(v) denote the degree of v in G. We
use δ(G) and ∆(G) to denote the smallest and largest degrees, respectively. For a set
S ⊆ V we let S̄ = V \ S and define its neighbor set, NG(S), as

NG(S) = {v ∈ S̄ : ∃w ∈ S such that {v, w} ∈ E}.

For v ∈ V and S ⊆ V we let dG(v, S) = |NG(v) ∩ S|.
Let ΦS = out(S)/|S| and let the (edge-)expansion Φ = Φ(G) of G be defined by

Φ = min
S⊆V

|S|≤n/2

ΦS .

We need an algorithm for splitting a strong expander into nine expander graphs. We
could use the algorithm of [2] or [7]. The latter gives a better split and we arbitrarily
choose to use it. ε > 0 is a small constant. The expansion requirements for the
algorithm are

r

log r
≥ 63ε−2 and Φ ≥ 36ε−2 log r,(1.2)

which for us means

β ≥ 36ε−2r−1 log r.(1.3)

The result we need from [7, Theorem 2] is as follows.

Theorem 1.2. Suppose that (1.2), (1.3) hold and that G is an r-regular (α, β, γ)-
expander, r constant. Then there is a randomized polynomial time algorithm which
with probability at least 1− δ constructs E1, E2, . . . , E9 such that the edge-expansion
Φi of Gi = (V,Ei) satisfies

Φi ≥ (1− ε)Φ
9
− (α+ 2ε) r

for i = 1, 2, . . . , 9. This theorem is useful only if Φ is at least a constant multiple of
r and α is sufficiently small. This is the case discussed in this paper.

The algorithm of [7] runs in O(nO(log r) log δ−1) expected time. The focus of this
paper is r constant. If O(nO(log r)) seems excessive, then we can use the linear time
algorithm of [2] at the expense of more stringent expansion requirements.

2. The algorithm. Our algorithm divides naturally into the four phases.

2.1. Phase 0. Partition G into nine edge-disjoint graphs Gi = (V,Ei), 1≤ i≤9.
Phase 1 will use the graphs G1, G2 to replace the ai, bi by randomly chosen ãi, b̃i;
Phase 2 will use the graphs G3 and G4. G3 will be used to try to connect ãi to b̃i
by a short path. Sometimes we will need G4 for this task and sometimes we will fail;
Phase 3 will use the graphs G5–G9 to handle the failures of Phase 2.

The input to our algorithm is a sufficiently strong (α, β, γ)-expander graph G and
a set of pairs of vertices {(ai, bi) | i = 1, . . . , κ} satisfying the premises of Theorem
1.1. The output is a set of κ edge-disjoint paths, P1, . . . , Pκ such that Pi connects ai
to bi.
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2.2. Phase 0. We start by partitioning G into nine edge-disjoint graphs Gi =
(V,Ei), for 1 ≤ i ≤ 9. We use the algorithm split of Theorem 1.2. We take ε = α in
the theorem and assume that

β > 63α.(2.1)

Then each Gi satisfies

Φi = Φ(Gi) ≥ β0r,(2.2)

β0r ≤ δ(Gi) ≤ ∆(Gi) < r,(2.3)

where

β0 =
β

9
− 4α > 3α > 0.(2.4)

2.3. Phase 1. Let Ã, B̃ be two randomly chosen disjoint κ-subsets of V . We are
going to replace the problem of finding paths from ai to bi by that of finding paths
from ãi to b̃i, where ãi ∈ Ã and b̃i ∈ B̃. Let A denote the set {a1, a2, . . . , aκ} and
B = {b1, b2, . . . , bκ}.

We connect A to Ã via edge-disjoint paths in the graph G1 using network flow
techniques. We construct a network as follows:

• Each undirected edge of G1 gets capacity 1.
• Each v ∈ V becomes a source of capacity |{i : ai = v}| and each member of
Ã becomes a sink of capacity 1.

Then we find a flow from A to Ã that satisfies all demands. Since the maximum
flow has integer values, it decomposes naturally into |A| edge-disjoint paths (together
perhaps with some cycles). If a path joins ai to z ∈ A, then we let ãi = z.

We connect B to B̃ by edge-disjoint paths in a similar manner using G2.

Thus Phase 1 finds edge-disjoint paths P
(1)
i from ai to ãi and P

(3)
i from b̃i to bi,

1 ≤ i ≤ κ, where the vertex sets Ã, B̃ are chosen uniformly at random.

2.4. Phase 2.

2.4.1. Algorithm GenPaths. Our aim is to join ãi and b̃i for i = 1, 2, . . . , κ
by a short path in G3. After constructing a path, we remove its edges. It is important
to ensure that short paths exist. This would not be a problem if we could ensure that
G3 remains an expander throughout. We have to be satisfied with identifying large
subgraphs Γt = (Vt, Ft) of Gt, t = 3, 4 which are expanders. Initially Γ3 = G3,Γ4 =
G4, and V3, V4 lose vertices as the algorithm progresses. We ensure that Γ3,Γ4 remain
expanders by keeping the degrees of vertices in the Γt close to their degree in Gt. This
may involve deleting some (low degree) vertices after the construction of a path. We
use the routine remove to do this.

If the proposed start vertex v of a walk on Γ3 does not lie in V3, then we try to
connect it back to V3 by a path in Γ3. The terminal endpoint of this walk is denoted
by v′. We use a subroutine ConnectBack for this purpose. We do not expect to
succeed all the time and our failures are kept in a set L for later consideration.

The walk from ai to bi is then the catenation of paths P
(t)
i , t=1, . . . , 3. These

walks may each include a short walk WCB at the beginning provided by Connect-
Back.
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1. Algorithm GenPaths
2. begin
3. Γi ← Gi, i = 3, 4.
4. for i = 1 to κ do
5. Execute remove(Γ3)

6. Execute ConnectBack(V3, ãi, ã
′
i, i,W

(3a)
CB )

7. Execute ConnectBack(V3, b̃i, b̃
′
i, i,W

(3b)
CB )

8. if i �∈ L then

9. Construct a shortest path Qi from ã′i to b̃
′
i in Γ3.

10. P
(2)
i ← (W

(3a)
CB , Qi,W

(3b)
CB )

11. Γ3 ← Γ3 \ E(P (2)
i )

12. fi
13. od
14. end GenPaths

2.4.2. Subroutine REMOVE. The purpose of remove is to delete vertices
which might prevent a graph from being an expander. In genpaths we apply remove
to Γ3 or Γ4.

In step 4 we remove the set of vertices R0 which have so far lost more than β0r/4
edges through the deletion of shortest paths. We then iteratively (steps 5–12) remove
vertices which have at least β0r/4 neighbors among previously removed vertices. We
therefore see that for t = 3, 4

v ∈ Vt implies dΓt(v) ≥ dGt(v)− β0r/2 ≥ β0r/2.(2.5)

1. Algorithm remove(Γt)
2. begin
3. R0 = {v ∈ Vt : dΓt(v) < dGt(v)− β0r/4}.
4. (← 0.
5. begin
6. R̄� ← Vt \R�.
7. d← maxv{dΓt(v,R�) : v ∈ R̄�}.
8. if d ≤ β0r/4 terminate remove, otherwise
9. R� ← R� ∪ {w}; Vt → Vt \ {w} where w ∈ R̄� is such that dΓt(w,R�) = d.
10. (← (+ 1
11. goto 6.
12. end
13. end remove

We can see from (2.5) that throughout the algorithm

ΦΓt ≥ Φt − β0r/2 ≥ β0r/2 for t = 3, 4.(2.6)

Indeed, (2.5) implies that for S ⊆ Vt we have
outΓt(S) ≥ outGt(S)− β0r|S|/2 ≥ (Φt − β0r/2)|S|.

2.4.3. Subroutine ConnectBack. The purpose of ConnectBack is to con-
nect a vertex x to V3 by means of a random walk. (If x ∈ V3 already, then Connect-
Back does nothing except to relabel x as x′.) All walks are done on V4 and in step
5 we check that the start point x lies in V4. If not, we put i into L, where x = ãi or
b̃i. Edge-disjoint paths for the pairs (ai, bi), i ∈ L are found in Phase 3. Let

ω = �log log n�2.
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We do a random walk WCB from x until we reach V3 or make ω steps. In the
latter case we add the corresponding i to L.
1. subroutine ConnectBack(V3, x, x

′, i,WCB)
2. begin
3. if x ∈ V3 then x

′ ← x exit fi else
4. Execute remove(Γ4)
5. if x �∈ V4 then L← L ∪ {i} exit fi else
6. Do a random walk WCB starting at x in Γ4, until V3 is reached or

ω steps have been taken.
7. In the latter case L← L ∪ {i} and we exit else
8. Γ4 ← Γ4 \WCB

9. end ConnectBack

2.5. Phase 3. There is still the set L of pairs (ai, bi) which have not been
connected by paths. We will show later that with probability at least 1 − o(1), |L|
is at most n/(log n)4. As such, these pairs can be dealt with by the algorithm of [6],
using graphs G5–G9. It is convenient to join the ãi, b̃i as then we are guaranteed to
have distinct endpoints.

3. Analysis of Phase 1. In this section we show that if (2.2) holds and

β0r ≥ 1 and ε2 ≤ β0,(3.1)

then after we run Split, we can find edge-disjoint paths from ai to ãi in G1 and edge-
disjoint paths from bi to b̃i in G2, for 1 ≤ i ≤ κ, for any choice of a1, . . . , bκ consistent
with the premises of Theorem 1.1, and every choice for ã1, . . . , ãκ, b̃1, . . . , b̃κ.

Let A and Ã be as defined in section 2.3. For S ⊆ V , let
α(S) = |{i : ai ∈ S}| and ξ(S) = |S ∩ Ã|.

For sets S, T ⊆ V , let eG1(S, T ) denote the number of edges of G1 with an endpoint
in S and the other endpoint in T . It suffices to prove that

eG1(S, S̄) ≥ ξ(S̄)− α(S̄) ∀S ⊆ V.(3.2)

Given (3.2), the existence of the required flow in G1 is a special case of a theorem
of Gale [9] (see Bondy and Murty [1, Theorem 11.8], in which case we see that (3.2)
implies a successful run of Phase 2.

Now

α(S̄) = κ− α(S) ≥ κ− ε2r|S|
and so

ξ(S̄)− α(S̄) ≤ |Ã ∩ S̄| − κ+ ε2r|S| ≤ ε2r|S|.
Thus (2.2) verifies (3.2) for |S| ≤ n/2 provided we have ε2 ≤ β0. For |S| > n/2 we
have Φ1 ≥ 1 and then
eG1(S, S̄) = eG1(S̄, S) ≥ Φ1|S̄| ≥ |Ã ∩ S̄| ≥ |Ã ∩ S̄| − κ+ α(S) = ξ(S̄)− α(S̄);

and so Phase 1 succeeds with respect to A, Ã. The same argument applies to B, B̃.
To ensure these paths are of length O(log n) we can solve a minimum cost maximum
flow problem as indicated in Kleinberg and Rubinfeld [12].
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4. Analysis of Phase 2. We first prove that V3 stays large.
Lemma 4.1. Throughout the algorithm

|V3| ≥ (1− γ0)n,
where

γ0 =
β0γ

10
.

Proof. We know from (2.6) that Γ3 is a (β0r/2)-expander throughout the execu-
tion of Phase 2. We can use the strong edge-expansion of Γ3 to prove some vertex-
expansion and conclude the diameter of Γ3 is at most τ0 = �2 log1+β0/2 n�+1. Indeed,
in a θr-expander, every set S, |S| ≤ n/2 has at least θ|S| neighbors. Thus the total
number of edges in the paths that are removed from G3 is ≤ κτ0. Hence the vertices
B1 of G3 which are incident with β0r/4 edges of these paths satisfy

|B1| ≤ 4κτ0
β0r

≤ γ0n
3

provided

ε1 ≤ β
2
0γ

250
log

(
1 +

β0

2

)
,(4.1)

where ε1 is as in the statement of Theorem 1.1.
Let X = {x1, x2, . . . , } be the remaining vertices removed by remove. We claim

that if |B1| ≤ γ0

3 n, then |X| ≤ 2|B1| ≤ 2γ0

3 n implying that |V3| ≥ (1 − γ0)n and the
lemma follows.

Indeed, if Xi = {x1, x2, . . . , xi}, then Xi∪B1 has i+ |B1| vertices and contains at
least iβ0r/4 edges. The existence of xi, i = 2|B1| contradicts (1.1) with S = Xi ∪B1.
Therefore

in(S) ≥ |B1|β0r/2 ≥ |S|β0r/6 > |S|αr/2
using (2.4). ✷

Our next task is to bound the size of the set L of pairs of vertices which are left
to Phase 3. For this we need to establish some facts about random walks on graphs.

4.1. Random walks. A random walk on an undirected graph G = (V, F ) is a
Markov chain {Xt} on V associated with a particle that moves from vertex to vertex
according to the following rule: The probability of a transition from vertex v, of degree
dv, to a vertex w is 1/(2d)v if {v, w} ∈ E and 0 otherwise. The particle stays at v
with probability 1/2. This removes the possibility of periodicity and allows us to use
the conductance bound of Jerrum and Sinclair. Its stationary distribution, denoted
by π, is given by π(v) = dv

2|E| for v ∈ V .
Let P be the transition matrix of the associated Markov chain. Let λ be the

second largest eigenvalue of P . According to Sinclair and Jerrum [20]

λ ≤ 1− Ψ
2

2
,(4.2)

where Ψ denotes the conductance of a random walk on G.
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Here

Ψ = min
π(S)≤1/2

1

π(S)

∑
v∈S
w/∈S

π(v)P (v, w)

≥ min
π(S)≤1/2

1

π(S)

∑
v∈S
w/∈S

dv
∆|V | ·

1

2dv

= min
π(S)≤1/2

out(S)

2∆|V |π(S)
≥ Φδ

2∆2
.(4.3)

Another fact we will need is

|P t(v, w)− π(w)| ≤
√
∆

δ
λt.(4.4)

A proof of this can be found, for example, in [20].
We also need a large deviation result. This can be taken from the works of

Dinwoodie [4], Gillman [10] and Kahale [11]. We quote the consequences of Theorem
2.1 of [10]: Let q be the distribution of the start vertex of a random walk on a graph
G. Let S be a set of vertices of G. Let Y denote the number of visits to S in the first
t steps.

Pr(Y − tπ(S) ≤ −u) ≤
(
1 +

(1− λ)u
10t

)
Nqe

−(1−λ)u2/(20t),(4.5)

where

Nq =

(∑
v∈V

q(v)2

π(v)

)1/2

.

4.2. Analysis of connectback. Arguing as in Lemma 4.1 we see that since
κω = o(n) we will have |V4| = n − o(n) throughout the algorithm. Furthermore the
minimum and maximum degrees of Γ4 will satisfy

β0r/2 ≤ δ ≤ ∆ ≤ r.
Consequently Γ4 has at least (1− o(1))β0rn/2 edges and then for sufficiently large n,
the steady state for a random walk on Γ4 will always satisfy

β0

3n
≤ π(v) ≤ 3

β0n
∀v ∈ V4.

From (2.6) and (4.3) we see that the conductance Ψ satisfies

Ψ ≥ β
2
0

8
.(4.6)

Let L = L5 ∪ L7, where Lθ consists of the indices added to L in step θ of
connectback.

To probabilistically bound |L5| we first bound the expected value of the number
Mt of vertices which are incident with five or more connectback walks in Step t of
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genpaths, t = 6, 7. Fix a t and enumerate these walks as W1,W2, . . . ,Wm, m ≤ κ.
Then for c = 9/β2

0 ,

E(Mt) ≤
∑

i1,... ,i5,v

Pr(Wit , t = 1, . . . , 5 go through v)

≤
(
κ

5

)
n

(
c ω

n− o(n)
)5

= O

(
ω5n

(log n)5

)
.(4.7)

It is important to note here that regardless of the history of Phase 1, Ã is a random set
and we can assume that ã1, ã2, . . . , ãκ is a random ordering of its elements. (Phase
1 may cause some correlation between the orderings of Ã, B̃, but we compute the
contribution of each set separately.)

Explanation of (4.7). We first show that cω/(n− o(n)) bounds the probability
that walk Wit = (x1, x2, . . . , xm) passes through v, given Wis , 1 ≤ s < t pass through
v. Observe that x1 is chosen randomly from V3\X, where X is the set of start vertices
of Wis , 1 ≤ u < t. Therefore

Pr(x1 = v) ≤ 1

n− o(n) ≤
3

β0
π(v).

Then by induction on j we get

Pr(xj = v) =
∑
w∈V4

Pr(xj−1 = w)P (w, v) ≤
∑
w∈V4

3

β0
π(w)P (w, v) =

3

β0
π(v) ≤ 9

β2
0n

and we have the claimed bound of 9ω
β2
0n
for the (conditional) probability that Wis goes

through v. There are at most
(
κ
t

)
choices for Wis , 1 ≤ s < t and n choices for v and

(4.7) follows.
It follows from (4.7) and the Markov inequality that

Pr

(
Mt ≥ n

8(log n)4

)
= o(1).

In addition to these M = M6 + M7 vertices we consider those vertices which are
removed by remove(Γ4). Arguing as in Lemma 4.1 we see that if M = o(n), then
|L5| ≤ 3M . We deduce that

Pr

(
|L5| ≥ 3n

4(log n)4

)
= o(1).(4.8)

We now estimate the probability that i ∈ L7. We apply (4.5) withG = Γ4, S = V3∩V4,
and q(v) = 1

|V4| for v ∈ V4. Then we have

1− λ ≥ β
4
0

64
, Nq ≤

(
3

β0

)1/2

, and π(S) ≥ 1− 3γ0
β0
≥ 1
2
.

Putting t = ω and u = tπ(S) we get

Pr(W ∩ V3 = ∅) = O(e−β4
0ω/5120)

and so

E(|L7|) = O(e−β4
0ω/5120κ)
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and

Pr

(
|L7| ≥ n

4(log n)4

)
= o(1).

Combining this with (4.8) we see that Pr(|L| ≥ n/(log n)4) = o(1).
Remark 2. Suppose G has the following vertex expansion property for small

sets: S ⊆ V, |S| ≤ γ
rn implies that |NG(S)| ≥ (1 − α)r|S|. The algorithm of [7] can

be modified to split the graph so that each subgraph Gi satisfies |NGi(S)| ≥ 1−10α
8 r|S|.

Then the shortest paths in Γ3 will be of length O(logr n) and the claim in Remark 1
will follow.

5. Analysis of Phase 3. We join the pairs in L using the algorithm of [6]. The
algorithm is capable of joining Ω(n/(log n)2+o(1)) distinct pairs, provided the graph
has sufficient edge-expansion. Notice that ãi, b̃i are chosen as distinct vertices. We
briefly describe how we can make this algorithm route m ≤ n

(log n)4 pairs using the

graphs G5–G9, assuming only that Φ5, . . . ,Φ9 ≥ 1. Let λ = �log n�.
(a) The aim here is to choose wj ,Wj , 1 ≤ j ≤ 2m such that (i) wj ∈ Wj , (ii)

|Wj | = λ+ 1, (iii) the sets Wj , 1 ≤ j ≤ 2m are pairwise disjoint, and (iv) Wj induces
a connected subgraph of G6.

As in [14] we partition an arbitrary spanning tree T of G6. Since T has maximum
degree at most r we can find 2m vertex disjoint subtrees Tj , 1 ≤ j ≤ 2m of T , each
containing between λ+1 and (r− 1)λ+2 vertices. We can find T1 as follows: choose
an arbitrary root ρ and let Q1, Q2, . . . , Qσ be the subtrees of ρ. If there exists l such
that Ql has between λ+1 and (r− 1)λ+2 vertices, then we take T1 = Ql. Otherwise
we can search for T1 in any Q� with more than (r − 1)λ + 2 vertices. Since T \ T1

is connected, we can choose all of the Tj ’s in this way. Finally, Wj is the vertex set
of an arbitrary λ + 1 vertex subtree of Tj and wj is an arbitrary member of Wj for
j = 1, 2, . . . , 2m.

(b) Let SA, SB denote the set of sources and sinks that need to be joined. Using a
network flow algorithm in G5 connect in an arbitrary manner the vertices of SA ∪SB
to W = {w1, . . . , w2m} by 2m edge-disjoint paths. The expansion properties of G5

ensure that such paths always exist.
Let âk (resp., b̂k) denote the vertex in Wi that was connected to the original

end-point ãk (resp., b̃k). Our problem is now to find edge-disjoint paths joining âk to

b̂k for 1 ≤ k ≤ m.
(c) If wt has been renamed as âk (resp., b̂k), then rename the elements ofWt as âk,�

(resp., b̂k,�), 1 ≤ ( ≤ λ. Choose ξj , 1 ≤ j ≤ λm and ηj , 1 ≤ j ≤ λm independently at
random from the steady state distribution π of a random walk on G9. Using a network
flow algorithm as in (b), connect {âk,� : 1 ≤ k ≤ m, 1 ≤ ( ≤ λ} to {ξj : 1 ≤ j ≤ λm}
by edge-disjoint paths in G7. Similarly, connect {b̂k,� : 1 ≤ k ≤ m, 1 ≤ ( ≤ λ} to
{ηj : 1 ≤ j ≤ λm} by edge-disjoint paths in G8. Rename the other endpoint of

the path starting at âk,� (resp., b̂k,�) as a
∗
k,� (resp., b

∗
k,�). Once again the expansion

properties of G7, G8 ensure that flows exist.
(d) Choose x∗k,�, 1 ≤ k ≤ m, 1 ≤ ( ≤ λ independently at random from the steady

state distribution π of a random walk on G9. LetW
′
k,� (resp., W

′′
k,�) be a random walk

of length τ = θ log n from a∗k,� (resp., b
∗
k,�) to x

∗
k,�. Here θ is sufficiently large that a

random walk of this length on G9 is “well mixed,” e.g., until the variational distance
between the τ -step distribution and the steady state is O(n−3). That θ = O(1) follows
from (4.4). The use of this intermediate vertex x̂k,� helps to break some conditioning
caused by the pairing up of the flow algorithm.
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Let B′k (resp., B
′′
k ) denote the bundle of walksW

′
k,�, 1 ≤ ( ≤ λ (resp.,W ′′k,�, 1 ≤ ( ≤

λ). Following [16] we say that W ′k,� is bad if there exists k
′ �= k such that W ′k,� shares

an edge with a walk in a bundle B′k′ or B′′k′ . Each walk starts at an independently
chosen vertex and moves to an (almost) independently chosen destination. The steady
state of a random walk is uniform on edges and so at each stage of a walk, each edge
is equally likely to be crossed. Thus

Pr(W ′k,� is bad) ≤
2λmθ2(log n)2

β0rn
= O

(
1

log n

)
.

We say that index k is bad if either B′k or B
′′
k contain more than λ/3 bad walks.

If index k is not bad, then we can find a walk from a∗k,� to b
∗
k,� through x

∗
k,� for some

( which is edge-disjoint from all other walks. This gives a walk

ak − ãk − âk − âk,� − a∗k,� − x∗k,� − b∗k,� − b̂k,� − b̂k − b̃k − bk,
which is edge-disjoint from all other such walks.

The probability that index k is bad is at most

2Pr(B(λ,O(1/(log n)) ≥ λ/3) = O(n−2).

Therefore with probability 1-o(1) there are no bad indices. ✷
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Abstract. The notion of traitor tracing was introduced by Chor, Fiat, and Naor [Tracing
Traitors, Lecture Notes in Comput. Sci. 839, 1994, pp. 257–270] in order to combat piracy scenarios.
Recently, Fiat and Tassa [Tracing Traitors, Lecture Notes in Comput. Sci. 1666, 1999, pp. 354–371]
proposed a dynamic traitor tracing scenario, in which the algorithm adapts dynamically according
to the responses of the pirate. Let n be the number of users and p the number of traitors.

Our main result is an algorithm which locates p traitors, even if p is unknown, using a water-
marking alphabet of size p + 1 and an optimal number of Θ(p2 + p logn) rounds. This improves
the exponential number of rounds achieved by Fiat and Tassa in this case. We also present two
algorithms that use a larger alphabet: for an alphabet of size p+ c+1, c ≥ 1, an algorithm that uses
O(p2/c+ p logn) rounds; for an alphabet of size pc+ 1, an algorithm that uses O(p logc n) rounds.

Our final result is a lower bound of Ω(p2/c + p logc+1 n) rounds for any algorithm that uses an
alphabet of size p+ c, assuming that p is not known in advance.

Key words. analysis of algorithms, asymptotic complexity, cryptography, traitor tracing

AMS subject classifications. 68Q25, 94A60

PII. S0097539700367984

1. Introduction. In the electronic world, where information is easily copied and
retransmitted, the issue of protecting intellectual property becomes a great concern.
While owners of such information are interested in selling it, they need to protect
themselves. There are two ways to protect such property. One option is to prevent
the redistribution. Another option is to devise means to detect misconduct once
redistribution has occurred. The second issue is the one addressed by traitor tracing
(of course, the existence of such a scheme may also deter piracy from even occurring).

An excellent example is the world of Pay-TV systems. The owners of a Pay-TV
system would like to broadcast only to their paying customers, and to be able to add
and delete viewers as needed, while ensuring that this process happens in a timely
manner. In order to protect the material that is being broadcast, encryption is utilized
and keys are changed periodically, in addition to the existence of secure hardware.
The goal of the pirate is to enable nonpaying persons to view the broadcasts. The
pirate, registered as a legitimate subscriber of the system, can achieve this goal by
transferring the decryption keys or by rebroadcasting the entire content. In order
to make tracing difficult, the pirate can control several subscriptions and alternate
between them. We refer to each such subscription as a traitor.

We assume from now on that the pirate operates by rebroadcasting the content.
Our algorithms can be easily adapted to deal with the other mode of piracy, where
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keys are published.
Traitor tracing schemes should be capable of detecting the traitors, so that they

can be disconnected from the system without harming any legitimate user. Further-
more, such schemes should supply legal evidence of the pirate’s identity.

Chor, Fiat, and Naor [3] introduced the notion of traitor tracing and provided a
solution to this problem. They use a static approach, which means that all security
measures are applied once at the onset of the protocol. As there is a single opportunity
for applying these measures, they must suffice in order to locate the traitors once
piracy is observed. If the number of traitors in reality is larger than that assumed
by the static scheme, then the algorithm has no way of tracing the traitors, and
the traitors may even frame an innocent user. Other related work can be found
in [2, 5, 6, 9, 8, 10, 11]. For a comprehensive overview of static schemes and related
work, see [7].

A basic tool used by many traitor tracing schemes is cryptographic fingerprinting
(e.g., [13, 1, 2, 7]), which allows the schemes to generate different versions of the
same content and send them to subsets of users. This can be done, for example,
by watermarking each version, with no noticeable degradation in quality. A basic
assumption of both previous schemes and our schemes is that the pirate cannot remove
the watermarks or combine different versions into a new one; see, e.g., [4].

In a typical static scheme that uses fingerprinting, the content is divided into
segments, and each segment is watermarked. The number of different versions that
can be generated from a segment is referred to as the watermarking alphabet size. It
is possible, of course, to use an alphabet whose size equals the number of subscribers
and locate the traitors immediately. However, this requires an enormous bandwidth.
Therefore, a smaller alphabet is used, so that the same version of a given segment is
sent to many subscribers.

1.1. Dynamic traitor tracing schemes. Recently, Fiat and Tassa [7] intro-
duced dynamic traitor tracing schemes. Their schemes adapt themselves throughout
the algorithm in order to force the pirate to reveal more and more information. Even-
tually, the algorithm locates all traitors (or stops piracy). An additional nice feature
of the dynamic schemes of [7] is that there is no need for an a priori bound on the
possible number of traitors, as the algorithms adapt themselves when a new traitor
is discovered.

The static schemes described above are modified by [7] to fit the dynamic setting
as follows: In each round, the algorithm divides the set of users into disjoint subsets,
where the number of subsets is bounded by the watermarking alphabet size. Then
different versions of the content are transmitted by the system to these subsets of
users, one version per subset. Whenever the pirate broadcasts one of these versions,
it is evidence that the corresponding subset contains a traitor. When this happens, the
algorithm changes the allocation of versions to the users, thus starting a new round.
(Otherwise the pirate could continue to broadcast the same version with no further
knowledge gained by the algorithm.) Eventually, if the pirate keeps rebroadcasting,
the information gathered allows the algorithm to locate and disconnect all traitors.

A segment in the dynamic setting is defined as the part of the content transmitted
to the users within the duration of a round. We note that sending a distinct version
securely to each subset can be done by encryption. See section 2.1 in [7] for a discussion
of the bandwidth overhead required for sending the encrypted versions.

We are interested in the following two complexity measures of such a dynamic
traitor tracing scheme:
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• the number of different versions used (i.e., the size of the watermarking al-
phabet), which is proportional to the bandwidth requirements, and
• the time or number of rounds needed, which is proportional to the number of
segments used.

We ignore the computation performed by the traitor tracing algorithm, but we note
that all proposed algorithms, both previous and ours, are efficient.

Let n be the number of all subscribers and p the number of traitors. It is shown
in [7] that

(A) any deterministic algorithm must use at least p+1 versions in order to locate
even a single traitor, regardless of the number of rounds, and even if p is
known in advance;

(B) using 2p+1 versions, it is possible to locate all p traitors in O(p log n) rounds;
(C) using p+1 versions, it is possible to locate all p traitors in O(3pp log n) rounds.

1.2. Our results. We present a family of deterministic algorithms which locate
all p traitors in a polynomial number of rounds. The exact bounds depend on the size
of the watermarking alphabet. Specifically, we show the following:

(1) Using p + 1 versions, it is possible to locate all p traitors in an optimal
number of Θ(p2+p log n) rounds (see lower bound (4) below). This improves
the exponential bound in (C), thus solving an open problem raised in [7].
Note that the algorithm in (B) runs in a polynomial number of rounds but
uses twice as many versions as our algorithm. By (A), the minimal number
of versions needed is p+1. Thus our algorithm achieves the optimal time for
the minimal alphabet size.

(2) Using p+ c+ 1 versions, for any 1 ≤ c ≤ p, it is possible to locate p traitors
in O(p2/c+ p log n) rounds. For example, if c = Ω(p), the time is O(p log n).

(3) Using pc + 1 versions, for any c ≥ 2, it is possible to locate p traitors in
O(p logc n) rounds. For example, if c = n

ε for a constant ε > 0, the time is
O(p).

All our algorithms, similar to algorithms (B) and (C) of [7], apply even if the
number of traitors p is not known in advance. This means that, for example, if the
algorithm is allowed to use p+1 versions, then the algorithm uses only t+1 versions
when only t ≤ p traitors are known to exist. As noted before, the computation
performed by the algorithms between consecutive rounds is efficient.

In addition, we provide the following lower bound for the time needed to locate
p traitors:

(4) The time needed to locate all p traitors, when p is not known in advance and
p+ c versions are used, is Ω(p2/c+ p logc+1 n).

This bound is tight when c is a constant (result (2) above) and when c ≥ p1+ε for
a constant ε > 0 (result (3) above). Otherwise the gap is very small—only a factor
of log c. It remains an open problem to close this gap.

Organization. The remainder of this paper is organized as follows. In section 2
we describe the problem and the general strategy that will be used by our algorithms.
In section 3 we describe an algorithm that uses p+1 versions and O(p3 log n) rounds.
This algorithm is used as a building block by later algorithms. The optimal algorithm
that uses p+1 versions is presented in section 4, thus establishing (1). In section 5 we
present two algorithms that use more than the minimal number of versions required
and prove bounds (2) and (3). In section 6 we present another algorithm that uses
p+1 versions and runs in time O(p3 log n). While this is not optimal, it is interesting
that the same bound as that given in section 3 can be obtained using a different
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approach. Finally, in section 7 we prove lower bound (4). We conclude with a few
open problems in section 8.

2. Preliminaries.

2.1. The model. We now describe a combinatorial game which is an abstraction
of the dynamic scenario described in the introduction and serves as a model for the
rest of the paper.

Denote by U the set of users, and let n = |U |. Let T ⊆ U be the set of traitors
controlled by the pirate and let p = |T |.

In each round, the algorithm assigns to each user a version of the current segment
from a set of versions C. If we give version c ∈ C to a subset of users, then the subset
is said to be colored by c. Then the pirate broadcasts one of the colors as an answer.
If the pirate broadcasts color c, this implies that one of the users colored by c is a
traitor. A traitor is located if only a single user is colored by c, and c is given as an
answer. Since the number of traitors is not known in advance, this is the only way to
locate a traitor. A traitor that has been located is disconnected, i.e., removed from
U .

We assume that the pirate always gives an answer, as long as he has active
traitors. The pirate loses the game when he does not answer (meaning that he goes
out of business because the algorithm located all traitors). We measure the maximal
number of colors used in any single round and the number of rounds needed in the
worst case. The goal of the algorithm is to minimize these numbers in the worst case;
more precisely, to achieve some given tradeoff between the two measures.

In fact, the pirate does not have to decide in advance who the p traitors are
(as we implicitly assumed above). Instead, the pirate can choose the traitors in an
adaptive manner throughout the game. However, once he decides to corrupt a user,
he is committed to this decision until the end of the game. (This is similar to the
general situation in the area of on-line algorithms and other adversary arguments.
Since the algorithms are deterministic, the adversary can simulate the algorithm in
advance, and thus committing to the set T in advance does not pose any restriction.)

2.2. A simplified model. The following lemma shows that locating a single
traitor is as hard as locating all p traitors in the worst case. Specifically, we show that
this seemingly easier problem of locating only one traitor saves at most p− 1 rounds.
This may be somewhat counterintuitive at first, and so we try to give some intuition.

Let us call a pirate’s strategy reasonable if it never answers by a color given to a
single user, unless he has no choice (when each one of the traitors received a unique
color given only to him). For reasonable strategies, the statement holds trivially, since
the algorithm can locate a traitor only when all traitors have a unique color. Then it
is easy to locate the remaining traitors in additional p− 1 rounds, as claimed.

It remains to prove that reasonable strategies result in the maximal number of
rounds for a given fixed number of colors. If the goal of the algorithm is to locate
one traitor, this is trivial, since it brings no advantage for the pirate to lose the game
before he must. However, when the goal of the algorithm is to locate all p traitors,
then it is not clear in advance that a reasonable strategy is the pirate’s best resort.
It may be better in this case for the pirate to reveal one traitor and keep a bigger
uncertainty about the location of the remaining traitors. We thus have to prove that
the statement is true for any strategy, not necessarily reasonable strategies.

Lemma 2.1. There exists an algorithm that locates one of the p traitors in m
rounds if and only if there exists an algorithm that locates all p traitors in m+ p− 1
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rounds. The bound on the number of colors is the same for both algorithms.
Proof. If we have an algorithm that locates all traitors, it must eventually get p

answers that allow it to locate all traitors. If we stop after the first traitor is located,
we have an algorithm that locates one traitor, takes at most m rounds instead of
m+ p− 1, and does not use more colors.

Now suppose that we have an algorithm A that locates a single traitor in at most
m rounds. We devise an algorithm B that uses algorithm A as a black box in order to
locate all traitors. To do this, algorithm B runs algorithm A and passes to algorithm
A the pirate’s answers with the following exception: whenever a color c that was
given by algorithm A to a single user is given as an answer by the pirate, algorithm
B disconnects that user (which is clearly a traitor), but does not pass the pirate’s
answer to algorithm A. Thus, as far as algorithm A is concerned, it still waits for
an answer from the pirate, and the user that was colored by c is still a part of the
user set U . However, since this user has been disconnected, the pirate cannot give
the color c that was given only to this user as an answer in the next round.

As far as algorithm B is concerned a round has occurred, and we charge this
round in which a traitor was located to algorithm B. All other rounds are charged
to algorithm A, including the final round in which a traitor is located. Algorithm B
stops when all traitors are located, that is, when no more answers are received from
the pirate. Clearly, the number of colors used by algorithm B is the same as the
number of colors used by algorithm A.

To finish the proof we show that algorithm B performs at most m+p−1 rounds,
assuming that algorithm A performs at most m rounds. Indeed, we charged p − 1
rounds to algorithm B (the rounds in which the first p − 1 traitors were located).
Also, the sequence of answers that are passed by algorithm B to algorithm A is valid,
and thus algorithm A locates a single traitor (the last traitor located) in at most
m rounds. Thus the total number of rounds performed by algorithm B is at most
m+ p− 1 as claimed.

We will assume from now on that any algorithm stops after locating one traitor.
Thus, without mentioning it explicitly in the algorithm, we assume that the pirate
never broadcasts a color given to a single user (otherwise the algorithm stops imme-
diately). By Lemma 2.1 the change in the number of rounds is at most p− 1, which
is insignificant compared to the bounds that we show. In fact, locating all p traitors
requires Ω(p) rounds no matter how many colors are used.

In practice it may be desired to reduce the number of colors used after a traitor
is located. It is easy to modify our algorithms to achieve this as well.

2.3. Graph notation. The algorithms that we present partition the set of all
users into disjoint subsets and give all users in the same subset a common color. We
represent the current state of the algorithm by an undirected graph G = (V,E). Each
vertex of G represents a subset of users, and each user belongs to exactly one vertex.
An edge (X,Y ) means that the subset X ∪Y contains a traitor, i.e., in some previous
round, the answer was the color of X ∪Y or (less frequently) the color of some subset
of X ∪Y . A special vertex I represents the subset of “innocent users” (i.e., the subset
of users not known at the present stage to contain a traitor). A vertex is called a
singleton if it contains exactly one user.

2.4. A basic algorithm. Two of the schemes presented in [7] are based on the
following basic algorithm, which is formulated here using our graph notation. In this
algorithm the graph consists of 2t + 1 vertices, one of which is the special vertex I,
and t disjoint edges, none of which is adjacent to I. Recall that each edge implies
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Fig. 2.1. An example of the graph G used by the basic algorithm.

that at least one of its endpoints contains a traitor. Since the graph has t disjoint
edges, there exist at least t traitors. See Figure 2.1.

Basic algorithm. Start with a graph G = (V,E) with I = U , V = {I}, E = ∅,
and t = 0. Repeat forever:

(1) Find a vertex X that contains a traitor.
(2) If X = I: Split I into two new vertices of equal size (or differing in size by 1

if |X| is odd), and connect them by an edge. Set I = ∅ and t = t+ 1.
(3) Otherwise: Let Y be the vertex that is connected to X by an edge. Set

I = I ∪ Y , split X into two vertices of (almost) equal size, and connect them
by an edge.

The first algorithm in [7] uses 2t + 1 colors, giving each vertex a distinct color.
Thus, in each round the pirate has to broadcast the color of some vertex X, and all
p traitors are located in O(p log n) rounds. The second algorithm in [7] uses only
t+ 1 colors, but step (1) requires an exponential time in t, and thus the algorithm is
impractical.

2.5. Generalized graph notation. In order to decrease the number of colors
needed, our algorithms use graphs that generalize the above structure. Instead of the
t pairs of connected vertices, we have disjoint cliques and possibly some additional
edges. More formally, we define the following graphs.

Definition 2.2. Let t ≥ k ≥ 0 be two integers. A graph G = (V,E) is a
(t, k)-graph if

(1) G contains t+k+1 vertices, one of which is the special vertex I. The vertices
are subsets of U , all of them except possibly I are nonempty, and every user
belongs to exactly one vertex;

(2) for any edge (X,Y ) ∈ E, the subset X ∪ Y contains a traitor;
(3) the vertices in V \ {I} are partitioned into k disjoint cliques {Q1, . . . , Qk},

where |Qi| = ti ≥ 2 for each 1 ≤ i ≤ k.
Note that a (t, k)-graph may contain additional edges between the cliques. Fur-

ther constraints on the structure of the graph will be described in each one of the
algorithms. The following lemma is easy to verify if we remember that two vertices
are connected by an edge if at least one of them contains a traitor.

Lemma 2.3. Let G be a (t, k)-graph. A clique Qi of ti vertices contains at least
ti− 1 traitors, and the graph G contains at least t traitors. The number of vertices of
a (t, k)-graph is at most 2t+ 1.

3. The clique algorithm. In this section we describe an algorithm that uses
p+1 colors. The algorithm runs in O(p3 log n) rounds and is not optimal. In the next
section this algorithm is used to derive an algorithm that uses (p+1) colors and runs
in an optimal number of Θ(p2 + p log n) rounds.

We start with an overview of the clique algorithm. By Lemma 2.3, a (t, k)-graph
is known to contain at least t traitors. Therefore we are allowed to use t + 1 colors.
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Since a (t, k)-graph can contain up to 2t+ 1 vertices, we may not have enough colors
to give each vertex a distinct color. Thus our algorithm pairs the k cliques and forces
the pirate in each round to either transmit a color given to only one vertex or to
disclose an edge connecting a pair of cliques. If a color given to only one vertex is
transmitted, then we split this vertex into two vertices (producing a new clique of size
2), and thus advance towards locating at least one of the traitors. Disclosed edges,
on the other hand, are added to the graph in order to merge eventually each pair of
cliques into one larger clique (containing all but one of the vertices of the two cliques).
This process is repeated until the graph contains exactly one clique of size t+1. Then
we can give each one of the vertices a distinct color and force the pirate to transmit
a color given to only one vertex (allowing us again to split this vertex).

3.1. Data structures and invariants.

The graph. We maintain a (t, k)-graph G = (V,E) with a special vertex I and
cliques Qi of size ti.

Zones and blocks. The vertices of the graphG are partitioned into Zones Z1, Z2.
The vertices in Zone Z1 are partitioned into blocks. There are no edges connecting
vertices from different blocks or zones. The zones and the blocks are defined as follows:
(Z1) The vertices in this zone are partitioned into blocks. Each block is a graph

induced by the vertices of two cliques Qi and Qj , of sizes ti and tj , respec-
tively. The block does not contain a clique of size ti + tj − 1. Equivalently,
this means that there are four distinct vertices X1, X2 ∈ Qi and Y1, Y2 ∈ Qj
such that (X1, Y1), (X2, Y2) ∈ E.

(Z2) This zone contains the special vertex I. In addition it may contain one clique
Qi of size ti. The vertex I and the clique Qi do not form a clique of size
ti + 1. Equivalently, this means that there exists a vertex X ∈ Qi such that
(X, I) ∈ E.

See Figure 3.1 for an example of the data structures used by the clique algorithm.

3.2. Description of the algorithm. Start with a (0, 0)-graph G = (V,E) with
I = U , V = {I}, E = ∅, and t = 0. Repeat the following two phases:

Phase 1: Distributing the colors to the vertices of G.
Allocate ti − 1 colors to each clique Qi, for a total of t colors. The last color is

allocated to I. We now describe how to distribute these allocated colors in each zone
and block of G.

(1) Color each block in Zone Z1 separately, using the colors allocated to the pair of
cliques in it: Let B be a block in Zone Z1 and let Qi and Qj be the two cliques
in B. By the definition of the blocks in Zone Z1, there exist four distinct
vertices X1, X2 ∈ Qi and Y1, Y2 ∈ Qj such that (X1, Y1), (X2, Y2) ∈ E. Color
X1 ∪ Y1 with one color and X2 ∪ Y2 with another color. Color the remaining
ti + tj − 4 vertices of Qi, Qj using the remaining ti + tj − 4 colors allocated
to these two cliques, one color per vertex.

(2) If Zone Z2 contains only the vertex I, then color I using the color allocated
to it. Otherwise Zone Z2 contains also a clique Qi and there exists a vertex
X ∈ Qi such that (X, I) ∈ E. Use one color for X∪I and color the remaining
ti−1 vertices of Qi using ti−1 colors, one color per vertex. (If I is empty, all
vertices of Qi are colored with distinct colors.) Therefore ti colors are used,
which is the total number of colors allocated to Qi and I.

See Figure 3.1 for an example of the distribution of colors.
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Fig. 3.1. An example of the data structures used by the clique algorithm. This is a (t, k)-graph,
where t = 11 and k = 5. The bold lines represent clique edges, and the thin lines represent edges
between cliques, or between a clique and I. This is also an example of the distribution of colors in
Phase 1 of the clique algorithm. The labels denote the colors given to the vertices. The dashed lines
denote the pairs of nonadjacent vertices that received the same color.

Phase 2: Reorganizing the graph following the pirate’s response.
(1) If the pirate broadcasts a color given to only one vertex X: Remove X and

the edges incident with it from G. Split X into two new vertices X1, X2 of
equal size (or differing in size by one if |X| is odd), and add the edge (X1, X2).
(1.1) If X = I: Define a new clique Q consisting of the two vertices X1, X2.

Set I = ∅, t = t + 1, and k = k + 1. Incorporate the clique Q into the
zones (see step (3)).

(1.2) Otherwise: Let Qi be the clique to which X belongs. Set Qi = Qi \{X}.
(1.2.1) If |Qi| = 1, then remove all edges incident with the vertex remaining

in Qi. Remove this vertex from Qi and add it to I. Place X1 and
X2 into Qi. The clique Qi now consists of the two vertices X1, X2.

(1.2.2) Otherwise Qi is still a legal clique. In this case the two sets X1, X2

will form a new clique Q. Set k = k + 1 and incorporate the new
clique Q into the zones (see step (3)).

(2) If the pirate broadcasts a color given to a pair of vertices X,Y : Add the edge
(X,Y ) to G, and
(2.1) if this edge connects vertices belonging to a pair of cliques Qi, Qj in

some block B, and after adding this edge, the block B contains a large
clique Q of size ti + tj − 1: Let Z be the remaining vertex in B that
does not belong to this large clique (i.e., Z ∈ Q). Remove Z and all
edges incident with it from its clique and add Z to I. Furthermore, set
k = k − 1, remove the cliques Qi, Qj and their block B. Incorporate
the new clique Q into the zones (see step (3)). See Figure 3.2 for an
example.

(2.2) If this edge connects I and a vertex of the clique Qi in Zone Z2, and



1810 OMER BERKMAN, MICHAL PARNAS, AND JIŘÍ SGALL

ZY

X

Z

Fig. 3.2. An example of merging a pair of cliques in step (2.1) of Phase 2 of the clique algorithm.
On the left: A block of Zone Z1, in which X and Y received the same color. In the middle: The
block after the pirate answered with the joint color of X and Y , and the edge (X,Y ) was added.
Finally, on the right: The two cliques were merged into one big clique, and all edges incident with
Z were removed.

after adding this edge, Qi and I form a clique on ti + 1 vertices: Add I
as a vertex to Qi and create a new special vertex I = ∅. Set t = t + 1
(since ti was increased by 1).

(3) If a new clique Q was created during one of the above steps, reorganize the
zones as follows to incorporate Q: If Zone Z2 contains only I, place Q in
Zone Z2. Otherwise, Zone Z2 contains a clique R in addition to I. In this
case, remove all edges incident with I, remove R from Zone Z2, pair it with
the new clique Q, and create in Zone Z1 a new block containing the cliques
Q and R.

Remark. In step (3) of Phase 2, we removed all edges incident with the vertex I.
Removing these edges makes the structure of G simpler, but in practice we may want
to leave them in the graph, since they provide more information. Since the number
of these edges is O(p), it turns out that the analysis of the algorithm (Theorem 3.3
below) is valid whether these edges are removed or not.

3.3. Correctness and efficiency.
Lemma 3.1. The invariants of the algorithm are preserved at all times.
Proof.
The graph. An edge is added only if we got an answer from the pirate corre-

sponding to that edge, and thus one of its endpoints must contain a traitor. Whenever
the structure of the cliques is changed in steps (1) or (2) of Phase 2, we verify that
every clique has at least two vertices and that the values of t and k are updated
properly, so that the new graph is a (t, k)-graph for the new values. Step (3) of Phase
2 only removes edges incident with I, which maintains the structure of a (t, k)-graph.

Zone constraints. If adding a new edge would violate the zone invariants, i.e.,
it would create a big clique, then we reorganize the cliques in step (2) of Phase 2. In
steps (1) and (3) of Phase 2, no edges are added between cliques. Reorganizing the
cliques does not violate the zone constraints. If two cliques are placed in the same
block, then there are no edges between them (since they were in different blocks or
zones before). Similarly if a clique is placed in Zone Z2, then there are no edges
between this clique and I.

Edges between different zones and blocks. Whenever the cliques are re-
organized or a new clique is created, all the edges that would connect vertices from
different zones or blocks are removed.

In order to bound the number of rounds used by the algorithm, we first need to
bound the number of split operations performed throughout the algorithm. Define a
split to be any round in which a vertex of G is split (i.e., a round in which step (1) in
Phase 2 is performed).
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Lemma 3.2. The total number of splits is O(p2 log n).
Proof. Whenever the set I is split, t increases. During the algorithm t never

decreases and its value is at most p. Thus the set I can be split at most p times.
For every traitor i, define xi as follows. If traitor i is in I, then xi = 0. Otherwise

traitor i is in a vertex X = I and xi = �log |X|�. Each xi is an integer between 0
and �log n�. Between any two consecutive splits of I, xi does not increase. It may
be set to zero (if the corresponding vertex is added to I), decrease by one or two (if
the corresponding vertex is split), or remain the same (otherwise). At each split of
a vertex X = I, we know that X contains a traitor. It follows that when a spilt
occurs, then for some traitor i, xi is decreased by at least one. Thus there are at most
p�log n� splits between any two consecutive splits of I, and the total number of splits
is O(p2 log n).

Theorem 3.3. The clique algorithm locates a traitor in O(p3 log n) rounds, using
p + 1 colors. Hence, all p traitors can be located in O(p3 log n) rounds, using p + 1
colors.

Proof. By Lemma 3.1, the algorithm maintains a (t, k)-graph, and thus Lemma 2.3
implies that t ≤ p. It is immediate from the allocation of colors in Phase 1 that the
algorithm uses t+ 1 ≤ p+ 1 colors.

We now analyze the number of rounds needed. In each round some progress is
made: either a set is split, or an edge is added to the graph (since we assumed that
the pirate always gives an answer as long as he has active traitors). We show that the
number of such events is at most O(p3 log n), and thus the algorithm must terminate
and its running time is O(p3 log n). This also proves that the algorithm eventually
finishes by locating a traitor. By Lemma 2.1, all p traitors can be located in the worst
case in at most O(p3 log n+ (p− 1)) = O(p3 log n) rounds.

By Lemma 3.2, the total number of splits is O(p2 log n). It remains to bound
the number of edges added during the algorithm. The final graph is a (t, k)-graph
for some k, where t ≤ p. Such a graph can contain at most 2t + 1 ≤ 2p + 1 vertices
and thus at most O(p2) edges. However, in some rounds edges may be removed. We
show below that the number of edges removed during the algorithm is O(p3 log n).
It implies that at most O(p2 + p3 log n) = O(p3 log n) edges are added during the
algorithm and the theorem follows.

Edges are removed when (i) a set is split or (ii) two cliques are merged into a
larger clique. Each time such an event happens, at most O(p) edges are removed
(including the edges that are possibly removed in step (3) of Phase 2). Event (i) can
happen at most O(p2 log n) times by Lemma 3.2. The number of times two cliques
are merged is bounded from above by the number of times the number of cliques
increases, and this happens only when a vertex is split. Thus event (ii) can happen
at most O(p2 log n) times. Therefore, at most O(p3 log n) edges are removed during
the algorithm.

It may seem at first that a more careful analysis can show that the number of
splits is O(p log n), which would improve the overall running time by a factor of p.
However, it is possible to demonstrate a run of the algorithm where indeed Θ(p2 log n)
splits occur and Θ(p3 log n) rounds are needed.

4. An optimal algorithm. In this section we describe an algorithm that uses
p+ 1 colors and runs in an optimal number of Θ(p2 + p log n) rounds. We start with
an overview of the algorithm.

The clique algorithm loses efficiency because of the high number of O(p2 log n)
splits, and due to the fact that whenever we split a vertex, we may remove O(p) edges.



1812 OMER BERKMAN, MICHAL PARNAS, AND JIŘÍ SGALL

We solve these problems as follows:
The users are partitioned into two areas, Areas 1 and 2. In Area 1 the users

are organized into cliques of singletons (recall that a vertex is called a singleton if
it contains exactly one user). Here we allow cliques of any size and use the clique
algorithm. Since all vertices are singletons, there are no split operations. It follows
that the total number of rounds in Area 1 is O(p2).

Initially, all the users are placed in Area 2. The only case when users are moved
from Area 2 to Area 1 is when we find a set of two users containing a traitor. Then we
add them to Area 1 as a clique of two singletons. Area 2 is divided into blocks, each
with a constant number of known traitors. This allows us to achieve an amortized cost
of O(1) rounds per split and an amortized cost of O(log n) rounds until we pin down
a traitor to a set of two users. Thus, at an amortized cost of O(log n), we increase the
number of traitors in Area 1 (by placing there the new clique of two singletons that
we found in Area 2). The number of known traitors can increase at most p times, and
thus the resulting number of rounds is O(p2 + p log n), exactly matching our lower
bound. See Figure 4.1 for a sketch of the two areas.

This grand plan has some difficulties. The main obstacle is that the clique al-
gorithm cannot be used on the blocks of Area 2, since we are not allowed to create
large cliques on nonsingleton vertices (as this may result in many splits). An addi-
tional problem is that in each block of Area 2 we cannot use more colors than the
number of traitors known to exist in the block (otherwise we would violate the bound
of p+1 colors). We now sketch briefly the solutions used in Area 2 to overcome these
difficulties.

Most of Area 2 is organized into blocks containing at least three known traitors
each (Zone Z4 below). In each such block, our goal is to either (i) find a set of two
users containing a traitor, or (ii) split the block into two parts, one part with three
known traitors and one part with one known traitor. In case (i), we can place these
two users as a clique of two singletons in Area 1. In case (ii), the number of known
traitors in Area 2 has increased, while maintaining the invariant of blocks with a
constant number of known traitors in this area. Since our means are very limited,
it may happen that we can show that there are four traitors in the block, but we
are not able to partition them into two parts as required in (ii). In such a case we
continue with a block known to contain more traitors. Eventually, when the number
of traitors known to exist in the block raises to seven, we are able to achieve the
required partition, using the basic algorithm from section 2.4 with seven colors.

Note that even if we know that there are seven traitors in the block, we do not
necessarily know their exact location among the two parts into which the block was
partitioned. Hence, the total number of traitors known to exist in some particular
block may decrease (this never happens in the clique algorithm).

Another major problem is that we cannot treat the two areas, Area 1 and Area 2,
as two completely independent processes. If we did, we would need in each of the two
areas one more color than the number of traitors known to exist in that area. This
would add up to p + 2 colors instead of the desired p + 1 colors. To solve this, we
distinguish between the total number of traitors known to exist and the number of
traitors known to exist in each one of the areas. Using a single additional color for
both areas we are able to prove the existence of an additional traitor without knowing
to which area it belongs. (Technically this is done by using the concept of marking
of vertices in the algorithm.) Once we know that an additional traitor exists, we can
safely use one extra color and continue the algorithm with one additional color in each



EFFICIENT DYNAMIC TRAITOR TRACING 1813

A pair of
Cliques

K

A pair of
Cliques

Empty or contains 

A (t,k)-graph, t <= 2

        one Clique

Area 2: Blocks with a constant 

Area 1: Cliques of Singletons.

number of known traitors.

Zone  Z Zone  Z

Zone  Z3

Block B

Block B

Block BAt least 3 traitors

At least 3 traitors

At least 3 traitors

1 2

Zone  Z4

3

2

1

Block B

Block B1

2

Fig. 4.1. An example of the data structures and the graph used by the optimal algorithm.

area.

4.1. Data structures and invariants.

The graph. We maintain an undirected graph G = (V,E). The vertices are
subsets of the user set U and form a partition of U . If there is an edge (X,Y ) ∈ E,
then X ∪ Y contains a traitor.

Zones and blocks. The vertices of the graph G are partitioned into Zones
Z1, Z2, Z3, Z4. Furthermore, the vertices in Zones Z1 and Z4 are partitioned into
blocks Bi. There are no edges connecting vertices from different zones or from different
blocks. Let bi be the number of traitors known to exist in block Bi, and zi the number
of traitors known to exist in Zone Zi. The value of z1 and z4 is always the sum of all
bi’s over the blocks of the corresponding zone. The zones and the blocks are defined
as follows:
Area 1 (cliques of singletons).

(Z1) This zone is partitioned into blocks Bi, where the number of vertices
in Bi is bi + 2, and all vertices are singletons. The vertices of block Bi
can be partitioned into two cliques, each containing at least two vertices
(therefore, the number of traitors known to exist in Bi is bi). However,
Bi does not contain a clique of size bi + 1.

(Z2) This zone either is empty or contains a clique of size z2 + 1 ≥ 2 whose
vertices are all singletons.

Area 2 (blocks with a constant number of known traitors).
(Z3) This zone is a (t, k)-graph, where t ≤ 2. The number of traitors known

to exist in Zone Z3 is z3 = t ≤ 2. The special vertex I that contains
“innocent users” is denoted here by K. Users from other zones may be
added to the set K during the algorithm.
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(Z4) This zone is partitioned into blocks Bi, where the number of traitors
known to exist in Bi is 3 ≤ bi ≤ 7.

See Figure 4.1 for an example of the data structures used by the optimal algorithm.

Number of traitors. Let z = z1 + z2 + z3 + z4. The value of z is updated
automatically, according to the values of bi and zi in the individual blocks and zones.
The value z is a lower bound on the number of traitors known to exist; however, it
may increase or decrease. We can always use safely z + 1 colors.

We define another value T . Similar to z, the value T is a lower bound on the
number of traitors known to exist. However, T never decreases and always T ≥ z.
Whenever z increases so that we would have T < z, we set T = z. (T may be larger
than z, if we know that there exist additional traitors, but we do not know to which
zone they belong. The practical implication is that the algorithm may use in this case
z + 2 colors.)

Marks. The vertices in Zones Z1 and Z2 are all singletons, and they may be
marked. The invariant is that either the marked user is a traitor, or that the total
number of traitors is at least T + 1 (but we do not know which is the case). Addi-
tionally, in no clique in Zones Z1 and Z2 are all vertices marked. As a rule, whenever
T increases, all marks are removed.

4.2. Description of the algorithm. We describe the algorithm with respect
to each block and zone separately. When the pirate broadcasts a color given to the
vertices in one of the blocks or zones, we advance the corresponding algorithm and
do not change the coloring in the remaining zones.

We now describe in detail the algorithm with respect to each one of the zones.
The initial graph is G = (V,E), where K = U , V = {K} and E = ∅ (hence, at the
beginning all zones are empty except Zone Z3). Set T = z = 0.

Zone Z1. We run the clique algorithm. We need only z1 colors, since the number
of cliques in Zone Z1 is even (as they are paired into blocks and there is no vertex I
in Zone Z1). Since all vertices are singletons, every step creates a new edge (unless
we locate a traitor).

Eventually, two cliques in some block Bi are merged into one clique Q of size
bi + 1. Let Z be the remaining vertex in Bi that does not belong to this large clique
Q. Remove all edges incident with Z and add Z to K in Zone Z3. Reorganize the
zones as follows: If Zone Z2 is empty, the clique Q is placed in Zone Z2. Otherwise we
pair the clique in Zone Z2 with Q into a new block in Zone Z1, and Zone Z2 becomes
empty.

Zones Z2 and Z3. We use z2 + z3 + 1 colors for these two zones if z = T and
z2 + z3 + 2 colors if z < T .

(1) In Zone Z3 we do the following:
(1.1) We run the clique algorithm on Zone Z3, until we know that it contains

z3 = 3 traitors. To do this in only O(log n) rounds, let c be a constant
such that if there were only two traitors among the users, then the clique
algorithm would run for at most c log n steps. If the clique algorithm
runs for more than c log n steps without reaching z3 = 3, we conclude
that there are three traitors in the zone and we set z3 = 3.

(1.2) When z3 = 3, all vertices in Zone Z3 are placed as a block in Zone Z4.
Zone Z3 is now empty, and we set z3 = 0 and K = ∅.

(2) If Zone Z2 is not empty and z < T : Use a separate color for each vertex of
Zone Z2.
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(3) If Zone Z2 is not empty and z = T : If the algorithm for Zone Z3 uses at the
current round only z3 colors (out of the z3 + 1 colors allocated to it), use a
separate color for each vertex of Zone Z2.
Otherwise, modify the algorithm for Zone Z3 as follows. Suppose that the
algorithm for Zone Z3 would use at this round q = z3 + 1 colors for coloring
the subsets X1, . . . , Xq (note that q ≤ 3). Replace this round by the following
q rounds. Fix an unmarked vertex S in Zone Z2. In round k, k = 1, . . . , q,
color the subsets X1, . . . , Xq in Zone Z3 as before, color S with the color of
Xk, and color the remaining vertices of Zone Z2 with distinct colors. (The
number of colors used in this case is q + z2 = z2 + z3 + 1 as required.) Then
(3.1) if the pirate broadcasts the color of Xj , for some j = k: Advance the

algorithm in step (1) above of Zone Z3.
(3.2) Otherwise the pirate eventually broadcasts the q colors of all pairsXk∪S.

In this case mark S. If all the vertices in Z2 are marked, set T = T + 1
(and remove all marks).

Remark. Recall that the clique in Zone Z2 may be moved to Zone Z1, and in a
later stage may be moved back to Zone Z2 as part of a larger clique (after two cliques
are merged). Therefore there may be marks on vertices of both Zones Z1 and Z2.

The algorithm used for the blocks in Zone Z4 is fairly complex. The main building
block used here is the following Algorithm (X). We now provide the specification of
Algorithm (X) and then describe the algorithm for Zone Z4. The description and
analysis of Algorithm (X) is postponed to section 4.4.

Specification of Algorithm (X). The input is a block containing at least three
traitors. In each step the algorithm uses q colors, where q is the number of traitors
currently known to exist in the block. At all times 3 ≤ q ≤ 7. The algorithm is allowed
to discard some users; in the context of the whole algorithm these users are added to
the set K in Zone Z3.

After O(log n) rounds the algorithm either (i) finds a subset of two users (in the
block) that contains a traitor, or (ii) finds two disjoint subsets of the input block, one
containing at least three traitors and one containing at least one traitor.

Zone Z4. We run Algorithm (X) on each of the blocks in this zone, thus using
z4 colors. When Algorithm (X) finishes in one of the blocks Bi, we have one of the
following two cases.

(1) Block Bi is split into two subsets, one with at least one traitor and the second
with at least three traitors: The first subset is added to Zone Z3 (see step
(3)). The second subset remains in this zone as a block of itself.

(2) We have a subset of two users in Bi that contains a traitor: We create a new
clique Q of size 2, with two singleton vertices containing these two users, and
reorganize the zones as follows. If Zone Z2 is empty, we place the clique Q
in Zone Z2. Otherwise, we remove the single clique in Zone Z2, pair it with
the new clique Q, and create in Zone Z1 a new block containing these two
cliques; Zone Z2 is now empty. The rest of block Bi is added to Zone Z3 (see
step (3)).

(3) In each of the above cases, some subset X of block Bi, known to contain at
least one traitor, is added to Zone Z3. This is done as follows: Remove the
edges incident with X, divide X into two (almost) equal vertices connected
by an edge, and add them as a clique of size 2 to Zone Z3. Restructure the
cliques of Zone Z3 as necessary, in a similar way to step 3 in Phase 2 of the
clique algorithm. Set z3 = z3 + 1. If z3 = 3, go to step (1.2) in Zone Z3.
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4.3. Correctness and efficiency.
Lemma 4.1. The invariants of the algorithm are preserved, assuming that the

same holds for Algorithm (X).
Proof.
The graph, zone constraints, and edges between different zones and

blocks. In Area 1 and Zone Z3 these invariants are maintained because of the proper-
ties of the clique algorithm. In Zone Z4 they are maintained because of the properties
of Algorithm (X). One additional invariant is that z3 ≤ 2. If this invariant is violated,
then the zones are restructured appropriately in step (1.2) of Zone Z3. At all times
the vertices in Area 1 are singletons: this is true when new vertices are created in
step (2) of Zone Z4 and maintained by the clique algorithm.

We need to check that the invariants are not violated when adding users to Zone
Z3 from other zones. If some users are added to K in Zone Z3, then edges incident
with K are still valid since the corresponding set of users can only become bigger.
If a 2-clique is added to Zone Z3 by step (3) of Zone Z4, then the structure of Zone
Z3 is changed consistently with the clique algorithm. If z3 > 2, then the zones are
restructured.

The marks. The vertices are only marked in step (3.2) of Zones Z2 and Z3.
If a vertex is marked and is not a traitor, it follows that all the q = z3 + 1 sets
X1, . . . , Xq described there contain a traitor. This would imply that there are at least
z + 1 traitors overall as required. Since this step is invoked only when z = T , the
vertex is marked consistently with the invariant. The invariant of the marked vertices
is maintained as long as T is unchanged, and as soon as T increases, all marks are
removed.

It cannot happen that all vertices in some clique are marked. If this happens
upon marking a new vertex in Zone Z2, then the value of T is increased and all marks
are removed. A new clique is created when two cliques in Zone Z1 are merged. In this
case the new clique contains all the vertices of one of the merged cliques, and thus
they cannot be all marked.

The number of traitors. We need to check that there are always at least T
traitors. The value T is changed in two cases—first, when z increases so that z > T .
In this case the existence of T traitors is guaranteed by the invariants of the individual
blocks and zones.

The second case is in step (3.2) of Zones Z2 and Z3 when all vertices in Zone Z2

are marked. If some vertex in Zone Z2 is not a traitor, then by the marking invariant
there are at least T + 1 traitors, and the increase of T is justified. Otherwise all the
vertices in Zone Z2 are traitors, for a total of z2 + 1 traitors. Thus, the total number
of traitors is at least z + 1, and since T = z in this step, the increase of T is justified
as well.

Theorem 4.2. The algorithm locates a traitor in O(p2 + p log n) rounds, using
p+1 colors. Hence, all p traitors can be located in O(p2+ p log n) rounds, using p+1
colors.

Proof. The number of colors used is at most z1+ z2+ z3+ z4+1 = z+1 if z = T ,
and z1+ z2+ z3+ z4+2 = z+2 if z < T . In both cases, at most T +1 ≤ p+1 colors
are used.

We now analyze the number of rounds needed by the algorithm. After at most
q = 3 rounds in step (3) of Zones Z2 and Z3, we either mark a vertex or advance
one of the other algorithms (most often the clique algorithm used in step (1) of Zone
Z3, but it may happen that one of the other algorithms changes z, in which case we
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cannot continue the series of rounds in step (3) of Zones Z2 and Z3). In the first case
we charge these rounds to marking a vertex. The second case adds at most q−1 steps
per one step of the other algorithms, so the total number of rounds may increase by
a factor of 3.

Let s = z1 + z2 be the number of traitors known to exist in Zones Z1 and Z2

(which contain only singleton vertices). Let r = z1 + z2 + z3 + 3b, where b is the
number of blocks in Zone Z4. Note that r is a lower bound on the number of traitors
in all zones, since the blocks of Zone Z4 contribute only three traitors each instead of
bi (which may be as large as 7).

The values of T , s, and r are between 0 and p at all times. The values of s and
T never decrease, and thus each of them increases at most p times. The value of r
decreases only when a subset of two users containing a traitor is found in a block in
Zone Z4. In such a case s increases by 1 and r decreases by 2 (since b decreases by 1
and z3 increases by 1). It follows that r may increase at most 3p times.

The value of r increases after each (amortized) O(log n) rounds in a block in Zones
Z4 and Z3, not counting the rounds charged to marking of vertices in Zone Z2. Thus
the number of these rounds is O(p log n).

Each of the remaining rounds either is charged to marking a vertex or creates an
edge between two cliques of singletons. We unmark vertices or remove edges when
T increases or when two cliques are merged. We increase T at most p times, and
each time O(p) vertices are unmarked. This accounts for O(p2) rounds. A clique
of singletons is never split. Therefore we get a new clique only when s increases,
which happens at most p times. Thus two cliques are merged at most p times. Each
time we remove at most p edges and one marked vertex. This accounts for O(p2)
rounds. At the end we have O(p) marked vertices and O(p2) edges. This accounts for
O(p2) rounds as well. Thus the total number of rounds needed to locate one traitor
is O(p2 + p log n). Again, by Lemma 2.1, all p traitors can be located in the worst
case in at most O(p2 + p log n+ (p− 1)) = O(p2 + p log n) rounds.

4.4. Algorithms for blocks in zone Z4. Algorithm (X) described in this
section receives as an input a block known to contain at least three traitors. Its goal
is to either (i) find a subset of two users containing a traitor, or (ii) partition the block
into two parts, one with three traitors and one with a single traitor. This is achieved
in O(log n) rounds.

The plan is to first partition the block into a constant number of q ≥ 3 parts,
where each part contains at least one traitor. Then we either halve one of these q
parts, and thus come closer to achieving goal (i), or we prove that the block contains
at least q + 1 traitors and thus advance towards goal (ii).

Since we cannot use more colors than the number of traitors known to exist in
this block, the pirate can confuse our algorithm if there are in fact more traitors. We
found the following conditional invariant extremely useful in achieving our aims.

Definition 4.3. A block is q-good if it is partitioned into q + 1 sets of users
A1, . . . , Aq, and J with the property that either each of the sets Ai contains one traitor
or the block contains more than q traitors.

In other words, either a q-good block contains exactly q traitors located in q
disjoint sets, or there are more than q traitors, but we have no knowledge about their
location. (Such a block is good in the sense that the algorithm is making progress in
the desired direction.)

Thus, instead of finding an unconditional partitioning of the block into three
parts, each containing a traitor, we try to find a partition which demonstrates that
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the block is 3-good. However, this may not succeed, and instead we might just learn
that there are four traitors. Then we try to find a 4-good block, etc. Eventually,
when we are able to prove that there are at least seven traitors in the block, we can
partition the block unconditionally as required in (ii), using the basic algorithm of
section 2.4 with seven colors.

The main part of the algorithm is how to halve one of the sets Ai in a q-good
block (and still remain with a q-good block), or to deduce that there are at least q+1
traitors in the block. Our algorithm is motivated by the exponential algorithm of Fiat
and Tassa [7]. Their method is as follows: Split each one of the sets A1, . . . , Aq into
two (almost) equal parts. Choose one part from each one of the sets Ai, and color
these q chosen parts with q unique colors. Use an additional color for all the remaining
users (consisting of the parts of the sets Ai that did not receive a unique color and of
the set J). Try all 2q combinations of choosing q parts from each one of the sets Ai. If
we get an answer in one of the parts that were colored by a unique color, then we have
achieved the required split of the corresponding set Ai. Otherwise we can conclude
that there are more than q traitors. However, this method uses q + 1 colors, and we
can only use q colors. Thus our algorithm is modified to use one common color for
two of the q chosen parts of the sets Ai. After trying all of the

(
q
2

)
2q combinations

and analyzing the answers, we are able to halve a set or prove that there are at least
q + 1 traitors. Since q is a constant, the number of combinations and rounds needed
is also a constant.

4.4.1. Description of the algorithms. Algorithms (I) through (IV) described
below are used as building blocks for Algorithm (X), which is then used by the algo-
rithm for Zone Z4 in section 4.2.

Algorithms (I)–(IV) and Algorithm (X) stop whenever they find a subset of two
users that contains a traitor. In fact, this event always stops not only the current
algorithm but also stops Algorithm (X) in the current block. We do not mention this
in the descriptions of the algorithms explicitly. This also means that when we have
an edge in this part of the graph, at least one of its endpoints is not a singleton.
Similarly, recall that the algorithm stops upon locating a traitor. Therefore, if we get
a vertex as an answer, it is not a singleton.

The algorithms are allowed to discard some users. In the context of the optimal
algorithm described in section 4.2, these users are added to the set K in Zone Z3.

The correctness of the individual algorithms follows immediately from the remarks
in their description. After the description of each algorithm we argue briefly to bound
its running time.

Algorithm (I). The input is a constant q ≥ 3 and a q-good block. Using q colors
and O(log n) rounds, the algorithm proves that there are more than q traitors in this
block. (The algorithm also stops upon finding a set of two users containing a traitor.
It never discards any users.)

Throughout the algorithm, we maintain a q-good block. Additionally, each set Ai
is split into two disjoint sets Ai,0 and Ai,1 of equal size (more exactly, their cardinalities
may differ by one and if Ai is a singleton, then one of the sets may be empty).

(1) In successive
(
q
2

)
2q = O(1) rounds, use all

(
q
2

)
2q colorings of the following

form. For any a1, . . . , aq ∈ {0, 1}, and 1 ≤ j < j′ ≤ q: Use one color for the
set Aj,aj ∪Aj′,aj′ and q − 2 colors for the sets Ai,ai , i ∈ {j, j′}, one color per
set. The last color is given to the union of the remaining q+1 sets (including
J).

(2) If the pirate ever broadcasts a color given to only one (nonsingleton) set Ai,a:
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Add Ai,1−a to J , set Ai = Ai,a, split Ai into Ai,0 and Ai,1, and go to step
(1).

(3) If in the above
(
q
2

)
2q rounds the pirate broadcasts the colors of all possible

2q sets containing J , each at least once, then the block contains more than q
traitors and we are done.

(4) Otherwise we may suppose after renumbering that the pirate never broadcasts
the color of J ∪ A1,1 ∪ · · · ∪ Aq,1. This means that the pirate broadcasts the
color of Aj,0∪Aj′,0 for all j = j′. If two of the sets Aj and Aj′ are singletons,
then Aj,0∪Aj′,0 ⊆ Aj∪Aj′ is a subset of cardinality at most two that contains
a traitor, and we are done.
Otherwise there is at most one singleton set. Renumber the sets so that A1

and A2 are not singletons (using q ≥ 3). The sets A1,0, . . . , Aq,0 form a clique
of size q and therefore contain at least q − 1 traitors. Below we find a set
Aj,1 that does not contain a traitor, assuming that there are only q traitors.
Given such a set Aj,1, we add it to J , set Aj = Aj,0, and go to step (1).
In order to find such a set Aj,1, we distinguish between two subcases. Let us
examine the answer given by the pirate in the round when we used one color
for the set J ∪A1,0 ∪A2,1 ∪ · · · ∪Aq,1 and one color for the set A1,1 ∪A2,0.
(4.1) If the answer was A1,1 ∪ A2,0: Assuming that there are only q traitors,

A2,1 does not contain a traitor. Otherwise A2,0 has no traitor, and thus
A1,1 contains a traitor; it follows that there are more than q traitors
(together with the q − 1 traitors in A1,0 ∪ · · · ∪Aq,0).

(4.2) If the answer was J ∪ A1,0 ∪ A2,1 ∪ · · · ∪ Aq,1: Assuming that there are
only q traitors, A1,1 does not contain a traitor. Otherwise A1,0 does
not contain a traitor, and thus either J or some Aj,1, j = 1 contains a
traitor; it follows that there are more than q traitors.

After O(1) rounds, if the algorithm is not done, one of the nonsingleton sets is split
and half of it is added to J . Thus the total number of rounds is O(q log n) = O(log n)
(since q = O(1)).

Algorithm (II). The input is a constant q ≥ 3 and a block known to contain at
least q traitors. Using q colors and O(log n) rounds, the algorithm either (i) proves
that there are more than q traitors in the block or (ii) finds a subset of the input block
which consists of k cliques with a total of k+ q vertices (i.e., q of the vertices have to
contain a traitor) for some odd number k. (The algorithm also stops upon finding a
set of two users containing a traitor.)

We run the clique algorithm on this block, with its own special set I. Initially,
I contains all the users. Let c be a constant such that if there were only q traitors
among the users, then the clique algorithm would run for at most c log n rounds. If
the clique algorithm does not finish in c log n steps, we conclude that there exist more
than q traitors and we are done by (i).

If the clique algorithm needs q+ 1 colors, then there are k cliques with a total of
k + q vertices for some k. If k is odd, we are done. Otherwise we discard the set I
and continue running the clique algorithm with only q colors, since we do not need
the color for I. Whenever a vertex is supposed to be added to I, it is discarded (this
happens when a vertex in a clique of size two is split, or when two cliques are merged).
Eventually, either two cliques are merged, or a vertex contained in a clique of size at
least 3 is split. In either case we get an odd number of cliques and we are done by
(ii).

The number of rounds of this algorithm is O(log n) as claimed because we explic-
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itly restricted it.
Algorithm (III). The input is a block consisting of a clique Q on five vertices.

Using four colors and O(log n) rounds, the algorithm either (i) finds a 4-good block
which is a subset of the input block or (ii) finds two disjoints subsets of the input block,
one containing at least three traitors and one containing at least one traitor. (The
algorithm also stops upon finding a set of two users containing a traitor.)

(1) Let A be a nonsingleton vertex of Q. Remove the edges incident with A and
split A into two vertices A1 and A2 of (almost) equal size. The block now
contains the clique Q \ {A} and the vertices A1 and A2.

(2) Find two disjoint nonedges, one containing A1 and one containing A2. Use
two colors for these nonedges and two colors for the remaining two vertices.
(A nonedge is a pair of vertices in this block that are not connected by an
edge in the graph G.)

(3) If the pirate broadcasts a color given to one vertex: We are done by (ii),
since this vertex is a subset with one traitor and the remaining four vertices
contain three traitors.

(4) If the pirate broadcasts a color given to two vertices: Add that edge and
repeat step (2). If the two disjoint nonedges in step (2) do not exist, one of
the following cases occurs:
(4.1) We have a 5-clique containing one of A1 and A2: Discard the other set

Ai and go back to step (1).
(4.2) We have a graph on the six vertices containing all edges except for those

in the triangle A1, A2, B, for some vertex B: This is a 4-good block
with J = ∅, one of the sets being A1 ∪ A2 ∪ B and the other three sets
being the remaining vertices. Thus we are done by (i).

After a constant number of rounds, if the algorithm does not end, it goes back
to step 1 with a 5-clique in which one of the vertices is halved. Thus after O(log n)
rounds we obtain a clique with two singletons and the algorithm stops.

Algorithm (IV). The input is a block consisting of a clique Q on four vertices.
Using three colors and O(log n) rounds, the algorithm finds a 3-good block which is a
subset of the input block. (The algorithm also stops upon finding a set of two users
containing a traitor.)

(1) Let A be a nonsingleton vertex of Q. Remove the edges incident with A and
split A into two vertices A1 and A2 of (almost) equal size.

(2) Find two disjoint nonedges, one containing A1 and one containing A2. Use
two colors for these nonedges and one color for the remaining vertex.

(3) If the pirate broadcasts a color given to only one (nonsingleton) vertex B,
one of the following cases occurs:
(3.1) If the edge (A1, A2) does not exist: Unite back A = A1 ∪ A2 and split

B into (almost) equal parts B1 and B2 connected by an edge. The
remaining three vertices form a clique, and there are no other edges. Set
A1 = B1 and A2 = B2 and go to step (2).

(3.2) Otherwise: We have a 3-good block with J = ∅, and the three sets are
A, B, and the union of the remaining two vertices. Thus we are done.

(4) If the pirate broadcasts a color given to two vertices: Add that edge and
repeat step (2). If the two disjoint nonedges in step (2) do not exist, one of
the following cases occurs:
(4.1) We have a 4-clique containing one of A1 and A2. Discard the other set

Ai and go back to step (1).
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(4.2) We have a graph on the five vertices containing all edges except for those
in the triangle A1, A2, B, for some vertex B. This is a 3-good block
with J = ∅, one of the sets is A1 ∪ A2 ∪ B, and the other two sets are
the remaining vertices. Thus we are done.

After a constant number of steps, if the algorithm does not end, it goes back to
step 1 with a 4-clique in which one of the vertices is halved (note that step (3.1) may
occur only once). Thus after O(log n) rounds we obtain a clique with two singletons
and the algorithm stops.

Algorithm (X). The input is a block containing at least three traitors. In each
step the algorithm uses q colors, where q is the number of traitors currently known
to exist in the block. After O(log n) rounds the algorithm finds two disjoint subsets
of the input block, one containing at least three traitors and one containing at least
one traitor. (The algorithm also stops upon finding a set of two users containing a
traitor.)

(1) Prove that the block contains at least four traitors (or finish): Run Algorithm
(II) with q = 3. If it proves that there are four traitors, go to step (2).
Otherwise we have k cliques with a total of k + 3 vertices, where k ∈ {1, 3}.
If k = 3, then the block is 3-good (with J = ∅ and the three sets each being
the union of one clique). If k = 1, we have a 4-clique: Run Algorithm (IV)
to find a 3-good block. In either case we get a 3-good block. Run Algorithm
(I) to prove that the block contains four traitors, and go to step (2).

(2) Prove that the block contains at least five traitors (or finish): Now we have
a block with four traitors. Run Algorithm (II) with q = 4. If it proves that
there are five traitors, go to step (3). Otherwise we have k cliques with a
total of k + 4 vertices, where k ∈ {1, 3}.
(2.1) If k = 3, then the number of traitors in the three cliques is 1, 1, and 2.

We split the block into a clique with one traitor and a subset containing
the remaining two cliques with three traitors, and we are done.

(2.2) If k = 1, then we have a 5-clique, and we run Algorithm (III). If we
get two subsets with one and three traitors, we are done. Otherwise we
have a 4-good block. We run Algorithm (I) with q = 4 to prove that the
block contains five traitors, and go to step (3).

(3) Now we have a block with five traitors. Run Algorithm (II) with q = 5.
(3.1) If we get cliques, we split the block into two subsets—one with at least

one traitor and one with at least three traitors—and we are done. This
is done as follows: If there are at least three cliques, one subset is the
smallest clique and the other one is the rest. If there is a single clique,
one subset is the union of two of the vertices of the clique, and the other
subset contains the remaining vertices.

(3.2) If we get a block with six traitors: Run Algorithm (II) with q = 6. If we
get cliques, we split them as in step (3.1). Otherwise we have a block
with seven traitors. We run the basic algorithm described in section 2.4
(for locating p traitors with 2p+1 colors) until it needs more than seven
colors. This happens when it finds four disjoint subsets each containing
a traitor (the pairs in the basic algorithm). Split the block into one of
these subsets and the remaining subsets.

Algorithm (X) runs Algorithms (I)–(IV) O(1) times, and each of them takes
O(log n) rounds. Step (3.2) also needs O(log n) rounds. Thus the total number of
rounds is O(log n).
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5. Using more colors. In this section we extend our results and present two
algorithms which use more than p+1 colors. The number of rounds needed to locate
all traitors is reduced as the number of colors grows.

5.1. Using p + c + 1 colors. We modify the optimal algorithm from section 4
to use p + c + 1 colors for any 1 ≤ c ≤ p. The additional colors are used for cliques
of singletons with more than p/c vertices. This ensures that all cliques have at most
O(p/c) vertices, and therefore the number of edges removed in each round is smaller.
The additional colors allow us not to use marks on the vertices in the corresponding
part of the optimal algorithm. (Recall that the marks were used to decrease the
number of colors from p+ 2 to p+ 1.)

5.1.1. Data structures and invariants. The basic structure is similar to that
of the optimal algorithm with the following modifications.

Zones and blocks.
(Z1, Z2) As in the optimal algorithm. Additionally, any clique in these zones is

required to have at most T/c vertices.
(Z3, Z4) As in the optimal algorithm.

(Z5) This new zone is partitioned into blocks Bi, where each Bi contains one
clique of singletons of size bi + 1, such that T/c < bi + 1 ≤ 2T/c.

Marks. There are no marks on the vertices.

5.1.2. Description of the algorithm.
Zone Z1. As in the optimal algorithm (i.e., run the clique algorithm using z1 colors).

If a new clique with more than T/c vertices is produced by merging two
cliques, add it as a new block in Z5 (instead of incorporating it into Z1, Z2).

Zones Z2 Each vertex gets a unique color. If the size of a clique in Z5 becomes ≤ T/c
(because T increased), incorporate this clique into Z1 and Z2 (similarly as
a new clique in the clique algorithm).

Zone Z3. Run the clique algorithm as in the optimal algorithm, using z3 +1 colors,
with no modifications due to marks in Z2.

Zone Z4. As in the optimal algorithm, using z4 colors. If T/c < 2 and a new
clique of two singletons is created, add it as a new block in Z5 (instead of
incorporating it into Z1, Z2).

and Z5.

5.1.3. Correctness and efficiency.
Lemma 5.1. The invariants of the algorithm are preserved at all times.
Proof. Each clique added to Zone Z5 is produced by merging two cliques, each of

size at most T/c, so its size is at most 2T/c as required. The bounds on the size of
the cliques are maintained; to verify this we also use the fact that T never decreases.
All other invariants are maintained similarly as in the optimal algorithm.

Theorem 5.2. The algorithm locates a traitor in O(p2/c+p log n) rounds, using
p + c + 1 colors, for any 1 ≤ c ≤ p. Hence, all p traitors can be located in O(p2/c +
p log n) rounds, using p+ c+ 1 colors.

Proof. Compared to the optimal algorithm, we need one extra color for each
clique in Zones Z2 and Z5. Let m be the number of these cliques, where m − 1 of
these cliques belong to Zone Z5. Thus T ≥ z2 + z5 ≥ 1 + (m− 1)T/c. It follows that
m ≤ c and thus the number of colors used is at most p+ c+ 1.

The analysis of the number of rounds is the same as in Theorem 4.2, with the
following differences in the area of singletons. First, we have no marks, so we do
not charge any work to marking and unmarking vertices. Second, the degree of any
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vertex in Zones Z1 and Z2 is O(p/c). Thus, the number of edges removed during the
algorithm and the final number of edges in G is bounded by O(p2/c) instead of O(p2).
Hence, the total number of rounds needed to locate a traitor is O(p2/c+ p log n), and
the theorem follows by using Lemma 2.1.

5.2. Using pc + 1 colors. Now we allow for the use of tc + 1 colors when t
traitors are known to exist for any integer c ≥ 2. The algorithm is an immediate
extension of the basic algorithm described in section 2.4.

In each stage of the algorithm we keep t disjoint sets Si, each known to contain a
traitor. Furthermore, each set is partitioned into c subsets Si,j of almost equal sizes.
In addition we have the set I of innocent users, which at the beginning contains all
users.

(1) Distribute the colors as follows: For each set Si, color the c subsets Si,j using
c colors, one color per subset. Color I with an additional color. The total
number of colors used is thus tc+ 1.

(2) If the pirate broadcasts the color of I: Create a new set St+1 = I and partition
it into c (almost) equal subsets. Set I = ∅ and t = t+ 1.

(3) If the pirate broadcasts the color of a subset Si,j : Add all subsets Si,j′ , j
′ = j,

to I. Set Si = Si,j and partition Si into c new (almost) equal subsets.
Theorem 5.3. The algorithm locates a traitor in O(p logc n) rounds, using pc+1

colors, for c ≥ 2. Hence, all p traitors can be located in O(p logc n) rounds, using pc+1
colors.

Proof. A subset is split at each round of the algorithm. Since a split divides a
subset into c equal parts, each subset other than I can be split at most O(logc n)
times. The subset I may be split an additional p times. Thus the algorithm finishes
in O(p logc n) rounds.

6. The degree algorithm. In this section we present an algorithm based on a
different idea. This algorithm uses p + 1 colors and runs in time O(p3 log n). Thus
the bounds are the same as for the clique algorithm.

The knowledge of the algorithm is represented by a similar graph as before. That
is, vertices represent disjoint subsets of users from U , and an edge between vertices
X and Y represents the fact that the subset X ∪ Y contains a traitor.

The main idea here is to eliminate vertices with a large degree. To do that, note
that if the degree of a vertex is larger than p, then this vertex must contain a traitor
(otherwise each of its neighbors would contain a traitor, resulting in more than p
traitors). Therefore, if we knew p in advance, we would know that such a vertex
contains a traitor and the algorithm could have split it.

Since p is unknown, we maintain a value T (as in the previous algorithms), which
is the number of traitors known by the algorithm to exist. Whenever a vertex of a large
degree appears, we suspect that it contains a traitor. (The notion of a large degree
will be defined later.) Note that our knowledge about these vertices is conditional
only: we know that either the vertex contains a traitor, or that the actual number of
traitors is greater than T (however, we do not know which is the case). Consequently,
when T is increased, we have no information about any traitor in these suspected
vertices and we have to treat the users as innocent.

Among the remaining vertices, we distribute the colors so that each color is used
by one vertex or by two vertices not connected by an edge. An existence of such a
coloring is implied by the fact that the degree of these vertices is small. In each round
progress is made by adding a new edge, splitting a vertex, or finding a vertex of a
large degree.



1824 OMER BERKMAN, MICHAL PARNAS, AND JIŘÍ SGALL

6.1. Data structures and invariants.

The graph. We maintain an undirected graph G = (V,E). The vertices are
subsets of the user set U and form a partition of U . If there is an edge (X,Y ) ∈ E,
then X ∪ Y contains a traitor.

The zones. The vertices of the graph G are partitioned into Zones Z1, Z2. There
are no edges adjacent to vertices in Zone Z1. We also maintain a value T , which is
the number of traitors known to exist. The zones are defined as follows:
(Z1) This zone contains z1 vertices. The invariant is that if the actual number of

traitors is exactly T , then each vertex in Z1 contains a traitor. As stated
above, the degree of all vertices in this zone is 0.

(Z2) This zone is a (z2, z2)-graph, i.e., a graph on 2z2 + 1 vertices containing z2
disjoint cliques of size 2 each, and the special vertex I (there may be edges
between the cliques). The invariant is that all vertices in this zone have degree
at most T − z1.

Number of traitors. Let z = z1 + z2. Thus z is the number of traitors known
to exist in distinct vertices of G, assuming that the actual number of traitors is T .
The invariant is that the total number of traitors is at least T and that T ≥ z. This
implies that the algorithm may use T + 1 colors. As a rule, T never decreases. Note
that the total number of vertices in the graph is |V | = z1 + 2z2 + 1 = z + z2 + 1.

6.2. Description of the algorithm. Before describing the algorithm we give
a lemma about the existence of a large matching, and show how it is applied to find
a proper coloring in the algorithm. A matching in a graph is a set of disjoint edges.
The size of the matching is the number of edges in the matching. The proof of the
following lemma is standard and can be found in Appendix A.

Lemma 6.1. Let H be a graph with at least 2d vertices with degree at least d each.
Then there exists a matching in H of size at least d.

Let G′ be the complement graph of G restricted to Zone Z2, i.e., the vertices of
G′ are the vertices in Zone Z2, and two distinct vertices are connected by an edge in
G′ if and only if they are not connected by an edge in G. Zone Z2 contains 2z2 + 1
vertices, each with degree at most T − z1. Thus the minimum degree of the graph G′

is 2z2 − (T − z1) = z2 + z − T . By taking d = z2 + z − T in Lemma 6.1, there exists
a matching of size at least z2 + z − T in G′.

We now describe the algorithm. The initial graph is G = (V,E) with I = U ,
V = {I}, and E = ∅. Zone Z1 is empty and Zone Z2 contains the single vertex I. Set
T = z = 0. Repeat the following two phases:

Phase 1: Distributing the colors to the vertices of G.
Find a matching of size at least z2 + z − T in G′ (which exists by Lemma 6.1

and the above discussion). Use one color for each edge in the matching (i.e., for the
two vertices of the edge). Use a distinct color for every remaining vertex, including
the vertices of Zone Z1. The number of colors used is at most |V | − (z2 + z − T ) =
(z + z2 + 1)− (z2 + z − T ) = T + 1.

Phase 2: Reorganizing the graph following the pirate’s response.
(1) If the pirate transmitted a color given to a single vertex X: Remove X and

all edges incident with X. Split X into two (almost) equal subsets X1 and
X2, and add the edge (X1, X2). Place X1 and X2 as a new clique in Zone Z2.
(1.1) If X was in Zone Z1: Set z1 = z1 − 1 and z2 = z2 + 1.
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(1.2) If X was in Zone Z2 in a clique with Y : Remove Y and all edges incident
with Y , and set I = I ∪ Y .

(1.3) If X was in Zone Z2 and X = I: Create a new special vertex I = ∅ and
set z2 = z2 + 1.

(2) If the pirate transmitted a color given to a pair of vertices (X,Y ) (necessarily
in Zone Z2): Add the edge (X,Y ) to G, and
(2.1) for any vertex Z ∈ Z2 of degree larger than T−z1 do the following: Move

Z to Zone Z1, remove all edges incident with Z, and set z1 = z1 + 1. If
Z = I, create a new special vertex I = ∅.

(2.2) Repeat step (2.1) until all vertices have degree at most T − z1. (Note
that after step (2.1) the value of T −z1 decreases, which may cause some
more vertices to have a large degree.)

(2.3) Add to the special vertex I all the vertices which remain in Zone Z2 and
do not belong to a clique of size 2 (i.e., the vertex I will contain all the
vertices who had a neighbor Z (in their clique) that was moved to Zone
Z1. The vertex I will also contain the old I if it was not moved to Zone
Z1). Update z2 to reflect the current number of cliques of size 2 in Zone
Z2.

(3) If after one of the previous steps z > T : Set T = T + 1 and add to I all the
vertices that belong to Zone Z1. Zone Z2 remains unchanged.

6.3. Correctness and efficiency.
Lemma 6.2. The invariants of the algorithm are preserved at all times.
Proof.
The graph. An edge is added only if we got an answer from the pirate corre-

sponding to that edge.
Zone Z1. First consider the moment when we decide to place a vertex X in Zone

Z1. At that point X is in Zone Z2 and its degree is larger than T − z1. Assume that
the invariant is violated, i.e., X does not contain a traitor and the actual number of
traitors is exactly T . It follows that there are more than T−z1 traitors in the neighbor
vertices of X in Zone Z2. Also, Zone Z1 contains z1 traitors, by the invariant of the
zone. Thus the total number of traitors is strictly larger than T , a contradiction. We
conclude that the invariant is maintained when a vertex is placed in Zone Z1.

As long as a vertex remains in Zone Z1, the value of T does not change, by step
(3) of the algorithm. Thus the invariant is maintained at all times.

Zone Z2. Whenever one vertex of a clique is removed in step (2.1), the other
vertex is also removed in step (2.3), and the value of z2 is updated accordingly. Thus,
the (z2, z2)-graph is maintained. No vertex in Zone Z2 has degree larger than T − z1
after a round because we remove in step (2.2) all such vertices from Zone Z2.

The number of traitors. T is increased only in step (3). Assume to the contrary
that there are only T traitors when T is increased. Then there are z1 traitors in Zone
Z1 by its invariant and z2 traitors in Zone Z2. However, then the total number of
traitors is at least z1 + z2 = z > T , a contradiction. We conclude that there are
at least T + 1 traitors and the increase of T is justified. Thus, there are at least T
traitors at all times.

Note that we cannot conclude that there are z traitors, since a vertex in Zone Z1

is known to contain a traitor only if the actual number of traitors is exactly T . Since
this was found to be untrue as T has increased, we cannot assume any more that the
vertices in Zone Z1 contain traitors.
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Theorem 6.3. The degree algorithm locates a traitor in O(p3 log n) rounds, using
at most p+ 1 colors. Hence, all p traitors can be located in O(p3 log n) rounds, using
at most p+ 1 colors.

Proof. The algorithm always uses at most T +1 ≤ p+1 colors, by the calculation
in Phase 1 of the algorithm.

We now estimate the number of rounds. The value of T is increased at most p
times and never decreases. Therefore it is sufficient to prove that for each value of
T , the number of rounds is at most O(T 2 log n). Since T ≤ p, the total number of
rounds until a traitor is located is O(p3 log n).

When T does not increase, the algorithm takes one of the following actions: either
(1) a vertex is split or moved to Zone Z1 and at most 2T edges are removed or (2)
an edge is added to G. Note that (1) may happen more than once during a single
round. Zone Z1 has at most T vertices at the end, so the number of times a vertex is
moved to Zone Z1 is at most T plus the number of splits. Similarly, as in the previous
algorithms, there are at most O(T log n) splits before T increases. Consequently, the
number of steps of type (2) is bounded by the number of edges of G at the end,
plus the number of edges removed during the algorithm. This gives the bound of
O(T 2 log n) rounds before T increases.

7. Lower bounds. We now prove a lower bound on the number of rounds needed
by any algorithm that uses p+ c colors, assuming that p is not known in advance.

Lemma 7.1. Using p + c colors, at least Ω(p2/c) rounds are needed to locate p
traitors, when p is not known in advance.

Proof. If c ≥ p, the bound is true, since at least p rounds are needed to locate p
traitors. Let c < p and let n = p+ c+ 1 be the number of users, i.e., there are c+ 1
innocent users. In any coloring with p+ c colors there are at least two users with the
same color.

We use an adversary argument. In each round, the pirate transmits a color given
to (at least) two users. We prove that the pirate can continue for at least Ω(p2/c)
rounds, consistently with the fact that there are p traitors. We maintain a graph G
with users as vertices, initially with no edges. In each round we add an edge between
the two users whose color was given as an answer (if the algorithm colors more than
two users by the same color, we choose any two of them; this can only decrease the
number of rounds). The pirate can continue as long as there is an independent set
of size c + 1 in G. (Recall that an independent set is a set of vertices with no edges
between them.) In this case the pirate’s answers are consistent with the p traitors
being the vertices not in the independent set.

Let H be the graph on n vertices consisting of c disjoint cliques, each with �n/c�
or �n/c� vertices, and no other vertices and edges. By Turan’s theorem (see [12]) used
for the complement graph of G, if G does not contain an independent set of size c+1,
then G has at least as many edges as H. The number of edges in H is Θ(p2/c) (the
cliques are nontrivial, since c < p). Thus the pirate can always continue for at least
Ω(p2/c) rounds.

Theorem 7.2. Using p+c colors, at least Ω(p2/c+p logc+1 n) rounds are needed
to locate p traitors if p is not known in advance and n ≥ (1 + ε)c for some constant
ε > 0.

Proof. We use an adversary argument which proceeds in phases. In phase t,
t = 1, . . . , p, the pirate has already chosen the location of the first t−1 traitors and is
revealing the location of the next traitor. The algorithm knows about the existence of
only t traitors and thus can use t+c colors. The pirate keeps a set A of candidates for
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the next traitor. At the beginning of each phase, the set A contains all users except
for the first t− 1 traitors. If any of the first t− 1 traitors does not get a unique color,
then the pirate broadcasts that color. Otherwise A is colored by at most c+1 colors.
Then the pirate broadcasts the color given to most users in A and removes all the
other users from A. When the size of A is at most c+ 1, the pirate fixes one user in
A as the next traitor, and a new phase begins. No traitor is located until the end of
phase p.

Assume, without loss of generality, that ε < 1. The number of rounds in phase t
is at least �logc+1(n+1− t)�− 1. For t < εp/2 ≤ εn/2, we have n+1− t > c+1 and
n+1−t > n/2. Therefore, the number of rounds in phase t is at least Ω(logc+1 n) and
the total number of rounds is at least εp/2 · Ω(logc+1 n) = Ω(p logc+1 n). Together
with Lemma 7.1 this proves the theorem.

8. Open problems. We conclude with a few open problems. First it would be
nice to close the small gap of O(log c) between the lower and upper bound in the case
that p+ c colors are used, and p is not known in advance.

We achieve an asymptotically optimal number of rounds in the optimal algorithm
described in section 4. However, it is very complex and the hidden constants are
large. From a more practical viewpoint, it would be desired to find a simpler optimal
algorithm for the p+ 1 case, with possibly better constants.

It may be interesting to investigate randomized algorithms. The first question is
what is the proper model in this case. In the deterministic case, the pirate is able
to simulate the algorithm. Thus, for example, the pirate can deduce completely the
distribution of the colors. In the randomized case, it is not realistic to assume this,
and the game needs to be specified precisely.

Appendix A. Proof of Lemma 6.1.
Lemma 6.1. Let H be a graph with at least 2d vertices with degree at least d each.

Then there exists a matching in H of size at least d.
Proof. The proof is by induction. Given a matching of size c < d, we show how

to find a matching of size c+ 1. Starting at c = 0 and repeating this process, we find
a matching of size d.

Let v and w be two unmatched vertices of degree at least d each. If some neighbor
of v or w is unmatched, then we extend the matching trivially. Otherwise, let x1, . . . ,
xd be d distinct neighbors of v in H, and y1,. . . , yd their respective neighbors in the
matching of cardinality c. Some vertices yj may be equal to some xi, but in any case
all the vertices yj are distinct. Out of the 2c vertices of the matching of size c there
are 2c − d vertices that are distinct from all the vertices yj . Since c < d, we have
2c−d < d. As all the neighbors of w are matched and its degree is at least d, it follows
that w is connected to yj for some j. Replace the edge (xj , yj) in the matching by
the edges (v, xj) and (yj , w).
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Abstract. We consider a variation of the communication complexity scenario, where the parties
are supplied with an extra resource: particles in an entangled quantum state. We note that “quantum
nonlocality” can be naturally expressed in the language of communication complexity. These are
communication complexity problems where the “output” is embodied in the correlations between the
outputs of the individual parties. Without entanglement, the parties must communicate to produce
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problems, where the output is explicitly determined by each individual party. The resulting prob-
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1. Introduction and summary of results. One of the most remarkable as-
pects of quantum physics is the notion of quantum entanglement. If two particles
are in an entangled state, then, even if the particles are physically separated by a
great distance, they behave in some respects as a single entity. The entangled par-
ticles exhibit what physicists call nonlocal effects. Informally, these are effects that
cannot occur in a world governed by the laws of “classical” physics unless communi-
cation occurs between the particles. Moreover, if the physical separation between the
particles is large and the time between the observations is small, then this entailed
communication may exceed the speed of light! Nonlocal effects were alluded to in a
famous 1935 paper by Einstein, Podolsky, and Rosen [13]. Einstein later referred to
this as spukhafte Fernwirkungen (spooky actions at a distance) (see [12, 25, 30] for
more historical background). In 1964, Bell [3] formalized the notion of two-particle
nonlocality in terms of correlations among probabilities in a scenario where one of
a number of a measurements are performed on each particle. He showed that the
results of the measurements that occur quantum physically can be correlated in a
way that cannot occur classically unless the type of measurement selected to be per-
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formed on one particle affects the result of the measurement performed on the other
particle.

In reality—which is quantum physical—the nonlocal effects exhibited by entan-
gled particles do not involve any communication (consequently, nonlocality does not
entail communication faster than the speed of light). In operational terms, the
“spooky actions at a distance” that Einstein referred to cannot be used to simu-
late a communication channel. More precisely, if two physically separated parties,
Alice and Bob, initially possess entangled particles and then Alice is given an arbi-
trary n-bit string x, there is no way for Alice to manipulate her particles in order to
convey any information about x to Bob (unless she explicitly sends that information
to him). Moreover, entanglement cannot even be used to compress the information in
x: for Alice to convey x to Bob, she must in general send n bits—any smaller number
will not suffice. The proof of this is based on a fundamental theorem in quantum
information theory due to Holevo [17] (see also [16, 10]). Similar results apply to
communication involving more than two parties.

Now consider the communication complexity scenario introduced by Yao [33].
Alice obtains an n-bit string x and Bob obtains an n-bit string y, and the goal is for
them to determine f(x, y), for some function f : {0, 1}n × {0, 1}n → {0, 1}, with as
little communication between them as possible. Clearly, n+ 1 bits of communication
always suffice (Alice sends all her n bits to Bob, Bob computes f(x, y) and sends the
one-bit answer to Alice), but for some functions fewer bits suffice. This scenario and
variations of it have been widely studied (see [23] for an extensive survey).

In one variation of the above communication complexity scenario, there are more
than two parties, each of which is given a subset of the input data. In another varia-
tion, all parties have access to a common “public” string of random bits. This string
can be assumed to have been communicated during a “set up” stage prior to the par-
ties being given their input data. For some functions, this prior random string reduces
the communication complexity for a worst-case input if a small error probability is
permitted (here, a worst-case input is understood to be chosen independently of the
random string).

The first variation of the communication complexity scenario that incorporates
quantum information was proposed by Yao [34]. In this model, Alice and Bob are
allowed to communicate with quantum bits (qubits) rather than classical bits. Kremer
[22] includes many important definitions and basic results for this model, including a
proof that for the Inner Product function f(x, y) = x0 · y0 + x1 · y1 + · · ·+ xn−1 ·
yn−1 mod 2, the qubit communication must be Ω(n) qubits. These works leave open
the question of whether quantum information can ever be advantageous over classical
information for a communication complexity problem.

In the present paper, we consider an alternate way of incorporating quantum
information into the communication complexity scenario. Here Alice and Bob’s com-
munication is with classical bits, but they are provided with a priori information that
is entangled. On the face of it, it may appear that a prior quantum entanglement
cannot reduce communication complexity because of the aforementioned theorem of
Holevo. Consider the following informal argument, where Alice and Bob are given
input strings x and y, and their goal is to collectively determine f(x, y):

1. Assume that the classical communication complexity of function f(x, y) is k.
That is, k bits of communication are necessary for Alice and Bob to acquire
the answer.
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2. By Holevo’s Theorem [17], the prior entanglement cannot simulate or even
compress any particular message in a classical communication protocol.

3. Ergo, even with prior entanglement, the communication complexity of f(x, y)
is k.

A similar informal argument could be made for three-party scenarios. We shall demon-
strate that this conclusion is incorrect for both scenarios.

Our first counterexample is in a three-party setting. We give an example of a
function f : {0, 1}2 × {0, 1}2 × {0, 1}2 → {0, 1}, where, without prior quantum en-
tanglement, four bits of communication are necessary to compute f(x, y, z); whereas,
with prior quantum entanglement, three bits of communication are sufficient to com-
pute f(x, y, z). The function is actually a partial function, defined on a subset of
{0, 1}2 × {0, 1}2 × {0, 1}2 (i.e., the input data (x, y, z) obeys a certain “promise”). If
we want to allow any input combination, then f can be defined as a relation (rather
than a function). The protocol employing quantum entanglement uses less communi-
cation than necessary by any classical protocol by manipulating the entanglement so
as to circumvent (rather than simulate) communication. Our technique is based on
an interesting example of tripartite nonlocality due to Mermin [26]. Mermin’s result
is a refinement (from four components to three) of a similar result by Greenberger,
Horne, and Zeilinger [14].

We also give an example of a two-party probabilistic communication complexity
scenario with a function g : {0, 1}2×{0, 1}2 → {0, 1} for which, with a classical shared
random string but no prior entanglement, three bits of communication are necessary
to compute g(x, y) with probability at least cos2(π8 ) = 0.853 . . .; whereas, with prior
entanglement, two bits of communication are sufficient to compute g(x, y) with the
same probability. Unlike the previous three-party example, this function does not
require a promise on the input data (x, y). The correlations in this two-party scenario
are based on an example of nonlocality due to Clauser et al. [8].

Although, in both of the above cases, the savings in communication are not in an
asymptotic setting, these results demonstrate that quantum entanglement can change
the nature of communication complexity. After the initial announcement of these
results and those of [9], several stronger quantum vs. classical separations appeared,
and these are briefly reviewed in section 5.

2. Three-party deterministic scenarios. Let us begin by considering the
following scenario, which is a reformulation of the one in [26] but cast in terms of
data processing. Alice, Bob, and Carol receive input bits x, y, and z, respectively,
which are arbitrary subject to the condition that x ⊕ y ⊕ z = 0. Once they receive
their input data, they are forbidden from having any communication between them.
Their goal is to produce output bits a, b, and c, respectively, such that

a⊕ b⊕ c =
{
0 if xyz = 000,
1 if xyz ∈ {011, 101, 110}.(2.1)

Let us consider whether or not the trio can accomplish the above in terms of
classical information. Since Alice cannot receive any information from Bob or Carol,
her output bit a can depend only on the value of her input bit x. Let a0 (respectively,
a1) be Alice’s output when her input bit is 0 [1]. Similarly, let b0, b1 and c0, c1
be Bob and Carol’s outputs for their respective input values. Note that the six bits
a0, a1, b0, b1, c0, c1 completely characterize any (deterministic) strategy of Alice, Bob,
and Carol (and probabilistic strategies will not help here since no error probability is
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permitted). The conditions of the problem translate into the equations

a0 ⊕ b0 ⊕ c0 = 0,

a0 ⊕ b1 ⊕ c1 = 1,

a1 ⊕ b0 ⊕ c1 = 1,

a1 ⊕ b1 ⊕ c0 = 1.(2.2)

It is impossible to satisfy all four equations simultaneously. This is because summing
the four equations (modulo two) yields 0 = 1. Therefore, for any strategy, there exists
an input configuration xyz ∈ {000, 011, 101, 110} for which it fails.

Now consider the same problem, but where Alice, Bob, and Carol are supplied
with qubits QA, QB , and QC , respectively, where the state of QAQBQC is initialized
to

1
2 (|000〉 − |011〉 − |101〉 − |110〉).(2.3)

The parties are allowed to apply unitary transformations and perform measurements
on their individual qubits, but communication between the parties is still forbidden.
It turns out that now the parties can produce a, b, c satisfying (2.1). This is achieved
by the following procedures:

Procedure for Alice: Procedure for Bob:
if x = 1 then apply H to QA if y = 1 then apply H to QB
measure QA yielding bit a measure QB yielding bit b

Procedure for Carol:
if z = 1 then apply H to QC
measure QC yielding bit c

In the above, H is the Hadamard transform, which is represented in the standard
basis (|0〉 and |1〉) as

H = 1√
2

(
1 1
1 −1

)
,(2.4)

and the measurements are performed in the standard basis.
We claim that the described procedure produces three output bits a, b, and c,

satisfying (2.1). To see why this is so, first consider the case where xyz = 000. In
this case, no H transform is applied to any of the three qubits. Therefore QAQBQC
is measured directly in state (2.3), so the results will satisfy a⊕ b⊕ c = 0.

Next, in the case where xyz = 011, a Hadamard transform is applied to QB and
to QC but not to QA. Therefore QAQBQC is measured in state

I ⊗H ⊗H ( 1
2 (|000〉 − |011〉 − |101〉 − |110〉)

)
= 1

2 (|001〉+ |010〉 − |100〉+ |111〉),(2.5)

so a ⊕ b ⊕ c = 1. The remaining cases where xyz = 101 and 110 are similar by the
symmetry of state (2.3).

Note that a, b, and c by themselves are just random bits, uncorrelated with xyz. It
is only the trivariate correlations among a, b, and c that are related to the input data
xyz. Although the above task has some of the flavor of a communication complexity
problem, it is technically different in that individual parties acquire no information.
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We now construct a function based on the above where the presence of entanglement
reduces its communication complexity.

Consider the function f defined on all triples (x, y, z) ∈ {0, 1, 2, 3} × {0, 1, 2, 3} ×
{0, 1, 2, 3} which satisfy the condition

x+ y + z ≡ 0 (mod 2)(2.6)

for which its value is given as

f(x, y, z) =
(x+ y + z) mod 4

2
(2.7)

(the value is always 0 or 1 by (2.6)). We represent the numbers x, y, and z in binary
notation as x1x0, y1y0, and z1z0. In terms of these bits, the condition of (2.6) is

x0 ⊕ y0 ⊕ z0 = 0,(2.8)

and the function of (2.7) for inputs satisfying (2.8) is

f(x, y, z) = x1 ⊕ y1 ⊕ z1 ⊕ (x0 ∨ y0 ∨ z0).(2.9)

We assume the standard multiparty communication channel, where each bit that a
party sends is broadcast to all other parties. Also, at the conclusion of the protocol,
all parties must be able to determine the value of the function.

In the following two subsections, we show that with a prior entanglement, three
bits of communication are sufficient to compute f(x, y, z), whereas, without a prior
entanglement, four bits of communication are necessary to compute f(x, y, z).

2.1. The communication complexity with quantum entanglement is
three bits. We now show that if Alice, Bob, and Carol initially share qubits QA, QB ,
and QC , respectively, in state (2.3), then there is a protocol for f where each party
broadcasts only a single classical bit. The idea is based on applying the procedures
at the beginning of this section using x0y0z0 as the input. This requires no commu-
nication and provides Alice, Bob, and Carol with bits a, b, and c, respectively, such
that a⊕ b⊕ c = x0 ∨ y0 ∨ z0 (by (2.1)). Next Alice broadcasts the bit (x1 ⊕ a), Bob
broadcasts (y1 ⊕ b), and Carol broadcasts (z1 ⊕ c). At this point, each party knows
(x1 ⊕ a), (y1 ⊕ b), and (z1 ⊕ c), from which they can each determine the bit

(x1 ⊕ a)⊕ (y1 ⊕ b)⊕ (z1 ⊕ c) = x1 ⊕ y1 ⊕ z1 ⊕ (a⊕ b⊕ c)
= x1 ⊕ y1 ⊕ z1 ⊕ (x0 ∨ y0 ∨ z0)
= f(x, y, z),(2.10)

as required.

2.2. The communication complexity without quantum entanglement is
four bits. In this section, we show that in the classical setting, four bits of commu-
nication are necessary to compute f(x, y, z).

One can view any k-bit protocol as a binary tree of depth k, where each node that
is not a leaf is labeled A(lice), B(ob), or C(arol). This labeling indicates which party
will broadcast the next bit. An execution of the protocol corresponds to a path from
the root of the tree to a leaf. Each leaf node is labeled 0 or 1, indicating the common
output that results from the execution leading to that leaf. To establish our lower
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bound, it suffices to show that no protocol-tree of depth three correctly computes
f(x, y, z).

We use the following lemma, which implies that in any correct protocol, all three
parties must broadcast at least one bit.

Lemma 2.1. For any correct protocol-tree, on every path from its root to a leaf,
each of A, B, and C must occur as a label at least once.

Proof. Suppose that there exists a path along which one party, say, A, does not
occur as a label. Let the leaf of that path be labeled l ∈ {0, 1}. Since this path does
not include any reference to Alice’s data, the same path is taken if x1 is negated and
all other input bits are held constant. However, by (2.9), negating x1 also negates
the value of f(x, y, z), so the protocol cannot be correct for both possible values of
x1.

Next suppose we have a protocol-tree of depth three for f(x, y, z). Assume, with-
out loss of generality, that the root of the tree is labeled A. The bit that Alice broad-
casts is some function φ : {0, 1}2 → {0, 1} of her input data x alone. The function φ
partitions {0, 1}2 into two classes, φ−1(0) and φ−1(1). Call these two classes S0 and
S1 and assume (without loss of generality) that 00 ∈ S0.

Next assume for the moment that the two children of the root of the protocol-tree
are both labeled B (we shall see later that the other cases can be handled similarly).
Then, by Lemma 2, the four children of B are all labeled C. Therefore, after Alice
and Bob each send a bit, Carol must have enough information to determine the value
of f(x, y, z), since Carol broadcasts the third bit and does not gain any information
from doing this. We shall show that this is impossible whatever S0 and S1 are.

There are two cases (the second of which has three subcases).

Case 1. |S0| = 1. Recall that 00 ∈ S0, so 01, 10, 11 ∈ S1. Now, should the bit that
Alice broadcasts specify that x ∈ S1, Bob must follow this by broadcasting one bit
from which Carol can completely determine the value of f(x, y, z). Suppose that Bob
sends the bit consistent with y = 01. If z = 00, then, from Carol’s perspective, the
possible values of (x, y, z) include (01, 01, 00) and (11, 01, 00) for which the respective
values of f(x, y, z) are 1 and 0. Therefore Carol cannot determine the value of f(x, y, z)
in this case.

Case 2. |S0| ≥ 2. There are three subcases where S0 contains 01, 10, or 11 in
addition to 00.

Case 2.1. S0 contains 00 and 01. Here we consider the case where Alice broad-
casts the bit specifying that x ∈ S0. Bob must follow this by broadcasting one bit
from which Carol can completely determine the value of f(x, y, z). The bit that Bob
broadcasts induces a partition of the possible values for y into two classes. If z = 00,
then, from Carol’s perspective, after receiving Alice’s bit but before receiving Bob’s
bit, the possible values of (x, y, z) include (00, 00, 00), (00, 10, 00), (01, 01, 00), and
(01, 11, 00), and the respective values of f(x, y, z) on these points are 0, 1, 1, and
0. Therefore, for the protocol to be successful in this case, the partition that Bob’s
bit induces on y must place 00 and 11 in one class and 01 and 10 in the other class
(otherwise Carol would not be able to determine f(x, y, z) when z = 00). On the
other hand, if z = 01, then, from Carol’s perspective, the possible values of (x, y, z)
include (00, 01, 01), (00, 11, 01), (01, 00, 01), and (01, 10, 01), and the respective val-
ues of f(x, y, z) on these points are 1, 0, 1, and 0. Since we have established that
Bob’s bit does not distinguish between y = 00 and y = 11, Bob’s bit is not sufficient
information for Carol to determine f(x, y, z) in this case.
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Case 2.2. S0 contains 00 and 10. The argument is similar to that in Case 1.
Assume that Alice sends the bit specifying that x ∈ S0. If Bob follows this by
sending the bit consistent with y = 00 and z = 00, then, from Carol’s perspective,
the possible values of (x, y, z) include (00, 00, 00) and (10, 00, 00), and the respective
values of f(x, y, z) on these points are 0 and 1. Thus Carol cannot determine the
value of f(x, y, z) in this case.

Case 2.3. S0 contains 00 and 11. The argument is similar to Case 2.1. Suppose
that Alice broadcasts the bit specifying that x ∈ S0. Consider Carol’s perspective. If
z = 00, then the possible values of (x, y, z) include (00, 00, 00), (00, 10, 00), (11, 01, 00),
and (11, 11, 00), and the respective values of f(x, y, z) on these points are 0, 1, 0, and 1;
whereas, if z = 01, then the possible values of (x, y, z) include (00, 01, 10), (00, 11, 01),
(11, 00, 01), and (11, 10, 01), and the respective values of f(x, y, z) on these points are
1, 0, 0, 1. No binary partitioning of y will work for both possibilities.

The cases where the two children of the root of the protocol-tree are CC, CB, and
BC have an analogous proof as above with the roles of B and C possibly reversed.

This completes the proof of the lower bound of four bits. The following deter-
ministic four-bit protocol shows that this bound is tight.

A classical four bit protocol. First, Bob and Carol start by broadcasting the
bits y0, y1 (Bob) and z1 (Carol). After that, Alice now knows—by the promise of
(2.8)—the bit z0 = x0 ⊕ y0 and hence all six bit values involved. The fourth and last
bit of communication is therefore the announcement of the answer f(x, y, z) by Alice
to Bob and Carol.

3. Two-party probabilistic scenarios. The following scenario can be viewed
as a reformulation of the nonlocality proof in [8] into data processing terminology.
Alice and Bob receive input bits x and y, respectively, and, after this, they are for-
bidden from communicating with each other. Their goal is to produce output bits a
and b, respectively, such that

a⊕ b = x ∧ y,(3.1)

or, failing that, to satisfy this condition with as high a probability as possible.
To analyze the situation in terms of classical information, first consider the case of

deterministic strategies. For these, Alice’s output bit depends solely on her input bit
x and similarly for Bob. Let a0, a1 be the two possibilities for Alice and b0, b1 be the
two possibilities for Bob. These four bits completely characterize any deterministic
strategy. Condition (3.1) translates into the equations

a0 ⊕ b0 = 0,

a0 ⊕ b1 = 0,

a1 ⊕ b0 = 0,

a1 ⊕ b1 = 1.(3.2)

It is impossible to satisfy all four equations simultaneously (since summing them mod-
ulo two yields 0 = 1). Therefore it is impossible to satisfy condition (3.1) absolutely.

By using a probabilistic strategy, Alice and Bob can satisfy condition (3.1) with
probability 3

4 . For such a strategy, we allow Alice and Bob to have a priori classical
random variables, whose distribution is independent of that of the inputs x and y.
Note that any three of the four equations of (3.2) can be simultaneously satisfied.
The probabilistic strategy now works as follows. Alice and Bob have random variables
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RA and RB , respectively, which are each uniformly distributed over {0, 1, 2, 3} and
completely correlated with each other (i.e., RA = RB). These variables specify to
both of them one of the four equations to violate while satisfying the other three.
Alice and Bob then follow the deterministic procedure corresponding to a preagreed
a0, a1, b0, b1 which satisfy the three equations determined by RA and RB . It is easy
to see that (a) for any input xy, the resulting outputs satisfy condition (3.1) with
probability 3

4 , and (b) this is optimal in that no probabilistic strategy can attain a
success probability greater than 3

4 .
Now consider the same problem but where Alice and Bob are supplied with qubits

QA and QB , respectively (instead of random variables), where the state of QAQB is
initialized to

1√
2
(|00〉 − |11〉).(3.3)

It turns out that now the parties can produce data that satisfies condition (3.1) with
probability cos2(π8 ) = 0.853 . . ., which is higher than what is possible in the classical
case. This is achieved by the following procedures:

Procedure for Alice: Procedure for Bob:
if x = 0 then if y = 0 then

apply R(− π
16 ) to QA apply R(− π

16 ) to QB
else else

apply R( 3π
16 ) to QA apply R( 3π

16 ) to QB
measure QA yielding bit a measure QB yielding bit b

In the above, R(θ) is the rotation by angle θ which is represented in the standard
basis as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
,(3.4)

and the measurements are performed in the standard basis. If Alice rotates by θ1 and
Bob rotates by θ2, then the state of QAQB becomes

1√
2
(cos(θ1 + θ2)(|00〉 − |11〉) + sin(θ1 + θ2)(|01〉+ |10〉)) ,(3.5)

and, after the measurements, the probability that a⊕ b = 0 is cos2(θ1 + θ2). It is now
straightforward to verify that condition (3.1) is satisfied with probability cos2(π8 ) for
all input possibilities.

From the above, we can construct a function for which the presence of en-
tanglement reduces its communication complexity in a probabilistic sense. Define
g : {0, 1}2 × {0, 1}2 → {0, 1} as

g(x, y) = x1 ⊕ y1 ⊕ (x0 ∧ y0).(3.6)

An execution of a probabilistic protocol for g is considered successful if and only if
the value determined by Alice and the value determined by Bob are both correct.

In the following two subsections, we show that, with a prior quantum entan-
glement and two bits of communication, the probability of success can be at least
cos2(π8 ) = 0.853 . . ., whereas, with a shared random string instead of quantum entan-
glement and two bits of communication, the probability of success cannot exceed 3

4 .
Thus, without prior entanglement, to achieve a success probability of at least cos2(π8 ),
three bits of communication are necessary.
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Table 3.1
The values of g(x, y). The columns are indexed by x and the rows are indexed by y.

g(x, y) 00 01 10 11
00 0 0 1 1
01 0 1 1 0
10 1 1 0 0
11 1 0 0 1

3.1. With quantum entanglement. Here we show that if Alice and Bob ini-
tially share qubits QA and QB , respectively, in state (3.3), then there is a protocol
which successfully computes g with probability cos2(π8 ). Alice and Bob first apply
the procedures at the beginning of this section using x0y0 as input. This requires no
communication and provides Alice and Bob with bits a and b, respectively, such that
Pr[a ⊕ b = x0 ∧ y0] = cos2(π8 ). Then Alice sends (a ⊕ x1) to Bob, and Bob sends
(b⊕ y1) to Alice. At this point, each party can determine the bit

(a⊕ x1)⊕ (b⊕ y1) = x1 ⊕ y1 ⊕ (a⊕ b),(3.7)

which equals x1 ⊕ y1 ⊕ (x0 ∧ y0) = g(x, y) with probability cos2(π8 ), as required.

3.2. With shared classical random bits but no quantum entanglement.
We now show that if Alice and Bob initially share classical random bits but no quan-
tum entanglement, then there is no two-bit protocol in which both parties output the
correct value of g(x, y) with probability greater than 3

4 . By Theorem 3.20 of [23], it
is sufficient to prove the lower bound on the error probability for all deterministic
protocols with respect to random inputs from {0, 1}2 × {0, 1}2 (which we can take
to be uniformly distributed). As noted in section 2.2, we can represent any two-bit
protocol as a binary tree of depth two with nonleaf nodes labeled A(lice) and B(ob).

Assume, without loss of generality, that the root of the protocol-tree is labeled A.
The first bit that Alice sends is some function φ : {0, 1}2 → {0, 1} of her input data x
alone. The function φ partitions {0, 1}2 into two classes S0 = φ−1(0) and S1 = φ−1(1).
Let the first and second children of the root correspond to the paths traversed when
the first bit sent (by Alice) indicates that x ∈ S0 and x ∈ S1, respectively. We must
consider all partitions S0 and S1 in combination with all cases where the two children
of the root are BB, AB, or AA (the case BA can be omitted by symmetry).

Lemma 3.1. If the child corresponding to Si is labeled B, then, conditioned on
x ∈ Si, the probability that Bob correctly determines g(x, y) is at most 1 if |Si| = 1;
3
4 if |Si| = 2; 2

3 if |Si| = 3; and 1
2 if |Si| = 4. There is no well-defined probability for

the empty set |Si| = 0.
Proof. The case where |Si| = 1 is trivial.
For the case where |Si| = 2, first consider the subcase where Si = {00, 01}. Under

the condition x ∈ Si, (x, y) is a position in one of the first two columns of Table 3.1,
and Alice’s bit to Bob indicates this to him. From Bob’s perspective, if y = 00, then
g(x, y) = 0, so Bob can determine the correct answer. Similarly, if y = 10, then
g(x, y) = 1, so Bob can determine the correct answer. However, if y = 01, then,
since the first two columns of the table differ in this row, whatever function of Alice’s
message and y Bob computes, the probability that it will match g(x, y) is at most 1

2 .
Similarly, if y = 01, then Bob computes the correct answer with probability at most
1
2 . Since these four values of y are equiprobable, the probability that Bob correctly
computes g(x, y) conditioned on x ∈ Si is at most 1

4 · 1+ 1
4 · 1+ 1

4 · 12 + 1
4 · 12 = 3

4 . The
other five subcases in which |Si| = 2 are handled similarly.
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For the case where |Si| = 3, first consider the subcase where Si = {00, 01, 10}.
Under the condition x ∈ Si, (x, y) is a position in one of the first three columns of
Table 3.1, and Alice’s bit to Bob indicates this to him. By looking at these three
columns of Table 3.1, we observe that, from Bob’s perspective, whatever the value of
y, the probability of Bob determining g(x, y) is at most 2

3 . The other two subcases in
which |Si| = 3 are handled similarly.

The last case |Si| = 4 immediately implies Si = {00, 01, 10, 11}, where Bob re-
ceives no information about the the string x of Alice. For all possible y’s, the proba-
bility that Bob guesses g(x, y) correctly is therefore 1

2 .
As the probabilities are conditioned on x being an element of Si, the case of the

empty set |Si| = 0 is not well-defined.
Now, by Lemma 3.1, if the two children of the root are BB, then the probability

that Bob correctly determines g(x, y) is at most 1
4 · 1 + 3

4 · 2
3 = 3

4 if |S0| �= |S1|, and
1
2 · 3

4 + 1
2 · 3

4 = 3
4 if |S0| = |S1|.

Next, we show that for protocol-trees in which the two children of the root are
not BB, the correctness probability is actually less than 3

4 .
Lemma 3.2. If the child corresponding to Si is labeled A, then, conditioned on

x ∈ Si, the probability that Alice correctly determines g(x, y) is at most 1
2 .

Proof. If the condition x ∈ Si occurs, then Alice receives no information from
Bob. Therefore, from Alice’s perspective, the value of g(x, y) is either y1, y1 ⊕ y0,
1⊕y1, or 1⊕y1⊕y0 (corresponding to the cases x = 00, 01, 10, and 11, respectively).
The result now follows from the fact that, from Alice’s perspective, y is uniformly
distributed over {0, 1}2.

By Lemma 3.2, it follows that if the two children of the root are AA, then the
probability that Bob correctly determines g(x, y) is at most 1

2 . The remaining case
is where the two children of the root are AB. By applying Lemma 3.2 for the first
child and Lemma 3.1 for the second child, the probability that both Alice and Bob
correctly determine g(x, y) is at most

• 1
4 · 1

2 + 3
4 · 2

3 = 5
8 if |S0| = 1 and |S1| = 3,

• 1
2 · 1

2 + 1
2 · 3

4 = 5
8 if |S0| = 2 and |S1| = 2,

• 3
4 · 1

2 + 1
4 · 1 = 5

8 if |S0| = 3 and |S1| = 1.

This completes the proof that no two-bit protocol is correct with probability more
than 3

4 . There is a straightforward errorless three-bit protocol.

4. The qubit model of communication complexity. In the previous two
sections, novel protocols were obtained in the entanglement model for communication
complexity, where communication is with classical bits, but the parties have an a
priori supply of entangled qubits. In the qubit model (introduced by Yao [34] and
Kremer [22]), the parties have no entanglement but are allowed to communicate with
qubits in place of classical bits. Qubits cannot be broadcast [32], so in a multiparty
setting a qubit of communication must be sent to a specific party.

In this section, we show how to translate the protocols from sections 2 and 3
in the entanglement model into protocols in the qubit model. By doing so we also
prove the same separation between qubit communication complexity and classical
communication complexity.

4.1. A deterministic three-party qubit protocol. The following protocol
requires only two qubits plus one classical bit of communication to compute f from
section 2 with the one-qubit rotation R that we used earlier.
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Procedure for Alice: Procedure for Bob:
initialize qubit Q to state |0〉 receive Q from Alice
apply R(x · π4 ) to Q apply R(y · π4 ) to Q
send Q to Bob send Q to Carol

Procedure for Carol:
receive Q from Bob
apply R(z · π4 ) to Q
measure Q, yielding bit m
announce the answer m

It is straightforward to verify that the final state of qubit Q is

R(z · π4 ) ·R(y · π4 ) ·R(x · π4 )|0〉 = cos((x+ y + z) · π4 )|0〉+ sin((x+ y + z) · π4 )|1〉
= |f(x, y, z)〉,(4.1)

which implies that the answer as announced by Carol is indeed correct.

4.2. A probabilistic two-party qubit protocol. Also the two-party problem
of section 2 can be translated to the qubit model. The following protocol computes g
from section 2 with correctness probability 0.853 . . . using only one qubit and one bit
of communication:

Procedure for Alice: Procedure for Bob:
initialize qubit Q to state |0〉 receive Q from Alice
apply R((2x1 + x0 − 1

2 ) · π4 ) to Q apply R((2y1 + y0) · π4 ) to Q
send Q to Bob measure Q, yielding bit m

announce the answer m

For any combination of input x and y, this final answer m will be the correct value
g(x, y) with probability cos2(π8 ) = 0.853 . . ., which is identical to the success rate of
the entanglement protocol of section 3.1.

5. Discussion of subsequent work. After the publication of [9] and the an-
nouncement of this article in 1997, several other results in quantum communication
complexity were obtained. In [6] the three-party problem of Chapter 2 was general-
ized into a k-party problem for which the separation between quantum and classical
communication complexity is k versus Θ(k log k) bits. For the one-round, three-party
setting this article also proved a difference of n + 1 versus (3/2)n + 1 bits between
communication with and without initial entanglement.

A lower bound of Ω(n) on the quantum communication complexity of the (two-
party) Inner Product function in [10] showed that the entanglement model does
not always allow an improvement over the classical scenario. On the other hand, a
significant decrease in communication complexity was established for the Disjoint
function

Disjoint(x, y) =

{
0 if there exists an i such that xi = yi = 1,
1 otherwise.

(5.1)

This well-studied problem has a classical probabilistic communication complexity of
Ω(n) [18, 28], while the authors of [5] gave a qubit protocol requiring only O(

√
n log n)

qubits of communication. The question whether there exists a more efficient quantum
protocol forDisjoint is still an important open problem. This is especially relevant as
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Disjoint is a complete problem for the communication class “co-NP” [2]. The same
article [5] also contained the first exponential separation for the exact distributed
computation of a partial two-party function that is related to the Deutsch–Jozsa
problem of [11].

In [27] Raz improved on these results by establishing an exponential separation
between classical and quantum communication in the bounded-error probabilistic
setting. The problem involved is the question for Alice whether her normalized n-
dimensional vector �v ∈ Cn, after Bob’s unitary transformation U , lies in a particular
subspace S ⊂ Cn or in the orthogonal complement S⊥. (The promise here is that
the vector U�v is close to either S or S⊥.) It is clear that this can be solved with
only 2 logn qubits of communication if we store the coefficients of �v (and U�v) in the
amplitudes of a logn qubit message. The classical lower bound, on the other hand,
was proved to be polynomial in n. It is currently still an open problem if it is possible
to have an exponential quantum vs. classical reduction in communication complexity
for a total function.

The “sampling complexity” of a function f and a probability distribution µ is the
amount of communication that is required to create a mixture of the possible states
(f(x, y), x, y) according to the distribution µ(x, y) over the input states. In [1] it was
shown that we can have an exponential gap between the quantum and the classical
sampling complexity of the Disjoint function.

Separations for nondeterministic (quantum) communication complexity are ex-
hibited in the articles [31] and [24]. In [7], there is a general framework for estab-
lishing lower bounds on exact communication complexity with entanglement. For the
zero-error (Las Vegas) model, Klauck [20] has given a polynomial difference between
the quantum and the classical setting. The question whether quantum information,
in general, can reduce the number of rounds is addressed in [21]. (See [29, 19] for
spectacular examples of such a reduction in the context of interactive proof systems.)

The preliminary communication complexity results that appear in this article
were inspired by examples of quantum nonlocality. Conversely, in [4] new powerful
examples of nonlocality are given that follow from the results in [5].
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Abstract. We continue the study of combinatorial property testing, initiated by Goldreich,
Goldwasser, and Ron in [J. ACM, 45 (1998), pp. 653–750]. The subject of this paper is testing
regular languages. Our main result is as follows. For a regular language L ∈ {0, 1}∗ and an integer
n there exists a randomized algorithm which always accepts a word w of length n if w ∈ L and
rejects it with high probability if w has to be modified in at least εn positions to create a word in
L. The algorithm queries Õ(1/ε) bits of w. This query complexity is shown to be optimal up to a
factor polylogarithmic in 1/ε. We also discuss the testability of more complex languages and show, in
particular, that the query complexity required for testing context-free languages cannot be bounded
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general approach, seeking to probe testability of properties defined by logical means.
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1. Introduction. Property testing deals with the question of deciding whether
a given input x satisfies a prescribed property P or is “far” from any input satisfying
it. Let P be a property, i.e., a nonempty family of binary words. A word w of length
n is called ε-far from satisfying P if no word w′ of the same length, which differs from
w in no more than εn places, satisfies P . An ε-test for P is a randomized algorithm,
which, given the quantity n and the ability to make queries about the value of any
desired bit of an input word w of length n, distinguishes with probability at least 2/3
between the case of w ∈ P and the case of w being ε-far from satisfying P . Finally,
we say that property P is (c, ε)-testable if for every ε > 0 there exists an ε-test for P
whose total number of queries is bounded by c.

Property testing was defined by Goldreich, Goldwasser, and Ron [7] (inspired
by [13]). It emerges naturally in the context of PAC learning, program checking
[6, 3, 10, 13], probabilistically checkable proofs [2], and approximation algorithms [7].
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In [7], the authors mainly consider graph properties, such as bipartiteness, and
they show (among other things) the quite surprising fact that testing bipartiteness
can be done by randomly testing a polynomial in 1/ε number of edges of the graph,
answering the above question with constant probability of failure. They also raise the
question of obtaining general results as to when there is, for every ε > 0, an ε-test
for a property using c = c(ε) queries (i.e., c is a function of ε but independent of n)
with constant probability of failure. We call properties of this type ε-testable. So far,
such answers are quite sparse; some interesting examples are given in [7], and several
additional ones can be obtained by applying the regularity lemma as we show in a
subsequent paper [1].

In this paper we address testability of formal languages (see [8] as a general
reference). A language L ⊆ {0, 1}∗ is a property which is usually viewed as a sequence
of Boolean functions fn : {0, 1}n → {0, 1}, with f−1

n (1) = L∩{0, 1}n = Ln. Our main
result states that all regular languages are ε-testable with a query complexity of only
Õ(1/ε). We also show that this complexity is optimal up to a factor polylogarithmic
in 1/ε. This positive result cannot be extended to context-free languages, for there is
an example of a very simple context-free language which is not testable.

Since regular languages can be characterized using second order monadic logic,
we thus obtain a large set of logically defined objects which are testable. In [1] we
provide testable graph properties described by logical means as well. These results
indicate a strong interrelation between testability and logic. Although our result on
regular languages can be viewed as a separate result having no logical bearing at all,
our opinion is that logic does provide the right context for testability problems, which
may lead to the discovery of further classes of testable properties.

The rest of this paper is organized as follows. In section 2 we present the proof
of the main result showing that every regular language is testable. In section 3 we
show that the upper bound of Õ(1/ε) for the query complexity of testing regular
languages, obtained in Theorem 2.9, is tight up to a polylogarithmic factor. Section
4 is devoted to the discussion of testability of context-free languages. There we show,
in particular, that there exist nontestable context-free languages. We also discuss
testability of the Dyck languages. Section 5 contains some concluding remarks and
outlines new research directions.

2. Testing regular languages. In this section we prove the main result of
the paper, namely, that regular languages are (Õ( 1

ε ), ε)-testable. As this result is
asymptotic, we assume that n is big enough with respect to 1

ε (and with respect to
any other constant that depends only on the fixed language we are working with). All
logarithms are binary unless stated explicitly otherwise.

We start by recalling the standard definition of a regular language, based on finite
automata. This definition is convenient for algorithmic purposes.

Definition 2.1. A deterministic finite automaton (DFA) M over {0, 1} with
states Q = {q1, . . . , qm} is given by a function δ : Q× {0, 1} → Q together with a set
F ⊆ Q. One of the states, q1, is called the initial state. The states belonging to the
set F are called accepting states, and δ is called the transition function.

We can extend the transition function δ to {0, 1}∗ recursively as follows. Let γ
denote the empty word. Then

δ(q, γ) = q,

δ(q, u0) = δ(δ(u, q), 0),

δ(q, u1) = δ(δ(u, q), 1).
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Thus, if M starts in a state q and processes string u, then it ends up in a state δ(q, u).

We then say that M accepts a word u if δ(q1, u) ∈ F . M rejects u means that
δ(q1, u) ∈ Q \ F . Finally, the language accepted by M , denoted by LM , is the set of
all u ∈ {0, 1}∗ accepted by M . We use the following definition of regular languages.

Definition 2.2. A language is regular iff there exists a finite automaton that
accepts it.

Therefore, we assume in this section that a regular language L is given by its
automaton M so that L = LM .

A word w of length n defines a sequence of states (qi0 , . . . , qin) in the following
natural way: qi0 = q1, and for 1 ≤ j ≤ n, qij = δ(q1, w[1] . . . w[j]). This sequence
describes how the automaton M moves while reading w. Later in the paper we will
occasionally refer to this sequence as the traversal path of w.

A finite automaton M defines a directed graph G(M) by V (G(M)) = Q and
E(G(M)) = {(qi, qj) | δ(qi, 0) = qj} ∪ {(qi, qj) | δ(qi, 1) = qj}. The period g(G) of a
directed graph G is the greatest common divisor of cycle lengths in G. If G is acyclic,
we set g(G) =∞.

We will use the following lemma about directed graphs.

Lemma 2.3. Let G = (V,E) be a nonempty, strongly connected directed graph
with a finite period g(G). Then there exist a partition V (G) = V0 ∪ · · · ∪ Vg−1 and a
constant m = m(G) which does not exceed 3|V |2 such that the following hold.

(1) For every 0 ≤ i, j ≤ g − 1 and for every u ∈ Vi, v ∈ Vj the length of every
directed path from u to v in G is (j − i) mod g.

(2) For every 0 ≤ i, j ≤ g − 1, for every u ∈ Vi, v ∈ Vj, and for every integer
r ≥ m, if r = (j − i) (mod g), then there exists a directed path from u to v
in G of length r.

Proof. To prove part 1, fix an arbitrary vertex z ∈ V and for each 0 ≤ i ≤ g − 1,
let Vi be the set of all those vertices which are reachable from v by a directed (not
necessarily simple) path of length i mod g. Note that since any closed (directed) walk
in G is a disjoint union of cycles, the length of each such walk is divisible by g. This
implies that the sets Vi are pairwise disjoint. Indeed, assume this is false, and suppose
w lies in Vi ∩ Vj with i �= j. As G is strongly connected, there is a path p1 from w
to z, and by definition there are a path p2 of length i mod g from z to w as well as a
path p3 of length j mod g from z to w. Now the number of edges of either p1 ∪ p2 or
p1 ∪ p3 is not divisible by g, which is impossible. Therefore, the sets Vi form, indeed,
a partition of V . For u ∈ Vi and v ∈ Vj , the union of any (directed) path from z to
u with a (directed) path from u to v forms a path from z to v, and as any such path
must have length j mod g; the assertion of part 1 follows.

We next prove part 2. Consider any set of positive integers {ai} whose greatest
common divisor is g. It is well known that there is a smallest number t such that every
integer s ≥ t which is divisible by g is a linear combination with nonnegative integer
coefficients of the numbers ai. Moreover, it is known (see [9, 5]) that t is smaller than
the square of the maximal number ai. Fix a closed (directed) walk in G that visits
all vertices and whose length is at most |V |2. (This is easily obtained by numbering
the vertices of G arbitrarily as v0, v1, . . . , vk−1 and by concatenating directed paths
from vi to vi+1 for each 0 ≤ i ≤ k − 1, where the indices are taken modulo k.) Now
associate the set of cycle lengths in this walk with the set of positive integers {ai} as
above. Then, following this closed walk and traversing each directed cycle as many
times as desired, we conclude that every integer divisible by g and exceeding 2|V |2
is the length of a closed walk passing through all vertices of the graph. Given now a
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vertex u ∈ Vi, a vertex v ∈ Vj , and an integer r > 3|V |2 satisfying r = (j − i) mod g,
fix a shortest path p from u to v, and note that its length l satisfies l = (j − i) mod g
and l < |V |(≤ |V |2). Adding to p a closed walk of length r − l from v to itself, we
obtain the required path, completing the proof.

We call the constant m from the above lemma the reachability constant of G and
denote it by m(G). In what follows we assume that m is divisible by g.

If LM ∩ {0, 1}n = ∅, a testing algorithm can reject any input without reading it
at all. Therefore, we can assume that we are in the nontrivial case LM ∩ {0, 1}n �= ∅.

We now introduce a key definition for what follows.

Definition 2.4. Given a word w ∈ {0, 1}n, a subword (run) w′ of w starting
at position i is called feasible for language LM if there exists a state q ∈ Q such
that q is reachable from q1 in G in exactly i − 1 steps, and there is a path of length
n − (|w′| + i − 1) in G from the state δ(q, w′) to at least one of the accepting states.
Otherwise, w′ is called infeasible.

Of course, finding an infeasible run in w proves that w �∈ L. Our aim is to show
that if a given word w of length n is far from any word of length n in L, then many
short runs of w are infeasible. Thus a choice of a small number of random runs of w
almost surely contains an infeasible run. First we treat the following basic case.

Definition 2.5. We call an automaton M “essentially strongly connected” if

(1) M has a unique accepting state qacc;
(2) the set of states of the automaton, Q, can be partitioned into two parts, C

and D, so that
• q1, qacc ∈ C,
• the subgraph of G(M) induced on C is strongly connected, and
• no edges in G(M) go from D to C (but edges can go from C to D).

(Note that D may be empty.)

Lemma 2.6. Assume that the language L = LM contains some words of length
n and that M is essentially strongly connected with C and D being the partition of
the states of M as in Definition 2.5. Let m be the reachability constant of G[C].
Assume also that εn ≥ 64m log(4m/ε). Then if, for a word w of length |w| = n,
dist(w,L) ≥ εn, then there exists an integer 1 ≤ i ≤ log(4m/ε) such that the number

of infeasible runs of w of length 2i+1 is at least 2i−4εn
m log(4m/ε) .

Proof. Our intention is to construct a sequence (Rj)j=1,... of disjoint infeasible
runs, each being minimal in the sense that each of their prefixes is feasible, and so
that each is a subword of the given word w. We then show that we can concatenate
these subwords to form a word in the language that is not too far from w. (“Not too
far” will essentially depend on the number of runs that we have constructed.) This
in turn will show that if dist(w,L) ≥ εn, then there is a lower bound on the number
of these infeasible runs.

For reasons to become obvious later, we also want these runs to be in the interval
[m+ 1, n−m].

A natural way to construct such a sequence is to repeat the following procedure
starting from coordinate m + 1. Let R1 be the shortest infeasible run starting from
w[m + 1] and ending before w[n −m + 1]. If there is no such run we stop. Assume
that we have constructed so far R1, . . . , Rj−1 ending at w[cj−1]; next we construct
Rj by taking the minimal infeasible run starting at w[cj−1 + 1] and ending before
w[n−m+ 1]. Again, if there is no such run, we stop.

Assume we have constructed in this way runs R1, . . . , Rh. Note that each run
is a subword of w, the runs are pairwise disjoint, and their concatenation in order
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forms a (continuous) subword of w. Also note that by the definition of each run, Rj

being minimal infeasible, its prefix R
(−)
j , obtained by discarding the last bit of Rj , is

feasible. This, in turn, implies that R′j , which is obtained from Rj by flipping its last
bit, is feasible. In addition, by Definition 2.4, this means that for each R′j there is a
state qij ∈ C so that δ(qij , R

′
j) ∈ C and such that qij is reachable from q1 in cj−1 +1

steps.

Next we inductively construct a word w∗ ∈ L such that dist(w,w∗) ≤ hm+2m+2.
Assuming that dist(w,L) ≥ εn, this will imply a lower bound on h. The general idea
is to “glue” together the R′j for j = 1, . . . , h, each being feasible and yet very close
to a subword of w (except for the last bit in each). The only concern is to glue the
pieces together so that as a whole word they will be feasible. This will require an
extra change of m bits per run, plus some additional 2m bits at the end of the word.

We maintain during the induction that, for j = 0, . . ., the word wj we construct
is feasible starting from position 1, and it ends in position cj . For the base case, let
c0 = m, and let w0 be any word of length m which is feasible starting from position
1. Assume we have already defined a word wj−1 feasible from position 1 and ending
in position cj−1. Let δ(q1, wj−1) = pj . As both pj and qij are reachable from q1 by a
path of length cj−1, according to Lemma 2.3 we can change the last m bits in wj−1 so
that we get a word uj for which δ(q1, uj) = qij . We now define wj as a concatenation
of uj and R′j . Let wh be the final word that is defined in this way, ending at place ch.
There are two possible reasons we have stopped with Rh. One possible reason is that
there is no infeasible run starting at ch+1, in which case, changing the last m bits of
wh and concatenating to it the remaining suffix of w (that starts at position ch + 1),
exactly as in the case of adding R′j , yields the required w∗. The other possible reason
for stopping the growth of Rh is when there is a minimal infeasible run that starts
at ch + 1 and ends after position n −m + 1. Let R be that run, and let R′ be the
run obtained by flipping the last bit of R. As was the case with any R′j , R

′ is feasible
from position ch +1. Hence there is a feasible word u of which R′ is a prefix and u is
of length n− ch so that δ(qih , u) = qacc. We can construct w∗ from wh and u exactly
as we have constructed w∗ from wh and the suffix of w in the previous case.

By the definition of w∗, w∗ ∈ L. Following the inductive construction of w∗, we
have that for 1 ≤ j ≤ h, dist(wj , w[1, cj ]) ≤ jm+ 1. Then to get from wh to w∗ we
start with R′, which is either a subword of w (as in the first case previously discussed)
or a subword of w where one bit was changed (as in the second case), and we continue
by changing m bits at the end of wh and possibly additional m bits at the end of u.
Therefore, dist(w,w∗) ≤ hm+ 2m+ 2, as we claimed.

Recalling that dist(w,L) ≥ εn, we conclude that h ≥ εn−2
m − 2 ≥ εn/(2m). (The

last inequality is by our assumptions that εn ≥ 64m log(4m/ε).) This already shows
that if dist(w,L) ≥ εn, then there are Ω(εn) many disjoint infeasible runs in w.
However, we need a stronger dependence, as stated in the lemma. We achieve this in
the following way.

Let a = log(4m/ε). For 1 ≤ i ≤ a, denote by si the number of runs in {Rj}hj=1

whose length falls in the interval [2i−1 + 1, 2i]. As |{Rj : 1 ≤ j ≤ h, |Rj | > 4m/ε}| <
εn/(4m), we get

∑a
i=1 si ≥ h− εn/(4m) ≥ εn/(4m). Therefore, there exists an index

i for which si ≥ εn/(4am). Consider all infeasible runs Rj with |Rj | ∈ [2i−1 + 1, 2i].
Note that if a run contains an infeasible subrun, then it is infeasible by itself. Now,
each infeasible run of length between 2i−1 + 1 and 2i is contained in at least 2i

infeasible runs of length 2i+1, except maybe for the first two and the last two runs
(those with the two smallest j’s and those with the two largest j’s). As Rj are
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disjoint, each infeasible run of length 2i+1 contains at most three of the Rj ’s of
length at least 2i−1 + 1. Thus, we a get a total of at least (2i/3)(si − 4) infeasible
runs of length at most 2i+1. By our assumption on the parameters, this number is

(2i/3)(si−4) ≥ 2i

3 (
εn

4am −4) = 2i−4( εnam + 1
3
εn−64am
am ) ≥ 2i−4εn

m log(4m/ε) , as claimed.

Now our aim is to reduce the general case to the above described case. For a given
DFA M with a graph G = G(M), we denote by C(G) the graph of components of G,
whose vertices correspond to maximal by inclusion strongly connected components of
G and whose directed edges connect components of G, which are connected by some
edge in G. Note that some of the vertices of C(G) may represent single vertices of
G with no self loops that do not belong to any strongly connected subgraph of G
with at least two vertices. All other components have nonempty paths inside them
and will be called truly connected. From now on we reserve k for the number of
vertices of C(G) and set V = V (G). We may assume that all vertices of G are
reachable from the initial state q1. Then C(G) is an acyclic graph in which there
exists a directed path from a component C1, containing q1, to every other component.
Denotem = maxj(m(Cj)), l = lcm({g(G[Cj ])}), where j runs over all truly connected
components of G, corresponding to vertices of C(G). We will assume in what follows
that the following relations are satisfied between the parameters.

Condition (*).

• εn
2k ≥ 64m log 8mk

ε .
• εn > 8km.
• ε log(1/ε) < 1

258k2|V |2m(l+m) .

Clearly, for any fixed k,m, l for ε small enough, and n large enough, condition (*)
holds.

Our next step is to describe how a word w ∈ LM of length n can move along the
automaton. If a word w belongs to L, it traverses G, starting from q1 and ending
in one of the accepting states. Accordingly, w traverses C(G), starting from C1 and
ending in a component containing an accepting state. For this reason, we call a path A
in C(G) admissible if it starts at C1 and ends at a component with an accepting state.
Given an admissible path A = (Ci1 , . . . , Cit) in C(G), a sequence P = (p1

j , p
2
j )
t
j=1 of

pairs of vertices of G (states of M) is called an admissible sequence of portals if it
satisfies the following restrictions.

1. p1
j , p

2
j ∈ Cij for every 1 ≤ j ≤ t.

2. p1
1 = q1.

3. p2
t ∈ F (i.e., p2

t is an accepting state of M).
4. For every 2 ≤ j ≤ t one has (p2

j−1, p
1
j ) ∈ E(G).

The idea behind the above definition of admissible portals is simple: Given an admis-
sible path A, an admissible sequence P of portals defines how a word w ∈ L moves
from one strongly connected component of A to the next one, starting from the initial
state q1 and ending in an accepting state. The pair (p

1
j , p

2
j ) is the first and last states

that are traversed in Cij .

Now, given an admissible path A and a corresponding admissible sequence P of
portals, we say that an increasing sequence of integers Π = (nj)

t+1
j=1 forms an admissible

partition with respect to (A,P ) if the following hold.

1. n1 = 0.
2. For every 1 ≤ j ≤ t, there exists a path from p1

j to p2
j in Cij of length

nj+1 − nj − 1.
3. nt+1 = n+ 1.

The meaning of the partition Π = (nj)
t+1
j=1 is as follows. If w ∈ L and w traverses M
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in accordance with (A,P ), then, for each 1 ≤ j ≤ t, the value of nj indicates that
w arrives to component Cij for the first time after nj bits. For convenience we also
set nt+1 = n + 1. Thus, for each 1 ≤ j ≤ t, the word w stays in Cij in the interval
[nj +1, nj+1−1]. Note that it is possible in principle that for a given admissible path
A and a corresponding admissible sequence of portals P there is no corresponding
admissible partition Π. (This could happen if the path A and the set of portals P
correspond to no word of length n.)

A triplet (A,P,Π), where A is an admissible path, P is a corresponding admissible
sequence of portals, and Π is a corresponding admissible partition, will be called an
admissible triplet. It is clear from the definition of an admissible triplet that a word
w ∈ L traverses G in accordance with a scenario suggested by one of the admissible
triplets. Therefore, in order to get convinced that w �∈ L, it is enough to check that
w does not fit any admissible triplet.

Fix an admissible triplet (A,P,Π), where A = (Ci1 , . . . , Cit), P = (p1
j , p

2
j )
t
j=1,

and Π = (nj)
t+1
j=1. For all 1 ≤ j ≤ t, we define a language Lj that contains all words

that traverse in M from p1
j to p

2
j . This is done formally by defining an automaton Mj

as follows. The set of states of Mj is obtained by adding to Cij a new state fj . The
initial state of Mj and its unique accepting state are p

1
j and p2

j , respectively. For each
q ∈ Cij and α ∈ {0, 1}, if δM (q, α) ∈ Cij , we set δMj (q, α) = δM (q, α). Otherwise,
δMj (q, α) = fj . We also define δMj (fj , 0) = δMj (fj , 1) = fj . Namely, in Mj all
transitions within Cij remain the same. All transitions going to other components
now go to fj , which has a loop to itself. Thus, Mj is essentially strongly connected,
as in Definition 2.5, with D = {fj}. Then Lj is the language accepted by Mj .

Given the fixed admissible triplet (A,P,Π) and a word w of length |w| = n, we
define t subwords of it, w1, . . . , wt, by setting wj = w[nj + 1] . . . w[nj+1 − 1], where
1 ≤ j ≤ t. Note that |wj | = nj+1 − nj − 1. Namely, if w were to pass through M
according to the partition Π, then the substring wj would correspond to the portion
of the traversal path of w that lies within the component Cij .

Lemma 2.7. Let (A,P,Π) be an admissible triplet , where A = (Ci1 , . . . , Cit),
P = (p1

j , p
2
j )
t
j=1, and Π = (nj)

t+1
j=1. Let w be a word of length n satisfying dist(w,L) ≥

εn. Define languages (Lj)
t
j=1 and words (wj)

t
j=1 as described above. Then there exists

an index j, 1 ≤ j ≤ t, for which dist(wj , Lj) ≥ εn−k
k .

Proof. Assume this is not the case. Let Π = (nj)
t+1
j=1 be the partition, and recall

that t ≤ k. For every 1 ≤ j ≤ t , if nj+1 − nj ≥ 2, let wj∗ ∈ Lj be a word of
length nj+1 − nj − 1 for which dist(wj , wj∗) < (εn − k)/k. If nj+1 − nj = 1, we
set wj∗ = γ (the empty word). Also, for 1 ≤ j ≤ t − 1, choose αj ∈ {0, 1} so
that δM (p2

j , αj) = p1
j+1. Then by construction the word w∗ = w1∗α1w

2∗ . . . αt−1w
t∗

belongs to L and dist(w,w∗) ≤ t− 1+∑t
j=1 dist(w

j , wj∗) ≤ t− 1+ t(εn− k)/k < εn,
which is a contradiction.

Now we present a key idea of the proof. Ideally, we would like to test whether an
input word w of length n fits any admissible triplet. In the positive case, i.e., when
w ∈ LM , the traversal path of w in M defines naturally an admissible triplet which
w will obviously fit. In the negative case, i.e., when dist(w,L) ≥ εn, Lemma 2.7
implies that for every admissible triplet (A,P,Π), at least one of the subwords wj is
very far from the corresponding language Lj . Then by Lemma 2.6 wj contains many
short infeasible runs, and thus sampling a small number of random runs will catch
one of them with high probability. However, the problem is that the total number of
admissible triplets clearly depends on n, which makes the task of applying directly
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the union bound on the probability of not catching an infeasible run impossible.
We circumvent this difficulty in the following way. We place evenly in 1, . . . , n

a bounded number (depending only on ε and the parameters of M) of transition
intervals Ts of a bounded length and postulate that a transition between components
of C(G) should happen inside these transition intervals. Then we show that if w ∈ L,
it can be modified slightly to meet this restriction, whereas if dist(w,L) ≥ εn, for
any choice of such an admissible triplet, w is far from fitting it. As the number of
admissible triplets under consideration is bounded by a function of ε only, we can
apply the union bound to estimate the probability of failure.

Recall that m = maxj(m(Cj)), l = lcm({g(G[Cj ])}), where j runs over all
truly connected components of G, corresponding to vertices of C(G). Let S =
129km log(1/ε)/ε. We place S transition intervals {Ts = [as, bs]}Ss=1 evenly in [n],
where the length of each transition interval Ts is |Ts| = (k − 1)(l +m). For 1 ≤ i ≤
log(8km/ε) define ri =

28−ik2m log2( 1
ε )

ε .
Algorithm.
Input: a word w of length |w| = n;
1. For each 1 ≤ i ≤ log(8km/ε) choose ri random runs in w of length 2i+1 each;
2. For each admissible triplet (A,P,Π) with A = (Ci1 , . . . , Cit), P = (p1

j , p
2
j )
t
j=1,

Π = (nj)
t+1
j=1 such that for all 2 ≤ j ≤ t one has nj ∈ Ts for some 1 ≤ s ≤ S,

do the following:
• Form the automata Mj , 1 ≤ j ≤ t, as described above.
• Discard those chosen runs which end or begin at place p for which |p−
nj | ≤ εn/(128km log(1/ε)). Namely, those runs which have one of their
ends closer than εn/(128km log(1/ε)) from some nj ∈ Π.

• For each remaining run R, if R falls between nj and nj+1, check whether
it is feasible for the automaton Mj starting at b− nj +1, where b is the
first coordinate of R in w. Namely, b−nj+1 is the place where R starts
relative to nj , which is the place w “enters” Mj .

3. If for some admissible triplet all checked runs turned out to be feasible, output
“YES.” Otherwise (i.e., in the case where for all admissible triplets at least
one infeasible run has been found) output “NO.”

Lemma 2.8. If dist(w,L) ≥ εn, then the above algorithm outputs “NO” with
probability at least 3/4. If w ∈ L, then the algorithm always outputs “YES.”

Proof. The proof contains two independent parts. In the first we consider the
case of an input w with dist(w,L) ≥ εn, on which the algorithm should answer “NO”
(with high probability). The other part treats the case where w ∈ L, for which the
algorithm should answer “YES.”

Let us first assume that dist(w,L) ≥ εn. The number of admissible triplets
(A,P,Π) for which all partition points fall into the union of transition intervals⋃S
s=1 Ts can be estimated from above by

2k|V |2k (S(k − 1)(l +m))
k−1

.

(First choose an admissible path in C(G); the number of admissible paths is at most
2k as any subset of vertices of C(G) defines at most one path spanning it. Then choose
portals; the total number of chosen portals is at most 2k, and therefore there are at
most |V |2k possible choices for portals; then for a fixed pair (A,P ) there are at most
S|Ts| choices for each nj , where 2 ≤ j ≤ t and t ≤ k.) For ε satisfying condition (*)
and S as above, this expression is at most (1/ε)2k. Thus we need to check at most
(1/ε)2k admissible triplets.
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Let (A,P,Π) be an admissible triplet satisfying the restriction formulated in step
2 of the above algorithm. Write A = (Ci1 , . . . , Cit), P = (p1

j , p
2
j )
t
j=1, Π = (nj)

t+1
j=1.

Then the triplet defines automata (Mj)
t
j=1 and languages (Lj)

t
j=1 as described before.

By Lemma 2.7 for some 1 ≤ j ≤ t one has dist(wj , Lj) ≥ (εn − k)/k > εn/(2k).
Then by Lemma 2.6 there exists an i, 1 ≤ i ≤ log(8km/ε) so that wj contains
at least 2i−4εn/(2km log(8km/ε)) ≥ 2i−6εn/(km log(1/ε)) infeasible runs of length
2i+1. At most α = εn/(128km log(1/ε)) of them may touch the last α bits of the
interval [nj , nj+1 − 1], and at most α of them may touch the first α bits of this
interval. Hence there are at least 2i−6εn/(km log(1/ε))−2α ≥ (2i−7εn)/(km log(1/ε))
of them that touch neither the first nor the last εn/(128km log(1/ε)) bits of the interval
[nj , nj+1 − 1]. Obviously, if a random sample contains one of these infeasible runs,
then it provides a certificate for the fact that w does not fit this admissible triplet.
A random sample of ri runs of length 2i+1 misses all of these infeasible runs with
probability at most

(
1− 1

n

2i−7εn

km log( 1
ε )

)ri
< e−2k log( 1

ε ) <
1

4

(
1

ε

)−2k

.

Thus by the union bound we conclude that in this case a random sample does not con-
tain a “witness” for each feasible triplet with probability at most 1/4. This completes
the proof for the case of dist(w,L) ≥ εn.

We now address the case for which w ∈ L. We need to show that in this case the
algorithm answers “YES.” For this is enough to show that if w ∈ L, then there exists
an admissible triplet which passes successfully the test of the above algorithm. A
traversal of w in M naturally defines a triplet (A,P,Π) as follows: A = (Ci1 , . . . , Cit),
where Ci1 , . . . , Cit are components from C(G), ordered according to the order of their
traversal by w; P = (p1

j , p
2
j )
t
j=1, where p

1
j (resp., p

2
j ) is the first (resp., the last) state

of Cij visited by w; Π = (nj)
t+1
j=1, where n1 = 0, nt+1 = n + 1, and for 2 ≤ j ≤ t, nj

is set to be the first time w enters Cij while traversing M . However, this partition
does not necessarily meet the requirement stated in step 2 of the algorithm. In the
true traversal of w in M the transitions from Cij to Cij+1 might occur outside the
transition intervals Ts. We show that the desired triplet can be obtained from the
actual triplet, (A,P,Π), of w by modifying only the third component of it. This
modified triplet would then correspond to a different word w′ ∈ L (which is quite
close to w) that makes all the transitions inside the postulated transition intervals.
In addition, we will take care that no query is made to bits in which w′ differs from
w. Hence, the algorithm will actually be consistent with both. This is in fact the
reason for discarding the runs that are too close to some nj in step 2 of the algorithm.
Intuitively, this is done as follows. Assume nj is not in a transition interval; then we
either make the traversal in Cij−1 longer so as to end in p2

j−1 in a transition interval,
or we shorten the traversal in Cij−1 so as to enter a transition interval, depending on
where the closest transition interval is. Formally, this is done as follows. Define a new
partition Π′ = (n′j)

t+1
j=1, where n′1 = n1 = 0. For each 2 ≤ j ≤ t choose a transition

interval Ts closest to nj . If Cij is a truly connected component, we choose n′j as
the leftmost coordinate in Ts satisfying the following restrictions: (a) n

′
j ≡ nj mod l;

(b) n′j − n′j−1 > m. If Cij is a singleton without loops, we set n′j = n′j−1 + 1. As
|Ts| = (k − 1)(l +m), such an n′j always exists. Finally, we set n

′
t+1 = nt+1 = n+ 1.

Note that the obtained triplet (A,P,Π′) is admissible. Indeed, for every 1 ≤
j ≤ t we have n′j+1 − n′j ≡ nj+1 − nj mod l, thus implying n′j+1 − n′j ≡ nj+1 −
nj mod g(G[Cij ]) if Cij is truly connected. As there exists a path from p1

j to p2
j in
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Cij of length nj+1 − nj − 1, there also exists a path of length n′j+1 − n′j − 1. This
implies the admissibility of Π′ and hence the admissibility of (A,P,Π′).

Now letR be a run of w inside [n′j+εn/(128km log(1/ε)), n′j+1−εn/(128km log(1/ε))],
and let b be its first coordinate. Since we placed S transition intervals {Ts} evenly in
[n], we have |n′j−nj | ≤ n/S+ |Ts| = εn/(129km log(1/ε))+(k−1)(l+m). Therefore,
R falls also completely inside [nj +m,nj+1 − 1]. (We remark at this point that the
purpose of discarding marginal runs at step 2 of the algorithm is to achieve that each
one of the remaining runs will fall completely not only within [n′j , n

′
j+1] but also within

[nj , nj+1]. As we will see immediately, this guarantees that R will be feasible for the
corresponding automaton Mj . Without this deletion, with positive probability one of
the sampled runs R may start in a place where w is in Cij−1 and end in a place where
w is in Cij , thus making it impossible to attribute R to one particular automaton
Mj . Therefore, with positive probability the algorithm would fail in the positive case.
Discarding marginal runs allows us to get a one-sided error algorithm.)

As w ∈ L, there exists a state q ∈ Cij so that δ(q,R) ∈ Cij . Also, q is reachable
from p1

j (the initial state of Cij ) in b− nj ≥ m steps (b is the first coordinate of R).
According to the choice of n′j , we have n

′
j ≡ nj mod gj , where gj is the period of Cij .

But then by Lemma 2.3 q is reachable from p1
j in b − n′j (≥ m) steps. This shows

that R is feasible for Mj , starting at b− n′j + 1. Thus, if w ∈ L, the above algorithm
always outputs “YES.”

Finally, the number of bits of w queried by our algorithm is at most

log(8km/ε)∑
i=1

2i+1ri =

log(8km/ε)∑
i=1

2i+1 2
8−ik2m log2( 1

ε )

ε
<

210k2m log3( 1
ε )

ε
.

We have thus proven the following theorem.

Theorem 2.9. For every regular language L, every integer n, and every small
enough ε > 0, there exists a one-sided error ε-testing algorithm for L∩{0, 1}n, whose
query complexity is c log3(1/ε)/ε, where the constant c > 0 depends only on L.

A final note about the dependence of the complexity on the parameters is in place
here. In the proof M is considered fixed, as the algorithm is tailored for a fixed given
language. However, in the calculation above we have kept the dependence of the query
complexity on the parameters of M explicit. One has to keep in mind, though, that
the estimates hold only when condition (*) holds. In particular, we require (third
item in (*)) that 1/(ε log(1/ε)) = Ω(k2|V |2m(l +m)).

Another note is about the running time of the algorithm (rather than just its
query complexity). The dominating term in step 1 and the first two subsets of step
2 of the algorithm is the query complexity. In the last substeps, each run has to be
checked against Mj . Each such check involves checking whether there is a word u and
a word v (of suitable lengths) so that uRv ∈ L. Checking whether there are such u, v
is done directly by Lemma 2.3 in case the length of u and v are longer than m, or by
checking all 2m words if one of them is shorter than m.

3. Lower bound for regular languages. In many testability questions, it is
quite natural to expect a lower bound of order 1/ε for the query complexity of testing.
This is usually proven by taking a positive example of size n and perturbing it in
randomly chosen εn places to create a negative instance which is hard to distinguish
from the positive one. Regular languages are not an exception in this respect, as
shown by the next proposition and its fairly simple proof.
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Proposition 3.1. Let L be the regular language over the alphabet {0, 1} defined
by L = {1n | n ≥ 1}. For any n an ε-test for L∩{0, 1}n has query complexity at least
1
3ε .

Proof. Our proof is based on the following reformulation of the renowned principle
of Yao [14], saying that if there exists a probability distribution on the union Ω of
positive and negative examples such that any deterministic testing algorithm of query
complexity d is correct with probability less than 2/3 for an input randomly chosen
from Ω according to this distribution, then d is a lower bound on the query complexity
of any randomized testing algorithm.

Define a distribution on the set of positive and negative instances of length n as
follows. The word 1n gets probability 1/2. Next we partition the index set [1, n] into
t = 1/ε parts I1, . . . , It, each of size εn, and for each 1 ≤ i ≤ t we give probability
1/(2t) to the vector yi created from 1n by flipping all bits in Ii from 1 to 0. Note
that dist(yi, L) = εn; hence all yi are negative instances. Now we apply the above-
mentioned principle of Yao. Let A be a deterministic ε-testing algorithm with query
complexity d. If A is incorrect on the word 1n, then it is already incorrect with
probability at least 1/2. Otherwise, it should accept the input if all d tested bits
equal to 1. Therefore, it accepts as well at least t − d of the inputs yi. This shows
that A gives an incorrect answer with probability at least (t−d)/(2t) < 1/3, implying
that d > t/3.

The main idea of the proof of the above proposition can be used to get an Ω(1/ε)
lower bound on the query complexity of testing any nontrivial regular language, with
a natural definition of nontrivial. This is proven in the next proposition. A somewhat
paradoxical feature of its proof is that our main positive result (Theorem 2.9) and its
proof are used here to get a negative result.

For a language L let Ln = L ∩ {0, 1}n.
Definition 3.2. A language L is nontrivial if there exists a constant 0 < ε0 < 1,

so that for infinitely many values of n the set Ln is nonempty, and there exists a word
w ∈ {0, 1}n so that dist(w,Ln) ≥ ε0n.

Proposition 3.3. Let L be a nontrivial regular language. Then for all sufficiently
small ε > 0, any ε-testing algorithm for L requires Ω(1/ε) queries.

Proof. The proof here is essentially a generalization of the proof of Proposition
3.1. We thus present it in a somewhat abridged form.

Let n be large enough. Assume Ln �= ∅, and w ∈ {0, 1}n is such that dist(w,Ln) ≥
ε0n. We may clearly assume that the constant ε0 is as small as needed for our purposes.
Our main result, Theorem 2.9, and its proof imply that with probability at least 2/3,
a random choice of a set of runs, built as described at step 1 of the testing algorithm
of Theorem 2.9, and having total length Õ(1/ε0), will cause the algorithm to reject w.
As we have noticed, the testing algorithm has a one-sided error, i.e., it always accepts
a word from L. Thus, if we choose a random set of runs as above, it will cause a
rejection of w with probability 2/3 and it will not coincide with any word u ∈ Ln (for
otherwise, it would reject u too).

Each such random set of runs is just a random set of intervals in {1, . . . , n}
(of length as defined in step 1 of the testing algorithm) of total length bounded by
Õ(1/ε0). Notice that two such random sets intersect with probability Õ(1/(ε20n)).
Therefore, if we choose Ω̃(ε2n) such subsets at random, then we expect that Õ(ε20n)
pairs of them will intersect, and that 2/3 of the members will reject w. This implies
that there exists a family S of Ω̃(ε20)n pairwise disjoint sets of runs so that for each
member of S, no word of Ln coincides with w on this set. Fix now ε0 and let ε > 0



TESTING REGULAR LANGUAGES 1853

be small enough compared to ε0. We partition the family S into t = (c/ε) subfamilies
S1, . . . ,St, each of cardinality εn, where the constant c depends on ε0 only and is thus
independent of ε. Let u be a word in Ln. For each 1 ≤ i ≤ t, the word wi is obtained
from u by changing the bits of u, corresponding to Si, to those from w. It follows
then that dist(wi, Ln) ≥ εn. Indeed, to transform wi into a word in Ln, at least one
bit has to be changed in every member of Si.

Now, as in the proof of Proposition 3.1, we define a probability distribution on
the union of positive and negative examples. The word u gets probability 1/2, and
each one of the t words w1, . . . , wt gets probability 1/(2t). A simple argument, essen-
tially identical to that in the proof of Proposition 3.1, shows that any deterministic
algorithm needs to query at least Ω(t) = Ω(1/ε) bits of the input word to be successful
with probability at least 2/3 on the defined probability distribution. Applying Yao’s
principle, we get the desired result.

4. Testability of context-free languages. Having essentially completed the
analysis of testability of regular languages, it is quite natural to try to go one step
further and to address testability of the much more complex class of context-free
languages (see, e.g., [8] for background information). It turns out that the general
situation changes drastically here as compared to the case of regular languages. We
show that there exist quite simple context-free languages which are not ε-testable.
Then we turn our attention to one particular family of context-free languages—the
so-called Dyck languages. We prove that the first language in this family, D1, is
testable in time polynomial in 1/ε, while all other languages in the family are already
nontestable. All relevant definitions and proofs follow.

4.1. Some context-free languages are nontestable. As we have already
mentioned, not all context-free languages are testable. This is proven in the following
proposition.

Theorem 4.1. Any ε-testing algorithm for the context-free language L = {vvRuuR},
where wR denotes the reversal of a word w, requires Ω(

√
n) queries in order to have

an error of at most 1/3.
Proof. Let n be divisible by 6. We again define a distribution D on the union

of positive and negative inputs in the following way. A negative instance is chosen
uniformly at random from among all negative instances (i.e., those words w ∈ {0, 1}n
which are at distance at least εn from L). We refer to this distribution as N . Positive
instances are generated according to a distribution P defined as follows. We pick
uniformly at random an integer k in the interval [n/6+1, n/3] and then select a positive
example uniformly among words vvRuuR with |v| = k. Finally, the distribution D
on all inputs is defined as follows: with probability 1/2 we choose a positive input
according to P and with probability 1/2 we choose a negative input according to N .
We note that a positive instance is actually a pair (k,w). (The same word w may be
generated using different k’s.)

We use the above-mentioned Yao’s principle again. Let A be a deterministic ε-
testing algorithm for L. We show that for any such A, if its maximum number of
queries is d = o(

√
n), then its expected error with respect to D is at least 1

2 − o(1).
Indeed, let A be such an algorithm. We can view A as a binary decision tree, where
each node represents a query to a certain place, and the two outgoing edges, labeled
with 0 or 1, represent possible answers. Each leaf of A represents the end of a possible
computation and is labeled “positive” or “negative” according to the decision of the
algorithm. Tracing the path from the root to a node of A, we can associate with each
node t of A a pair (Qt, ft), where Qt ⊆ {1, . . . , n} is a set of queries to the input
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word, and ft : Qt → {0, 1} is a vector of answers received by the algorithm. We may
obviously assume that A is a full binary tree of height d and has thus 2d leaves. Then
|Qt| = d for each leaf t of A.

We will use the following notation. For a subset Q ⊆ {1, . . . , n} and a function
f : Q→ {0, 1}, let

E−(Q, f) = {w ∈ {0, 1}n, dist(w,L) ≥ εn, w coincides with f on Q},
E+(Q, f) = {w ∈ {0, 1}n ∩ L : w coincides with f on Q},

i.e., E−(Q, f) (E+(Q, f)) is the set of all negative (resp., positive) instances of length
n consistent with the pair (Q, f). Also, if D is a probability distribution on the
set of binary strings of length n and E ⊆ {0, 1}n is a subset, we define PrD[E] =∑
w∈E Pr

D[w].
Let T1 be the set of all leaves of A labeled “positive,” and let T0 be the set of

all leaves of T labeled “negative.” Then the total error of the algorithm A on the
distribution D is ∑

t∈T1

PrD[E−(Qt, ft)] +
∑
t∈T0

PrD[E+(Qt, ft)] .

The theorem follows from the following two claims.
Claim 4.2. For every subset Q ⊂ {1, . . . , n} of cardinality |Q| = o(n) and for

every function f : Q→ {0, 1},

PrD[E−(Q, f)] ≥
(
1

2
− o(1)

)
2−|Q| .

Claim 4.3. For every subset Q ⊂ {1, . . . , n} of cardinality |Q| = o(
√
n) and for

every function f : Q→ {0, 1},

PrD[E+(Q, f)] ≥
(
1

2
− o(1)

)
2−|Q| .

Based on Claims 4.2 and 4.3, we can estimate the error of the algorithm A by

∑
t∈T1

PrD[E−(Qt, ft)] +
∑
t∈T0

PrD[E+(Qt, ft)] ≥
∑
t∈T1

(
1

2
− o(1)

)
2−|Qt|

+
∑
t∈T0

(
1

2
− o(1)

)
2−|Qt| =

(
1

2
− o(1)

) |T1|+ |T0|
2d

≥ 1

2
− o(1) .

The theorem follows.
We now present the proofs of Claims 4.2 and 4.3.
Proof of Claim 4.2. Notice first that L has at most 2n/2n/2 words of length n.

(First choose a word of length n/2, and then cut it into two parts v and u, thus getting
a word w = vvRuuR ∈ L.) Therefore, the number of words of length n at a distance
less than εn from L is at most |L ∩ {0, 1}n|∑εn

i=0

(
n
i

) ≤ 2n/2+2ε log(1/ε)n. We get

|E−(Q, f)| ≥ |{w ∈ {0, 1}n : w(Q) = f}| − |{w ∈ {0, 1}n : dist(w,L) < εn}|
≥ 2n−|Q| − 2n/2+2ε log(1/ε)n = (1− o(1))2n−|Q| .

It follows then from the definition of D that

PrD[E−(Q, f)] =
1

2
PrN [E−(Q, f)] ≥ 1

2

|E−(Q, f)|
2n

≥
(
1

2
− o(1)

)
2−|Q| .
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Proof of Claim 4.3. It follows from the definition of the distribution D that, for
a word w ∈ L ∩ {0, 1}n,

PrD(w) =
1

2
PrP (w) =

1

2

|{w = vvRuuR : |v| = k, n6 + 1 ≤ k ≤ n
3 }|

n
6 2
n/2

.

Recall that E+(Q, f) is the set of words in L which is consistent with f on the set of
queries Q. Hence,

PrD[E+(Q, f)] =
1

n
6 2
n/2+1

n/3∑
k=n/6+1

|{w ∈ {0, 1}n : w(Q) = f, w = vvRuuR, |v| = k}| .

Now observe that for each of the ( d2 ) pairs of places in Q there are at most two choices

of k for which the pair is symmetric with respect to k or to n/2 + k. This implies

that for n/6 − 2( d2 ) = (1 − o(1))n/6 choices of k, the set Q does not contain a pair

symmetric with respect to k or n/2 + k. For each such k,

|{w ∈ {0, 1}n : w(Q) = f, w = vvRuuR, |v| = k}| = 2n/2−|Q| .

Therefore,

PrD[E+(Q, f)] ≥ (1− o(1))n6 2
n/2−|Q|

n
6 2
n/2+1

=

(
1

2
− o(1)

)
2−|Q| .

As a concluding remark to this subsection we would like to note that in the next
subsection (Theorem 4.10) we will give another proof to the fact that not all context-
free languages are testable by showing the nontestability of the Dyck language D2.
However, we preferred to give Theorem 4.1 as well due to the following reasons. First,
the language discussed in Theorem 4.1 is simpler and more natural than the Dyck
language D2. Second, the lower bound of Theorem 4.1 is better than that of Theorem
4.10. The proofs of these two theorems have many common points, so the reader may
view Theorem 4.1 as a “warm-up” for Theorem 4.10.

4.2. Testability of the Dyck languages. It would be extremely nice to deter-
mine exactly which context-free languages are testable. At present we seem to be very
far from fulfilling this task. However, we are able to solve this question completely
for one family of context-free languages—the so-called Dyck languages.

For an integer n ≥ 1, the Dyck language of order n, denoted by Dn, is the
language over the alphabet of 2n symbols {a1, b1, . . . , an, bn}, grouped into n ordered
pairs (a1, b1), . . . , (an, bn). The language Dn is defined by the following productions:

1. S → aiSbi for i = 1, . . . , n,
2. S → SS, and
3. S → γ,

where γ denotes the empty word. Though the words of Dn are not binary according
to the above definition, we can easily encode them and the grammar describing them
using only 0’s and 1’s. Thus we may still assume that we are in the framework
of languages over the binary alphabet. We can interpret Dn as the language with n
distinct pairs of brackets, where a word w belongs to Dn iff it forms a balanced bracket
expression. The most basic and well-known language in this family is D1, where we
have only one pair of brackets. Dyck languages play an important role in the theory
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of context-free languages (see, e.g., [4] for a relevant discussion), and therefore the
task of exploring their testability is interesting.

Our first goal in this subsection is to show that the language D1 is testable. Let us
introduce a suitable notation. First, for the sake of simplicity we denote the brackets
a1, b1 of D1 by 0, 1, respectively. Assume that n is a large enough even number.
(Obviously, for odd n we have D1 ∩ {0, 1}n = ∅, and thus there is nothing to test in
this case.) Let w be a binary word of length n. For 1 ≤ i ≤ n, we denote by x(w, i)
the number of 0’s in the first i positions of w. Also, y(w, i) stands for the number of
1’s in the first i positions of w. We have the following claims.

Claim 4.4. The word w belongs to D1 iff the following two conditions hold: (a)
x(w, i) ≥ y(w, i) for every 1 ≤ i ≤ n; (b) x(w, n) = y(w, n).

Proof. The proof follows easily from the definition of D1—for example, by induc-
tion on the length of w. We omit a detailed proof.

Claim 4.5. If w satisfies (a) y(w, i)− x(w, i) ≤ s1 for every 1 ≤ i ≤ n, and (b)
x(w, n)− y(w, n) ≤ s2, then dist(w,D1) ≤ s1 + s2/2 + 1.

Proof. Observe first that by Claim 4.4 a word w is in D1 iff we can partition its
letters into pairwise disjoint pairs, so that the left letter in each pair is a 0, and the
right letter is a 1. Consider the bipartite graph, whose two classes of vertices are the set
of indices i for which w[i] = 0 and the set of indices i for which w[i] = 1, respectively,
where each i with w[i] = 1 is connected to all 1 ≤ j < i for which w[j] = 0. By
assumption (a) and the defect form of Hall’s theorem, this graph contains a matching
of size at least y(w, n) − s1. By assumption (b), y(w, n) ≥ n/2 − s2/2. Therefore,
there are at least n/2 − s2/2 − s1 disjoint pairs of letters in w, where in each pair
there is a 0 on the left and a 1 on the right. Let us pair the remaining elements of
w arbitrarily, where all pairs but at most one consist of either two 0’s or two 1’s. By
changing, now, when needed, the left entry of each such pair to 0 and its right entry
to 1 we obtain a word in D1, and the total number of changes performed is at most
(s2 + 2s1 − 2)/2 + 2 = s1 + s2/2 + 1, completing the proof.

Claim 4.6. (a) If for some 1 ≤ i ≤ n one has y(w, i) − x(w, i) ≥ s, then
dist(w,D1) ≥ s/2. (b) If x(w, n)− y(w, n) ≥ s, then dist(w,D1) ≥ s/2.

Proof. The proof follows immediately from Claim 4.4.
We conclude from the above three claims that a word w is far from D1 iff for

some coordinate i it deviates significantly from the necessary and sufficient conditions
provided by Claim 4.5. This observation is used in the analysis of an algorithm for
testing D1, proposed below.

Set

d =
C log

(
1
ε

)
ε2

,

∆ =
C log

(
1
ε

)
8ε

,

where C > 0 is a sufficiently large constant, whose value will be chosen later, and
assume that d is an even integer. In what follows we omit all floor and ceiling signs
to simplify the presentation.

Algorithm.
Input: a word w of length |w| = n;
1. Choose a sample S of bits in the following way. For each bit of w, indepen-

dently and with probability p = d/n choose it to be in S. Then, if S contains
more than d+∆/4 bits, answer “YES” without querying any bit. Else,
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2. If dist(S,D1∩{0, 1}d′) < ∆, where d′ = |S|, output “YES”; otherwise, output
“NO.”

Lemma 4.7. The above algorithm outputs a correct answer with probability at
least 2/3.

Proof. As we have already mentioned, we set

p =
d

n
=

C log
(

1
ε

)
ε2n

.

The proof contains two independent parts; in the first we prove that the algorithm
is correct (with probability 2/3) for w ∈ D1, and in the second part we prove that
the algorithm has a bounded error for words w for which dist(w,D1) ≥ εn.

Consider first the positive case w ∈ D1. Set t = C/ε, and assume for simplicity
that t as well as n/t are integers. For 1 ≤ j ≤ t, let Xj be the number of 0’s in
S, sampled from the interval [1, nj/t]. Let also Yj denote the number of 1’s in S,
sampled from the same interval. Both Xj and Yj are binomial random variables with
parameters x(w, nj/t) and p, and y(w, nj/t) and p, respectively. As w ∈ D1, we get
by Claim 4.4 that x(w, nj/t) ≥ y(w, nj/t), implying EXj ≥ EYj . Applying standard
bounds on the tails of binomial distribution, we obtain

Pr

[
Yj ≥ Xj +

∆

2

]
≤ Pr

[
Xj ≤ EXj − ∆

4

]
+ Pr

[
Yj ≥ EYj +

∆

4

]
≤ 2−Ω(∆2/np)

= 2−Ω(C log(1/ε)).(4.1)

For 1 ≤ j ≤ t − 1, set Zj = Yj+1 − Yj . Note that EZj ≤ np/t. Using similar
argumentation as above, we get

Pr

[
Zj ≥ 2np

t

]
≤ 2−Ω(np/t) = 2−Ω(log(1/ε)/ε).(4.2)

As w ∈ D1, we have by Claim 4.4 x(w, n) = y(w, n) = n/2. Hence

Pr

[
Xt ≥ np

2
+
∆

8

]
≤ 2−Ω(∆2/np) = 2−Ω(C log(1/ε)).(4.3)

Finally, we have the following estimate on the distribution of the sample size |S|:

Pr

[
||S| − np| ≥ ∆

4

]
≤ 2−Ω(∆2/np) = 2−Ω(C log(1/ε)).(4.4)

Choosing C large enough and recalling the definition of t, we derive from (4.1)–(4.4)
that with probability at least 2/3 the following events hold simultaneously:

1. max1≤j≤t(Yj −Xj) ≤ ∆
2 ,

2. max1≤j≤t Zj ≤ 2np
t ,

3. Xt ≤ np
2 + ∆

8 ,

4. |S| ≥ np− ∆
4 .

Assume that the above four conditions are satisfied. Then we claim that dist(S,D1)
< ∆. Indeed, the first two conditions guarantee that for all 1 ≤ i ≤ |S| we have
y(S, i)− x(S, i) ≤ ∆/2 + 2np/t ≤ 2∆/3. The last two conditions provide x(S, |S|)−
y(S, |S|) = Xt − Yt = 2Xt − |S| ≤ ∆/2. Therefore, by Claim 4.5 dist(S,D1) < ∆.
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Thus, if w ∈ D1, our algorithm will accept w with probability at least 2/3, as required.
This ends the first part of the proof.

Let us now consider the negative case. Assume that dist(w,D1 ∩ {0, 1}n) ≥
εn. By Claim 4.5 we have then that at least one of the following two conditions
holds: (a) there exists an index 1 ≤ i ≤ n for which y(w, i) − x(w, i) ≥ εn/2; (b)
x(w, n) − y(w, n) ≥ εn/2. In the former case, let X, Y be the number of 0’s, 1’s,
respectively, of S, sampled from the interval [1, i]. Let also k be the number of
elements from [1, i] chosen to S. Then X = x(S, k), Y = y(S, k). Both X and Y are
binomially distributed with parameters x(w, i) and p, and y(w, i) and p, respectively.
It follows from the definition of i that EY − EX ≥ εnp/2. But then we have

Pr[y(S, k)− x(S, k) ≤ 2∆] = Pr[Y −X ≤ 2∆]

≤ Pr
[
X ≥ EX +

(εnp
4
−∆

)]

+ Pr
[
Y ≤ EY −

(εnp
4
−∆

)]

= 2−Ω((εnp/4−∆)2/(np)).

Choosing the constant C to be sufficiently large and recalling the definitions of p and
∆, we see that the above probability is at most 1/6. But if y(S, k)− x(S, k) ≥ 2∆, it
follows from Claim 4.6 that dist(S,D1) ≥ ∆.

If x(w, n)− y(w, n) ≥ εn/2, we obtain, using similar arguments,

Pr[x(S, |S|)− y(S, |S|) ≤ 2∆] = 2−Ω((εnp/4−∆)2/(np)) .

The above probability can be made at most 1/6 by the choice of C. But if x(S, |S|)−
y(S, |S|) ≥ 2∆, it follows from Claim 4.6 that dist(S,D1) ≥ ∆. Thus in both cases we
obtain that our algorithm accepts w with probability at most 1/6. In addition, the
algorithm may accept w (in each of the cases) when |S| > d+∆/4 (first item in the
algorithm). However, by (4.4) this may be bounded by 1/6 (choosing C as in the first
part). Hence the algorithm rejects w with probability at least 2/3. This completes
the proof of Lemma 4.7.

By Lemma 4.7 we have the following result about the testability of the Dyck
language D1.

Theorem 4.8. For every integer n and every small enough ε > 0, there exists
an ε-testing algorithm for D1 ∩ {0, 1}n, whose query complexity is C log(1/ε)/ε2 for
some absolute constant C > 0.

The reader has possibly noticed one significant difference between the algorithm
of section 2 for testing regular languages and our algorithm for testing D1. While the
algorithm for testing regular languages has a one-sided error, the algorithm of this
section has a two-sided error. This is not a coincidence. We can show that there is no
one-sided error algorithm for testing membership in D1, whose number of queries is
bounded by a function of ε only. Indeed, assume that A is a one-sided error algorithm
for testing D1. Consider its execution on the input word u = 0n/2+εn1n/2−εn. It is
easy to see that dist(u,D1) ≥ εn. Therefore, A must reject u with probability at least
2/3. Fix any sequence of coin tosses which makes A reject u, and denote by Q the
corresponding set of queried bits of u. We claim that if |Q∩ [1, n/2+ εn]| ≤ n/2− εn,
then there exists a word w of length n from D1 for which w[i] = u[i] for all i ∈ Q. To
prove this claim, we may clearly assume that |Q∩ [1, n/2+ εn]| = n/2− εn. Define w
as follows. For all i > n/2 + εn we set w[i] = 1. Now, we take the first εn indices i in
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[1, n/2 + εn] \Q and set w[i] = 0. For the last εn indices i in [1, n/2 + εn] \Q we set
w[i] = 1. Also, w[i] = u[i] for all i ∈ Q. Now, w satisfies the sufficient condition for
the membership in D1, given by Claim 4.4. Indeed, at any point j in [1, n/2+ εn], the
number of 0’s in the first j bits of w is at least as large as the number of 1’s. Also,
for j ≥ n/2 + εn we have x(w, j) = n/2 and y(w, j) = εn+ (j − n/2− εn) = j − n/2.
Therefore, w ∈ D1. As A is assumed to be a one-sided error algorithm, it should
always accept every w ∈ D1. But then we must have |Q ∩ [1, n/2 + εn]| > n/2 − εn,
implying that A queries a number of bits linear in n. We have proven the following
statement.

Proposition 4.9. Any one-sided error ε-test for membership in D1 queries Ω(n)
bits on words of length n.

Our next goal is to prove that all other Dyck languages, namely, Dk for all k ≥ 2,
are nontestable. We will present a detailed proof of this statement only for k = 2,
but this clearly implies the result for all k ≥ 3.

For the sake of clarity of exposition we replace the symbols a1, b1, a2, b2 in the
definition of D2 by 0, 1, 2, 3, respectively. Then D2 is defined by the following context-
free grammar: S → 0S1 | 2S3 | SS | γ, where γ is the empty word. Having in mind
the above-mentioned bracket interpretation of the Dyck languages, we will sometimes
refer to 0, 2 as left brackets and to 1, 3 as right brackets. Note that we do not use an
encoding of D2 as a language over {0, 1} but rather as a language over an alphabet
of size 4. Clearly, nontestability of D2 as defined above will imply nontestability of
any binary encoding of D2 that is obtained by a fixed binary encoding of {0, 1, 2, 3}.

Theorem 4.10. The language D2 is not ε-testable.

Proof. Let n be a large enough integer, divisible by 8. We denote Ln = D2 ∩
{0, 1, 2, 3}n. Using Yao’s principle, we assign a probability distribution on inputs of
length n and show that any deterministic algorithm probing d = O(1) bits outputs an
incorrect answer with probability 0.5 ± o(1). Both positive and negative words will
be composed of three parts. The first is a sequence of matching 0/1 (brackets of the
first kind) followed by a sequence of 0/2 (left brackets) and a sequence of 1/3 (right
brackets).

Positive instances are generated according to the distribution P as follows: choose
k uniformly at random in the range n/8, . . . , n/4. Given k, the word of length n is w =
0k1kv, where v is of length n−2k generated by the following. For i = 1, . . . , (n−2k)/2
choose v[i] at random from 0, 2, and then set v[n− 2k + 1− i] = v[i] + 1.

Negative instances are chosen as follows: the process is very similar to the positive
case except that we do not have the restriction on v[n−2k+1− i] = v[i]+1. Namely,
we choose k at random in the range n/8, . . . , n/4. Given k, a word of length n is w =
0k1kv, where v is of length n−2k generated by the following. For i = 1, . . . , (n−2k)/2
choose v[i] at random from 0, 2, and for i = 1, . . . , (n− 2k)/2 choose v[n− 2k+1− i]
at random from 1, 3. Let us denote by N the distribution at this stage. Note that
the words that are generated may be of distance less than εn from Ln. (In fact, some
words in Ln are generated too.) Hence we further condition N on the event that the
word is of distance at least εn from Ln.

The probability distribution over all inputs of length n is now defined by choosing
with probability 1/2 a positive instance, generated as above, and with probability 1/2
a negative instance, chosen according to the above-described process.

Claim 4.11. The probability that an instance generated according to N is εn-close
to some word in Ln is exponentially small in n.

Proof. Fix k, and let w = 0k1kv be a word of length n generated by N . For such
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fixed k the three parts of w are the first part of matching 0/1 of length 2k, the second
part of which is a random sequence of 0/2 of length n−2k

2 and the third part of which

is a random sequence of 1/3 of length n−2k
2 . Let us denote by N1, N2, N3 these three

disjoint sets of indices of w.
We will bound from above the number of words w of length n of the form w =

0k1k(0/2)
n−2k

2 (1/3)
n−2k

2 which are at distance at most εn from Ln. First, we choose

the value of w on N2, which gives 2
n−2k

2 possibilities. Then we choose (at most)

εn bits of w to be changed to get a word from Ln (( nεn ) choices) and set those bits

(4εn possibilities). At this point, the only part of w still to be set is its value of
N3, where we are allowed to use only right brackets 1, 3. The word to be obtained
should belong to Ln. It is easy to see that there is at most one way to complete the
current word to a word in Ln using right brackets only. Hence the number of such

words altogether is at most 2
n−2k

2 ( nεn )4
εn. The total number of words w of the form

0k1k(0/2)
n−2k

2 (1/3)
n−2k

2 is 2n−2k, and each such word gets the same probability in
the distribution N . Therefore, the probability that a word chosen according to N is
εn-close to Ln can be estimated from above by

n/4∑
k=n/8

8

n
· 2

n−2k
2

(
n
εn

)
4εn

2n−2k
≤ max

k
(2O(ε log( 1

ε ))n+2εn−n
2 +k) ≤ 2−n/5

for small enough ε > 0 as promised.
Claim 4.12. Let S ⊆ [n], |S| = d, be a fixed set of places, and let k be chosen uni-

formly at random in the range n/8, . . . , n/4. Then S contains a pair i < j symmetric

with respect to (n− 2k)/2 with probability at most ( d2 )
8
n .

Proof. For each distinct pair i, j ∈ S there is a unique k for which i, j are
symmetric with respect to the above point. Hence the above probability is bounded

by ( d2 )
8
n .

Proof. We now return to the proof of Theorem 4.10. Let A be an algorithm for
testing Ln that queries at most d = O(1) queries. As d = O(1), we may assume that
A is nonadaptive; namely, it queries some fixed set of places S of size d (as every
adaptive A can be made nonadaptive by querying ahead at most 2d possible queries
defined by two possible branchings after each adaptive query. We then look at these
2d = O(1) queries as our S). For any possible set of answers f : S −→ {0, 1, 2, 3} and
an input w let fw denote the event that w is consistent with f on S. Let NoSym be
the event in which S contains no symmetric pair with respect to (n− 2k)/2. Also, let
F0 denote all these f ’s on which the algorithm answers “NO,” and let F1 be all these
f ’s on which it answers “YES.” Finally, denote by (w positive) and (w negative) the
events that a random w is a positive instance and a negative instance, respectively.

The total error of the algorithm is
∑
f∈F0

Pr[fw ∧ (w positive)] +
∑
f∈F1

Pr[fw ∧ (w negative)]

≥ Pr[NoSym]

(∑
f∈F0

Pr[fw ∧ (w positive)|NoSym]

+
∑
f∈F1

Pr[fw ∧ (w negative)|NoSym]

)
.
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However, given that S contains no symmetric pairs, for a fixed f , Pr[fw ∧ (w is
negative)] is essentially equal to Pr[fw ∧ (w is positive)]. (These probabilities would
be exactly equal if negative w would be generated according to N . Claim 4.11 asserts
that N is exponentially close to the real distribution on negative instances.) Hence
each is of these probabilities is 0.5 Pr[fw|NoSym]± o(1).

Plugging this into the sum above and using Claim 4.12, we get that the error
probability is bounded from below by Pr(NoSym)

∑
f (0.5 ± o(1))Pr[fw|NoSym] ≥

(1− ( d2 )
8
n )(0.5± o(1)) ≥ 0.5− o(1).

5. Concluding remarks. The main technical achievement of this paper is a
proof of testability of regular languages. A possible continuation of the research is to
describe other classes of testable languages and to formulate sufficient conditions for
a context-free language to be testable. (Recall that in Theorem 4.1 we have shown
that not all context-free languages are testable.)

One of the most natural ways to describe large classes of testable combinatorial
properties is by putting some restrictions on the logical formulas that define them.
In particular, we can restrict the arity of the participating relations, the number of
quantifier alternations, the order of the logical expression (first order, second order),
etc.

The result of the present paper is an example to this approach, since regular
languages are exactly those that can be expressed in second order monadic logic with
a unary predicate and an embedded linear order. Another example can be found
in a sequel of this paper [1], which addresses testability of graph properties defined
by sentences in first order logic with binary predicates and which complements the
class of graph properties shown to be testable by Goldreich, Goldwasser, and Ron [7].
Analogous results for predicates of higher arities would be desirable to obtain, but
technical difficulties arise when the arity is greater than two.

As a long-term goal we propose a systematic study of the testability of logically
defined classes. Since many different types of logical frameworks are known, to find
out which one is suited for this study is a challenge. Virtually all single problems that
have been looked at so far have the perspective of being captured by a more general
logically defined class with members that have the same testability properties.

A very different avenue is to try to develop general combinatorial techniques
for proving lower bounds for the query complexity of testing arbitrary properties,
possibly by finding analogues to the block sensitivity [12] and the Fourier analysis
[11] approaches for decision tree complexity. At present we have no candidates for
combinatorial conditions that would be both necessary and sufficient for ε-testability.

Acknowledgments. We would like to thank Oded Goldreich for helpful com-
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Abstract. We study optimization problems that may be expressed as “Boolean constraint
satisfaction problems.” An instance of a Boolean constraint satisfaction problem is given by m
constraints applied to n Boolean variables. Different computational problems arise from constraint
satisfaction problems depending on the nature of the “underlying” constraints as well as on the
goal of the optimization task. Here we consider four possible goals: Max CSP (Min CSP) is
the class of problems where the goal is to find an assignment maximizing the number of satisfied
constraints (minimizing the number of unsatisfied constraints). Max Ones (Min Ones) is the class
of optimization problems where the goal is to find an assignment satisfying all constraints with
maximum (minimum) number of variables set to 1. Each class consists of infinitely many problems
and a problem within a class is specified by a finite collection of finite Boolean functions that describe
the possible constraints that may be used.

Tight bounds on the approximability of every problem in Max CSP were obtained by Creignou
[J. Comput. System Sci., 51 (1995), pp. 511–522]. In this work we determine tight bounds on the
“approximability” (i.e., the ratio to within which each problem may be approximated in polyno-
mial time) of every problem in Max Ones, Min CSP, and Min Ones. Combined with the result
of Creignou, this completely classifies all optimization problems derived from Boolean constraint
satisfaction. Our results capture a diverse collection of optimization problems such as MAX 3-SAT,
Max Cut, Max Clique, Min Cut, Nearest Codeword, etc. Our results unify recent results on
the (in-)approximability of these optimization problems and yield a compact presentation of most
known results. Moreover, these results provide a formal basis to many statements on the behavior
of natural optimization problems that have so far been observed only empirically.
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1. Introduction. The approximability of an optimization problem is the best
possible performance ratio that is achieved by a polynomial time approximation al-
gorithm for the problem. The approximability is studied as a function of the input
size and is always a function bounded from below by 1. Research in the 1990s has
led to dramatic progress in our understanding of the approximability of many central
optimization problems. The results cover a large number of optimization problems,
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deriving tight bounds on the approximability of some, while deriving “asymptotically”
tight bounds on many more.1

In this paper we study optimization problems derived from “Boolean constraint
satisfaction problems” and present a complete classification of these problems based
on their approximability. Our work is motivated by an attempt to unify this re-
cent progress on the (in-)approximability of combinatorial optimization problems. In
the case of positive results, i.e., bounding the approximability from above, a few
paradigms have been used repeatedly and these serve to unify the results nicely. In
contrast, there is a lack of similar unification among negative or inapproximability
results. Inapproximability results are established by approximation-preserving reduc-
tions from hard problems, and such reductions tend to exploit every feature of the
problem whose hardness is being shown, rather than isolating the “minimal” features
that would suffice to obtain the hardness result. As a result inapproximability results
are typically isolated and are not immediately suited for unification.

The need for a unified study is, however, quite essential at this stage. The progress
in the understanding of optimization problems has shown large amounts of diversity
in their approximability. Despite this diversity, natural optimization problems do
seem to exhibit some noticeable trends in their behavior. However, in the absence of
a terse description of known results, it is hard to extract the trends, let alone trying
to provide them with a formal basis. Some such trends are described below:

• There exist optimization problems that are solvable exactly, that admit poly-
nomial time approximation schemes (PTAS) (i.e., for every constant α > 1,
there exists a polynomial time α-approximation algorithm), that admit con-
stant factor approximation algorithms, that admit logarithmic factor approx-
imation algorithms, and that admit polynomial factor approximation algo-
rithms. However, this list appears to be nearly exhaustive, raising the ques-
tion, “Are there ‘natural’ optimization problems with intermediate approx-
imability?”2

• A number of minimization problems have an approximability of logarithmic
factors. However, so far no natural maximization problem has been shown to
have a similar approximability, raising the question, “Are there any ‘natural’
maximization problems which are approximable to within polylogarithmic
factors, but no better?”

• Papadimitriou and Yannakakis [39] define a class of optimization problems
called MAX SNP. This class has played a central role in many of the recent
inapproximability results, and yet even now the class does not appear to be
fully understood. The class contains a number of NP-hard problems, and for
all such known problems it turns out to be the case that the approximability
is bounded away from 1! This raises the natural question, “Are there any
NP-hard problems inMAX SNP that admit polynomial time approximation
schemes?”

In order to study such questions, or even to place them under a formal setting,

1We say that the approximability of an optimization is known asymptotically if we can determine
a function f : Z → Z and constants c1, c2 such that the approximability is between 1 + f(n) and
1 + c1f(nc2 ). This choice is based on the common choice of an approximation preserving reduction.
See Definition 2.7.

2There are problems such as the minimum feedback arc set for which the best known approxi-
mation factor is O(logn log logn) [16] and the asymmetric p-center problem, where the best known
approximation factor is O(log∗ n) [38]. However, no matching inapproximability results are known
for such problems.
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one needs to first specify the optimization problems in some uniform framework.
Furthermore, one has to be careful to ensure that the task of determining whether the
optimization problem studied is easy or hard (to, say, compute exactly) is decidable.
Unfortunately, barriers such as Rice’s theorem (which says this question may not in
general be decidable) or Ladner’s theorem (which says problems may not be just easy
or hard [35]) force us to severely restrict the class of problems which can be studied
in such a manner.

Schaefer [42] isolates one class of decision problems which can actually be classi-
fied completely. He obtains this classification by restricting his attention to “Boolean
constraint satisfaction problems.” A problem in this class is specified by a finite set F
of Boolean functions on finitely many variables, referred to as the constraints. (These
functions are specified by, say, a truth table.) A function f : {0, 1}k → {0, 1}, when
applied to k variables x1, . . . , xk, represents the constraint f(x1, . . . , xk) = 1. An
instance of a constraint satisfaction problem specified by F consists of m “constraint
applications” on n Boolean variables, where each constraint application is the appli-
cation of one of the constraints from F to some ordered subset of the n variables.
The language Sat(F) consists of all instances which have an assignment satisfying all
m constraints. Schaefer describes six classes of function families such that if F is a
subset of one of these classes, then the decision problem is in P; otherwise he shows
that the decision problem is NP-hard.

Our setup. In this paper we consider four different optimization versions of Boolean
constraint satisfaction problems. In each case the problem is specified by a family F
and the instance by m constraints from F applied to n Boolean variables. The goals
for the four versions vary as follows: In the problem Max CSP(F) the goal is to find
an assignment that maximizes the number of satisfied constraints. Analogously in
the problem Min CSP(F) the goal is to find an assignment that minimizes the num-
ber of unsatisfied constraints. Notice that while the problems are equivalent w.r.t.
exact computation, their approximability may be (and often is) very different. In
the problem Max Ones(F) (Min Ones(F)) the goal is to find an assignment sat-
isfying all constraints while maximizing (minimizing) the number of variables set to
1. We also consider the weighted version of all the above problems. In the case of
Weighted Max CSP(F) (Weighted Min CSP(F)) the instance includes a non-
negative weight for every constraint and the goal is to maximize (minimize) the sum of
the weights of the satisfied (unsatisfied) constraints. In the case of Weighted Max
Ones(F) (Weighted Min Ones(F)) the instance includes a nonnegative weight for
every variable and the goal is to find an assignment satisfying all constraint maxi-
mizing (minimizing) the weight of the variables set to 1. The collection of problems
{Max CSP(F) | F finite} yields the classMax CSP, and similarly we get the classes
(Weighted) Min CSP, Max Ones, Min Ones.

Together these classes capture a host of interesting optimization problems. Max
CSP is a subset of MAX SNP and forms a combinatorial core of the problems in
MAX SNP. It also includes a number of well-studiedMAX SNP-complete problems,
including MAX 3-SAT, MAX 2-SAT, and Max Cut. Max Ones shows more varied
behavior among maximization problems and includes Max Clique and a problem
equivalent to Max Cut. Min CSP and Min Ones are closely related to each other
capturing very similar problems. The list of problems expressible as one of these
includes the s-t Min Cut problem, Vertex Cover, Hitting Set with bounded
size sets, integer programs with two variables per inequality [25], Min UnCut [20],
Min 2CNF Deletion [33], and Nearest Codeword [2]. The ability to study
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all these different problems in a uniform framework and extract the features that
make the problems easier/harder than the others shows the advantage of studying
optimization problems under the constraint satisfaction framework.

We provide a complete characterization of the asymptotic approximability of ev-
ery optimization problem in the classes mentioned above. For the class Max CSP
such a classification was obtained by Creignou [11], who shows that every problem
in the class is either solvable to optimality in polynomial time or has a constant ap-
proximability bounded away from 1. For the remaining classes we provide complete
characterizations. The detailed statement of our results, comprising 22 cases, ap-
pear in Theorems 2.11–2.14. (This includes a technical strengthening of the results
of Creignou [11].) In short the results show that every Max Ones problem either is
solvable optimally in P, or has constant factor approximability or polynomial approx-
imability, or it is hard to find feasible solutions. For the minimization problems, the
results show that the approximability of every problem lies in one of at most seven
levels. However, it does not pin down the approximability of every problem but rather
highlights a number of open problems in the area of minimization that deserve fur-
ther attention. In particular, it exposes a class of problems for which Min UnCut is
complete, a class for which Min 2CNF Deletion is complete, and a class for which
Nearest Codeword is complete. The approximability of these problems is not yet
resolved.

Our results do indeed validate some of the observations about trends exhibited by
optimization problems. We find that when restricted to constraint satisfaction prob-
lems, the following can be formally established. The approximability of optimization
problems does come from a small number of levels; maximization problems do not have
a log-approximable representative while minimization problems may have such repre-
sentatives (e.g., Min UnCut). NP-hard Max CSP problems are also MAX SNP-
hard. We also find that weights do not play any significant role in the approximability
of combinatorial optimization problems, a thesis in the work of Crescenzi, Silvestri,
and Trevisan [15].3

Finally, we conclude with some thoughts on directions for further work. We stress
that while constraint satisfaction problems provide a good collection of core problems
to work with, they are by no means an exhaustive or even near-exhaustive collection
of optimization problems. Our framework lacks such phenomena as PTAS; it does
not capture several important optimization problems such as the traveling salesman
problem and numerous scheduling, sequencing, and graph partitioning problems. One
possible reason for the nonexistence of PTAS is that in our problems the input in-
stances have no restrictions in the manner in which constraints may be imposed on
the input variables. Significant insight may be gleaned by restricting the problem
instances. A widely prescribed condition is that the incidence graph on the variables
and the constraints should form a planar graph. This restriction has been studied by
Khanna and Motwani [28] and they show that it leads to PTAS for a general class of
constraint satisfaction problems. Another input restriction of interest could be that
variables are allowed to participate only in a bounded number of constraints. We are
unaware of any work on this front. An important extension of our work would be
to consider constraint families which contain constraints of unbounded arity (such as

3Our definition of an unweighted problem is more loose than that of Crescenzi, Silvestri, and
Trevisan. In their definition they disallow instances with repeated constraints, while we do allow
them. We believe that it may be possible to remove this discrepancy from our work by a careful
analysis of all proofs. We do not carry out this exercise here.
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those included in the class Min F+Π1 studied by Kolaitis and Thakur [34]). Such an
extension would allow us to capture problems such as Set Cover. Other directions
include working with larger domain sizes (rather than Boolean domains for the vari-
ables) and working over spaces where the solution space is the set of all permutations
of [n] rather than {0, 1}n.

Related work. The works of Schaefer [42] and Creignou [11] have already been
mentioned above. We reproduce some of the results of Creignou in Theorem 2.11
with some technical strengthenings. This strengthening is described in section 2.5.
Another point of difference with the result of Creignou is that our techniques allow
us to directly work with the approximability of optimization problems, while in her
case the results formally establish NP-hardness and the hardness of approximation
can in turn be derived from them. A description of these techniques appear in sec-
tion 2.6. Among other works focusing on classes showing dichotomy is that of Feder
and Vardi [17], who consider the “largest” possible class of natural problems in NP
that may exhibit a dichotomy. They motivate constraint satisfaction problems over
larger domains and highlight a number of central open questions that lie on the path
to the resolution of the complexity of deciding them. Creignou and Hermann [12] show
a dichotomy result analogous to Schaefer’s for counting versions of constraint satisfac-
tion problems. In the area of approximability, the works of Lund and Yannakakis [37]
and Zuckerman [45] provide two instances where large classes of problems are shown
to be hard to approximate simultaneously—to the best of our knowledge these are
the only cases where the results provide hardness for many problems simultaneously.
Finally we mention a few results that are directly related to the optimization problems
considered here. Trevisan et al. [43] provide an algorithm for finding optimal imple-
mentations (or “gadgets” in their terminology) reducing betweenMax CSP problems.
Karloff and Zwick [27] describe generic methods for finding “semidefinite relaxations”
of Max CSP problems and use these to provide approximation algorithms for these
problems. These results further highlight the appeal of the “constraint satisfaction”
framework for studying optimization problems.

2. Definitions and results.

2.1. Constraints, constraint applications, and constraint families. We
start by formally defining constraints and constraint satisfaction problems. Schaefer’s
work [42] proposes the study of such problems as a generalization of 3-satisfiability
(3-SAT). We will use the same example to illustrate the definitions below.

A constraint is a function f : {0, 1}k → {0, 1}. A constraint f is satisfied by an
input s ∈ {0, 1}k if f(s) = 1. A constraint family F is a finite collection of constraints
{f1, . . . , fl}. For example, constraints of interest for 3-SAT are described by the con-
straint family F3SAT = {ORk,j : 1 ≤ k ≤ 3, 0 ≤ j ≤ k}, where ORk,j : {0, 1}k →
{0, 1} denotes the constraint ¬x1

∨ · · ·∨¬xj ∨xj+1

∨ · · ·∨xk. A constraint appli-
cation, of a constraint f to n Boolean variables, is a pair 〈f, (i1, . . . , ik)〉, where the
indices ij ∈ [n] select k of the n Boolean variables to whom the constraint is applied.
(Here and throughout the paper we use the notation [n] to denote the set {1, . . . , n}.)
For example, to generate the clause (x5

∨¬x3∨x2), we could use the constraint ap-
plication 〈OR3,1, (3, 5, 2)〉 or 〈OR3,1, (3, 2, 5)〉. Note that the applications allow the
constraint to be applied to different ordered sets of variables but not literals. This
distinction is an important one and is the reason that we need all the constraints
OR3,0,OR3,1, etc. to describe 3-SAT. In a constraint application 〈f, (i1, . . . , ik)〉, we
require that ij = ij′ for j = j′, i.e., the variables are not allowed to be replicated
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within a constraint application. This is why we need both the functions OR2,0 as well
as OR3,0 in 3-SAT.

Constraints and constraint families are the ingredients that specify an optimiza-
tion problem. Thus it is necessary that their description be finite. (Notice that the
description of F3SAT is finite.) Constraint applications are used to specify instances
of optimization problems (as well as instances of Schaefer’s generalized satisfiability
problems) and the fact that their description lengths grow with the instance size is
crucially exploited here. (Notice that the description size of a constraint application
used to describe a 3-SAT clause will be Ω(log n).) While this distinction between con-
straints and constraint applications is important, we will often blur this distinction
in the rest of this paper. In particular we may often let the constraint application
C = 〈f, (i1, . . . , ik)〉 refer only to the constraint f . In particular, we will often use
the expression “C ∈ F” when we mean “f ∈ F , where f is the first component of
C.” We now describe Schaefer’s class of satisfiability problems and the optimization
problems considered in this paper.

Definition 2.1 (Sat(F)).
Instance. A collection of m constraint applications of the form {〈fj , (i1(j), . . . ,

ikj (j))〉}mj=1 on Boolean variables x1, x2, . . . , xn, where fj ∈ F and kj is the arity of
fj.

Objective. Decide if there exists a Boolean assignment to the xi’s which satisfies
all the constraints.

For example, the problem Sat(F3SAT) is the classical 3-SAT problem.

Definition 2.2 (Max CSP(F) (Min CSP(F))).
Instance. A collection of m constraint applications of the form {〈fj , (i1(j), . . . ,

ikj
(j))〉}mj=1 on Boolean variables x1, x2, . . . , xn, where fj ∈ F and kj is the arity of

fj.

Objective. Find a Boolean assignment to xi’s so as to maximize (minimize)
the number of satisfied (unsatisfied) constraints.

In the weighted problem Weighted Max CSP(F) (Weighted Min CSP(F))
the input instance includes m nonnegative weights w1, . . . , wm, and the objective is
to find an assignment which maximizes (minimizes) the sum of the weights of the
satisfied (unsatisfied) constraints.

Definition 2.3 (Max Ones(F) (Min Ones(F))).
Instance. A collection of m constraint applications of the form {〈fj , (i1(j), . . . ,

ikj
(j))〉}mj=1 on Boolean variables x1, x2, . . . , xn, where fj ∈ F and kj is the arity of

fj.

Objective. Find a Boolean assignment to xi’s which satisfies all the constraints
and maximizes (minimizes) the total number of variables assigned true.

In the weighted problemWeighted Max Ones(F) (Weighted Min Ones(F))
the input instance includes n nonnegative weights w1, . . . , wn, and the objective is to
find an assignment which satisfies all constraints and maximizes (minimizes) the sum
of the weights of variables assigned true.

The class (Weighted)MaxCSP is the set of all optimization problems (Weight-
ed) Max CSP(F) for every constraint family F . The classes (Weighted) Max
Ones, Min CSP, Min Ones are defined similarly.

The optimization problem Max 3 Sat is easily seen to be equivalent to Max
CSP(F3SAT). This and the other problems Max Ones(F3SAT), Min CSP(F3SAT),
and Min Ones(F3SAT) are considered in the rest of this paper. More interesting
examples of Max Ones, Min CSP, and Min Ones problems are described in sec-
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tion 2.3. We start with some preliminaries on approximability that we need to state
our results.

2.2. Approximability, reductions, and completeness. A combinatorial op-
timization problem is defined over a set of instances (admissible input data); a finite
set sol(x) of feasible solutions is associated with any instance. An objective function
attributes an integer value to any solution. The goal of an optimization problem
is, given an instance x, to find a solution y ∈ sol(x) of optimum value. The opti-
mum value is the largest one for maximization problems and the smallest one for
minimization problems. A combinatorial optimization problem is said to be an NP
optimization (NPO) problem if instances and solutions can be recognized in polyno-
mial time, solutions are polynomial-bounded in input size, and the objective function
can be computed in polynomial time (see, e.g., [10]).

Definition 2.4 (performance ratio). A solution s to an instance I of an NPO
problem A is r-approximate if it has a value V satisfying

max

{
V

opt(I) ,
opt(I)
V

}
≤ r.

An approximation algorithm for an NPO problem A has performance ratio R(n) if,
given any instance I of A with |I| = n, it outputs an R(n)-approximate solution.

We say that an NPO problem is approximable to within a factor R(n) if it has
a polynomial time approximation algorithm with performance ratio R(n).

Definition 2.5 (approximation classes). An NPO problem A is in the class
PO if it is solvable to optimality in polynomial time. A is in the class APX (resp.,
log-APX/poly-APX) if there exists a polynomial time algorithm for A whose perfor-
mance ratio is bounded by a constant (resp., logarithmic/polynomial factor in the size
of the input).

Completeness in approximation classes can be defined using the appropriate
approximation-preserving reducibilities. In this paper, we use two notions of reducibil-
ity: A-reducibility and AP-reducibility. We discuss the difference between the two
and the need for having two different notions after the definitions.

Definition 2.6 (A-reducibility [14]). An NPO problem A is said to be A-
reducible to an NPO problem B, denoted A≤AB, if two polynomial time computable
functions F and G and a constant α exist such that

(1) for any instance I of A, F (I) is an instance of B;
(2) for any instance I of A and any feasible solution S ′ for F (I), G(I,S ′) is a

feasible solution for I;
(3) for any instance I of A and any r ≥ 1, if S ′ is an r-approximate solution for

F (I), then G(I,S ′) is an (αr)-approximate solution for I.
Definition 2.7 (AP-reducibility [13]). For a constant α > 0 and two NPO

problems A and B, we say that A is α-AP-reducible to B, denoted A≤APB, if two
polynomial time computable functions F and G exist such that the following holds:

(1) For any instance I of A, F (I) is an instance of B.
(2) For any instance I of A, and any feasible solution S ′ for F (I), G(I,S ′) is a

feasible solution for I.
(3) For any instance I of A and any r ≥ 1, if S ′ is an r-approximate solution

for F (I), then G(I,S ′) is an (1 + (r − 1)α + o(1))-approximate solution for
I, where the o()-notation is with respect to |I|.

We say that A is AP-reducible to B if a constant α > 0 exists such that A is α-AP-
reducible to B.
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Remark.

(1) Notice that conditions (3) of both reductions preserve only the quality of an
approximate solution in absolute terms (to within the specified limits) and
not as functions of the instance size. For example, an A-reduction from Π
to Π′ which blows up instance size by quadratic factor and an O(n1/3) ap-
proximation algorithm for Π′ combine to give only an O(n2/3) approximation
algorithm for Π.

(2) The difference between the two reductions is the level of approximability that
is preserved by them (conditions (3) in the definitions). A-reductions preserve
constant factor approximability or higher, i.e., if Π is A-reducible to Π′ and Π′

is approximable to within a factor of r(n), then Π is approximable to within
αr(nc) for some constants α, c. This property suffices to preserve membership
in APX (log-APX, poly-APX), i.e., if Π is in APX (log-APX, poly-APX),
then Π′ is also in APX (resp., log-APX, poly-APX). However, it does not
preserve membership in PO or PTAS, as can be observed by setting r = 1.

(3) AP-reductions are more sensitive than A-reductions. Thus if Π is AP-reducible
to Π, then an r-approximate solution is mapped to an h(r)-approximate so-
lution where h(r) → 1 as r → 1. Thus AP-reductions preserve membership
in PTAS as well. However, they need not preserve membership in PO (due
to the o(1)-term in their preservation of approximability).

(4) Condition (3) of the definition of AP-reductions is strictly stronger than the
corresponding condition in the definition of A-reductions. Thus, every AP-
reduction is also an A-reduction. Unfortunately, neither one of these reduc-
tions on their own suffice for our purposes. We need AP-reductions to show
APX-hardness of problems, but we need the added flexibility of A-reductions
for other hardness results.

(5) The original definitions of AP-reducibility and A-reducibility of [14] and [13]
were more general. Under the original definitions, the A-reducibility does
not preserve membership in log-APX, and it is not clear whether every AP-
reduction is also an A-reduction. The restricted versions defined here are
more suitable for our purposes. In particular, it is true that the Vertex
Cover problem is APX-complete under our definition of AP-reducibility.

Definition 2.8 (APX, log-APX, and poly-APX-completeness). An NPO prob-
lem Π is APX-hard if every APX problem is AP-reducible to Π. An NPO problem
Π is log-APX-hard (poly-APX-hard) if every log-APX (poly-APX) problem is A-
reducible to Π. A problem Π is APX(log-APX, poly-APX)-complete if it is in APX
(resp., log-APX, poly-APX) and it is APX (resp., log-APX, poly-APX)-hard.

The class APX contains the class MAX SNP as defined by Papadimitriou and
Yannakakis [39]. The containment is strict in a syntactic sense (e.g., MAX SNP
does not contain any minimization problems); however, when one takes the closure
of APX under AP-reductions, one obtains the class MAX SNP [29]. The notion of
reductions used here is also less stringent than the notion of reduction used in [39].
Thus APX, APX-hardness, and APX-completeness are (mild) generalizations of the
notions of MAX SNP, MAX SNP-hardness, and MAX SNP-completeness.

Most problems we consider are known/shown to be in PO or else are APX-
complete or poly-APX-complete. However, in some cases, we will not be able to
establish the exact approximability of a given problem. However, we will nevertheless
be able to compile all problems into a finite number of equivalence classes with some
equivalence classes being defined as “problems equivalent to Π” for some problem Π
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of unknown approximability. The following definition captures this concept.

Definition 2.9 (Π-completeness). For NPO problems Π and Π′, Π′ is said to
be Π-complete if Π≤AΠ

′ and Π′≤AΠ.

2.3. Problems captured by MAX CSP, MAX ONES, MIN CSP, and MIN

ONES. We first specify our notation for commonly used functions.

• 0 and 1 are the functions which are always satisfied and never satisfied,
respectively. Together these are the trivial functions. We will assume that
all our function families do not have any trivial functions.

• T and F are unary functions given by T (x) = x and F (x) = ¬x.
• For a positive integer i and nonnegative integer j ≤ i, ORi,j is the function

on i variables given by ORi,j(x1, . . . , xi) = ¬x1
∨ · · ·∨¬xj ∨xj+1

∨ · · ·∨xi.
ORi = ORi,0; NANDi = ORi,i; OR = OR2; NAND = NAND2.

• Similarly, ANDi,j is given by ANDi,j(x1, . . . , xi) = ¬x1
∧ · · ·∧¬xj ∧xj+1

∧
· · ·∧xi. ANDi = ANDi,0; NORi = ANDi,i; AND = AND2; NOR = NOR2.

• The function XORi is given by XOR(x1, . . . , xi) = x1 ⊕ · · · ⊕ xi. XOR =
XOR2.

• The function XNORi is given by XNOR(x1, . . . , xi) = ¬(x1 ⊕ · · · ⊕ xi).
XNOR = XNOR2.

Now we enumerate some interesting maximization and minimization problems
which are “captured” by (i.e., are equivalent to some problem in) Max CSP, Max
Ones,Min CSP, andMin Ones. The following list is interesting for several reasons.
First, it highlights the importance of these classes as ones that contain interesting
optimization problems and shows the diversity of the problems captured by these
classes. Furthermore, each of these problems turn out to be “complete” problems
for the partitions they belong to. Some are even necessary for a full statement of
our results. Finally, for several of the minimization problems listed below, their
approximability is not yet fully resolved. We feel that these problems are somehow
representative of the lack of our understanding of the approximability of minimization
problems. We start with the maximization problems.

• For any positive integer k, Max kSat = Max CSP({ORi,j |i ∈ [k], 0 ≤
j ≤ i}). Max kSat is a well-studied problem and known to be MAX SNP-
complete [39] for k ≥ 2. EveryMAX SNP-complete problem is in APX (i.e.,
approximable to within a constant factor in polynomial time) [39] (see also
[6, 21, 44]). Also for MAX SNP-complete problem there exists a constant
α greater than 1 such that the problem is not α-approximable unless NP =
P [3, 4, 24] .

• For any positive integer k, Max EkSat = Max CSP({ORk,j |0 ≤ j ≤ k}).
The problemMax EkSat is a variant ofMax kSat restricted to have clauses
of length exactly k.

• Max Cut = Max CSP({XOR}). Max Cut is also MAX SNP-complete
[39], and the best known approximation algorithm for this problem, due to
[22], achieves a performance ratio of 1.14 ≈ 1/.878

• Max Clique = Max Ones(NAND). Max Clique is known to be approx-
imable to within a factor of O(n/ log2 n) in an n-vertex graph [9] and is known
to be hard to approximate to within a factor of Ω(n1−ε) for any ε > 0 unless
NP = RP [18, 23].

We now go on to the minimization problems.

• The well-known minimum s-t cut problem in directed graphs is equivalent to
WeightedMin CSP(F) for F = {OR2,1, T, F}. This is shown in section 5.1.
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This problem is well known to be solvable exactly in polynomial time.
• The Hitting Set problem, restricted to instances in which all sets are of
size at most B, can be captured as Min Ones(F) for F = {ORk|k ≤ B}.
Also, of interest to our paper is a slight generalization of this problem which
we call the implicative Hitting Set-B problem (Min IHS-B) which is Min
CSP({ORk : k ≤ B} ∪ {OR2,1, F}). The Min Ones version of this problem
will be of interest to us as well. The Hitting Set-B problem is well known
to be approximable to within a factor of B. We show that Min IHS-B is
approximable to within a factor of B + 1.

• Min UnCut = Min CSP({XOR}). This problem has been studied previ-
ously by Klein et al. [32] and Garg, Vazirani, and Yannakakis [20]. The
problem is known to be MAX SNP-hard and hence not approximable to
within some constant factor greater than 1. On the other hand, the problem
is known to be approximable to within a factor of O(log n) [20].

• Min 2CNF Deletion = Min CSP({OR,NAND}). This problem has been
studied by Klein et al. [33]. They show that the problem is MAX SNP-hard
and that it is approximable to within a factor of O(log n log log n).

• Nearest Codeword = Min CSP({XOR3,XNOR3}). This is a classical
problem for which hardness of approximation results have been shown by
Arora et al. [2]. The Min Ones version of this problem is essentially identi-
cal to this problem. For both problems, the hardness result of Arora et al. [2]

shows that approximating this problem to within a factor of Ω(2log
1−ε n) is

hard for every ε > 0, unless NP ⊆ QP. No nontrivial approximation guar-
antees are known for this problem (the trivial bound being a factor of m,
which is easily achieved since deciding if all equations are satisfiable amounts
to solving a linear system).

• Finally we also mention one more problem which is required to present our
main theorem. Min Horn Deletion = Min CSP({OR3,1, T, F}). The
currently known bounds on the approximability of this problem are similar
to those of the Nearest Codeword, i.e., it is in poly-APX and hard to
approximate to within a factor of 2Ω(log

1−ε n) (see Lemma 7.21).

2.4. Properties of function families. We start with the six properties defined
by Schaefer:

• A constraint f is 0-valid (resp., 1-valid) if f(0, . . . , 0) = 1 (resp., f(1, . . . , 1) =
1).

• A constraint is weakly positive (resp., weakly negative) if it can be expressed
as a CNF-formula having at most one negated variable (resp., at most one
unnegated variable4) in each clause.

• A constraint is affine if it can be expressed as a conjunction of linear equalities
over Z2.

• A constraint is 2cnf if it is expressible as a 2CNF-formula.

The above definitions extend to constraint families naturally. For instance, a
constraint family F is 0-valid if every constraint f ∈ F is 0-valid. The above definitions
are central to Schaefer’s main theorem, restated below.

Theorem 2.10 (Schaefer’s theorem [42]). For any constraint family F , Sat(F)
is in P if F is 0-valid or 1-valid or weakly positive or weakly negative or affine or
2cnf; otherwise deciding Sat(F) is NP-hard.

4Such clauses are usually called Horn clauses.
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We use the shorthand “F is (not) decidable” to say that deciding membership in
Sat(F) is solvable in P (is NP-hard). Abusing our vocabulary slightly, we say Max
Ones(F) (or Min Ones(F)) is not decidable to indicate that determining if a given
instance of this problem has a feasible solution is NP-hard.

We need to define some additional properties to describe the approximabilities of
the optimization problems we consider:

• f is 2-monotone if f(x1, . . . , xk) is expressible as

(xi1
∧
· · ·
∧
xip)

∨
(¬xj1

∧
· · ·
∧
¬xjq )

for some p, q ≥ 0, (p, q) = (0, 0) (i.e., f is expressible as a DNF-formula
with at most two terms—one containing only positive literals and the other
containing only negative literals).

• A constraint is width-2 affine if it is expressible as a conjunction of linear
equations over Z2 such that each equation has at most two variables.

• A constraint is strongly 0-valid if it is satisfied by all assignments with at most
one variable set to 1. (Note that a strongly 0-valid constraint is also 0-valid.)

• A constraint f is IHS-B+ (for implicative hitting set-bounded+) if it is ex-
pressible as a CNF formula, where the clauses are of one of the following
types: x1

∨ · · ·∨xk for some positive integer k ≤ B, or ¬x1
∨
x2, or ¬x1.

IHS-B− constraints and constraint families are defined analogously (with ev-
ery literal being replaced by its complement). A family is an IHS-B family if
the family is an IHS-B+ family or an IHS-B− family.

We use the following shorthand for the above families: (1) F0 is the family of
0-valid constraints; (2) F1 is the family of 1-valid constraints; (3) FS0 is the family of
strongly 0-valid constraints; (4) F2M is the family of 2-monotone constraints; (5) FIHS

is the family of IHS-B constraints; (6) F2A is the family of width-2 affine constraints;
(7) F2CNF is the family of 2CNF constraints; (8) FA is the family of affine constraints;
(9) FWP is the family of weakly positive constraints; (10) FWN is the family of weakly
negative constraints.

2.5. Main results. We now present the main results of this paper. A pictorial
representation is available in Appendices B.1, B.2, B.3, and B.4. All theorems are
stated assuming that F has no trivial constraints, i.e., constraints that are always
satisfied or never satisfied. The first theorem is a minor strengthening of Creignou’s
theorem [11] so as to cover problems such as Max EkSat. The remaining theorems
cover Max Ones, Min CSP, and Min Ones, respectively.

Theorem 2.11 (Max CSP classification). For any constraint set F , the problem
(Weighted) Max CSP(F) is always either in PO or is APX-complete. Further-
more, it is in PO if and only if F is 0-valid or 1-valid or 2-monotone.

Theorem 2.12 (Max Ones classification). For any constraint set F , the prob-
lem (Weighted) Max Ones(F) is either in PO or is APX-complete or poly-APX-
complete or decidable but not approximable to within any factor or not decidable.
Furthermore,

(1) if F is 1-valid or weakly positive or affine with width-2, then (Weighted)
Max Ones(F) is in PO;

(2) otherwise if F is affine, then (Weighted) Max Ones(F) is APX-complete;
(3) otherwise if F is strongly 0-valid or weakly negative or 2CNF, then (Weighted)

Max Ones(F) is poly-APX-complete;
(4) otherwise if F is 0-valid, then Sat(F) is in P but finding a solution of positive

value is NP-hard;



1874 S. KHANNA, M. SUDAN, L. TREVISAN, AND D. P. WILLIAMSON

(5) otherwise finding a feasible solution to (Weighted) Max Ones(F) is NP-
hard.

Theorem 2.13 (Min CSP classification). For any constraint set F , the problem
(Weighted) Min CSP(F) is in PO or is APX-complete or Min UnCut-complete
orMin 2CNF Deletion-complete or Nearest Codeword-complete orMin Horn
Deletion-complete or even deciding if the optimum is zero is NP-hard. Furthermore,

(1) if F is 0-valid or 1-valid or 2-monotone, then (Weighted) Min CSP(F) is
in PO;

(2) otherwise if F is IHS-B, then (Weighted) Min CSP(F) is APX-complete;
(3) otherwise if F is width-2 affine, then (Weighted) Min CSP(F) is Min

UnCut-complete;
(4) otherwise if F is 2CNF, then (Weighted) Min CSP(F) is Min 2CNF

Deletion-complete;
(5) otherwise if F is affine, then (Weighted) Min CSP(F) is Nearest

Codeword-complete;
(6) otherwise if F is weakly positive or weakly negative, then (Weighted) Min

CSP(F) is Min Horn Deletion-complete;
(7) otherwise deciding if the optimum value of an instance of (Weighted) Min

CSP(F) is zero is NP-complete.

Theorem 2.14 (Min Ones classification). For any constraint set F , the prob-
lem (Weighted) Min Ones(F) is either in PO or APX-complete or Nearest
Codeword-complete or Min Horn Deletion-complete or poly-APX-complete or
inapproximable to within any factor or not decidable. Furthermore,

(1) if F is 0-valid or weakly negative or width-2 affine, then (Weighted) Min
Ones(F) is in PO;

(2) otherwise, if F is 2CNF or IHS-B, then (Weighted) Min Ones(F) is
APX-complete;

(3) otherwise if F is affine, thenMin Ones(F) is Nearest Codeword-complete;
(4) otherwise if F is weakly positive, then (Weighted) Min Ones(F) is Min

Horn Deletion-complete;
(5) otherwise if F is 1-valid, then Min Ones(F) is poly-APX-complete and

Weighted Min Ones(F) is decidable but hard to approximate to within any
factor;

(6) otherwise finding any feasible solution to (Weighted) Min Ones(F) is NP-
hard.

2.6. Techniques. Two simple ideas play an important role in this paper. First
is the notion of an implementation which shows how to use the constraints of a family
F to enforce constraints of a different family F ′, thereby laying the groundwork
of a reduction among problems. The notion of an implementation is inspired by
the notion of gadgets formalized by Bellare, Goldreich, and Sudan [8], who in our
language define implementations for specific pairs of function families (F ,F ′). In this
work we unify their definition, so as to make it work for arbitrary pairs of function
families. This definition of implementation also finds applications in the work of
Trevisan et al. [43], who, in our language, show uniform methods for searching for
efficient implementations for pairs of function families (F ,F ′).

A second simple idea we exploit here is that of working with weighted versions of
optimization problems. Even though our primary concerns were only the approxima-
bility of the unweighted versions of problems, many of our results use as intermediate
steps the weighted versions of these problems. The weights allow us to manipulate
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problems more locally. However, simple and well-known ideas eventually allow us
to get rid of the weights, thereby yielding hardness of the unweighted problem as
well. As a side-effect we also show that the unweighted and weighted problems are
equally hard to approximate in all the relevant optimization problems. This extends
to minimization problems the results of Crescenzi, Silvestri, and Trevisan [15].

The definitions of implementations and weighted problems follow in section 3.
Section 4 shows some technical results showing how we exploit the fact that we have
functions which don’t exhibit some property. The results of this section play a crucial
role in all the hardness results. This sets us up for the proofs of our main theorems.
In section 5 we show the containment results and hardness results for Max CSP.
Similarly sections 6, 7, and 8 deal with the classes Max Ones, Min CSP, and Min
Ones, respectively.

3. Implementations. We now describe the main technique used in this paper
to obtain hardness of approximation results. Suppose we want to show that for some
constraint set F , the problem Max CSP(F) is APX-hard. We will start with a
problem that is known to be APX-hard, such as Max Cut, which turns out to be
Max CSP({XOR}). We will then wish to reduce this problem to Max CSP(F).
The main technique we use to do this is to “implement” the constraint XOR using
constraints from the constraint set F . We show how to formalize this notion next and
then show how this translates to approximation-preserving reductions.

Definition 3.1 (implementation). A collection of constraint applications C1, . . . ,
Cm over a set of variables x = {x1, . . . , xp} called primary variables and y = {y1, . . . , yq}
called auxiliary variables is an α-implementation of a constraint f(x) for a positive
integer α if the following conditions are satisfied:

(1) For any assignment to x and y, at most α constraints from C1, . . . , Cm are
satisfied.

(2) For any x such that f(x) = 1, there exists y such that exactly α constraints
are satisfied.

(3) For any x,y such that f(x) = 0, at most (α− 1) constraints are satisfied.
Definition 3.2 (strict/perfect implementations). An α-implementation is a

strict α-implementation if for every x such that f(x) = 0, there exists y such that
exactly (α− 1) constraints are satisfied. An α-implementation (not necessarily strict)
is a perfect implementation if α = m.

We say that a constraint set F (strictly/perfectly) implements a constraint f if
there exists a (strict/perfect) α-implementation of f using constraints of F for some
α <∞. We use the notation F=⇒αf to denote that F α-implements f , and F=⇒f
to denote that F implements f . Similarly we use the notation F s/p

=⇒ f to denote that
F implements f strictly/perfectly. The above notation is also extended to allow the
target to be a family of functions. For instance, F=⇒F ′ denotes that F implements
every function in F ′.

Remark. The definition of [8] defined (nonstrict and nonperfect) implementations
for specific choices of f and F . For each choice they provided a separate definition.
We unify their definitions into a single one. Furthermore, as we will show later, the
use of strictness and/or perfectness greatly enhance the power of implementations.
These aspects are formalized for the first time here.

A constraint f 1-implements itself strictly and perfectly ({f} s/p
=⇒1 f). Some more

examples of strict and/or perfect implementations are given below.

Proposition 3.3. {XOR} s/p
=⇒2 XNOR.



1876 S. KHANNA, M. SUDAN, L. TREVISAN, AND D. P. WILLIAMSON

Proof. The constraints XOR(x, zAux) and XOR(y, zAux) perfectly and strictly
implement the constraint XNOR(x, y).

Proposition 3.4. If f(x) = f1(x)
∧ · · ·∧ fk(x), then {f1, . . . , fk} p

=⇒k f .
Proof. The collection {f1(x), . . . , fk(x)} is a perfect (but not necessarily strict)

k-implementation of f(x).
The following lemma shows that the implementations of constraints compose

together if they are strict or perfect.
Lemma 3.5. If Fa

s
=⇒ Fb and Fb

s
=⇒ Fc, then Fa

s
=⇒ Fc. An analogous result

also holds for perfect implementations.
Proof. It suffices to consider the case when Fc consists of a single function f .

Furthermore, we observe that it suffices to prove the following simpler assertion (to

prove the lemma): If F s
=⇒ g and F ∪ {g} s

=⇒ f , then F s
=⇒ f . To see that this

suffices, let Fb = {g1, . . . , gl}. Define F0 = Fa, F i = Fa ∪ {g1, . . . , gi}. Note that

by hypothesis we have F l
s

=⇒ f and F i
s

=⇒ gi+1 and F l
s

=⇒ f . The assertion above

says that if F i+1
s

=⇒ f , then F i
s

=⇒ f . Thus by induction F0
s

=⇒ f .

We now prove the assertion: If F s
=⇒ g and F ∪ {g} s

=⇒ f , then F s
=⇒ f .

Let C1, . . . , Cm1 be constraint applications from F ∪ {g} on variables x,y giving an
α1-implementation of f(x) with x being the primary variables. Let C ′1, . . . , C

′
m2

be
constraint applications from F on variable set x′, z′ yielding an α2-implementation of
g(x′). Furthermore, let the first β constraints of C1, . . . , Cm1 be applications of the
constraints g.

We create a collection of m1+ β(m2− 1) constraints from F on a set of variables
x,y, z′1, . . . , z′β , where x and y are the original variables and z′1, . . . , z

′
β are new sets

of disjoint auxiliary variables, i.e., the vectors z′i and z′j do not share any variables
if i = j.

The m1 + β(m2 − 1) constraints introduced are as follows. We include the con-
straint applications Cβ+1, . . . , Cm1 on variables x,y and for every constraint appli-
cation Cj , for j ∈ {1, . . . , β}, on variables vj (which is a subset of variables from
x,y), we place the constraints C ′1,j , . . . , C

′
m2,j

on variable set vj , z
′
j with z′j being

the auxiliary variables.
We now show that this collection of constraints satisfies properties (1)–(3) from

Definition 3.1 with α = α1+β(α2−1). Additionally we show that perfectness and/or
strictness is preserved. We start with properties (1) and (3).

Consider any assignment to x satisfying f . Then any assignment to y satisfies
at most α1 constraints from the set C1, . . . , Cm1

. Let γ of these be from the set
C1, . . . , Cβ . Now for every j ∈ {1, . . . , β} any assignment to z′j satisfies at most α2
of the constraints C ′1,j , . . . , C

′
m2,j

. Furthermore, if the constraint Cj was not satisfied
by the assignment to x,y, then at most α2 − 1 constraints are satisfied. Thus the
total number of constraints satisfied by any assignment is at most γα2+(β−γ)(α2−
1) + (α1 − γ) = α1 + β(α2 − 1). This yields property (1). Property (3) is achieved
similarly.

We now show that if the α1- and α2-implementations are perfect we get property
(2) with perfectness. In this case, for any assignment to x satisfying f , there exists an
assignment to y satisfying C1, . . . , Cm1 . Furthermore, for every j ∈ {1, . . . , β}, there
exists an assignment to z′j satisfying all the constraints C ′1,j , . . . , C

′
m2,j

. Thus there
exists an assignment to x,y, z′1, . . . , z′β satisfying all m1 + β(m2 − 1) constraints.
This yields property (2) with perfectness.

Finally we consider the case when the α1- and α2-implementations are strict (but
not necessarily perfect) and show that in this case the collection of constraints above
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also satisfies property (2) with strictness. Given an assignment to x satisfying f
there exists an assignment to y satisfying α1 constraints from C1, . . . , Cm1 . If this
assignment satisfied γ clauses from the set C1, . . . , Cβ and α1−γ constraints from the
set Cβ+1, . . . , Cm1 , then for every j ∈ {1, . . . , β} such that the clauses Cj is satisfied
by this assignment to x,y, there exists an assignment to z′j satisfying α2 clauses
from the set C ′1,j , . . . , C

′
m2,j

. Furthermore, for the remaining values of j ∈ {1, . . . , β}
there exists an assignment to the variables z′j satisfying α2 − 1 of the constraints
C ′1,j , . . . , C

′
m2,j

(here we are using the strictness of the α2-implementations). This
setting to y, z′1, . . . , z′β satisfies γα2 + (β − γ)(α2 − 1) + α1 − γ = α1 + β(α2 − 1) of
the m constraints. This yields property (2). A similar analysis can be used to show
the strictness.

Next we show a simple monotonicity property of implementations.
Lemma 3.6. For integers α, α′ with α ≤ α′, if F=⇒αf , then F=⇒α′f . Further-

more, strictness and perfectness are preserved under this transformation.
Proof. Let constraint applications C1, . . . , Cm from F on x,y form an α-implemen-

tation of f(x). Let g be any constraint from F and let k be the arity of g. Let
Cm+1, . . . , Cm+α′−α be α′ − α applications of the constraint g on new variables
z = {z1, . . . , zk}. Then the collection of constraints C1, . . . , Cm+α′−α on variable set
x,y, z form an α′-implementation of f . Furthermore, the transformation preserves
strictness and perfectness.

3.1. Reduction from strict implementations. Here we show how strict im-
plementations are useful in establishing AP-reducibility among Max CSP problems.
However, first we need a simple statement about the approximability of Max CSP
problems.

Proposition 3.7 (see [39]). For every constraint family F there exists a constant
k such that given any instance I ofWeighted Max CSP(F) with constraints of total
weight W , a solution satisfying constraints of weight W/k can be found in polynomial
time.

Proof. The proposition follows from the proof of Theorem 1 in [39] which shows
the above for every MAX SNP problem. (Note, in particular, that a random assign-
ment satisfies a constant fraction of Weighted Max CSP(F) instance, and such
an assignment can be found deterministically by using the method of conditional
probabilities.)

Lemma 3.8. If F ′ s
=⇒ F , then Max CSP(F) ≤AP Max CSP(F ′).

Proof. The reduction uses Proposition 3.7 above. Let β be a constant such that
given an instance I of Max CSP(F) with m constraints, an assignment satisfying m

β
constraints can be found in polynomial time.

Recall that we need to show polynomial time computable functions F and G such
that F maps an instance I of Max CSP(F) to an instance of Max CSP(F ′), and G
maps a solution to F (I) back to a solution of I.

Given an instance I on n variables and m constraints, the mapping F simply
replaces every constraint in I (which belongs to F) with a strict α-implementation
using constraints of F ′ for some constant α. (Notice that by Lemma 3.6 some such
α does exist.) The mapping retains the original n variables of I as primary variables
and uses m independent copies of the auxiliary variables—one independent copy for
every constraint in I.

Let 〈x,y〉 be an r-approximate solution to the instance F (I), where x denotes
the original variables of I and y denotes the auxiliary variables introduced by F .
The mapping G uses two possible solutions and takes the better of the two: the first
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solution is x; and the second solution x′ is the solution which satisfies at least m/β
of the constraints in I. G outputs the solution which satisfies more constraints.

We now show that an r-approximate solution leads to an r′-approximate solution,
where r′ ≤ 1+γ(r−1) for some constant γ. Let opt denote the value of the optimum
to I. Then the optimum of F (I) is exactly opt+m(α−1). This computation uses the
fact that for every satisfied constraint in the optimal assignment to I, we can satisfy
α constraints of its implementation by choosing the auxiliary variables appropriately
(from properties (1) and (2) of Definition 3.1); and for every unsatisfied constraint
exactly α−1 constraints of its implementation can be satisfied (from property (3) and
strictness of the implementation). Thus the solution 〈x,y〉 satisfies at least 1

r (opt+
m(α−1)) constraints of F (I). Thus x satisfies at least 1

r (opt+m(α−1))−m(α−1)
constraints in I. (Here we use properties (1) and (3) of Definition 3.1 to see that
there must be at least 1

r (opt + m(α − 1)) − m(α − 1) constraints of I in whose
implementations exactly α constraints must be satisfied.) Thus the solution output
by G satisfies at least

max

{
1

r
(opt+m(α− 1))−m(α− 1),

m

β

}

constraints. Using the fact that max{a, b} ≥ λa+(1−λ)b for any λ ∈ [0, 1] and using
λ = r

r+β(α−1)(r−1) , we lower bound the above expression by

opt

r + β(α− 1)(r − 1)
.

Thus

r′ ≤ opt

opt/(r + β(α− 1)(r − 1))
= r + β(α− 1)(r − 1) = 1 + (β(α− 1) + 1)(r − 1).

Thus we find thatGmaps r-approximate solutions of F (I) to (1+γ(r−1))-approximate
solutions to I for γ = β(α− 1) + 1 <∞ as required.

3.2. Reductions from perfect implementations. We now show how to use
perfect implementations to get reductions. Specifically we obtain reductions among
Weighted Max Ones, Weighted Min Ones, and Min CSP problems.

Lemma 3.9. If F ′ p
=⇒ F , then Weighted Max Ones(F) (Weighted Min

Ones(F)) is AP-reducible to Weighted Max Ones(F ′) (resp., Weighted Min
Ones(F ′)).

Proof. Again we need to show polynomial time computable functions F and
G such that F maps an instance I of Weighted Max Ones(F) (Weighted Min
Ones(F)) to an instance ofWeighted Max Ones(F ′) (Weighted Min Ones(F)),
and G maps a solution to F (I) back to a solution of I.

Given an instance I on n variables and m constraints, the mapping F simply
replaces every constraint in I (which belongs to F) with a perfect α-implementation
using constraints of F ′ for some constant α. (Notice that by Lemma 3.6 some such
α does exist.) The mapping retains the original n variables of I as primary variables
and uses m independent copies of the auxiliary variables—one independent copy for
every constraint in I. Furthermore, F (I) retains the weight of the primary variables
from I and associates a weight of zero with all the newly created auxiliary variables.
Given a solution to F (I), the mapping G is simply the projection of the solution back
to the primary variables. It is clear that every feasible solution to I can be extended
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into a feasible solution to F (I) such that opt(I) = opt(F (I)). Furthermore, the
mapping G maps feasible solutions to F (I) into feasible solutions to I with the same
objective. (This is where the perfectness of the implementations is being used.) Thus
the optimum of F (I) equals the value of the optimum of I and given an r-approximate
solution to F (I), the mapping G yields an r-approximate solution to I.

Lemma 3.10. If F ′ p
=⇒ F , then Min CSP(F) ≤A Min CSP(F ′).

Proof. Let α be large enough so that any constraint from F has a perfect α-
implementation using constraints from F ′. Let I be an instance of Min CSP(F)
and let I ′ be the instance of Min CSP(F ′) obtained by replacing each constraint of
I with the respective α-implementation. Once again each implementation uses the
original set of variables for its primary variables and uses its own independent copy of
the auxiliary variables. Note that the optimum of I ′ may be as high as αo if o is the
optimum of I (since the implementations are not strict). It is easy to check that any
assignment for I ′ of cost V yields an assignment for I whose cost is between V/α and
V . In particular, if the solution is an r-approximate solution to I ′, then V ≥ o

αr and
thus it induces a solution that is at least an (αr)-approximate solution to I. (Note
that if the implementations were strict, we would have obtained an AP-reduction by
the above.)

3.3. Weighted vs. unweighted problems. Lemma 3.9 crucially depends on
its ability to work with weighted problems to obtain reductions. The following lemma
shows that in most cases showing hardness for weighted problems is sufficient. Specif-
ically it shows that as long as a problem is weakly approximable, its weighted and
unweighted versions are equivalent. The result uses a similar result from Crescenzi,
Silvestri, and Trevisan [15], who prove that for a certain class of problems in poly-APX
that they term “nice,” weighted problems AP-reduce to problems with polynomially
bounded integral weights. (We include a sketch of their proof, specialized to our case
for the sake of completeness.) Using this result we scale all weights down to small
integers and then simulate the small integral weights by replication of clauses and/or
variables. (We note that the little-oh slackness in the definition of AP-reduction is
exploited in this step.)

Lemma 3.11. For every family F , ifWeighted Max Ones(F) is in poly-APX,
then Weighted Max Ones(F) AP-reduces to Max Ones(F). Analogous results
hold for Min CSP(F), Max CSP(F), and Min Ones(F).

Proof. Fix a family F . We first reduceWeighted Max Ones(F) toWeighted
Max Ones(F) restricted to instances with polynomially bounded positive integer
weights, providedWeighted Max Ones(F) is in poly-APX. This step uses a scaling
idea as in [15, Theorem 4]. Essentially the same proof also works for the cases of
Weighted Max CSP(F),Weighted Min CSP(F), orWeighted Min Ones(F).
Given an instance I = (x,C,w) of Weighted Max Ones(F), we will define a
new vector of weights w′ and use this to define a new instance I ′ = (x,C,w′) of
Weighted Max Ones(F) with polynomially bounded weights. Let A be an p(n)-
approximation algorithm for Weighted Max Ones(F), and let t be the value of
the solution returned by A on I. We let N = n2(p(n))2 + np(n), and let w′′i =⌊
wi·N

t

⌋
+ 1, and finally let w′i = min{w′′i , N · p(n) + 1}. It is clear that the weights

w′i are polynomially bounded. Furthermore, note that if w′i < w
′′
i , then no feasible

solution to I (or I ′) can have xi set to 1, since any such solution would have value
at least wi > t · p(n), contradicting the assumption that A is a p(n)-approximation
algorithm. Thus, in particular, we have opt(I ′) ≥ (N/t) · opt(I). Given an r-
approximate solution s′ to I ′ we return the better of the solutions s′ and the solution
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returned A as the solution to I. It is clear that if r ≥ p(n), then the returned solution
is still an r-approximate solution. Below we see that an r-approximate solution to I ′,
with r ≤ p(n), is also an (r + 1/n)-approximate solution to I of value at least

(t/N) · (opt(I ′)/r)− n) ≥ opt(I)/r − (nt/N)

≥ opt(I)/r − (n · opt(I)/N)

≥ opt(I)
(
1

r
− 1

nr2 + r

)

= opt(I)/(r + 1/n).

This concludes the first step of the reduction. In the next step we give an AP-reduction
from the class of problems with polynomially bounded weights to the unweighted case.

We start with the case of Weighted Max CSP(F) first. Given an instance
of Weighted Max CSP(F) on variables x1, . . . , xn, constraints C1, . . . , Cm, and
polynomially bounded integer weights w1, . . . , wm, we reduce it to the unweighted
case by replication of constraints. Thus the reduced instance has variables x1, . . . , xn
and constraint {{Cj

i }wi
j=1}mi=1, where constraint Cj

i = Ci. It is clear that the reduced
instance is essentially the same as the instance we started with. Similarly we reduce
Weighted Min CSP(F) to Min CSP(F).

Given an instance I of Weighted Max Ones(F) on variables x1, . . . , xn, con-
straints C1, . . . , Cm, and weights w1, . . . , wn, we create an instance I ′ ofMaxOnes(F)
on variables {{yji }wi

j=1}ni=1. For every constraint Cj of I of the form f(xi1 , . . . , xik), and
for every j ∈ {1, . . . , k} and nj ∈ {1, . . . , wij}, we impose the constraints f(yn1

i1
, . . . , ynk

ik
).

We now claim that the reduced instance is essentially equivalent to the instance we
started with. To see this, notice that given any feasible solution y to the instance
I ′, we may convert it to another feasible solution y′ in which, for every i, all the
variables {(y′)ji |j = 1, . . . , wi} have the same assignment by setting (y′)ji to 1 if any

of the variables yj
′

i , j′ = 1, . . . , wi, is set to 1. Notice that this preserves feasibility
and increases only the contribution to the objective function. The assignment y′

now induces an assignment to x with the same value of the objective function. Thus
the reduced instance is essentially equivalent to the original one. This concludes the
reduction from Weighted Max Ones(F) to Max Ones(F). The reduction from
Weighted Min Ones(F) to Min Ones(F) is similar.

4. Characterizations: New and old. In this section we characterize some of
the properties of functions that we study. Most of the properties are defined so as to
describe how a function behaves if it exhibits the property. For the hardness results,
however, we need to see how to exploit the fact that a function does not satisfy some
given property. For this we would like to see some simple witness to the fact that
the function does not have a given property. As an example consider the affineness
property. If a function is affine, it is easy to see how to use this property. What will
be important to us is whether there exists a simple witness to the fact that a function
f is not affine. Schaefer [42] provides such a characterization: If a function is not
affine, then there exist assignments s1, s2, and s3 that satisfy f such that s1⊕ s2⊕ s3
does not satisfy f . This is exploited by Schaefer in his classification theorem (and
by us, in our classifications). In this section, we describe other such characterizations
and the implementations that are obtained from them. First we introduce some more
definitions and notations that we will be used in the rest of the paper.

4.1. Definitions and notations. For s ∈ {0, 1}k, we let s̄ ∈ {0, 1}k denote
the bitwise complement of s. For a constraint f of arity k, let f− be the constraint
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f−(s) = f(s̄). For a constraint family F , let F− = {f− : f ∈ F}. For s1, s2 ∈ {0, 1}k,
s1⊕ s2 denotes the bitwise exclusive-or of the assignments s1 and s2. For s ∈ {0, 1}k,
Z(s) denotes the subset of indices i ∈ [k], where s is zero and O(s) denotes the subset
of indices where s in one.

For a constraint f of arity k, S ⊆ [k] and b ∈ {0, 1}, f |(S,b) is the constraint of arity
k′ = k−|S| defined as follows: For variables xi1 , . . . , xik′ , where {i1, . . . , ik′} = [k]−S,
we define f |(S,b)(xi1 , . . . , xik′ ) = f(x1, . . . , xk), where xi = b for i ∈ S. We will
sometimes use the notation f |(i,b) to denote the function f |({i},b). For a constraint
family F , the family F|0 is the family {f |S,0|f ∈ F , S ⊆ [arity(f)]}. The family F|1 is
defined analogously. The family F|0,1 is the family (F|0)|1 (or equivalently the family
(F|1)|0).

Definition 4.1 (C-closed). A constraint f is C-closed (complementation-closed)
if for every assignment s, f(s) = f(s̄).

Definition 4.2 (existential zero/existential one). A constraint f is an existential
zero constraint if f(0) = 1 and f(1) = 0. A constraint f is an existential one
constraint if f(0) = 0 and f(1) = 1.

The terminology above is motivated by the fact that an existential zero constraint
application f(x1, . . . , xk) forces at least one of the variables to be zero (while an all
zero assignment definitely satisfies the application).

Every constraint f can be expressed as the conjunction of disjuncts. This repre-
sentation of a function is referred to as the conjunctive normal form (CNF) representa-
tion of f . Alternately, a function can also be represented as a disjunction of conjuncts
and this representation is called the disjunctive normal form (DNF) representation.

A partial setting to the variables of f that fixes the value of f to 1 is called a term
of f . A partial setting that fixes f to 0 is called a clause of f . We refer to the terms
and clauses in a functional form, i.e., we say OR3,1(x1, x2, x3) = x1

∨
x2
∨¬x3 is a

clause of f(x1, . . . , xp) if setting x1 = x2 = 0 and x3 = 1 fixes f to being 0. Similarly
we use the ANDi,j to denote the terms. Notice that a DNF (CNF) representation of f
can be obtained by expressing as the conjunction (disjunction) of its terms (clauses).

Definition 4.3 (minterm/maxterm). A partial setting to a subset of the vari-
ables of f is a minterm if it is a term of f and no restriction of the setting to any strict
subset of the variables fixes the value of f . Analogously a clause of f is a maxterm if
it is a minimal setting to the variables of f so as to fix its value to 0.

As in the case of terms and clauses, we represent minterms and maxterms func-
tionally, i.e., using ORi,j and ANDi,j .

Definition 4.4 (basis). A constraint family F ′ is a basis for a constraint family
F if any constraint of F can be expressed as a conjunction of constraints drawn from
F ′.

Thus, for example, the basis for affine constraints is the set {XORp|p ≥ 1} ∪
{XNORp|p ≥ 1}. The basis for width-2 affine constraints is the set F = {XOR,XNOR,
T, F}, and the basis for 2CNF constraints is the set F = {OR2,0,OR2,1,OR2,2, T, F}.
The definition of a basis is motivated by the fact that if F ′ is a basis for F , then F ′
can perfectly implement every function in F (see Proposition 3.4).

4.2. 0-validity and 1-validity. The characterization of 0-valid and 1-valid
functions is obvious. We now show what can be implemented with functions that
are not 0-valid and not 1-valid.
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Lemma 4.5. Let f be a nontrivial constraint which is C-closed and is not 0-valid

(or equivalently not 1-valid).5 Then {f} s/p
=⇒ XOR.

Proof. Let k denote the arity of f and let k0 and k1, respectively, denote the
maximum number of 0’s and 1’s in any satisfying assignment for f ; clearly k0 = k1.
Now let Sx = {x1, . . . , x3k} and Sy = {y1, . . . , y3k} be two disjoint sets of 3k variables
each. In the first phase of the proof, we place a large number of constraints on
the variables of Sx and Sy that ends up implementing perfectly, but not necessarily
strictly, the constraints XOR(xi, yj) for every i and j. In the second phase, we will
introduce two new variables x and y and augment the constraints so as to implement
the constraint XOR(x, y) perfectly and strictly.

We start by placing the constraint f on a large collection of inputs as follows:
For every satisfying assignment s, we place

(
3k
i

)(
3k
k−i
)
constraints on the variable set

Sx ∪ Sy such that every i-variable subset of Sx appears in place of 0’s in s and every
(k − i) variable subset of Sy appears in place of 1’s in the assignment s, where i
denotes the number of 0’s in s. Let this collection of constraints be denoted by I. We
will first show that I gives a perfect (but possibly nonstrict) implementation of the
constraint XOR(xi, yj).

Clearly, any solution which assigns identical values to all variables in Sx and the
complementary value to all variables in Sy satisfies all the constraints in I. We will
show the converse, i.e., every assignment satisfying all the above constraints assigns
identical values to all variables in Sx and the complementary value to every variable
in Sy.

Fix any assignment satisfying all the constraints and let Z and O, respectively,
denote the set of variables set to 0 and 1, respectively. We claim that any solution
which satisfies all the constraints must satisfy either Z = Sx and O = Sy or Z = Sy
and O = Sx.

Note first that at least one of the conditions |Sx ∩ Z| ≥ k or |Sx ∩ O| ≥ k must
hold. Consider the case where |Sx ∩ Z| ≥ k. In this case, we will show that Sx = Z
and Sy = O. (A similar argument for the other case will show Sx = O and Sy = Z.)

• First we claim that |Sy ∩ Z| < k and thus |Sy ∩ O| > 2k. Assume for
contradiction that |Sy ∩ Z| ≥ k. Then there exists a constraint application
in I with all its input variables coming from the sets Sx ∩Z and Sy ∩Z. By
definition of Z all these variables are set to zero, and hence this constraint
application is unsatisfied (by the 0-validity of f).

• Next we claim that every variable of Sx is set to 0: Assume otherwise and,
without loss of generality (w.l.o.g.), let x1 be set to 1. Let s be an assignment
with minimal number of 0’s. Assume w.l.o.g. that s = 0k01k−k0 . W.l.o.g., let
y1, . . . , y2k be set to one. (We know 2k such variables exist since |Sy ∩ O| >
2k.) By our choice of constraint applications, f(x1, . . . , xk0 , y1, . . . , yk−k0) is
one of the constraint applications. However, at most k0 − 1 variables of this
constraint are set to 0 and thus this application cannot be satisfied.

• Finally, similar to the above step, we can show that every variable in Sy is
set to 1.

Thus we have shown that if |Sx ∩ Z| ≥ k, then Sx = Z and Sy = O. The other case
is similar, and this concludes the first phase.

We next augment the collection of constraints above as follows. Consider a
least Hamming weight satisfying assignment s for f . W.l.o.g., we assume that s =

5Notice that C-closedness implies that f is 0-valid if and only if it is 1-valid.
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10k−k1−11k1 . We add the constraints f(x, x1, . . . , xk−k1−1, y1, . . . , yk1
) and f(y, x1, . . . ,

xk−k1−1, y1, . . . , yk1). We now argue that the resulting collection of constraints yields
a perfect and strict implementation of the constraint XOR(x, y).

Clearly s′ = 0k−k11k1 is not a satisfying assignment (since it has smaller Hamming
weight than s). Since f is C-closed, we have the following situation:

f()

s′ 0

k−k1−1︷ ︸︸ ︷
00...0

k1︷ ︸︸ ︷
11...1 0

s 1 00...0 11...1 1
s̄ 0 11...1 00...0 1
s̄′ 1 11...1 00...0 0

If x = 1, then to satisfy the first of the two constraints (in addition to all the
earlier constraints) above, we must have Z = Sx, O = Sy and thus must have y = 0.
Similarly if x = 0, then we must have O = Sx, Z = Sy and y = 1. Thus the given
constraints do form a perfect implementation of XOR(x, y). Finally if x = y, then
the setting O = Sx and Z = Sy satisfies all constraints except one (which is one of
the last two additional constraints). Thus the implementation satisfies the strictness
property as well.

Lemma 4.6. Let f0, f1 and g be nontrivial constraints, possibly identical, which

are not 0-valid, not 1-valid, and not C-closed, respectively. Then {f0, f1, g} s/p
=⇒

{T, F}.
Proof. We will describe only the implementation of constraint T (·); the imple-

mentation for the constraint F (·) is identical.
Assume, for simplicity, that all the three functions f0, f1, and g are of arity

k. We use an implementation similar to the one used in the proof of Lemma 4.5.
To implement T (x), we use a set of 6k auxiliary variables Sx = {x1, . . . , x3k} and
Sy = {y1, . . . , y3k}. For each h ∈ {f0, f1, g}, for each satisfying assignment s of h,

if j is the number of 0’s in s we place the
(
3k
j

)(
3k
k−j
)
constraints h with all possible

subsets of Sx appearing in the indices in Z(s) and all possible subsets of Sy appearing
in O(s). Finally we introduce one constraint involving the primary variable x. Let s
be the satisfying assignment of minimum Hamming weight which satisfies f0. Notice
that s must include at least one 1. Assume, w.l.o.g., that s = 10k−k1−11k1 . Then we
introduce the constraint application f0(x, x1, . . . , xk−k1−1, y1, . . . , yk1).

It is clear that by setting all variables in Sx to 0 and all variables in Sy to 1
we get an assignment that satisfies all constraints except possibly the last constraint
(which involves x). Furthermore, the last constraint is satisfied if and only if x = 1.
Thus, to prove the lemma, it suffices to show that any solution which satisfies all the
constraints above must set x to 1, all variables in Sx to 0, and all variables in Sy to 1.

Fix an assignment satisfying all the constraints. Let O be the set of variables
in Sx ∪ Sy set to 1 and Z be the set of variables set to 0. We need to show that
Sx ∩O = ∅ and we do so in stages.

• First, we consider the possibility |Sx ∩O| ≥ k. We consider two cases.
– Case. |Sy ∩Z| ≥ k. Consider a satisfying assignment s such that g(s̄) =

0. Such an assignment must exist since g is not C-closed. Note that
the constraint applications include at least one where g is applied to
variables where the positions corresponding to O(s) come from Sy ∩ Z
and positions corresponding to Z(s) come from Sx ∩ O. However, this
constraint is not satisfied by the assignment (since g(s̄) = 0).
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– Case. |Sy ∩O| > 2k. Let s1 be a satisfying assignment for f1. Note that
the application of the constraint f1 with the positions corresponding to
O(s) coming from Sy∩O and the positions corresponding to Z(s) coming
from Sx ∩O is one of the constraints imposed above and is not satisfied
(since f1 is not 1-valid).

Thus in either case, we find a constraint that is not satisfied and thus this
possibility (|Sx ∩O| ≥ k) cannot occur. Thus we conclude |Sx ∩O| < k.

• From the above, we have |Sx ∩Z| > 2k. If |Sy ∩Z| ≥ k, then we can find an
application of the constraint f0 to the variables in the set Z that will not be
satisfied. Thus we have |Sy∩Z| < k and thus |Sy∩O| > 2k. This can now be
used to conclude that Sy∩Z = φ as follows. Consider a satisfying assignment
with smallest number of ones. The number of ones in such an assignment is
positive since f0 is not 0-valid. If we consider all the constraints corresponding
to this assignment with inputs from Sy and Sx ∩Z only, it is easy to see that
there will be at least one unsatisfied constraint if Sy ∩ Z = φ. Hence each
variable in Sy is set to 1 in this case. Finally, using the constraints on the
constraint f1 which is not 1-valid, it is easy to conclude that in fact Z = Sx.

Having concluded that Sx = Z and Sy = O, it is easy to see that the constraint
f0(x, x1, . . . , xk−k1−1, y1, . . . , yk1) is satisfied only if x = 1. Thus the set of constraints
imposed above yields a strict and perfect implementation of T (·). The constraint F (·)
can be implemented analogously.

For the CSP classes, it suffices to consider the case when F is neither 0-valid nor
1-valid. For the Max Ones and Min Ones classes we also need to consider the case
when F fails only to have one of these two properties. Therefore keeping these classes
in mind we prove the following lemma, which shows how to obtain a weak version of
T and F in these cases.

Lemma 4.7. If F is not C-closed and not 1-valid, then F s/p
=⇒ f for some

existential zero constraint f0. Analogously, if F is not C-closed and not 0-valid,

then F s/p
=⇒ f1 for some existential one constraint f1.

Proof. We prove only the first part of the lemma. The second part is similar.

The proof reduces to two simple subcases. Let f ∈ F be a constraint that is not
1-valid. If f is 0-valid, then we are done since f is an existential zero constraint. If
f is not 0-valid, then F has a non-C-closed function, a non-0-valid function, and a
non-1-valid function, and hence by Lemma 4.6, F perfectly and strictly implements
F which is an existential zero function.

4.3. 2-monotone functions.

Definition 4.8 (0/1-term). A set V ⊆ {1, . . . , k} is a 0-term (1-term) for a k-
ary constraint f if every assignment s with Z(s) ⊇ V (resp., O(s) ⊇ V ) is a satisfying
assignment for f .

The choice of the name reflects the fact that a 0-term is a term consisting of all
negated variables (or variables set to 0) and a 1-term consists of all positive variables.

Lemma 4.9. A constraint f is a 2-monotone constraint if and only if all the
following conditions are satisfied:

(a) for every satisfying assignment s of f , either Z(s) is a 0-term or O(s) is a
1-term;

(b) if V1 and V2 are 1-terms for f , then V1 ∩ V2 is a 1-term; and

(c) if V1 and V2 are 0-terms for f , then V1 ∩ V2 is also a 0-term.

Proof. Recall that a 2-monotone constraint is one that can be expressed as a
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disjunction of two terms. Every satisfying assignment must satisfy one of the two
terms and this gives property (a). Properties (b) and (c) are obtained from the fact
that the constraint has at most one term with all positive literals and at most one
term with all negated literals.

Conversely, consider a constraint f which satisfies properties (a)–(c). Let s1, . . . , sl
be the satisfying assignments of f such that Z(si) is a 0-term for i ∈ {1, . . . , l}.
Let t1. . . . , tk be the satisfying assignments of f such that O(tj) is a 1-term for
j ∈ {1, . . . , k}. Then Z = ∩iZ(si) is a 0-term and O = ∩jO(tj) is a 1-term for
f , respectively (using (b) and (c)), and together they cover all satisfying assignments
of f . Thus f(x) = (∧i∈Z¬xi) ∨ (∧j∈Oxj), which is 2-monotone.

We now use the characterization above to prove, in Lemma 4.11, that if a function
f is not 2-monotone, then the family {f, T, F} implements the function XOR. We
first prove a simple lemma which shows implementations of XOR by some specific
constraint families. This will be used in Lemma 4.11.

Lemma 4.10.
(1) {AND2,1} s

=⇒ XOR.

(2) For every p ≥ 2, we have {fp, T, F} s/p
=⇒ XOR, where fp(x1, . . . , xp) =

ORp(x1, . . . , xp)
∧
NANDp(x1, . . . , xp).

(3) For every p ≥ 2, we have {NANDp, T, F} s
=⇒ XOR.

Proof. For part (1) we observe that the constraints

{AND2,1(x1, x2),AND2,1(x2, x1)}
provide a strict (but not perfect) 1-implementation of XOR(x1, x2).

For part (2) notice that the claim is trivial if p = 2, since the function f2 = XOR.
For p ≥ 3, the constraints {fp(x1, . . . , xp), T (x3), . . . , T (xp)} perfectly and strictly im-
plement NAND(x1, x2). Similarly the constraints {fp(x1, . . . , xp), F (x3), . . . , F (xp)}
perfectly and strictly implement the constraint OR(x1, x2). Finally the constraints
OR(x1, x2) and NAND(x1, x2) perfectly and strictly implement the constraint XOR
(x1, x2). Part (2) follows from the fact that perfect and strict implementations com-
pose (Lemma 3.5).

Finally for part (3), we first use the constraints

{NANDp(x1, . . . , xp), F (x3), . . . , F (xp)}
to implement, strictly and perfectly, the constraint NAND(x1, x2). Now we may
use {NAND(x1, x2),NAND(x1.x2), T (x1), T (x2)} to obtain a 3-implementation of
the constraint XOR(x1, x2). (Note that in the case the implementation is not
perfect.)

Lemma 4.11. Let f be a constraint which is not 2-monotone. Then {f, T, F} s
=⇒

XOR.
Proof. The proof is divided into three cases which depend on which of the three

conditions defining 2-monotonicity is violated by f . We first state and prove the
claims.

Claim 4.12. If f is a function violating property (a) of Lemma 4.9, then {f, T, F}
s

=⇒ XOR.
Proof. There exists some assignment s satisfying f , and two assignments s0 and s1

such that Z(s) ⊆ Z(s0) and O(s) ⊆ O(s1), such that f(s0) = f(s1) = 0. Rephrasing
slightly, we know that there exists a triple (s0, s, s1) with the following properties:

f(s0) = f(s1) = 0; f(s) = 1; Z(s0)⊇Z(s)⊇Z(s1).(1)
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Note that the condition Z(s0)⊇Z(s)⊇Z(s1) implies that O(s0) ⊆ O(s) ⊆ O(s1).
We call property (1) the “sandwich property.” Of all triples satisfying the sandwich
property, pick one that minimizes |Z(s0) ∩O(s1)|.

W.l.o.g., assume that Z(s0)∩O(s1) = {1, . . . , p}, Z(s0)∩Z(s1) = {p+ 1, . . . , q},
and O(s0) ∩O(s1) = {q + 1, . . . , k}. (Notice that the sandwich property implies that
O(s0)∩Z(s1) = ∅.) Let f1 be the constraint given by f1(x1, . . . , xp) = f(x1, . . . , xp, 0,
. . . , 0, 1, . . . , 1). Notice that the constraint applications f(x1 . . . xk) and T (xi) for
every i ∈ O(s0)∩O(s1) and F (xi) for every i ∈ Z(s0)∩Z(s1) implement the function
f1. Thus it suffices to show that {f1, T, F} implements XOR.

Below we examine some properties of the constraint f1. We will use the characters
t, t′, ti, t′i to denote assignments to f1, while we use the characters s, s

′, si, s′i to denote
assignments to f . Note that

(1) f1(0) = f1(1) = 0.
(2) f1 has a satisfying assignment. Thus p (the arity of f1) is at least 2.
(3) If f1(t1) = 0 for some t = 1, then for every assignment t such that Z(t)⊇Z(t1),

it is the case that f1(t1) = 0: This follows from the minimality of |Z(s0) ∩
O(s1)| above. If not, then consider the assignments s′0 = s0, s

′ = t0q−p1k−q,
and s′1 = t10

q−p1k−q. The triple (s′0, s
′, s′1) also satisfies the sandwich prop-

erty and has a smaller value of |Z(s′0) ∩O(s′1)|.
(4) If f1(t0) = 0 for some t0 = 0, then for every assignment t such thatO(t)⊇O(t0),

it is the case that f1(t) = 0 (again from the minimality of |Z(s0) ∩O(s1)|).
These properties of f1 now allow us to identify f1 almost completely. We show

that either (a) p = 2 and f1(x1x2) is either AND2,1(x1, x2) or AND2,1(x2, x1), or (b)
f is satisfied by every assignment other than the all zeroes assignment and the all
ones assignment. In either case {f1, T, F} strictly implements XOR by Lemma 4.10,
parts (1) and (2). (Note that part (1) of Lemma 4.10 yields only a strict (but not
perfect) implementation.) Thus proving that either (a) or (b) holds concludes the
proof of the claim.

Suppose (b) is not the case. Thus, f1 is left unsatisfied by some assignment t and
t = 0 and t = 1. Then we will show that the only assignment that can satisfy f1 is
t̄. However, this implies that t, t̄, 0, and 1 are the only possible assignments to f1,
implying p must be 2, thereby yielding that (a) is true. Thus it suffices to show that if
f1(t) = 0, and t′ = t̄, then f1(t′) = 0. Since t′ is not the bitwise complement of t, there
must exist some input variable which shares the same assignment in t and t′. W.l.o.g.
assume this is the variable x1. Consider the case that this variable takes on the value 0
in the assignment t. Then we claim that the assignment f1(01 . . . 1) = 0. This is true
since O(01 . . . 1)⊇O(t). Now notice that f(t′) = 0 since Z(t′)⊇Z(01 . . . 1). (In the
case that the first variable takes on the value 1 in the assignment t, it is symmetric.)
Thus we conclude that either (a) or (b) always holds and this concludes the proof of
the claim.

Claim 4.13. Suppose f violates property (b) of Lemma 4.9. Then {f, T, F} s/p
=⇒

XOR.

Proof. Let V1 and V2 be two 1-terms such that V1 ∩ V2 is not a 1-term. Thus,
there exists an assignment s such that (s.t.) O(s)⊇V1 ∩ V2 and f(s) = 0. Among all
such assignments let s be the one with the maximum number of 1’s. The situation
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looks as shown below:

V1︷ ︸︸ ︷

s

V1\O(s)︷ ︸︸ ︷
00...0︸ ︷︷ ︸

p

11...1︸ ︷︷ ︸
q

V2︷ ︸︸ ︷
V1∩V2︷ ︸︸ ︷
11...1︸ ︷︷ ︸

r

11...1︸ ︷︷ ︸
t

V2\O(s)︷ ︸︸ ︷
00...0︸ ︷︷ ︸

u

00...0︸ ︷︷ ︸
v

11...1︸ ︷︷ ︸
w

.

In other words s = 0p1q+r+t0u+v1w and f(s) = 0. Furthermore, every assignment of
the form 1p+q+r∗t+u+v+w satisfies f and every assignment of the form ∗p+q1r+t+u∗v+w

satisfies f (where the ∗’s above can be replaced by any of 0/1 independently). In
particular this implies that p, u ≥ 1. Consider the function f1 on p+ u ≥ 2 variables
obtained from f by restricting the variables in O(s) to 1 and restricting the variables
in Z(s) − (V1 ∪ V2) to 0. Notice that the constraint applications f(x1 . . . xk), T (xi)
for i ∈ O(s) and F (xi) for i ∈ Z(s)− (V1 ∪ V2) strictly implement f1. Thus it suffices
to show that {f1, T, F} implements XOR. We do so by observing that f1(x1 . . . xp+u)
is the function NANDp+u. Notice that f1(0) = 0. Furthermore, if f1(t) = 0 for
any other assignment t, then it contradicts the maximality of the number of 1’s in
s. The claim now follows from Lemma 4.10, part (3), which shows that the family
{NANDp+u, T, F} implements XOR, provided p+ u ≥ 2.

Claim 4.14. Suppose f violates property (c) of Lemma 4.9. Then {f, T, F} s/p
=⇒

XOR.
Proof. The proof is similar to the proof of the claim above.
The lemma now follows from the fact that any constraint f2 that is not 2-

monotone must violate one of the properties (a), (b), or (c) from Lemma 4.9.

4.4. Affine functions.
Lemma 4.15 (see [42]). f is an affine function if and only if for every three

satisfying assignments s1, s2, and s3 to f , s1⊕s2⊕s3 is also a satisfying assignment.
We first prove a simple consequence of the above which gives a slightly simpler

sufficient condition for a function to be affine.
Corollary 4.16. If f is not affine, then there exist two satisfying assignments

s1 and s2 for f such that s1 ⊕ s2 does not satisfy f .
Proof. Assume otherwise. Then for any three satisfying assignments s1, s2, and

s3, we have that f(s1 ⊕ s2) = 1, and hence f((s1 ⊕ s2) ⊕ s3) = 1, thus yielding that
f is affine.

Lemma 4.17. If f is an affine constraint, then any function obtained by restrict-
ing some of the variables of f to constants and existentially quantifying over some
other set of variables is also affine.

Proof. We use Lemma 4.15 above. Let f1 be a function derived from f as above.
Consider any three assignments s′1, s

′
2, and s

′
3 which satisfy f1. Let s1, s2, and s3 be

the respective extensions which satisfy f . Then the assignment s1 ⊕ s2 ⊕ s3 extends
s′1 ⊕ s′2 ⊕ s′3 and satisfies f . Thus s′1 ⊕ s′2 ⊕ s′3 satisfies f1. Thus (using Lemma 4.15)
again, we find that f1 is affine.

Lemma 4.18. If f is an affine function which is not of width-2, then {f} s/p
=⇒

XORp or {f} s/p
=⇒ XNORp for some p ≥ 3.

Proof. Let k be the arity of f . Define a dependent set of variables to be a set of
variables S ⊆ {1, . . . , k} such that not every assignment to the variables in S extends
to a satisfying assignment of f . A dependent set S is a minimally dependent set if
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no strict subset S′ ⊂ S is a dependent set. Notice that f can be expressed as the
conjunction of constraints on its minimally dependent sets. Thus if f is not of width-
2, then it must have a minimally dependent set S of cardinality at least 3. Assume
S = {1, . . . , p}, where p ≥ 3. Consider the function

f1(x1 . . . xp) = ∃xp+1, . . . , xk s.t. f(x1, . . . xk).

f1 is affine (by Lemma 4.17), is not satisfied by every assignment, and has at least 2p−1

satisfying assignments. Thus f1 has exactly 2p−1 assignments (since the number of
satisfying assignments must be a power of 2). Thus f1 is described by exactly one lin-
ear constraint and by the minimality of S this must be the constraint XOR(x1 . . . xp)
or the constraint XNOR(x1 . . . xp).

4.5. Horn Clauses, 2CNF, and IHS.
Lemma 4.19. If f is a weakly positive (weakly negative/IHS-B+/IHS-B−/2CNF)

constraint, then any function obtained by restricting some of the variables of f to
constants and existentially quantifying over some other set of variables is also weakly
positive (resp., weakly negative/IHS-B+/IHS-B−/2CNF).

Proof. It is easy to see that f remains weakly positive (weakly negative/IHS-B+/
IHS-B−/2CNF) when some variable is restricted to a constant. Hence it suffices to
consider the case where some variable y is quantified existentially. (Combinations
of the possibilities can then be handled by a simple induction.) Thus consider the

function f1(x1, . . . , xk)
def
= ∃y s.t. f(x1, . . . , xk, y). Let

f(x1, . . . , xk, y) =


 m∧

j=1

Cj(x̄)


∧


 m0∧

j0=1

(C0
j0(x̄)

∨
y)


∧


 m1∧

j1=1

(C1
j1(x̄)

∨
¬y)



be a CNF expression for f which shows it is weakly positive (weakly negative/IHS-B+/
IHS-B−/2CNF), where the clauses Cj , C

0
j0
, and C1

j1
involve literals on the variables

x1, . . . , xk.
We first show a simple transformation which creates a CNF expression for f1.

Later we show that f1 inherits the appropriate properties of f .

Define m0 × m1 clauses C01
j0j1

(x̄)
def
= C0

j0
(x̄)
∨
C1
j1
(x̄). Next, we note that f1(x̄)

can be expressed as follows:

f1(x̄) = f1(x̄, 0)
∨
f1(x̄, 1)

=




∧

j

Cj(x̄)


∧


∧

j0

C0
j0(x̄)




∨




∧

j

Cj(x̄)


∧


∧

j1

C1
j1(x̄)






=


∧

j

Cj(x̄)


∧




∧

j0

C0
j0(x̄)


∨


∧

j1

C1
j1(x̄)






=


∧

j

Cj(x̄)


∧


∧

j0

∧
j1

C01
j0j1(x̄)


 .(2)

To conclude we need to verify that the right-hand side of (2) satisfies the same
properties as f . Furthermore, we have only to consider clauses of the form C01

j0j1
(x̄)

since all other clauses are directly from the expression for f . We verify this below:
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• If f is weakly positive, then the clause C0
j0

involves at most one negated

variable, and the clause C1
j1

involves no negated variable (since the clause

participating in f is (C1
j1
(x̄)
∨¬y) which has a negated y involved in it).

Thus the clause defining C01
j0j1

also has at most one negated variable.

• Similarly if f is weakly negative, then the clauses C01
j0j1

has at most one
positive literal.

• If f is 2CNF, then the clauses C0
j0

and C1
j1

are of length 1, and hence the

clause C01
j0j1

is of length at most 2.

• If f is IHS-B+, then the clause C0
j0

either has only one literal which is negated

or has only positive literals. Furthermore, C1
j1

has at most one positive literal.

Thus C01
j0j1

either has only positive literals or has at most two literals, one of

which is negated. Hence C01
j0j1

is also IHS-B+.

• Similarly if f is IHS-B−, then the clause C01
j0j1

is also IHS-B−.
This concludes the proof of the lemma.

Lemma 4.20. f is a weakly positive (weakly negative) constraint if and only if
all its maxterms are weakly positive (weakly negative).

Proof. We prove the lemma for the weakly positive case. The other case is similar.
For the easy direction, recall that a function can be expressed as the conjunction of all
its maxterms. If all maxterms are weakly positive, then this gives a weakly positive
representation of f .

For the other direction, assume for contradiction that f is a weakly positive
constraint that has C = ¬x1

∨ · · ·∨¬xp∨xp+1

∨ · · ·∨xq as a maxterm for some
p ≥ 2. Let the arity of f be k. Consider the function

f1(x1x2)
def
= ∃xq+1, . . . , xk s.t. f(x1x21

p−20q−pxq+1 . . . xk).

Since C is an admissible clause in a CNF representation of f , we have that if we
set x1, . . . , xp to 1 and setting xp+1, . . . , xq to 0, then no assignment to xq+1, . . . , xk
satisfies f . Thus we find that f1(11) = 0. By the fact that the clause is a maxterm we
have that both the assignments x1 . . . xq = 01p−10q−p and x1 . . . xq = 101p−20q−p can
be extended to satisfying assignments of f . Thus we find that f1(10) = f1(01) = 1.
Thus f1 is either the function NOR or XOR. It can be easily verified that neither
of these is 2-monotone. (Every basic weakly positive function on two variables is
unsatisfied on at least one of the two assignments 01 or 10.) However, this is in
contradiction to Lemma 4.19 that showed that every function obtained by restricting
some variables of f to constants and existentially quantifying over some others should
yield a weakly positive function.

Lemma 4.21. f is a 2CNF constraint if and only if all its maxterms are 2CNF.
Proof. The “if” part is obvious. For the other direction we use Lemma 4.19.

Assume for contradiction that f has a maxterm of the form

x1
∨
x2
∨
x3
∨
· · ·
∨
xp
∨
¬xp+1

∨
· · ·
∨
¬xq.

(For simplicity we assume p ≥ 3. Other cases where one or more of the variables
x1, . . . , x3 are negated can be handled similarly.) Consider the function

f1(x1x2x3)
def
= ∃xq+1, . . . , xk s.t. f(x1, x2, x3, 0

p−3, 1q−p, xq+1, . . . , xk).

Then since x1
∨
x2
∨
x3 . . . is a maxterm of f , we have that f1(000) = 0 and f1(100) =

f1(010) = f1(001) = 1. We claim that f1 cannot be a 2CNF function. If not, then
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to make f1(000) = 0, at least one of the clauses x1, x2, x3, x1
∨
x2, x2

∨
x3, or

x3
∨
x1 should be a clause of f1 in any 2CNF representation. However, all these

clauses are left unsatisfied by at least one of the assignments 100, 010, or 001. This
validates our claim that f1 is not a 2CNF constraint. However, f1 was obtained from f
by setting some variables to a constant and existentially quantifying over others,
and by Lemma 4.19 f1 must also be a 2CNF function. This yields the desired contra-
diction.

Lemma 4.22. An affine function f is a width-2 affine function if and only if all
its minimally dependent sets are of cardinality at most 2.

Proof. We use the fact that F2A ⊆ F2CNF∩FA. Suppose f ∈ F2A has a minimally
dependent set of size p ≥ 3 and, say, the set is x1, . . . , xp. Then by existential
quantification over the variables xp+1, . . . , xk and by setting the variables x4, . . . , xp
to 0, we obtain the function f1(x1, x2, x3) which is an affine function (by Lemma 4.17)
with x1, x2, x3 as a minimally dependent set. Thus this function is either XOR3 or
XNOR3. However, now notice that neither of these functions is a 2CNF function.
However, since f is a 2CNF function Lemma 4.19 implies that f1 must also be a
2CNF function. This yields the required contradiction.

5. Classification of MAX CSP. The main results of this section are in sec-
tions 5.1 and 5.2. These results were originally obtained by Creignou [11]. Her focus,
however, is on the the complexity of finding optimal solutions to the optimization
problems. The proofs for hardness of approximation are left to the reader to verify.
We give full proofs using the notions of implementations. Our proof is also stronger
since it does not assume replication of variables as a basic primitive. This allows us to
talk about problems such as Max EkSat. In section 5.3 we extend Schaefer’s results
to establish the hardness of satisfiable Max CSP problems. Similar results, again
with replication of variables being allowed, were first shown by Hunt, Marathe, and
Stearns [26].

5.1. Containment results for MAX CSP. We start with the polynomial time
solvable cases.

Proposition 5.1. Weighted Max CSP(F) (Weighted Min CSP(F)) is in
PO if F is 0-valid (1-valid).

Proof. Set each variable to zero (resp., one); this satisfies all of the con-
straints.

Before proving the containment in PO of Max CSP(F) for 2-monotone function
families, we show that the corresponding Weighted Min CSP(F) is in PO. The
containment for Weighted Max CSP(F) will follow easily.

Lemma 5.2. Weighted Min CSP(F) is in PO if F is 2-monotone.
Proof. This problem reduces to the problem of finding s-t min-cut in directed

weighted graphs. 2-monotone constraints have the following possible forms:
(a) ANDp(xi1 , . . . , xip),
(b) NORq(xj1 , . . . , xjq ), and
(c) ANDp(xi1 , . . . , xip)

∨
NORq(xj1 , . . . , xjq ).

Construct a directed graph G with two special nodes, F and T , and a vertex
vi corresponding to each variable xi in the input instance. Let ∞ denote an integer
larger than the total weight of all constraints.

Now we proceed as follows for each of the above classes of constraints:
• For a constraint C of weight w of the form (a), create a new node eC and

add an edge from each vil , l ∈ [p], to eC of capacity ∞ and an edge from eC
to T of capacity w.
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• For a constraint C of weight w of the form (b), create a new node eC and
add an edge from eC to each vjl , l ∈ [q], of capacity ∞ and an edge from F
to eC of capacity w.

• Finally, for a constraint C of weight w of the form (c), we create two nodes
eC and eC . For every l ∈ [p], we add an edge from vil to eC of capacity ∞,
and for every l ∈ [q], we add an edge from eC to vjl of capacity∞ and finally
an edge from eC to eC of capacity w. (Note in this case there are no edges
connecting F or T to any of the vertices.)

Notice that each vertex of type eC or eC can be associated with a term: eC
with a term on positive literals and ec with a term on negated literals. We use this
association to show that the value of the min F-T cut in this directed graph equals
the weight of the minimum number of unsatisfied constraints in the givenWeighted
Min CSP(F) instance.

Given an assignment which fails to satisfy constraints of weight W , we associate
a cut as follows: Vertex vi is placed on the F side of the cut if and only if it is set
to 0. A vertex eC is placed on the T side if and only if the term associated with it
is satisfied. A vertex eC is placed on the F side if and only if the term associated
with it is satisfied. It can be verified that such an assignment has no directed edges
of capacity ∞ going from the F side of the cut to the T side of the cut. Furthermore,
for every constraint C of weight w, the associated edge of capacity w crosses the cut
if and only if the constraint is not satisfied. Thus the capacity of this cut is exactly
W and thus we find that the min F-T cut value is at most W .

In the other direction, we show that given a F-T cut in this graph of cut capacity
W < ∞, there exists an assignment which fails to satisfy constraints of weight at
most W . Such an assignment is simply to assign xi = 0 if and only if vi is on the
F side of the cut. Note that for any constraint C, the associated vertices eC and ec
(whichever exist) may be placed on the T and F sides of the cut (respectively) only if
the associated term is satisfied (otherwise there will be an edge of capacity∞ crossing
the cut). Thus, if a constraint C of capacity w is not satisfied by this assignment,
then the edge of capacity w corresponding to C must cross the cut. Summing up we
find that the assignment fails to satisfy constraints of total weight at most W .

Putting both directions together, we find that the min F-T cut in this graph has
capacity exactly equal to the optimum of theWeighted Min CSP{XOR} instance,
and thus the latter problem can be solved exactly in polynomial time.

For the sake of completeness we also prove the converse direction to the above
lemma. We show that the s-t min-cut problem can be phrased as a Min CSP(F)
problem for a 2-monotone family F .

Lemma 5.3. The s-t min-cut problem is inWeighted Min CSP({OR2,1, T, F}).
Proof. Given an instance G = (V,E) of the s-t min-cut problem, we construct an

instance ofWeighted Min CSP(F) on variables x1, x2, . . . , xn, where xi corresponds
to the vertex i ∈ V − {s, t}:

• For each edge e = (s, i) with weight we, we create the constraint F (xi) with
weight we.

• For each edge e = (i, t) with weight we, we create the constraint T (xi) with
weight we.

• For each edge e = (i, j) with weight we and such that i, j ∈ {s, t}, we create
the constraint OR2,1(xj , xi) with weight we.

Given a solution to this instance of Weighted Min CSP(F), we construct an
s-t cut by placing the vertices corresponding to the false variables on the s-side of
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the cut and the remaining on the t-side of the cut. It is easy to verify that an edge
e contributes to the cut if and only if its corresponding constraint is unsatisfied.
Hence the optimal Min CSP(F) solution and the optimal s-t min-cut solution
coincide.

Going back to our main objective, we obtain as a simple corollary to Lemma 5.2
the following corollary.

Corollary 5.4. For every F ⊆ F2M, Weighted Max CSP(F)∈ PO.
Proof. The proof follows from the fact that given an instance I of Weighted

Max CSP(F), the optimum solution to I viewed as an instance of Weighted Min
CSP(F) is also an optimum solution to theWeighted Max CSP(F) version.

Finally we prove a simple containment result for all ofMax CSP(F) which follows
as an easy consequence of Proposition 3.7.

Proposition 5.5. For every F , Weighted Max CSP(F) is in APX.
Proof. The proof follows from Proposition 3.7 and the fact that the total weight

of all constraints is an upper bound on the optimal solution.

5.2. Negative results for MAX CSP. In this section we prove that if F ⊆
F0,F1,F2M, then Max CSP(F) is APX-hard. We start with a simple observation
which establishes Max CSP(XOR) as our starting point.

Lemma 5.6. Max CSP(XOR) is APX-hard.
Proof. We observe thatMax CSP(XOR) captures the MAX CUT problem shown

to be APX-hard by [39, 3]. Given a graph G = (V,E) with n vertices and m edges,
create an instance IG of Max CSP({XOR}) with one variable xu for every vertex
u ∈ V and with constraints XOR(xu, xv) corresponding to every edge {u, v} ∈ E. It
is easily seen there is a one-to-one correspondence between (ordered) cuts in G and
the assignments to the variables of IG which maintains the values of the objective
functions (i.e., the cut value and the number of satisfied constraints).

We start with the following lemma which shows how to use the functions which
are not 0-valid or 1-valid.

Lemma 5.7. If F ⊆ F0,F1, then Max CSP(F ∪ {T, F}) is AP-reducible to
Max CSP(F) and Min CSP(F ∪ {T, F}) is A-reducible to Min CSP(F).

Proof. Let f0 be the function from F that is not 0-valid and let f1 be the function
that is not 1-valid. If some function g in F is not C-closed, then by Lemma 4.6 F
perfectly and strictly implements T and F . Hence, by Lemmas 3.8 and 3.10, Max
CSP(F ∪ {T, F}) is AP-reducible to Max CSP(F) and Min CSP(F ∪ {T, F}) is
A-reducible to Min CSP(F).

Otherwise, every function of F is C-closed, and hence by Lemma 4.5, F perfectly
and strictly implements the XOR function and hence, by Proposition 3.3, the XNOR
function. Thus it suffices to show that Max CSP(F ∪ {T, F}) is AP-reducible to
Max CSP(F ∪ {XOR,XNOR}) (and Min CSP(F ∪ {T, F}) is A-reducible to Min
CSP(F ∪ {XOR,XNOR})) for C-closed families F . Here we use an idea from [8]
described next.

Given an instance I of Max CSP(F ∪ {T, F}) on variables x1, . . . , xn and con-
straints C1, . . . , Cm, we define an instance I ′ ofMax CSP(F ∪{XOR,XNOR}) (Min
CSP(F ∪ {XOR,XNOR})) whose variables are x1, . . . , xn and additionally one new
auxiliary variable xF . Each constraint of the form F (xi) (resp., T (xi)) in I is replaced
by a constraint XNOR(xi, xF ) (resp., XOR(xi, xF )). All the other constraints are not
changed. Thus I ′ also has m constraints. Given a solution a1, . . . , an, aF for I ′ that
satisfies m′ of these constraints, notice that the assignment ¬a1, . . . ,¬an,¬aF also
satisfies the same collection of constraints (since every function in F is C-closed). In
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one of these cases the assignment to xF is false and then we notice that a constraint
of I is satisfied if and only if the corresponding constraint in I ′ is satisfied. Thus
every solution to I ′ can be mapped to a solution to I with the same contribution to
the objective function.

The required lemma now follows as a simple combination of Lemmas 4.9 and 5.7.
Lemma 5.8. If F ⊆ F0,F1,F2M, then Max CSP(F) is APX-hard.
Proof. By Lemma 4.11 F ∪ {T, F} strictly implements the XOR function. Thus

Max CSP(XOR) AP-reduces toMax CSP(F∪{T, F}) which in turn (by Lemma 5.7)
AP-reduces to Max CSP(F). Thus Max CSP(F) is APX-hard.

5.3. Hardness at gap location 1. Schaefer’s dichotomy theorem can be ex-
tended to show that in the cases where Sat(F) is NP-hard to decide, it is actually
hard to distinguish satisfiable instances from instances which are not satisfiable in a
constant fraction of the constraints. This is termed hardness at gap location 1 by
Petrank [40], who highlights the utility of such hardness results in other reductions.
The essential observation needed is that perfect implementations preserve hardness
gaps located at 1 and that Schaefer’s proof is based on perfect implementations.

However, Schaefer’s proof of NP-hardness in his dichotomy theorem relies on the
ability to replicate variables within a constraint application. Specifically, the following
lemma can be abstracted from his paper.

Lemma 5.9 (see [42]). If F is not 0-valid or 1-valid or affine or bijunctive or

weakly positive or weakly negative, then F ∪ {XNOR} p
=⇒ F3SAT.

In this section, we show that a family F that is not decidable also perfectly
implements the XNOR constraint and thus the lemma above can be strengthened.
We start with the following lemma that shows how to use functions that are not
weakly negative.

Lemma 5.10. If f is not weakly negative, then {f, T, F} p
=⇒ XOR or {f, T, F} p

=⇒
OR. Similarly, if f is not weakly positive, then {f, T, F} p

=⇒ XOR or {f, T, F} p
=⇒

NAND.
Proof. We prove only the first part—the second part follows by symmetry. By

Lemma 4.20 we find that f has a maxterm with at least two positive literals. W.l.o.g.
the maxterm is of the form x1

∨
x2
∨ · · ·xp∨¬xp+1

∨ · · ·∨¬xq with p ≥ 2. We
consider the function f ′ which is f existentially quantified over all variables but
x1, . . . , xq. Furthermore, we set x3, . . . , xp to 0 and xp+1, . . . , xq to 1. Then the
assignment x1 = x2 = 0 is a nonsatisfying assignment. The assignments x1 = 0 = x2
and x1 = 0 = x2 must be satisfying assignments by the definition of maxterm (and
in particular by the minimality of the clause). The assignment x1 = x2 = 1 may go
either way. Depending on this we get either the function XOR or OR.

Corollary 5.11. If f2 is not weakly positive and f3 is not weakly negative, then

{f2, f3, T, F} p
=⇒ XOR.

Lemma 5.12. If F is not 0-valid or 1-valid or weakly positive or weakly negative,

then F s/p
=⇒ {XOR,XNOR}.

Proof. If F is C-closed, then, by Lemma 4.5, we immediately get a strict and per-
fect implementation of XOR. If it is not C-closed, then, by Lemma 4.6, we get perfect
and strict implementations of the constraints T and F . Applying Corollary 5.11 now,
we get a perfect and strict implementation of XOR in this case also. Finally we
use Proposition 3.3 to get a perfect and strict implementation of XNOR from the
constraint XOR.

Combining Lemma 5.9 and the above, we get the following corollary.
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Corollary 5.13. If F is not 0-valid or 1-valid or affine or bijunctive or weakly

positive or weakly negative, then F p
=⇒ F3SAT.

Thus we get the following theorem.
Theorem 5.14. For every constraint set F , either SAT(F) is easy to decide or

there exists ε = εF > 0 such that it is NP-hard to distinguish satisfiable instances of
SAT(F) from instances where 1− ε fraction of the constraints are not satisfiable.

6. Classification of MAX ONES. Again we will first prove the positive results
and then show the negative results. However, before we do either, we will show a
useful reduction between unweighted and weighted Max Ones(F) problems which
holds for most interesting function families F .

6.1. Preliminaries. We begin with a slightly stronger notion of the definition
of polynomial time solvability of Sat(F) (than that of [42]). We then show that given
this stronger form of polynomial time decidability the weighted and unweighted cases
ofMax Ones(F) are equivalent by showing that this stronger form of polynomial time
decidability leads to a polynomial approximation algorithm. We conclude by showing
that for the Max Ones problems, which we hope to show to be APX-complete or
poly-APX-complete, the strong form of decidability does hold.

Definition 6.1. We say that a constraint family F is strongly decidable if, given
m constraints from F on n variables x1, . . . , xn and an index i ∈ {1, . . . , n}, there
exists a polynomial time algorithm to find an assignment to x1, . . . , xn satisfying all
m constraints and additionally satisfying the property xi = 1 if one such exists.

Lemma 6.2. For every strongly decidable constraint family F , Weighted Max
Ones(F) is in poly-APX.

Proof. Consider an instance ofWeighted Max Ones(F) with variables x1, . . . ,
xn, constraint applications C1, . . . , Cm, and weights w1, . . . , wn. Assume w1 ≤ w2 ≤
· · · ≤ wn. Let i be the largest index such that there exists a feasible solution with
xi = 1. Notice that i can be determined in polynomial time due to the strong
decidability of F . We also use the strong decidability to find an assignment with
xi = 1. It is easily verified that this yields an n-approximate solution. (Weight

of this solution is at least wi, while weight of optimal is at most
∑i

j=1 wj ≤ iwi ≤
nwi.)

Before concluding we show that most problems of interest to us will be able to
use the equivalence established above between weighted and unweighted problems.

Lemma 6.3. If F ⊆ F ′ for any F ′ ∈ {F1,FS0,F2CNF,FA,FWP,FWN}, then F
is strongly decidable.

Proof. Recall that for i ∈ [k], f |({i},1) is the constraint obtained from f by
restricting the ith input to 1. Define F∗ to be the constraint set

F∗ def
= F ∪ {f |i,1|f ∈ F , i ∈ [k]}.

First, observe that the problem of strong decidability of F reduces to the decision prob-
lem Sat(F∗). Furthermore, observe that if F ⊆ F ′ for F ′ ∈ {F1,F2CNF,FA,FWP,FWN},
then F∗ ⊆ F ′ as well. Finally, if F∗ ⊆ FS0, then F∗ ⊆ F0. Thus in each case we end
up with a problem from Sat(F) for a family F which is polynomial time decidable
in Schaefer’s dichotomy.

Lemma 6.4. If F p
=⇒ f0 for some existential zero constraint f0, then F p

=⇒ F|0.
Similarly, if F p

=⇒ f1 for some existential one constraint f1, then F p
=⇒ F|1.

Proof. Let f ∈ F . We show how to implement the constraint f(0, x1, . . . , xk−1).
The proof can be extended to other constraints in F|0 by induction. Let f0 be an
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existential zero constraint implementable by F and let K be the arity of f0. Then the
constraints f(yi, x1, . . . , xk−1), for i ∈ [K], along with the constraint f0(y1, . . . , yK)
perfectly implement the constraint f(0, x1, . . . , xk−1). (Observe that since at least
one of the yi’s in the set y1, . . . , yK is zero, the constraint f(0, x1, . . . , xk−1) is being
enforced. Furthermore, we can always set all of y1, . . . , yK to zero, ensuring that any
assignment to x1, . . . , xk−1 satisfying f(0, x1, . . . , xk−1) does satisfy all the constraints
listed above.)

6.2. Containment results.
Lemma 6.5. If F is 1-valid or weakly positive or width-2 affine, thenWeighted

Max Ones(F) is in PO.
Proof. If F is 1-valid, then setting each variable to 1 satisfies all constraint

applications with the maximum possible variable weight.
If F is weakly positive, consider the CNF formulae for the fi ∈ F such that

each clause has at most one negated variable. Clearly, clauses consisting of a single
literal force the assignment of these variables. Setting these variables may create new
clauses of a single literal; set these variables and continue the process until all clauses
have at least two literals or until a contradiction is reached. In the latter case, no
feasible assignment is possible. In the former case, setting the remaining variables
to 1 satisfies all constraints, and there exists no feasible assignment with a greater
weight of ones.

In the case that F is affine with width-2, we reduce the problem of finding a
feasible solution to that of checking whether a graph is bipartite and then use the
bipartition to find the optimal solution. Notice that each constraint corresponds to
a conjunction of constraints of the form Xi = Xj or Xi = Xj . Create a vertex Xj

for each variable Xj and for each constraint Xi = Xj , add an edge (Xi, Xj). For
each constraint Xi = Xj , identify the vertices Xi and Xj and associate the sum of
their weights to the identified vertex; if this creates a self-loop, then clearly no feasible
assignment is possible. Check whether the graph is bipartite; if not, then there is no
feasible assignment. If it is bipartite, then for each connected component of the graph
choose the larger weight side of the bipartition and set the corresponding variables to
1.

Lemma 6.6. If F is affine, then Weighted Max Ones(F) is in APX.
Remark. Our proof actually shows that Max Ones(F) has a 2-approximation

algorithm. Combined with the fact that the AP-reduction of Lemma 3.11 does not lose
much in the approximation factor we essentially get the same factor for Weighted
Max Ones(F) as well.

Proof. By Lemmas 3.11, 6.2, and 6.3 it suffices to consider the unweighted case.
(Lemma 6.3 shows that F is strongly decidable; Lemma 6.2 uses this to show that
Weighted Max Ones(F) is in poly-APX; and Lemma 3.11 uses this to provide an
AP-reduction from Weighted Max Ones(F) to Max Ones(F).)

Given an instance I of Max Ones(F), notice that finding a solution which sat-
isfies all constraints is the problem of solving a linear system of equations over GF
[2]. Say the linear system is given by Ax = b, where A is an m× n matrix, and b is a
m× 1 column vector, and the x is an n× 1 vector. Assume w.l.o.g. that the rows of
A are independent. By simple row operations and reordering of the variables, we can
set up the linear system as [I|A′]x = b′. Thus if x′ represents the vector 〈x1, . . . , xm〉
and x′′ represents the vector 〈xm+1, . . . , xn〉, then the set of feasible solutions to the
given linear system are given by

{〈x′, x′′〉|x′′ ∈ {0, 1}n−m, x′ = −A′x′′ + b′}.
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Pick a random element of this set by picking x′′ at random and setting x′ accordingly.
Notice that for any i ∈ {m+1, . . . , n} xi = 1 with probability (w.p.) 1

2 . Furthermore,
for any i ∈ [m], xi is either forced to 0 in all feasible solutions, or xi is forced to 1
in all feasible solutions, or xi = 1 w.p. 1/2. Thus, if S ⊆ [n] is the set of variables
which are ever set to 1 in a feasible solution, then the expected number of 1’s in a
random solution is at least |S|/2. However, S is an upper bound on opt. Thus the
expected value of the solution is at least opt/2, and hence the solution obtained is a
2-approximate solution.

Proposition 6.7. If F ⊆ F ′ for some F ′ ∈ {F1,FS0,F2CNF,FA,FWP,FWN},
then Weighted Max Ones(F) ∈ poly-APX.

Proof. The proof follows immediately from Lemmas 6.2 and 6.3.

Proposition 6.8 (see [42]). If F ⊆ F0, then Sat(F) is in P.

6.3. Hardness results.

6.3.1. APX-hard case. We wish to show in this section that if F is an affine
family but not width-2 affine, then Max Ones(F) is APX-hard. By Lemmas 6.2
and 3.11 it suffices to show this forWeighted Max Ones(F). The basic APX-hard
problems we work with in this section are described in the following lemma.

Lemma 6.9. Weighted Max Ones(XNOR3) and Weighted Max Ones
({XOR,XNOR4}) are APX-hard.

Proof. We reduce theMax Cut problem to theWeighted Max Ones(XNOR3)
problem as follows. Given a graph G = (V,E) we create a variable xv for every vertex
v ∈ V and a variable ye for every edge e ∈ E. The weight wv associated with the
vertex variable xv is 0. The weight we of an edge variable ye is 1. For every edge
e between u and v we create the constraint ye ⊕ xu ⊕ xv = 0. It is clear that any
0/1 assignment to the xv’s define a cut and for an edge e = {u, v}, ye is 1 if and
only if u and v are on opposite sides of the cut. Thus solutions to the Weighted
Max Ones problem correspond to cuts in G with the objective function being the
number of edges crossing the cut. This shows the APX-hardness ofWeighted Max
Ones(XNOR3).

The reduction for Weighted Max Ones({XOR,XNOR4}) is similar. Given a
graph G = (V,E), we create the variables xv for every v ∈ V , ye for every e ∈ E,
and one global variable z (which is supposed to be zero) and m

def
= |E| auxiliary

variables y′e for every e ∈ E. For every edge e = {u, v} in G we impose the constraints
ye ⊕ xu ⊕ xv ⊕ z = 0. In addition we throw in the constraints z ⊕ y′e = 1 for every
i ∈ {1, . . . ,m}. Finally we make the weight of the vertex variables and z 0, and
the weight of the edge variables ye and the auxiliary variables y′e is made 1. The
optimum to this Weighted Max Ones problem is Max Cut(G) +m. Given an r-
approximate solution for theWeighted Max Ones({XOR4,XOR}) instance created
above, we consider the two possible solutions (as usual): (1) the solution induced by
the assignment with zero vertices on one side and one vertex on the other and (2)
a cut with m/K edges crossing the cut (notice such a cut can be found based on
Proposition 3.7). The better of these solutions has max{( 1r )(m +Max Cut(G)) −
m, mK } ≥ 1

r(K(1−1/r)+1)Max Cut(G) ≥ 1
1+K(r−1)Max Cut(G) edges crossing the

cut. Thus an r-approximate solution to Weighted Max Ones({XOR,XNOR4})
yields a (1+K(r−1))-approximate solution toMax Cut(G). ThusMax Cut(G) AP-
reduces to Weighted Max Ones({XOR,XNOR4}), and hence the latter is APX-
hard.
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Lemma 6.10. If F is affine but neither width-2 affine nor 1-valid, then F p
=⇒

XNOR3 or F p
=⇒ {XOR,XNOR4}.

Proof. Since F is affine but not of width-2, it can perfectly (and strictly) imple-
ment the function XORp or XNORp for some p ≥ 3 (Lemma 4.18). Let f ∈ F be
an affine constraint that is not 1-valid. We consider two possible cases depending on
whether F is C-closed or not. If g ∈ F is not C-closed, then we find (by Lemma 4.7)
that {f, g} (and hence F) perfectly implements some existential zero constraint. This
case is covered in Claim 6.11 and we show that in this case F perfectly implements
XNOR3. In the other case, F is C-closed, and hence (by Lemma 4.5) F perfectly
implements the constraint XOR. This case is covered in Claim 6.12 and we show that
in this case F perfectly implements either XNOR3 or XNOR4. This concludes the
proof of Lemma 6.10 (modulo Claims 6.11 and 6.12).

Claim 6.11. If {f} is an existential zero constraint and h is either the constraint
XORp or XNORp for some p ≥ 3, then {f, h} p

=⇒ XNOR3.

Proof. Since f is an existential zero constraint, the family {f, h} can perfectly
implement {f, h}|0 (using Lemma 6.4). In particular, {f, h} can implement the con-
straints x1 ⊕ x2 = b and x1 ⊕ x2 ⊕ x3 = b for some b ∈ {0, 1}. Notice finally that
the constraints x1 ⊕ x2 ⊕ y = b and y ⊕ x3 = b form a perfect implementation
of the constraint x1 ⊕ x2 ⊕ x3 = 0. Thus {f, h} perfectly implements the constraint
XNOR3.

Claim 6.12. If f ∈ {XORp,XNORp | p ≥ 3}, then {f,XOR} p
=⇒ XNOR3 or

{f,XOR} p
=⇒ XNOR4.

Proof. Since XOR perfectly implements XNOR it suffices to prove this using the
constraints {f,XOR,XNOR}.

W.l.o.g assume that f is the constraint XNOR, since otherwise XORp(x1, . . . , xp−1, y)
and XOR(y, xp) perfectly implement the constraint XNORp(x1, . . . , xp).

Now if p is odd, then the constraints XNORp(x1, . . . , xp) and XNOR(x4, x5),
XNOR(x6, x7), and so on up to XNOR(xp−1, xp) perfectly implement the constraint
XNOR3(x1, x2, x3).

Now if p is even, then the constraints XNORp(x1, . . . , xp) and XNOR(x5, x6),
XNOR(x7, x8), and so on up to XNOR(xp−1, xp) perfectly implement the constraint
XNOR4(x1, x2, x3, x4).

Lemma 6.13. If F is affine but neither width-2 affine nor 1-valid, then Max
Ones(F) is APX-hard.

Proof. By Lemma 6.6 we have Weighted Max Ones(F) is in APX and thus
(by Lemma 3.11) it suffices to show APX-hardness of Weighted Max Ones(F).
This now follows from Lemmas 3.9, 6.9, and 6.10.

6.3.2. The poly-APX-hard case. This part turns out to be long and the bulk
of the work will be done in Lemmas 6.16–6.21. We first describe the proof of the
hardness result modulo the above lemmas. (Hopefully, the proof will also provide
some motivation for the rest of the lemmas.)

Lemma 6.14. If F ⊆ F ′ for some F ′ ∈ {F0,F2CNF,FWN} but F ⊆ F ′′ for any
F ′′ ∈ {F1,FA,FWP}, then Max Ones(F) is poly-APX-hard.

Proof. As usual, by Lemmas 6.2 and 3.11, it suffices to show hardness of the
weighted version. First we show in Lemma 6.15 that Max Ones({NANDk}) is
poly-APX-hard for every k ≥ 2. Thus our goal is to establish that any non-1-valid,
nonaffine, and nonweakly positive constraint family can implement some NANDk

constraint. We do so in three phases.
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The main complication here is that we don’t immediately have a non-0-valid
constraint to work with and thus we can’t immediately reduceMax Ones(F∪{T, F})
to Max Ones(F). Therefore we go after something weaker and try to show that F
can perfectly implement F|0,1. In Phase 3 (Lemmas 6.20 and 6.21) we show that this
suffices. Lemma 6.20 uses the fact that F|0,1 is not weakly positive to implement either
NAND2 or XOR. In the former case we are done and in the latter case, Lemma 6.21
uses the fact that F|0,1 is not affine to implement NAND.

Thus our task reduces to that of showing that F can implement F|0,1. Part of
this is easy. In Phase 1, we show that F implements every constraint in F|0. This is
shown via Lemma 6.16 which shows that any family which is either 0-valid or 2CNF or
weakly negative but not 1-valid or affine or weakly positive must have a non-C-closed
constraint. This along with the non-1-valid constraint allows it to implement every
constraint in F|0 (by Lemmas 4.7 and 6.4). The remaining task for Phase 2 is to show
that F|0 can implement F|1. If F also has a non-0-valid constraint, then we are done
since now we can implement all of F|0,1 (another application of Lemmas 4.7 and 6.4).
Thus all lemmas in Phase 2 focus on F|0 for 0-valid constraint families F . If F|0
is all 0-valid, then all we can show is that F|0 either implements NANDk for some
k or OR2,1 (Lemmas 6.17 and 6.18). The former is good, but the latter seems in-
sufficient. In fact we are unable to implement F|0,1 in this case. We salvage the
situation by reverting back to reductions. We AP-reduce the problem Weighted
Max Ones(F|0 ∪ {OR2,1}) to Weighted Max Ones(F|0,1) (Lemma 6.19). This
suffices to establish the poly-APX-hardness of Weighted Max Ones(F) since

Weighted Max Ones(F|0,1)≤APWeighted Max Ones(F|0 ∪ {OR2,1})
≤APWeighted Max Ones(F)

and the problem Weighted Max Ones(F|0,1) is poly-APX-hard.
Lemma 6.15. Max Ones({NANDk}) is poly-APX-hard for every k ≥ 2.
Proof. We reduce from Max Clique, which is known to be poly-APX-hard.

Given a graph G, construct a Max Ones({f}) instance consisting of a variable for
every vertex in G and the constraint f is applied to every subset of k vertices in G
which does not induce a clique. It may be verified that the optimum number of ones in
any satisfying assignment to the instance created in this manner is max{k−1, ω(G)},
where ω(G) is the size of the largest clique in G. Given a solution to the Max
Ones({f}) instance with l ≥ k ones, the set of vertices corresponding to the variables
set to 1 form a clique of size l. If l < k, output any singleton vertex. Thus in
all cases we obtain a clique of size at least l/(k − 1) vertices. Thus given an r-
approximate solution to the Max Ones({NANDk}) problem, we can find a (k− 1)r-
approximate solution to Max Clique. Thus Max Clique is A-reducible to Max
Ones({NANDk}).

Phase 1. F implements F|0.
Lemma 6.16. If F ⊆ F ′ for some F ′ ∈ {F0,F2CNF,FWN} but F ⊆ {F1,F2A,

FWP}, then there exists a constraint in F that is not C-closed constraint.
Proof. Notice that a C-closed 0-valid constraint is also 1-valid. Thus if F is

0-valid, then the non-1-valid constraint is not C-closed.
Next we claim that a C-closed weakly positive constraint f is also weakly negative.

To do so, consider the constraint f̄ given by f̄(x) = f(x̄). Notice that for a C-closed
constraint f = f̄ . Suppose f(x) =

∧
j Cj(x), where the Cj ’s are weakly positive

clauses. Then f̄(x) can be described as
∧

j C̄j(x) (where C̄j(x) = Cj(x̄)). However,

in this representation f̄ (and thus f) is seen to be a weakly negative constraint,
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thereby verifying our claim. Thus if F is weakly negative but not weakly positive,
the nonweakly positive constraint is the non-C-closed constraint.

Finally we consider the case when f is a 2CNF formula. Again define f̄(x) = f(x̄)
and f ′(x) = f(x)f̄(x). Notice that f ′ = f if f is C-closed. Again consider the CNF
representation of f =

∧
j Cj(x), where the Cj(x)’s are clauses of f of length 2. Then

f ′(x) can be expressed as
∧

j(Cj(x)
∧
C̄j(x)). However, Cj

∧
C̄j are affine constraints

of width-2! Thus f ′, and hence f , is an affine width-2 constraint. Thus if F is
2CNF but not width-2 affine, the non-width-2 affine constraint is the non-C-closed
constraint.

Lemma 4.7 along with Lemma 6.4 suffice to prove that F implements F|0. We
now move on to Phase 2.

Phase 2. From F|0 to F|0,1.
Recall that if F has a non-0-valid constraint, then by Lemmas 6.16, 4.7, and 6.4

it implements an existential one constraint and thus F|0,1. Thus all lemmas in this
phase assume F is 0-valid.

Lemma 6.17. If f is 0-valid and not weakly positive, then {f}|0 either perfectly
implements NANDk for some k ≥ 2 or OR2,1 or XNOR.

Proof. Let C = ¬x1
∨ · · ·∨¬xp∨ y1∨ · · ·∨ yq be a maxterm in f with more

than one negation, i.e., p ≥ 2. Since f is not weakly positive, Lemma 4.20 shows
that such a maxterm exists. Substituting a 0 in place of variables y1, y2, . . . , yq and
existentially quantifying over all variables not in C, we get a constraint g such that
¬x1

∨¬x2∨ · · ·∨¬xp is a maxterm in g. Consider an unsatisfying assignment s
for g with the smallest number of 1’s and let k denote the number of 1’s in s; we
know k > 0 since the original constraint is 0-valid. W.l.o.g. assume that s assigns
value 1 to the variables x1, x2, . . . , xk and 0 to the remaining variables. It is easy
to see that by fixing the variables xk+1, xk+2, . . . , xp to 0, we get a constraint g′ =
(¬x1

∨¬x2∨ · · ·∨¬xk). If k > 1, then this perfectly implements the constraint
NANDk(x1, . . . , xk) and we are done.

Otherwise k = 1, i.e., there exists an unsatisfying assignment s which assigns
value 1 to exactly one of the xi’s, say, x1. Now consider a satisfying assignment s′

which assigns 1 to x1 and has a minimum number of 1’s among all assignments which
assign 1 to x1. The existence of such an assignment follows from C being a maxterm
in g. For instance, the assignment 1p−10 is a satisfying assignment which satisfies
such a property. W.l.o.g. assume that s′ = 1i0p−i. Thus the constraint g looks as
follows:

x1 x2 x3...xi xi+1...xp g()
s1 0 0 00...0 00...0 1
s2 1 0 00...0 00...0 0

s′ = s3 1 1 11...1 00...0 1
s4 0 1 ... 00...0 ?

Existential quantification over the variables x3, x4, . . . , xi and fixing the vari-
ables xi+1 through xp to 0 yields a constraint g′ which is either OR2,1(x2, x1) or
XNOR(x1, x2). The lemma follows.

Now we consider the case where we can implement the function XNOR and show
that in this case we can perfectly implement either NAND or OR2,1. In the former
case we are done, and for the latter case we show in Lemma 6.19 that Weighted
Max Ones(F|1) is AP-reducible to Weighted Max Ones(F ∪ {OR2,1}).

Lemma 6.18. If f is 0-valid but not affine, then {f}|0 ∪ {XNOR} perfectly
implements either NAND or the constraint OR2,1.
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Proof. Corollary 4.16 shows that if f is not affine, then there exist two satisfying
assignments s1 and s2 such that s1 ⊕ s2 is not a satisfying assignment for f . Reorder
the variables such that Z(s1)∩Z(s2) = {x1, . . . , xp}, Z(s1)∩O(s2) = {xp+1, . . . , xq},
O(s1) ∩ Z(s2) = {xq+1, . . . , xr}, and O(s1) ∩ O(s2) = {xr+1, . . . , xk}. Using the fact
that f is 0-valid, we find that f looks as follows:

x1...xp xp+1...xq xq+1...xr xr+1...xk g(x)
00...0 00...0 00...0 00...0 1

s1 00...0 00...0 11...1 11...1 1
s2 00...0 11...1 00...0 11...1 1

s1 ⊕ s2 00...0 11...1 11...1 00...0 0

Consider the following collection of constraints:
(1) f(0, . . . , 0, xp+1, . . . , xk).
(2) XNOR(x, xi) for i ∈ Z(s1) ∩O(s2).
(3) XNOR(y, xi) for i ∈ O(s1) ∩ Z(s2).
(4) XNOR(z, xi) for i ∈ O(s1) ∩O(s2).

Existentially quantifying over the variables xp+1, . . . , xk we obtain an implementation
of a constraint h(x, y, z) such that h(000) = h(011) = h(101) = 1 and h(110) = 0.
Furthermore, by restricting more of the variables in (1) above to 0, we get a perfect
implementation of any constraint in {h}|0. Using Claim 6.22 again we get that {h}|0
can implement either NAND or OR2,1, and thus we are done.

Finally we show how to use OR2,1 constraints.
Lemma 6.19. If F is 0-valid, then Weighted Max Ones(F|1) AP-reduces to

Weighted Max Ones(F ∪ {OR2,1}).
Proof. We show something stronger, namely, Weighted Max Ones(F ∪ {T})

AP-reduces to Weighted Max Ones(F ∪ {OR2,1}). This suffices since T is an
existential one constraint and thus F ∪ {T} can perfectly implement F|1.

Given an instance I ofWeighted Max Ones(F ∪{T}) construct an instance I ′
ofWeighted Max Ones(F ∪{OR2,1}) as follows. The variable set of I ′ is the same
as that of I. Every constraint from F in I is also included in I ′. The only remaining
constraints are of the form T (xi) for some variables xi. We simulate this constraint
in I ′ with n−1 constraints of the form OR2,1(xj , xi) (i.e., ¬xj

∨
xi) for every j ∈ [n],

j = i. Every nonzero solution to the resulting instance I ′ is also a solution to I, since
the solution must have xi = 1 or else have xj = 0 for every j = i. Thus the resulting
instance of Max Ones(F ∪ {OR2,1}) has the same objective function and the same
feasible space and hence is at least as hard as the original problem.

This concludes Phase 2.
Phase 3. F|0,1 implements NAND.
Lemma 6.20. If f is not weakly positive, then {f}|0,1 perfectly implements either

XOR or NAND.
Proof. Let C = (¬x1

∨ · · ·∨¬xp∨ y1∨ · · ·∨ yq) be a maxterm in f with more
than one negation, i.e., p ≥ 2. Substituting a 1 for variables x3, . . . , xp, a 0 for
variables y1, . . . , yq, and existentially quantifying over all variables not in C, we get
a constraint f ′ such that f ′(11) = 0, f ′(01) = f ′(10) = 1. (These three properties
follow from the definition of a maxterm.) Depending on whether f ′(00) is 0 or 1 we
get the function XOR or NAND, respectively.

Lemma 6.21. If g is a nonaffine constraint, then {g,XOR}|0,1 p
=⇒ NAND.

Proof. Again it suffices to consider {g,XOR,XNOR}|0,1. Let g be of arity k. By
Lemma 4.15 we find that there must exist assignments s1, s2, and s3 satisfying g such
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S000 S001 S010 S011 S100 S101 S110 S111 g(x)
s1 0...0 0...0 0...0 0...0 1...1 1...1 1...1 1...1 1
s2 0...0 0...0 1...1 1...1 0...0 0...0 1...1 1...1 1
s3 0...0 1...1 0...0 1...1 0...0 1...1 0...0 1...1 1

s1 ⊕ s2 ⊕ s3 0...0 1...1 1...1 0...0 1...1 0...0 0...0 1...1 0

Fig. 1. Partition of inputs to g.

that s1 ⊕ s2 ⊕ s3 does not satisfy g. Partition the set [k] into up to eight equivalence
classes Sb1b2b3 for b1, b2, b3 ∈ {0, 1} such that for any index i ∈ Sb1b2b3 , (sj)i = bj for
every j ∈ {1, 2, 3} (refer to Figure 1).

W.l.o.g. assume that S000 = {1, . . . , p} and S111 = {q + 1, . . . , k}. Notice that
the assignment of a variable in Sb1b2b3 under assignment s1 ⊕ s2 ⊕ s3 is also fixed (to
b1 ⊕ b2 ⊕ b3). Now consider the following collection of constraints:

(1) g(0, . . . , 0, xp+1 . . . , xq, 1, . . . , 1).
(2) XNOR(x, xi) for i ∈ S001.
(3) XNOR(y, xi) for i ∈ S010.
(4) XNOR(z, xi) for i ∈ S011.
(5) XOR(z, xi) for i ∈ S100.
(6) XOR(y, xi) for i ∈ S101.
(7) XOR(x, xi) for i ∈ S110.

By existentially quantifying over the variables xp+1, . . . , xq we perfectly implement a
constraint h(x, y, z) with the following properties: h(000) = h(011) = h(101) = 1 and
h(110) = 0. Furthermore, by restricting more variables in condition (1) above, we can
actually implement any function in the set {h}|0,1. Claim 6.22 now shows that for any
such function h, the set {h}|0 perfectly implements either OR2,1 or NAND. In the
latter case, we are done. In the former case, notice that the constraints OR2,1(x, z)
and XOR(z, y) perfectly implement the constraint NAND(x, y); so in this case too we
are done (modulo Claim 6.22).

Claim 6.22. If h is ternary function such that h(000) = h(011) = h(101) = 1

and h(110) = 0, then {h}|0 p
=⇒ NAND or {h}|0 p

=⇒ OR2,1.
Proof. Figure 2 describes the truth table for the function h. The undetermined

values of interest to us are indicated in the table by A and B. The following analysis
shows that for every possible value of A and B, we can perfectly implement either
NAND or OR2,1:

A = 0 =⇒ ∃ x h(x, y, z) = ¬y∨ z,
B = 0 =⇒ ∃ y h(x, y, z) = ¬x∨ z,

A = 1, B = 1 =⇒ h(x, y, 0) = ¬x∨¬y.
Thus in each case we perfectly implement either the constraint NAND or OR2,1.

6.3.3. Remaining cases. We now prove that if F is not strongly decidable, then
deciding if there exists a nonzero solution is NP-hard. This is shown in Lemma 6.23.
The last of the hardness results, claiming that finding a feasible solution is NP-hard
if F is not 0-valid or 1-valid or 2cnf or weakly positive or weakly negative or linear,
follows directly from Schaefer’s theorem (Theorem 2.10).

Lemma 6.23. If F ⊆ F ′, for any F ′ ∈ {FS0,F1,F2CNF,FA,FWP,FWN}, then
the problem of finding solutions of nonzero value to a given instance of (unweighted)
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x
yz

00      01     11      10

1       -        1       A0

1      B        1       -       0

Fig. 2. Truth table of the constraint h(x, y, z).

Max Ones(F) is NP-hard.
Proof. Assume, for simplicity, that all constraints of F have arity k. Given a

constraint f : {0, 1}k → {0, 1} and an index i ∈ [k], let f↓i be the constraint mapping
{0, 1}k−1 to {0, 1} given by

f↓i(x1, . . . , xk) def
= f(x1, . . . , xi−1, 1, xi+1, . . . , xk) ∧ f(x1, . . . , xi−1, 0, xi+1, . . . , xk).

Let F ′ be the set of constraints defined as follows:

F ′ def= F ∪ {f↓i | f ∈ F , i ∈ [k]}.
We will show that deciding Sat(F ′) is NP-hard and that the problem of deciding
Sat(F ′) reduces to finding nonzero solutions to Max Ones(F).

First observe that F ′ ⊆ F ′′ for any F ′′ ∈ {F0,F1,F2CNF,FA,FWP,FWN}. In
particular it is not 0-valid, since F is not strongly 0-valid. Hence, once again applying
Schaefer’s result, we find that deciding Sat(F ′) is NP-hard.

Given an instance of Sat(F ′) on n variables x with m constraints C, with
C1, . . . , Cm′ ∈ F and Cm′+1, . . . , Cm ∈ F ′\F , consider the instance ofMax Ones(F)
defined on variable set

w1, . . . , wk+1, y1, . . . , yn, z1, . . . , zn

with the following constraints:
(1) Let f be a non-1-valid constraint in F . We introduce the constraint f(w1, . . . ,

wk).
(2) For every constraint Ci(vi1 , . . . , vik), 1 ≤ i ≤ m′, we introduce two constraints

Ci(yi1 , . . . , yik) and Ci(zi1 , . . . , zik).
(3) For every constraint Ci(vi1 , . . . , vik−1

), m′ + 1 ≤ i ≤ m, we introduce 2(n +
k+1) constraints. For simplicity of notation, let Ci(vi1 , . . . , vik−1

) = g(1, vi1 ,
. . . , vik−1

)∧g(0, vi1 , . . . , vik−1
), where g ∈ F . The 2(n+k+1) constraints are

• g(wj , yi1 , . . . , yik−1
) for 1 ≤ j ≤ k + 1,

• g(zj , yi1 , . . . , yik−1
) for 1 ≤ j ≤ n,

• g(wj , zi1 , . . . , zik−1
) for 1 ≤ j ≤ k + 1,

• g(yj , zi1 , . . . , zik−1
) for 1 ≤ j ≤ n.

We now show that the instance of Max Ones(F) created above has a nonzero
satisfying assignment if and only if the instance of Sat(F ′) has a satisfying assign-
ment. Let s = s1s2 . . . sk be a satisfying assignment for the non-1-valid constraint
f chosen above. First if v1, . . . , vn form a satisfying assignment to the instance of
Sat(F ′), then we claim that the assignment wj = sj for 1 ≤ j ≤ k, wk+1 = 1 and
yj = zj = vj for 1 ≤ j ≤ n is a satisfying assignment to the instance ofMax Ones(F)
which has at least one 1 (namely, wk+1). Conversely, let some nonzero setting
w1, . . . , wk+1, y1, . . . , yn, z1, . . . , zn satisfy the instance of Max Ones(F). W.l.o.g.
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assume that one of the variable w1, . . . , wk+1, y1, . . . , yn is a 1. Then we claim that
the setting vj = zj , 1 ≤ j ≤ n, satisfies the instance of Sat(F ′). It is easy to
see that the constraints Ci(vi1 , . . . , vik), 1 ≤ i ≤ m′, are satisfied. Now consider a
constraint Ci(vi1 , . . . , vik−1

) = g(0, vi1 , . . . , vik−1
) ∧ g(1, vi1 , . . . , vik−1

). Since at least
one of the variables in the set w1, . . . , wk is a 0 and at least one of the variables
in the set w1, . . . , wk+1, y1, . . . , yn is 1, we know that both g(0, zi1 , . . . , zik−1

) and
g(1, zi1 , . . . , zik−1

) are satisfied, and hence Ci(vi1 , . . . , vik−1
) = 1. Thus the reduced

instance of Max Ones(F) has a nonzero satisfying assignment if and only if the
instance of Sat(F ′) is satisfiable.

7. Classification of MIN CSP.

7.1. Preliminary results. We start with a simple equivalence between the com-
plexity of the (Weighted) Min CSP problem for a function family and the family
of functions obtained by complementing the 0’s and 1’s in its domain. Recall that for
a function f , we defined f− to be the function f−(x) = f(1− x), and for a function
family F , we defined F− = {f− | f ∈ F}.

Proposition 7.1. For every constraint family F , (Weighted) Min CSP(F)
is AP-reducible to (Weighted) Min CSP(F−).

Proof. The reduction substitutes every constraint f(x) from F with the constraint
f−(x) from F−. A solution for the latter problem is converted into a solution for the
former one by complementing the value of each variable. The transformation preserves
the cost of the solution.

Proposition 7.2. If F is decidable, then Weighted Min CSP(F) is in poly-
APX and is AP-reducible to Min CSP(F).

Proof. Given an instance I ofWeighted Min Ones(F) with constraints C1, . . . ,
Cm sorted in order of decreasing weight w1 ≥ · · · ≥ wm. Let j be the largest index
such that the constraints C1, . . . , Cj are simultaneously satisfiable. Notice that j is
computable in polynomial time and an assignment a satisfying C1, . . . , Cj is com-
putable in polynomial time. Then the solution a is an m-approximate solution to I,
since every solution must fail to satisfy at least one of the constraints C1, . . . , Cj+1

and thus have an objective of at least wj+1, while a achieves an objective of at
most

∑m
i=j+1 wi ≤ mwj+1. Thus we conclude that Weighted Min CSP(F) is in

poly-APX. The second part of the proposition follows by Lemma 3.11.

7.2. Containment results (algorithms) for MIN CSP. We now show the
containment results described in Theorem 2.13. Most results described here are sim-
ple containment results which follow easily from the notion of a “basis.” The more
interesting result here is a constant factor approximation algorithm for IHS-B which
is presented in Lemma 7.3.

Recall that the classes contained in PO have already been dealt with in section 5.1.
We now move on to APX-containment results.

Lemma 7.3. If F ⊆ FIHS, then Weighted Min CSP(F) ∈ APX.
Proof. By Propositions 3.4 and 7.1 it suffices to prove the lemma for the problem

Weighted Min CSP(IHS-B), where IHS-B = {ORk|k ∈ [B]}∪ {OR2,1, F}. We will
show that for every B, Weighted Min CSP(IHS-B) is B + 1-approximable.

Given an instance I of Weighted Min CSP(IHS-B) on variables x1, . . . , xn
with constraints C1, . . . , Cm with weights w1, . . . , wm, we create a linear program on
variables y1, . . . , yn (corresponding to the Boolean variables x1, . . . , xn) and variables
z1, . . . , zm (corresponding to the constraints C1, . . . , Cm). For every constraint Cj in
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the instance I we create an LP constraint using the following transformation rules:

Cj : xi1
∨ · · ·∨xik for k ≤ B → zj + yi1 + · · ·+ yik ≥ 1,

Cj : ¬xi1
∨
xi2 → zj + (1− yi1) + yi2 ≥ 1,

Cj : ¬xi1 → zj + (1− yi1) ≥ 1.

In addition we add the constraints 0 ≤ zj , yi ≤ 1 for every i, j. It may be verified
that any integer solution to the above LP corresponds to an assignment to the Min
CSP problem with the variable zj set to 1 if the constraint Cj is not satisfied. Thus
the objective function for the LP is to minimize

∑
j wjzj .

Given any feasible solution vector y1, . . . , yn, z1, . . . , zm to the LP above, we
show how to obtain a 0/1 vector y′′1 , . . . , y

′′
n, z
′′
1 , . . . , z

′′
m that is also feasible such that∑

j wjz
′′
j ≤ (B + 1)

∑
j wjzj .

First we set y′i = min{1, (B + 1)yi} and z′j = min{1, (B + 1)zj}. Observe that
the vector y′1, . . . , y

′
n, z
′
1, . . . , z

′
m is also feasible and gives a solution of value at most

(B+1)
∑

j wjzj . We now show how to get an integral solution whose value is at most∑
j wjz

′
j ≤ (B + 1)

∑
j wjzj . For this part we first set y′′i = 1 if y′i = 1 and z′′j = 1 if

z′i = 1. Now we remove every constraint in the LP that is made redundant. Notice
in particular that every constraint of type zj + yi1 + · · · + yik ≥ 1 is now redundant
(either z′′j or one of the y′′i ’s has already been set to 1, and hence the constraint will
be satisfied by any assignment to the remaining variables). We now observe that, on
the remaining variables, the LP constructed above reduces to the following:

Minimize
∑

j wjzj
Subject to yi2 − yi1 + zj ≥ 0,

yi2 + zj ≥ 1,
−yi1 + zj ≥ 0

with the y′i’s and z
′
j ’s forming a feasible solution to the above LP. Notice further that

every zj occurs in at most one constraint above. Thus the above LP represents s-t
min-cut problem and therefore has an optimal integral solution. We set z′′j ’s and y

′′
i

to such an integral optimal solution. Notice that the solution thus obtained is integral
and satisfies

∑
j wjz

′′
j ≤

∑
j wjz

′
j ≤ (B + 1)

∑
j wjzj .

Lemma 7.4. For any family F ⊆ F2A, Weighted Min CSP(F) A-reduces to
Min CSP(XOR).

Proof. First we will argue that the family F ′ = {XOR, T, F} perfectly implements
F . By Proposition 3.4 it suffices to implement the basic width-2 affine functions,
namely, the functions XOR, XNOR, T , and F . Every function except XNOR is
already present in F ′ and by Proposition 3.3 XOR perfectly implements XNOR.

We conclude by observing that the family {XOR} is neither 0-valid nor 1-valid
and hence, by Lemma 5.7, Weighted Min CSP(F ′) A-reduces to Weighted Min
CSP(XOR). Finally the weights can be removed using Proposition 7.2.

Lemmas 7.5–7.7 show reducibility toMin 2CNF Deletion, Nearest Codeword,
and Min Horn Deletion.

Lemma 7.5. For any family F ⊆ F2CNF, the family {OR,NAND} p
=⇒ F and

hence Weighted Min CSP(F)≤A Min 2CNF Deletion.

Proof. Again it suffices to consider the basic constraints of F and this is some
subset of

{OR2,0,OR2,1,OR2,2, T, F}.



CONSTRAINT SATISFACTION PROBLEMS 1905

The family {OR,NAND} contains the first and the third functions. Since it contains
a non-0-valid function, a non-1-valid function and a non-C-closed function, it can
also implement T and F (by Lemma 4.6). This leaves the function OR2,1 which is
implemented by the constraints NAND(x, zAux) and OR(y, zAux) (on the variables
x and y). The A-reduction now follows from Lemma 3.10.

Lemma 7.6. For any family F ⊆ FA, the family {XOR3,XNOR3} perfectly im-
plements every function in F . Thus Weighted Min CSP(F) ≤A Nearest Code-
word.

Proof. It suffices to show implementation of the basic affine constraints, namely,
constraints of the form XNORp and XORq for every p, q ≥ 1. We focus on the former
type, as the implementation of the latter is analogous. First, we observe that the con-
straint XNOR(x1, x2) is perfectly implemented by the constraints {XNOR3(x1, x2, z1),
XNOR3(x1, x2, z2),XNOR3(x1, x2, z3),XNOR3(z1, z2, z3)}. Next, the constraint F (x1)
can be perfectly implemented by {XNOR(x1, z1),XNOR(x1, z2),XNOR(x1, z3),
XNOR3(z1, z2, z3)}. Finally, the constraint XNORp(x1, . . . , xp) for any p > 3 can
be implemented as follows. We introduce the following set of constraints using
the auxiliary variables z1, z2 . . . , zp−2 and the set of constraints {XNOR3(x1, x2, z1),
XNOR3(z1, x3, z2),XNOR3(z2, x4, z3), . . . ,XNOR3(zp−2, xp−1, xp)}

Lemma 7.7. For any family F ⊆ FWP, we have {OR3,1, T, F} p
=⇒ F and thus

Weighted Min CSP(F) ≤A Min Horn Deletion.

Proof. As usual, it suffices to perfectly implement every function in the basis
{ORk | k ≥ 1} ∪ {ORk,1 | k ≥ 1}. The constraint OR(x, y) is implemented by
the constraints OR3,1(a, x, y) and T (a). OR2,1(x, y) is implemented by OR3,1(x, y, a)
and F (a). The implementation of OR3(x, y, z) is OR(x, a) and OR3,1(a, y, z) (the
constraint OR(x, a), in turn, may be implemented with the already shown method).
Thus every k-ary constraint for k ≤ 3 can be perfectly implemented by the family
{OR3,1, T, F}). For k ≥ 4, we use the textbook reduction from Sat to 3-Sat (see,
e.g., [19, p. 49]) and we observe that when applied to k-ary weakly positive constraints
it yields a perfect implementation using only 3-ary weakly positive constraints.

To conclude this section we describe the trivial approximation algorithms for
Nearest Codeword and Min Horn Deletion. They follow easily from Proposi-
tion 7.2 and the fact that both families are decidable.

Corollary 7.8 (to Proposition 7.2). Min Horn Deletion and Nearest
Codeword are in poly-APX.

7.3. Hardness results (reductions) for MIN CSP.

Lemma 7.9 (APX-hardness). If F ⊆ F ′, for F ′ ∈ {F0,F1,F2M}, then Min
CSP(F) is APX-hard.

Proof. The proof essentially follows from Lemma 5.8 in combination with Propo-
sition 3.7. We show that for every F , Max CSP(F) AP-reduces to Min CSP(F).
Let I be an instance of Max CSP(F) on n variables and m constraints. Let x′

be a solution satisfying m/k constraints that can be found in polynomial time (by
Proposition 3.7). Let x′′ be an r-approximate solution to the same instance I viewed
as an instance of Min CSP(F). If opt is the optimum solution to the maximization
problem I, then x′′ satisfies at least m− r(m− opt) = ropt− (r− 1)m constraints.
Thus the better of the two solutions is an r′-approximate solution to the instance I
of Max CSP(F), where
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r′ ≤ opt

max{m/k, ropt− (r − 1)m}
≤ ((r − 1)k + 1)opt

(r − 1)k(m/k) + ropt− (r − 1)m

=
1 + (r − 1)k

r
≤ 1 + (r − 1)k.

ThusMax CSP(F) AP-reduces toMin CSP(F). The lemma follows from the APX-
hardness of Max CSP(F) (Lemma 5.8).

Lemma 7.10 (Min UnCut-hardness). If F ⊆ F ′, for F ′ ∈ {F0,F1,F2M,FIHS},
and F ⊆ F2A, then Min CSP(F) is Min UnCut-hard.

Proof. Recall that Min UnCut-hardness requires that Min CSP(XOR) be A-
reducible to Min CSP(F).

Let f ∈ F . Consider (all) the minimally dependent sets of f . By Lemma 4.22 all
such sets are of cardinality at most 2. For a minimally dependent set {i, j} let

fi,j(xi, xj)
def
= ∃x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xk s.t. f(x1, . . . , xk).

By Lemma 4.17 all the fi,j ’s are affine and thus must be one of the functions T (xi),
F (xi), XOR(xi, xj), or XNOR(xi, xj). Furthermore, f can be expressed as the con-
junction of fi,j ’s over all the minimally dependent sets. It follows that there exist i,
j such that fi,j(xi, xj) = XOR(xi, xj). (Otherwise f would be a conjunction of T , F
and XNOR functions, all of which are in FIHS, and thus f would also be in FIHS.)
Thus we conclude that f implements XOR and by Lemma 3.10 we conclude thatMin
CSP(XOR) is A-reducible to Min CSP(F) as desired.

For theMin 2CNF Deletion-hardness proof, we need the following three simple
lemmas.

Lemma 7.11. If f is a 2CNF function which is not width-2 affine, then f
p

=⇒
OR2,l for some l ∈ {0, 1, 2}.

Proof. For i, j ∈ [k], let

fi,j(xi, xj)
def
= ∃x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xk s.t. f(x1, . . . , xk).

Recall that if f can be expressed as the conjunction of fi.j ’s over all its maxterms
and by Lemma 4.21, all the maxterms of f ’s have at most two literals in them. Thus
f(x1, . . . , xk) can be expressed as

∧
i,j∈[k] fi,j(xi, xj). It follows that some fi,j must

be one of the functions OR2,0, OR2,1, or OR2,2 (all other functions on two variables
are affine). Thus existentially quantifying over all variables other than xi and xj , f
perfectly implements OR2,l for some l ∈ {0, 1, 2}.

Lemma 7.12. If f ∈ F2CNF is not in IHS-B, then f
p

=⇒ XOR.
Proof. Once again we use the fact that f can be expressed as

∧
i,j∈[k] fi,j(xi, xj),

where fi,j is the function obtained from f by existentially quantifying over all variables
other than xi and xj . It follows that one of the fi,j ’s must be NAND or XOR, since
all the other functions on two variables are in IHS-B+. In the latter case we are
done; otherwise we use the fact that f is not in IHS-B− to conclude that f perfectly
implements OR or XOR. In the latter case again we are done; otherwise we use
the fact that f perfectly implements both the functions NAND and OR, and that
NAND(x, y) and OR(x, y) perfectly implement XOR(x, y) to conclude that in this
case too, the function f perfectly implements XOR.
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Lemma 7.13. If f is the function OR2,l for some l ∈ {0, 1, 2}, then {f,XOR} p
=⇒

{OR,NAND}.
Proof. The lemma follows from the fact that the function XOR essentially allows

us to negate literals. For example, given the function OR2,1(x, y) and XOR, the
applications OR2,1(x, zAux) and XOR(zAux, y) perfectly and strictly implement the
function NAND(x, y). Other implementations are obtained similarly.

Lemma 7.14 (Min 2CNF Deletion-hardness). If F ⊆ F ′ for F ′ ∈ {F0,F1,
F2M,FIHS,F2A}, and F ⊆ F2CNF, then Min CSP(F) is Min 2CNF Deletion-
hard.

Proof. By Lemmas 7.11 and 7.12, F implements one of the functions OR2,l for l ∈
{0, 1, 2} and the function XOR. By Lemma 7.13 this suffices to implement the family
{NAND,OR}. Thus by Lemma 3.10 we conclude that Min CSP({OR,NAND}) A-
reduces to Min CSP(F).

Lemma 7.15. If F ⊆ FA, but F ⊆ F ′ for any F ′ ∈ {F0,F1,F2M,FIHS,F2A},
then Min CSP(F) is Nearest Codeword-hard.

Proof. By Lemma 4.18 we know that in this case F perfectly implements the
constraint x1 ⊕ · · · ⊕ xp = b for some p ≥ 3 and some b ∈ {0, 1}. Thus the
family F ∪ {T, F} implements the functions x ⊕ y ⊕ z = 0, x ⊕ y ⊕ z = 1. Thus
Nearest Codeword =Min CSP({x ⊕ y ⊕ z = 0, x ⊕ y ⊕ z = 1} is A-reducible to
Min CSP(F ∪ {F, T}). Since F is neither 0-valid nor 1-valid, we can use Lemma 5.7
to conclude that Min CSP(F) is Nearest Codeword-hard.

The next lemma describes the best known hardness of approximation for the
Nearest Codeword problem. The result relies on an assumption stronger than
NP = P.

Lemma 7.16 (see [2]). For every ε > 0, Nearest Codeword is hard to ap-

proximate to within a factor of Ω(2log
1−ε n) unless NP has deterministic algorithms

running in time nlog
O(1) n.

Proof. The required hardness of the Nearest Codeword problem is shown by
Arora et al. [2]. The Nearest Codeword problem, as defined in Arora et al., works
with the following problem: Given an m×n matrix A and an m-dimensional vector b,
find an n-dimensional vector x which minimizes the Hamming distance between Ax
and b. Thus this problem can be expressed as aMin CSP problem with m affine con-
straints over n-variables. The only technical point to be noted is that these constraints
have unbounded arity. In order to get rid of such long constraints, we replace a con-
straint of the form x1⊕· · ·⊕xl = 0 into l−2 constraints x1⊕x2⊕z1 = 0, z1⊕x3⊕z2 = 0,
etc. on auxiliary variables z1, . . . , zl−3. (The same implementation was used in
Lemma 7.6.) This increases the number of constraints by a factor of at most n but does
not change the objective function. Thus if M represents the number of constraints in
the new instance of the problem, then the approximation hardness which is 2log

1−ε m

can be expressed as 2
1
2 log1−ε M which is still growing faster than, say, 2log

1−2ε M .
Since the result of [2] holds for every positive ε, we still get the desired result claimed
above.

It remains to see the Min Horn Deletion-hard case. We will have to draw
some nontrivial consequences from the fact that a family is not IHS-B.

Lemma 7.17. Assume F ⊆ FIHS and either F ⊆ FWP or F ⊆ FWN. Then F
contains a function that is not C-closed.

Proof. Let f be a C-closed function in FWP (FWN). We claim that all of f ’s
maxterms must be of the form T (xi), F (xi), or OR2,1(xi, xj). If not, then since f is
C-closed, the maxterm involving the complementary literals is also a maxterm of f ,
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Fig. 3. Truth table of the constraint f2.

but the complementary maxterm is not weakly positive (and by Lemma 4.20 every
maxterm of f must be weakly positive). However, if all of f ’s maxterms are of the
form T (xi), F (xi), or OR2,1(xi, xj), then f is in IHS-B. The lemma follows from the
fact that F ⊆ FIHS.

Lemma 7.18. If f is a weakly positive function not expressible as IHS-B+, then

{f, T, F} p
=⇒ OR3,1. If f is a weakly negative function not expressible as IHS-B−,

then {f, T, F} p
=⇒ OR3,2.

Proof. Let f be a weakly positive function. By Lemma 4.20 all maxterms of f
are weakly positive. Since f is not IHS-B+, f must have a maxterm of the form
(¬x1

∨
x2
∨ · · ·∨xp) for some p ≥ 3. We first show that {f, F} can perfectly imple-

ment the function XNOR. To get the former, consider the function

f1(x1, x2)
def
= ∃xp+1, . . . , xk s.t. f(x1, x2, 0

p−2, xp+1, . . . , xk).

The function f1 satisfies the properties f1(10) = 0, f1(00) = f1(11) = 1. Thus f1 is
either the function XNOR or OR2,1. Notice that the constraints f(x1, . . . , xk) and
F (xi), i ∈ {3, . . . , p}, perfectly implement f1. Thus {f, F} perfectly implement either
the function XNOR or OR2,1. In the former case, we have the claim and in the
latter case we use the fact that the constraints OR2,1(x, y) and OR2,1(y, x) perfectly
implement XNOR(x, y).

Next, we show how the family {f, T, F,XNOR} (and hence {f, T, F}) can per-
fectly implement OR2,1. To do so, we consider the function

f2(x1, x2, x3)
def
= ∃xp+1, . . . , xk s.t. f(x1, x2, x3, 0

p−3, xp+1, . . . , xk).

Again {f, F} implement f2 perfectly. By the definition of a maxterm, we find that f2
satisfies the following properties: f2(100) = 0 and f2(000) = f2(110) = f2(101) = 1.
Figure 3 gives the truth table for f2, where the unknown values are denoted by A,
B, C, and D. If C = 0, then restricting x1 = 1 gives the constraint XOR(x2, x3).
However, notice that XOR is not a weakly positive function and by Lemma 4.19 every
function obtained by setting some of the variables in a weakly positive function to
constants and existentially quantifying over some other subset of variables is a weakly
positive function. Thus C = 1. If D = 1, we implement the function OR2,1(x1, x2)
by the constraints f2(x1, x2, x3) and F (x3). Otherwise we have D = 0, and the
constraints f2(x1, x2, x3) and XNOR(x1, x3) implement the constraint OR2,1(x2, x1).

Finally we conclude by observing that the constraints f2(x, z
1, z2), OR2,1(z

1, y)
and OR2,1(z

2, z), perfectly implement the constraint OR3,1(x, y, z).
This completes the proof for the first part. The proof if f is weakly negative is

similar.
Lemma 7.19 (theMin Horn Deletion-hard case). If F ⊆ F ′ for any F ′ ∈ {F0,

F1,F2M,FIHS,F2A,F2CNF}, and either F ⊆ FWP or F ⊆ FWN, then Weighted
Min CSP(F) is Min Horn Deletion-hard.
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Proof. From Lemma 7.18 we have that either Min CSP({OR3,1, T, F} or Min
CSP({OR3,2, T, F} is A-reducible to Min CSP(F). Furthermore, since F is not 0-
valid or 1-valid we have that Min CSP(F ∪ {T, F}) is A-reducible to Min CSP(F).
The lemma follows by an application of Proposition 7.1 which shows that the problems
Min CSP({OR3,1, T, F}) A-reduces to Min CSP({OR3,2, T, F}).

To show the hardness of Min Horn Deletion we define a variant of the “label
cover” problem. The original definition from [2] used a different objective function.
Our variant is similar to the one used by Amaldi and Kann [1] under the name Total
Label Cover.

Definition 7.20 (Total Label Coverp).

Instance. An instance is described by sets R, Q, and A and by p functions
(given by their tables) Q1, . . . , Qp : R → Q and a function Acc : R× (A)p → {0, 1}.

Feasible solutions. A solution is a collection of p functions A1, . . . , Ap : Q →
2A. The solution is feasible if for every R ∈ R, there exists a1 ∈ A1(Q1(R)), . . . , ap ∈
Ap(Qp(R)) such that Acc(R, a1, . . . , ap) = 1.

Objective. The objective is to minimize
∑p

i=1

∑
q∈Q |Ai(q)|.

In Appendix A, we show how results from interactive proofs imply the hardness
of approximating Min Label-Cover to within a factor of 2log

1−ε n. We now use this
result to show that hardness of Min Horn Deletion.

Lemma 7.21. For every ε > 0, Min Horn Deletion is NP-hard to approximate
to within a factor of 2log

1−ε n.

Proof. Let p be such that Min Label-Coverp is NP-hard to approximate

to within a factor of 2log
1−ε n. (By Lemma A.3 such a p exists.) We now reduce

Min Label-Coverp to Min Horn Deletion.

Let (Q1, . . . , Qp,Acc) be an instance ofMin Label-Coverp, where Qi : R → Q
and Acc : R × (A)p → {0, 1}. For any R ∈ R, we define Acc(R) = {(a1, . . . , ap) :
V (R, a1, . . . , ap) = 1}.

We now describe the reduction. For any R ∈ R, a1, . . . , ap ∈ A, we have a variable
vR,a1,...,ap

whose intended meaning is the value of Acc(R, a1, . . . , ap). Moreover, for
every i ∈ [p], Q ∈ Q, and a ∈ Ai we have a variable xi,Q,a with the intended meaning
being that its value is 1 if and only if a ∈ Ai(Q). For any xi,Q,a we have the weight-
one constraint ¬xi,q,a. The following constraints (each with weight (p × |Q| × |A|))
enforce the variables to have their intended meaning. Due to their weight, it is never
convenient to contradict them.

∀R ∈ R :
∨

(a1,...,ap)∈Acc(R) vR,a1,...,ap

∀R ∈ R, a1, . . . , ap ∈ A, i ∈ [p] : vR,a1,...,ap
⇒ xi,Qi(R),ai

.

The constraints of the first kind can be perfectly implemented with OR3 and OR3,1

(see Lemma 7.7). It can be checked that this is an AP-reduction from Min Label-
Coverp to Min Horn Deletion and thus the lemma follows.

8. MIN ONES classification.

8.1. Preliminaries: MIN ONES vs. MIN CSP. We start with the following
easy relation between Min CSP and Min Ones problems. Recall that a family F is
decidable if membership in Sat(F) is decidable in polynomial time.

Proposition 8.1. For any decidable constraint family F , Weighted Min
Ones(F) AP-reduces to Weighted Min CSP(F ∪ {F}).
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Proof. Let I be an instance ofWeighted Min Ones(F) over variables x1, . . . , xn
with weights w1, . . . , wn. Let wmax be the largest weight. We construct an instance I ′
of Weighted Min CSP(F ∪ {F}) by leaving the constraints of I (each with weight
nwmax) and adding a constraint F (xi) of weight wi for any i = 1, . . . , n. Notice that
whenever I is feasible, the optimum value for I equals the optimum value for I ′.
Given an r-approximate solution to x to I ′, we check to see if I is feasible and if so
find any feasible solution x′ and output solution (from among x and x′) that achieves
a lower objective. It is clear that the solution is at least an r-approximate solution if
I is feasible.

Reducing a Min CSP problem to a Min Ones problem is slightly less general.

Proposition 8.2. For any function f , let f ′ and f ′′ denote the functions
f ′(x, y) = OR(f(x), y) and f ′′(x, y) = XOR(f(x), y), respectively. If constraint fami-
lies F and F ′ are such that for every f ∈ F , f ′ or f ′′ is in F ′, then Weighted Min
CSP(F) AP-reduces to Weighted Min Ones(F ′).

Proof. Given an instance I of Weighted Min CSP(F) we create an instance
I ′ of Weighted Min Ones(F ′) as follows: For every constraint Cj we introduce
an auxiliary variable yj . The variable takes the same weight as the constraint Cj in
I. The original variables are retained with weight zero. If the constraint Cj(x)

∨
yj

is a constraint of F ′ we apply that constraint; otherwise we apply the constraint
Cj(x) ⊕ y = 1. Given an assignment to the variables of I, notice that by setting
yj = ¬Cj , we get a feasible solution to I ′ with the same objective value; conversely,
a feasible solution to I ′ when projected onto the variables x gives a solution with
the same value to the objective function of I. This shows that the optimum value
to I ′ equals that of I and that an r-approximate solution to I ′ projects to give an
r-approximate solution to I.

Finally the following easy proposition is invoked at a few places.

Proposition 8.3. If F=⇒f , then F−=⇒f−.

8.2. Containment results for MIN ONES.

Lemma 8.4 (PO containment). If F ⊆ F ′ for some F ′ ∈ {F0,FWN,F2A}, then
Weighted Min Ones(F) is solvable exactly in polynomial time.

Proof. The proof follows from Lemma 6.5 and from the observation that for
any family F , solving Weighted Min Ones(F) to optimality reduces to solving
Weighted Max Ones(F−) to optimality.

Lemma 8.5. If F ⊆ F ′ for F ′ ∈ {F2CNF,FIHS}, thenWeighted Min Ones(F)
is in APX.

Proof. For the case F ⊆ F2CNF, a 2-approximate algorithm is given by Hochbaum
et al. [25].

Now consider the case F ⊆ FIHS. From Proposition 3.4 it is sufficient to consider
only basic IHS-B constraints. Since IHS-B− constraints are weakly negative, we will
restrict ourselves to basic IHS-B+ constraints. We use linear programming relaxations
and deterministic rounding. Let k be the maximum arity of a function in F ; we will
give a k-approximate algorithm. Let φ = {C1, . . . , Cm} be an instance ofWeighted
Min Ones(F) over variable set X = {x1, . . . , xn} with weights w1, . . . , wn. The
following is an integer linear programming formulation of finding the minimum weight
satisfying assignment for φ.
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Minimize
∑

i wiyi,
Subject to

yi1 + · · ·+ yih ≥ 1 ∀(xi1
∨ · · ·∨xih) ∈ φ,

yi1 − yi2 ≥ 0 ∀(xi1
∨¬xi2) ∈ φ,

yi = 0 ∀¬xi ∈ φ,
yi = 1 ∀xi ∈ φ,
yi ∈ {0, 1} ∀i ∈ {1, . . . , n}.

(SCB)

Now consider the linear programming relaxation obtained by relaxing the yi ∈ {0, 1}
constraints into 0 ≤ yi ≤ 1. We first find an optimum solution y∗ for the relaxation,
and then we define a 0/1 solution by setting yi = 0 if y∗i < 1/k and yi = 1 if y∗i ≥ 1/k.
It is easy to see that this rounding increases the cost of the solution at most k times
and that the obtained solution is feasible for (SCB).

Lemma 8.6. For any F ⊆ FA, Weighted Min Ones(F) is A-reducible to
Nearest Codeword.

Proof. From Lemmas 7.6 and 3.9 we have that Weighted Min Ones(F) is
A-reducible to Weighted Min Ones({XNOR3,XOR3}). From Proposition 8.1, we
have that Weighted Min Ones(F) A-reduces to Weighted Min CSP({XOR3,
XNOR3, F}). Notice further that the family {XNOR3,XOR3} can implement F (by
Lemma 4.6). Thus we have thatWeighted Min Ones(F) A-reduces toWeighted
Min CSP({XOR3,XNOR3, }) = Nearest Codeword.

Lemma 8.7. For any F ⊆ FWP, Weighted Min Ones(F) AP-reduces to Min
Horn Deletion.

Proof. The proof follows from the following sequence of assertions:
(1) {OR3,1, T, F} perfectly implements F (Lemma 7.7).

(2) WeightedMin Ones(F) AP-reduces toWeightedMin Ones({OR3,1, T, F})
(Lemma 3.9).

(3) Weighted Min Ones({OR3,1, T, F}) AP-reduces to Weighted Min CSP
({OR3,1, T, F}) = Min Horn Deletion (Proposition 8.1).
Proposition 8.8. If F is decidable, then Min Ones(F) is in poly-APX.
Proof. The proposition follows immediately from the fact that in this case it is

easy to determine if the input instance is feasible and if so, if the optimum value is
zero. If so we output the 0 as the solution; otherwise we output any feasible solution.
Since the objective is at least 1 and the solution has value at most n, this is an
n-approximate solution.

8.3. Hardness results for MIN ONES. We start by considering the hardest
problems first. The case when F is not decidable is immediate. We move to the case
where F may be 1-valid but not in any other of Schaefer’s easy classes.

Lemma 8.9. If F ⊆ F ′ for any F ′ ∈ {F0,F2CNF,FA,FWP,FWN}, thenWeighted
Min Ones(F) is hard to approximate to within any factor, and Min Ones(F) is
poly-APX-hard.

Proof. We first show how to handle the weighted case. The hardness for the
unweighted case will follow easily. Consider a function f ∈ F which is not weakly
positive. For such an f , there exists assignments a and b such that f(a) = 1 and
f(b) = 0 and a is zero in every coordinate where b is zero. (Such an input pair
exists for every nonmonotone function f and every monotone function is also weakly
positive.) Now let f ′ be the constraint obtained from f by restricting it to inputs
where b is one and setting all other inputs to zero. Then f ′ is a satisfiable function
which is not 1-valid. We can now apply Schaefer’s theorem [42] to conclude that
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Sat(F ∪ {f ′}) is hard to decide. We now reduce an instance of deciding Sat(F ∪
{f ′}) to approximating Weighted Min CSP(F). Given an instance I of Sat(F ∪
{f ′}) we create an instance which has some auxiliary variables W1, . . . ,Wk which are
all supposed to be zero. This in enforced by giving them very large weights. We
now replace every occurrence of the constraint f ′ in I by the constraint f on the
corresponding variables with the Wi’s in place which were set to zero in f to obtain
f ′. It is clear that if a “small” weight solution exists to the resulting Weighted
Min CSP problem, then I is satisfiable; otherwise it is not. Thus we conclude it is
NP-hard to approximate Weighted Min CSP to within any bounded factors.

For the unweighted case, it suffices to observe that by using polynomially bounded
weights above, we get a poly-APX hardness. Furthermore, one can get rid of weights
entirely by replicating variables.

We may now restrict our attention to function families F that are 2CNF or affine
or weakly positive or weakly negative or 0-valid. In particular, by the containment
results shown in the previous section, in all such cases the problem Weighted Min
Ones(F) is in poly-APX. We now give a weight-removing lemma which allows us to
focus on showing the hardness of the weighted problems.

Lemma 8.10. If F ⊆ F ′ for some F ′ ∈ {F2CNF,FA,FWP,FWN,F0}, then
Weighted Min Ones(F) AP-reduces to Min Ones(F).

Proof. By Lemma 3.11 it suffices to verify that Weighted Min Ones(F) is in
poly-APX in all cases. If F is weakly negative or 0-valid, then this follows from
Lemma 8.4. If F is 2CNF, then this follows from Lemma 8.5. If F is affine or
weakly positive, then it A-reduces toNearest Codeword orMin Horn Deletion,
respectively, which are in poly-APX by Corollary 7.8.

Before dealing with the remaining cases, we prove one more lemma that is useful
in dealing with Min Ones problems.

Lemma 8.11. For every constraint family F such that F ∪ {F} is decidable,
Weighted Min Ones(F ∪ {F}) AP-reduces to Weighted Min Ones(F).

Proof. Given an instance I of Weighted Min Ones(F ∪ {F}) on n vari-
ables x1, . . . , xn with weights w1, . . . , wn we create an instance I ′ ofWeighted Min
Ones(F) on the variables x1, . . . , xn using all the constraints of I that are from F ; and
for every variable xi such that F (xi) is a constraint of I, we increase the weight of the
variable xi to nwmax, where wmax is the maximum of the weights w1, . . . , wn. As in the
proof of Proposition 8.1 we observe that if I is feasible, then the optima for I and I ′
are equal and given an r-approximate solution to I ′ we can find an r-approximate so-
lution to I. Furthermore, since F∪{F} is decidable, we can decide whether or not I is
feasible.

We now deal with the affine problems.

Lemma 8.12. If F is affine but not width-2 affine or 0-valid, then Min
Ones(XOR3) is AP-reducible to Weighted Min Ones(F).

Proof. Notice that since F is affine, so is F−. Furthermore, F− is neither
width-2 affine nor 1-valid. Thus by Lemma 6.10 F− perfectly implements either
the family {XNOR3} or the family {XOR,XNOR4}. Thus, by applying Proposi-
tion 8.3, we get that F implements either XOR3 or the family {XOR,XNOR4}. In
the former case, we are done (by Lemma 3.9). In the latter case, notice that the con-
straints XNOR4(x1, x2, x3, x5) and XOR(x4, x5) perfectly implement the constraint
XOR4(x1, x2, x3, x5). Thus we conclude that Weighted Min Ones(XOR4) is AP-
reducible toWeighted Min Ones(F). Finally we use Lemma 8.11 to conclude that
the family Weighted Min Ones(F)({XOR}|0) is AP-reducible to Weighted Min
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Ones(F). The lemma follows from the fact that XOR3 ∈ {XOR4}|0.
Lemma 8.13. If F is affine but not width-2 affine or 0-valid, then, for every ε > 0,

Min Ones(F) is Nearest Codeword-hard and hard to approximate to within a
factor of Ω(2log

ε n).
Proof. The proof follows from the following sequence of reductions:

Nearest Codeword

= Weighted Min CSP({XOR3,XNOR3})
≤APWeighted Min Ones({XOR4,XNOR4}) (using Proposition 8.2)

≤APWeighted Min Ones({XOR3,XOR}) (see below)

≤APWeighted Min Ones(XOR3) (using Lemma 8.11)

≤APWeighted Min Ones(F) (using Lemmas 8.12 and 3.9)

≤APMin Ones(F) (using Lemma 8.10).

The second reduction above follows by combining Lemma 3.9 with the observa-
tion that the family {XOR3,XOR} perfectly implement the functions XOR4 and
XNOR4 as shown next. The constraints XOR3(u, v, w) and XOR3(w, x, y) perfectly
implement the constraint XNOR4(u, v, x, y); the constraints XOR4(u, v, w, x) and
XOR(w, y) perfectly implement XOR4(u, v, x, y). The hardness of approximation of
Nearest Codeword is given by Lemma 7.16.

Lemma 8.14. If F is weakly positive and not IHS-B (nor 0-valid), then
Min Ones(F) is Min Horn Deletion-hard, and hence hard to approximate within

2log
1−ε n for any ε > 0.
Proof. The proof follows from the following sequence of reductions:

Min Horn Deletion

= Weighted Min CSP({OR3,1, T, F}
≤APWeighted Min Ones({OR4,1,OR2,OR2,1}) (using Proposition 8.2)

≤APWeighted Min Ones({OR3,1, T, F}) (using Lemmas 7.7 and 3.9)

≤APWeighted Min Ones(F ∪ {T, F}) (using Lemmas 7.18 and 3.9)

≤APWeighted Min Ones(F ∪ {F}) (using Lemma 4.6 to perfectly implement T )

≤APWeighted Min Ones(F) (using Lemma 8.11)

≤APMin Ones(F) (using Lemma 8.10).

The hardness of approximation follows from Lemma 7.21.
Lemma 8.15. Min Ones(OR) is APX-hard.
Proof. We reduce Vertex Cover to Min Ones(OR). Given a graph G on n

vertices, we construct an instance of Min Ones(OR) on n variables x1, . . . , xn. For
every edge between vertex i and j of G, we create a constraint OR(xi, xj). We notice
that there is a one-to-one correspondence between an assignment to the variables and
vertex covers in G (with variables assigned 1 corresponding to vertices in the cover)
and the minimum vertex cover minimizes the sum of the variables. The lemma follows
from the fact that Vertex Cover is APX-hard [39, 3].

Lemma 8.16 (APX-hardness). If F ⊆ F ′ for any F ′ ∈ {F0,FWN,F2A}, then
Min Ones(F) is APX-hard.

Proof. We mimic the proof of Lemma 6.14. We assume that F is not affine—the
case where F is affine is shown to be Nearest Codeword-hard in Lemma 8.13. By
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Lemma 8.10 it suffices to show thatWeighted Min Ones(F) is APX-hard; and by
Lemma 8.11 it suffices to show that Weighted Min Ones(F ∪ {F}) is APX-hard.
Since F ∪ {F} is not 0-valid or 1-valid or C-closed, it implements every function in
F ∪ {T, F} and thus every function in F|0,1. We now shift focus on to the family
(F|0,1)−. Furthermore, (F|0,1)− is neither weakly positive nor affine and thus by
Lemmas 6.20 and 6.21 it implements NAND. Using Proposition 8.3 we get that
F0,1 implements OR. Using Lemma 8.15 we get that Weighted Min Ones(OR) is
APX-hard. Thus we conclude that Weighted Min Ones(F) is APX-hard.

Appendix A. Hardness of TOTAL LABEL COVER.
Definition A.1. L ∈MIPc,s[p, r, q, a] if there exists a polynomial time bounded

probabilistic oracle machine V (verifier) such that on input x ∈ {0, 1}n, the verifier
picks a random string R ∈ {0, 1}r(n) and generates p queries Q1 = Q1(x,R), . . . , Qp =
Qp(x,R) ∈ {0, 1}q(n) and sends query Qi to prover Πi and receives from prover Πi an
answer Ai = Ai(Qi) ∈ {0, 1}a(n) and then computes a verdict Acc(x,R,A1, . . . , Ap) ∈
{0, 1} with the following properties:

Completeness: x ∈ L⇒ ∃A1(·), . . . , Ap(·) such that ER[Acc(x,R,A1, . . . , Ap)] ≥
c(n).

Soundness: x ∈ L⇒ ∀A1(·), . . . , Ap(·), ER[Acc(x,R,A1, . . . , Ap)] < s(n).
We say V is uniform if for every x and i, there exists dx,i s.t. for every query
Qi ∈ {0, 1}q(n), |{R ∈ {0, 1}r(n)|Qi(R) = Qi}| = dx,i. We say L is in uniform-
MIPc,s[p, r, q, a] if there exists a uniform verifier V which places L inMIPc,s[p, r, q, a].

We use a recent result of Raz and Safra [41] (see also [5] for an alternate proof)
which provides a strong uniform-MIP containment result for NP.

Lemma A.2 (see [41, 5]). For every ε > 0, there exist constants p, c1, c2, and c3
such that

NP ⊆ uniform-MIP1,2− log1−ε n [p, c1 log n, c2 log n, c3 log n].

Remark.
(1) The result shown by [41, 5] actually has smaller answer sizes, but this turns

out to be irrelevant to our application below; therefore we don’t mention their
stronger result.

(2) The uniformity property is not mentioned explicitly in the above papers.
However, it can be verified from their proofs that this property does hold for
the verifier constructed there.

The following reduction is essentially from [36, 7, 2].
Lemma A.3. For every ε > 0, there exists a p = pε such that Total Label

Coverp is NP-hard to approximate to within a factor of 2log
1−ε n.

Proof. We use Lemma A.2. Let L be an NP-complete language and for ε > 0, let
p, c1, c2, c3 be such that L ∈ uniform-MIP

1,2− log1−ε/2 n [p, c1 log n, c2 log n, c3 log n],

and let V be the verifier that shows this containment. Given an instance x ∈ {0, 1}n
of L, we create an instance of Total Label Coverp as follows: Set Qi(R) to be
the query generated by V to prover Πi on input x and random string R. For every
R, a1, . . . , ap Acc(R, a1, . . . , ap) is 1 if V accepts the answers a1, . . . , ap on random
string R.

Let Q = {0, 1}c2 logn denote the set of all possible queries and let R denote the
space of all possible random strings (i.e., R = {0, 1}c1 logn). If x ∈ L, it is clear that
there exists a feasible solution A1, . . . , Ap such that for every query q ∈ Q, and for
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every i ∈ {1, . . . , p}, it is the case that |Ai(q)| = 1. Thus the value of the optimum
solution is at most p · |Q|.

Now we claim for a given x, if the mapped instance of Total Label Cover has
a solution of size Kp|Q|, then there exist provers Π1, . . . ,Πp such that V accepts with
probability at least K−1/p/(p+ 1)p+1.

To see this let Πi(q) be a random element of Ai(q). If ni,q denotes the cardinality
of Ai(q), then the probability that V accepts the provers response is given by

1

|R|
∑
R∈R

∏
i

1/ni,Qi(R).

Define Ri to be {R ∈ R|ni,Qi(R) ≥ (p + 1)K}. By Markov’s inequality and the
uniformity of the protocol |Ri|/|R| ≤ 1/(p+ 1).

Let R0 = R−R1 −R2 − · · · − Rp. Then |R0|/|R| ≥ 1/(p+ 1).

We go back to bounding the probability above:

1

|R|
∑
R∈R

∏
i

1/ni,Qi(R) ≥ 1

|R|
∑

R∈R0

∏
i

1/ni,Qi(R)

≥ 1

|R|
∑

R∈R0

∏
i

1/ni,Qi(R)

≥ 1

|R|
∑

R∈R0

(1/((p+ 1)K)p)

≥ K−1/p/(p+ 1)p+1.

It follows that if K = K(n) is less than 2log
1−ε n, then for sufficiently large n,

K−1/p/(p + 1)p+1 is greater than 2log
1−ε/2 n. Thus a K-approximation algorithm for

Total Label Coverp can be used to decide L. Thus Total Label Coverp is

NP-hard to approximate to within a factor of 2log
1−ε n.



1916 S. KHANNA, M. SUDAN, L. TREVISAN, AND D. P. WILLIAMSON

Appendix B. Schematic representations of the classification theorems.

B.1. The MAX CSP classification.

F
⇓

0-valid or 1-valid
or 2-monotone?

✲Yes In PO (Proposition 5.1 and
Lemma 5.2)

❄

No

APX-complete
(Proposition 5.5
and Lemma 5.8)

B.2. The MAX ONES classification.

F
⇓

1-valid or weakly
positive or width-2

affine?

✲Yes In PO (Lemma 6.5)

❄

No

Affine? ✲Yes APX-complete (Lemmas 6.6
and 6.13)

❄

No

Strongly 0-valid or
weakly negative or

2CNF?

✲Yes
poly-APX-complete

(Proposition 6.7 and Lemma
6.14)

❄

No

0-valid? ✲Yes Not approximable
(Lemma 6.23)

❄

No

Feasibility is
NP-hard [42]
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B.3. The MIN CSP classification.

F
⇓

0-valid or 1-valid
or 2-monotone?

✲Yes In PO (Proposition 5.1 and
Lemma 5.2)

❄

No

IHS-B? ✲Yes APX-complete (Lemmas 7.3
and 7.9)

❄

No

Width-2 affine? ✲Yes Min UnCut-complete
(Lemmas 7.4 and 7.10)

❄

No

2CNF? ✲Yes
Min 2CNF

Deletion-complete
(Lemmas 7.5 and 7.14)

❄

No

Affine? ✲Yes
Nearest Codeword-

complete (Lemmas 7.6 and
7.15)

❄

No

Horn? ✲Yes
Min Horn

Deletion-complete
(Lemmas 7.7 and 7.19)

❄

No

Not approximable
[42]
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B.4. The MIN ONES classification.

F
⇓

0-valid or weakly
negative or width-2

affine?

✲Yes in PO (Lemma 8.4)

❄

No

2CNF or IHS? ✲Yes APX-complete (Lemmas 8.5
and 8.16)

❄

No

Affine? ✲Yes
Nearest Codeword-

complete (Lemmas 8.6 and
8.12)

❄

No

Weakly positive? ✲Yes
Min Horn

Deletion-complete
(Lemmas 8.7 and 8.14)

❄

No

1-valid? ✲Yes
poly-APX-complete

(Proposition 8.8 and Lemma
8.9)

❄

No

Feasibility is
NP-hard [42]
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Abstract. We describe an algorithm that finds a minimum cost schedule, including spill code,
for a register-constrained machine that can issue up to one arithmetic operation and one memory
access operation at a time, under the restrictions that the dependence graph is a full binary tree, all
arithmetic and store operations have unit latency, and all load operations have a latency of 1 or all
load operations have a latency of 2. This problem is a generalization of two problems whose efficient
solutions are well understood: optimal dual-issue scheduling without spills for binary expression
trees, solved by Bernstein, Jaffe, and Rodeh [SIAM J. Comput., 18 (1989), pp. 1098–1127], and
optimal single-issue scheduling with spill code and delayed loads, solved by Kurlander, Proebsting,
and Fischer [ACM Transactions on Programming Languages and Systems, 17 (1995), pp. 740–776],
both assuming a fixed number of registers. We show that the algorithm’s complexity is O(nk) where
n is the number of operations to be scheduled and k is the number of spills in the schedule. The cost
of a “contiguous” schedule (i.e., its length) is shown to be ρ + 2k + g + |A|, where ρ is the number
of registers used, |A| is the number of arithmetic operations, k is the number of spills, and g is the
number of empty slots in the associated single processor schedule. Therefore all contiguous schedules
formed from optimal single processor schedules have minimum cost.

Key words. scheduling algorithms, code generations, parallel functional units, registers

AMS subject classifications. 68Q20, 68Q22, 68N20, 68R05, 90B35

PII. S009753979834610X

1. Introduction. In modern processors, memory bandwidth is a major perfor-
mance bottleneck due to increased processor issue widths and clock speeds relative to
the limited number of ports and access latency to memory. Reducing memory traffic
by improving data reuse at all levels of the memory hierarchy is therefore critical to
improve system performance. In addition, the latency of pipelined memory operations
is often larger than that of most arithmetic operations. One source of memory traffic
is spilling, which moves data values from registers to memory and back. This data
movement is necessary because the number of registers that instructions can access
is limited. Reducing this traffic can be achieved through better register allocation
and register sensitive scheduling and through the judicious use of spill code to mini-
mize performance degradation. Processors that can issue more than one instruction
per cycle can hide the latency of spill operations and other memory operations by
overlapping them with instructions that do useful work.

Many scheduling problems for related processor architectures can be solved
efficiently. Minimizing the number of registers needed to schedule operations with-
out spill code on a single-issue machine when the dependence graph is a tree was
first solved by Nakata [30] and Redziejowski [34]. These algorithms use a postorder
evaluation of the expression tree and execute in time proportional to the number of
operations to be scheduled. Sethi and Ullman [36] extended this result to minimize the
amount of spill code needed to evaluate an expression tree. This algorithm also uses a
postorder traversal of the expression tree and executes in linear time. Aho and John-
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son [1] describe a dynamic programming solution to this problem that applies to a
wider range of architectures. While the preceding results only apply to operations with
unit latencies, Kurlander, Proebsting, and Fischer [28] describe an efficient algorithm
for optimally scheduling expressions trees, with spills, for a delayed load architecture.
This architecture assumes that all load operations have a latency of two cycles.

When the dependence graph is a directed acyclic graph (DAG), the related
scheduling problems are usually NP-complete. In this case, more than one operation
can depend on a particular operation. Minimizing the number of registers needed to
schedule operations without spill code on a single-issue machine when the dependence
graph is a DAG was shown to be NP-complete by Sethi [35]. Bruno and Sethi [11]
show that when the dependence graph is a DAG, minimizing spill code is NP-complete
even when only one register is available. This result assumes an accumulator-based
architecture which is different than the load/store architecture we consider. The eas-
ier problem of inserting the minimum amount of spill code into a fixed schedule is
also NP-complete when the underlying dependence graph is a DAG [13, 19]. Schedul-
ing operations with arbitrary latencies on multiple identical machines was shown by
Ullman to be NP-complete when the dependence graph is a DAG [37], by Bernstein,
Rodeh, and Gertner when the dependence graph is a tree [5], and by Palem and
Simons when the dependence graph is a collection of chains [31].

However, a number of related problems with unit-time operations can be solved
efficiently in the absence of register constraints. If all latencies equal one, polynomial
algorithms are described by Coffman and Graham that schedule operations on two
processors when the dependence graph is a DAG [15] and by Hu for arbitrarily many
processors when the dependence graph is a tree [27]. If all latencies are equal and
the dependence graph is a tree, Bruno, Jones, and So give an efficient algorithm to
schedule operations on multiple processors [10]. Finally, if all latencies equal 1 or 2,
Bernstein and Gertner describe an efficient algorithm to schedule a single processor
with arbitrary precedence [3].

Heuristics for the spill insertion problem based on dynamic programming and
pruning rules are described by Horwitz et al. [25] and Hsu, Fischer, and Goodman
[26]. More practical heuristics for register allocation and spill insertion are described
and evaluated by Chaitin et al. [17, 18] and Chow and Hennessy [14]. More recently,
improved allocation algorithms were evaluated by Callahan and Koblenz [12], Pinter
[32], Briggs et al. [8, 9], Proebsting and Fischer [33], George and Appel [20], Lueh and
Gross [29], and Bergner et al. [2]. These algorithms attempt to minimize the number
of spills within a basic block or over an entire program, but without explicitly handling
pipelines or instruction-level parallelism. The interdependency of code scheduling and
register allocation in practical applications was described in [7] and [22]. These papers
address the problem of efficient code generation for basic blocks on single-issue RISC
processors and document the tradeoffs that exist between good data reuse in the
register file and the minimization of pipeline interlocks. Other scheduling algorithms
for pipelined processors were described by Hennessy and Gross [23, 24] and by Gibbons
and Muchnick [21].

The algorithms described in this paper are the first to simultaneously optimize
a schedule in the presence of multiple processors, and either spill code or instruction
pipelines. (In fact, we solve the scheduling problem in the presence of both spills
and instruction pipelines.) These results therefore increase the space of scheduling
problems that can be solved efficiently along these important dimensions. Bernstein,
Jaffe, and Rodeh [4] first described an efficient algorithm to schedule a dual-issue
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processor with a limit on the number of available registers. They show that an optimal
dual-issue schedule can be derived from an optimal single-issue schedule. However,
this result does not apply when spill code must be inserted and the authors state that
“. . .more work concerning store operations is needed.”

In this paper we describe an efficient optimal scheduling algorithm that allocates
registers and inserts spill code for a dual-issue processor with pipelined memory access
operations. We show that an optimal single-issue schedule can be transformed into
an optimal dual-issue schedule without increasing the number of spill operations. We
then show that this transformation can be further generalized to apply to processors
with pipelined memory operations, and we completely describe the structure of an
optimal solution to this general problem. The dual-issue machine assumed in this
paper is a simplified representation of a range of pipelined RISC microprocessors and
supercomputers that have a limited number of registers. By solving the problem of
scheduling with spills for a dual-issue processor with pipelined memory operations,
we have solved the following two previously open subproblems: optimal scheduling
for a dual-issue processor with spills and optimal scheduling for a dual-issue proces-
sor without spills with pipelined memory operations. Our main result represents a
generalization of optimal algorithms described by Sethi and Ullman [36] and Bern-
stein, Jaffe, and Rodeh [4]. This result also represents an extension of the algorithm
described by Kurlander, Proebsting, and Fischer [28]; however, their machine model
also includes unary operations and literals which our algorithm does not handle. We
summarize the main results of this paper below.

1. A sequential schedule with arbitrary load latencies and spills can be trans-
formed into a dual-issue schedule with the same number of spills and idle cycles, and
visa versa.

2. A dual-issue schedule with arbitrary load latencies and spills can be trans-
formed into a contiguous dual-issue schedule by moving load operations earlier in the
schedule and store operations later, without increasing the schedule’s length or the
number of spill operations.

3. We give an efficient algorithm that solves the dual-issue scheduling problem
with spills for load latencies = 1 or load latencies = 2.

Our paper is organized as follows. In section 2 we describe our machine and
computation model and define the sequential and parallel scheduling problems. In
section 3 we describe some basic properties of parallel schedules. In sections 4 and 5
we show that we only need to consider contiguous schedules. In section 6 we describe
the structure and cost of a contiguous schedule, and in section 7 we describe an
algorithm that solves the parallel scheduling problem.

2. The machine/computation model. The notation used by Bernstein, Jaffe,
and Rodeh in [4] formalizes the sequential and parallel scheduling problems without
spills. We extend this notation to allow the use of spill code and nonunit latencies
for loads. We consider a machine model that has access to R registers: r1 r2, . . . , rR
and an arbitrarily large memory space. The machine has three types of operations:
load operations which copy a data value from memory into a register, store operations
which copy a data value from a register into memory, and binary arithmetic operations
which read two data values from registers and write a new data value to a register.
Arithmetic and store operations have unit latencies, and each load operation has a
latency that is some positive integer. In the definitions below, we assume that an
operation’s latency gives the minimum number of cycles that must elapse before a
dependent operation is scheduled. We also assume that all functional units are fully
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pipelined, which allows an operation to be issued to each functional unit in each cycle.
We let NOP indicate that no operation is scheduled at some time.

The dependence graph F is a rooted binary tree that contains leaf nodes that
represent load operations and internal nodes that represent arithmetic operations. We
assume that every internal node has exactly two predecessors. An edge between two
nodes represents a data dependence between the two operations, and an operation
must be scheduled after its predecessors. The set of arithmetic operations in F is
denoted A(F ) = {A1, A2, . . . , A|A(F )|}, where Ai may denote either the operation or
its arithmetic result (or simply, value). An arithmetic operation is said to use a value
that it directly depends on. The set of load operations is L(F ) = {L1, L2, . . . , L|L(F )|},
where Li represents a load of Ai if 1 ≤ i ≤ |A(F )|, and Li represents a leaf node of F
if |A(F )| < i ≤ |L(F )|. The latency of load operation Li is denoted latency(Li). The
set of store operations is denoted S(F ) = {S1, S2, . . . , S|A(F )|}, where Si represents a
store of Ai. A load operation Li or a store operation Si is referred to as spill code if
1 ≤ i ≤ |A(F )|. Note that if value Ai is spilled in an evaluation of F , Si and later Li
will appear in the evaluation somewhere between Ai and the use of Ai; if Ai is not
spilled, Si and Li will not appear at all.

For a given node v of F , Fv denotes the subtree of F with v as its root. If u is a
predecessor of v in F , we say u is used by v.

A sequential evaluation P of a computation F is an ordered list of operations
(including spill code and NOP s): P = P1, P2, . . . , Pn, where Pi is executed at time i,
and the following three conditions are satisfied:

1. Every arithmetic operation and load leaf is executed, i.e., for every node v,
there exists a unique j such that Pj = v.

2. No dependences of F are violated, i.e., if Pi, Pj are nodes in F , and Pj is an
arithmetic operation, then Pj ∈ FPi

implies j ≤ i− 1. If Pj is a load operation, then
Pj ∈ FPi implies j ≤ i− latency(Pj). This implies that the latency of each arithmetic
operation is one, and the latency of each load operation Pj is latency(Pj).

3. If the value Av corresponding to a nonleaf node Pi is used by Pj (j > i),
then Av may be stored at time k1 and loaded at time k2, provided that i < k1 < k2 ≤
j − latency(Pk2). In this case, Pk1 = Sv and Pk2 = Lv, and Sv and Lv are spill code.

Conditions 2 and 3 are collectively referred to as the precedence constraints of a
sequential evaluation. An operation Pi = NOP is called an empty slot of a sequential
evaluation. The cost of P , c(P ), equals the number of operations in P , i.e., we define
an evaluation’s cost to be equal to its length.

We now extend the definitions in [4] to handle dual-issue processors. A parallel
evaluation PQ of a computation F is an ordering of operation pairs: PQ = PQ1,
PQ2, . . . , PQn where PQi = (pi, qi) such that pi ∈ L(F ) ∪ S(F ) ∪ {NOP} and
qi ∈ A(F ) ∪ {NOP}. NOP s are used to indicate that no operation is scheduled in
either or both operation pairs at some time. A parallel evaluation PQ must satisfy
the following four conditions:

1. For every nonleaf node v, there exists a unique PQj such that qj = v.
2. For every leaf node v, there exists a unique PQj such that pj = v.
3. For every PQi, PQj , if qi �= NOP , then pj ∈ Fqi implies j ≤ i− latency(qi).

Furthermore, qj ∈ Fqi implies j ≤ i − 1. Once again, the latency of each arithmetic
operation is one, and the latency of load operation qi is latency(qi).

4. For every PQi, PQj , if qi = Av and qj uses Av (j > i), then Av may be
stored at time k1 and loaded at time k2, provided that i < k1 < k2 ≤ j− latency(k2).
In this case, PQk1 = (Sv, qk1) and PQk2 = (Lv, qk2) are spill code.
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(a) A computation F .

Slot i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pi = L18 L19 − A13 L20 − A9 L21 L22 − A10 A5 S5 L14 L15 − A7 L16 L17 −
ρi = 1 2 2 1 2 2 1 2 3 3 2 1 0 1 2 2 1 2 3 3

Slot i = 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Pi = A8 A4 L5 − A2 S2 L24 L25 − A11 L26 L27 − A12 A6 L23 − A3 L2 − A1

ρi = 2 1 2 2 1 0 1 2 2 1 2 3 3 2 1 2 2 1 2 2 1

(b) A serial evaluation of F .

Slot i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
pi = L14 L15 − L16 L17 − − L18 L19 − L20 − L21 S4 L22 − − − L4 −
qi = − − − A7 − − A8 A4 − − A13 − A9 − − − A10 A5 − −
ρi = 1 2 2 2 3 3 2 2 3 3 3 3 3 2 3 3 2 1 2 2

Slot i = 21 22 23 24 25 26 27 28 29 30 31 32 33
pi = L24 L25 − L26 S11 L27 − L11 − L23 − − −
qi = A2 − − A11 − − − A12 − A6 − A3 A1

ρi = 2 3 3 3 2 3 3 3 3 3 3 2 1

(c) A parallel evaluation of F .

Fig. 1. Examples of sequential and parallel evaluations for latency = 2 and R = 3.

Conditions 3 and 4 are collectively referred to as the precedence constraints of a
parallel evaluation. A pair (pi, NOP ) is called an empty arithmetic slot if pi is not
a NOP, and (NOP, qi) is called an empty load/store slot if qi is not a NOP . A pair
(NOP,NOP ) is called an empty slot of a parallel evaluation. Note that by definition
the sets of empty arithmetic slots, empty load/store slots, and empty slots in an eval-
uation are disjoint. The cost of PQ, c(PQ), equals the number of operation pairs in
PQ, and note that we again define an evaluation’s cost to be equal to its length.

Sequential and parallel evaluations defined in this way ensure that every operation
is executed, the operations’ latencies are not violated, and spills (if any) are properly
placed in the evaluation. The limitations imposed by a register file of finite size are
described below. The concatenation P |P ′ (or simply PP ′) of two sequential evalua-
tions represents the sequential evaluation formed by the operations in P followed by
the operations in P ′.

For a sequential or parallel evaluation E, inregi is the set of all values that are in
a register at time i, namely the set of all values v such that v is defined or loaded at
time j, where j ≤ i, and is neither used nor stored at any time k, where j < k ≤ i.
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A nonleaf value v is said to be spilled at time i if it is stored at time j, where j ≤ i,
and is loaded at time k, where k > i. Thus if v is spilled or used at time i, then v is
not in a register at time i.

Each load operation adds one element to inreg, each store removes one, and
each arithmetic operation adds one and removes two. Therefore, |inregi| = the total
number of loads, minus stores, minus arithmetic operations at time i or earlier. The
number of values in registers at time i of an evaluation E, |inregi|, is denoted ρi(E),
and ρ(E) denotes the maximum over all i of ρi(E). That is, ρi(E) = |inregi| and
ρ(E) = maxi ρi(E). When all load latencies are equal, we let latency = latency(Li).
An example is shown in Figure 1 in which latency = 2 and R = 3.

Given a computation F , the number of available registers R, and the latencies
of the load operations, the sequential scheduling problem is to construct a sequential
evaluation P such that c(P ) is minimized subject to ρ(P ) ≤ R. The parallel scheduling
problem is to construct a parallel evaluation PQ such that c(PQ) is minimized subject
to ρ(PQ) ≤ R. In each case, the evaluation constructed is said to use R registers.
In this paper we describe algorithms that solve the parallel scheduling problem for
latency = 1 and latency = 2.

3. Minimizing spill operations plus empty slots in a parallel evalua-
tion. Given a tree F , the number of available registers R, and the latencies of the
load operations, a solution to the parallel scheduling problem is found by using the
sequential scheduling algorithm to construct a sequential evaluation that minimizes
the number of spill operations plus empty slots, transforming this evaluation into a
parallel evaluation, and then transforming this evaluation into a “contiguous” form.
At each stage of the transformation the number of spill operations plus empty slots
remains unchanged and the cost of the evaluation does not increase. In this section we
show that for arbitrary load latencies, no parallel evaluation of F can have fewer spill
operations plus empty slots than an optimal sequential evaluation of F , and that a
minimum cost sequential evaluation can be transformed into a parallel evaluation that
minimizes the number of spill operations plus empty slots. In the following sections,
we show that every parallel evaluation PQ of F in contiguous form that contains
k spilled values and g empty slots has a cost of ρ(PQ) + 2k + g + |A(F )|, and, for
latency = 1 or latency = 2, that no parallel evaluation can cost less.

3.1. Minimizing spills in a sequential evaluation. An efficient algorithm
that solves the sequential scheduling problem with latency = 1 was described by
Aho, Sethi, and Ullman [1] and Sethi and Ullman [36]. In addition to the three types
of operations described above, these algorithms include another binary arithmetic
operator that reads one operand from a register and one operand from memory and
writes its result to a register, causing no net change in inregi. Bose [6] describes
an adaptation of the algorithm in [1] that solves the sequential scheduling problem
without this fourth instruction class.

For a given vertex v, the algorithm first computes the minimum number of reg-
isters needed to evaluate the subtree rooted at v without spill code. The scheduling
routine uses these quantities to optimally schedule the entire tree. Spill code is inserted
when neither subtree can be scheduled using R or fewer registers. The operations that
compute a particular subtree are executed consecutively. That is, the computation of
a subtree is never interrupted by the computation of another subtree. The subtree
with the higher register requirement at a particular vertex is always executed first. As
argued in [6], this sequential scheduling algorithm finds a minimum cost evaluation of
F that uses no more than R registers assuming latency = 1. Furthermore, it can be
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shown that if the cheapest evaluation contains no spills, the algorithm minimizes the
maximum number of values in registers. The proof of this, which we omit, is similar
to the one given in [36].

An efficient algorithm to solve the sequential scheduling problem with latency =
2 was described by Kurlander, Proebsting, and Fischer [28]. They show that all
nontrivial trees can be scheduled without empty slots or spill code if the number
of available registers is at least one more than the minimum number of registers
needed to evaluate the tree without spills. In this case the sequential scheduling
algorithm for latency = 1 is first used to create an evaluation, and the ordering
of the load operations and the ordering of the arithmetic operations becomes an
invariant. The new evaluation then consists of a series of load operations, followed
by an alternating series of arithmetic and load operations, and ending with a series
of arithmetic operations. This algorithm therefore solves the sequential scheduling
problem with latency = 2 for sufficiently large values of R.

For smaller values of R, spill code may need to be inserted in the evaluation. For
each vertex v, the algorithm computes the register pressure caused by v by applying
the unit load latency sequential scheduling algorithm to the subtree rooted at v. The
register pressure caused by v is equal to the number of times during this evaluation
that the number of live values equals the maximum number of live values. A vertex
v is then spilled if the minimum number of registers needed to evaluate the subtree
rooted at v equals R and v’s register pressure is greater than two. If the minimum
number of registers needed to evaluate v is greater than R, then a predecessor of v
with the largest register pressure is spilled.

The cost of a sequential evaluation equals the number of nodes in F plus the
number of spill operations and empty slots. Therefore an optimal sequential evalu-
ation must contain the fewest spill operations plus empty slots among all sequential
evaluations. Furthermore, if k values are spilled, there are 2k spill operations, i.e., k
store/load pairs.

3.2. A lower bound on spill operations plus empty slots in a parallel
evaluation. A simple transformation allows us to transform a k-spill, g-empty slot
parallel evaluation with arbitrary load latencies and that uses R registers into a k-
spill, g-empty slot sequential evaluation that uses R registers. Recall that for a parallel
evaluation PQ and a time i, PQi = (pi, qi).

Serial transformation. Given a k-spill parallel evaluation PQ with arbitrary
load latencies that uses R registers, we construct a serial evaluation P as follows.
For each time i, if PQi = (L,A) for some load L and arithmetic operation A, let
Ji = A,L. Similarly, if PQi = (L,NOP ), (S,NOP ), or (NOP,A), let Ji = L, S, or
A, respectively. If PQi = (S,A), let Ji = A,S. Finally if PQi = (NOP,NOP ), let
Ji = NOP . Then let P ′ = J1J2 . . . J|PQ|. In [4] a similar transformation is applied
to parallel evaluations that do not contain spills and with latency = 1. We first show
that when P is constructed in this manner it represents a sequential evaluation. Then
we show that ρ(P ) ≤ ρ(PQ) (Lemma 3.1).

If two operations v and w are scheduled d ≥ 1 cycles apart in parallel evaluation
PQ, these operations are scheduled d or more cycles apart after PQ is transformed
into P . Therefore these operations cannot violate the precedence constraints in the
serial evaluation P . If operations v and w are scheduled at the same time in PQ then
by definition of a parallel evaluation they are not dependent on one another. Therefore
these operations cannot violate the precedence constraints in P , and it follows that
P represents a sequential evaluation.
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Lemma 3.1. Given a k-spill parallel evaluation PQ of a computation F with
arbitrary load latencies and R available registers, and given the serial evaluation P
formed by applying the serial transformation to PQ, then ρ(P ) ≤ ρ(PQ).

Proof. Consider some arbitrary time j of the evaluation P . Suppose first that Pj
contains an arithmetic operation, i.e., Pj = qi for some time i of PQ. By definition of
the serial transformation, all operations scheduled earlier than qi in P must have been
scheduled at time i− 1 or earlier in PQ. Therefore, the number of values in registers
at time j − 1 of P and at time i − 1 of PQ is the same, i.e., ρj−1(P ) = ρi−1(PQ).
Since qi is an arithmetic operation, ρj(P ) = ρj−1(P ) − 1 ≤ ρj−1(P ), which implies
that ρj(P ) ≤ ρi−1(PQ).

Now suppose that Pj contains a load/store operation, i.e., Pj = pi for some time
i of PQ. By definition of the serial transformation, all operations scheduled at time
j or earlier in P must have been scheduled at time i or earlier in PQ. Therefore,
ρj(P ) ≤ ρi(PQ). Finally if Pj contains a NOP , then ρj(P ) ≤ ρj−1(P ).

Since P is a sequential evaluation of F that contains the same non-NOP operations
as PQ, evaluations P and PQ contain the same number of spills. Furthermore, by
construction both evaluations contain the same number of empty slots. We can now
state the following lemmas whose proofs follow from the discussion above.

Lemma 3.2. Consider a computation F with arbitrary load latencies and R
available registers. If an optimal sequential evaluation P of F that uses R registers
contains 2k spill operations and g empty slots, then the number of spill operations
plus empty slots in any parallel evaluation of F that uses R registers is not less than
2k + g.

Lemma 3.3. Consider a computation F with arbitrary load latencies and R avail-
able registers, and let minreg be the minimum number of registers needed to evaluate
F without spills in a serial evaluation. Then all parallel evaluations of F that use
fewer than minreg registers have at least one spill.

3.3. Creating a minimum-spill operation plus empty slot parallel eval-
uation. An optimal serial evaluation of F thus directly yields a lower bound 2k + g
on the number of spill operations plus empty slots in any parallel evaluation of F . We
can achieve this lower bound through a straightforward transformation of an optimal
sequential evaluation.

Parallel transformation. Given a k-spill, g-empty slot sequential evaluation
P = P1, . . . , Pn with arbitrary load latencies, then for each time i,

(i) if Pi ∈ A(F ), let PQi = (NOP,Pi), and
(ii) if Pi ∈ L(F ) ∪ S(F ), let PQi = (Pi, NOP ),
(iii) if Pi = NOP , let PQi = (NOP,NOP ).
No precedence is violated by this transformation since the operations are executed

in the same order, and all pairs of operations are the same number of cycles apart in
both evaluations. Therefore PQ represents a k-spill, g-empty slot parallel evaluation
of F that uses R registers. Note, however, that PQ is degenerate since there is a
NOP scheduled in PQ for every time i; thus PQ is unlikely to have the minimum
cost. The result of applying the parallel transformation to the sequential evaluation
in Figure 1(b) is shown in Figure 2.

4. Load-contiguous parallel evaluations. We have shown that a parallel
evaluation with the minimum number of spill operations plus empty slots can be
constructed by applying the parallel transformation to an optimal sequential eval-
uation. We now describe the process of transforming this parallel evaluation into
a contiguous form. We define a load-contiguous parallel evaluation and show that
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Slot i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
pi = L18 L19 − − L20 − − L21 L22 − − − S5 L14 L15 − − L16 L17 −
qi = − − − A13 − − A9 − − − A10 A5 − − − − A7 − − −
ρi = 1 2 2 1 2 2 1 2 3 3 2 1 0 1 2 2 1 2 3 3

Slot i = 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
pi = − − L5 − − S2 L24 L25 − − L26 L27 − − − L23 − − L2 − −
qi = A8 A4 − − A2 − − − − A11 − − − A12 A6 − − A3 − − A1

ρi = 2 1 2 2 1 0 1 2 2 1 2 3 3 2 1 2 2 1 2 2 1

Fig. 2. The result of transforming the sequential evaluation in Figure 1(b) into a parallel
evaluation for latency = 2 and R = 3.

every parallel evaluation can be made load-contiguous without increasing its cost or
the maximum number of values in registers. Furthermore, for load latencies ≤ 2 we
show that the number of spill operations plus empty slots also does not increase. We
then show in section 5 that a load-contiguous evaluation can be made contiguous, i.e.,
both load-contiguous and store-contiguous, without increasing its cost, the maximum
number of values in registers, or the number of spill operations plus empty slots. Fi-
nally in sections 6 and 7 we show that for latency = 1 or latency = 2, a contiguous
evaluation that minimizes the number of spill operations plus empty slots is necessar-
ily optimal. That is, applying the contiguity transformations to a parallel evaluation
with the minimum number of spill operations plus empty slots produces a minimum
cost evaluation.

A parallel evaluation of a computation F is said to be load-contiguous if and only
if no load operation is scheduled at a later time than an empty load/store slot, i.e., a
pair (NOP, q) where q is not a NOP . Using this definition we can prove the following
theorem and lemma.

Theorem 4.1. Given any k-spill parallel evaluation PQ of a computation F with
arbitrary load latencies, there exists a k′-spill load-contiguous parallel evaluation PQ′

of F such that
(i) c(PQ′) ≤ c(PQ),
(ii) ρ(PQ′) ≤ ρ(PQ), and
(iii) k′ ≤ k.
Proof. Let PQ be a k-spill, g-empty slot parallel evaluation of a computation F

that uses R registers, but is not load-contiguous. Consider the first empty load/store
slot i. Let j be the first time after i where a load operation is scheduled. We
create an evaluation PQ′ that is the same as PQ, except one of of the following two
transformations has been applied.

1. If the load scheduled at time j loads a value that is stored at time m such
that i < m < j, both the load and store are deleted.

2. Otherwise, the load operation at time j is moved to i.
In both cases, c(PQ′) ≤ c(PQ) and PQ′ has no more spill operations than PQ.

It remains to show that ρ(PQ′) ≤ ρ(PQ), and that precedence is preserved.
Since no load/store operation is scheduled at time i, ρi(PQ) = ρi−1(PQ) − 1.

From time i through j−1 by assumption there are no load operations, so the number
of registers used as we progress forward can only stay the same or decrease. In
particular, for all time s such that i ≤ s < j, ρs(PQ) ≤ ρi−1(PQ)−1. We tentatively
create a new evaluation PQ′ that is identical to PQ except the load operation at
time j is moved to time i. That is, p′i = pj , and p′j = NOP . For all m < i,
ρm(PQ′) = ρm(PQ). Similarly, for all m ≥ j, ρm(PQ′) = ρm(PQ). However,
ρi(PQ

′) = ρi(PQ)+ 1 due to the new load operation at time i. Similarly, for all time
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Slot i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
pi = L18 L19 − L20 − L21 L22 − L14 L15 S5 − L16 L17 − L5 L24 − L25 S2
qi = − − − A13 − A9 − − A10 A5 − − A7 − − A8 A4 − A2 −
ρi = 1 2 2 2 2 2 3 3 3 3 2 2 2 3 3 3 3 3 3 2

Slot i = 21 22 23 24 25 26 27 28 29 30
pi = − L26 L27 − L23 L2 − − − −
qi = − A11 − − A12 A6 − A3 − A1

ρi = 2 2 3 3 3 3 3 2 2 1

Fig. 3. The result of applying the load-contiguous transformation to the parallel evaluation in
Figure 2 for latency = 2 and R = 3.

s such that i ≤ s < j, ρs(PQ
′) = ρs(PQ) + 1. But since ρs(PQ) ≤ ρi−1(PQ) − 1

from above, we can conclude that for i ≤ s < j, ρs(PQ
′) = ρs(PQ) + 1 ≤ ρi−1(PQ).

Therefore if the load operation at time j is moved to i, ρ(PQ′) ≤ ρ(PQ) ≤ R. By a
similar argument we can show that if the load at time j and a store at time m are
deleted, ρ(PQ′) ≤ ρ(PQ) ≤ R.

Moving a load operation earlier in the evaluation cannot violate its precedence
with respect to an arithmetic operation that uses the loaded value. If the load oper-
ation scheduled at time j loads a value that is stored at time m such that i < m < j,
both the load and store operations are deleted. Note that the number of empty slots
in the evaluation will increase if the load operation at time j or the store operation
at time m is in an empty arithmetic slot.

The transformation described above can be applied iteratively until the evaluation
is load-contiguous. The transformation does not affect any operation earlier than i,
and each time the transformation is applied either a load operation is scheduled at
time i or a spill is eliminated. Therefore the iterations will eventually terminate, giving
an evaluation in which the initial portion of the evaluation contains load operations,
store operations and empty slots, until the load operations are exhausted.

We now extend this result by showing that for latency ≤ 2, the number of spill
operations plus empty slots also does not increase.

Lemma 4.2. Given any k-spill, g-empty slot, parallel evaluation PQ of a com-
putation F with latency ≤ 2, there exists a k′-spill, g′-empty slot, load-contiguous
parallel evaluation PQ′ of F such that

(i) c(PQ′) ≤ c(PQ),
(ii) ρ(PQ′) ≤ ρ(PQ),
(iii) k′ ≤ k, and
(iv) g′ = g.
Proof. Let PQ be a k-spill, g-empty slot parallel evaluation of a computation F

that uses R registers, but is not load-contiguous. Consider the first empty load/store
slot i. Let j be the first time after i where a load operation is scheduled. We apply the
transformation described in Theorem 4.1 to either move the load operation at time j
to i or delete the load operation at time j along with the store of the same value. In
each case we show that an evaluation can be created that contains g empty slots.

If PQj originally contained an empty arithmetic slot, moving the load operation
scheduled there to time i will create a new empty slot at time j. Deleting this empty
slot does not violate precedence. Deleting an empty slot cannot violate precedence
between two arithmetic operations, between an arithmetic operation and a store op-
eration, or between a store operation and a load operation, because arithmetic and
store operations have a latency of 1. Since the load latency is not larger than 2,
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deleting an empty slot at time j could only violate precedence if PQj−1 contains a
load operation and PQj+1 contains an arithmetic operation dependent on that load.
However, by assumption there are no load operations scheduled between time i and
time j in PQ. Therefore PQj−1 does not contain a load operation, and precedence
is not violated if an empty slot at time j is deleted.

A similar argument applies if the load operation scheduled at time j loads a value
that is stored at time m such that i < m < j. Deleting both the load and store
operations will create new empty slots if either operation was originally scheduled in
an empty arithmetic slot. Precedence would be violated by deleting these empty slots
if either operation was preceded by a load operation and followed by an arithmetic
operation dependent on that load. However, by assumption there cannot be a load
operation scheduled between the first empty load/store slot at time i and time j.
Therefore any new empty slots can be deleted without violating precedence.

Furthermore by arguments similar to those used in the proof of Theorem 4.1 we
can show that c(PQ′) ≤ c(PQ), ρ(PQ′) ≤ ρ(PQ), k′ ≤ k, and that this transforma-
tion can be applied iteratively until the evaluation is load contiguous.

Load-contiguous transformation for load latencies ≤ 2. Given any parallel
evaluation PQ of a computation F , we create a load-contiguous parallel evaluation
PQ′ using the transformation described in Lemma 4.2: we apply the transformation
from Theorem 4.1 and delete any slots that are empty as a result of each phase of the
transformation.

The result of applying the load-contiguous transformation to the parallel evalua-
tion in Figure 2 is shown in Figure 3. We now extend the notion of load-contiguity
to stores.

5. Store-contiguous parallel evaluations. We define a store-contiguous par-
allel evaluation and show that every load-contiguous parallel evaluation can be made
store-contiguous as well. Given R available registers, a parallel evaluation of a com-
putation F is store-contiguous if and only if for any i such that a store operation is
scheduled at time i, ρi+1 = R. This implies that store operations are scheduled as
late as possible. Using this definition we can prove the following theorem.

Theorem 5.1. Given a k-spill, g-empty slot, load-contiguous, parallel evaluation
PQ of a computation F with arbitrary load latencies and with ρ(PQ) ≤ R, there exists
a k′-spill, g′-empty slot, parallel evaluation PQ′ of F such that

(i) c(PQ′) ≤ c(PQ),
(ii) ρ(PQ′) ≤ R,
(iii) k′ ≤ k,
(iv) g′ ≥ g,
(v) 2k′ + g′ ≤ 2k + g,
(vi) PQ′ is load-contiguous, and
(vii) PQ′ is store-contiguous.
Proof. Let PQ be a load-contiguous, k-spill, g-empty slot parallel evaluation of

a computation F that uses R registers, but is not store-contiguous. We show that
PQ can be transformed into an evaluation that is both load-contiguous and store-
contiguous without increasing the evaluation’s cost, the number of spill operations,
or the number of spill operations plus empty slots, and without causing the number
of empty slots to decrease or the maximum number of values in registers to exceed R.
We begin by showing that the last store operation in the evaluation that violates the
store-contiguous property cannot immediately precede another store operation. We
then show that the parallel evaluation can be transformed so that the store operation
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no longer violates the store-contiguous property. Finally we show that both load-
contiguity and store-contiguity can be achieved for the entire evaluation.

Consider the largest time i such that a store operation is scheduled at time i and
ρi+1(PQ) < R. We show by contradiction that there cannot be a store operation
scheduled at time i + 1. Suppose there is a store operation scheduled at time i + 1.
Then ρi+1(PQ) < ρi(PQ) because the number of values in registers must decrease
by at least 1 between time i and time i + 1. Furthermore, since a store operation
is scheduled at time i, ρi(PQ) < ρi−1(PQ). Thus ρi+1(PQ) ≤ ρi−1(PQ) − 2. The
number of values in registers at any time can increase by at most one in the next
time period, which occurs when the next time period contains only a load operation.
Therefore, ρi+2(PQ) ≤ ρi−1(PQ)−1. Since ρi−1(PQ) ≤ R, we have ρi+2 ≤ R−1. In
this case, the store scheduled at time i+ 1 contradicts the assumption that the store
scheduled at time i is the last store that precedes a time period with fewer than R
values in registers. Therefore there is not a store operation scheduled at time i+ 1.

We now show that since ρi+1(PQ) < R, we can construct a new evaluation
PQ′ in which the store scheduled at time i is moved one time period later. We
consider seven cases depending on the operations scheduled at times i and i+1. The
transformation from PQ to PQ′ is shown in Figure 4. For each case, the upper pairs
of operations represent PQi and PQi+1, while the lower pairs represent PQ′i and
PQ′i+1. For conciseness we let X and Y each represent either an arithmetic operation
or an empty slot, and we let Z represent either a load operation or an empty slot. In
each case it can be seen that c(PQ′) ≤ c(PQ), k′ ≤ k, and g′ ≥ g.

The new evaluation does not violate the precedence constraints because in each
case one or more of the following transformations is performed: a load operation is
moved earlier in the evaluation, a store operation is moved later in the evaluation,
an arithmetic operation is moved one slot later into a previously empty slot, or an
arithmetic operation is moved before a store operation. None of these transformations
can violate the precedence constraints, unless a load operation is moved earlier than
a store operation of the same value. In this case deleting both operations does not
violate precedence. We now show that in each case ρ(PQ′) ≤ R and 2k′+g′ ≤ 2k+g.

The transformations affect only operations scheduled at time i or i+ 1, so for all
j ≤ i − 1 and j ≥ i + 1, ρj(PQ) = ρj(PQ

′). As a result, showing that ρi(PQ
′) ≤

ρi−1(PQ
′) allows us to conclude that ρ(PQ′) ≤ R.

(i) Case 1 in Figure 4 such that S and L reference the same value: Delete the
load and store operations, i.e., let PQ′i = (NOP,X) and PQ′i+1 = (NOP, Y ). Since
PQ′i = (NOP,A) or (NOP,NOP ), ρi(PQ

′) ≤ ρi−1(PQ
′). The number of empty

slots does not decrease. The quantity 2k+ g does not increase because the number of
spills decreases by one and the number of empty slots increases by no more than two.

(ii) Cases 2–6 in Figure 4 such that S and L, if present, do not reference the
same value: Since ρi−1(PQ) ≤ R and ρi−1(PQ) = ρi−1(PQ

′), it can be seen in
each case that ρi(PQ

′) ≤ R. Also, the number of spill operations and empty slots is
unchanged.

(iii) Case 7 in Figure 4 such that S and L do not reference the same value: In this
case, ρi−1(PQ) ≤ R− 1. If this were not true, then ρi+1(PQ) = R, which contradicts
the assumption that ρi+1(PQ) < R. Therefore ρi(PQ

′) ≤ R. Again, the number of
spill operations and empty slots is unchanged.

In each case we have shown that if a store operation is scheduled at time i and
ρi+1(PQ) < R, it is always possible to move the store one time period later without
violating precedence, without increasing the evaluation’s cost, the number of spill
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Case = 1 2 3 4 5 6 7
p = S L S − S L S Z S − S − S L
q = X Y − − A X − A A A′ A − − −
p′ = − − − S L S Z S − S − S L S
q′ = X Y − − A X A − A A′ − A − −

Fig. 4. The contents of PQi, PQi+1, PQ
′
i, PQ

′
i+1 for each case of the store-contiguous

transformation. X and Y each represent either an arithmetic operation or an empty slot, and Z
represents either a load operation or an empty slot. In Case 1 the store and load operations reference
the same value. In the remaining cases the store and load operations, if present, reference different
values.

Slot i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
pi = L18 L19 − L20 − L21 L22 − L14 L15 − L16 S5 L17 − L5 L24 − L25 −
qi = − − − A13 − A9 − − A10 A5 − A7 − − − A8 A4 − A2 −
ρi = 1 2 2 2 2 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3

Slot i = 21 22 23 24 25 26 27 28 29 30
pi = L26 S2 L27 − L23 L2 − − − −
qi = A11 − − − A12 A6 − A3 − A1

ρi = 3 2 3 3 3 3 3 2 2 1

Fig. 5. The result of applying the store-contiguous transformation to the load-contiguous
evaluation in Figure 3 with R = 3.

operations, or the number of spill operations plus empty slots, and without causing
the number of empty slots to decrease or the maximum number of values in registers
to exceed R. The transformation described above can be applied repeatedly to the
same store, moving it one time period later in each case, until either it does precede
a time period in which R values are in registers, or the store can be deleted (if it
is moved later than the load of the same value). Then this transformation can be
applied to the preceding store. Since the evaluation is of finite length, each store will
eventually either precede a time period containing R values in a register or be deleted.

The movement of one store cannot affect the prior placement of a later store since,
as we have shown, the last store to violate the store-contiguous property cannot
immediately precede another store operation. Since there are finitely many stores,
the sequence of transformations will eventually terminate with each remaining store
preceding a time period with R values in registers.

It remains to show that it is possible to satisfy both load-contiguity and store-
contiguity in an optimal evaluation. Notice that up to the point of deleting load/store
pairs, any transformation that moves a load interchanges the load with a store. Thus
load-contiguity is preserved. But empty load/store slots can be introduced wherever a
load/store pair is deleted and these may destroy load-contiguity. In this case, however,
the load-contiguous transformation can be reapplied. At worst, the transformation
described above and the load-contiguous transformation are reapplied k times, i.e.,
each time a spill is eliminated.

Store-contiguous transformation. Given a load-contiguous parallel evalua-
tion PQ of a computation F , we create a parallel evaluation PQ′ that is both load-
contiguous and store-contiguous using the transformation described in Theorem 5.1.

An evaluation PQ′ is said to be contiguous if it is both load-contiguous and
store-contiguous, i.e., if no load operation is scheduled in a later time period than
an empty load/store slot, and for any i such that a store operation is scheduled at
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time i, ρi+1 = R. The result of applying the store-contiguous transformation to the
load-contiguous parallel evaluation in Figure 3 is shown in Figure 5.

6. Cost of a k-spill parallel evaluation. We have shown that given a k-spill,
g-empty slot parallel evaluation of a computation F that uses R registers, there exists
another parallel evaluation of F that costs no more, uses no more than R registers,
and is contiguous. Furthermore, for load latencies ≤ 2 the contiguous evaluation has
no more than 2k+ g spill operations plus empty slots. We now examine the structure
of such a k-spill, g-empty slot contiguous evaluation with a sequence of lemmas and
show in Theorem 6.5 that its cost is ρ(PQ)+2k+g+|A(F )|. The results in this section
apply with arbitrary load latencies.

Lemma 6.1 (each store operation and the following operation). Consider a k-
spill, g-empty slot contiguous parallel evaluation PQ of a computation F with arbitrary
load latencies and R available registers. If PQi contains a store operation S, then
PQi = (S,NOP ), and PQi+1 = (L,NOP ) for some load operation L.

Proof. Let PQ be a k-spill, g-empty slot contiguous parallel evaluation of a
computation F such that ρ(PQ) ≤ R, and consider an arbitrary store operation S
in PQi. We show by contradiction that PQi = (S,NOP ), and show that PQi+1 =
(L,NOP ) for some load operation L. Assume that PQi �= (S,NOP ), i.e., PQi =
(S,A). Then ρi(PQ) = ρi−1(PQ)−2. The number of values in registers at some time
can increase by at most one in the next time period, so ρi+1(PQ) ≤ ρi(PQ) + 1 =
ρi−1(PQ) − 1 ≤ R − 1. Thus PQ is not store-contiguous, which is a contradiction.
We conclude that PQi = (S,NOP ).

Now from the store contiguity of PQ we know that ρi+1(PQ) = R. We also
know that ρi−1(PQ) ≤ R and therefore, since PQi = (S,NOP ), ρi(PQ) ≤ R − 1.
Thus ρi+1(PQ) − ρi(PQ) ≥ 1 which implies that PQi+1 = (L,NOP ) for some load
operation L.

Lemma 6.2 (operations between two successive store operations). Consider a k-
spill, g-empty slot contiguous parallel evaluation PQ of a computation F with arbitrary
load latencies and R available registers. If PQi = (S,NOP ) for some store operation
S and the following store operation exists and is scheduled at time j, j > i, then for all
m, i+ 1 < m < j, PQm is of the form (L,A) or (NOP,NOP ), and ρm(PQ) = R.

Proof. Consider a store operation scheduled at time i of a contiguous parallel
evaluation PQ with ρ(PQ) ≤ R, and the following store operation scheduled at time
j. We know from Lemma 6.1 that PQi+1 = (L,NOP ) and from store-contiguity that
ρi+1(PQ) = R. We now show by contradiction that for all m such that i+1 < m < j,
ρm(PQ) = R. Assume that for some time m, i+1 < m < j, ρm(PQ) < R. Therefore
the number of values in registers decreases by at least one between time i + 1 and
m. Since there are, by assumption, no stores scheduled at these times, there must
be at least one time m′, i + 1 < m′ ≤ m such that PQm′ = (NOP,A). However,
there must be a load operation after time j that loads the value stored in slot j.
Thus the empty load/store slot m′ causes PQ not to be load-contiguous, which is a
contradiction. Therefore, for all i + 1 < m < j, ρm(PQ) = R. This implies that for
all m, i+ 1 < m < j, PQm is of the form (L,A) or (NOP,NOP ).

Lemma 6.3 (operations before the first store operation). Consider a k-spill, g-
empty slot contiguous parallel evaluation PQ of a computation F with arbitrary load
latencies and R available registers. If the first store operation of PQ is scheduled at
time i, then a load operation or an empty slot is scheduled at each time preceding time
i, and exactly R empty arithmetic slots precede time i.
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Proof. Consider the first time i when a store operation S, if one exists, is scheduled
in a contiguous parallel evaluation PQ with ρ(PQ) ≤ R. Load-contiguity and the fact
that there is a load operation scheduled at time i+1 imply that there can be no empty
load/store slots before slot i, and since there are no stores there, there must be a load
operation or an empty slot scheduled at each time before time i.

Store-contiguity implies that ρi+1(PQ) = R, so ρi−1 = R because PQi =
(S,NOP ) and PQi+1 = (L,NOP ) for some store operation S and load operation
L. Therefore there are R more load operations than arithmetic operations scheduled
before time i, which implies that there are exactly R empty arithmetic slots before
time i.

Lemma 6.4 (operations after the last store operation). Consider a k-spill, g-
empty slot contiguous parallel evaluation PQ of a computation F with arbitrary load
latencies and R available registers. If the last store operation of PQ is scheduled at
time m, then there are no empty arithmetic slots after time m+ 1.

Proof. Consider the last time m when a store operation S, if one exists, is sched-
uled in a contiguous parallel evaluation PQ with ρ(PQ) ≤ R. We claim that there
are no empty arithmetic slots after time m+1, and show this by contradiction. Note
first that there can be no empty load/store slots between time m and the last load
operation at time t. As argued above, if there is such an empty load/store slot, PQ
would not be load-contiguous. Assume that PQ does contain an empty arithmetic
slot m′ such that m + 1 < m′. If there is more than one such slot, we let m′ be
the first one. Therefore, there is an arithmetic operation or an empty slot scheduled
at every time j, where m + 2 ≤ j ≤ m′ − 1. (Recall that the operations scheduled
at time m + 1 have the form (L,NOP ).) Since PQ is contiguous, there must be a
load operation or an empty slot scheduled at every time j, where m + 1 ≤ j ≤ m′.
Therefore, ρm′−1(PQ) = R. Since PQm′ = (L,NOP ) for some load operation L,
ρm′(PQ) = R+ 1, which is a contradiction. Therefore, the empty arithmetic slot m′

cannot exist.
Theorem 6.5 (cost of a contiguous parallel evaluation). A k-spill, g-empty slot

contiguous parallel evaluation PQ of a computation F with arbitrary load latencies
and with ρ(PQ) ≤ R has cost c(PQ) = ρ(PQ) + 2k + g + |A(F )|.

Proof. We have shown that in a contiguous parallel evaluation there are two
empty arithmetic slots for each store operation (spill), namely, the slot with the store
operation and the one immediately after. Furthermore there are no other empty
arithmetic slots between a pair of store operations. If any stores exist, there are
R empty arithmetic slots before the first store operation and there are no empty
arithmetic slots after the last store, except for the slot immediately following the last
store which is of the form (L,NOP ). If there is at least one spill, ρ(PQ) = R since
PQ is contiguous. Therefore, the cost of a k-spill contiguous evaluation, where k ≥ 1,
is the sum of the number of slots containing arithmetic operations, plus the number
empty arithmetic slots, plus the number of empty slots, i.e., ρ(PQ)+2k+ g+ |A(F )|.

If there are no spills in a contiguous parallel evaluation PQ, the number of empty
arithmetic slots can be seen to be ρ(PQ). The number of values in registers only
increases when operation pairs scheduled at some time are of the form (L,NOP ).
Since PQ contains no spills, the number of values in registers only decreases when
operation pairs scheduled have the form (NOP,A). The number of values in reg-
isters is unchanged when operation pairs scheduled have the form (L,A) or (NOP,
NOP ). Since PQ is load-contiguous, each operation pair of the form (NOP,A) must
follow all operation pairs of the form (L,NOP ). Therefore, ρ(PQ) = the number of
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operation pairs of the form (L,NOP ). Since arithmetic operations or empty slots are
scheduled at all other times, the cost of a 0-spill contiguous evaluation is
ρ(PQ) + g + |A(F )|.

As a consequence of Theorem 6.5 and the preceding lemmas, a k-spill, g-empty
slot contiguous evaluation that uses R registers has the following general form. The
first store operation, if it exists, is preceded by a series of operation pairs of the form
(L,A) interspersed with empty slots and R operation pairs of the form (L,NOP ).
Each of the k store operations is scheduled in an empty arithmetic slot, (S,NOP ),
and is followed by an operation pair of the form (L,NOP ). Such pairs of load/store
operations are followed by a series of operation pairs of the form (L,A) interspersed
with empty slots. The evaluation ends with a series of operation pairs of the form
(NOP,A), also interspersed with empty slots. It can be seen that the contiguous
evaluation in Figure 5 satisfies Lemmas 6.1, 6.2, 6.3, and 6.4 and Theorem 6.5.

Note also that there are R − 1 final operations (ρ(PQ) − 1 operations if there
are no stores) of the form (NOP,A) interspersed with empty slots. This will always
be the case since there are R values in registers in the time period after the last
store, schedules of dependence trees leave one final value in a register, operation
pairs of the form (L,A) or (NOP,NOP ) do not change the number of values in
registers, and each operation pair of the form (NOP,A) reduces the number of values
in registers by one. Any empty slots that follow the first empty arithmetic slot can
be deleted without violating precedence. Furthermore the evaluation can be made
to begin with R operation pairs of the form (L,NOP ), followed by only (L,A) and
(NOP,NOP ) operation pairs up to the first store operation by simply pushing the
leading A operations to the right until they are scheduled consecutively up to the first
store operation (or consecutive slots up to the last (L,A) operation pair if there are
no stores), and deleting any empty slots that precede the first arithmetic operation
by more than one cycle.

7. Optimal parallel evaluations for latency = 1 or latency = 2. We de-
scribe an algorithm that solves the parallel scheduling problem given a computation
F and R available registers. We first construct a k-spill, g-empty slot sequential eval-
uation P using an optimal sequential scheduling algorithm, such as the two described
in section 3.1. Using the parallel transformation of section 3.3, we construct the
parallel evaluation PQ1. Using the load-contiguous transformation of section 4, we
construct the evaluation PQ2. Using the store-contiguous transformation of section 5,
we construct the evaluation PQ3. If latency = 1, we show that using the latency = 1
sequential scheduling algorithm to produce P in the first step gives an evaluation PQ3

that is a solution to the parallel scheduling problem. Similarly, if latency = 2 we show
that using the latency = 2 sequential scheduling algorithm to produce P in the first
step gives an evaluation PQ3 that is a solution to the parallel scheduling problem.

Note that the sequential evaluations produced by the two sequential scheduling
algorithms can be quite different since they make different assumptions about the
underlying processor. We begin by describing two properties that are independent of
the optimal sequential scheduling algorithm used.

Lemma 7.1. Given a computation F with arbitrary load latencies and R available
registers, there exists a solution to the parallel scheduling problem that is contiguous.

Proof. By Theorem 4.1 and Theorem 5.1, given any parallel evaluation PQ of F
that uses R registers, it is possible to construct another contiguous evaluation that
uses R registers, contains no additional spills, and costs no more than PQ.

As a result of Lemma 7.1, we consider only contiguous evaluations of F .
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Lemma 7.2. Given a computation F with latency ≤ 2 and R available registers,
evaluations P and PQ3 produced by the parallel scheduling algorithm have the same
number of spill operations plus empty slots, and PQ3 has no fewer empty slots than P .

Proof. By Lemma 3.2, no parallel evaluation of F that uses R registers can contain
fewer spill operations plus empty slots than an optimal sequential evaluation. Since P
is optimal, the number of spill operations plus empty slots in the parallel evaluations
PQ3 is not less than 2k + g. But the transformations used to produce PQ3 never
increase the number of spill operations plus empty slots in the evaluation, as shown
in Lemma 4.2 and Theorem 5.1. Therefore the number of spill operations plus empty
slots in the parallel evaluation PQ3 is exactly 2k+ g. Similarly, the number of empty
slots in evaluation PQ3 is not less than g.

We now show that the parallel scheduling algorithm for latency = 1 gives an
optimal evaluation.

Theorem 7.3. Given a computation F with latency = 1 and R available registers,
the parallel scheduling algorithm for latency = 1 gives an evaluation, PQ3, that is a
solution to the parallel scheduling problem.

Proof. By Lemma 7.2, the number of spill operations plus empty slots in parallel
evaluation PQ3 is 2k + g. Since load latencies equal one we can assume that all
evaluations contain no empty slots. Therefore, PQ3 contains exactly k spills. We first
show that only k-spill contiguous evaluations need to be considered. We then show
that PQ3 is an optimal k-spill contiguous evaluation of F .

Consider two contiguous evaluations of F , PQ and PQ′, that contain k and
k′ spills, respectively, such that both use R registers and k �= k′. We show that
c(PQ) ≤ c(PQ′). By Lemma 3.2 and since g = 0, no parallel evaluation of F that
uses R registers can contain fewer than k spills, so k < k′. We first consider the
case where k > 0. Since PQ is contiguous, and since it contains at least one spill,
ρ(PQ) = R. Since k < k′, PQ′ also contains at least one spill. Therefore ρ(PQ) =
ρ(PQ′). Since both PQ and PQ′ are contiguous, c(PQ) = ρ(PQ) + 2k+ |A(F )|, and
c(PQ′) = ρ(PQ′) + 2k′ + |A(F )|. Since k < k′, c(PQ) < c(PQ′). Therefore if k �= 0,
no contiguous evaluation with more than k spills is optimal.

We now consider the case where k = 0. Since PQ uses R registers, ρ(PQ) ≤ R
and c(PQ) = ρ(PQ) + |A(F )|. Since k < k′, PQ′ contains at least one spill, so
ρ(PQ′) = R and c(PQ′) = R + 2k′ + |A(F )|. Therefore, c(PQ) < c(PQ′). We have
shown that given an arbitrary contiguous evaluation PQ′ that uses R registers, if PQ′

does not contain k spills, then PQ′ cannot be an optimal evaluation of F . We will
therefore only consider k-spill contiguous evaluations of F .

By Theorem 6.5, every k-spill contiguous evaluation PQ of F that uses R registers
has cost c(PQ) = ρ(PQ) + 2k + |A(F )|. If k > 0, c(PQ) = R + 2k + |A(F )|, which
is a constant. That is, all k-spill contiguous evaluations of F have the same cost and
every one of them is optimal. In particular, PQ3 is optimal.

If k = 0, ρ(PQ) must be minimized in order to minimize c(PQ) = ρ(PQ)+|A(F )|.
In [36] it is shown that the sequential scheduling algorithm minimizes the number of
registers used. By Lemma 3.1, any parallel evaluation of a computation F can be
transformed into a serial evaluation of F without increasing the maximum number
of values in registers. Therefore, no parallel evaluation of F uses fewer than ρ(P )
registers. The evaluation P is transformed by our algorithm into PQ2 by applying
the parallel transformation followed by the load-contiguous transformation. Since
k = 0 by assumption, the load-contiguous evaluation is also store-contiguous, and
therefore contiguous. As described in section 3.3, the parallel transformation does
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not change the maximum number of values in registers. By Theorem 4.1, the load-
contiguous transformation also does not increase the maximum number of values in
registers. Therefore, ρ(PQ) = ρ(P ) and ρ(PQ) is minimized. We conclude therefore
that PQ3 is an optimal no-spill contiguous evaluation of F .

The following theorem shows that the parallel scheduling algorithm for latency =
2 gives an optimal evaluation. The theorem relies on results regarding the optimal
sequential scheduling algorithm for latency = 2 [28]. In particular we use the fact
that if the number of available registers is large enough, the algorithm produces an
evaluation containing no empty slots, and otherwise the evaluation produced must
contain at least one empty slot. While the proof of Theorem 7.3 considered cases
based on the number of spills, the proof of Theorem 7.4 considers cases based on the
relative sizes of R and the minimum number of registers needed to avoid the use of
spill code. With latency = 2, it is the number of available registers that affects the
existence of empty slots in an optimal parallel evaluation.

Theorem 7.4. Given a computation F with latency = 2 and R available registers,
the parallel scheduling algorithm for latency = 2 gives an evaluation, PQ3, that is a
solution to the parallel scheduling problem.

Proof. We prove that no contiguous evaluation of F costs less than PQ3. Let
PQ′ be an arbitrary k′-spill, g′-empty slot contiguous evaluation of F that uses R
registers, and let ρ′ = ρ(PQ′). We further let minreg equal the minimum number of
registers needed to evaluate F without spill code on one processor with load latencies
= 1. We first consider the case where R ≥ minreg+1. Since R is larger than minreg,
evaluation P contains no spills and therefore PQ3 contains no spills. Furthermore,
when R is larger than minreg the sequential scheduling algorithm produces an eval-
uation containing no empty slots [28]. Since by Lemma 3.2 the transformations do
not change 2k+ g, c(PQ3) = minreg + 1+ |A(F )|. We now compare this cost to the
possible costs of PQ′. If ρ′ ≥ minreg + 1, then by Theorem 6.5, c(PQ3) ≤ c(PQ′).
If ρ′ = minreg, then the sequential scheduling algorithm produces an evaluation con-
taining at least one empty slot [28]. Since the transformations do not decrease the
number of empty slots, g ≥ 1, and again c(PQ3) ≤ c(PQ′). Finally if ρ′ < minreg,
then by assumption ρ′ < R and therefore k′ must equal zero since PQ′ is contiguous.
This is a contradiction by Lemma 3.3 because all parallel evaluations that use fewer
than minreg registers must contain at least one spill.

We next consider the case where R = minreg. The cost of evaluation PQ3 is
R+2k+g+ |A(F )|. If k′ > 0, then ρ′ = R since PQ′ is contiguous. Therefore the cost
of PQ′ is R+2k′+g′+ |A(F )| which is not less than c(PQ3) because 2k+g ≤ 2k′+g′

by Lemma 3.2. If k′ = 0, then it must be the case that ρ′ = R, because if ρ′ < minreg
then PQ′ must contain at least one spill by Lemma 3.3. Therefore c(PQ3) ≤ c(PQ′)
because 2k + g ≤ 2k′ + g′.

Finally, we consider the case where R < minreg. The cost of evaluation PQ3 is
again R+ 2k + g + |A(F )|. If k′ > 0, then ρ′ = R and c(PQ3) ≤ c(PQ′) as before. If
k = 0, then this contradicts Lemma 3.3 because R < minreg. Therefore in each case
c(PQ3) ≤ c(PQ′), and we conclude that PQ3 is an optimal evaluation of F .

8. Computational complexity. We show in this section that the worst-case
computational complexity of the parallel scheduling algorithms is O(nk), where n =
|A|+ |L| is the number of nodes in F and k is the number of spills in the evaluation.

The labeling routine of the sequential scheduling algorithms performs a depth-
first traversal of the dependence graph and does a constant amount of work at each
vertex. The worst-case complexity of a depth-first traversal of a binary tree is O(n)
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[16]. Similarly, the worst-case complexity of the scheduling routine with load latencies
= 2 is O(n).

The parallel transformation of section 3.3 visits every time period in the sequential
evaluation once and does a constant amount of work per visit. A sequential evaluation
containing k spills is of length n+ 2k, so the transformation’s worst-case complexity
is O(n+ k).

The load-contiguous transformation in section 4 can be implemented with two
pointers. The first pointer points to each load operation in turn, starting from the
beginning of the evaluation, and the second pointer always points to the latest empty
load/store slot that is earlier than the first pointer. In the worst case, each pointer
scans the n+2k time periods in the parallel evaluation once and is bounded by some
constant time per time period. Thus, the transformation’s complexity is O(n+ k).

The store-contiguous transformation in section 5 can be implemented by con-
sidering each store operation in turn, starting from the end of the evaluation. The
transformation is repeatedly applied to the same store, moving it one time period
later each time, until the transformation can no longer be applied. Applying the
transformation once takes constant time. No store is moved more than n + 2k time
periods, i.e., from the beginning of the evaluation to the end. Since there are k stores,
the transformation will take time nk+2k2 in the worst case. Each value can be spilled
at most once, so k ≤ n. Thus, the complexity of the store-contiguous transformation
is O(nk). Since k is the minimum number of spills in any parallel evaluation of F , no
stores will be deleted by the transformation and the load-contiguous transformation
will not need to be reapplied. Unnecessary Empty slots can be deleted from the eval-
uation in O(n + k) time. Thus, the worst-case complexity of the parallel scheduling
algorithms is O(nk).

9. Summary. We have presented an O(nk) algorithm that solves the parallel
scheduling problem for latency = 1 or latency = 2 by applying a series of transfor-
mations to an optimal sequential evaluation. We have shown that only contiguous
evaluations need to be considered in searching for optimal parallel evaluations, and
that optimal serial and optimal parallel evaluations have the same number of spill
operations plus empty slots. We have fully described the structure of contiguous par-
allel evaluations and shown that the cost of the k-spill parallel evaluation PQ found
by the algorithm is ρ(PQ) + 2k + g + |A(F )|.

These results may encourage further research on other, related problems. For
example, extensions of our results may apply to trees with arbitrary arity, and to
processors that can issue more operations simultaneously. The new transformations
we describe may also form the basis for worst-case results for more general problems
that cannot be efficiently solved.
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Abstract. Inferring evolutionary trees has long been a challenging problem for both biologists
and computer scientists. In recent years research has concentrated on the quartet method paradigm
for inferring evolutionary trees. Quartet methods proceed by first inferring the evolutionary history
for every set of four species (resulting in a set Q of inferred quartet topologies) and then recombining
these inferred quartet topologies to form an evolutionary tree. This paper presents two results on
the quartet method paradigm. The first is a polynomial time approximation scheme (PTAS) for
recombining the inferred quartet topologies optimally. This is an important result since, to date,
there have been no polynomial time algorithms with performance guarantees for quartet methods.
To achieve this result the natural denseness of the set Q is exploited. The second result is a new
technique, called quartet cleaning, that detects and corrects errors in the set Q with performance
guarantees. This result has particular significance since quartet methods are usually very sensitive
to errors in the data. It is shown how quartet cleaning can dramatically increase the accuracy of
quartet methods.

Key words. dense instance, evolutionary tree, approximation algorithm, quartet method,
smooth polynomial
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1. Introduction. A fundamental problem in computational biology is inferring
an evolutionary tree from biological data. Virtually all formulations of this problem
(maximum likelihood, maximum parsimony, minimum distance, etc. [10, 15]) are
NP-hard, and so, methods tend to be either heuristic (and seldom with performance
guarantees) or prohibitively exhaustive. This is a real conundrum for evolutionary
biologists as datasets can be very large forcing them to use heuristic methods that can
lead to erroneous results.1 The difficulties of inferring evolutionary trees that hamper
biologists have also catalyzed a surge of algorithmic research in the computer science
community. Despite this attention, efficient algorithms with performance guarantees
have been slow in coming.

In recent years the computational biology community has focused on the quartet
method paradigm for inferring evolutionary trees [3, 5, 8, 11, 14]. Quartet methods
utilize topological information on sets of four labels2 to infer an evolutionary tree. To
illustrate, consider the four possible trees labeled by {a, b, c, d} as depicted in Figure
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1As exemplified by the Out of Africa fiasco [16, 17].
2A label may represent a species or, more generally, a DNA or protein sequence.
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Fig. 1.1. The four possible trees labeled by {a, b, c, d}.
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Fig. 1.2. A tree T labeled by {a, b, c, d, e, f} and QT .
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Fig. 1.3. The quartet method paradigm.

1.1. These labeled trees are denoted ab|cd, ac|bd, ad|bc, and (abcd), respectively. The
topology induced by the quartet {a, b, c, d} ⊆ S in a tree T labeled by S is ab|cd if a, b
and c, d reside in disjoint subtrees of T . QT is defined to be the set of all topologies
induced in T by quartets taken from S. For example, Figure 1.2 depicts a labeled
degree-3 (i.e., fully resolved) tree T and its set of induced quartet topologies QT . We
note that an evolutionary tree is usually represented by a labeled degree-3 tree with
weighted edges. However, often the edge weights are determined after the shape of
the tree is determined, as is the case for quartet methods. For the duration of the
paper let evolutionary tree be synonymous with degree-3 labeled tree. Note that the
set QT does not contain topologies of the form (abcd) if T is a degree-3 tree.

Quartet methods are motivated by the following theorem that reveals the strong
relationship between QT and T [7].

Theorem 1.1. Let T be an evolutionary tree. QT is unique to T , and further-
more, T can be recovered from QT in polynomial time.

In other words, induced quartet topology provides much information about an
evolutionary tree. This motivates the quartet method paradigm which is the following
two step approach to inferring evolutionary trees (see Figure 1.3). Let T denote the
evolutionary tree being estimated whose leaves are labeled by the elements of S:

1. A quartet topology inference method is used to infer the topology of each
quartet in S from the data (typically DNA or protein sequence data). This
results in a set Q of inferred quartet topologies.

2. A quartet recombination method is used to recombine the quartet topologies
in Q to form an estimate T ′ of T .

There are several quartet topology inference methods including neighbor join-
ing [12], the ordinal quartet method [11], maximum likelihood [9], and maximum
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parsimony [15]. Quartet recombination methods attempt to solve variations of the
following optimization problem.

Maximum Quartet Consistency (MQC).
Instance: A set Q of quartet topologies over label set S.
Goal: Find an evolutionary tree T labeled by S that maximizes |QT ∩Q|.

At this point we make an important distinction between two versions of MQC:
complete MQC and incomplete MQC. A set Q of quartet topologies is complete if
Q contains a quartet topology for each quartet over label set S. Incomplete MQC
permits the input Q to be incomplete whereas the input to complete MQC is com-
plete. Incomplete MQC is NP-hard [13]. In section 4 a proof of the NP-completeness
of complete MQC is presented. Due to these results, most quartet recombination
methods are heuristic or solve weaker optimization requirements. Examples are the
Q∗ method [5], the short quartet method [8], a semidefinite programming method
[3], and quartet puzzling [14]. None of these methods give a performance guarantee.
Despite the popularity of quartet methods, the absence of performance guarantees
has been a legitimate criticism of the quartet method approach.

The distinction between complete and incomplete MQC is important for two
reasons. First, in practice one almost always can obtain complete Q. Second, in
this paper we present a polynomial time approximation scheme (PTAS) for complete
MQC. In fact, this is the first PTAS for inferring an evolutionary tree under the
quartet method paradigm and thus is a significant advancement in the development
of algorithms for inferring evolutionary trees. A PTAS is desirable since it allows
the approximation of an optimal solution with arbitrary precision (at the cost of effi-
ciency). In contrast, Steel’s proof that incomplete MQC is NP-hard can be adapted
to show that incomplete MQC is MAX-SNP–hard; hence there is no PTAS for in-
complete MQC unless NP=P, by the results of [2]. It should be pointed out that one
may wish to weight quartets in practice. However, the weighted version of MQC is
MAX-SNP–hard, as it generalizes the incomplete MQC, and thus has no PTAS.

Instances of complete MQC are dense relative to instances of incomplete MQC.
Recently, the examination of dense versions of such MAX-SNP problems as Max–Cut,
Betweenness, and Max–k–Sat has yielded PTASs for these problems [1, 2]. Dense
instances of problems such as Max–Cut are graphs with Ω(n2) edges whereas dense
instances of Max–k–Sat are boolean k–Sat formulae with Ω(nk) clauses. MQC is an
example of an applied problem that motivates the examination of dense problems.
How the natural denseness of an instance of MQC can be exploited to obtain a PTAS
is explored further in section 2. In section 5 it is shown that the MQC PTAS can be
extended to an important weighted variation of the problem and that this weighted
version of the PTAS can be utilized to solve a consensus problem. For the duration
of the paper MQC can be assumed to mean complete MQC.

Our second result is a new technique, called quartet cleaning, that can detect
and correct quartet errors in the set Q of inferred quartet topologies. The quartet
topology ab|cd ∈ Q is called a quartet error if ab|cd �∈ QT , where T is the evolutionary
tree being estimated.

The practical motivation for quartet cleaning is that the accuracy of most quartet
recombination methods depends critically upon the quality of the set Q. To illustrate,
consider the sensitivity of the Q∗ method and the short quartet method to quartet
errors in Q. In particular, if e is an edge of T then {a, b, c, d} is a quartet across e
if a and b are in a separate component of T − {e} than c and d (see Figure 1.4(i)).
Both the Q∗ method and the short quartet method have the property that a single
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Fig. 1.4. (i) ab|cd is a quartet across edge e. (ii) ab|cd is a quartet across path p.

quartet error in Q involving a quartet across e can result in the edge e of T not being
recovered. (These methods return a contraction of T at e.)

If there are m quartets across e in T and Q contains no more than α
√
m quartet

errors involving quartets across e, where α is a constant, then quartet cleaning applied
to Q returns a set Q′ of quartet topologies where all of these quartet errors across e
have been corrected. This results in a dramatic decrease in the sensitivity of quartet
recombination methods such as Q∗ method and the short quartet method to quartet
errors; they can now tolerate up to α

√
m quartet errors across edge e, where before

they could tolerate none. The bound α
√
m is shown to be asymptotically optimal in

that no algorithm can correct more than α
√
m quartet errors across an edge.

A polynomial algorithm for quartet cleaning is presented in section 3. It makes
nontrivial use of the PTAS for the MQC problem described above and thus serves
as another motivation for this PTAS. This suggests that the ideas and techniques
developed here are powerful and may find wider use for inferring evolutionary trees.

2. A PTAS for MQC. Let Q be an instance of MQC with label set S. Our
discussion begins with the observation that |QTOPT

∩ Q| ≥ (n4 )/3 where TOPT is an
optimal solution [3, 4]. This follows since a randomly selected tree has a 1/3 chance
of inducing ab|cd ∈ Q, for each quartet {a, b, c, d}. Hence, for some constant c,
|QTOPT

∩Q| ≥ cn4. Our goal is then to find an approximation algorithm such that

|QTAPX
∩Q| ≥ |QTOPT

∩Q| − εn4,

where TAPX is the result of the approximation algorithm.
The approximation algorithm is founded upon two concepts: a k–bin decomposi-

tion of TOPT and smooth integer polynomial programs.
Definition 2.1. Tk is a k-bin decomposition of TOPT if there is a partition of

S into bins S1, S2, . . ., Sk such that the following hold.
• For each Si, |Si| ≤ 6n/k. Furthermore, there is a vertex vi of degree |Si|+ 1,
called the bin root, that is adjacent to each vertex in Si.

• For all quartets {a, b, c, d} where a, b, c, and d are in different bins of Tk,
ab|cd ∈ QTOPT

if and only if ab|cd ∈ QTk
.

An example of a k-bin decomposition appears in Figure 2.1.
Section 2.1 will discuss k-bin decompositions in detail. In particular, it is shown

that there is a k-bin decomposition Tk of TOPT that is a good approximation of TOPT ,
i.e., |QTk

∩ Q| ≥ |QTOPT
∩ Q| − (c′/k)n4, for some constant c′. Our approach is to

approximate TOPT indirectly by approximating Tk.
Consider a fixed k. Let K be Tk with all leaves removed (and thus the leaves of

K are the bin roots of Tk). K is called the kernel of Tk and Tk is called a completion
of K. K is completed to Tk by providing a label-to-bin assignment.

If the kernel K of Tk is known, then, to approximate Tk, it suffices to determine
an approximately optimal label-to-bin assignment for K. This problem is formalized
as follows.
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Fig. 2.1. A tree (left) and a 4-bin decomposition of the tree (right) with bin roots w, x, y, and z.

Label-to-Bin Assignment (LBA).
Instance: Set Q of quartet topologies and (degree-3) kernel K with k leaves.
Goal: Find a completion T ′ of K that maximizes |QT ′ ∩Q|.

It follows from the result in [6] that LBA is NP-hard. In section 2.2, LBA is
formulated as a smooth integer polynomial problem and a PTAS for LBA is presented.
In particular, it is shown that, for any ε > 0, |QT ′ ∩ Q| ≥ |QT̂ ∩ Q| − εn4, where Q
and K denote the instance of LBA, T ′ is the completion of K produced by our PTAS
and T̂ is an optimal completion of K.

The approximation algorithm solves (approximately) an instance of LBA for every
tree with k leaves. Since k is a constant, this can be done in polynomial time using the
PTAS for LBA. Let TAPX be the completed tree obtained that maximizes |QTAPX

∩Q|.
Since the kernel K of Tk is one of the trees completed, it follows that |QTAPX

∩Q| ≥
|QT ′ ∩Q| where T ′ is the completion of K.

2.1. Decomposing the optimal tree. First we demonstrate that there is a
k-bin decompositions that is a good approximation of the optimal evolutionary tree.

Theorem 2.2. There is a k-bin decomposition Tk of TOPT such that |QTk
∩Q| ≥

|QTOPT
∩Q| − (c′/k)n4 for some constant c′.

Theorem 2.2 is proven algorithmically. For convenience, let T = TOPT and assume
that T is degree-3, without loss of generality. Let Tk denote the result of the following
algorithm.

Algorithm k-Bin Decomposition(T ).
1. Root T at an arbitrary internal vertex. Let T (v) denote the subtree of T

rooted at v.
2. Traverse T , beginning at the root, such that for each vertex v visited:

If |T (v)| ≤ 6n/k then
• contract all internal edges of T (v),
• label v as a bin root if v is not a leaf, and
• continue traversal at v’s parent.

Otherwise, continue traversal at an unvisited child of v.
3. For each bin root v with parent v′ and sibling u′:

If |T (v)| ≤ 3n/k and u′ has a child u with |T (u)| ≤ 3n/k then
• contract {u′, v′},
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• transfer the leaves in T (u) to the bin of v, and delete u.
4. For each leaf u of T not assigned to a bin, bisect the edge between u and its

parent with a new vertex v, and mark v as a bin root.
Note that the last step of the algorithm is necessary since a leaf cannot be a bin

root. Call a bin of Tk small if it has size less than 3n/k. A bin root is small if its bin
is small. Call a bin of Tk large if it has size between 3n/k and 6n/k, inclusive. A bin
root is large if its bin is large. Let s denote the number of small bins in Tk and l the
number of large bins in Tk.

Lemma 2.3. s < 2l.
Proof. We prove the following by induction: For every h, if u is a vertex of height

h and is not a bin root then the lemma holds for the subtree T (u).
For the base case, assume that u has children p and q. It cannot be that both p

and q are small otherwise |T (u)| < 6n/k and the algorithm would not have visited p
and q. Hence, the lemma is true for T (u).

In general, assume that u has children p and q. If both p and q are bin roots
then the argument for the base case applies. If neither p nor q are bin roots then the
inductive hypothesis applies to T (p) and T (q), and hence the lemma holds for T (u).
Otherwise, suppose that p is not a bin root but q is.

If q is large then the induction can be applied to T (p) and the claim follows.
Otherwise, suppose that q is small. Let p1 and p2 be the children of p. Neither p1 nor
p2 are small, since otherwise the algorithm would have merged one of T (p1) and T (p2)
with T (q) in step 3. By the inductive hypothesis, s1 < 2l1 and s2 < 2l2 where s1, l1,
s2, and l2 are the numbers of small and large bins in T (p1) and T (p1), respectively.
It follows that s1 + s2 + 1 < 2(l1 + l2), and hence the claim holds for T (u).

Since each large bin of Tk has size at least 3n/k, l ≤ k/3. Tk has l + s bins, and
so, l + s < l + 2l = 3l ≤ k. We conclude that Tk has less than k bins each with size
bounded by 6n/k. Furthermore, since Tk was obtained from T by contracting edges
and transferring leaves to neighboring bins, it follows that, for all quartets {a, b, c, d}
where a, b, c, and d are in different bins of Tk, ab|cd ∈ QT if and only if ab|cd ∈ QTk

.
The following lemma completes the proof of Theorem 2.2.

Lemma 2.4. |QTk
∩Q| ≥ |QTOPT

∩Q| − (c′/k)n4 for some constant c′.
Proof. Observe that |QTk

∩ Q| ≥ |QTOPT
∩ Q| − |Q′| where Q′ is the set of all

quartets with an induced topology in TOPT that is not induced in Tk. Let {a, b, c, d} ∈
Q′. It follows that at least two of these labels are in the same bin of Tk.

There are at most k(6n/k)2n2 = 36n4/k quartets with two labels in the same bin.
Similarly, there are at most 36n4/k2 and 36n4/k3 quartets with three and four labels
in the same bin, respectively. It follows that

|QTk
∩Q| ≥ |QTOPT

∩Q| − 3(36n4/k)

≥ |QTOPT
∩Q| − (108/k)n4.

2.2. A PTAS for LBA. Let Q and K be an instance of the LBA problem
where K has k leaves. T̂ is an optimal completion of K if T̂ maximizes |QT̂ ∩Q| over
all completions of K. To formalize this optimization problem smooth polynomials are
used. A degree d polynomial p(x) is t-smooth, where t is a constant, if the coefficient
of each degree i term is in the interval [−tnd−i, tnd−i] for 0 ≤ i ≤ d.

Define the 0-1 label-to-bin assignment x = (xsb) as follows: xsb = 1 if label s is
assigned to bin b; otherwise xsb is 0. For each quartet {a, b, c, d} ∈ Q, create a degree
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4 polynomial

pab|cd(x) =
∑

ij|kl∈QK

xaixbjxckxdl,

and define

p(x) =
∑

ab|cd∈Q
pab|cd(x).

Observe that p(x) is 1-smooth. To ensure that each label is assigned to exactly one

bin, the following constraints are added: for each label s,
∑k
b=1 xsb = 1. We also

require that none of the bins are too large: for each bin b,
∑n
s=1 xsb ≤ 6n/k.

Clearly, if x satisfies these constraints then pab|cd(x) = 1 if ab|cd ∈ QT ′ , and
pab|cd(x) = 0 if ab|cd �∈ QT ′ , where T ′ is the completion of K specified by the label-
to-bin assignment x. Hence, our optimization problem is to find a 0-1 label-to-bin
assignment x = (xsb) so that

p(x) is maximized,
k∑
b=1

xsb = 1 for each label s,

n∑
s=1

xsb ≤ 6n/k for each bin b.

Arora, Frieze, and Kaplan [1] present a PTAS for solving t-smooth integer poly-
nomial programs.

Theorem 2.5. For each ε > 0 there is a polynomial time algorithm that produces
a 0-1 assignment x such that p(x) ≥ m− εnd where p(x) is a t-smooth polynomial of
degree d with maximum value m.

The PTAS of Theorem 2.5 first solves the fractional version of the problem to
obtain a solution (x̂sb). Randomized rounding is then used to obtain a 0-1 solution
(xsb). However, the rounding procedure used rounds each x̂sb individually. This

does not quite work here because of the additional constraints
∑k
b=1 xsb = 1 for each

label s. Hence, the following randomized rounding procedure is used instead: with
probability x̂sb, xsb = 1 and xsj = 0 for all j �= b. This ensures that exactly one of
xs1, . . . , xsk is assigned 1 and the rest are assigned 0. This modification can be easily
incorporated so that Theorem 2.5 holds. Following from the above discussion and
Theorem 2.5, we have the following theorem.

Theorem 2.6. For each ε > 0, there is a polynomial time algorithm that, for
each instance Q and K of LBA, produces a completion T ′ of K such that |QT ′ ∩Q| ≥
|QT̂ ∩Q| − εn4 where T̂ is an optimal completion of K.

Combining the above results we can establish the following approximation result.
Theorem 2.7. For each ε > 0, there is a polynomial time algorithm that, for each

instance Q of MQC, produces a tree TAPX such that |QTAPX
∩Q| ≥ (1−ε)|QTOPT

∩Q|.
Proof. Let TOPT and TAPX be defined as before and Tk be a k-bin decomposition

of TOPT that satisfies Theorem 2.2 for some constant k to be determined. Combining
Theorems 2.6 and 2.2, we have that

|QTAPX
∩Q| ≥ |QTOPT

∩Q| − (c′/k + ε1)n4

≥ (1− c′/(ck)− ε1/c)|QTOPT
∩Q|



A PTAS FOR THE QUARTET METHOD 1949

for any constant ε1 > 0, since |QTOPT
∩ Q| ≥ cn4. The theorem result follows by

choosing ε1 sufficiently small and k sufficiently large.

3. Quartet cleaning. Let T be an evolutionary tree and Q an estimate of QT .
In order to correct quartet errors in Q we assume the following quartet error model:
For each edge e of T there are at most α

√|QT (e)| quartet errors in Q involving
quartets across e where α is a constant to be determined and QT (e) denotes the set of
quartet topologies across the edge e of T (see Figure 1.4(i)). In this section we present
a polynomial algorithm for correcting all quartet errors in Q under this error model.
It is also shown that the above upper bound on quartet errors is asymptotically tight
by proving a matching lower bound. More precisely, we prove that no algorithm can
correctly infer the tree T when the set Q contains more than

√|QT (e)| errors across
some edge e. Therefore, our algorithm is (asymptotically) optimal in terms of its
power to correct quartet errors across an edge of T .

The section is organized as follows. We first define a variant of MQC, called the
minimum inconsistent balanced bipartition (MIBB) problem, and devise a polynomial
time approximation algorithm for MIBB with an additive error of εn4 for any constant
ε > 0, using the same technique utilized by the PTAS for MQC. This approximation
algorithm is then used recursively to clean quartets. The lower bound on quartet
errors is given in section 3.3.

3.1. MIBB and its approximation. Let S = {1, . . . , n} denote the set of leaf
labels. Each edge e of the evolutionary tree T induces a bipartition X|Y of the labels.
The quartets across the edge e are also referred to as the quartets induced by the
bipartition X|Y . The bipartition X|Y is called a balanced bipartition if |X| ≤ 2n/3
and |Y | ≤ 2n/3. An edge separator of the tree T is any edge that induces a bipartition
X|Y with the property that |X| ≤ 8n/9 and |Y | ≤ 8n/9. It is easy to see that T has
at least one edge separator. We consider the following variant of MQC.

Minimum Inconsistent Balanced Bipartition (MIBB).
Instance: Set Q containing a quartet topology for each quartet of labels in S.
Goal: Find a balanced bipartition A|B that induces the minimum number of quartet
topologies inconsistent with the set Q. That is, we want to minimize the number of
quartets {a, b, c, d} ⊆ S such that a, b ∈ A, c, d ∈ B, and ac|bd ∈ Q.

MIBB is known to be NP-hard [6]. By formulating MIBB as a 2-bin variant of
LBA, an approximation algorithm for MIBB with additive error εn4 can be derived
for any constant ε > 0. This results in the following theorem.

Theorem 3.1. For each ε > 0, there is a polynomial time algorithm that pro-
duces a balanced bipartition A|B that induces at most εn4 more quartet topologies
inconsistent with the set Q than an optimal balanced bipartition.

3.2. A recursive algorithm for cleaning quartets. In this section we prove
the following.

Theorem 3.2. For some α > 0, there is a polynomial time algorithm that
produces the correct evolutionary tree T given a (complete) set Q of quartet topologies
which contains at most α

√|QT (e)| errors across any edge e of T .
Before describing the algorithm in detail, we sketch its basic idea. First, we ob-

serve that the bipartition A|B obtained by the approximation algorithm for MIBB on
input Q is also a good approximation of a minimum inconsistent balanced bipartition
for the set QT , since Q contains at most a total of αn3 = o(n4) erroneous quartet
topologies. Moreover, we show that the bipartition A|B in fact comes very close to the
bipartition X|Y induced by some edge separator of T , i.e., the symmetric differences
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A ⊕ X and B ⊕ Y are very small. We bootstrap the bipartition A|B by repeatedly
swapping and joining incorrectly placed pairs of labels until it actually becomes the
correct bipartition X|Y . Then we recursively bipartition sets X and Y independently,
taking into account the labels in the set Y and X, respectively. Consider the case of
bipartitioning X with the presence of Y . Let TX denote the subtree of T induced by
X. Observe that we can still approximately bipartition the set X as long as the errors
in Q across an edge separator of TX is significantly smaller than |X|4. That is, we
should have |X|4 � α

√
n2|X|2 = αn|X|, i.e., |X| � n1/3. Hence, we stop the recur-

sion at |X| =
√
n and switch to a different algorithm which attempts to reconstruct

the subtree TX by directly taking advantage of the existence of a large “reference set”
Y = S −X.3 The details of the three main parts of the quartet cleaning algorithm
are given below.

• Inferring the first bipartition of T. Fix a sufficiently small constant ε > 0
so that all the inequalities below involving ε will hold. We run the approximation
algorithm for MIBB on set Q to get a balanced bipartition A|B of S. By Theorem 3.1,
A|B induces at most εn4 quartet topologies inconsistent with Q and thus at most
εn4+O(n3) quartet topologies inconsistent with QT . The following lemma shows that
A|B is “almost correct” in the sense that it is actually very close to the bipartition
induced by some edge separator of T .

Lemma 3.3. Let e0 be an edge separator of T inducing a bipartition X|Y such
that (i) |A ∩ X| ≥ |A|/3 ≥ n/9, (ii) |B ∩ Y | ≥ |B|/3 ≥ n/9, and (iii) max{|A ∩
Y |, |B ∩ X|} is minimized. (It is easy to see that such an edge e0 exists.) Then
max{|A ∩ Y |, |B ∩X|} ≤ 11ε1/3n.

Proof. Without loss of generality, assume that |A ∩ Y | ≥ |B ∩ X|. Let ε1 =
|B ∩X|/n and ε2 = |A ∩ Y |/n. Then

|Y | ≥ |B ∩ Y | = |B| − |B ∩X| ≥ (1− ε1)|B|.

Since each quartet {a, b, c, d}, where a ∈ A∩X, b ∈ A∩Y , c ∈ B∩X, and d ∈ B∩Y ,
yields a topology ac|bd in T which is inconsistent with the bipartition A|B, we have

(n/9) · (ε1n) · (ε1n) · (n/9) ≤ εn4 + O(n3),

which implies that

ε1 ≤ 9
√
ε.(3.1)

Suppose that the set Y is further partitioned into subsets Y1 and Y2, as illustrated
in Figure 3.1. Without loss of generality, assume that |B ∩ Y1| ≤ |B ∩ Y2|. Suppose
that the constant ε (and thus the constant ε1) is so small that

|B ∩ Y2| ≥ (1− ε1)|B| − |B ∩ Y1| ≥ (1− ε1)|B| − |B|/2 ≥ |B|/3.

Thus, the edge e1 inducing the partition X ∪Y1|Y2, as illustrated in Figure 3.1, is also
an edge separator satisfying the conditions (i) and (ii) of the lemma. Then, we must
have

|B ∩X|+ |B ∩ Y1| ≥ |A ∩ Y |,
3There is certain analogy between this algorithm and the idea of using an out-group to root an

evolutionary tree in biology.
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Fig. 3.1. The edge separator e0 and its induced bipartition.

because otherwise the edge e1 would have been a better choice than the edge e0,
violating the condition (iii) of the lemma. Since |B ∩X| ≤ ε1n,

|B ∩ Y1| ≥ |A ∩ Y | − ε1n.

Since each quartet {a, b, c, d}, where a ∈ A ∩ X, b ∈ A ∩ Y1, c ∈ B ∩ Y1, and
d ∈ B ∩ Y2, yields a topology ad|bc in T which is inconsistent with the bipartition
A|B, we have

(n/9) · |A ∩ Y1| · (|A ∩ Y | − ε1n) · (|A ∩ Y | − ε1n) ≤ εn4 + O(n3).

Similarly, since each quartet {a, b, c, d}, where a ∈ A∩X, b ∈ A∩Y2, c ∈ B ∩Y1, and
d ∈ B ∩ Y2, yields a topology ac|bd in T which is inconsistent with the bipartition
A|B,

(n/9) · |A ∩ Y2| · (|A ∩ Y | − ε1n) · (|A ∩ Y | − ε1n) ≤ εn4 + O(n3).

Summing up the above two inequalities, we have

(n/9) · |A ∩ Y | · (|A ∩ Y | − ε1n)2 ≤ 2εn4 + O(n3).

Therefore,

ε2(ε2 − ε1)2 ≤ 18ε.

It follows from (3.1) and the fact ε < 1 that

ε2 < 11ε1/3.(3.2)

Since the bipartition A|B may still be incorrect (i.e., it may not be the bipartition
induced by any edge of T ), we try to revise it so it becomes eventually correct. From
now on, let ε′ = 11ε1/3. We first try to detect the small number of pairs of labels
that are “reversed” in the bipartition A|B. For any pair (a, b) of leaves, where a ∈ A
and b ∈ B, let us analyze how many quartet topologies ax|by in the set Q, where
x ∈ A−{a} and y ∈ B−{b}, would “support” (i.e., be consistent with) the placement
that the label a is in the set A and the label b is in the set B if (i) a ∈ X and b ∈ Y
or (ii) a ∈ Y and b ∈ X.

Lemma 3.4. Q has at least ((1−3ε′)2−α/2)|X| · |Y | quartet topologies supporting
the placement a ∈ A and b ∈ B in case (i) (correctly), and at most (12ε′+α/2)|X| · |Y |
quartet topologies supporting the placement a ∈ A and b ∈ B in case (ii) (incorrectly).

Proof. Suppose that a ∈ X and b ∈ Y . Let us first analyze how many quartet
topologies ax|by in the set QT , where x ∈ A− {a} and y ∈ B − {b}, across the edge
e0 support the placement a ∈ A and b ∈ B. Clearly, for any x ∈ A ∩ X − {a} and
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y ∈ B ∩ Y − {b}, the quartet topology ax|by ∈ QT supports the placement. Hence
the number of such supportive quartet topologies in QT across the edge e0 is at least
(roughly, omitting minor terms)

|A ∩X| · |B ∩ Y | ≥ (1− 3ε′)2|X| · |Y |.
Since the set Q contains at most α|X| · |Y |/2 erroneous quartet topologies across

the edge e0, Q has at least

((1− 3ε′)2 − α/2)|X| · |Y |
quartet topologies supporting the placement a ∈ A and b ∈ B.

The quartet topologies in Q supporting the placement a ∈ A and b ∈ B in case
(ii) is at most

|A| · |B| − ((1− 3ε′)2 − α/2)|X| · |Y |
≤ ((1 + 3ε′)2 − (1− 3ε′)2 + α/2)|X| · |Y |
= (12ε′ + α/2)|X| · |Y |

Supposing that α is small enough and choosing ε sufficiently small, we can guar-
antee that the following inequality

12ε′ + α/2

(1− 3ε′)2 − α/2
≤ β(3.3)

holds for some small (but not too small) threshold β (exact value to be determined).
Thus, from the set Q, we can decide if we should keep placing a in set A and b in set
B, or switch them by checking the ratio between the supportive quartet topologies
for each case.

We repeat the above test and correction until we cannot find any pair of labels
to swap. Note that, in this process we may also swap pairs (a, b) with the property
that a ∈ A, b ∈ B, and a, b ∈ Y (or a, b ∈ X). That is, for such pairs we should
(correctly) join them in the set Y (or X, respectively), but the quartet topologies in
QT (and thus Q) tell us that they are reversed and we should swap them according
to the above separation ratio. When this (e.g., a, b ∈ Y ) happens, it must be the
case that Y is bipartitioned into subsets Y1 and Y2 in the tree T , a ∈ Y1, b ∈ Y2, and
|Y2| < β′|Y1| for some constant β′ depending on β, ε, and α. So, if we make sure that
β is so small that β′ < 1/2, then we won’t switch such a pair (a, b) back and forth.
Hence the process will converge in O(n) swaps.

When the above process terminates, the bipartition A|B may still not be consis-
tent with any edge (separator) of T . But we must now have the property that either
X ⊆ A or Y ⊆ B, although we do not know which situation holds. So, in the following
we try to further improve the bipartition A|B assuming each situation separately.

Consider the case X ⊆ A (the other case is symmetric). Let e be the edge of T
whose induced bipartition, denoted X ′|Y ′, has the largest set X ′ that is completely
contained in A. It is easy to see that (1−3ε′)|Y ′| ≤ (1−3ε′)|Y | ≤ |B∩Y | ≤ |B| ≤ |Y ′|.
Observe that e is in fact an edge separator. We will try to modify A|B so it becomes
the bipartition X ′|Y ′. Suppose that Y ′ is further bipartitioned into subsets Y ′1 and
Y ′2 in the tree T , where |Y ′1 | ≤ |Y ′2 |. By the choice of the edge e, Y ′1 �⊆ A and Y ′2 �⊆ A.
Moreover, from the above discussion on convergence, we know that if |Y ′1 | < β′|Y ′2 |
then Y ′2 ⊆ B. Again, we take pairs of labels (a, b), where a ∈ A and b ∈ B, and
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analyze the support from Q for joining a and b in the set B if (i) a ∈ X ′, or (ii) a ∈ Y ′i
and b ∈ Y ′i , for some i.

Lemma 3.5. Q contains at least (min{1/2 − 3ε′, β′/(1 + β′)} − α/2)|X ′| · |Y ′|
supportive quartet topologies in case (i) and at most (6ε′ + α/2)|X ′| · |Y ′| supportive
quartet topologies in case (ii).

Proof. Suppose that a ∈ X ′. QT may contain a supportive quartet topology
ab|xy, where x ∈ A and y ∈ B, only if x ∈ A ∩ Y ′. Thus, the number of supportive
quartet topologies in this case is at most

|Y ′ − Y ′ ∩B| · |B| ≤ 3ε′|Y ′|2 ≤ 6ε′|X ′| · |Y ′|.

Observe that, out of the |X ′|2 · |Y ′|2/4 quartet topologies in QT across the edge e,
only α|X ′| · |Y ′|/2 of them can go wrong in Q and become supportive; we claim Q
contains at most

(6ε′ + α/2)|X ′| · |Y ′|

supportive quartet topologies.
Now suppose that a ∈ Y ′i and b ∈ Y ′i for some i. We consider two subcases. If

a ∈ Y ′1 and b ∈ Y ′1 , then all quartet topologies ab|xy in QT , where x ∈ A ∩ X ′ and
y ∈ B ∩ Y ′2 , would certainly be supportive. Hence, the number of supportive quartet
topologies (across the edge connecting the sets X ∪ Y ′2 and Y ′1 in T ) is at least

|X ′| · |Y ′2 | ≥ |X ′| · |Y ′| · (1/2− 3ε′)

If a ∈ Y ′2 and b ∈ Y ′2 , then Y ′2 �⊆ B and thus |Y ′1 | ≥ β′|Y ′2 |. Since all quartet topologies
ab|xy in QT , where x ∈ A ∩X ′ and y ∈ B ∩ Y ′1 , are supportive in this case, we have
at least

|X ′| · |Y ′1 | ≥ |X ′| · β′|Y ′|/(1 + β′)

supportive quartet topologies across the edge connecting the sets X ∪ Y ′1 and Y ′2 in
T . Hence, Q contains at least

(min{1/2− 3ε′, β′/(1 + β′)} − α/2)|X ′| · |Y ′|

supportive quartet topologies in either subcase.
Therefore, if we assume that α is sufficiently small, choose ε small enough and

keep β′ sufficiently large relative to α, then we can ensure that the inequality

6ε′ + α/2

min{1/2− 3ε′, β′/(1 + β′)} − α/2
< γ(3.4)

for some small threshold γ < 1. In other words, the set Q would contain sufficient
information for us to tell if we should move a from the set A to the set B or not.

So we repeat the above step until (i) we cannot find any label to move or (ii) the
size of A is getting below |X| ≥ n/9. Observe that if we do not move anything at
all in the whole process, then A|B = X ′|Y ′. In case (ii), we know that we have been
moving in the wrong direction (i.e., Y ⊆ B before the process started). In case (i), we
could either get a correct bipartition A|B = X ′|Y ′ if X ⊆ A, or possibly an incorrect
bipartition if Y ⊆ B. To check if the resulting bipartition is indeed one induced by
some edge separator of T , all we need is to check if any pair (a, b), where a ∈ A and
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Fig. 3.2. The placement of the labels b ∈ B, x ∈ X, y ∈ Y , and z ∈ Z in T .

b ∈ B, should be reversed under the criterion in inequality (3.3). Therefore, we can
obtain at least one correct bipartition induced by some edge separator e′ (which may
or may not be e) of T , and clean up the erroneous quartets in Q across the edge e′

safely.

• The recursive step. To continue cleaning up all errors in Q (or, equivalently,
constructing the full T ), we proceed in two stages. In the first stage, we recursively
bipartition sets of sizes larger than

√
n. The general form of the problem is, given a

correct bipartition A|B of S, where
√
n ≤ |A| ≤ 2n/3, we try to find a bipartition of

the set A consistent with T . The basic idea is the same as before, but we have to take
into account the set B. Observe that since in the subtree of T induced by A, denoted
as TA, there can be at most α

√|A|2 · |B|2 = α|A| · |B| = o(|A|4) erroneous quartets
across any edge of TA, the approximation algorithm for MIBB will work on input
QA (i.e., Q restricted to A), and will give us a good approximation of the bipartition
induced by some edge separator of TA as claimed in Lemma 3.3.

Let this approximate bipartition be A1|A2. We “hypothesize” if B should be
placed in A1 or A2 by considering two bipartitions A1 ∪ B|A2 and A1|A2 ∪ B. For
the bipartition A1 ∪B|A2, we swap and join pairs (a, b), where a ∈ A1 and b ∈ A2, as
before, but by considering quartets {a, b, x, y} of the special form x ∈ B and y ∈ A2.
Similarly, for the bipartition A1|A2 ∪ B, we swap and join pairs (a, b), where a ∈ A1

and b ∈ A2, by considering quartets {a, b, x, y} of the form x ∈ A1 and y ∈ B. It is
straightforward to show that Lemmas 3.4 and 3.5 can be easily extended to work for
these bipartitions. At the end we can again check which of the bipartitions yields a
correct bipartition consistent with some edge separator of TA as before.

• Terminating the recursion. We use the above recursive step to produce correct
bipartitions A|B, where |A| ≤ √n. Now we cannot continue the recursion since the
errors in Q may jeopardize the performance of the approximation algorithm for MIBB
when |A| gets below n1/3. So, we turn to a more direct cleaning approach which makes
essential use of the large size of the set B.

Consider a quartet {b, x, y, z}, where x, y, z ∈ A and b ∈ B. Suppose that the
labels are placed in the tree T as illustrated in Figure 3.2.

Let’s consider all quartets consisting of a label b′ ∈ B, two of the labels x, y, z,
and a label a ∈ A − {x, y, z}, and analyze the supports from the sets QT and Q for
each of the three possible topologies bx|yz, by|xz, and bz|xy. For each edge e, let
fQ(e) denote the number of errors in Q across edge e.
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Lemma 3.6. The set Q contains at least

(1− 6α/2)|B| · (|H|+ |G|+ |Y |+ |Z|)− fQ(e3)− fQ(e4)

≤ (1− 7α/2)|B| · (|H|+ |G|+ |Y |+ |Z|)− α|B| · |X|
more supportive quartet topologies for bx|yz than for by|xz or for bz|xy.

Proof. We first calculate the number of such quartet topologies in QT across
an (arbitrarily chosen) edge e1 as illustrated in the figure that support the correct
topology bx|yz. A quartet {b′, x, y, a} would yield a supportive topology across e1 if
a ∈ H ∪ Z ∪ Y − {y}. So QT has |B| · (|H|+ |Y |+ |Z| − 1) such supportive quartet
topologies. Similarly, we know that QT has |B| · (|H| + |Y | + |Z| − 1) supportive
quartet topologies across e1 of the form b′x|az and |B| · (|F |+ |G|+ |X|) supportive
quartet topologies across e1 of the form b′a|yz. Hence, QT has a total of

|B| · (2|H|+ 2|Y |+ 2|Z|+ |F |+ |G|+ |X| − 2)

supportive quartet topologies across the edge e1. This implies that Q has at least

|B| · (2|H|+ 2|Y |+ 2|Z|+ |F |+ |G|+ |X| − 2)

− (α/4)(|B|+ |X|+ |F |+ |G|) · (|Y |+ |Z|+ |H|)
≥ |B| · (2|H|+ 2|Y |+ 2|Z|+ |F |+ |G|+ |X| − α(|Y |+ |Z|+ |H|)/4)

supportive quartet topologies.
Let’s calculate the number of quartet topologies in QT supporting the topology

by|xz. A quartet {b′, x, y, a} would yield a supportive topology only if a ∈ X − {x},
and thus QT has |B| · (|X| − 1) such supportive quartet topologies. Similarly, QT has
|B| · |F | supportive quartet topologies of the form b′a|xz and |B| · (|Z|−1) supportive
quartet topologies of the form b′y|az. Hence, QT has a total of

|B| · (|X|+ |Z|+ |F | − 2)

supportive quartet topologies. This implies that Q has at most

|B| · (|X|+ |Z|+ |F | − 2) +
7∑
i=1

fQ(ei)

supportive quartet topologies, where fQ(ei) ≤ α
√|QT (ei)| denotes the number of

errors across the edge ei in the current set Q.
Using the same idea, we claim that the set Q has at most

|B| · (|X|+ |Y |+ |F | − 2) +

7∑
i=1

fQ(ei)

members supporting the topology bz|xy.
So the difference between the support for the correct topology bx|yz and that for

incorrect ones by|xz or bz|xy is at least

(1− α/4)|B| · (2|H|+ |G|+ |Y |+ |Z|)−
7∑
i=1

fQ(ei)

≤ (1− α/4)|B| · (|H|+ |G|+ |Y |+ |Z|)
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Fig. 3.3. A hard case for quartet cleaning.

− 5 · (α/4)|B| · (|H|+ |G|+ |Y |+ |Z|)− fQ(e3)− fQ(e4)

≤ (1− 6α/4)|B| · (|H|+ |G|+ |Y |+ |Z|)− fQ(e3)− fQ(e4)

≤ (1− 6α/4)|B| · (|H|+ |G|+ |Y |+ |Z|)
− α|B| · |X|/4− α|B| · (|X|+ |H|+ |G|+ |Y |+ |Z|)/4

≤ (1− 7α/4)|B| · (|H|+ |G|+ |Y |+ |Z|)− α|B| · |X|/2.

The above difference between the supports is at least −α|B| · |X|/2 and would in
fact be at least (1− 9α/2)|B| · (|H|+ |G|+ |Y |+ |Z|) if (i) |X| ≤ |H|+ |G|+ |Y |+ |Z|
or (ii) the erroneous quartet topologies in Q across the edges e3 and e4 have already
been fixed. This suggests that we should first work on the quartet {b, x, y, z} which
yields the largest difference.

More precisely, our algorithm finds the quartet {b, x, y, z}, where x, y, z ∈ A and
b ∈ B, with the largest margin in the supports from Q for each of its three possible
topologies, and correct Q according to the topology with the highest support. We
then consider the remaining quartets {b, x, y, z} of the form x, y, z ∈ A and b ∈ B,
and repeat the same operation until correct topologies for all such quartets have been
found.

3.3. An upper bound for quartet cleaning. The following theorem estab-
lishes an upper bound on the number of quartet errors across an edge that can be
corrected.

Theorem 3.7. No algorithm can correctly reconstruct the evolutionary tree T if
Q contains

√|QT (e)| or more erroneous quartet topologies across some edge e of T .
Proof. Consider the tree in Figure 3.3 and quartets of the form {a, b, x, y} where

x ∈ T1 and y ∈ T2. If half of these quartets have topology ax|by in Q whereas the
other half have topology ay|bx in Q then it cannot be decided which of these quartet
topologies are erroneous. It follows that there must be no more that |T1||T2|/2 quartet
errors across e. The theorem follows from

|T1||T2|/2 ≤
√
|QT (e)|.

4. Complete MQC is NP-complete. In this section we demonstrate that the
following problem is NP-complete.

Maximum Quartet Consistency (Decision) (MQCD).
Instance: A complete set Q of quartet topologies over label set S and nonnegative
integer k.
Question: Is there an evolutionary tree T labeled by S such that |QT ∩Q| ≥ k?
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Fig. 4.1. (a) The caterpillar tree M with m� n5 feet (leaves). (b) Each label a ∈ S is replaced
by three a0, a1, a2 ∈ S′.

It is clear that MQC is in NP. To complete the proof we reduce Quartet Compat-
ibility to MQC.

Quartet Compatibility.
Instance: A (possibly incomplete) set Q of quartet topologies on label set S.
Question: Is Q compatible, i.e., does there exist an evolutionary tree T labelled by S
such that Q ⊆ QT ?

This problem is known to be NP-hard [13]. Given an instance of Quartet Com-
patibility with a quartet topology set Q defined on a label set S, where n = |S|, we
will construct an instance of MQC with a complete quartet topology set Q′ defined on
a new label set S′ such that there is a evolutionary tree T realizing Q with no error
if and only if there is a evolutionary tree T ′ realizing Q′ with at most g(n)m + f(n)
errors, where f(n) = O(n4), g(n) = O(n3) and m� n5 will be specified later.

The basic idea behind this proof is to add topologies to Q for quartets that are
not specified in Q to create a complete set Q′ such that with respect to any optimal
evolutionary tree T ′ for Q′, precisely one third of the added quartet topologies are
correct. In order to do this, we will need a large evolutionary tree M on m leaves with
a fixed (e.g., caterpillar) structure (see Figure 4.1 (a)), where m is a number that is
both divisible by three and much larger than the number of missing quartet topologies
in Q, e.g., m � n5. M will be embedded as a subtree in the optimal evolutionary
tree T ′ and will be used to enforce certain useful structures in T ′.

We construct the sets S′ and Q′ as follows. Add the m leaf-labels b1, . . . , bm in
M to S′, and for each a ∈ S, create three new labels a0, a1, a2 and add them to S′.
Note that we do not add the original labels in S to S′. We want to specify Q′ such
that (i) each triplet of labels a0, a1, a2 appear together in a subtree of T ′ as in Figure
4.1(b) and (ii) the optimal evolutionary tree T ′ for Q′ is formed by attaching M to
some branch of a evolutionary tree T̂ that is obtained from an optimal evolutionary
tree T for Q by replacing every leaf of T with a subtree containing three leaves as
shown in Figure 4.1(b).

Intuitively, Q′ must be constructed to enforce the following conditions:
• M appears intact in T ′ as in Figure 4.1(a).
• Each created triplet of labels a0, a1, a2 appear together in a subtree of T ′ as

in Figure 4.1(b), with nothing else inserted between them.
• The quartet topologies in Q extend naturally to Q′. That is, if ab|cd ∈ Q,

then aibj |ckdl is included in Q′ for all 0 ≤ i, j, k, l ≤ 2.
• For each quartet involving one label from M and three labels corresponding to

three distinct elements of S, its topology is related to the (unknown) structure
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of T (or T̂ ) and the branch of T̂ where M is attached. Hence, we should make
sure that the number of erroneous topologies induced from such quartets is
independent of the structure of T and the location where M is attached.

• For all quartets on S′ that correspond to labels of Q with missing topologies
in Q, we add quartet topologies in Q′ such that precisely one third of these
new quartet topologies are satisfied in T ′. This is the difficult part since we
do not know the structure of T ′.

Here are the details of the construction. Let w, x, y, z ∈ S′ be four distinct labels.
1. If the labels are all in M , specify the quartet topology according to the

structure of M as shown in Figure 4.1(a).
2. If w = ai for some a ∈ S, x = bj , y = bk, and z = bl with j < k < l, specify

the topology as wx|yz.
3. If w, x ∈M and y, z �∈M , specify the topology as wx|yz.
4. If w = bi ∈M and x, y, z �∈M , we consider two subcases.

(a) If at least two of x, y, z correspond to the same label in S, then the
quartet topology can be specified according to the required structure of
T ′ described above.

(b) If x, y, z correspond to distinct labels in S, then specify the topology
as bix|yz if i ≤ m/3, or as biy|xz if m/3 < i ≤ 2m/3, or as biz|xy
if i > 2m/3. Intuitively, here we are partitioning M into three sub-
sets {b1, . . . , bm/3}, {bm/3+1, . . . , b2m/3}, and {b2m/3+1, . . . , bm} so that
quartets of the above form will introduce the same number of errors no
matter how T looks and where M is attached in T̂ .

5. Finally, if none of the labels are from M , we consider three subcases.
(a) If at least two of them correspond to the same label in S, then this

quartet topology can be specified as before.
(b) If they correspond to a quartet on S that has a resolved topology in Q,

then specify the same topology in Q′.
(c) If they correspond to a quartet on S whose topology is missing in Q, we

take care of all such quartets collectively. Recall that each such quartet
of labels w, x, y, z ∈ S corresponds to 34 = 81 different quartets on S′.
We divide them into 81/3 = 27 disjoint groups. Each group contains
three quartets:

w0, xi, yj , zk,
w1, xi+1 mod 3, yj+1 mod 3, zk+1 mod 3,
w2, xi+2 mod 3, yj+2 mod 3, zk+2 mod 3.

For each group, we specify quartet topologies as follows:

w0xi|yjzk,
w1yj+1 mod 3|xi+1 mod 3zk+1 mod 3,
w2zk+2 mod 3|xi+2 mod 3yj+2 mod 3.

Obviously, the quartet topologies defined in items 1, 2, 3, 4(a), 5(a), and 5(b) do
not introduce any errors in T ′ if M stays as shown in Figure 4.1(a) and for each label
a ∈ S, its associated triplet of labels a0, a1, a2 ∈ S′ appear together in a subtree of T ′

as shown in Figure 4.1(b). The following lemmas give exact error bounds for quartet
topologies defined in items 4(b) and 5(c).

Lemma 4.1. If M does not split, item 4(b) introduces precisely g(n)m quartet
errors, where g(n) = 18

(
n
3

)
.
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ba

M2M1

Fig. 4.2. M is split by label a.

Proof. The number of quartets considered in item 4(b) is
(
n
3

) ·33 · 2m3 = 18
(
n
3

)
m =

g(n)m.
Lemma 4.2. Let q(n) =

(
n
4

)−|Q| be the number of missing quartet topologies in Q.
If M does not split, then for each a ∈ S, its associated triplet of labels a0, a1, a2 ∈ S′
appear together in a subtree of T ′ as shown in Figure 4.1(b) and item 5(c) introduces
precisely f(n) = 54q(n) quartet errors.

Proof. Suppose that for some a ∈ S, the triplet a0, a1, a2 ∈ S′ do not appear
together in a subtree as shown in Figure 4.1(b). Assume for the worst case that there
is a single leaf x separating these three elements in T ′ as shown below: Then, for any
label y ∈ M , the quartet topology a0x|a1y in Q′ would be an error. As there are at
least m such y, this gives rise to at least m quartet errors. Since m � n5, we can
improve T ′ by moving x away from the triplet a0, a1, a2, which contradicts to the fact
that T ′ is optimal for Q′.

Given that each triplet of labels corresponding to a label in L appear together
in a subtree in T ′ as shown in Figure 4.1(b), precisely one third of the 81 quartet
topologies specified in item 5(c) for each missing quartet in Q are correct. Hence,
item 5(c) introduces precisely 81 · 2

3q(n) = 54q(n) = f(n) quartet errors.
Finally, we have to show that M does not split in the optimal evolutionary tree

T ′.
Lemma 4.3. In the optimal evolutionary tree T ′ realizing Q′, M stays intact as

the caterpillar shown in Figure 4.1(a).
Proof. Splitting M may reduce the error terms in Lemma 4.1 and Lemma 4.2.

We argue that such splittings are not worthwhile because they introduce more quartet
errors to T ′ than they can save.

To illustrate the idea of the argument, suppose that some labels a, b �∈M split M
into two subsets M1 and M2, as shown in Figure 4.2.

In this case, we may (or may not) save at most g(n) ·min{|M1|, |M2|} errors from
item 4 that. But this splitting creates at least Ω(|M1| · |M2|) new errors because all
quartet topologies of the form

m1a|m2b,

where m1 ∈M1,m2 ∈M2, are erroneous. Since m� n5 and g(n) = O(n3), it is easy
to see that |M1| · |M2| � g(n) ·min{|M1|, |M2|}. Hence, the splitting in fact creates
more errors than it can save.

Therefore, in the optimal evolutionary tree T ′, M stays in one piece as a caterpillar
subtree.

From the above lemmas, we conclude that Q is compatible if and only if there
exists an evolutionary tree T ′ that is inconsistent with Q′ on at most (in fact, exactly)
g(n)m + f(n) quartets.
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5. Discussion. In practice, the inference of quartet topology is not reliable, and
so, confidence levels are assigned to quartet topologies. For example, for quartet
{a, b, c, d} the quartet topologies ab|cd, ac|bd, and ad|bc may be assigned confidence
levels 80%, 15%, and 5% indicating that we have the most confidence in the inference
ab|cd but that this confidence is not 100%. Given this information, the weighted MQC
problem is to obtain an evolutionary tree T that maximizes

∑
ab|cd∈QT

w(ab|cd),

where w(ab|cd) denotes the confidence level of quartet topology ab|cd. The MQC
PTAS can be extended to solve this weighted variation on MQC as long as the weights
are drawn from some interval of positive integers of constant range to preserve the
smoothness of the polynomial integer programs. On the other hand, when the weights
are allowed to be 0-1, weighted MQC becomes the incomplete MQC problem which
is MAX-SNP–hard.

The PTAS for weighted MQC can also be used to solve the quartet consensus
problem [6]. In the quartet consensus problem, several evolutionary trees T1, T2, . . .,
Tk compete as alternate hypotheses for the evolutionary history of a label set S. The
goal is to produce an evolutionary tree T that maximizes the sum

k∑
i=1

|QT ∩QTi |.

When k is a constant this can be solved by defining w(ab|cd) to be the number of
evolutionary trees Ti in which ab|cd is induced, for each quartet topology ab|cd, and
then applying the weighted MQC PTAS.

In an error model that restricts the number of quartet errors across an edge, each
quartet error may be “charged” to many edges. For example, in Figure 1.4(ii), a
quartet error involving the labels a, b, c, and d would be charged to all edges on the
path p connecting a, b with c, d. Hence, it is also natural to associate quartet errors
with paths instead of edges. If p is a path in T then {a, b, c, d} is a quartet across p if p
contains all the edges crossed by the quartet {a, b, c, d}, as illustrated in Figure 1.4(ii).
Error models that restrict the number of quartet errors across paths and those that
restrict the number of quartet errors across edges are incomparable. In general, the
former are good at capturing uniformly distributed errors while the latter are better
suited for describing localized errors. Let QT (p) denote the set of quartets across a
path p of T . It is not hard to extend our bipartition-based quartet cleaning algorithm
to work under the assumption that Q contains at most α

√|QT (p)| quartet errors
across any path p of T , for some constant α > 0.

Several open problems present themselves. In particular, the quartet cleaning
technique presented here is based upon an error model that bounds the number of
quartet errors across every edge of the evolutionary tree. A method that could clean
quartet errors across edges independently would be an improvement. It is hopeless
to obtain a PTAS for the sparse MQC problem since it is MAX-SNP–hard. Can we
obtain a better than 1/3 approximation for the sparse MQC problem?

Acknowledgment. We would like to thank the anonymous referees for their
detailed comments.
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AN EXTENSION OF PATH COUPLING AND ITS APPLICATION TO
THE GLAUBER DYNAMICS FOR GRAPH COLORINGS∗

MARTIN DYER† , LESLIE ANN GOLDBERG‡ , CATHERINE GREENHILL§ ,
MARK JERRUM¶, AND MICHAEL MITZENMACHER‖

SIAM J. COMPUT. c© 2001 Society for Industrial and Applied Mathematics
Vol. 30, No. 6, pp. 1962–1975

Abstract. A new method for analyzing the mixing time of Markov chains is described. This
method is an extension of path coupling and involves analyzing the coupling over multiple steps. The
expected behavior of the coupling at a certain stopping time is used to bound the expected behavior
of the coupling after a fixed number of steps. The new method is applied to analyze the mixing time
of the Glauber dynamics for graph colorings. We show that the Glauber dynamics has O(n log(n))
mixing time for triangle-free ∆-regular graphs if k colors are used, where k ≥ (2 − η)∆, for some
small positive constant η. This is the first proof of an optimal upper bound for the mixing time of
the Glauber dynamics for some values of k in the range k ≤ 2∆.
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1. Introduction. In this paper, a new method for analyzing the mixing time of
Markov chains is described. This method is a nontrivial extension of path coupling,
and applies in situations where path coupling is not enough to prove rapid mixing.
We run the path coupling for multiple steps and use the expected behavior of the
coupling at a certain stopping time to bound the expected behavior of the coupling
after a fixed number of steps. Standard path coupling is a worst-case analysis in that
it considers the expected change in the distance between the worst possible pair of
states over a single step. However, in a multiple-step analysis, the choice of the initial
pair of states is mitigated by the random choices made by the coupling over several
steps. Hence, with some constant probability, we are not in the worst case. This is
how a multiple-step analysis can improve upon one-step path coupling.

The approach of analyzing the behavior of a Markov chain over several steps
has proved worthwhile in other settings. For example, it has been used to prove the
stability of randomized bin-packing algorithms [7, 16, 1] and contention resolution
protocols [14, 13]. Hence this approach appears to be a natural direction for coupling
arguments as well.

∗Received by the editors May 31, 2000; accepted for publication (in revised form) October 30, 2000;
published electronically March 20, 2001. An earlier version of this paper appeared in the Proceedings
of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, 2000. This work
was supported in part by the EPSRC Research grant “Sharper Analysis of Randomised Algorithms:
A Computational Approach” and by the ESPRIT Projects RAND-APX and ALCOM-FT.

http://www.siam.org/journals/sicomp/30-6/37270.html
†School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK (dyer@scs.leeds.ac.uk).
‡Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK

(leslie@dcs.warwick.ac.uk).
§Department of Mathematics and Statistics, University of Melbourne, Parkville, Vic 3052, Aus-

tralia (csg@ms.unimelb.edu.au). This author was supported by an Australian Research Council
Postdoctoral Fellowship.
¶Department of Computer Science, University of Edinburgh, Edinburgh ED9 3JZ, UK

(mrj@dcs.ed.ac.uk).
‖Computer Science Department, Harvard University, 33 Oxford St, Cambridge, MA 02138

(michaelm@eecs.harvard.edu). This author was supported in part by the Alfred P. Sloan Foun-
dation.

1962



AN EXTENSION OF PATH COUPLING 1963

Czumaj et al. [8] introduced a framework for multiple-step couplings based on
path coupling, which they call delayed path coupling. Their “delayed path coupling
lemma” [8, Lemma 4.2] (reproduced below as Lemma 2.2) shows how the mixing time
of a Markov chain can be bounded above in terms of the behavior of a coupling over
a fixed number of steps. However, the way in which the coupling is analyzed over the
fixed time interval is not specified, and Czumaj et al. give a few different applications.
In some applications, they explicitly construct a non-Markovian coupling over the
full time interval. The construction and analysis of such a coupling can be very
complicated. However, we use straightforward path coupling to drive our multiple-
step coupling, performing most of our analysis at a specially defined stopping time.
The next section contains a description of this new method.

We then apply our method to the problem of analyzing the mixing time of the
Glauber dynamics for graph colorings. A proper k-coloring of a graph G = (V,E)
is a labelling of the vertices from a set of colors C = {1, . . . , k} such that no two
neighboring vertices have the same color. We consider the problem of sampling nearly
uniformly from the set of all proper k-colorings of a graph of maximum degree ∆. Note
that efficiently sampling k-colorings nearly uniformly allows one to approximately
count such colorings [15]. This problem is interesting as a fundamental combinatorial
problem, and it also relates to several problems in statistical physics; see [15, 23] for
more details.

A standard approach to the sampling problem is to design a Markov chain whose
stationary distribution is uniform over all proper k-colorings. We can then sample
nearly uniformly from all proper k-colorings by running the Markov chain until the
distribution of the state is sufficiently near the stationary distribution. For this ap-
proach to be efficient, the number of steps for which we must run the Markov chain
must be sufficiently small. The number of steps for which we must run the Markov
chain is generally called the mixing time, and a Markov chain for sampling proper
k-colorings is rapidly mixing if the mixing time is bounded above by some polynomial
in |V | = n.

Jerrum [15] (and independently Salas and Sokal [21], using different methods)
showed that when k ≥ 2∆, a simple Markov chain is rapidly mixing. This Markov
chain is easily described as follows: choose a vertex v uniformly at random and a color
c uniformly at random; recolor v to color c if doing so yields a proper coloring. This
Markov chain is generally referred to as the Glauber dynamics in the statistical physics
literature. Jerrum proved that the Glauber dynamics has O(n log(n)) mixing time
for k > 2∆, while for k = 2∆ the best known upper bound was O(n3). We use our
new method to show that, for ∆ ≥ 14, the Glauber dynamics chain has O(n log(n))
mixing time for k ≥ (2−η)∆ whenever the graph is triangle-free and ∆-regular, where
η is some small, positive constant. It seems to be widely believed that Ω(n log n) is a
lower bound on the mixing time of the Glauber dynamics; however, we do not know
of an existing proof. We present a simple proof of this fact in Theorem 3.1, for the
special case of graphs with no edges. Therefore our O(n log n) bound on the mixing
time is optimal. Our main result is the first proof of an optimal upper bound for the
mixing time of the Glauber dynamics for some values of k in the range k ≤ 2∆.

The 2∆ barrier has been broken using more complicated chains, but as far as
we know this is the first proof that involves direct analysis of the simple Glauber
dynamics chain. In [5], a rapidly mixing Markov chain was presented for the case
∆ = 3, k = 5 (and for ∆ = 4, k = 7 when the graph is triangle-free and 4-regular).
The proof involves the analysis of several (in the hundreds for the ∆ = 3 case)
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linear programming problems related to the chain. Using a comparison technique
such as [6, 9, 10, 11, 20] one can conclude that the Glauber dynamics is also rapidly
mixing for these values of k, ∆. However, applying a comparison technique generally
increases the upper bound on the mixing time by several factors of n.

In recent work, Vigoda [23] has proven that k ≥ 11∆/6 is sufficient for rapid
mixing, using an entirely different Markov chain (similar to the well-known Swendsen–
Wang algorithm [22]). Again, his result implies rapid mixing of the Glauber dynamics
for k ≥ 11∆/6, but with an O(n2 log n) bound on the mixing time. His result clearly
dominates ours in terms of the range of k for which rapid mixing is established.
However, because our analysis is based directly on the Glauber dynamics chain and
achieves an optimal bound, and because we use a new technique based on analyzing
this chain over multiple steps, our result is of independent interest.

2. Path coupling using stopping times. Before describing the new method
we present some standard definitions and notation. Let Ω be a finite set and letM
be a Markov chain with state space Ω, transition matrix P , and unique stationary
distribution π. If the initial state of the Markov chain is x then the distribution of
the chain at time t is given by P tx(y) = P t(x, y). The total variation distance of the
Markov chain from π at time t, with initial state x, is defined by

dTV(P
t
x, π) =

1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

Following Aldous [3], let τx(ε) denote the least value T such that dTV(P
t
x, π) ≤

ε for all t ≥ T . The mixing time of M, denoted by τ(ε), is defined by τ(ε) =
max {τx(ε) : x ∈ Ω}. A Markov chain is said to be rapidly mixing if the mixing time
is bounded above by some polynomial in n and log(ε−1), where n is a measure of the
size of the elements of Ω. Throughout this paper all logarithms are to base e.

There are relatively few methods available to prove that a Markov chain is rapidly
mixing. One such method is coupling. A coupling for M is a stochastic process
(Xt, Yt) on Ω × Ω such that each of (Xt), (Yt), considered marginally, is a faithful
copy of M. The moves of the coupling are correlated to encourage the two copies
of the Markov chain to couple: i.e., to achieve Xt = Yt. This gives a bound on the
total variation distance using the coupling lemma (see for example, Aldous [3]), which
states that

dTV(P
t
x, π) ≤ Prob[Xt 
= Yt],

where X0 = x and Y0 is drawn from the stationary distribution π. The following
standard result is used to obtain an upper bound on this probability and hence an
upper bound for the mixing time (the proof is omitted).

Theorem 2.1. Let (Xt, Yt) be a coupling for the Markov chain M and let ρ be
any integer valued metric defined on Ω × Ω. Suppose that there exists β ≤ 1 such
that E[ρ(Xt+1, Yt+1)] ≤ β ρ(Xt, Yt) for all t, and all (Xt, Yt) ∈ Ω× Ω. Let D be the
maximum value that ρ achieves on Ω× Ω. If β < 1 then the mixing time τ(ε) of M
satisfies τ(ε) ≤ log(Dε−1)/(1− β). If β = 1 and there exists α > 0 such that

Prob[ρ(Xt+1, Yt+1) 
= ρ(Xt, Yt)] ≥ α
for all t, and all (Xt, Yt) ∈ Ω× Ω, then τ(ε) ≤ �eD2/α��log(ε−1)�.

From now on, assume that all couplings are Markovian unless explicitly stated.
The path coupling method, introduced in [4], is a variation of traditional coupling
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which allows us to restrict our attention to a certain subset S of Ω×Ω, where Ω is the
state space of a given Markov chain. If we view S as a relation, the transitive closure
of S must equal Ω. The rate of convergence of the chain is measured with respect to
a (quasi)metric ρ on Ω × Ω, which can be defined by lifting a proximity function on
S to the whole of Ω× Ω (see [12] for details).

In this section we present a modification of path coupling which involves stopping
times. Let (X,Y ) be any element of Ω×Ω. As for ordinary path coupling, we define
a path, or sequence

X = Z0, Z1, . . . , Zr = Y

between X and Y , where (Z�, Z�+1) ∈ S for 0 ≤ ! < r, and

r−1∑
�=0

ρ(Z�, Z�+1) = ρ(X,Y ).

In ordinary path coupling we allow the coupling to evolve for one step, giving a new
path

Z0
′, Z1

′, . . . , Zr ′

(for a precise definition of the probability distribution of this new path, see [12]). We
then define (X ′, Y ′) =

(
Z0
′, Zr ′

)
. The path coupling lemma says the following. Let

(X,Y ) → (X ′, Y ′) be a coupling defined on all pairs in S. Suppose there exists a
constant β such that 0 < β ≤ 1 and for all (X,Y ) ∈ S we have

E [ρ(X ′, Y ′)] ≤ β ρ(X,Y ).(2.1)

Then we can conclude that (2.1) holds for all (X,Y ) ∈ Ω×Ω, and apply Theorem 2.1.
Suppose, however, that the smallest value of β for which (2.1) holds for all (X,Y ) ∈
S satisfies β > 1. Then path coupling is not good enough to allow us to apply
Theorem 2.1. However, if β is not much larger than 1, and there are some “good”
initial pairs (X,Y ) ∈ S where the distance decreases after one step (in expected
value), then we can try the following approach.

The following lemma is the “delayed path coupling lemma” [8, Lemma 4.2] of Czu-
maj et al., which shows how the mixing time of a Markov chain may be related to the
behavior of a t-step path coupling (which may be non-Markovian). For completeness,
we present a proof.

Lemma 2.2. Let S ⊆ Ω×Ω be such that the transitive closure of S is the whole of
Ω×Ω. Let ρ be an integer-valued metric on Ω×Ω which takes values in {0, . . . , D}.
Given (X0, Y0) ∈ S, let (X0, Y0), (X1, Y1), . . . , (Xt, Yt) be the t-step evolution of a
(possibly non-Markovian) coupling starting from (X0, Y0). Suppose that there exists a
constant γ such that 0 < γ < 1 and

E [ρ(Xt, Yt)] ≤ γρ(X0, Y0)(2.2)

for all (X0, Y0) ∈ S. Then the mixing time τ(ε) ofM satisfies

τ(ε) ≤ log(Dε−1)

1− γ · t.
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Proof. Using the same argument as the path coupling lemma, we know that (2.2)
holds for all (X0, Y0) ∈ Ω×Ω. Run the coupling in epochs of length t. After r epochs,
we have

E [ρ(Xrt, Yrt)] ≤ γr ρ(X0, Y0) ≤ γrD.
If r ≥ log(Dε−1)/(1− γ) then E [ρ(Xrt, Yrt)] ≤ ε. This gives an upper bound for the
number of epochs required to ensure that the distribution of the chain is at most ε
away from stationarity, in terms of total variation distance. Multiplying this number
by t, the number of steps per epoch, gives the mixing time of the chain.

Therefore it suffices to show that E [ρ(Xt, Yt)] ≤ γ ρ(X0, Y0) for all (X0, Y0) ∈ S,
where γ is some positive constant less than 1. The main contribution of this paper
is to provide a new approach to bounding E [ρ(Xt, Yt)], which we now describe. Let
(X,Y ) → (X ′, Y ′) be a (one-step, Markovian) coupling for M defined on all initial
pairs in S; that is, (X,Y ) ∈ S and (X ′, Y ′) ∈ Ω× Ω. We will apply this coupling for
t steps, using the path coupling machinery to drive the coupling if the trajectory of
the coupling leaves the set S. This gives a multiple-step coupling {(Xs, Ys)}s≥0. Let
T be a stopping time for this coupling, defined in such a way that

ρ(Xs, Ys) = ρ(X0, Y0) for 0 ≤ s < T.

Then T is a random variable which depends only on the history of the coupling up
to the present time. For example, we could define T to be the first time at which the
value of ρ changes.

If T > t then we know that ρ(Xt, Yt) = ρ(X0, Y0). Otherwise, we consider
(XT , YT ), the state of the coupling at the stopping time T . (The pair (XT , YT ) need
no longer belong to the set S, but the path coupling machinery drives the coupling
for all pairs in Ω× Ω.) The analysis gives an upper bound for the quantity

E [ρ(XT , YT ) | T ≤ t] .
We hope that this quantity will be smaller than E [ρ(X1, Y1)], with the following
heuristic justification. The analysis of one-step coupling is a worst-case analysis.
However, after running the Markov chain for T steps, the effect of the chosen starting
state is mitigated to some extent by the random choices made during the running of
the coupling. In other words, with some positive probability we are not in the worst
case. It is here that we can improve on one-step coupling.

We now show how to relate E [ρ(XT , YT ) | T ≤ t] and E [ρ(Xt, Yt)].
Theorem 2.3. Let M be a Markov chain with state space Ω. Let ρ be a metric

on Ω × Ω and let S be some subset of Ω × Ω such that the transitive closure of S is
Ω × Ω. Suppose that we have a (one-step, Markovian) coupling (X,Y ) → (X ′, Y ′),
defined on pairs in S such that

E [ρ(X ′, Y ′)] ≤ β ρ(X,Y )
for some constant β such that β ≥ 1. Let t > 0 be a fixed integer. Apply the coupling
for t steps from initial state (X0, Y0) ∈ S, using the path coupling lemma. Let T be
some stopping time for {(Xs, Ys)}s≥0 such that

ρ(Xs, Ys) = ρ(X0, Y0)

whenever 0 ≤ s < T . Then

E [ρ(Xt, Yt)] ≤ Prob [T > t] · ρ(X0, Y0) + Prob [T ≤ t] · βt ·E [ρ(XT , YT ) | T ≤ t]
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for all (X0, Y0) ∈ S.
Proof. The coupling defined on the set S gives rise to a coupling (X,Y ) → (X ′, Y ′)

on the entire set Ω × Ω such that E [ρ(X ′, Y ′)] ≤ β ρ(X,Y ) for all (X,Y ) ∈ Ω × Ω,
by the path coupling lemma [4]. Let (X0, Y0), (X1, Y1), . . . , (Xt, Yt) be the t-step
evolution of this coupling from the starting state (X0, Y0) ∈ S.

If T > t then ρ(Xt, Yt) = ρ(X0, Y0). Next suppose that T ≤ t. Then
E [ρ(Xt, Yt) | T ≤ t] ≤ βE [ρ(Xt−1, Yt−1) | T ≤ t]

≤ E
[
βt−T ρ(XT , YT ) | T ≤ t

]
≤ βtE [ρ(XT , YT ) | T ≤ t] .

(By replacing t− T by t we are, in effect, assuming that the stopping time occurs at
the very beginning of the interval.) This proves the theorem.

Suppose that S is the set of all pairs (X,Y ) with ρ(X,Y ) = 1. In this case,
Theorem 2.3 can be rewritten to assert that

E [ρ(Xt, Yt)− 1] ≤ Prob [T ≤ t] (βt ·E [ρ(XT , YT ) | T ≤ t]− 1
)
.

Combining Lemma 2.2 and Theorem 2.3, we see that γ can be defined to be the
maximum of the values

1− Prob [T ≤ t] (1− βt ·E [ρ(XT , YT ) | T ≤ t]
)

(2.3)

over all (X0, Y0) ∈ S. In order to obtain a good bound on the mixing time of the
chain, we aim to show that γ < 1. Clearly γ < 1 if

βtE [ρ(XT , YT ) | T ≤ t] < 1

for all (X0, Y0) ∈ S.
3. Applying the new method to the Glauber dynamics for graph color-

ings. In this section we illustrate the new method by using it to analyze the mixing
time of the Glauber dynamics for graph colorings.

Let G = (V,E) be a given graph and let Ωk(G) be the set of all proper k-colorings
of G, where C is the set of colors. The Glauber dynamics is a Markov chain on Ωk(G)
with transitions from the current state according to the following procedure:

• choose (v, i) ∈ V × C uniformly at random,
• recolor v with i if this results in v being properly recolored.

This chain was analyzed by Jerrum [15] and independently by Salas and Sokal [21].
They proved that the chain is rapidly mixing for graphs with maximum degree ∆
when k > 2∆. The fact that the chain is also rapidly mixing for k = 2∆ can be found
in [4]. Jerrum showed that the Glauber dynamics has O(n log(n)) mixing time for
k > 2∆, and the best known upper bound when k = 2∆ was O(n3).

In section 3.1 we describe the standard path coupling for this chain. Section 3.2
contains the definition of the stopping time for this coupling, and gives a necessary
condition for the success of the new method. In section 3.3 we perform the calcula-
tions needed to establish the necessary condition. All calculations are combined in
section 3.4 to provide an O(n log(n)) upper bound for the mixing time of the Glauber
dynamics for ∆-regular, triangle-free graphs, when (2− η)∆ ≤ k ≤ 2∆, where η is a
small positive constant.

Before we proceed, we present a proof of the “folklore” result that the mixing
time of the Glauber dynamics is bounded below by Ω(n log n). Our proof concerns
graphs with no edges.
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Theorem 3.1. Let G be the empty graph with n vertices, and let k ≥ 2. Then

τ((2e)−1) = Ω(n log n).

Proof. A stopping rule Γ (see [17]) is a map that associates every initial sequence
w of Markov chain states with a number Γ[w] ∈ [0, 1], which is taken to be the
probability that the sequence should continue. We can also think of Γ as a random
variable taking values in {0, 1, 2, . . .}, whose distribution depends only on w0, . . . , wΓ

(and wΓ is the state where we stop). If w0 is drawn from the distribution σ and E[Γ]
is finite and the distribution of final states is τ , then the rule is called a stopping
rule from σ to τ . It is said to be optimal for σ and τ if E[Γ] is minimal. For each
x ∈ Ωk(G) let σx be the distribution concentrated on the state x. Define τ2 to be the
maximum, over all initial states x, of the expected length of an optimal stopping rule
from σx to π. Since the Glauber dynamics is time-reversible, a result of Aldous [2,
Lemma 12] applies, showing that

τ((2e)−1) ≥ cτ2,

where c = (1− e−1)2/2. Now let Γ be the stopping rule which says, “stop when you
have visited every vertex of G at least once.” (It may not be immediately apparent
that this rule satisfies the definition of a stopping rule given in [17], since it uses
information not encoded in the states of the chain. However, it is routine to formulate
an equivalent randomized stopping rule which does fit the definition; see [18, p. 89].)
Since G has no edges and every vertex has been randomly recolored, the coloring
obtained at time Γ is distributed according to π. Hence Γ is a stopping rule from σx
to π for all x ∈ Ωk(G). Let y ∈ Ωk(G) be any coloring of G such that y(v) 
= x(v)
for all v ∈ V . Then y is a halting state for this stopping rule (that is, the probability
that the process will halt if it reaches y is 1). Since Γ has a halting state it is an
optimal stopping rule, using [17, Theorem 5.1]. This shows that τ2 = E[Γ]. Therefore
τ((2e)−1) is bounded below by a constant times the expected number of steps required
to visit every vertex at least once, and the latter is Θ(n log n) by the well-known
coupon collector’s lemma (see, for example, [19, section 3.6]).

3.1. Path coupling for the Glauber dynamics. We now give the standard
path coupling analysis of the Glauber dynamics. The proximity function is given by
Hamming distance, and we let S be the set of all pairs with Hamming distance 1. The
state space of the Markov chain must be extended to the set of all colorings (including
nonproper colorings) in order to be able to form a path of length H(X,Y ) between
any two colorings (X,Y ) ∈ Ωk(G). (This approach is standard and does not cause any
problems, since the nonproper colorings are transient states. The stationary distribu-
tion is uniform over all proper colorings, and zero elsewhere. Although the extended
chain is no longer reversible, the path coupling lemma still applies. Moreover, the
mixing time of the chain on the original state space is bounded above by the mixing
time of the chain on the extended state space.)

Consider (X,Y ) ∈ S, so X and Y differ just at a single vertex v. Let N(v)
denote the set of neighbors of v in G. We can couple at (X,Y ) as follows: choose
(u, i) uniformly at random from V × C. If u = v then attempt to recolor v with i in
both X and Y . This will either succeed in both or fail in both. If it succeeds then
the Hamming distance decreases by 1. The only other moves which can affect the
Hamming distance are when u = w where w ∈ N(v). In this case, if i 
∈ {X(v), Y (v)}
then attempt to recolor w with i in both X and Y . This will either succeed in both
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or fail in both, and the Hamming distance is unaffected. If i = X(v) then attempt
to recolor w with X(v) in X and attempt to recolor w with Y (v) in Y . This will fail
in both X and Y , so the Hamming distance is unaffected. Finally, if i = Y (v) then
attempt to recolor w with Y (v) in X, and attempt to recolor w with X(v) in Y . This
may succeed or fail in either, so the Hamming distance could increase by 1 here. Thus
the expected change in the Hamming distance is at most

− (k − | {X(w) : w ∈ N(v)} |)
kn

+
∆

kn
.

In general, we have | {X(w) : w ∈ N(v)} | ≤ ∆, so that the expected change in the
Hamming distance is at most −(k − 2∆)/(kn). This gives nonincreasing Hamming
distance for k ≥ 2∆. The aim of the new approach is to show that, with constant
positive probability, there are fewer than ∆ distinct colors around v, just before the
stopping time. This gives nonincreasing Hamming distance for a wider range of k.

3.2. A stopping time for the Glauber dynamics on colorings. For sim-
plicity, assume that the given graph G is ∆-regular and triangle-free. Let η be a small
positive constant which we fix later, and suppose that (2−η)∆ ≤ k ≤ 2∆. We analyze
the mixing time of the Glauber dynamics using our new method, to show that the
Glauber dynamics has O(n log(n)) mixing time for this range of k.

Let (X0, Y0) ∈ S be given, so that X0, Y0 differ just at a single vertex v ∈
V . Perform the coupling described in section 3.1 with starting point (X0, Y0). Let
Q(X0, Y0) be the set of all moves which involve v or increase the Hamming distance;
that is,

Q(X0, Y0) = {(v, i) : i ∈ C} ∪ {(w, Y0(v)) : w ∈ N(v)} .

Then Q(X0, Y0) contains all the choices which may affect the Hamming distance, but
also some which will not. Define the random variable T to be the first step at which
a pair in Q(X0, Y0) is chosen by the coupling. Then T is a stopping time since it
depends only on the coupling up to the present time. Now (XT , YT ) is the state of
the coupling after the T th step, which we refer to as the state of the coupling at the
stopping time. Note that H(Xs, Ys) = H(X0, Y0) = 1 for 0 ≤ s < T by the analysis of
section 3.1. Clearly |Q(X0, Y0)| = k+∆ for all pairs (X0, Y0) ∈ S. Let δ be a positive
constant, and assume that δn is an integer. (Since n can grow arbitrarily large, there
is not much harm in making this assumption.) An (approximately) optimal value of
δ will be fixed later, which will satisfy δ < (2− η)/3. We run the coupling for t steps,
where t = δn.

Let C be a random variable which denotes the number of colors which occur more
than once around v just before the stopping time T (that is, after step T − 1). In the
next section we prove that, when n and ∆ are “big enough” and η is “small enough,”
we have

E [C | T ≤ δn] ≥ ξ∆

for some constant ξ such that ξ ≥ 2η. We now show why this is sufficient.
The arguments of section 3.1 show that the expected value of the Hamming

distance after one step of normal path coupling from (X,Y ) ∈ S is at most

1− k − 2∆

kn
≤ 1 +

η∆

kn
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since (2− η)∆ ≤ k ≤ 2∆. Next, notice that

E [H(XT , YT )− 1 | T ≤ δn] ≤ −k − (∆−E [C | T ≤ δn])
k +∆

+
∆

k +∆

≤ −k − (1− 2η)∆

k +∆
+

∆

k +∆

≤ −η
3
.

Therefore, using Theorem 2.3 (and in particular the remarks following the theorem),

E [H(Xδn, Yδn)− 1] ≤ Prob [T ≤ δn] (βδn ·E [H(XT , YT ) | T ≤ δn]− 1
)

≤ Prob [T ≤ δn]
((

1 +
η∆

kn

)δn (
1− η

3

)
− 1

)

≤ Prob [T ≤ δn]
(
eηδ/(2−η)e−η/3 − 1

)
.(3.1)

This quantity is nonpositive whenever

ηδ

2− η −
η

3
≤ 0,

and this holds for δ ≤ (2− η)/3.
We now calculate a lower bound for E [T | T ≤ δn], which is needed in section 3.3.
Lemma 3.2. Suppose that n ≥ δ−1 and (2 − η)∆ ≤ k ≤ 2∆, where 0 < η < 2.

Let θ = 3/(2− η). Then

E [T | T ≤ δn] ≥ δn

2
(1− θδ).

Proof. Let q = 1 − (k + ∆)/(kn), and let ps denote the probability that T = s.
Then ps = Prob [T = s] = (1 − q)qs−1 and Prob [T ≤ δn] = 1 − qδn. Now qδn ≥
1− (k +∆)δ/k since n ≥ δ−1. Therefore

E [T | T ≤ δn] = (1− qδn)−1
δn∑
s=0

sps

≥ pδn δ
2 n2

2 (1− qδn)

>
(1− q) qδn δ2 n2

2 (1− qδn)

≥ (1− q) (1− k+∆
k δ

)
2k+∆

k δ
δ2 n2

≥ (1− θδ) δn
2
,

as claimed.

3.3. The expected number of repeated colors just before the stopping
time. Let (X0, Y0) be a given pair in S and let v be the vertex which is colored
differently in X and Y . Let T be the stopping time for the coupling when started at
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(X0, Y0). Denote by C the number of colors which occur at least twice around v just
before the stopping time T . That is,

C = | {i ∈ C : | {w ∈ N(v) : XT−1(w) = i} | ≥ 2} |.
In this section we obtain a lower bound for E [C | T ≤ δn] which holds when ∆ and n
are both “large enough” and η is “small enough.” Specifically, take ∆ ≥ 14, n ≥ 120,
and η < 1/210.

Let Aw be defined by

Aw = C \ ({X0(u) : {u,w} ∈ E} ∪ {Y0(v)})
for w ∈ N(v). Then Aw is the set of colors which are acceptable at w in both X0 and
Y0. Note that |Aw| ≥ k −∆− 1 for all w ∈ N(v). Next, let

Bi = {w ∈ N(v) : i ∈ Aw}
and let bi = |Bi| for each i ∈ C. So Bi is the set of vertices w ∈ N(v) at which i is
acceptable in both X0 and Y0.

Lemma 3.3. Assume that η < 1/210 and ∆ ≥ 14. Let k satisfy (2− η)∆ ≤ k ≤
2∆. Then there are at least �k/5� colors i such that bi ≥ ∆/3.

Proof. Let Z = |{(i, w) : i ∈ Aw}|. Now Z ≥ ∆(k −∆− 1). For a contradiction,
suppose that fewer than �k/5� colors i have bi ≥ ∆/3. If k is a multiple of 5 then

Z ≤
(
k

5
− 1

)
∆+

(
4k

5
+ 1

)
∆

3

≤
(
1−

(
1

15
− 1

3∆

))
∆2 −∆

< ∆(k −∆− 1),

giving the desired contradiction. Next, suppose that k = 5!+ r, where r ∈ {1, 2, 3, 4}.
Then

Z ≤ !∆+ (k − !)∆
3

≤
(
1−

(
1

15
− 15− 2r

15∆

))
∆2 −∆

< ∆(k −∆− 1)

since η < 1/210 and ∆ ≥ 14. Again, this is a contradiction.
Using this information we can prove a lower bound for the expected number of

repeated colors around v just before the stopping time, given that the stopping time
occurs in the first δn steps.

Theorem 3.4. Suppose that n ≥ 120, ∆ ≥ 14, η < 1/210, and δ < (2 − η)/3.
Also assume that (2− η)∆ ≤ k ≤ 2∆. Then

E [C | T ≤ δn] ≥ 1

3840
· δ2 (1− θδ)2 · e−4δ ·∆,

where θ = 3/(2− η).
Proof. By Lemma 3.3, there are at least �k/5� colors i such that bi ≥ ∆/3.

Consider ways in which such a color i can occur at least twice around v just before
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the stopping time T . One way in which this can occur is as follows. Suppose that
there are exactly two distinct elements u, w ∈ Bi which were chosen with the color
i during the coupling. That is, (u, i) and (w, i) were both chosen but (q, i) was not
chosen for any q ∈ Bi \ {u,w}. Also suppose that u and w are never chosen at any
other time, with any color, and that no neighbor of u or w is ever chosen with color
i. In this situation, both u and w end up colored i. We now analyze the probability
that this event occurs for a given value of T .

We know that T is the first stopping time, so there are T − 1 steps before the
stopping time step. We do not have kn possible choices at each of these T − 1 steps,
but rather kn − (k + ∆) possibilities. With this in mind, the probability that, say,
w is chosen with color i is given by 1/(kn − (k + ∆)) ≥ 1/(kn). There are at least
∆2/24 choices for the unordered pair {u,w} ⊆ Bi since bi ≥ ∆/3 and ∆ ≥ 14. The
probability that both (u, i) and (w, i) are chosen at two distinct times in the first
T − 1 steps is at least

(
T−1

2

) · 1/(k2n2). There are also choices which we have ruled
out for all other steps, corresponding to the vertex-color pairs from the set

{(q, i) : q ∈ (N(u) ∪N(w) \ {v}) ∪ (Bi \ {u,w})}
⋃
{(u, j), (w, j) : j ∈ C \ {Y (v)}} .

(Note that the selection of j = Y (v) is ruled out because s is not a stopping time for
0 ≤ s < T .) We have ruled out at most 3∆ + 2k − 6 choices at each of T − 3 steps.
Thus we see that

Prob

[
i is repeated | T, bi ≥ ∆

3

]
≥ ∆2

24
·
(
T − 1

2

)
· 1

k2n2
·
(
1− 3∆ + 2k − 6

kn− (k +∆)

)T−3

.

Let x = 3∆+ 2k − 6 and y = kn− (k +∆). Then

(
1− x

y

)T−3

= exp

(
−(T − 3)

∞∑
i=1

1

i

(
x

y

)i)

= exp

(
−Tx
y

+
∞∑
i=1

(
3

i
− Tx

(i+ 1)y

)(
x

y

)i)

≥ e−Tx/y
≥ e−4δ.

The first inequality follows since 3/i ≥ Tx/((i + 1)y) for all i ≥ 1, and the second
inequality follows since 4y ≥ nx (using the definition of x, y and the assumptions of
the theorem). Plugging this back into our calculations, we obtain

Prob

[
i is repeated | T, bi ≥ ∆

3

]
≥ ∆2

24
·
(
T − 1

2

)
· 1

k2n2
· e−4δ.

Now we shall take expectation with respect to T , conditional on T ≤ δn. Using
Lemma 3.2 and the fact that n ≥ 120, we find that(

E [T | T ≤ δn]− 1

2

)
≥ δ2 n2 (1− θδ)2

16
.

Applying Jensen’s inequality, we obtain

Prob

[
i is repeated | T ≤ δn, bi ≥ ∆

3

]
≥ ∆2

384
· δ2 n2 (1− θδ)2 · 1

k2n2
· e−4δ

≥ 1

768
· δ2 (1− θδ)2 · e−4δ · ∆

k
.(3.2)
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By summing (3.2) over the �k/5� most popular colors, the theorem is proved.

3.4. The mixing time of the Glauber dynamics. We now calculate an up-
per bound for the mixing time of the Glauber dynamics, using Lemma 2.2 and The-
orem 2.3. Let ξ be defined by

ξ(δ, η) =
1

3840
· δ2 (1− θδ)2 · e−4δ

=
1

3840
· δ2

(
1− 3δ

2− η
)2

· e−4δ.

Theorem 3.4 shows that E [C | T ≤ δn] ≥ ξ∆. Note that ξ is a decreasing function
of η. Take δ = 1/8 and η = 8 × 10−7. Then ξ(δ, η) ≥ 2η. (These values of δ, η are
approximately optimal.) The discussion of section 3.2 suggested that this condition
was sufficient to ensure rapid mixing of the Glauber dynamics. We now give the
details.

Theorem 3.5. Let n ≥ 120 and ∆ ≥ 14. Suppose that (2 − η)∆ ≤ k ≤ 2∆,
where η = 8× 10−7. The mixing time of the Glauber dynamics for graph colorings of
∆-regular, triangle-free graphs is bounded above by

τ(ε) ≤ 4× 106 n log(nε−1).

Proof. Let δ = 1/8, as in the previous section. We bound the mixing time by
finding an upper bound on the quantity γ such that

H(Xδn, Yδn) ≤ γ

over all initial pairs (X0, Y0) ∈ S. Using the remark following Theorem 2.3, we can
define γ by (2.3). Let q = 1− (k +∆)/(kn), as in Lemma 3.2. Then

Prob [T ≤ δn] = 1− qδn

≥ 1− exp

(
−k +∆

k
δ

)
≥ 1− e−4δ/3.

Using this, with the calculations of (3.1), we obtain

γ ≤ 1−
(
1− e−4δ/3

)(
1− exp

(
ηδ

2− η −
η

3

))

≤ 1− 3.3× 10−8,

substituting δ = 1/8 and η = 8 × 10−7. Now applying Lemma 2.2 we find that the
mixing time of the Glauber dynamics is bounded above by

τ(ε) ≤ δn · log(nε
−1)

1− γ
≤ 108

26.4
n log(nε−1)

< 4× 106 n log(nε−1).

This bound holds for (2− η)∆ ≤ k ≤ 2∆, where η = 8× 10−7, assuming that ∆ ≥ 14
and n ≥ 120.
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Vigoda [23] described a new Markov chain for graph colorings which alters the
coloring of up to six vertices at each transition. He showed using path coupling that
this chain is rapidly mixing for k ≥ 11∆/6. The mixing time of this chain is bounded
above by

k

k − 11
6 ∆

n log(nε−1)

for k > 11∆/6. Vigoda also applies the comparison technique of Diaconis and Saloff-
Coste [9] to show that the mixing time of the Glauber dynamics is at most

O
(
k log(k)n2 log(n)

)

when k > 11∆/6. In particular, this gives an upper bound of O(n2 log n) when
k = 2∆. It seems unlikely that any comparison technique could yield the optimal
bound of O(n log n).
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Abstract. We consider the problem of computing the costs—in terms of states—of optimal sim-
ulations between different kinds of finite automata recognizing unary languages. Our main result is

a tight simulation of unary n-state two-way nondeterministic automata by O(e
√
n lnn)-state one-way

deterministic automata. In addition, we show that, given a unary n-state two-way nondeterministic
automaton, one can construct an equivalent O(n2)-state two-way nondeterministic automaton per-
forming both input head reversals and nondeterministic choices only at the ends of the input tape.
Further results on simulating unary one-way alternating finite automata are also discussed.
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1. Introduction. Finite automata are probably one of the simplest and most
extensively studied models of computation. First of all, their computational power is
well established: they exactly define the class of regular languages. Furthermore, it is
also well known that several added features, such as nondeterminism, alternation, and
two-way motion of the input head, do not increase their computing ability. Equiva-
lences are clearly obtained by simulating different kinds of automata by the original
device, the one-way deterministic finite automaton (1dfa) [22]. Here, we are particu-
larly interested in the cost—in terms of states—of simulations between automata.

The following are the well-known costs of simulating different automata by 1dfa’s
(number of states of the best 1dfa simulating any n-state automaton in the class): one-
way nondeterministic finite automata (1nfa): O(2n) [22], one-way alternating finite
automata (1afa): O(22n

) [7], two-way deterministic finite automata (2dfa): O(nn) [22,

24], two-way nondeterministic finite automata (2nfa): O(2n
2

) [22, 24]. All these
bounds are tight. We refer the reader to [3] which is a valuable source for results and
references.

There are several open questions concerning automata simulation, the most im-
portant being probably the one posed by Sakoda and Sipser in [23]: how many
states are necessary and sufficient to simulate 2nfa’s (or 1nfa’s) by 2dfa’s? They
conjecture such a cost to be exponential, and Sipser [25] proves that this is ex-
actly the case when 2dfa’s are required to be sweeping, i.e., to have head reversals
only at the ends of the input tape. Berman and Lingas [2] state a lower bound of
Ω(n2/log n) for the general problem and provide an interesting connection with the

celebrated open problem Dlogspace
?
= Nlogspace. More precisely, they show that
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if Dlogspace = Nlogspace then for some polynomial p and for all integers m and
k-state 2nfa A, there is a p(mk)-state 2dfa accepting a subset of L(A), the language ac-
cepted by A. The subset consists of all strings of length no more thanm in L(A). As a
consequence of this result, Sipser [25] relates the Dlogspace

?
= Nlogspace question

also to the existence of sweeping automata with a polynomial number of states for a
certain family of regular languages. This might give added evidence that the problem
of evaluating how the number of states changes when turning one automaton into
another is not only motivated by the investigation on the succinctness of representing
regular languages but is also related to fundamental questions in complexity.

It is important to stress that the optimality of such simulations has been estab-
lished by witness languages built over alphabets of two or more symbols. As a matter
of fact, the situation turns out to be quite different whenever we restrict the problems
to unary automata, i.e., automata with a single letter input alphabet. The problem of
evaluating the costs of unary automata simulations was raised in [25] and has led to
emphasize some relevant differences with the general case. For instance, we know that

O(e
√
n lnn) states suffice in order to simulate a unary n-state 1nfa or 2dfa by a 1dfa.

Furthermore, a unary n-state 1nfa can be simulated by a 2dfa having O(n2) many
states. All these results and their optimality have been proved in 1986 by Chrobak
[8].

In this paper, we further deepen the study of optimal simulations between unary
automata. To this aim, we find it useful to consider some techniques from the sublog-
arithmic space world (see, e.g., [11, 12, 27]).

The first part of the paper is devoted to study unary 2nfa’s. We closely analyze
the structure of their computation paths. In particular, using graph theoretical and
number theoretical arguments, we show that, for sufficiently large inputs, it is possible
to consider only computation paths in which states are repeated in a very regular way.
This allows us to state our main result concerning the optimal simulation of unary
2nfa’s by 1dfa’s: each unary n-state 2nfa can be optimally simulated by a 1dfa with

O(e
√
n lnn) states. Note that such a complexity is the same as the above mentioned

optimal simulations of unary 1nfa’s and 2dfa’s by 1dfa’s. Thus, we can conclude that
the simultaneous elimination of both two-way motion and nondeterminism on unary
automata has the same cost as the elimination of either of them.

As another consequence of our analysis of unary 2nfa’s, we are able to prove that
each unary n-state 2nfa can be simulated by a 2nfa with O(n2) states which reverses
the input head direction and makes nondeterministic decisions only when the input
head visits the left or the right end of the input. This result can be regarded as a
further step toward the solution of the Sakoda–Sipser open problem recalled above,
at least for unary inputs.

In the second part of the paper, we study the relationships between unary 1afa’s,
dfa’s and nfa’s. This problem was proposed in [8] and partly solved in [3], where it is
proved that 2n states are necessary for 2nfa’s to simulate unary n-state 1afa’s. Here,
we point out an optimal simulation of unary n-state 2nfa’s by O(

√
n lnn)-state 1afa’s.

By combining our results with those in the literature, we are able to draw an
almost complete description of the costs of optimal simulations between the different
types of unary automata here considered. We do not explicitly list all the resulting
optimal bounds, which can be better understood by observing Figure 1.1.

2. Preliminary notions and results. In this section, we begin by recalling
basic notions on finite state automata (subsection 2.1). Then, for the reader’s ease of
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Fig. 1.1. Costs of the optimal simulations between different kinds of unary automata. An arc
labeled f(n) from a vertex x to a vertex y means that a unary n-state automaton of type x can be
simulated by a O(f(n))-state automaton of type y. Costs marked by “•” are proved in [8], by “♦”
in [7], by “�” in [17], by “�” in this paper. The unmarked costs can be trivially obtained. The arc
labeled “?” represents the open question of Sakoda and Sipser [23].

mind, a brief outline of the main result of this paper—the O(e
√
n lnn) simulation of

2nfa’s by 1dfa’s—is provided (subsection 2.2). In the following two subsections, we set
up some mathematical tools to study the costs of our simulations. More precisely, we
prove some new facts concerning linear Diophantine equations (subsection 2.3) and
directed graphs (subsection 2.4).

2.1. Finite state automata. Given a set S, 	S denotes its cardinality, and 2S

the family of all its subsets. Given an alphabet Σ, Σ∗ denotes the set of strings on
Σ, with the empty string ε. Given a string x ∈ Σ∗, |x| denotes its length. A language
L is said to be unary (or tally) whenever it can be built over a single letter alphabet.
In this case, we let L ⊆ 1∗.

Let us take a brief look on the computational model of finite automata. For a
detailed exposition, we refer the reader to [14]. A one-way nondeterministic finite
automaton is a 5-tuple A = (Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ
is the finite input alphabet, δ : Q × Σ → 2Q is the transition function, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states. The transition function δ can
be extended to strings in a standard way. The language accepted by A is the set
L(A) = {x ∈ Σ∗ | δ(q0, x) ∩ F 
= ∅}. The one-way automaton A is deterministic if
and only if 	δ(q, σ) = 1, for any q ∈ Q, and σ ∈ Σ. (This implies that deterministic
automata are assumed to be complete.)

It is well known that a one-way automaton can be viewed as a control unit that
reads, by an input head, a tape containing input strings stored one symbol per square.
At each move, the input head is shifted one square right. This model can be extended
to encompass stationary and left moves of the input head. More precisely, we can
define a 2nfa as a 5-tuple A = (Q,Σ, δ, q0, F ) in which Q, Σ, q0, and F are defined as

for 1nfa’s, while δ : Q×(Σ∪{�,�})→ 2Q×{−1, 0,+1} is the transition function, where
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�,� are two special symbols—the left and the right endmarker, respectively—not in
Σ. Input strings are stored onto the input tape surrounded by the two endmarkers,
the left endmarker being at the 0th square. The computation begins with the input
head scanning the 0th square. In a move, A reads an input symbol, changes its state,
and moves the input head one position forward or backward or keeps it stationary,
depending on whether δ returns +1, −1, or 0, respectively. Left and right moves on
the left and right endmarker, respectively, are forbidden. A is deterministic if and
only if 	δ(q, σ) = 1, for any q ∈ Q, and σ ∈ Σ ∪ {�,�}.

Alternating finite automata1 provide a natural generalization of nondetermin-
istic automata. We now briefly recall their formal definition and refer the reader
to [7, 10] for more details. A one-way alternating finite automaton is a 5-tuple
A = (Q,Σ, g, q1, F ), where Q = {q1, . . . , qk} is the set of states, Σ is the input alpha-
bet, F ⊆ Q is the set of final states, q1 is the initial state, and g : Q→ (Σ×Bk → B)
is a mapping of Q into the set of all mappings of Σ×Bk into B = {0, 1}. To explain
the behavior of A, consider, for i = 1, . . . , k, the function gi : Σ×Bk → B represent-
ing the image by g of the state qi, i.e., gi = g(qi). Such functions can be inductively
extended to strings to obtain Gi : Σ

∗ ×Bk → B as: Gi(ε,u) = ui, and Gi(σx,u) =
gi(σ, G1(x,u), . . . , Gk(x,u)), for σ ∈ Σ, x ∈ Σ∗, and u = (u1, . . . , uk) ∈ Bk. The
language accepted by A is the set L(A) = {x ∈ Σ∗ | G1(x, f) = 1}, where f ∈ Bk de-
notes the characteristic vector of the set of final states. Notice that Gi(ε, f) = 1 if and
only if qi is a final state. Moreover, Gi(σx, f) can be computed as follows: a process
in the state qi reads σ from the input tape, and splits into k independent processes
computing Gj(x, f), for j = 1, . . . , k. Then, by applying gi(σ, ) to all these results,
we get Gi(σx, f).

It is easy to see that 1nfa’s are just special cases of 1afa’s up to setting

gi(σ,u) =
∨

qj∈δ(qi,σ)

uj ,

for i = 1, . . . , k, σ ∈ Σ, and u ∈ Bk.
We call unary any automaton that works with a single letter input alphabet.

2.2. Outline of the main result. The proof of the optimal O(e
√
n lnn) simu-

lation of 2nfs’s by 1dfa’s, which is the main result of this paper, is rather long and
complex. To help the reader, we emphasize the main ideas here.

Let C be an accepting computation path of an n-state 2nfa A on input 1m. Along
C, consider the sequence r0, r1, . . . , rp of states in which the input head scans either
of the endmarkers. For j = 1, . . . , p, the following two possibilities arise:

(i) U-Turn: in both rj−1 and rj , the input head scans the same endmarker.
(ii) Left-to-right (right-to-left) traversal: in rj−1 the input head scans the left

(right) endmarker, while in rj it scans the other one.
For sufficiently large inputs, U-Turns can be nondeterministically guessed without

moving the input head (by Lemma 3.1). As a consequence, the computation C can
be reduced to a sequence of left-to-right and right-to-left traversals.

Now, the key point is that in each traversal the automaton A can only measure
the length of the input 1m modulo some integer �i ≤ n. Hence, it can be argued that
if there exists a traversal from rj−1 to rj on 1m, then there also exists a traversal
with the same endpoints on 1m+µ�i , for every (possibly negative) integer µ exceeding

1Automata hereafter defined are sometimes, and perhaps more appropriately, called boolean
automata (see, e.g., [6, 17]).
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a certain value. This enables us to prove that the language accepted by A forms an
ultimately periodic set of period � = lcm(�1, . . . , �r), where the �i’s depend on the cycle
structure of the transition graph of A and their sum does not exceed n (Theorem 3.5).

By using a number theoretical result that will be recalled in Lemma 2.1, we get

that � = O(e
√
n lnn). So, the number of states in the cycle of a 1dfa A′ simulating A

is O(e
√
n lnn), and this actually turns out to be an upper bound on the number of all

states of A′.
As the reader will notice when we get into proof details, the study of path struc-

ture in certain weighted digraphs representing automata transitions will be crucial.
Such graph theoretical problems are tackled in subsection 2.4 by using some number
theoretical tools presented in the next subsection.

2.3. Number theory and Diophantine equations. As usual, we let Z+ (Z−)
be the set of positive (negative) integers, and Z be the set of whole integers. Natural
numbers are the elements of the set N = Z+ ∪ {0}. The absolute value of z is
denoted by |z|. For any z > 0, ln z denotes the natural logarithm of z, while log z
is the logarithm of z taken to the base 2. The greatest common divisor of integers
a1, . . . , as is denoted by gcd(a1, . . . , as). Their least common multiple is denoted by
lcm(a1, . . . , as). Both gcd and lcm are, actually, meant to be taken on |a1|, . . . , |as|.
We sometimes write gcd(A) to denote the greatest common divisor of the integers in
the set A.

In estimating the simulation costs of unary automata, a crucial role is played by
the function

F (n) = max {lcm(x1, . . . , xs) | x1, . . . , xs ∈ Z+ and x1 + · · ·+ xs = n}.

Evaluating the growth rate of F (n) is known as Landau’s problem [15, 16]. Such
a problem is related to the study of the maximal order in the symmetric group Sn
[26, 28]. Several approximations for F (n) are given in the literature. The best one
is contained in [26, Theorem I] from which we can derive the following upper bound
that suffices to our purposes.

Lemma 2.1. F (n) = O(e
√
n lnn).

The other arithmetical tool we shall make use of is the theory of linear Diophantine
equations, whose principles can be found, for instance, in [21]. We consider equations
in the form

a1x1 + · · ·+ asxs = z,(2.1)

where a1, . . . , as, z are given integers, and x1, . . . , xs are integer variables. It is a very
well-known fact that (2.1) has (infinitely many) solutions in integers if and only if
gcd(a1, . . . , as) divides z.

Theorem 2.2. For any given integers a1, . . . , as, the set of integers

{a1x1 + · · ·+ asxs | x1, . . . , xs ∈ Z}

is exactly the set of all integral multiples of gcd(a1, . . . , as).
We are sometimes interested in solving Diophantine equations in natural numbers.

To this regard, an interesting question, first raised by Frobenius (see [4, 5]), can be
stated as follows: given positive integers a1, . . . , as satisfying gcd(a1, . . . , as) = 1, what
is the greatest number b such that the Diophantine equation a1x1+ · · ·+asxs = b has
no solution in natural numbers? For s = 2, such b is known to be (a1− 1)(a2− 1)− 1
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[4, 5]. For s ≥ 3, the problem is still open, even though several upper bounds are
proved. We will refer to the following one.

Theorem 2.3 (see [4, 5, 19]). Let a1 < a2 < · · · < as be positive integers with
gcd(a1, . . . , as) = 1. Then, the greatest number b such that the Diophantine equation
a1x1+ · · ·+asxs = b has no solution in natural numbers does not exceed (a1−1)(as−
1).

More accurate estimations can be found in [9]. However, the bound in Theo-
rem 2.3 will suffice for our purposes. By combining Theorem 2.2 and Theorem 2.3,
one easily obtains the following corollary.

Corollary 2.4. Let a1, . . . , as be positive integers less than or equal to n, and
let

X = {a1x1 + · · ·+ asxs | x1, . . . , xs ∈ N}.

Then, the set X ∩ {z ∈ Z+ | z > n2} is exactly the set of all integral multiples of
gcd(a1, . . . , as) greater than n2.

In order to consider sets defined not only by positive coefficients, but even by both
positive and negative coefficients, we generalize Corollary 2.4 as follows.

Lemma 2.5. Let A = {a1, . . . , ap} and B = {b1, . . . , bq} be sets of positive integers
less than or equal to n, with gcd(A) = α and gcd(B) = β. Moreover, let

X = {a1x1 + · · ·+ apxp − (b1y1 + · · ·+ bqyq) | x1, . . . , xp , y1, . . . , yq ∈ N},

with gcd(A ∪B) = gcd(α, β) = γ.
(a) If A = ∅ (B = ∅), then X ∩ {z ∈ Z− | z < −n2} (X ∩ {z ∈ Z+ | z > n2}) is

exactly the set of negative (positive) integral multiples of β (α) smaller than
−n2 (greater than n2).

(b) If A 
= ∅ and B 
= ∅, then X is exactly the set of integral multiples of γ.
Proof. (a) follows trivially from Corollary 2.4. For (b) let us denote by T the set

of integral multiple of γ. It is easy to see that X ⊆ T . In fact, each number in X
is obtained from the Diophantine equation defining X itself, and hence it must be a
multiple of γ.

Conversely, to show T ⊆ X , let us first define the sets

A = {a1x1 + · · ·+ apxp | x1, . . . , xp ∈ N},
B = {b1y1 + · · ·+ bqyq | y1, . . . , yq ∈ N}.

Corollary 2.4 says that A ∩ {z ∈ Z+ | z > n2} (B ∩ {z ∈ Z+ | z > n2}) is exactly
the set of positive integral multiples of α (β) greater than n2. Moreover, it is easy to
see that

X = {h− k | h ∈ A and k ∈ B}.(2.2)

So, consider ξ ∈ T . Since ξ is an integral multiple of γ = gcd(α, β), there exist
two integers x and y such that ξ = αx−βy. Moreover, it is well known that there are
infinitely many solutions of the equation ξ = αx− βy that can be obtained from the
particular solution (x, y) as follows:

x = x− β
γ t,

y = y − α
γ t, t ∈ Z.
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At this point, it is easy to find t̂ ∈ Z, giving the solution (x̂, ŷ), such that both
αx̂ and βŷ are greater than n2, and hence belong to A and B, respectively. In other
words, we have found two integers h = αx̂ ∈ A and k = βŷ ∈ B such that ξ = h− k.
This together with (2.2) shows that ξ ∈ X and completes the proof.

We end this subsection by showing a further property of solutions of Diophantine
equations in natural numbers.

Lemma 2.6. Let a1, . . . , as be positive integers less than or equal to n, and let the
integer z ≥ 0. If the equation a1x1 + a2x2 + · · ·+ asxs = z has a solution in natural
numbers, then it also has a solution in natural numbers satisfying

a2x2 + · · ·+ asxs ≤ n2.

Proof. We prove a stronger result, namely, that there exists a solution x1, . . . , xs
satisfying x2 + · · · + xs ≤ a1. Suppose that (x1, x2, . . . , xs) is a solution in natural
numbers, with µ = x2 + · · ·+ xs > a1. Let us form the sequence

a2, a2, . . . , a2︸ ︷︷ ︸
x2−times

, a3, a3, . . . , a3︸ ︷︷ ︸
x3−times

, . . . , as, as, . . . , as︸ ︷︷ ︸
xs−times

.(2.3)

Now, for i = 1, . . . , µ, let Si be the sum of the first i members in (2.3). Since
the length of the sequence S1, . . . , Sµ exceeds a1, there must exists a pair of indices
1 ≤ i < j ≤ µ satisfying Si ≡ Sj (mod a1), or equivalently, such that Sj − Si is a
multiple of a1. This enables us to remove from (2.3) the elements forming Sj − Si,
consequently augmenting the value of x1 by (Sj − Si)/a1. By iterating this process,
we get the claimed result.

2.4. Paths in directed graphs. Here, we recall some basic notions and prove—
by the mathematics above developed—some results on directed graphs. Our interest
in this topic is due to the fact that, as we will see in the next section, computation
paths of unary automata can be represented as paths in suitable directed graphs. Few
elementary notions of graph theory are required and summarized below. For more
details, we refer the reader to any of the standard text on graph theory such as, e.g.,
[1].

Let G = (V,E) be a directed graph or digraph, with V the set of vertices, and
E ⊆ V × V the set of arcs. An oriented path P in G is a sequence of vertices
P = v0, v1, . . . , vn where, for i = 1, . . . , n, (vi−1, vi) ∈ E. Since we will be dealing
with digraphs only, the attribute “oriented” will always be intended. The length of
P is the number of arcs P consists of, and is denoted by |P|. The path P is a cycle
(or closed path) if v0 = vn. We call elementary (or, sometimes, simple) any cycle in
which no vertex is encountered more than once (except, of course, the initial vertex
which is also the terminal vertex).

A subgraph of G is any digraph G′ = (V ′, E′) satisfying V ′ ⊆ V and E′ ⊆
E∩(V ′×V ′). The subgraphG′ is said to be induced by V ′, whenever E′ = E∩(V ′×V ′).
The digraph G is strongly connected if there exists a path between any two vertices.
A strongly connected component of G is a subgraph which is strongly connected and
not contained in any other strongly connected subgraph.

The following two results concern length and structure of paths in digraphs.
Lemma 2.7. Let G be a digraph with n vertices, and let P be a path of length x

which
(a) starts from vertex v1 and ends in vertex v2,
(b) visits all vertices in G.
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Then, there also exists a path P0 of length x0 which satisfies (a) and (b) and such
that
(c) x0 ≤ n2,
(d) there exist integers x1, x2, . . . , xs ≥ 0 such that x = x0+a1x1+a2x2+· · ·+asxs,

where a1, a2, . . . , as are the lengths of the elementary cycles in G.
Proof. We can factorize the sequence of the x + 1 vertices visited along P as a

concatenation of n subsequences of vertices σ1, σ2, . . . , σn, each one starting from a
different vertex of G. This can be done since P visits all vertices, as required in (b).

Suppose that x > n2. Then, there exists 1 ≤ j ≤ n such that σj contains more
than n vertices, i.e., σj = vj1vj2 . . . vjm with m > n. A simple pigeonhole argument
shows that there must exist 1 ≤ h < k ≤ m such that vjh = vjk . This clearly means
that, when passing through σj , our path P presents a cycle beginning and ending in
vjh = vjk . Call σ′j the sequence obtained from σj after the elimination of the part
corresponding to such a cycle, namely, σ′j = vj1vj2 . . . vjhvjk+1

. . . vjm . The sequence
σ1 · · ·σj−1 σ

′
j σj+1 · · ·σn defines a new path which satisfies (a) and (b) and whose

length is strictly less than the length of P. By iterating such a path-compression, we
eventually obtain a path P0 of length x0 satisfying (a), (b), and (c).

In conclusion, it is not hard to see that the whole process can be carried on by
eliminating elementary cycles. Thus, one can easily express the length x of P as in
(d), where, for i = 1, . . . , s, xi denotes the number of times elementary cycles of length
ai have been deleted.

Theorem 2.8. Let G be a digraph with n vertices, and let P be a path from
vertex v1 to vertex v2. Then, there also exists a path P ′ from v1 to v2 with the same
length as P which consists of
(a) an initial path P1,
(b) an elementary cycle P2, with 1 ≤ |P2| ≤ n, which is repeated λ times,
(c) a final path P3,

satisfying |P1|+ |P3| ≤ 2n2. (Hence, notice that |P ′| = |P| = |P1|+ λ |P2|+ |P3|.)
Proof. Without loss of generality, we suppose that P visits all vertices of G.

Otherwise, we consider the subgraph of G induced by the set of vertices visited along
P. The new path P ′ can be obtained by suitably “reorganizing”—in the light of our
result on Diophantine equations in Lemma 2.6—the way of P through its elementary
cycles.

The first step amounts to eliminate some of the elementary cycles in P to obtain
the path P0, as explained in Lemma 2.7. The total number of arcs eliminated in this
step can be expressed as

|P| − |P0| = a1x1 + a2x2 + · · ·+ asxs(2.4)

for some integers x1, x2, . . . , xs ≥ 0, as one may easily check from Lemma 2.7(d).
Now, notice that the ai’s in (2.4) are positive integers not exceeding n, being lengths
of elementary cycles in a digraph of n vertices. Hence, from Lemma 2.6, we know that
there exist integers x1, x2, . . . , xs ≥ 0 which are solutions for (2.4), and such that

a2x2 + · · ·+ asxs ≤ n2.(2.5)

All this leads us to construct the path P ′ by “padding” P0 with xi consecutive
repetitions of an elementary cycle of length ai for i = 1, . . . , s. Let P2 be an elementary
cycle of length a1, and let P1 (P3) be the part of P ′ which precedes (follows) the x1

consecutive repetitions of P2. Then, we have
• 1 ≤ |P2| = a1 ≤ n,



1984 CARLO MEREGHETTI AND GIOVANNI PIGHIZZINI

• λ = x1,
• |P1|+ |P3| = x0+a2x2+ · · ·+asxs ≤ 2n2, since x0 ≤ n2, from Lemma 2.7(c),
and by considering inequality (2.5).

Let us now turn to weighted digraphs. In particular, we are interested in digraphs
whose arcs have weights from the set {−1, 0,+1}. As usual, the weight of a path is
the sum of weights of the arcs in the path. The following theorem states a periodicity
property on cycle weights in strongly connected weighted digraphs.

Theorem 2.9. Let G = (V,E) be a strongly connected weighted digraph with n
vertices, and let {a1, . . . , as} be the set of weights of all the elementary cycles in G,
with α = gcd(a1, . . . , as). For each v ∈ V , let Xv be the set of weights of all the cycles
containing v. If there exists at least one ai > 0 (ai < 0), then the set Xv and the
set of positive (negative) integral multiples of α coincide on the elements greater than
2n2 (less than −2n2).

Proof. Since each cycle in G is the sum of elementary cycles, x ∈ Xv implies that

x = a1x1 + · · ·+ asxs,(2.6)

where, for i = 1, . . . , s, the value xi ≥ 0 is the number of times an elementary cycle of
weight ai is passed through to form our cycle of weight x. For what we have recalled
in subsection 2.3, this means that x must be an integral multiple of α.

Conversely, if x is an integral multiple of α, with |x| > n2, then, by Lemma 2.5, it
can be expressed as in (2.6) for some x1, . . . , xs ≥ 0. However, such a solution does not
necessarily describe a cycle in G. To see this, consider the following example: Suppose
we have a digraph with three elementary cycles of weights a1, a2, a3, in which the first
and the last cycle are connected only by the cycle of weight a2. Any solution with
x1, x2, x3 > 0 certainly defines (at least) one cycle in such a digraph, where the ith
elementary cycle is passed through xi times, i = 1, 2, 3. On the other hand, a solution
with x1, x3 > 0 and x2 = 0 does not define any cycle at all, since we cannot traverse
both the first and the third elementary cycle without entering (since, x2 = 0) the
second one.

To deal with such kind of connectivity problems, we consider a cycle C0 of weight
x0 which visits all vertices of G. From Lemma 2.7(c), C0 consists of at most n2 arcs,
and this clearly implies that |x0| ≤ n2. Now, notice that x0 can be expressed as in
(2.6) for some x1, . . . , xs ≥ 0. Hence, x0 = k0α for some k0 ∈ Z.

Assume x = kα with |x| > 2n2 for k ∈ Z, and set z = x−x0 = (k−k0)α. We have
that |z| = |x− x0| ≥ |x| − |x0| > n2. Since |ai| ≤ n for i = 1, . . . , s, from Lemma 2.5
we get z = a1z1 + · · · + aszs, for some z1, . . . , zs ≥ 0. This enables us to “pad” the
cycle C0 with an amount of zi elementary cycles of weight ai for i = 1, . . . , s, in order
to obtain a cycle of weight x in G.

3. Computation paths of 2nfa’s and simulation by 1dfa’s. In this section,
we focus on unary 2nfa’s. By using results in subsection 2.4, we show that any unary
language L accepted by a 2nfa with n states forms an ultimately periodic set of period

� = O(e
√
n lnn). More precisely, we prove that, for any integer m > 5n2, the string 1m

belongs to L if and only if 1m+� belongs to L. This immediately leads to a O(e
√
n lnn)

simulation of unary n-state 2nfa’s by 1dfa’s. The optimality of such a simulation is a
direct consequence of a result in [8].

To state our results, we need some tools to examine computations on unary inputs.
Specifically, we refer to three properties that Geffert proved in [11] for two-way nonde-
terministic Turing machines accepting unary languages in sublogarithmic space. We
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are now going to reformulate such properties within the realm of unary 2nfa’s. Their
validity in this new form comes straightforwardly by observing that finite automata
can be clearly seen as Turing machines working in sublogarithmic space. Moreover,
we improve the last of these three results. Such an improvement will be particularly
useful in the next section where we show that, by just squaring the number of states,
it is possible to consider 2nfa’s with a very particular structure.

From now on, we will always refer to a unary 2nfa A with n states.

The first lemma [11, Lemma 3] says that each computation path of A beginning
and ending at the same input square and visiting neither of the endmarkers (U-Turn)
can be replaced by an equivalent computation path not moving the input head “too
far,” precisely, no more than n2 positions to the right (or left).

Lemma 3.1 (U-Turn). Suppose there exists a computation path of A on input 1m

where

(a) the first state is q1 with the input head at a position i,
(b) the last state is q2 with the input head at the same position,
(c) the input head never moves to the left (right) of the ith position, nor does it

visit the right (left) endmarker.

Then, there also exists a computation path on input 1m satisfying (a), (b), (c)
and where the input head never moves farther than n2 positions to the right (left) of
the ith position.

The second lemma [11, Lemma 4] states that we can freely “shift” any computa-
tion path that never visits the endmarkers to any position of the input tape, provided
that we are sufficiently far from the endmarkers. To our purposes, we give this lemma
in a slightly different form. (Recall that the left and right endmarker occupy positions
0 and m+ 1, respectively, on the input tape.)

Lemma 3.2 (position independence). Suppose there exists a computation path Π
of A on input 1m beginning in the state q1 with the input head at a position i, ending
in the state q2 with the input head at a position j, and such that

(a) 1 ≤ i < j ≤ m+ 1,
(b) the left endmarker is never visited along Π,
(c) the jth position is reached at the last move only.

Then, there also exists a computation path beginning in the state q1 with the input
head at a position i+ h, with h ∈ Z, ending in the state q2 with the input head at the
position j+h which is reached at the last move only, and satisfying (b), provided that

n2 ≤ i+ h < j + h ≤ m+ 1.

A similar result can be stated for computation paths moving toward left, i.e., with
the initial (final) position i (j) satisfying 0 ≤ j < i ≤ m.

Proof. Without loss of generality, from Lemma 3.1, we can assume that Π never
visits more than n2 positions to the left of the ith position. Since the input is unary,
we can shift Π within the position bounds stated in the theorem. Notice that the
right endmarker can possibly be reached only at the end of the path.

The third lemma [11, Theorem 1] defines the structure of the computation paths
that traverse the entire input, from one endmarker to the other. We provide a new
proof of this lemma for unary 2nfa’s which is different from the one given in [11].
Our proof makes use of the results on the structure of paths in digraphs in subsec-
tion 2.4. As a consequence, we obtain a quadratic estimation of the parameters s1
and s2 involved in the lemma; this is to be compared with the O(n

4) upper bound in



1986 CARLO MEREGHETTI AND GIOVANNI PIGHIZZINI

[11].2 Though not essential in the unary 2nfa’s by 1dfa’s simulation, this improvement
will be crucial in the quadratic simulation of unary 2nfa’s by 2nfa’s having both head
reversals and nondeterminism at the endmarkers only (Theorem 4.1).

In what follows, by loop of length �, we mean a computation path of the automaton
A beginning in a state p with the input head at a position i, and ending in the same
state with the input head at the position i+ �.

Lemma 3.3 (dominant loop). Suppose the input 1m is traversed from left to right
by a computation path Π of A beginning at the left endmarker in the state q1, ending
at the right endmarker in the state q2, and such that the endmarkers are visited only
in states q1 and q2. Then, 1m can also be traversed by a computation path beginning
in the state q1, ending in the state q2, and in which A
(a) having traversed the left endmarker and s1 positions,
(b) gets into a loop (called dominant loop) of length �, which starts from a state p

and is repeated λ times,
(c) then traverses the remaining s2 input squares, and finally gets the right end-

marker,
for some s1, s2, � satisfying

1 ≤ � ≤ n,
s1 + s2 ≤ 3n2.

Notice that m = s1 + λ� + s2. The same result holds for computation paths
traversing inputs from right to left.

Proof. If m ≤ 3n2, the result follows trivially. Hence, suppose m > 3n2. Define
the digraph G = (Q,E), where Q is the set of states of A, and (p, q) ∈ E if and only
if there exists a computation path of A which starts from p with the input head at a
position n2 ≤ i ≤ m, reaches q with the input head at the position i + 1, and never
visits either the endmarkers or the (i+ 1)th input square in the intermediate steps.

Since we are sufficiently (namely, more than n2 positions) far from the left end-
marker, and since computations take place on unary inputs, Lemma 3.2 implies that
the digraph G does not depend on the input length. For the same reasons, it is also
easy to see that for any path in G of length d starting from the state q′ and ending in
the state q′′, there exists a computation path of A on input 1m beginning in q′ with
the input head at a position i, ending in q′′ with the input head at the position i+ d,
provided that n2 ≤ i < i+ d ≤ m+ 1.

Conversely, for any computation path of A on input 1m beginning in the state q′

with the input head at a position i, ending in q′′ with the input head at the position
j, and satisfying conditions (a), (b), and (c) in Lemma 3.2, one can easily find a path
in G of length j − i joining q′ to q′′.

Let us subdivide the computation path Π into
• Πin which is the part of Π ending when the (n2+1)th input square is reached
for the first time,
• Πfin which is the remaining part of Π.

For the correspondence between paths in G and computations in A above de-
scribed, we can associate with Πfin a path P in G. As shown in Theorem 2.8, P can
be rearranged into a path P ′ of the same length as P made of

2At the time the conference version of this paper [20] was completed, the authors learned from
Viliam Geffert [13] that he too had obtained, by different arguments, a quadratic upper bound on
s1 and s2.
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• an initial path P1,
• an elementary cycle P2, with 1 ≤ |P2| ≤ n, which is repeated λ times,
• a final path P3,

satisfying |P1|+ |P3| ≤ 2n2. Now, again for the correspondence paths-computations,
we can associate with P1, P2, and P3, three computation paths Π1, Π2, and Π3,
respectively; in particular, Π2 is a loop—the dominant loop—of length 1 ≤ � ≤ n.

In conclusion, the input 1m can be traversed by a computation path of A which
starts with Πin, continues with Π1 which is followed by λ consecutive repetitions of
the loop Π2, and ends with Π3. Let s be the total amount of cells visited outside the
dominant loop (without counting the endmarkers), i.e., during Πin, Π1, and Π3. It is
easy to see that

s ≤ n2 + |P1|+ |P3| ≤ 3n2.

From the previous lemma, we learn that loops play an important role in the
structure of computations of unary 2nfa’s. By using Theorem 2.9, we can show that
possible loop lengths follow a very regular pattern which is directly predictable from
the structure of unary 2nfa’s themselves.

To this purpose, let us consider the weighted digraph A consisting of the digraph
representing the transition diagram of our automaton A after removing transitions
on the endmarkers, and in which we set weights +1, −1, or 0 to arcs depending
on whether they represent transitions where the input head is moved right, left, or
kept stationary, respectively. It is straightforward that any cycle of weight � in A
represents a computation loop of length � in the automaton A. Hence, by taking into
account Theorem 2.9, we get the following lemma.

Lemma 3.4. Let p be any given state of A, and let α be the greatest common
divisor of weights of the elementary cycles in the strongly connected component of A
containing p. Let X+

p (X−p ) be the set of integers x > 2n2 (x < −2n2) such that the
automaton A, starting from the state p with the input head at the ith input square,
reaches the (i+x)th input square in the same state p, without visiting the endmarkers.
If X+

p 
= ∅ (X−p 
= ∅), then it is exactly the set of all integral multiples of α greater
than 2n2 (less than −2n2).

The following result is crucial in order to obtain our simulations.
Theorem 3.5. There exists a set of positive integers {�1, . . . , �r} ⊆ {1, . . . , n}

satisfying �1+ · · ·+ �r ≤ n, such that, for any m ≥ n, if the input 1m can be traversed
from left to right by a computation path of A beginning in the state q1, ending in the
state q2, and where the endmarkers are visited on the first and last move only, then

there exists an index i ∈ {1, . . . , r} such that, for any µ > 5n2−m
�i

, there is also a
computation path from q1 to q2 which traverses from left to right the input

1m+µ�i .

The same result holds for computation paths traversing inputs from right to left.
Proof. Again, consider the weighted digraph A associated with the automaton A.

Suppose A has r strongly connected components and, for i = 1, . . . , r, denote by �i
the greatest common divisor of weights of the elementary cycles in the ith strongly
connected component. Clearly, �i cannot exceed n, and since strongly connected
components partition the set of vertices of A, we get �1 + · · ·+ �r ≤ n.

Given the left-to-right traversing of input 1m, let s1, s2, �, λ, p, be as in Lemma 3.3,
so to have the “decomposition” m = s1+λ�+ s2, and p being the state the dominant
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loop starts from. Let us suppose that p is contained in the ith strongly connected
component of A. By Lemma 3.4, the set of integers x > 2n2, for which there exists a
path from p to itself visiting neither of the endmarkers and moving the input head x
positions right, is exactly the set of the multiples of �i greater than 2n

2. This leads us

to conclude that, for integers η > 2n2

�i
, there exists a computation from the state q1

to the state q2 that completely traverses inputs 1
s1+η�i+s2 , and visits the endmarkers

on the first and last move only. It is enough, in fact, to use the original traverse of
1m, and substitute the λ repetitions of the dominant loop with a single loop of length
η�i.

Now, by choosing µ > 5n2−m
�i

and suitably setting η = µ+ λ�
�i
, we get

η >
5n2 −m
�i

+
λ�

�i
=

5n2 − (s1 + λ�+ s2) + λ�

�i
=

5n2 − (s1 + s2)

�i
≥ 2n2

�i
,

where the last inequality is obtained by recalling that s1 + s2 ≤ 3n2, as stated in
Lemma 3.3. Thus, for such η’s, we obtain a complete traversing of inputs

1s1+η�i+s2 = 1
s1+
(
µ+λ	

	i

)
�i+s2 = 1m+µ�i ,

provided that µ > 5n2−m
�i

.
The technique used in the proof of the following theorem can be regarded as

a refinement of the well-known n → n + n! pumping technique [18]. The result in
Theorem 3.5 enables us to suitably pump and compress unary strings in order to
show that unary languages accepted by n-state 2nfa’s form ultimately periodic sets

of period O(e
√
n lnn).

Theorem 3.6. Let L be a unary language accepted by a n-state 2nfa. Then,

there exists a constant � = O(e
√
n lnn) such that, for any integer m > 5n2,

1m ∈ L if and only if 1m+� ∈ L.

Proof. Given our 2nfa A, we let {�1, . . . , �r} be the set defined in Theorem 3.5 and
let � = lcm(�1, . . . , �r). Since we have observed that �1+ · · ·+�r ≤ n, as a consequence
of Lemma 2.1 we have that � = O(e

√
n lnn).

Compression. Suppose 1m+� ∈ L, and let C be an accepting computation path
of A on such an input. Along C, consider r0, r1, . . . , rp, the sequence of all states in
which the input head scans either of the endmarkers. For j = 1, . . . , p, the following
two possibilities arise:

(i) In both rj−1 and rj , the input head scans the same endmarker. By Lemma 3.1
(U-Turn), we can suppose that this part of the computation can be accomplished by
moving no more than n2 positions away from the endmarker, and hence it can take
place on the input 1m as well, m being greater than 5n2.

(i) In rj−1 the input head scans one of the two endmarkers, while in rj it scans
the other. By Theorem 3.5, for some �i ∈ {�1, . . . , �r}, we can replace the computation
path from rj−1 to rj on input 1

m+� with a computation path from rj−1 to rj on input

1m+�+µ�i , provided that µ > 5n2−(m+�)
�i

. Choose µ = µi = − �
�i
. Since m > 5n2, it is

easy to verify that µi >
5n2−(m+�)

�i
. Thus, we get a computation path on the input

1m+�+µi�i = 1m which begins and ends in the states rj−1 and rj , respectively, and
visits the endmarkers on the first and last move only.
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From (i) and (ii), it is easy to conclude that A accepts the input 1m as well.

Pumping. The proof of the converse is similar: choose µ = µi =
�
�i

at point
(ii).

As an immediate consequence of Theorem 3.6 we are able to state our main result
of this section.

Corollary 3.7. Each unary n-state 2nfa can be simulated by a O(e
√
n lnn)-state

1dfa.

Proof. Given a unary n-state 2nfa accepting the language L, the state diagram
of an equivalent 1dfa consists of a path of no more than 5n2 states joined to a single

elementary cycle involving � = O(e
√
n lnn) states. The path takes care of the nonpe-

riodic part of L (i.e., strings of length not exceeding 5n2), while the cycle accounts
for the periodic part (i.e., strings of length greater than 5n2). Final states are placed
onto the path by inspecting membership of all strings of length not exceeding 5n2.
Moreover, the property “ 1m ∈ L if and only if 1m+� ∈ L ” stated in Theorem 3.6
allows us to set final states onto the cycle by just testing membership for strings
15n2+1, 15n2+2, . . . , 15n2+�.

It is possible to show that this simulation cost cannot be improved. Actually, a

stronger result can be stated, which proves the optimality of all O(e
√
n lnn) bounds in

Figure 1.1.

Theorem 3.8 (see [8, Theorem 6.1]). For any integer n, there exists a unary

2dfa with n states such that any equivalent 1nfa requires Ω(e
√
n lnn) states.

The trivial simulations of cost n in Figure 1.1 are optimal. In fact, for fixed n > 0,
consider the single word language Ln = {1n−1}. Such a language is clearly accepted
by a (minimum) 1dfa with n states. On the other hand, any 2nfa for Ln cannot have
less than n states [3].

For the optimality of the quadratic simulation of unary 1nfa’s by 2dfa’s we refer
the reader to [8, Theorem 6.2]. Thus, to complete Figure 1.1, we are left to examine
unary one-way alternation versus determinism and nondeterminism. This is precisely
the subject matter of section 5. Before that, we briefly show how to use the results so
far proved to confine both reversals and nondeterminism to the endmarkers on unary
2nfa’s by just paying a quadratic increase of the number of states.

4. Bringing reversals and nondeterminism at the endmarkers.

Theorem 4.1. Each unary n-state 2nfa A can be simulated by a O(n2)-state
2nfa A′ which performs both input head reversals and nondeterministic choices only
when the input head scans the endmarkers.

Proof. Without loss of generality, and by adding one more state, we can assume
that A accepts with the input head parked on the left endmarker. We informally
describe how A′ simulates the computation of A on a given input 1m.

In a first scan, A′ deterministically checks whether m ≤ 5n2 and, if so, accepts if
and only if 1m ∈ L(A). We can assume that at the end of this phase, which clearly
requires O(n2) states, the input head is still positioned on the left endmarker.

Otherwise, if m > 5n2, the second part of the simulation starts from the initial
state of A. We briefly explain what happens when A′ simulates the behavior of A from
a given state q1 and with the input head scanning the left endmarker. (A symmetrical
simulation for computations of A from the right endmarker can be trivially stated.)
A′ nondeterministically chooses one of the following operations:
(a) simulation of a “U-Turn,”
(b) simulation of a left-to-right traversal of the input.
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Since m > 5n2, by Lemma 3.1 the simulation (a) can take place in one step,
regardless the length of the input. Hence, each U-Turn from the left endmarker can
be “embedded” in the transition function of A′. More precisely, it can be replaced by
one stationary move. This part of the simulation does not require new states.

Now, we describe how to perform simulation (b). (In the following, a mod b
denotes the remainder of the integer division of a by b.) Let {�1, . . . , �r} be the
set introduced in Theorem 3.5 with respect to the automaton A. Given a �i, with
i ∈ {1, . . . , r}, two integers m′, m′′ satisfying

• 5n2 < m′ < m′′, and
• m′ mod �i = / = m′′ mod �i,

and two states q1, q2 of A, it is not hard to prove that
there exists a computation path of A from q1 to q2, scanning the input
1m

′
from left to right, and touching the endmarkers on the first and

last moves only if and only if there exists an analogous computation
path on 1m

′′
.

In fact, write m′ = h′�i + /, m′′ = h′′�i + / for some 0 < h′ ≤ h′′ and 0 ≤ / < �i.
This yields m′ = m′′ + µ�i, where µ = h′ − h′′ = m′−�−m′′+�

�i
> 5n2−m′′

�i
, by recalling

that m′ > 5n2. Hence, by Theorem 3.5, from the left-to-right scan of 1m
′′
, we can

obtain a similar computation path for 1m
′
. The proof of the converse is similar. As a

consequence of this observation, we get that, given the starting state q1 of A and the
input length m > 5n2, the set of states reachable by A after traversing from left to
right the input 1m depends only on q1 and on the set of pairs

{(�i , m mod �i) | i = 1, . . . , r}.

Thus, in simulating a left-to-right traversal of A on 1m starting from the state q1
with the input head on the left endmarker, A′ performs the following steps:

(i) nondeterministically selects an �i, with i ∈ {1, . . . , r},
(ii) scans the input tape, counting the input length m modulo �i,
(iii) when the input head reaches the right endmarker, nondeterministically se-

lects one of the states associated with the starting state q1 and the pair (�i , mmod �i).
A′ is easily seen to have both input head reversals and nondeterministic choices

at the endmarkers only. Furthermore, during such a simulation from q1, A
′ must

remember the chosen �i, and the value m mod �i; this information can be clearly
maintained in �1+ · · ·+ �s many states. Globally, �1+ · · ·+ �s more states are needed
for each possible (starting) state, and since �1 + · · ·+ �s ≤ n, as observed in Theorem
3.5, we conclude that this part of the simulation requires O(n2) states. This completes
the proof.

5. Some remarks on 1afa’s versus other models. We end the paper by
briefly discussing the cost of simulating unary 1afa’s with deterministic and nonde-
terministic automata, and the cost of the converse simulations. We begin with the
simulations between 1afa’s and 1dfa’s:

• In [7, section 5.1], it is shown that for any n-state 1afa accepting a lan-
guage L on an arbitrary alphabet there exists a 2n-state 1dfa accepting
LR = {xR | x ∈ L}, where xR denotes the reversal of the string x. Such
a result is easily seen to directly define the cost of simulating unary 1afa’s
with 1dfa’s, since x = xR for unary strings.

• Conversely, in [17, Theorem 1] it is shown that for any n-state 1dfa accepting
L there exists a �log n�-state 1afa for LR.
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This leads to the following equivalence which is basically contained in Corollary 1
and Corollary 2 of [17].

Theorem 5.1. The class of unary languages accepted by n-state 1afa’s is exactly
the class of unary languages accepted by 2n-state 1dfa’s.

As an immediate consequence, one also gets the following corollary.
Corollary 5.2. Let L be a unary language for which the minimum 1dfa has n

states. Then, every 1afa accepting L requires at least �log n� states.
The simulation costs between unary 1afa’s and 1dfa’s above stated are optimal,

as pointed out in the following theorem.
Theorem 5.3. For any integer n, there exists a unary n-state 1afa (1dfa) such

that each equivalent 1dfa (1afa) requires not less than 2n ( �log n�) states.
Proof.
1afa by 1dfa. We again refer to the single word language L2n = {12n−1} considered

at the end of section 3. Such a language can be accepted by a 1dfa with 2n states
and hence, according to Corollary 5.2, by a 1afa with n states. On the other hand,
any 2nfa for L2n requires not less than 2n states [3].

1dfa by 1afa. The minimum 1dfa for Ln = {1n−1} has n state. Thus, the results
follows from Corollary 5.2.

Yet, we have the following theorem.
Theorem 5.4. Each unary n-state 1afa can be simulated by a 2n-state 1nfa,

2dfa, or 2nfa. Such a simulation cost is tight in all the three cases.
Proof. It is enough to recall that simulating unary 1afa’s with 1dfa’s costs 2n

states, and that 1afa’s are exponentially more succinct than 2nfa’s (Theorem 5.3
[1afa by 1dfa]).

Thus, as already pointed out in [3], Theorem 5.4 says that 1afa’s and 2dfa’s are
not polynomially equivalent regarding their state complexity, as conjectured in [8].

Our results in section 3 allow us to show that simulating 2nfa’s (and hence 1nfa’s
and 2dfa’s) by 1afa’s takes a sublinear amount of states.

Theorem 5.5. Each unary 2nfa, 1nfa, and 2dfa with n states can be simulated
by a O(

√
n lnn)-state 1afa.

Proof. Clearly, it suffices to show the bound for 2nfa’s. By Corollary 3.7, a

unary n-state 2nfa can be simulated by a O(e
√
n lnn)-state 1dfa which in turn, by

Theorem 5.1, can be simulated by a 1afa with O(
√
n lnn) states.

The simulations by 1afa’s in Theorem 5.5 are optimal.
Theorem 5.6. For any integer n, there exists a unary 1nfa and a unary 2dfa

with n states such that each equivalent 1afa requires Ω(
√
n lnn) states.

Proof. By [8, Theorem 4.5], for any n there exists a unary n-state 1nfa A such that

each 1dfa recognizing L(A) requires Ω(e
√
n lnn) states. By Corollary 5.2, this implies

that each 1afa for L(A) must have Ω(√n lnn) states. Furthermore, the language L(A)
is accepted even by a unary n-state 2dfa [8, Theorem 5.2].

With these results, we complete proving the results summarized in Figure 1.1,
section 1.
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Abstract. We obtain a necessary and sufficient condition in terms of forbidden structures
for tournaments to possess the min-max relation on packing and covering directed cycles, together
with strongly polynomial time algorithms for the feedback vertex set problem and the cycle packing
problem in this class of tournaments. Applying the local ratio technique of Bar-Yehuda and Even
to the forbidden structures, we find a 2.5-approximation polynomial time algorithm for the feedback
vertex set problem in any tournament.
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1. Introduction. Given a digraph with weights on the vertices, a subset of
vertices is called a feedback vertex set if it intersects every directed cycle in the di-
graph. The problem of finding a feedback vertex set with the minimum total weight
is called the feedback vertex set problem, which arises in a variety of applications. In
the area of operating systems, the problem of breaking deadlocks can be formulated
as a feedback vertex set problem. Other applications can be found in VLSI, man-
ufacturing systems, and so on. As is well known, the feedback vertex set problem
is NP -hard. Furthermore, this problem admits no fully polynomial approximation
scheme unless P = NP [11]. For general digraphs, this problem is approximable
within O(log n log log n) [7, 17], where n is the number of vertices in the input; for
planar digraphs, it is approximable within 9/4 [8] by a primal-dual method.

The feedback vertex set problem remains NP -hard even in tournaments [18],
where a tournament is an orientation of a complete graph; Speckenmeyer established
this NP -hardness using the vertex cover problem as the source problem. It can be
shown that Speckenmeyer’s reduction is an L-reduction (a concept introduced by
Papadimitriou and Yannakakis [14]). Moreover, with this reduction, an instance of
the vertex cover problem has a solution of size ≤ k if and only if the instance of
the corresponding feedback vertex set problem has a solution of size ≤ k. Thus the
feedback vertex set problem in tournaments is a generalization of the vertex cover
problem, and any inapproximability result of the vertex cover problem [9] is also valid
for the feedback vertex set problem in tournaments.

It is well known that the vertex cover problem is approximable within a factor of
2, which can be achieved by several methods [10], such as the local ratio technique [3],
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the LP-relaxation method, and the primal-dual method. Despite much recent research
effort and progress that have been made in the area of approximation algorithms, the
best known approximation ratio of the vertex cover problem is 2− log log n

2 log n [3, 13], and
no approximation algorithm with performance guarantee of 2− ε has been discovered
so far, no matter how small the positive constant ε is. It is thus conjectured in [10]
that 2 is the best possible constant. Let us point out that each of those methods men-
tioned above leads to a 3-approximation algorithm for the feedback vertex set problem
in tournaments, which is in the same spirit as the corresponding 2-approximation al-
gorithm for the vertex cover problem. One such algorithm for the unweighted case
was first given in [18]. In this work, we improve the approximation ratio to 2.5 for
the feedback vertex set problem in tournaments; our approach relies on the local ratio
technique of Bar-Yehuda and Even [3] and a characterization of tournaments that
possess a min-max relation on packing and covering cycles.

Clearly, a set of vertices in a tournament is a feedback vertex set if and only
if it intersects every triangle (a directed cycle of length three, denoted by ∆); thus
the feedback vertex set problem is actually the triangle covering problem, which is
closely related to the triangle packing problem. Let us now introduce some notions
for convenience of presentation.

Given a digraph T = (V,A) such that each vertex v ∈ V is associated with
a nonnegative integer w(v), a �-packing in T is a family of triangles (repetition is
allowed) in T such that each vertex is contained in at most w(v) triangles in this
family. A maximum �-packing in T is a �-packing in T with largest size. The �-
packing number of T is the size of a maximum �-packing in T . A �-covering in T is
a vertex set S ⊆ V that intersects each triangle in T . The size of S, denoted by w(S),
is
∑
v∈S w(v). A minimum �-covering in T is a �-covering with smallest size; the

�-covering number of T is the size of a minimum �-covering in T . The case in which
w(v) = 1 for each v ∈ V is called unweighted; clearly in this case any �-packing in T
is a family of vertex disjoint triangles of T and the size of any �-covering S in T is
the number of vertices in S.

Let �1,�2, . . . ,�m be all the triangles in T , let v1, v2, . . . , vn be all the ver-
tices in V , and let Hm×n be the triangle-vertex incidence matrix, that is, hi,j =
1 if �i contains vj and hi,j = 0 otherwise. Then the �-covering number of T
equals min{wTx | Hx ≥ em, x ≥ 0, integer}, and the �-packing number of T is
max{yT em | yTH ≤ wT , y ≥ 0, integer}, where em is the all-one column of size m. It
follows from the duality theory of linear programming [16] that the �-covering num-
ber of T is always greater than or equal to the �-packing number of T . The situation
in which the packing and covering numbers are equal is particularly interesting. We
point out that equality does not necessarily hold in general tournaments: in the un-
weighted case, both F1 and F2 have �-packing number of 1 and �-covering number
of 2. We shall demonstrate that actually F1 and F2 are the only obstructions in our
problem: if a tournament T = (V,A) contains no F1 nor F2, then the �-packing
number of T always equals the �-covering number of T .

The remainder of this paper is organized as follows. In section 2, we give a
structural description of tournaments with no F1 nor F2. We start with a vertex
w with the maximum out-degree, and partition the vertices of T according to their
distance from w, that is, V = ∪ki=1Vi, where a vertex v ∈ Vi if and only if the distance
from w to v is i − 1. The subtournament induced by Vi is shown to be acyclic if T
contains no F1 nor F2. This property leads to a natural order for vertices in Vi. For
each v ∈ Vi+1, let V−(v) be the set of vertices in Vi that point to v and let V+(v) be
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Fig. 1. Two Forbidden Subtournaments, where the two arcs not shown in F1 may take any
directions.

the set of vertices in Vi that are pointed from v. Then every vertex in V−(v) points to
every vertex in V+(v). Moreover, if u, v ∈ Vi+1 with u pointing to v, then every vertex
in Vi that points to u also points to v. These properties turn out to be very useful
in establishing the fact that, for every triangle in the tournament, its three vertices
are in three consecutive subsets of the partition, i.e., Vi, Vi+1, Vi+2 for some i. Then
the triangle packing problem becomes the P3 (a directed path of length 2) packing
problem in the digraph D obtained from T by only keeping all the arcs between two
consecutive subsets (i.e., Vi and Vi+1) of the partition.

In section 3, using the combinatorial structure obtained in section 2, we show
that in the unweighted case the P3-packing number and the P3-covering number of
D are equal if the tournament T is free of subdigraphs F1 and F2. To establish the
min-max relation, we first show that a particular greedy algorithm for packing P3 in
D results in an optimal solution to the P3 packing problem. Informally, we prove that
the P3 with the smallest lexicographical (according to the order in section 2) index
from V3 to V2 to V1 is in an optimal solution. Then, we show that there is a vertex in
this P3 whose removal reduces the P3-packing number by one. This implies that both
the linear program relaxation min{etnx | Hx ≥ em, x ≥ 0} and the dual program
max{etny | ytH ≤ etn, y ≥ 0} have integral optimal solutions for every tournament
with no F1 nor F2 as subdigraph. We further generalize the min-max result to the
weighted case.1

In section 4, we present a 2.5-approximation polynomial time algorithm for the
feedback vertex set problem in any tournament. Applying the local ratio technique
to F1 and F2, we obtain a 2.5-approximation algorithm for the minimum feedback set
problem in any tournament by the local ratio theorem of Bar-Yehuda and Even [3].
We conclude this paper with discussion and remarks in section 5.

2. A structural description. The purpose of this section is to present a struc-
tural description of the tournaments with no F1 nor F2, which will be used repeatedly
in the remaining sections. In our proof, we shall say that u points to v in a digraph,
write u → v if (u, v) is an arc, and we let N−(u) (resp., N+(u)) stand for the set of
all the vertices v with v → u (resp., u→ v).

1In the preliminary version [4], this was done by applying a sophisticated TDI technique due to
Edmonds and Giles [5, 6, 15]. The present simple proof is suggested by one of the referees.
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Lemma 2.1. Let T = (V,A) be a strongly connected tournament with no subtour-
nament isomorphic to F1 nor F2. Then V can be partitioned into V1, V2, . . . , Vk for
some 3 ≤ k ≤ |V |, which have the following properties:

(a) For each i = 1, 2, . . . , k, Vi is acyclic and thus Vi admits a linear order ≺
such that x ≺ y whenever (x, y) is an arc in Vi.

(b) For each i = 1, 2, . . . , k − 1, there is a map f : Vi+1 → Vi such that
• for any v ∈ Vi+1,

(x, v) is an arc for each x in Vi with x ≺ f(v) and
(v, x) is an arc for each x in Vi with f(v) � x and that

• for any u, v ∈ Vi+1 with u ≺ v, there holds f(u) � f(v).
(c) For any i, j with 1 ≤ i ≤ j−2 ≤ k−2, each arc between Vi and Vj is directed

from Vi to Vj.

Proof. We reserve the symbol w for a vertex in T with maximum outdegree
throughout the proof. Now let us apply the breadth-first search to T and partition
the vertices of T as follows.

V1 = {w};
k = 1;
while V − (∪ki=1 Vi) �= ∅
do Vk+1 = {v ∈ V − (∪ki=1 Vi) : there exists x ∈ Vk such that v → x};

k=k+1;
end

As soon as this algorithm constructs V1, V2, . . . , Vi, it proceeds to construct a Vi+1 if
V − (∪ip=1 Vp) �= ∅. Since T is strongly connected, Vi+1 �= ∅ for otherwise all the arcs
between ∪ip=1 Vp and V − (∪ip=1 Vp) are directed to V − (∪ip=1 Vp), a contradiction.
Since V1, V2, . . . are pairwise disjoint subsets of V , the algorithm terminates in finite
number of steps. It follows that

(2.1) V1, V2, . . . , Vk form a partition of V .

We aim to show that V1, V2, . . . , Vk are as desired. For this purpose, note that (it
follows immediately from the algorithm)

(2.2) for each i = 1, 2, . . . , k − 1 and each x ∈ Vi, N−(x) ∩ (V − ∪i+1
p=1Vp) = ∅.

Thus property (c) follows. Since T is strongly connected, N−(w) �= ∅ and N+(w) �= ∅,
so V2 �= ∅ and V − (V1 ∪ V2) �= ∅. In view of (2.1), we have k ≥ 3. To prove that
V1, V2, . . . , Vk enjoy properties (a) and (b), we apply induction on the subscripts of
Vi’s.

(2.3) For each x ∈ V2, we have N−(x) ∩ V3 �= ∅.
To justify it, note that otherwise d+(x) > d+(w), contradicting the definition of

w.

(2.4) For any x, y ∈ V2, either (N−(x) ∩ V3) ⊆ (N−(y) ∩ V3) or (N−(y) ∩ V3) ⊆
(N−(x) ∩ V3).

Assume the contrary: (2.3) guarantees the existence of a vertex u in (N−(x) −
N−(y))∩V3 and a vertex v in (N−(y)−N−(x))∩V3. Since uxvyu is a cycle of length
4, w points to both u and v (recall (2.2)), and both x and y point to w, {u, v, w, x, y}
induces an F1 in T , a contradiction.

Similarly, we can prove that

(2.5) for any u, v ∈ V3, either (N+(u) ∩ V2) ⊆ (N+(v) ∩ V2) or (N+(v) ∩ V2) ⊆
(N+(u) ∩ V2).

It follows from (2.3), (2.4), (2.5), and the definition of V3 that

(2.6) there exists x ∈ V2 such that V3 ⊆ N−(x); there exists u ∈ V3 such that
V2 ⊆ N+(u).
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The following statement will be used repeatedly in our proof.
(2.7) Let U1, U2, and U3 be three disjoint vertex-subsets of T such that all the

arcs between Ui and Ui+1 are directed to Ui+1 for each i = 1, 2, 3, where the subscript
is taken modulo 3. Then each of U1, U2, and U3 is acyclic.

To justify it, assume the contrary: some Ui, say, U1, contains a triangle x1x2x3x1.
Let x4 be a vertex in U2 and let x5 be a vertex in U3. Then, by hypothesis, x4 points
to x5; each of x1, x2, and x3 points to x4; and x5 points to each of x1, x2, and x3.
Thus x1x2x4x5x1 is a cycle of length 4, x3 points to both x1 and x4, and both x2 and
x5 point to x3. Hence {x1, x2, x3, x4, x5} induces an F1 in T , a contradiction.

(2.8) Each of V2 and V3 is acyclic.
Let x ∈ V2 and u ∈ V3 be two vertices as specified in (2.6). By (2.7) with

U1 = {w}, U2 = {u}, and U3 = V2, we conclude that V2 is acyclic; by (2.7) with
U1 = {w}, U2 = V3, and U3 = {x}, we conclude that V3 is acyclic.

(2.9) Let x, y be two vertices in V2 and let u, v be two vertices in V3. Suppose
that u points to both x and y, x points to v, and v points to y. Then x points to y
and u points to v.

Suppose the contrary, let us distinguish among three cases.
If y → x and v → u, then uyxvu is a cycle of length 4, both wvyw and wuxw are

triangles. Hence {u, v, w, x, y} induces an F2 in T , a contradiction.
If y → x and u→ v, then uvywu is a cycle of length 4, x points to both v and w,

and both u and y point to x. Hence {u, v, w, x, y} induces an F1 in T , a contradiction.
If x→ y and v → u, then uxywu is a cycle of length 4, v points to both u and y,

and both w and x point to v. Hence {u, v, w, x, y} induces an F1 in T , a contradiction.
(2.10) Let x, y be two vertices in V2 with |N−(x) ∩ V3| < |N−(y) ∩ V3|. Then x

points to y.
By hypothesis, we have v ∈ V3 such that x points to v and v points to y. Moreover,

(2.6) guarantees the existence of u ∈ V3 such that u points to both x and y. It follows
from (2.9) that x points to y.

(2.11) Let u, v be two vertices in V3 with |N+(v) ∩ V2| < |N+(u) ∩ V2|. Then u
points to v.

By hypothesis, we have x ∈ V2 such that u points to x and x points to v. Moreover,
(2.6) guarantees the existence of y ∈ V2 such that both u and v point to y. It follows
from (2.9) that u points to v.

It can be seen from (2.8) that Vi admits a linear order ≺ such that x ≺ y whenever
(x, y) is an arc in Vi for each i = 2, 3.

(2.12) Let (u, x) be an arbitrary arc from V3 to V2. Then u → y for any y in V2

with x ≺ y.
Assume the contrary: y → u for some y in V2 with x ≺ y. By virtue of (2.6),

we have v ∈ V3 such that v → x and v → y. It follows from (2.9) that y → x,
contradicting the hypothesis x ≺ y.

Since V1 consists of a single vertex w, property (b) holds trivially for V1 and V2.
(2.13) Let f : V3 → V2 be the map defined as follows: for any v ∈ V3, f(v) is the

smallest vertex in V2 such that v → f(v). Then
• for any v ∈ V3,

(x, v) is an arc for each x in V2 with x ≺ f(v) and
(v, y) is an arc for each y in V2 with f(v) � y and

• for any u, v ∈ V3 with u ≺ v, there holds f(u) � f(v).
The first statement follows instantly from (2.12). To justify the second statement,

assume the contrary: f(v) ≺ f(u) for some u, v in V3 with u ≺ v. It follows from
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(2.12) that |N+(u)∩ V2| < |N+(v)∩ V2|. By (2.11), we have v → u, contradicting the
hypothesis u ≺ v.

Suppose we have proved that V1, V2, . . . , Vi enjoy properties (a) and (b) for 3 ≤
i ≤ k − 1; let us proceed to the induction step and consider Vi+1. Let ≺ be a linear
order on Vp as specified in property (a) for p = 1, 2, . . . , i. For convenience, we reserve
the symbol s for the largest vertex in Vi−1 and the symbol t for the largest vertex in
Vi−2.

(2.14) The following statements hold.
• s points to each vertex in {t} ∪ Vi+1;
• t points to each vertex in Vi ∪ Vi+1.
Indeed, by the induction hypothesis of property (b), s points to t and each vertex

in Vi points to s; the remaining statements follow from property (c).
(2.15) Let (u, x) be an arbitrary arc from Vi+1 to Vi. Then u→ y for any y in Vi

with x ≺ y.
Assume the contrary: y → u for some y in Vi with x ≺ y. Then uxstu is a cycle

of length 4 (recall (2.14)), both t and x point to y, and y points to both s and u.
Thus {s, t, u, x, y} induces an F1 in T , a contradiction.

(2.16) Vi+1 is acyclic.
Let r be the largest vertex in Vi. Then, in view of (2.15) and the definition of Vi+1,

each vertex in Vi+1 points to r. By (2.7) with U1 = {r}, U2 = {s}, and U3 = Vi+1,
we conclude that Vi+1 is acyclic.

(2.17) Let u, v be two vertices in Vi+1 with |N+(v) ∩ Vi| < |N+(u) ∩ Vi|. Then u
points to v.

Assume the contrary: v points to u. The hypothesis guarantees the existence of
x ∈ Vi such that u→ x and x→ v. Let y be the largest vertex in Vi. Then, by (2.15)
and the definition of Vi+1, we have u → y and v → y, which implies that x �= y and
hence x → y. Note that xysux is a cycle of length 4, v points to both u and y, and
both s and x point to v. Hence {s, u, v, x, y} induces an F1 in T , a contradiction.

According to (2.16), Vi+1 admits a linear order ≺ such that x ≺ y whenever (x, y)
is an arc in Vi+1.

(2.18) Let f : Vi+1 → Vi be the map defined as follows: for any v ∈ Vi+1, f(v) is
the smallest vertex in Vi such that v → f(v). Then
• for any v ∈ Vi+1,

(x, v) is an arc for each x in Vi with x ≺ f(v) and
(v, x) is an arc for each x in Vi with f(v) � x and

• for any u, v ∈ Vi+1 with u ≺ v, there holds f(u) � f(v).
The first statement follows instantly from (2.15). To justify the second statement,

assume the contrary: f(v) ≺ f(u) for some u, v in Vi+1 with u ≺ v. It follows from
(2.15) that |N+(u)∩ V2| < |N+(v)∩ V2|. By (2.17), we have v → u, contradicting the
hypothesis u ≺ v. This completes the proof.

Corollary 2.1. For each i = 1, 2, . . . , k − 1, if (v, x) is an arc from Vi+1 to Vi
in T , then (u, x) is an arc for any u in Vi+1 with u ≺ v.

Proof. Since u ≺ v, by property (b) of the lemma we have f(u) � f(v) � x, thus
(u, x) is an arc.

Corollary 2.2. Let xyzx be a triangle in T and let {V1, V2, . . . , Vk} be a parti-
tion of V as specified in the lemma. Then there exists an i with 1 ≤ i ≤ k − 2 such
that z ∈ Vi, y ∈ Vi+1, and x ∈ Vi+2 (renaming x, y, and z if necessary).

Proof. By property (a) of Lemma 2.1, Vi is acyclic for each i = 1, 2, . . . , k. Hence
each Vi contains at most two of x, y, and z; let us now verify that Vi cannot contain
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two of them. Assume the contrary: both x and y are in Vi. (Rename the vertices
if necessary.) By property (c) of the lemma, z ∈ Vi−1 or z ∈ Vi+1, for otherwise z
would have two outgoing or two incoming arcs in the triangle xyzx, a contradiction.
If z ∈ Vi−1, then (since y → z and z → x) by Corollary 1 we have y ≺ x, contradicting
the fact that x→ y; if z ∈ Vi+1, then (since y → z and z → x) by property (b) of the
lemma, y ≺ f(z) � x, contradicting the fact that x→ y.

It follows that there exist three subscripts r, s, t with 1 ≤ r < s < t ≤ k such that
|{x, y, z}∩Vp| = 1 for each p = r, s, t. We claim that t−r = 2, for otherwise t ≥ r+3,
thus either t ≥ s + 2 (by property (c) of the lemma, the vertex in {x, y, z} ∩ Vt has
two incoming arcs in the triangle xyzx) or s ≥ r + 2 (the vertex in {x, y, z} ∩ Vr has
two outgoing arcs in the triangle), we reach a contradiction in either case, completing
the proof.

Lemma 2.2. Let T = (V,A) be a strongly connected tournament. Then either
one of F1 and F2 in T or a partition {V1, V2, . . . , Vk} of V as described in Lemma 2.1
can be found in time O(|V |2).

Proof. Let us apply the same algorithm as described in the proof of Lemma 2.1 to
T first. This algorithm is essentially a breadth-first search, so it can be implemented
in time O(|V |2). We then need to check if each of (2.4), (2.5), (2.8), (2.10)–(2.12),
(2.15)–(2.17) holds. (Recall the proof of Lemma 2.1. The other statements need
not be checked; for example, (2.6) follows from (2.4) and (2.5) and (2.9) is proved
for (2.10) and (2.11).) If yes, {V1, V2, . . . , Vk} is a partition as desired; else, we can
exhibit an F1 or F2.

Note that (2.4) can be checked in time O((|V2| + |V3|)2). To see it, we first find
N−(x) ∩ V3 for each x ∈ V2; this step takes O(|V2||V3|) time. Then sort the vertices
in V2 in nondecreasing order according to |N−(x)∩V3|; this step takes O(|V2| log |V2|)
time. Suppose x1, x2, . . . , xt is the resulting order, where t = |V2|. Then we check if
(N−(xi) ∩ V3) ⊆ (N−(xi+1) ∩ V3) for i = 1, 2, . . . , t − 1. If not, let i be the smallest
subscript that violates this condition; then we can exhibit an F1. (Recall the proof of
(2.4).) Otherwise, (2.4) is satisfied; this step takes O(|V2||V3|) time. So our statement
follows.

Similarly, (2.5) can be checked in time O((|V2|+ |V3|)2).
As for (2.8), we can find a triangle in V2 or declare V2 is acyclic in time O(|V2|2).

To see it, let us apply the depth-first search to output the strongly connected com-
ponents of V2. If there is no component that contains at least three vertices, then V2

is acyclic; otherwise, apply the depth-first search on such a component to output a
directed cycle C. If C has three vertices, then C is as desired; else, take an arbitrary
chord e of C, {e} ∪ C contains a directed cycle C1 shorter than C; replace C by C1;
repeat the process.

Similarly, it can be shown that the time complexity for checking each of (2.10)–
(2.12), (2.15)–(2.17) is no more than O((|Vi| + |Vi+1|)2) when we proceed to the
structure between Vi and Vi+1 for i = 1, 2, . . . , k − 1. Hence, the total complexity is∑k−1
i=1 O((|Vi|+ |Vi+1|)2) +O(|V |2) = O(|V |2).
3. Min-max theorems. The present section is devoted to min-max theorems

on packing and covering directed cycles in tournaments. Recall that in the unweighted
case every �-packing in T is a family of vertex disjoint triangles and the size of a
�-covering S in T is the number of vertices in S.

Theorem 3.1. Let T = (V,A) be a tournament with no subtournament isomor-
phic to F1 nor F2. Then the �-packing number of T equals the �-covering number
of T .
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Proof. Without loss of generality, we may assume that T is strongly connected.

We shall let P3 stand for an induced directed path with three vertices. Recall the
definitions of a �-packing and a �-covering in section 1; with P3 in place of � over
there, we can define a P3-packing and a P3-covering.

Since T contains no F1 nor F2, V admits a partition {V1, V2, . . . , Vk} as described
in Lemma 2.1. Let D be the digraph obtained from T by deleting all arcs in Vi for
each i and deleting all the arcs from Vi to Vj for any i < j. Then we have

(3.1.1) the �-packing number of T equals the P3-packing number of D; the �-
covering number of T equals the P3-covering number of D.

To see it, let xyzx be an arbitrary triangle in T . Then Corollary 2.2 guarantees
the existence of some i such that z ∈ Vi, y ∈ Vi+1, and x ∈ Vi+2. Hence xyz is a P3

in D. Conversely, if xyz is a P3 in D, then we have some i (recall the construction of
D) such that z ∈ Vi, y ∈ Vi+1, and x ∈ Vi+2. By property (c) of Lemma 2.1, z points
to x in T . Hence xyzx is a triangle in T . So there is a one to one correspondence
between triangles in T and P ′3s in D; (3.1.1) follows.

In view of (3.1.1), the present theorem is equivalent to the following statement.

(3.1.2) The P3-packing number of D equals the P3-covering number of D.

We shall turn to prove (3.1.2). For this purpose, note the following:

(3.1.3) Let ≺ be the linear order as defined in Lemma 2.1. Then the following
statements hold:

(i) For each i = 1, 2, . . . , k− 1, if (v, x) is an arc from Vi+1 to Vi in D, then (u, x)
is an arc in D for any u in Vi+1 with u ≺ v.

(ii) For each i = 1, 2, . . . , k − 1, there is a map f : Vi+1 → Vi such that for each
v ∈ Vi+1, (v, x) is an arc for each x in Vi with f(v) � x and that there is no arc
between v and any x in Vi with x ≺ f(v).

From the construction of D, it can be seen that (i) follows instantly from Corol-
lary 2.1 and (ii) follows from property (b) of Lemma 2.1.

Let i∗ be the smallest vertex in Vi with respect to the linear order ≺ as defined
in (3.1.3) for i = 1, 2, . . . , k.

(3.1.4) Without loss of generality, we may assume that f((i+ 1)∗) = i∗ for i = 1
and 2.

Suppose the contrary: f((i + 1)∗) �= i∗ for i = 1 or 2. Then there is no P3 in D
passing through i∗, for otherwise i ≤ 2 and the construction of D imply that such a
P3 would contain an arc (v, i

∗) for some v ∈ Vi+1. From (i) of (3.1.3), we conclude
that ((i + 1)∗, i∗) would be an arc in D, so f((i + 1)∗) = i∗, a contradiction. Hence
we may consider D − {i∗} instead of D.

(3.1.5) There exists a maximum P3-packing in D which contains 3∗2∗1∗.
To justify (3.1.5), note that, by (3.1.4), 3∗2∗1∗ is a P3 in D. Now let P be

a maximum P3-packing in D such that |θ(P) ∩ F ∗| is as large as possible, where
θ(P) is the set of all the vertices and all the arcs appeared in P3’s in P and F ∗ =
{1∗, 2∗, 3∗, (3∗, 2∗), (2∗, 1∗)}. We aim to show that this P contains 3∗2∗1∗. To this
end, observe that

(i) {1∗, 2∗, 3∗} ∩ θ(P) �= ∅. For otherwise, we may add 3∗2∗1∗ to P to obtain a
larger P3-packing in D, a contradiction.

(ii) 1∗ ∈ θ(P). For otherwise, in case 2∗ ∈ θ(P), let Q be the P3 containing 2
∗

in P and let Q′ be the P3 obtained from Q by replacing one arc with (2
∗, 1∗); in case

2∗ /∈ θ(P), let Q be the P3 containing 3
∗ in P (recall (i)) and let Q′ = 3∗2∗1∗. Next,

let P ′ be the P3-packing obtained from P by replacing Q with Q′. Then we have
|θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗| in each case, a contradiction.
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(iii) 2∗ ∈ θ(P). Assume the contrary, let Q be the P3 containing 1
∗ in P; we

distinguish between two cases: in case 3∗ is contained in no R ∈ P with R �= Q,
let P ′ be the P3-packing obtained from P by replacing Q with 3∗2∗1∗. In case 3∗ is
contained in an R ∈ P with R �= Q, we consider two subcases: if 3∗ is not a source
of R, then let R′ be the P3 obtained from R by replacing one arc with (3∗, 2∗); if 3∗

is a source of R, say, R = 3∗yx, then set R′ = 3∗2∗x (note that (2∗, x) is an arc in D
by (3.1.3)); next, let P ′ be the P3-packing obtained from P by replacing R with R′.
It can be seen that |θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗| in either case, a contradiction.

(iv) 3∗ ∈ θ(P). For otherwise, let Q = xy1∗ be the P3 containing 1 in P (recall
(ii)). Then (3∗, y) is an arc in D by (i) of (3.1.3) as 3∗ ≺ x. Now let P ′ be the P3-
packing obtained from P by replacing Q with 3∗y1∗. Then |θ(P ′)∩F ∗| > |θ(P)∩F ∗|,
a contradiction.

(v) (3∗, 2∗) ∈ θ(P). Suppose the contrary: let Q (resp., R) be the P3 containing
2∗ (resp., 3∗) in P (recall (iii) and (iv)). Then Q �= R. We distinguish between two
cases according to the position of 2∗ in Q.

Case 1. Q = x2∗y. In case R = 3∗uv, (x, u) is an arc in D by (ii) of (3.1.3) as
2∗ ≺ u, let Q′ = 3∗2∗y and R′ = xuv; in case R = u3∗v, both (u, x) and (x, v) are
arcs in D according to (3.1.3), let Q′ = 3∗2∗y and R′ = uxv; in case R = uv3∗, (v, x)
is an arc in D by (3.1.3), let Q′ = 3∗2∗y and R′ = uvx.

Case 2. Q = xy2∗. In case R = 3∗uv, both (2∗, v) and (y, u) are arcs in D by
(3.1.3), let Q′ = 3∗2∗v and R′ = xyu; in case R = u3∗v, (y, v) is an arc in D according
to (3.1.3), let Q′ = u3∗2∗ and R′ = xyv; in case R = uv3∗, we consider two subcases:
If v ≺ x, then (u, x) is an arc in D by (3.1.3), let Q′ = v3∗2∗ and R′ = uxy; if x ≺ v,
then both (x, 3∗) and (v, y) are arcs in D by (3.1.3), let Q′ = x3∗2∗ and R′ = uvy.

Next, in each case let P ′ be the P3-packing obtained from P by replacing Q with
Q′ and by replacing R with R′. Then |θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗|, a contradiction.

(vi) (2∗, 1∗) ∈ θ(P). Suppose the contrary: Let Q (resp., R = yz1∗) be the
P3 containing (3

∗, 2∗) (resp., 1∗) in P (recall (v) and (ii)). Then Q �= R. In case
Q = 3∗2∗x, (z, x) is an arc in D by (3.1.3), let Q′ = 3∗2∗1∗ and R′ = yzx; in case
Q = x3∗2∗, (x, y) is an arc in D by (3.1.3), let Q′ = 3∗2∗1∗ and R′ = xyz. Next, in
each case let P ′ be the P3-packing obtained from P by replacing Q with Q′ and by
replacing R with R′. Then |θ(P ′) ∩ F ∗| > |θ(P) ∩ F ∗|, a contradiction.

Since P3’s in P are vertex disjoint, it follows from (v) and (vi) that 3∗2∗1∗ is a
P3 in P, completing the proof of (3.1.5).

In view of (3.1.4) and (3.1.5), we have the following greedy algorithm for a maxi-
mum P3-packing in D.

(3.1.6) Description. If f((i+ 1)∗) �= i∗ for i = 1 or 2, then any maximum P3-
packing in D− {i∗} is a maximum P3-packing in D, replace D by D− {i∗}; else, the
union of any maximum P3-packing in D − {1∗, 2∗, 3∗} and 3∗2∗1∗ gives a maximum
P3-packing in D, replace D by D − {1∗, 2∗, 3∗}; repeat the process.

Since (3.1.3) is closed under taking connected induced subdigraphs of D, both
(3.1.4) and (3.1.5) are valid with respect to each connected component of new D’s.
Hence the algorithm will eventually return a maximum P3-packing in the original D.

Recall (3.1.3): ≺ is a linear order defined on each Vi; however, there is no order
between any two vertices in two distinct Vi’s. Now let us fix this gap and extend ≺
to the whole vertex-set V of D.

(3.1.7) Define u ≺ v whenever u ∈ Vi and v ∈ Vj for any i < j.
We point out that if xyz is a P3 in D, then, according to (3.1.7), there holds

z ≺ y ≺ x. Now let us proceed to the order of P3’s in D.
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(3.1.8) Let Q1 = x1y1z1 and Q2 = x2y2z2 be two P3’s in D. Define Q1 ≺ Q2 if
one of the following three conditions is satisfied: (i) x1 ≺ x2; (ii) x1 = x2 and y1 ≺ y2;
(iii) x1 = x2, y1 = y2, and z1 ≺ z2.

Based on (3.1.8), we can further define the order of two P3-packings with the
same size.

(3.1.9) Let Q = {Qi : i = 1, 2, . . . ,m} and Q′ = {Q′i : j = 1, 2, . . . ,m} be
two P3-packings in D sorted in increasing order: Qi ≺ Qi+1 and Q

′
i ≺ Q′i+1 for

i = 1, 2, . . . ,m − 1. Define Q ≺ Q′ if there is some i with 1 ≤ i ≤ m such that
Qi ≺ Q′i and Qj = Q′j for each j > i.

(3.1.10) Let Q1 = x1y1z1 and Q2 = x2y2z2 be two P3’s in D. Define Q1 ≺strict Q2

if the following two conditions are satisfies simultaneously: (i) x1 ≺ x2, y1 ≺ y2, and
z1 ≺ z2; (ii) for each 1 ≤ j ≤ k, if u1 ∈ Vj ∩ {x1, y1, z1} and u2 ∈ Vj ∩ {x2, y2, z2},
then u1 ≺ u2.

(3.1.11) A maximum P3-packing Q = {Qi : i = 1, 2, . . . ,m} in D is called good if
Q1 ≺strict Q2 ≺strict . . . ≺strict Qm (renaming Qi’s if necessary).

The algorithm described in (3.1.6) asserts that
(3.1.12) there exists a good maximum P3-packing in D.
Recall that our target is to prove (3.1.2). To achieve it, we still need some

preparations.
(3.1.13) Let Q = {Qi : i = 1, 2, . . . ,m} be a good maximum P3-packing in D

(recall (3.1.11)) with the largest possible order with respect to (3.1.9) and let w be an
arbitrary vertex in {1∗, 2∗, 3∗}. Assume thatD andD−{w} have the same P3-packing
number. Then there exists a good maximum P3-packing Q′ = {Q′i : i = 1, 2, . . . ,m}
in D − {w} such that Q′1 ≺ Q1 and Q

′
i = Qi for i = 2, 3, . . . ,m.

To justify (3.1.13), let Q′ = {Q′i : i = 1, 2, . . . ,m} be a good maximum P3-packing
in D−{w} with the largest possible order with respect to (3.1.9), the existence of Q′
is guaranteed by (3.1.12) (with D − {w} in place of D over there). Let us show that
Q′ is as desired. Assume the contrary: let i be the largest index with Q′i ≺ Qi. Then
i ≥ 2. Suppose Qi = xiyizi and Q′i = x′iy′iz′i, we distinguish among three cases.

Case 1. x′i = xi and y
′
i = yi and z

′
i ≺ zi. In this case Q′i ≺strict Qi. Let

Q̃ = (Q′−{Q′i})∪{Qi}. Then Q̃ is a good maximum P3-packing in D−{w}. To see
it, note that Q′j = Qj for each j > i. By definition (3.1.11), Q

′
j ≺strict Q′i for each

j < i, thus no Q′j with j < i in Q′ passes through any of xi, yi, zi. The statement
follows. Since Q′ ≺ Q̃, the existence of Q̃ contradicts the selection of Q′.

Case 2. x′i = xi and y
′
i ≺ yi. In case z

′
i � zi, our proof is exactly the same

as that in Case 1; in case zi ≺ z′i, (yi, z
′
i) is an arc in D by (3.1.3). Let Q̃ =

(Q− {Qi}) ∪ {xiyiz′i}. Then Q̃ is a good maximum P3-packing in D with Q′ ≺ Q̃, a
contradiction.

Case 3. x′i ≺ xi. Let us consider three subcases.
Subcase 3.1. x′i and xi belong to the same Vj for some 1 ≤ j ≤ k. In case y′i � yi,

our proof is exactly the same as that in Case 2. So we suppose yi ≺ y′i. Thus (xi, y′i)
is an arc in D by (3.1.3). Let Q̃ be the P3-packing obtained from Q′ by replacing
Q′i with xiy

′
iz
′
i. Then Q̃ is a good maximum P3-packing in D − {w} with Q′ ≺ Q̃,

contradicting the definition of Q′.
Subcase 3.2. x′i and yi belong to the same Vj for some 1 ≤ j ≤ k.
Consider the case x′i � yi. If y′i � zi (resp., zi ≺ y′i), let Q̃ be the P3-packing

obtained from Q′ by replacing Q′i with Qi (resp., with xiyiy′i, recall (3.1.3)), then Q̃
is a good maximum P3-packing in D − {w} with Q′ ≺ Q̃, a contradiction.

Next, consider the case yi ≺ x′i. Note that (xi, x′i) is an arc in D by (3.1.3). Let
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Q̃ be the P3-packing obtained from Q′ by replacing Q′i with xix′iy′i, then Q̃ is a good
maximum P3-packing in D − {w} with Q′ ≺ Q̃, a contradiction.

Subcase 3.3. x′i and zi belong to the same Vj for some 1 ≤ j ≤ k. Let u be the
smaller vertex in {x′i, zi}. Then (yi, u) is an arc in D − {w} by (3.1.3). Let Q̃ be the
P3-packing obtained from Q′ by replacing Q′i with xiyiu, then Q̃ is a good maximum
P3-packing in D − {w} with Q′ ≺ Q̃, a contradiction.

This completes the proof of (3.1.13).

(3.1.14) There exists a w ∈ {1∗, 2∗, 3∗} such that D − {w} has less P3-packing
number than D.

To verify (3.1.14), let Q = {Qi : i = 1, 2, . . . ,m} be a good maximum P3-packing
in D with the largest possible order with respect to (3.1.9). It follows from (3.1.11)
that at least one of 1∗, 2∗, and 3∗ is on Q1, for otherwise we may add 3

∗2∗1∗ to Q to
get a larger good P3-packing of D, a contradiction. Now let us exhibit w in each of
the following cases.

Case 1. 1∗ is on Q1. In this case we may set 1
∗ as w. To see it, suppose the

contrary: (3.1.13) guarantees the existence of a good maximum P3-packing Q′ = {Q′i :
i = 1, 2, . . . ,m} in D − {1∗} such that Q′1 ≺ Q1 and Q

′
i = Qi for i = 2, 3, . . . ,m. Let

Q1 = xy1
∗ and let z be the vertex of Q′1 in V1. Then (y, z) is an arc in D by (3.1.3).

Let T be the P3-packing obtained from Q by replacing Q1 with xyz, then T is a good
maximum P3-packing in D with Q ≺ T , a contradiction.

Case 2. 2∗ is on Q1 but neither of 1
∗ and 3∗ is. In this case we may set 2∗ as w.

To see it, suppose the contrary: (3.1.13) guarantees the existence of a good maximum
P3-packing Q′ = {Q′i : i = 1, 2, . . . ,m} in D − {2∗} such that Q′1 ≺ Q1 and Q

′
i = Qi

for i = 2, 3, . . . ,m. If Q1 = x2
∗y, then Q′1 ≺ Q1 implies that Q

′
1 = abc for some a ≺ x

and 2∗ ≺ b with a ∈ V3. By virtue of (3.1.3), (x, b) is an arc in D; set R = xbc. If
Q1 = xy2∗, then Q′1 ≺ Q1 implies that Q

′
1 contains a vertex z in V2 with 2

∗ ≺ z.
By (3.1.3), (y, z) is an arc in D; set R = xyz. In each case, let T be the P3-packing
obtained from Q by replacing Q1 with R, then T is a good maximum P3-packing in
D with Q ≺ T , a contradiction.

Case 3. 3∗ is on Q1. In this case we may set 3
∗ as w. To see it, suppose the

contrary: (3.1.13) guarantees the existence of a good maximum P3-packing Q′ = {Q′i :
i = 1, 2, . . . ,m} in D − {3∗} such that Q′1 ≺ Q1 and Q

′
i = Qi for i = 2, 3, . . . ,m. It

follows that 3∗ is not the source of Q1 for otherwise Q1 ≺ Q′1, a contradiction. In case
Q1 = y3

∗z, let Q′1 = abc. Then a ∈ V3 or a ∈ V4 in order for Q
′
1 ≺ Q1. Set R = yab

in the former case (note that (y, a) is an arc in D by (3.1.3)), and set R = ybc in the
latter case (note that (y, b) is an arc in D by (3.1.3)). In case Q1 = yz3

∗, Q′1 must
contain a vertex a in V3 in order for Q

′
1 ≺ Q1, set R = yza (note that (z, a) is an

arc in D by (3.1.3)). Now let T be the P3-packing obtained from Q by replacing Q1

with R. Then T is a good maximum P3-packing in D with Q ≺ T in each case, a
contradiction.

This completes the proof of (3.1.14).

Now we are ready to prove (3.1.2).

We apply induction on the number of vertices in D. If D has at most three
vertices, the statement is trivial. Let us proceed to the induction step. If f((i+1)∗) �=
i∗ for i = 1 or 2, then any P3 in D − {i∗} is a P3 in D (recall (3.1.4)). Thus the
desired statement follows from the induction hypothesis on D − {i∗}. So we suppose
f((i + 1)∗) = i∗ for i = 1 and 2. By (3.1.5), 3∗2∗1∗ is in a maximum P3-packing in
D, so the P3-packing number of D = the P3-packing number of D − {1∗, 2∗, 3∗}+1;
by (3.1.14) there exists a vertex w on 3∗2∗1∗ such that the P3-covering number of D
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= the P3-covering number of D−{w}+1, which implies that the P3-covering number
of D ≥ the P3-covering number of D−{1∗, 2∗, 3∗} +1. Since by induction hypothesis
D − {1∗, 2∗, 3∗} has the same P3-packing and P3-covering numbers, the P3-packing
number ofD ≥ the P3-covering number ofD, so equality must hold and (3.1.2) follows.

This completes the proof of Theorem 3.1.

We further generalize Theorem 3.1 to the weighted case. In the next section we
show that it allows us to obtain a 2.5-approximation polynomial time algorithm for
the feedback vertex set problem in any tournament.

Theorem 3.2. Let T = (V,A) be a tournament with a weight w(v) on each
vertex v ∈ V . Then the �-packing number of T equals the �-covering number for
any nonnegative integral w if and only if T contains no F1 nor F2.

Proof. To see the necessity, suppose the contrary: T contains some Fi, i = 1
or 2. Let w be such that w(v) = 1 if v is a vertex of Fi and 0 otherwise. Then
the �-packing (resp., �-covering) number of T with respect to w equals the packing
(resp., covering) number of Fi in the unweighted case, which is 1 (resp., 2). Hence
the min-max relation is violated.

Now let us justify the sufficiency. Suppose T contains no F1 nor F2; we aim to
establish the min-max result. Without loss of generality, we assume that T is strongly
connected and that w(v) > 0 for each v ∈ V (for otherwise we may delete it from T ).

Let us now construct a new tournament T̃ from T by replacing each vertex v in
T with an acyclic subtournament on vertex set S(v) such that |S(v)| = w(v) and that
for each i ∈ S(u) and each j in S(v), (i, j) is an arc in T̃ if and only if (u, v) is an arc
in T . It is easy to see that |S(v) ∩ {i, j, k}| ≤ 1 for each S(v) and each triangle ijki
in T̃ . Observe that

(3.2.1) T̃ contains no F1 nor F2.

Assume the contrary: T̃ contains some Fk, where k = 1 or 2. Suppose the vertex
set of Fk is {i1, i2, . . . , i5}. Since Fk is not a subgraph of T , we may assume the
existence of a vertex v in T with {i1, i2, . . . , i5} ∩ S(v) = {i1, . . . , ij} and j ≥ 2.

From the construction of T̃ , it follows that j = 2 for otherwise Fk − {ij+1} contains
no triangle, a contradiction; next, there exist two vertices in {i3, i4, i5}, say, i3 and
i4, such that the arcs between {i1, i2} and {i3, i4} are all directed to {i1, i2} or all
directed to {i3, i4}. Thus Fk − {i5} is acyclic, a contradiction.

By virtue of (3.2.1), we deduce the following statement from Theorem 3.1.

(3.2.2) The �-packing number of T̃ equals the �-covering number of T̃ .
Now let Q̃ be a maximum �-packing in T̃ and let C̃ be a minimum �-covering

in T̃ . We construct a �-packing Q of T from Q̃ as follows: for each triangle ijki in Q̃
with i ∈ S(a), j ∈ S(b) and k ∈ S(c), create a triangle abca in Q (note that a triangle
in T may appear multiple times); that is, Q consist of all the created triangles in
T . Then Q is a �-packing of T for each vertex v of T is contained in at most w(v)
triangles of Q.

In order to construct a�-covering C of T from C̃, observe that S(v) ⊆ C̃ whenever
S(v) ∩ C̃ �= ∅. To see it, assume the contrary: i ∈ C̃ but i′ /∈ C̃ for some i and i′ in
S(v). By the minimality of C̃, there exists a triangle ijki in Q̃ which is covered by a
unique vertex, i, in C̃. Thus the triangle i′jki′ is not covered by C̃, a contradiction.
Now define C = {v ∈ V |S(v) ⊆ C̃}. Then it follows from the above observation that
C is a �-covering of T .

According to (3.2.2),
∑
v∈C w(v) =

∑
v∈C |S(v)| = |C̃| = |Q̃| = |Q|. Thus Q is a

maximum �-packing of T and C is a minimum �-covering of T ; we therefore get the
desired min-max relation.
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4. Algorithms. Now we are ready to present an O(|V |2) algorithm for the max-
imum �-packing problem and an O(|V |3) algorithm for the minimum �-covering
problem in any tournament with no F1 nor F2.

To find a maximum �-packing in T , let us apply the following algorithm, where
�(P (T )) stands for a maximum�-packing in T and P3(P (D)) stands for a maximum
P3-packing in D.

Maximum �-Packing Algorithm.

Description. Find all the strongly connected components T1, T2, . . . , Ts of T . If
s ≥ 2, then apply the algorithm on each of T1, T2, . . . , Ts, �(P (T )) = ∪si=1 �(P (Ti)).
Otherwise, let {V1, V2, . . . , Vk} be a partition of T as described in Lemma 2.1 and
let D be the digraph as constructed in the proof of Theorem 3.1. Find P3(P (D))
as follows: If f((i + 1)∗) �= i∗ for i = 1 or 2, then P3(P (D)) = P3(P (D − {i∗})).
Replace D by D − {i∗}; else, set w(x) = w(x) − δ for each x ∈ {1∗, 2∗, 3∗}, where
δ = min{w(1∗), w(2∗), w(3∗)}, and set W = {v ∈ V : w(v) = 0}. Then P3(P (D)) =
P3(P (D−W ))∪ {3∗2∗1∗, . . . , 3∗2∗1∗}, where the multiplicity of 3∗2∗1∗ is δ. Replace
D by D −W ; repeat the process. Return �(P (T )) = P3(P (D)).

To show the validity of the algorithm, we need only consider the case f((i+1)∗) =
i∗ for i = 1 and 2. Let D̃ be the digraph obtained from D as follows: each vertex
v in D is replaced by a set S(v) of w(v) vertices; for each i ∈ S(u) and each j in
S(v), (i, j) is an arc in D̃ if and only if (u, v) is an arc in D. Clearly, there is a one
to one correspondence between maximum weighted P3-packings in D and maximum
unweighted P3-packings in D̃. With D̃ in place of D, repeated applications of (3.1.5)
guarantee the existence of a maximum P3-packing in D̃ which contains δ copies of
3∗2∗1∗. (After getting the first copy, we remove the three vertices on this copy from D̃;
then applying (3.1.5) in the resulting digraph, we get the second copy, etc.) Thus the
validity of the algorithm follows instantly from the above-mentioned correspondence.

The strongly connected components can be found in time O(|V |2) by the depth-
first search; in case T is strongly connected, the partition {V1, V2, . . . , Vk} can be
constructed in time O(|V |2) by the breadth-first search; D can be obtained from the
partition in time O(|V |2); P3(P (D)) can be obtained in time O(|V |). Hence, the total
time complexity of the algorithm is O(|V |2).

To find a minimum covering set, let us apply the following algorithm, where
�(C(T )) stands for a minimum �-covering in T .

Minimum �-Covering Algorithm.

Description. Find all the strongly connected components T1, T2, . . . , Ts of T . If
s ≥ 2, then apply the algorithm on each of T1, T2, . . . , Ts, �(C(T )) = ∪si=1 �(C(Ti)).
Otherwise, let {V1, V2, . . . , Vk} be the partition as described in Lemma 2.1 and let D
be the digraph as constructed in the proof of Theorem 3.1. If f((i + 1)∗) �= i∗ for
i = 1 or 2, then �(C(T )) = �(C(T − {i∗})). Replace T by T − {i∗} and replace D
by D−{i∗}; else, find an x in {1∗, 2∗, 3∗} by the maximum �-packing algorithm such
that |�(P (T ))| = |�(P (T − {x}))| + w(x). Set �(C(T )) = �(C(T − {x})) ∪ {x}.
Replace T by T − {x} and replace D by D − {x}; repeat the process.

To justify the validity of the algorithm, we need to show the existence of an x
in {1∗, 2∗, 3∗} such that |�(P (T ))| = |�(P (T − {x}))|+ w(x). Let S be a minimum
�-covering of T . Then S must contain at least one x ∈ {1∗, 2∗, 3∗} as 3∗2∗1∗ is a P3

in D, which corresponds to a triangle in T . For this x, S − {x} is clearly a minimum
�-covering of T − {x}. Thus w(�(C(T ))) = w(�(C(T − {x}))) + w(x). It follows
from the min-max result that |�(P (T ))| = |�(P (T −{x}))|+w(x) since both T and
T − {x} have the same �-packing and �-covering numbers. In addition, we need to
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show that if |�(P (T ))| = |�(P (T −{x}))|+w(x), then x is in a minimum �-covering
of T − {x}. This implication is trivial as w(�(C(T ))) = w(�(C(T − {x}))) + w(x).

Since the time complexity of the maximum �-packing algorithm is O(|V |2), it
takes O(|V |2) to find the desired x. Note that T has |V | vertices, the total complexity
of the algorithm is O(|V |3). The proof is complete.

Given an arbitrary tournament T = (V,A) with a positive integer w(v) on each
vertex v ∈ V , let us now present a 2.5-approximation algorithm for the minimum
�-covering problem in T , which relies on “eliminating” the problematic subdigraphs,
F1 and F2, from T .

Approximation �-Covering Algorithm.

Step 0. Set w̃ = w.
Step 1. While T contains a subtournament H isomorphic to F1 or F2 such that

w̃(v) > 0 for each vertex v in H, do: set w̃(v) = w̃(v)− δ for each vertex
v in H, where δ = min{w̃(v) : v ∈ V (H)}.

Step 2. Set �(C0) = {v ∈ V : w̃(v) = 0} and V1 = V −�(C0).
Step 3. Let �(C1) be returned by applying the minimum �-covering algorithm on

T (V1) with respect to the weight w̃. Return �(C) = �(C0) ∪�(C1).

Since it takes O(|V |2) time to output an H in Step 1 according to Lemma 2.2, the
total complexity for Step 1 is O(|V |3); as justified in section 4, Step 3 takes O(|V |3).
So the total complexity of our algorithm is O(|V |3).

Based on the local ratio theorem of Bar-Yehuda and Even [3], we get the following
statement.

Theorem 4.1. The performance guarantee of the above algorithm is 2.5; that is,
if �(C∗) is a minimum �-covering in T , then w(�(C)) ≤ 2.5 w(�(C∗)).

5. Concluding remarks. The feedback vertex problem in tournaments is a
generalization of the vertex cover problem. In this work, we have pointed out that
each existing method that leads to a 2-approximation algorithm for the latter problem
yields a 3-approximation algorithm for the former problem and that the corresponding
algorithms are in the same spirit. Although it is hard to improve the approximation
ratio of 2 for the vertex cover problem, by characterizing the class of tournaments with
the min-max relation on packing and covering directed cycles, we have succeeded in
improving the approximation ratio for the feedback vertex set problem from 3 to 2.5,
using the local ratio technique.

Recent applications of the local ratio technique are made by Bar-Yehuda to some
other problems [1, 2]. It would be interesting to see if the local ratio technique
can be applied in a more sophisticated way to improve the approximation ratio for
the feedback set problem in tournaments, for example, by combining the methods
developed for the triangle packing and covering problems in graphs by Krivelevich [12].

Acknowledgments. The authors are grateful to Dr. Xiaoyun Lu for his stim-
ulating suggestions and helpful discussions. They also wish to thank anonymous
referees for their critical comments that have greatly improved the presentation of
this paper. One referee was very kind to suggest that the authors adopt the current
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Abstract. We show that approximating the shortest vector problem (in any �p norm) to within

any constant factor less than p
√
2 is hard for NP under reverse unfaithful random reductions with

inverse polynomial error probability. In particular, approximating the shortest vector problem is
not in RP (random polynomial time), unless NP equals RP. We also prove a proper NP-hardness
result (i.e., hardness under deterministic many-one reductions) under a reasonable number theoretic
conjecture on the distribution of square-free smooth numbers. As part of our proof, we give an
alternative construction of Ajtai’s constructive variant of Sauer’s lemma that greatly simplifies Ajtai’s
original proof.
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packing
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1. Introduction. Lattices are geometric objects that can be pictorially de-
scribed as the set of intersection points of an infinite, regular (but not necessarily
orthogonal) n-dimensional grid. The rich combinatorial structure of lattices makes
them very powerful tools to attack many important problems in mathematics and
computer science. In particular, lattices have been used to solve integer programming
with finitely many variables [25, 24, 20], factorization of polynomials over the inte-
gers [24, 31], low density subset-sum problems [23, 12, 8], and many cryptanalytic
problems [32, 17, 13, 7, 6].

Despite the many successful applications of lattice techniques, the most funda-
mental problems on lattices resisted any attempt to devise polynomial time algorithm
to solve them. These are the shortest vector problem (SVP) and the closest vector
problem (CVP). In SVP, given a lattice, one must find the shortest nonzero vector in
the lattice (i.e., the intersection point in the grid closest to the origin). CVP is the
inhomogeneous counterpart of SVP: given a lattice and a target point (not necessar-
ily in the lattice), find the lattice point closest to the target. Both problems can be
defined with respect to any norm, but the Euclidean norm �2 is the most commonly
used.

The first intractability results for lattice problems date back to 1981 when van
Emde Boas [34] proved that CVP1 is NP-hard and conjectured the same for SVP. Since
then, the hardness result for CVP was considerably strengthened, proving that even
finding approximate solutions to CVP is hard (see section 2 for more information).
Despite the similarities between the two problems, progress in proving the hardness of
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1In this van Emde Boas paper, this problem is called “Nearest Vector,” and the name “Closest

Vector” is used for SVP in the �∞ norm.

2008



SVP IS HARD TO APPROXIMATE 2009

SVP was much slower. Even for the exact version of this problem, proving the conjec-
tured NP-hardness remained an open problem for almost two decades. Recently, Ajtai
[2] proved that the SVP is hard for NP under reverse unfaithful random reductions
(RUR-reductions for short, see [18]). These are probabilistic reductions that map no
instances to no instances with probability 1 and yes instances to yes instances with
non-negligible probability.2 Although not a proper NP-hardness result (i.e., hardness
for NP under many-one reductions, which would imply that SVP is not in P unless
NP = P), hardness under RUR-reductions also gives evidence of the intractability of
a problem. In particular, it implies that SVP is not in RP unless NP = RP. (Here RP
is the class of decision problems with random polynomial decision algorithms that are
always correct on no instances and “usually” correct on yes instances.) So, Ajtai’s
result gives the first theoretical evidence that SVP is indeed intractable, resolving
(in a probabilistic sense) van Emde Boas’ conjecture. In the same paper, Ajtai also
remarks that his NP-hardness proof can be adapted to show the hardness of approx-
imating the length of the shortest vector within some very small factor 1 + o(1) that
rapidly approaches 1 as the dimension of the lattice grows.

In this paper we prove the first nonapproximability result for the shortest vector
problem to within some factor bounded away from 1. Namely, we show that (for
any �p norm) approximating SVP within any constant factor less than p

√
2 is hard

for NP under RUR-reductions. In particular, approximating SVP in the Euclidean
norm within any factor less then

√
2 is hard for NP. The error probability of the

reduction is polynomially small, i.e., the reduction correctly maps yes instances to
yes instances with probability 1 − 1/poly(n) for some polynomial function poly(n).
Moreover, randomness itself is used in a very restricted way and it can be removed
under standard computational or number theoretic assumptions. In particular we
show that

(i) SVP has no polynomial time approximation algorithm unless the polynomial
hierarchy [26, 33] collapses to the second level.

(ii) Approximating SVP is NP-hard (under deterministic many-one reductions)
if the following conjecture on the distribution of square-free smooth numbers holds
true: for any ε > 0 and for all sufficiently large n there exists a square-free polylog-
smooth integer in the interval [n, n + nε], i.e., an integer whose prime factors are all
less than (lg n)c (for some constant c independent of n) and have exponent one.

The rest of the paper is organized as follows. In section 2 we give an overview of
related work. In section 3 we formally define the approximation problems associated
to SVP, CVP, and a variant of the latter. In section 4 we prove that SVP is NP-hard
to approximate by reduction from the modified CVP using a geometric lemma which
is proved in section 5. In section 6 we present deterministic reductions under various
computational or number theoretic assumptions. Section 7 concludes with remarks
and open problems.

In section 5 we use a combinatorial theorem (Theorem 5.9) similar to a result orig-
inally proved by Ajtai in [2]. In the appendix we present a proof of this combinatorial
theorem that greatly simplifies Ajtai’s original construction.

2. Related work. The complexity of lattice problems has been widely investi-
gated since the early 1980s because of the many connections between these problems
and other areas of computer science. Results are usually presented for the Euclidean

2In Ajtai’s proof, as well in our result, the success probability is in fact 1 − 1/p(n) for some
polynomial function p(n).
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(�2) norm but can be easily adapted to any �p norm, or in some cases any norm.
Unless otherwise stated, the following results refer to the �2 norm.

The first polynomial time approximation algorithms for SVP was the celebrated
Lenstra–Lenstra–Lovász (LLL) basis reduction algorithm [24] that achieves an ap-
proximation factor 2O(n) exponential in the dimension n. In [4] Babai showed how to
achieve a similar approximation factor for CVP combining LLL with a lattice rounding
technique. To date, the best approximation factor for SVP achievable in polynomial
time is 2O(n(log log n)2/ logn) using Schnorr’s block reduction algorithm [29]. In fact,
Schnorr gives a hierarchy of basis reduction algorithms that go from polynomial time
to exponential time achieving better and better approximation factors. Unfortunately,
Schnorr’s result is almost ubiquitously cited as a polynomial time algorithm for ap-
proximating SVP within a factor 2εn for any fixed ε > 0. It turns out, as recently
observed by Goldreich and H̊astad [14], that one can set ε to a slowly decreasing
function of n while maintaining the running time polynomial and achieving a slightly
subexponential approximation factor 2O(n(log log n)2/ log n). A similar approximation
factor can be achieved for CVP combining Schnorr’s block reduction algorithm with
Kannan’s reduction [19] from approximate CVP to approximate SVP.

On the complexity side, CVP was proved NP-hard to solve exactly by van Emde
Boas in [34]. The first inapproximability results for CVP are due to Arora et al. [3]
who proved that CVP is NP-hard to approximate within any constant factor, and
quasi NP-hard to approximate within factor 2log1−ε n. The latter result is improved
to a proper NP-hardness result by Dinur, Kindler, and Sufra in [10], but the proof
is much more complicated. Interestingly, CVP remains hard to solve exactly even if
the lattice is known in advance and can be arbitrarily preprocessed before the target
point is revealed [28].

The NP-hardness of SVP (in the �2 norm) was conjectured in [34] but remained
an open problem for a long time. The first result is due to Ajtai [2] who proved that
solving the problem exactly is NP-hard for randomized reductions. Ajtai’s result can
also be adapted to show the inapproximability of SVP within certain factors 1 + o(1)
that rapidly approach 1 as the dimension of the lattice grows. In this paper we prove
the first NP-hardness result for approximating SVP within factors bounded away from
one.

Interestingly, SVP in the �∞ norm seems to bear much more similarities to CVP
than SVP in the �2 norm. In fact, the NP-hardness of SVP in the �∞ norm was
already proved in [34]. The quasi NP-hardness of approximating SVP within 2log0.5−ε n

appeared in [3], and a proper NP-hardness result is proved in [9] using techniques
similar to [10].

The unlikelihood of the NP-hardness of approximating SVP and CVP within
polynomial factors has also been investigated. In [22], Lagarias, Lenstra, and Schnorr
showed that approximating SVP and CVP within factors O(n) and O(n1.5) is in coNP.
This result is improved by Banaszczyk [5] where both problems are shown in coNP
for O(n) approximation factors. These results imply that approximating SVP and
CVP within Ω(n) polynomial factors cannot be NP-hard, unless NP=coNP. Under
the stronger assumption that NP is not contained in coAM, Goldreich and Goldwasser
[15] show that approximating SVP and CVP within Ω(

√
n/ log n) cannot be NP-hard.

Our results are achieved by reducing the approximate SVP from a variant of CVP
which was shown NP-hard to approximate in [3]. The techniques we use to reduce
CVP to SVP are related to those used in [30, 1] and [2]. In particular all these works
use variants of the “prime number lattice” originally defined by Schnorr in [30] to
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(empirically) reduce factoring to lattice reduction. The intent in [30] was to find
new factoring algorithms and the method is not formally analyzed. In [1] Adleman
attempts to give a formal reduction from factoring to the shortest vector problem.
Although based on relatively complicated number theoretic conjectures, Adleman’s
work marks an important step in the study of the hardness of the shortest vector
problem because the reduction from factoring to SVP is presented for the first time
as theoretical evidence that SVP is hard. Trying to remove the number theoretic
conjectures from Adleman’s proof, Ajtai had the fundamental intuition that variants
of the prime number lattice could be used to reduce any NP problem (not necessarily
related to factoring) to SVP. In the breakthrough paper [2] Ajtai uses an enhanced
version of the prime number lattice to reduce an NP-complete problem (a variant of
subset sum) to SVP.

In this paper we use a variant of the prime number lattice which is much closer
to the original lattice introduced by Schnorr. However, it should be noted that the
enhanced lattice defined by Ajtai was the starting point of our investigation, and we
rediscovered Schnorr’s prime number lattice while trying to understand and simplify
Ajtai’s construction.

In our proof the prime number lattice is for the first time explicitly connected to
sphere packing, giving a simpler and more geometric interpretation of the combina-
torics underlying the lattice. The simpler and more geometric approach used in this
paper allows us to translate some of the techniques to other settings. In fact, similar
techniques have been recently used by Dumer, Micciancio, and Sudan [11] to prove
similar results for the minimum distance problem for linear codes.

3. Definitions. Let R and Z be the sets of the reals and the integers, respec-
tively. The m-dimensional Euclidean space is denoted R

m. A lattice in R
m is the

set of all integer combinations L = {∑n
i=1 xibi:xi ∈ Z} of n linearly independent

vectors b1, . . . ,bn in R
m (m ≥ n). The set of vectors b1, . . . ,bn is said to form a

basis of the lattice, and the integer n is called the rank of the lattice. A basis can
be compactly represented by the matrix B = [b1| . . . |bn] ∈ R

m×n having the ba-
sis vectors as columns. The lattice generated by B is denoted L(B). Notice that
L(B) = {Bx:x ∈ Z

n}, where Bx is the usual matrix-vector multiplication.
For any p ≥ 1, the �p norm of a vector x ∈ R

n is defined as ‖x‖p = p
√∑

xpi . The
following definitions can be given with respect to any norm. Since in the rest of this
paper the norm being used will always be clear from the context, we omit explicit
references to a norm in order to keep notation simple, but it should be noted that
the definitions are norm dependent. The minimum distance of a lattice, λ(L), is the
minimum distance between any two distinct lattice points and equals the length of
the shortest nonzero lattice vector:

λ(L) = min{‖x− y‖ : x 
= y ∈ L} = min{‖x‖ : x ∈ L,x 
= 0}.
For vector x ∈ R

n and set S ⊆ R
n, let dist(v, S) = minw∈S ‖v −w‖ be the distance

between v and S. For vector x ∈ R
n and real r, let B(v, r) = {w ∈ R

n : ‖v−w‖ ≤ r}
be the ball of radius r centered in v.

When discussing computational issues related to lattices, it is customary to as-
sume that the lattices are represented by a basis matrix B and that B has integer
entries. In order to study the computational complexity of lattice problems, we for-
mulate them in terms of promise problems. A promise problem is a generalization of
the familiar notion of decision problem. The difference is that in a promise problem
not every string is required to be either a yes or a no instance. Given a string with
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the promise that it is either a yes or no instance, one has to decide which of the two
sets it belongs to.

Following [15], we formulate the approximation problems associated with the
shortest vector problem and the closest vector problem in terms of the following
promise problems.

Definition 3.1 (approximate SVP). The promise problem GapSVPγ (where
γ ≥ 1 is a function of the dimension) is defined as follows. Instances are pairs (B, d),
where B ∈ Z

n×k is a lattice basis and d a positive number such that

(i) (B, d) is a yes instance if λ(B) ≤ d, i.e., ‖Bz‖ ≤ d for some z ∈ Z
n \ {0};

(ii) (B, d) is a no instance if λ(B) > γ ·d, i.e., ‖Bz‖ > γ ·d for all z ∈ Z
n \{0}.

Definition 3.2 (approximate CVP). The promise problem GapCVPγ (where
γ ≥ 1 is a function of the dimension) is defined as follows. Instances are triples
(B,y, d), where B ∈ Z

n×k is a lattice basis, y ∈ Z
n a vector, and d a positive number

such that

(i) (B,y, d) is a yes instance if dist(y,L(B)) ≤ d, i.e., ‖Bz−y‖ ≤ d for some
z ∈ Z

n;
(ii) (B,y, d) is a no instance if dist(y,L(B)) > γ · d, i.e., ‖Bz− y‖ > γ · d for

all z ∈ Z
n.

The relation between the promise problems above and the corresponding lattice
optimization problems is easily explained. On one hand, if one can compute a γ-
approximation d′ ∈ [λ(B), γ ·λ(B)] to the length of the shortest nonzero lattice vector,
then one can solve GapSVPγ by checking whether d′ ≤ γ · d or d′ > γ · d. On the
other hand, assume one has a decision oracle O that solves GapSVPγ . (By definition,
when the input does not satisfy the promise, the oracle can return any answer.) Let
u ∈ Z be an upper bound to λ(B) (for example, let u be the length of any of the
basis vectors). Notice that O(B, u) always returns yes, while O(B, 0) always returns
no. Using binary search find an integer d ∈ {0, . . . , u2} such that O(B,

√
d) = yes

and O(B,
√
d− 1) = no. Then, λ(B) must lie in the interval [

√
d, γ · √d]. A similar

argument holds for the closest vector problem.

Reductions between promise problems are defined in the obvious way. A function
f : {0, 1}∗ → {0, 1}∗ is a reduction from (Πyes,Πno) to (Σyes,Σno) if it maps yes
instances to yes instances and no instances to no instances, i.e., f(Πyes) ⊆ Σyes
and f(Πno) ⊆ Σno. Clearly any algorithm A to solve (Σyes,Σno) can be used to
solve (Πyes,Πno) as follows: on input I ∈ Πyes ∪ Πno, run A on f(I) and output
the result. Notice that f(I) always satisfies the promise f(I) ∈ Σyes ∪ Σno, and
f(I) is a yes instance iff I is a yes instance.

We define one last promise problem that will be useful in the sequel. The problem
is a modification of GapCVP in which yes instances are required to have a boolean
solution, and in the no instances the target vector can be multiplied by any nonzero
integer.

Definition 3.3 (modified CVP). The promise problem GapCVP′γ (where γ ≥ 1
is a function of the dimension) is defined as follows. Instances are triples (B,y, d)
where B ∈ Z

n×k is a full rank matrix, y ∈ Z
n a vector, and d a positive number such

that

(i) (B,y, d) is a yes instance if ‖Bz− y‖ ≤ d for some z ∈ {0, 1}n;
(ii) (B,y, d) is a no instance if ‖Bz − wy‖ > γ · d for all z ∈ Z

n and all
w ∈ Z \ {0}.

In [3] it is proved that GapCVPγ and its variant GapCVP′γ are NP-hard for
any constant factor γ ≥ 1.
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Fig. 4.1. Lattice L(L) has minimum distance γ̃ ≈ p
√
2 times the radius of sphere B(s, r) and

all boolean vectors of length k can be expressed as Tz for some lattice vector Lz inside the sphere.

4. Hardness of approximating SVP. In this section we present the main
result of this paper: for any �p norm (p ≥ 1), and for any constant γ ∈ [1, p

√
2), the

promise problem GapSVPγ is hard for NP (under RUR-reductions). The proof is
by reduction from a variant of the closest vector problem (GapCVP′) and is based
on the following simple idea: Assume one wants to find the point in a lattice L(B)
(approximately) closest to some vector y. One may look for the shortest nonzero
vector in the lattice generated by the matrix [B|y], i.e., the Minkowski sum of the
original lattice L(B) and the lattice L(y) = Z ·y of all integer multiples of the target
vector. If the shortest vector in L([B|y]) is of the form Bx−y then Bx necessarily is
the lattice vector in L(B) closest to y. However, if the original lattice L(B) contains
vectors as short as the distance of y from L(B), then solving the shortest vector
problem in the lattice L([B|y]) might find a vector of the form Bx, unrelated to the
target y. (Notice that the shortest vector in L([B|y]) might also correspond to a
vector in L(B) close to a multiple of y, but this is not a problem if we are reducing
from GapCVP′.)

We solve this problem by embedding the lattice L([B|y]) in a higher dimensional
space; i.e., we introduce new coordinates and extend the basis vectors in [B|y] with
appropriate values. The embedding is based on the construction of a lattice L(L)
and a sphere B(s, r) with the property that the minimum distance between lattice
points in L(L) is bigger than the radius r of the sphere (by a constant factor γ̃ > γ)
and at the same time the sphere contains exponentially many lattice vectors from
L(L). We use the lattice points in the sphere to represent all potential solutions to
the GapCVP′ problem. In particular, we also build a linear integer transformation T
such that any boolean vector x ∈ {0, 1}k (i.e., any potential solution to the GapCVP′

problem) can be expressed as Tz (z an integer vector) for some lattice point Lz in the
ball B(s, r). These requirements are summarized in the following lemma (see Figure
4.1).
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Lemma 4.1. For any �p norm (p ≥ 1) and any constant γ̃ ∈ [1, p
√

2) there exists
a (probabilistic) algorithm that on input k ∈ Z

+ outputs, in poly(k) time, two positive
integers m, r ∈ Z

+, a lattice basis L ∈ Z
(m+1)×m, a vector s ∈ Z

m+1, and a linear
integer transformation T ∈ Z

k×m such that
(i) λ(L) > γ̃ · r,
(ii) with probability at least 1 − 1/poly(k) for all x ∈ {0, 1}k there exists a

z ∈ Z
m such that Tz = x and Lz ∈ B(s, r).

Remark. From the proof of Lemma 4.1 in section 5 it appears that the lemma
can be stated in a stronger form asserting the existence of a single algorithm that
takes p and γ̃ as additional parameters. However, it should be noted that for every �p
norm, the algorithm can be used only for factors γ̃ < p

√
2, and the complexity of the

algorithm (e.g., running time or output size) grows to infinity as γ̃ gets closer to p
√

2.
Stating the result as a single algorithm would require to determine the dependency
of the running time on how close γ̃ is to p

√
2. In order to keep the notation simple,

we will state all the results in this paper for fixed norms �p and factors γ, but a
generalization of the results to variable �p and γ (subject to the constraint γ < p

√
2) is

indeed possible and the dependency of the running time on p and γ can (in principle)
be extracted from the proofs presented in this paper. It should also be noted that
as p gets larger and larger, the maximum constant for which we can prove hardness
of SVP in the �p norm approaches 1. This is quite counterintuitive, as we know that
SVP in the �∞ norm is hard to approximate within any constant [3, 9]. So, it is
natural to expect that SVP in the �p norm is harder when p is large.

We defer the proof of the above lemma to section 5 and move straight to the main
theorem.

Theorem 4.2. For any �p norm (p ≥ 1) and for any constant γ ∈ [1, p
√

2),
the promise problem GapSVPγ is hard for NP under RUR-reductions with inverse
polynomial error probability.

Proof. Fix an �p norm and a constant γ ∈ [1, p
√

2). Let γ̃ be a real between γ

and p
√

2 and let γ′ be a real greater than (γ−p − γ̃−p)−1/p
, and assume without loss

of generality that γ′/γ and γ̃/γ are rational numbers. We prove that GapSVPγ is
hard for NP by reduction from the promise problem GapCVP′γ′ which is known to
be NP-hard (see [3]).

Let (B,y, d) be an instance of GapCVP′γ′ with B ∈ Z
n×k, y ∈ Z

n, and d ∈ Z.
We define an instance (V, t) of GapSVPγ such that if (B,y, d) is a no instance
of GapCVP′γ′ then (V, t) is a no instance of GapSVPγ , and if (B,y, d) is a yes
instance of GapCVP′γ′ then (V, t) is a yes instance of GapSVPγ with high proba-
bility.

Run the (randomized) algorithm from Lemma 4.1 on input k to obtain a lattice
basis L ∈ Z

(m+1)×m, a vector s ∈ Z
m+1, a linear integer transformation T ∈ Z

k×m

and a integer r ∈ Z such that
(i) ‖Lz‖p > γ̃ · r for all z ∈ Z

m \ {0},
(ii) with probability at least 1 − 1/poly(k), for all vectors x ∈ {0, 1}k there

exists a z ∈ Z
m such that Tz = x and ‖Lz− s‖p ≤ r.

Define the lattice

V =

[
a ·BT a · y
b · L b · s

]
,

where a and b are two integer scaling factors such that a
b = rγ̃

dγ′ and t = a · dγ′/γ =

b · rγ̃/γ is integer. We want to prove that if (B,y, d) is a no instance of GapCVP′γ′
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then (V, t) is a no instance of GapSVPγ , and (provided the construction in the
lemma succeeds) if (B,y, d) is a yes instance of GapCVP′γ′ then (V, t) is a yes
instance of GapSVPγ .

First assume (B,y, d) is a no instance and consider a generic nonzero integer
vector

w =

[
z
w

]
.

We want to prove that ‖Vw‖pp > (γt)p. Notice that

‖Vw‖pp = (a · ‖Bx+ wy‖p)p + (b · ‖Lz+ ws‖p)p,

where x = Cz. We prove that

a · ‖Bx+ wy‖p > γt, or b · ‖Lz+ ws‖p > γt.

We distinguish two cases:
1. If w 
= 0, then by definition of GapCVP′γ′ ,

a · ‖Bx+ wy‖p > a · γ′d = γt;

2. if w = 0, then z 
= 0 and by construction

b · ‖Lz+ ws‖p = b · ‖Lz‖p > b · γ̃r = γt.

Now assume that (B,y, d) is a yes instance, i.e., there exists a boolean vector
x ∈ {0, 1}k such that ‖Bx− y‖p ≤ d. By construction, there exists a vector z ∈ Z

m

such that Tz = x and ‖Lz− s‖p ≤ r. Define

w =

[
z
−1

]

and compute the norm of the corresponding lattice vector:

‖Vw‖pp = (a · ‖Bx− y‖p)p + (b · ‖Lz− s‖p)p
≤ (ad)p + (br)p

=

(
γt

γ′

)p

+

(
γt

γ̃

)p

≤ tpγp
((

1

γp
− 1

γ̃p

)
+

1

γ̃p

)

= tp,

proving that (V, t) is a yes instance of GapSVPγ .

5. Proof of the geometric lemma. In this section we prove Lemma 4.1. As
explained in section 4, this lemma asserts the existence of an integer lattice L(L) with
large minimum distance, a sphere B(s, r) of radius less than λ(L) (by a constant factor
γ̃) containing a large number of lattice points, and a linear integer transformation that
maps the coordinates (with respect to L) of the lattice points in the sphere onto the set
of all binary strings of some shorter length. Moreover, L, s, and T can be computed
in (random) polynomial time.
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The lattice and the sphere are more easily defined using arbitrary real numbers.
So, we first drop the requirement that L and s have integer entries and define a real
matrix L̃ and a real vector s̃ with the desired properties. Then, we show how to
approximate L̃ and s̃ with integer matrices. Finally, we prove Lemma 4.1 combining
the integer lattice construction with a combinatorial theorem on low-degree hyper-
graphs.

5.1. The real lattice. In the next lemma we define a real lattice L(L̃) and

prove a lower bound on the length of its nonzero vectors. The definition of L̃ is
parametric with respect to an �p norm (p ≥ 1), a real number α > 0, and a set of
positive integers A = {a1, . . . , am}. The idea is to map the multiplicative structure of

the integers a1, . . . , am to the additive structure of the lattice L(L̃), defining a basis
vector for each ai and expressing its entries in terms of the logarithm of ai. This
way the problem of finding a sphere containing many lattice points is reduced to the
problem of finding a small interval containing many products of the ai’s. At the end
we will set α to some large number (exponential in m), and A to a set of small primes.
The existence of a sphere containing many lattice points will follow from the density
of the primes and a simple averaging argument.

Lemma 5.1. Let A = {a1, . . . , am} be a set of relatively prime odd positive
integers. Then for any �p norm (p ≥ 1), and any real α > 0, all nonzero vectors in
the lattice generated by the (columns of the) matrix

L̃ =




p
√

ln a1 0 0

0
. . . 0

0 0 p
√

ln am
αln a1 · · · αln am


 ∈ R

(m+1)×m(5.1)

have �p norm bigger than p
√

2 lnα.
Proof. We want to prove that for all nonzero integer vectors z ∈ Z

m,

‖L̃z‖pp ≥ 2 lnα.

We first introduce some notation. Let R ∈ R
m be the row vector

R = [ln a1, ln a2, . . . , ln am](5.2)

and D ∈ R
m×m be the diagonal matrix

D =




p
√

ln a1 0 · · · 0
0 p

√
ln a2 · · · 0

...
...

. . .
...

0 · · · 0 p
√

ln am


 .(5.3)

Notice that

L̃ =

[
D
αR

]

and ‖L̃z‖pp = ‖Dz‖pp + αp |Rz|p. We bound the two terms separately. Define the
integers

ĝ =
∏
{azii : zi > 0}, ǧ =

∏
{a−zii : zi < 0}, g = ĝǧ =

m∏
i=1

a
|zi|
i .
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Using this notation, the first term satisfies

‖Dz‖pp =
∑
i

|zi|p ln ai

≥
∑
i

|zi| ln ai

= ln g

because p ≥ 1 and the zi’s are integers. Bounding the second term is slightly more
complex:

|Rz| =
∣∣∣∣∣
∑
i

zi ln ai

∣∣∣∣∣
= | ln ĝ − ln ǧ|
= ln

(
1 +

|ĝ − ǧ|
min{ĝ, ǧ}

)
.

Now notice that since z is nonzero, ĝ and ǧ are distinct odd integers and therefore
|ĝ − ǧ| ≥ 2. Moreover, min{ĝ, ǧ} <

√
ĝǧ =

√
g. By monotonicity and concavity of

function ln(1 + x) over the interval [0, 2], one gets

ln

(
1 +

|ĝ − ǧ|
min{ĝ, ǧ}

)
> ln

(
1 +

2√
g

)
>

2√
g
· ln 3

2
>

1√
g
.

Combining the two bounds one gets

‖L̃z‖pp = ‖Dz‖pp + αp (Rz)
p
> ln g +

αp

gp/2

which is a continuous function of g with derivative

1

g

(
1− p

2
· αp

gp/2

)
.

The function is minimized (over the reals) when g = α2
(
p
2

)2/p
with minimum

2 lnα +

(
2

p

)
ln

(p

2

)
+

(
2

p

)
> 2 lnα +

(
2

p

)
ln p > 2 lnα.

Therefore, for all nonzero integer vectors z, ‖L̃z‖pp > 2 lnα.
Consider now a sphere centered in

s̃ =




0
...
0

α lnβ


 ,(5.4)

where β is a positive real to be specified. We now show that there is a close relationship
between finding lattice vectors close to s̃ and approximating β as a product of the
ai’s.
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Lemma 5.2. Let L̃ and s̃ be defined as in (5.1) and (5.4). For any �p norm
(p ≥ 1), reals α, β ≥ 1, positive integers a1, . . . , am, and boolean vector z ∈ {0, 1}m,
if the integer g =

∏
i a

zi
i belongs to the interval [β, β(1 + 1/α)], then

‖L̃z− s̃‖p ≤ p
√

lnβ + 2.

Proof. Let D and R be as defined in (5.3) and (5.2). Notice that since z is a 0-1
vector,

‖Dz‖pp = Rz = ln g,

and therefore

‖L̃z− s̃‖pp = ‖Dz‖pp + αp|Rz− lnβ|p
= ln g + αp| ln g − lnβ|p

= lnβ + ln
g

β
+

∣∣∣∣α ln
g

β

∣∣∣∣
p

.

From the assumption g ∈ [β, β(1 + 1/α)] and using the inequality ln(1 + x) < x (true
for all x 
= 0) one gets

0 ≤ ln
g

β
≤ ln

(
1 +

1

α

)
<

1

α

which, substituted in the above expression, gives

‖L̃z− s̃‖pp < lnβ +
1

α
+ 1 ≤ lnβ + 2

Now let ε be a small positive real constant and set α = β(1−ε). From Lemma 5.1,
the minimum distance between lattice points is bigger than λ = p

√
2(1− ε) lnβ, and

there are many lattice points within distance p
√

lnβ + 2 ≈ λ/ p
√

2 from s̃, provided that
the interval [β, β+βε] contains many products of the form

∏
i∈S ai (S ⊆ {1, . . . ,m}).

If a1, . . . , am are the first m odd prime numbers, this is the same as saying that
[β, β + βε] contains many square-free odd (am)-smooth numbers. We now informally
estimate for which values of m and β one should expect [β, β + βε] to contain a large
number of such products. A rigorous probabilistic analysis will follow right after.

Fix some integer c > 1/ε, let h be a sufficiently large integer and set m = hc. Let
a1, . . . , am be the first m odd primes, and consider the set of products

M =

{∏
i∈S

ai : S ⊂ {1, . . . ,m}, |S| = h

}
.

Notice that

|M | =
(
m

h

)
=

h−1∏
i=0

m− i

h− i
≥

h−1∏
i=0

m

h
= h(c−1)h(5.5)

and all elements of M belong to the interval [1, (am)h]. If we choose β uniformly
at random in this interval, the expected size of [β, β + βε] is Ω((am)εh) and we can
estimate the number of elements of M contained in [β, β + βε] to be

Ω((am)εh) · |M |
(am)h

≥ Ω

(
hc−1

(am)1−ε

)h

.
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By the prime number theorem, am = O(m lnm) = O(hc lnh) and therefore our
estimate is Ω(hεc−1/ lnh)h > 2h for all sufficiently large h.

Making the above argument more formal, one can prove that there exists an
interval [β, β + βε] containing exponentially (in h) many products from M . Still, it
is not clear how to find the right β. If square-free smooth numbers are distributed
uniformly enough, any choice of β is good. Unfortunately, we do not know enough
about the distribution of smooth numbers to prove such a statement about small
intervals [β, β + βε]. (It can be proved that for all β the interval [β, 2β] contains
square-free smooth numbers, but not much is known about interval of sublinear size.)

So, we exploit the smooth number distribution (whatever it is) to bias the choice
of the interval toward those containing many smooth numbers. The idea is to set β to
the product of a random (size h) subset of the ai’s. This way, the interval [β, β + βε]
is selected with a probability roughly proportional to the number of square-free (am)-
smooth numbers contained in it. So, for example, intervals containing no smooth
numbers are never selected, and intervals containing few smooth numbers are selected
with very small probability. The probability of choosing an interval containing few
products is bounded in the next lemma. In fact the lemma is quite general and applies
to any set M of real numbers bigger than 1.

Lemma 5.3. For every positive real numbers ε ∈ [0, 1), µ > 1, integer H ≥ 1,
and any finite subset M ⊂ [1, µ), if β is chosen uniformly at random from M , then
the probability that [β, β + βε) contains less than H elements from M is at most

Pr
β∈M
{|[β, β + βε) ∩M | < H} ≤ µ1−ε ·H

κ(ε) · |M | ,

where κ(ε) = 1− 21−ε.
Proof. Let B be the set of all β ∈ M such that |[β, β + βε) ∩M | < H. We show

that |B| can be partitioned into at most K = µ1−ε/κ(ε) subsets, each containing less
than H elements. It follows that

Pr
β∈M
{β ∈ B} =

|B|
|M | ≤

K(H − 1)

|M | =
µ1−ε ·H
κ(ε) · |M | .

Divide [1, µ) into �log2 µ� intervals [2k, 2k+1) for k = 0, . . . , �log2 µ� − 1. Then divide
each interval [2k, 2k+1) into 2k/2εk = 2(1−ε)k subintervals of size 2εk. Notice that each
subinterval is of the form [x, x + y) for some y ≤ xε, therefore it contains at most
H − 1 points from B. It remains to count the total number of subintervals. Adding
up the number of subintervals for each interval [2k, 2k+1) we get

K =

	log2 µ
−1∑
k=0

2(1−ε)k

=
2(1−ε)	log2 µ
 − 1

21−ε − 1

<
(2µ)1−ε

21−ε − 1
=

µ1−ε

κ(ε)
.

Applying this lemma to the set of square free smooth numbers we get the following
proposition.

Proposition 5.4. For all reals ε, δ > 0, there exists an integer c such that for
all sufficiently large integer h, the following holds. Let m = hc, a1, . . . , am be the
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first m odd primes, and M the set of all products
∏

i∈S ai, where S is a size h subset
of {1, . . . ,m}. If β is chosen uniformly at random from M then the probability that
[β, β + βε) contains less than hδh elements of M is at most 2−h.

Proof. Fix some ε, δ > 0 and let c be an integer bigger than (1 + δ)/ε. Let
µ = ahm. Notice that M is contained in [1, µ) and |M | ≥ h(c−1)h (see (5.5)). Applying
Lemma 5.3 to set M with H = hδh, we get

Pr{|[β, β + βε) ∩M | < H} < hδh · µ1−ε

κ(ε)|M |

<
hδha

(1−ε)h
m

κ(ε)h(c−1)h
.

By the prime number theorem, am = O(m lnm) = O(hc lnh), which substituted in
the above expression gives

Pr{|[β, β + βε] ∩M | ≤ H} < hδh O(hc lnh)(1−ε)h

κ(ε)h(c−1)h

=

(
O(lnh)(1−ε)

hεc−(1+δ)

)h

<

(
O(lnh)

hεc−(1+δ)

)h

< 2−h

for all sufficiently large h because εc− (1 + δ) > 0.
Combining Lemma 5.1, Lemma 5.2, and Proposition 5.4, we immediately get the

following theorem.
Theorem 5.5. For all reals ε, δ > 0, there exists an integer c such that the

following holds. Let h be a positive integer, m = hc, and a1, . . . , am be the first m
odd primes. Let β be the product of a random subset of {a1, . . . , am} of size h and set

α = β1−ε. Define L̃ and s̃ as in (5.1) and (5.4), and let r̃ = p
√

(1 + ε) lnβ > 1. Then

(i) all nonzero vectors in L(L̃) have �p norm greater than p
√

2 ((1− ε)/(1 + ε))r.
(ii) For all sufficiently large h, with probability at least 1− 2−h, the ball B(s̃, r)

contains more than hδh lattice points of the form Lz where z is a 0-1 vector with
exactly h ones.

5.2. Working over the integers. In the previous subsection we proved that
as far as real entries are allowed one can easily define a basis L̃ and probabilistically
find a vector s̃ with the property that a sphere of radius slightly more then λ(L̃)/ p

√
2

contains many lattice points. We now prove that the same result can be achieved using
a suitable integer approximation of L̃ and s̃. The error incurred by approximating a
multiple of L̃ and s̃ with integers is bounded in the following two lemmas.

Lemma 5.6. For all η ≥ 1 and all integer vectors z ∈ Z
m,

‖Lz‖p ≥ (η − 1)m‖L̃z‖p,

where L = �(mη)L̃� is the matrix obtained multiplying L̃ by mη and rounding each
entry to the closest integer.

Proof. By triangular inequality

‖Lz‖p = ‖(mη)L̃z+ (L− (mη)L̃)z‖p
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≥ ‖(mη)L̃z‖p − ‖(L− (mη)L̃)z‖p
= ηm‖L̃z‖p − ‖(L− (mη)L̃)z‖p.

It remains to prove that ‖(L − (mη)L̃)z‖p ≤ m‖L̃z‖p. Notice that all entries in

(L− (mη)L̃) are at most 1/2 in absolute value. Therefore

‖(L− (mη)L̃)z‖p ≤ 1

2
p

√
‖z‖pp +

(∑
|zi|

)p

≤ 1

2
p

√
‖z‖pp + mp‖z‖pp

≤ m‖z‖p.
Furthermore,

‖L̃z‖pp = ‖Dz‖pp + αp|Rz|p
≥ ‖Dz‖pp
≥ ‖z‖pp

because D is diagonal with all entries greater than 1. This proves that ‖(L −
(mη)L̃)z‖p ≤ m‖L̃z‖p and therefore ‖Lz‖p ≥ (η − 1)m‖L̃z‖p.

Lemma 5.7. For all η > 0 and all integer vectors z ∈ Z
m

‖Lz− s‖p ≤ (η + 1)m‖L̃z− s̃‖p,
where L = �(mη)L� and s = �(mη)s� are the matrices obtained multiplying L̃ and s̃
by mη and rounding each entry to the closest integer.

Proof. By triangular inequality

‖Lz− s‖p = ‖((mη)L̃z− (mη)s̃) + (L− (mη)L̃)z− (s− (mη)s̃)‖p
≤ ‖((mη)L̃z− (mη)s̃)‖p + ‖(L− (mη)L̃)z− (s− (mη)s̃)‖p
= ηm‖L̃z− (mη)s̃‖p + ‖(L− (mη)L̃)z− (s− (mη)s̃)‖p.

Notice that all entries in (L − (mη)L̃) and (s − (mη)s̃) are at most 1/2 in absolute
value. Therefore

‖(L− (mη)L̃)z− (s− (mη)s̃)‖pp ≤
(

1

2

)p (
‖z‖pp +

(∑
|zi|+ 1

)p)
< mp‖z‖pp.

Furthermore,

‖L̃z− s̃‖p ≥ ‖Dz‖p ≥ ‖z‖p
because D is diagonal with all entries greater than 1. This proves that

‖(L− (mη)L̃)z− (s− (mη)s̃)‖p ≤ m‖L̃z− s̃‖p,
and therefore

‖Lz− s‖p ≤ (η + 1)‖Lz− s‖p
We can now prove a variant of Theorem 5.5 where all the numbers are integers.
Theorem 5.8. For every p ≥ 1, γ ∈ [1, p

√
2) and δ > 0 there exists a probabilistic

algorithm that on input an integer h outputs (in poly(h) time) integers m, r, a matrix
L ∈ Z

(m+1)×m, and an integer vector s ∈ Z
m+1 such that
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(i) all vectors in L(L) have �p norm bigger than γr;
(ii) for all sufficiently large h, with probability at least 1−2−h the sphere B(s, r)

contains at least hδh lattice points of the form Lz where z is a 0-1 vector with exactly
h ones.

Proof. We show that for all p ≥ 1, δ > 0 and ε > 0 the theorem is satisfied with

γ =

(
(1− ε)1+1/p

(1 + ε)2+1/p

)
· p
√

2.

Let c be as in Theorem 5.5. On input h, algorithm A computes m = hc, and the
first m odd primes a1, a2, . . . , am. Let L̃, s̃, and r̃ be as defined in Theorem 5.5, and
compute the approximations

L = �(m/ε)L̃�, s = �(m/ε)s̃�, r = �(1 + 1/ε)mr̃�.
Let z ∈ Z

m be a nonzero integer vector. We want to bound ‖Lz‖p. We know
from Theorem 5.5 that

‖L̃z‖p > p

√
2
1− ε

1 + ε
r̃.(5.6)

Using Lemma 5.6 (with η = 1/ε) and (5.6) we get

‖Lz‖p ≥
(

1

ε
− 1

)
m‖L̃z‖p

(5.7)

>

(
(1− ε)1+1/p

ε(1 + ε)1/p

)
m

p
√

2 · r̃.

Notice that r satisfies the bounds r < (1 + 1/ε)mr̃ + 1 and r > (1 + 1/ε) because
r̃ > 1. Thus, we can bound r̃ as follows:

r̃ >
r − 1

(1 + 1/ε)m

=
1− 1/r

(1 + 1/ε)m
· r

(5.8)

>
1− 1/(1 + 1/ε)

(1 + 1/ε)m
· r

=
ε

(ε + 1)2m
· r.

Combining (5.7) and (5.8) we get

‖Lz‖p >

(
(1− ε)1+1/p

ε(1 + ε)1/p

)
p
√

2
ε

(ε + 1)2
r = γr.

Now consider the sphere B(s, r). By Theorem 5.5, for all sufficiently large h, with
probability at least 1− 2−h, the ball B(s̃, r̃) contains at least hδh lattice points of the

form L̃z where z is a 0-1 vector with exactly h ones. For each such point L̃z, we can
use Lemma 5.7 (with η = 1/ε) to bound the distance of Lz from s as follows:

‖Lz− s‖p ≤ (1 + 1/ε)m‖L̃z− s̃‖p
≤ (1 + 1/ε)mr̃ ≤ r.

Therefore Lz belongs to the sphere B(s, r). This proves that B(s, r) also contains at
least hδh lattice points of the desired form.
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5.3. Projecting lattice points to binary strings. In order to complete the
proof of Lemma 4.1 we need the following combinatorial theorem from [27]. (See the
proof in the appendix.)

Theorem 5.9. Let Z ⊆ {0, 1}m be a set of vectors containing exactly h ones. If

|Z| ≥ h!m
4
√

hk
ε , and T ∈ {0, 1}k×m is chosen setting each entry to 1 independently at

random with probability p = 1
4hk , then the probability that all binary vectors {0, 1}k

are contained in T(Z) = {Tz : z ∈ Z} is at least 1− 6ε.
We remark that a similar theorem was already proved in [2], and we could have

used that result instead of Theorem 5.9. However, our construction and analysis are
much simpler than those in [2] and are probably more efficient.

We can now prove Lemma 4.1. Fix an �p norm (p ≥ 1) and a constant γ ∈ [1, p
√

2).
Let k be a sufficiently large integer. We want to build in poly(k) time an integer lattice
L, an integer vector s, an integer transformation matrix T, and an integer radius r
such that

(i) all nonzero vectors in L(L) have �p norm greater than γr;
(ii) with probability at least 1 − 1/poly(k), for all x ∈ {0, 1}k there exists a

z ∈ Z
m such that Tz = x and ‖Lz− s‖p ≤ r.

Let δ = 2 and run the algorithm from Theorem 5.8 on input h = k4. This
algorithm outputs an integer matrix L ∈ Z

(m+1)×m and a vector s ∈ Z
m and r ∈ Z.

Notice that since s is computed in polynomial time, m must be polynomial in h,
i.e., m < hc for some constant c independent of h. Let Z be the set of all vectors
z ∈ {0, 1}m with exactly h ones, such that Lz ∈ B(s, r). We know from Theorem 5.8
that all nonzero vectors in L(L) have �p norm greater than γr, and with probability
at least 1− 2−h the set Z contains at least h2h elements.

Now, choose matrix T ∈ {0, 1}k×m by setting each entry to one independently
with probability 1/(4hk). Notice that

|Z| ≥ h2h > h!mh/c = h!m
4
√

hk
ε ,

where ε = 4c/k. So, by Theorem 5.9, the probability that for each x there exists a
vector z such that x = Tz and Lz ∈ B(s, r) is at least 1 − 1/O(k). This concludes
the proof of Lemma 4.1.

6. Deterministic reductions. In section 4 we proved that approximating SVP
is hard for NP under RUR-reductions. In particular, this proves that approximating
SVP is not in RP unless NP = RP. In this section we address the question whether
SVP is hard under deterministic reductions.

A quick inspection of the proof of Theorem 4.2 immediately shows that the only
place in the reduction where randomness is used is Lemma 4.1. A deterministic poly-
nomial time algorithm satisfying the conditions in Lemma 4.1 would immediately give
a proper NP-hardness result (under deterministic many-one reductions) for GapSVP.

To date, we do not know if such a deterministic polynomial time algorithm exists.
However, one can show that such an algorithm exists if one assumes a reasonable
number theoretic conjecture, or allows for nonuniform reductions.

6.1. Nonuniform reductions. The reduction presented in the proof of Theo-
rem 4.2 always maps no instances to no instances and yes instances to yes instances
provided that the probabilistic algorithm in the lemma succeeds. Notice that the
construction in the lemma depends only on the dimension k of the GapCVP′ in-
stance we are reducing. Moreover, the success of the algorithm does not depend on
the particular instance we are reducing.
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Therefore, if we allow for nonuniform reductions in the proof of Theorem 4.2, we
can encode the objects L,T, s, r satisfying Lemma 4.1 directly in the reduction as
polynomial size nonuniform hints. Notice that the existence of L,T, s, r is guaranteed
by the (probabilistic) proof of Lemma 4.1.

This gives the following variant of Theorem 4.2.
Theorem 6.1. For any �p norm (p ≥ 1) and for any constant γ ∈ [1, p

√
2), the

promise problem GapSVPγ is hard for NP under deterministic nonuniform polyno-
mial reductions. In particular, GapSVPγ is not in P/poly unless NP ⊆ P/poly.

Using standard results on nonuniform complexity [21], this also implies the fol-
lowing corollary.

Corollary 6.2. For any �p norm (p ≥ 1) and for any constant γ ∈ [1, p
√

2),
the promise problem GapSVPγ is not in P unless the polynomial hierarchy [26, 33]
collapses to the second level.

6.2. NP-hardness under a number theoretic conjecture. In this section
we show how the proof of the geometric lemma can be made deterministic using a
number theoretic conjecture. This results in a proper NP-hardness result for GapSVP
(i.e. NP-hardness under deterministic many-one reductions) but relies on an unproven
assumption on the distribution of square-free smooth numbers. The conjecture is the
following.

Conjecture 1. For any ε > 0 there exists a d such that for all large enough n,
there exists an (odd) integer in [n, n + nε] which is square-free and (logd n)-smooth;
i.e., all of its prime factors have exponent 1 and are less than logd n.

We remark that although the above conjecture is very plausible, proving it seems
to be beyond current mathematical techniques. We now show that if the above con-
jecture is true, then there exists a deterministic (uniform) polynomial time algorithm
satisfying the requirements of Lemma 4.1. For simplicity, we show how to build real
matrices L, s, r satisfying the condition in the lemma. L, s, r can be easily transformed
into integer matrices as explained in subsection 5.2 using Lemma 5.6 and Lemma 5.7
to bound the errors incurred in the approximation process.

Let ε be a positive real between 0 and 1. Let d be an integer (whose existence is
guaranteed by the conjecture) such that for all large enough n there exists a (logd n)-
smooth square-free (odd) integer in the interval [n, n+nε/2]. Let L and s be as defined
in (5.1) and (5.4) with m = kd+1 + k, a1, . . . , am the first m (odd) prime numbers,

β = a
2k
ε
m and α = β1−ε. Finally, let T ∈ {0, 1}k×m be the matrix T = [0k×kd+1 |Ik].

From Lemma 5.1 we know that for all nonzero vectors z ∈ Z
m,

‖Lz‖p ≥ p
√

2(1− ε) lnβ.

We now show that for all x ∈ {0, 1}k there exists a y ∈ Z
kd+1

such that

∥∥∥∥L
[
y
x

]
− s

∥∥∥∥
p

< p
√

lnβ + 2 = r.(6.1)

Since the equality

T

[
y
x

]
= x

follows directly from the definition to T, (6.1) proves the second condition in Lemma

4.1. By Lemma 5.2 it is sufficient to show that for every integer gx =
∏k

i=1 a
xi

kd+1+i
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(with xi ∈ {0, 1}) there exists an integer gy =
∏kd+1

i=1 ayii (with yi ∈ {0, 1}) such that

g = gxgy ∈ [β, β + βε]. Fix some gx =
∏k

i=1 a
xi

kd+1+i
. Notice that

β

gx
>

β

akm
= a

( 2
ε−1)k

m > 2k

so for all sufficiently large k, there exists a logd(β/gx)-smooth square-free (odd) integer
in the interval

[β/gx, (β/gx) + (β/gx)ε/2].

But

logd(β/gx) ≤ logd(β) = O(k log k)d < kd+1.

So, this smooth number can be expressed as gy =
∏kd+1

i=1 ayii with yi ∈ {0, 1}. There-
fore,

gxgy ∈ [β, β + gx(β/gx)ε/2].

Finally, notice that gx ≤ akm = βε/2. So, if we define

z =

[
y
x

]

then
∏

azii = gxgy ∈ [β, β + βε]

and by Lemma 5.2 the lattice vector Lz belongs to the sphere B(s, r).
This completes the proof that if Conjecture 1 is true, then L,T, s, r satisfy the

conditions of Lemma 4.1. Then, the reduction in the proof of Theorem 4.2 gives the
following corollary.

Corollary 6.3. If Conjecture 1 holds true, then for any �p norm and any
constant γ < p

√
2, GapSVPγ is NP-hard (under deterministic many-one reductions).

7. Discussion. We proved that approximating the shortest vector problem in
any �p within factors less than p

√
2 is not in polynomial time under any of the following

assumptions:
1. NP 
= RP,
2. NP 
⊆ P/poly,
3. Conjecture 1 is true and NP 
= P.

Although all of these results give theoretical evidence that SVP cannot be ap-
proximated in polynomial time, the problem whether solving SVP (even exactly) is
NP-hard under deterministic many-one reductions remains open. We notice that the
only place where randomness (or nonuniform hints, or the number theoretic conjec-
ture) is used in our reduction is the proof of Lemma 4.1. A deterministic polynomial
time solution to Lemma 4.1 would immediately give an NP-hardness result for SVP
under deterministic many-one reductions. We leave finding a deterministic algorithm
satisfying Lemma 4.1 as an open problem.

Our NP-hardness proof is by reduction from approximate CVP. In particular we
reduced instances of CVP of size n to instances of SVP of size m = nc, where c > 2
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is a constant independent of n. Although this gives a polynomial relation between
n and m it should be noted that m can be much bigger than n. Therefore, in order
to assert that an instance of SVP is hard to solve in practice, the dimension m must
be rather large. Finding a more efficient reduction, where, for example, m = O(n),
is left as an open problem. Interestingly, a dimension and approximation preserving
reduction is possible in the other direction from SVP to CVP [16].

The geometric lemma used in our reduction is in a certain sense optimal (in the
�2 norm): it can be formally proved that any lattice L satisfying the lemma must
have vectors of length less than r/

√
2 (see [27]). Proving that SVP is NP-hard to

approximate within factors larger than
√

2 cannot be done by simply improving the
geometric lemma. We leave as an open problem to prove that SVP is NP-hard to
approximate within any constant factor.

Appendix. A combinatorial theorem on low-degree hyper-graphs.
In this appendix we prove Theorem 5.9. We want to prove that if Z ⊂ {0, 1}m is

a set of vectors of weight h, and |Z| ≥ h!m
4
√

hk
ε , then the probability that {0, 1}k ⊆

T(Z) (where T ∈ {0, 1}k×m is a linear transformation chosen at random setting each
entry to 1 independently with probability p = ε/(4hk)) is at least 1− 6ε.

The theorem can be reformulated in terms of hyper-graphs as follows. Let (N,Z)
be an h-regular hyper-graph, i.e., a hyper-graph all of whose hyper-edges have size
h. Let T = (T1, . . . , Tk) be a collection of subsets of N chosen at random including
each element of N in Ti independently with probability p = ε/(4hk). For any subset
U ⊆ N , let

T(U) = (|T1 ∩ U |, |T2 ∩ U |, . . . , |Tk ∩ U |)
and define T(Z) = {T(U) : U ∈ Z}. We want to prove that if |Z| > h!|N |4

√
hk/ε,

then {0, 1}k ⊆ T(Z) with probability at least 1− 6ε.
The correspondence between the matrix and hyper-graph formulation is immedi-

ate: identify the hyper-edges with the corresponding characteristic vectors in {0, 1}|N |
and the collection T with a matrix whose rows are the characteristic vectors of the
sets Ti. Then T(U) = Tu where u is the characteristic vector of set U .

We first prove a weaker result: we show for every vector x ∈ {0, 1}k, x ∈ T(Z)
with high probability. Consider the target vector x as fixed. We want to bound the
probability that T(U) 
= x for all U ∈ Z. Since the set Z is very big, the expected
number of U ∈ Z such that T(U) = x is also very high. Unfortunately, this is
not sufficient to conclude that with high probability there exists a U ∈ Z such that
T(U) = x, because the events T(U) = x (indexed by the hyper-edges U ∈ Z) might
be strongly correlated. Notice that if U and V are disjoint (i.e., U ∩ V = ∅), then
the corresponding events are independent. In fact the size of the intersection |U ∩ V |
is a good measure of the correlation between the events T(U) = x and T(V ) = x.
Notice that if |Z| is big, then many hyper-edges in Z will intersect because there
cannot be more than m/h mutually disjoint hyper-edges. However, one can still hope
that for most of the pairs U, V ∈ Z, the intersection U ∩ V is very small. This is
not necessarily true for any hyper-graph Z, but one can show that if Z is sufficiently
large, then it must contain a large hyper-graph with this small intersection property.

The proof of the theorem is divided in four major steps:
1. We first show that the probability that x 
∈ T(Z) can be bounded by the

expectation

Exp
R

[eγR − 1],(A.1)
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where γ is a small positive real, and R = |U ∩ V | is the random variable defined as
the size of the intersection of two randomly chosen hyper-edges U, V ∈ Z.

2. We show that Z “contains” a hyper-graph such that the intersection of two
randomly selected hyper-edges is very small with high probability.

3. Then, we prove the weak version of the theorem applying the bound (A.1)
to this hyper-graph contained in Z.

4. Finally, we derive the strong version of our theorem from the weak one.
Each of the above steps is described in the following subsections.

A.1. The exponential bound. We start by computing the probability that
T(U) = x for some fixed set U . In the next lemma we prove a more general statement
concerning the probability that two events T(U) = x and T(V ) = x are simultane-
ously satisfied and relate it to the size of the intersection r = |U ∩ V | of the two sets
U, V .

Lemma A.1. Let x ∈ {0, 1}k be any boolean vector, U, V ⊂ N be two sets of size d
and let T ∈ {0, 1}k×|N | be chosen at random by setting each entry to 1 independently
with probability p. Then, the probability (over the choice of T) that both T(U) and
T(V ) equal x is

Φ(r) = (1− p)(2d−r)k
[

pr

1− p
+

(
p(d− r)

1− p

)2
]‖x‖1

,

where r = |U ∩ V |.
Proof. Since the rows of matrix T are chosen independently,

Pr
T
{T(U) = T(V ) = x} =

k∏
i=1

Pr
Ti

{|Ti ∩ U | = |Ti ∩ V | = xi}.

We prove that for all i = 1, . . . , k,

Pr
Ti

{|Ti ∩ U | = |Ti ∩ V | = xi} = (1− p)(2d−r)
[

pr

1− p
+

(
p(d− r)

1− p

)2
]xi

.

First consider the case xi = 0 and compute the probability (over the choice of Ti)
that |Ti ∩U | = |Ti ∩ V | = 0. This is true iff none of the elements of U ∪ V belongs to
Ti, so the probability is

Pr
Ti

{|Ti ∩ U | = |Ti ∩ V | = 0} = (1− p)|U∪V | = (1− p)2d−r.

Now consider the case xi = 1 and compute the probability (over the choice of Ti)
that |Ti ∩ U | = |Ti ∩ V | = 1. This is true iff either (1) Ti contains one element of
U ∩ V and no other element of U ∪ V , or (2) Ti contains one element of U \ V , one
element of V \ U , and no other element of U ∪ V . Event (1) has probability

|U ∩ V | · p(1− p)|U∪V |−1 = (1− p)2d−r
(

pr

1− p

)

while event (2) has probability

|U \ V | · |V \ U | · p2(1− p)|U∪V |−2 = (1− p)2d−r
(
p(d− r)

1− p

)2

.
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Adding up the two probabilities, we get

Pr
Ti

{|Ti ∩ U | = |Ti ∩ V | = 1} = (1− p)(2d−r)
(

pr

1− p
+

(
p(d− r)

1− p

)2
)

.

By choosing U = V in the previous lemma one gets the following corollary.
Corollary A.2. Let x ∈ {0, 1}k be a boolean vector, U ⊆ N a subset of size d,

and T ∈ {0, 1}k×|N | a random matrix chosen by setting each entry to 1 independently
with probability p. Then,

Pr
T
{T(U) = x} = Φ(d) = (1− p)dk

(
pd

1− p

)‖x‖1
.

Notice that when U ∩ V = ∅,
Pr{T(U) = T(V ) = x} = Φ(0) = Φ(d)2 = Pr{T(U) = x}Pr{T(V ) = x},

i.e., the events T(U) = x and T(V ) = x are independent. We can now prove the
following proposition.

Proposition A.3. Let (N,Z) be a d-regular hyper-graph and let T ∈ {0, 1}k×|N |
be chosen at random by setting each entry to 1 independently with probability p. Then,
for each x ∈ {0, 1}k the probability (over the choice of T) that x 
∈ T(Z) is at most
ExpR[eγR]− 1, where γ = kp

1−p + k
pd2 and R = |U ∩ V | is the random variable defined

as the size of the intersection of two randomly chosen elements of Z.
Proof. Fix some vector x ∈ {0, 1}k and choose T at random as specified in the

proposition. For all U ∈ Z, let XU be the indicator random variable

XU =

{
1 if T(U) = x,
0 otherwise.

Define the random variable X =
∑

U∈Z XU . Notice that X = 0 iff x 
∈ T(Z).
Moreover, if X = 0 then |X − Exp[X]| ≥ Exp[X]. Using Chebyshev’s inequality we
get the following bound:

Pr{x 
∈ T(Z)} = Pr{X = 0}
≤ Pr{|X − Exp[X]| ≥ Exp[X]}
≤ Var[X]

Exp[X]2
=

Exp[X2]

Exp[X]2
− 1.

So, let us compute the moments Exp[X] and Exp[X2]. For the first moment we have

Exp
T

[X] =
∑
U∈Z

Pr
T
{T(U) = x} = |Z| · Φ(d),

and for the second one

Exp
T

[X2] = Exp
T



(∑

U∈Z
XU

)2



= Exp
T


 ∑
U,V ∈Z

XU ·XV




=
∑

U,V ∈Z
Pr
T
{T(U) = T(V ) = x}

= |Z|2 · Exp
R

[Φ(R)],
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where R = |U ∩ V | is the size of two randomly chosen U, V ∈ Z. Therefore,

Pr
T
{x 
∈ T(Z)} =

ExpR[Φ(R)]

Φ(d)2
− 1

= Exp
R


(1− p)−kR

(
(1− p)R

pd2
+

(
1− R

d

)2
)‖x‖1− 1

< Exp
R

[(
1 +

p

1− p

)kR (
R

pd2
+ 1

)k
]
− 1

< Exp
R

[
e

pkR
1−p e

kR
pd2

]
− 1

= Exp
R

[eγR − 1],

where γ = kp
1−p + k

pd2 .

A.2. Well spread hyper-graphs. In the previous section we showed that the
probability that x 
∈ T(Z) is at most ExpR[eγR] − 1. Obviously, the bound is inter-
esting only when ExpR[eγR] < 2. Notice that this can be true only if

Pr
R
{R = r} < e−γr

for all but a single value of r. Therefore the probability PrR{R = r} must decrease
exponentially fast in r. This is not necessarily true for any low degree regular hyper-
graph Z. In this section we show that if Z is sufficiently large, then Z must “contain”
a hyper-graph such that

Pr
R
{R = r} ≤ 1/r!.

More precisely we show that Z contains a hyper-graph satisfying the following prop-
erty.

Definition A.4. Let (N,Z) be a d-regular hyper-graph. Z is well spread if for
all W ⊆ N of size at most d, the fraction of hyper-edges containing W is at most

|{U ∈ Z : W ⊆ U}|
|Z| ≤ 1

d(d− 1) · · · (d− |W |+ 1)
=

(d− |W |)!
d!

.

Well spread hyper-graphs have the important property that the size of the inter-
section of two randomly selected hyper-edges is small with very high probability, as
shown in the next lemma.

Lemma A.5. Let (N,Z) a regular well spread hyper-graph. Choose U, V ∈ Z
independently and uniformly at random and let R = |U ∩ V |. For all r > 0,

Pr
R
{R ≥ r} < 1

r!
.

Proof. Let d be the degree of the hyper-graph. We prove that for any fixed set U
of size d, the probability that |U ∩ V | ≥ r when V is chosen at random from Z is at
most 1

r! . If |U ∩ V | ≥ r then V contains a subset of U of size r. Therefore, by union
bound,

Pr
V ∈Z
{|U ∩ V | ≥ r} ≤

∑
W∈(Ur)

Pr
V ∈Z
{W ⊆ V } =

∑
W∈(Ur)

|{V ∈ Z : W ⊆ V }|
|Z| ,
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where
(
U
r

)
denotes the set of all the size r subsets of U . Since Z is well spread, the

fraction |{V ∈ Z : W ⊆ V }|/|Z| is at most (d−r)!
d! , which substituted in the previous

expression, gives

Pr
V ∈Z
{|U ∩ V | ≥ r} ≤

(
d

r

)
(d− r)!

d!
=

1

r!
.

We now show how to find well spread hyper-graphs “inside” any sufficiently big
regular hyper-graph. For any subset W ⊆ N , define the induced hyper-graph

ZW = {A ⊆ N \W : A ∪W ∈ Z}.

In other words, ZW is the set of hyper-edges containing W , with the nodes in W
removed. Notice the following basic facts:

1. Hyper-graph Z is well spread if for every set W of size at most d, |ZW | ≤
(d−|W |)!

d! |Z|.
2. ZW is d′-regular with d′ = d− |W |.
3. If W = ∅ then ZW = Z.
4. (ZW )V = ZW∪V if U ∩ V = ∅, and (ZW )V = ∅ otherwise.
5. If |W | > d then ZW = ∅.

In the following lemma we prove that for any regular hyper-graph Z, there exists
a set W such that ZW is well spread.

Lemma A.6. Let (N,Z) be an h-regular hyper-graph. Then there exists a set
W ⊂ N such that (N,ZW ) is well spread and |ZW | > |Z|/h!.

Proof. If (N,Z) is well spread, let W = ∅ and the statement is obviously true.

Otherwise, there exists some set W of size at most h such that |ZW | > (h−|W |)!
h! · |Z|.

Let W be maximal (with respect to the set inclusion ordering relation) among these
sets. Obviously, |ZW | > |Z|/h!. Notice that ZW is d-regular, with d = h− |W |. We
prove that (N,ZW ) is well spread. Let V be a subset of N of size at most d. There
are three cases:

(i) If V ∩W 
= ∅ then |(ZW )V | = 0 ≤ (d−|V |)!
d! · |ZW |.

(ii) If V = ∅, then |(ZW )V | = |ZW | = d!
d! · |ZW |.

(iii) Finally assume V 
= ∅ and V ∩W = ∅. By the maximality of W one gets

|(ZW )V | = |ZV ∪W |
≤ (h− |V ∪W |)!

h!
|Z|

=
(d− |V |)!

d!

(h− |W |)!
h!

|Z|

<
(d− |V |)!

d!
|ZW |.

A.3. Weak probabilistic construction. We now combine the tools developed
in the previous sections to prove the following theorem.

Theorem A.7. For every sufficiently small constant ε > 0, positive integer

k and h-regular hyper-graph (N,Z) of size |Z| > h!|N |
√
hk/ε the following holds.

Define matrix T ∈ {0, 1}k×|N | at random by setting each entry to 1 independently
with probability p = ε

hk . Then, for every x ∈ {0, 1}k,

Pr{x ∈ T(Z)} > 1− 5ε.
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From Lemma A.6, there exists a subset W ⊂ N such that (N,ZW ) is well spread

and |ZW | ≥ |Z|/h! > |N |
√
hk/ε. Choose T ∈ {0, 1}k×|N | at random by setting each

entry to one independently with probability p = ε
hk . Let F be the event that all entries

in T that belongs to the columns corresponding to elements in W are 0. Notice that
Pr{¬F} ≤ |W |kp ≤ hkp = ε. Notice also that

Pr
T
{x 
∈ T(Z) | F} ≤ Pr

T
{x 
∈ T(ZW )}

Let d be the degree of ZW . Since |ZW | ≤
(|N |

d

)
< |N |d and |ZW | > |N |

√
hk/ε,

hyper-graph ZW has degree at least d >
√
hk/ε.

Applying Proposition A.3 to d-regular hyper-graph ZW , the probability (over the
choice of T) that x 
∈ T(ZW ) is at most ExpR[eγR] − 1, where R is the size of the
intersection of two random elements in ZW and

γ =
kp

1− p
+

k

pd2

=
ε

h− ε/k
+

hk2

εd2

<
ε

1− ε
+ ε.

But ZW is well spread, so by lemma A.5, PrR{R ≥ r} < 1/r! and the expectation
ExpR[eγR] can be bounded as follows:

Exp
R

[eγR] =
∑
r≥0

eγr Pr
R
{R = r}

=
∑
r≥0

eγr
(
Pr
R
{R ≥ r} − Pr

R
{R ≥ r + 1}

)

=
∑
r≥0

eγr Pr
R
{R ≥ r} −

∑
r≥1

eγ(r−1) Pr
R
{R ≥ r}

= 1 + (1− e−γ)
∑
r≥1

eγr Pr
R
{R ≥ r}

< 1 + γ
∑
r≥1

eγr

r!

= 1 + γ(ee
γ − 1).

So, the probability that x 
∈ T(Z) given F is less than γ(ee
γ − 1) and

Pr
T
{x 
∈ T(Z)} ≤ Pr{¬F}+ Pr{x 
∈ T(Z) | F}

≤ ε + γ(ee
γ − 1).

Using the bound γ < ε(1 + 1/(1− ε)), we get that for all sufficiently small ε

Pr
T
{x 
∈ T(Z)} ≤ 5ε.

A.4. Strong probabilistic construction. We proved that for every boolean
vector x, if T is chosen as described in Theorem A.7, then with high probability there
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exists a U ∈ Z such that T(U) = x. It follows by an averaging argument that with
high probability the size of T(Z) ∩ {0, 1}k (the set of all boolean vectors that can be
represented as T(U) for some U ∈ Z) is almost equal to the size of the whole {0, 1}k.
We now show how to project T(Z)∩{0, 1}k onto the set of all binary strings of some
shorter length.

For any vector x ∈ {0, 1}n and subset G ⊆ {1, . . . , n}, define the projection
x|G ∈ {0, 1}|G| as the vector obtained taking the coordinates of x with index in G.
The projection operation is extended to set of vectors in the obvious way: W|G =
{x|G : x ∈ W}. The next lemma shows that the probability that a random projection
W|G covers the whole set {0, 1}G of binary strings is at least equal to the density of
|W| in {0, 1}n.

Lemma A.8. Let W be a subset of {0, 1}n. If G is chosen uniformly at random
among all subsets of {1, . . . , n}, then

Pr
G

{W|G = {0, 1}G} ≥ |W|
2n

.

Proof. By induction on n. The base case n = 0 is trivially true. (Notice that
{0, 1}G = {0, 1}n = {ε} and W|G = W = {0, 1}G iff |W| = 1.) So, assume the
statement holds for all W ⊆ {0, 1}n and let us prove it for W ⊆ {0, 1}n+1. Choose G
at random and let G′ = G \ {n+1}. Notice that G′ is a random subset of {1, . . . , n}.
Define the following sets:

W0 =

{
x :

[
x
0

]
∈ W

}
, W1 =

{
x :

[
x
1

]
∈ W

}
.

Notice that |W| = |W0|+ |W1| = |W0 ∪W1|+ |W0 ∩W1|. Moreover, if
(i) either (n + 1) ∈ G and (W0 ∩W1)|G′ = {0, 1}G′

(ii) or (n + 1) 
∈ G and (W0 ∪W1)|G′ = {0, 1}G′
,

then W|G = {0, 1}G. Therefore, using the inductive hypothesis, we get

Pr{W|G = {0, 1}G} ≥ Pr{(n + 1) ∈ G}Pr{(W0 ∪W1)|G′ = 2G
′}

+Pr{(n + 1) 
∈ G}Pr{(W0 ∩W1)|G′ = 2G
′}

≥ 1

2

( |W0 ∪W1|
2n

)
+

1

2

( |W0 ∩W1|
2n

)

=
|W0 ∪W1|+ |W0 ∩W1|

2n+1

=
|W|
2n+1

.

Now, we can easily derive Theorem 5.9 from Lemma A.8 and Theorem A.7. In-
stead of choosing the matrix T ∈ {0, 1}k×m as specified in Theorem 5.9, we do the
following mental experiment. First choose a bigger matrix T′ ∈ {0, 1}4k×n at random
by setting each entry to 1 independently with probability p = 4ε

dk . Then choose a
random subset G ⊆ 1, . . . , 4k of its rows. If G has size at least k, set T to the sub-
matrix of T′ with rows corresponding to the first k elements of G. (If G has less than
k elements, the experiment fails.)

Let W = T′(Z) ∩ {0, 1}4k. Notice that the probability distribution of matrix
T (conditioned on the event |G| ≥ k) is the same as in Theorem 5.9. Moreover, if
|G| ≥ k and {0, 1}G ⊆ W|G then {0, 1}k ⊆ T(Z). So, we can bound the probability
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that matrix T does not satisfy Theorem 5.9 as the sum of the probabilities that
|G| < k and {0, 1}k 
⊆ T(Z).

Notice that Exp[|G|] = 2k and Var[|G|] = k. So, by Chebychev’s inequality

Pr{|G| < k} < Pr{||G| − Exp[|G|]| < k}
<

Var[|G|]
k2

=
1

k
< ε

for all sufficiently large k. Now, let us bound the probability that {0, 1}G ⊆ W|G
when G and T′ are chosen at random. Using Lemma A.8 and the independence of G
and T′, one gets

Pr
G,T′
{{0, 1}G ⊆ W|G} = Exp

T′
[Pr
G
{{0, 1}G ⊆ W|G}]

≥ Exp
T′

[ |W|
24k

]

= Exp
T′

[
Pr

x∈{0,1}4k
[x ∈ W]

]

= Exp
x∈{0,1}4k

[
Pr
T′

[x ∈ T′(Z)]
]

≥ min
x∈{0,1}4k

Pr
T′
{x ∈ T′(Z)}

≥ 1− 5ε.

Therefore the probability that {0, 1}k 
⊆ T(Z) is at most 5ε. By union bound, with
probability at least 1− 6ε matrix T satisfies Theorem 5.9.
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Abstract. We consider two generalizations of the notion of transversal to a finite hypergraph, the
so-called multiple and partial transversals. Multiple transversals naturally arise in 0-1 programming,
while partial transversals are related to data mining and machine learning. We show that for an
arbitrary hypergraph the families of multiple and partial transversals are both dual-bounded in the
sense that the size of the corresponding dual hypergraph is bounded by a polynomial in the cardinality
and the length of description of the input hypergraph. Our bounds are based on new inequalities
of extremal set theory and threshold Boolean logic, which may be of independent interest. We also
show that the problems of generating all multiple and all partial transversals for a given hypergraph
are polynomial-time reducible to the generation of all ordinary transversals for another hypergraph,
i.e., to the well-known dualization problem for hypergraphs. As a corollary, we obtain incremental
quasi-polynomial-time algorithms for both of the above problems, as well as for the generation of all
the minimal binary solutions for an arbitrary monotone system of linear inequalities.

Key words. transversal, independent set, hypergraph, dualization, monotone Boolean func-
tion, incremental polynomial time, threshold function, data mining, maximal frequent set, minimal
infrequent set
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1. Introduction. In this paper we consider problems involving the generation
of all sets of some implicitly given set families. The most well-known problem of this
type, the generation of all minimal transversals of a given hypergraph, has applications
in combinatorics [32], graph theory [21, 23, 33, 35], artificial intelligence [13], game
theory [16, 17, 31], reliability theory [10, 31], database theory [1, 27, 36], and learning
theory [2, 12].

Given a finite set V of n = |V | points and a hypergraph (set family) A ⊆ 2V ,
a subset B ⊆ V is called a transversal of the family A if A ∩ B �= ∅ for all sets
A ∈ A; it is called a minimal transversal if no proper subset of B is a transversal of
A. The hypergraph Ad consisting of all minimal transversals of A is called the dual
(or transversal ) hypergraph of A. It is easy to see that if A ∈ A is not minimal in A,
that is, if A′ ⊂ A for some A′ ∈ A, then (A \ {A})d = Ad. We can therefore assume
that all sets in A are minimal; in other words, the hypergraph A is Sperner. (The
dual hypergraph Ad is Sperner by definition.) It is then easy to verify that (Ad)d = A
and

⋃
A∈AA =

⋃
B∈Ad B.
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For a subset X ⊆ V , let Xc = V \ X denote the complement of X and let
Ac = {Ac|A ∈ A} be the complementary hypergraph of A. Then, for instance, Adc

consists of all maximal subsets containing no hyperedge of A, while the hypergraph
Acd consists of all minimal subsets of V which are not contained in any hyperedge of
A.

1.1. Dualization. Given a Sperner hypergraph A, a frequently arising task is
the generation of the transversal hypergraph Ad. This problem, known as dualization,
can be stated as follows: Given a complete list of all hyperedges of A and a set of
minimal transversals B ⊆ Ad, either prove that B = Ad, or find a new transversal
X ∈ Ad \ B.

Clearly, we can generate all of the hyperedges of Ad by initializing B = ∅ and
iteratively solving the above problem |Ad|+ 1 times. Also note that in general, |Ad|
can be exponentially large in both |A| and |V |. For this reason, the complexity of
generating Ad is customarily measured in the input and output sizes. In particular,
we say that Ad can be generated in incremental polynomial time if the dualization
problem can be solved in time, polynomial in |V |, |A|, and |B|.

The dualization problem can be efficiently solved for many classes of hypergraphs.
For example, if the sizes of all the hyperedges of A are limited by a constant r, then
dualization can be executed in incremental polynomial time (see, e.g., [6, 12, 13]),
and it can also be done efficiently in parallel (see [8]). In the quadratic case, i.e.,
when r = 2, there are dualization algorithms that run with polynomial delay, i.e.,
in poly(|V |, |A|) time, where B is systematically enlarged from B = ∅ during the
generation process of Ad (see, e.g., [21, 23, 35]). Efficient algorithms also exist for
the dualization of 2-monotonic, threshold, matroid, read-bounded, acyclic, and some
other classes of hypergraphs (see, e.g., [4, 9, 11, 26, 29, 30]).

Even though no incremental polynomial-time algorithm for the dualization of ar-
bitrary hypergraphs is known, an incremental quasi-polynomial-time algorithm exists
(see [14]). This algorithm solves the dualization problem in O(nm) +mo(logm) time,
where n = |V | and m = |A|+ |B| (see also [19] for more detail).

In this paper, we consider two natural generalizations of minimal transversals,
so-called multiple transversals and partial transversals. See section 5 for related hy-
pergraphs in the data mining and machine learning literature.

1.2. Multiple transversals. Given a hypergraph A ⊆ 2V and a nonnegative
weight bA associated with every hyperedge A ∈ A, a subset X is called a multiple
transversal (or b-transversal) if |X ∩ A| ≥ bA holds for all A ∈ A. The family of
all minimal b-transversals can then also be viewed as the family of support sets of
minimal feasible binary solutions to the system of inequalities

Ax ≥ b,(1.1)

where the rows of A = AA are exactly the characteristic vectors of the hyperedges
A ∈ A and the corresponding component of b is equal to bA. Clearly, b = (1, 1, . . . , 1)
corresponds to the case of (ordinary) transversals in which case (1.1) is also known
as a set covering problem.

Generalizing further and giving up the binary nature ofA as well, we shall consider
the family F = FA,b of (support sets of) all minimal feasible binary vectors to (1.1)
for a given m × n-matrix A and a given m-vector b. We assume that (1.1) is a
monotone system of inequalities: if x ∈ {0, 1}n satisfies (1.1), then any vector y ∈
{0, 1}n such that y ≥ x is also feasible. For instance, (1.1) is monotone if A is
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nonnegative. Note that for a monotone system (1.1) the dual hypergraph Fd = Fd
A,b

is (the complementarity hypergraph of) the collection of (supports of) all maximal
infeasible vectors for (1.1). In what follows, we assume that the hypergraph FA,b

is represented by the system (1.1) and not given explicitly, i.e., by a list of all its
hyperedges. In particular, this means that the generation of FA,b and its dual Fd

A,b

are both nontrivial.
Let us consider in general a Sperner hypergraph F ⊆ 2V on a finite set V repre-

sented in some implicit way and let GEN(F) denote the problem of generating all the
hyperedges of F : Given F and a list of hyperedges H ⊆ F , either prove that H = F
or find a new hyperedge in F \ H.

It is known that problem GEN(Fd
A,b) is NP-hard even for binary matrices A

(see [24]). In contrast, we show that the tasks of generating multiple and ordinary
transversals are polynomially related.
Theorem 1.1. Problem GEN(FA,b) is polytime reducible to dualization.
In particular, for any monotone system of linear inequalities (1.1), all minimal

binary solutions of (1.1) can be generated in quasi-polynomial incremental time. It is
also easy to see that if the number of nonzero coefficients in each inequality of Ax ≥ b
is bounded, then problem GEN(FA,b) can be solved in incremental polynomial time.
Remark 1. Even though generating all maximal infeasible binary points for

(1.1) is hard, there is a polynomial randomized scheme for nearly uniform sampling
from the set of all binary infeasible points for arbitrary, not necessarily monotone,
system (1.1). Such a scheme can be obtained by combining the algorithm [22] for
approximating the size of set-unions with the rapidly mixing random walk [28] on the
binary cube truncated by a single linear inequality. On the other hand, a similar
randomized scheme for nearly uniform sampling from within the set of all binary (or
all minimal binary) solutions to a given monotone system (1.1) would imply that any
NP-complete problem can be solved in polynomial time by a randomized algorithm with
arbitrarily small one-sided failure probability. By using the amplification technique of
[20], this can already be shown for systems (1.1) with two nonzero coefficients per
inequality; see [18] for more detail.

1.3. Partial transversals. Given a hypergraph A ⊆ 2V and a nonnegative
threshold k < |A|, a subset X ⊆ V is said to be a partial transversal, or more
precisely, a k-transversal, to the family A if it intersects all but at most k of the
subsets of A, i.e., if |{A ∈ A|A ∩X = ∅}| ≤ k.

Denote by Adk the family of all minimal k-transversals of A. Clearly, 0-transver-
sals are exactly the standard transversals defined above, i.e., Ad0 = Ad. In what
follows, we assume that the hypergraph Adk is represented by a list of all the edges
of A along with the value of k ∈ {0, 1, . . . , |A| − 1}.

Define a k-union from A as the union of some k subsets of A and let Auk denote
the family of all minimal k-unions of A. In other words, Auk is the family of all
the minimal subsets of V which contain at least k hyperedges of A. By the above
definitions, k-union and k-transversal families are both Sperner (even if the input hy-
pergraph A is not). It is also easy to see that the families of all minimal k-transversals
and (k + 1)-unions are in fact dual:

Adk = (Auk+1)d, k = 0, 1, . . . , |A| − 1.

The tasks of generating partial and ordinary transversals also turn out to be polyno-
mially equivalent.
Theorem 1.2. Problem GEN(Adk) is polytime reducible to dualization.
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It should be mentioned that the dual problem GEN(Auk+1) is NP-hard (see [25]).

1.4. Bounding dual hypergraphs. Our proofs of Theorems 1.1 and 1.2 make
use of the fact that the Sperner hypergraphs FA,b and Adk are dual-bounded in
the sense that in both cases, the size of the dual hypergraph can be bounded by a
polynomial in the size and the length of description of the primal hypergraph.
Theorem 1.3. For any monotone system (1.1) of m linear inequalities in n

binary variables,

|Fd
A,b| ≤ mn|FA,b|.

Moreover,

|Hd ∩ Fd
A,b| ≤ mn|H| for any H ⊆ FA,b.(1.2)

Theorem 1.4. For any hypergraph A ⊆ 2V of m = |A| hyperedges and any
threshold k = 0, . . . ,m− 1, we have

|Auk+1 | ≤ (m− k)|Adk |.
Moreover, for any hypergraph H ⊆ Adk ,

|Hd ∩ Auk+1 | ≤ (m− k)|H|.(1.3)

We derive Theorem 1.3 from the following lemma.
Lemma 1.5. Let h : {0, 1}n → {0, 1} be a monotone Boolean function such that

h(x) = 1 and x ∈ {0, 1}n ⇒ wx
def
=

n∑
i=1

wixi ≥ t,

where w = (w1, . . . , wn) is a given weight vector and t is a threshold. If h �≡ 0, then

|maxF (h) ∩ {x | wx < t}| ≤
∑

x∈minT (h)

ex,

where maxF (h) ⊂ {0, 1}n is the set of all maximal false points of h, minT (h) ⊆
{0, 1}n is the set of all minimal true points of h, and e is the vector of all ones. In
particular,

|maxF (h) ∩ {x | wx < t}| ≤ n|minT (h)|.
If the function h is threshold (h(x) = 1 ⇔ wx ≥ t), then |maxF (h)| ≤ n|minT (h)|
and, by symmetry, |minT (h)| ≤ n|maxF (h)| hold, which are well-known inequalities
(see [4, 11, 29, 30]). Lemma 1.5 thus extends the above threshold inequalities to
arbitrary monotone functions h.

As we shall see, Theorem 1.4 can be derived from the following combinatorial
inequality.
Lemma 1.6. Given a base set U of size |U | = m and a threshold k ∈ {0, . . . ,m−

1}, let S = {S1, . . . , Sα} and T = {T1, . . . , Tβ} be two families of subsets of U for
which

|S| ≥ k + 1 for all S ∈ S,
|T | ≤ k for all T ∈ T ,(1.4)
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and such that for each of the α(α − 1)/2 pairs S′, S′′ ∈ S there exists a T ∈ T with
S′ ∩ S′′ ⊆ T . Then

α ≤ (m− k)β(1.5)

whenever α ≥ 2.
Let us first remark that if α = 1, then the family T might be empty, which would

violate the inequality (1.5); otherwise β ≥ 1 must hold whenever α ≥ 2, since at
least one set is needed to cover the intersections of the

(
α
2

) ≥ 1 pairs of sets from
S. In addition, the assumptions of the lemma imply that the family S must be
Sperner, since Si ⊆ Sj for some i �= j would give Si = Si ∩ Sj ⊆ Tl for some Tl ∈ T ,
contradicting (1.4). We can further assume the family T to be Sperner, without any
loss of generality, for otherwise we could replace T by the family of all maximal sets
of T .

Let us mention next the special case of Lemma 1.6 for T = S∩, where S∩ is the
family of all the maximal subsets of U which can be obtained as the intersection of
two distinct hyperedges of S. For a Sperner hypergraph S on m vertices such that
each hyperedge of S contains at least k + 1 vertices and |S′ ∩ S′′| ≤ k for any two
distinct hyperedges S′, S′′ of S, Lemma 1.6 yields the inequality (cf. [7])

|S| ≤ (m− k)|S∩|.(1.6)

We discuss some generalizations of this inequality in section 4.4. (Several other in-
equalities on hypergraphs with restricted intersections can be found in Chapter 4 of
[3].)

Let us remark finally that the thresholdness condition (1.4) is essential for the
validity of Lemma 1.6—without (1.4) the size of S can be exponentially larger than
that of S∩. In section 4.2 we give examples of Sperner hypergraphs S on m vertices
for which |S∩| = m/5 and |S| = 3m/5 + 2m/5 or |S∩| = (m − 2)2/9 and |S| =
3(m−2)/3 + 2(m− 2)/3.

The remainder of the paper is organized as follows. In section 2 we discuss the
complexity of jointly generating a pair of dual hypergraphs defined via a superset
oracle. For a polynomial-time superset oracle the above problem reduces to dualiza-
tion. This reduction, along with the bounds stated in Theorems 1.3 and 1.4, yield
Theorems 1.1 and 1.2. In section 3 we consider minimal 0-1 solutions to systems of
monotone linear inequalities and prove Lemma 1.5 and Theorem 1.3. Section 4 deals
with partial transversals and proves Lemma 1.6 and Theorem 1.4. Finally, section
5 discusses some of the related set families and results, and section 6 contains our
concluding remarks.

2. Joint and separate generation of dual hypergraphs.

2.1. Superset oracles. Let G ⊆ 2V be a Sperner hypergraph on n vertices. In
many applications, G is represented by a superset oracle and not given explicitly. Such
an oracle can be viewed as an algorithm which, given an input description O of G
and a vertex set X ⊆ V , can decide whether or not X contains a hyperedge of G. We
assume that the length |O| of the input description of G is at least n and denote by
Ts = Ts(|O|) the worst-case running time of the oracle on any superset query “Does X
contain a hyperedge of G?” In particular, O is polynomial-time if Ts ≤ poly(|O|). In
what follows, we do not distinguish the superset oracle and the input description O of
G. Note that a vertex set X contains a hyperedge of Ad if and only if the complement
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of X contains no hyperedge of A. For this reason, O also specifies (a superset oracle
for) the dual hypergraph Gd. We list below several simple examples.

(1) Multiple transversals. Let (1.1) be a monotone system of linear inequalities
and let G = FA,b be the hypergraph introduced in section 1.2. Then the input
description O is (A, b). Clearly, for any input set X ⊆ V , we can decide whether X
contains a hyperedge of FA,b by checking the feasibility of (the characteristic vector
of) X for (1.1).

(2) Partial transversals. Let G = Adk be the hypergraph of the minimal k-
transversals of a family A (see section 1.2). Then G is given by the threshold value
k and a complete list of all hyperedges of A, i.e., O ∼ (k,A). For a subset X ⊆ V ,
determining whether X contains a hyperedge in Adk is equivalent to checking if X is
intersecting at least |A| − k hyperedges of A.

(3) Monotone Boolean formulae. Let f be a (∨,∧)-formula with n variables and
let G = Af be the supporting sets of all the minimal true vectors for f . Then O ∼ f
and the superset oracle checks if (the characteristic vector of) X ⊆ V satisfies f . The
dual hypergraph Gd is the set of all the (complements to the support sets of) maximal
false vectors of f .

(4) Two-terminal connectivity. Consider a digraph Γ with a source s and a sink
t, each arc of which is assigned a relay r ∈ V (two or more distinct edges may be
assigned identical relays). Let G be the set of relay s-t paths, i.e., minimal subsets
of relays that connect s and t. Then O ∼ Γ, and for a given relay set X ⊆ V , the
superset oracle can use breadth-first search to check the reachability of t from s via
a path consisting of relays in X. Note that the dual hypergraph Gd is the set of all
relay s-t cuts, i.e., minimal subsets of relays that disconnect s and t.

(5) Helly’s systems of polyhedra. Consider a family of n convex polyhedra Pi ⊆
R
r, i ∈ V , and let G denote the minimal subfamilies with no point in common.

Then Gdc is the family of all maximal subfamilies with a nonempty intersection. (In
particular, if P1, . . . , Pn are the facets of a convex polytope Q, then Gdc corresponds
to the set of vertices of Q.) We have O ∼ (P1, . . . , Pn) and, given subsets of polytopes
X ⊆ V , the superset oracle can use linear programming to check whether ∩i∈XPi �= ∅.

2.2. Joint generation of dual pairs of hypergraphs. In all of the above ex-
amples, we have pairs of dual Sperner hypergraphs given by polynomial-time superset
oracles. Let G,Gd ⊆ 2V be a pair of dual Sperner hypergraphs given by a superset
oracle O. Consider the problem GEN(G,Gd) of generating jointly all the hyperedges of
G and Gd: Given two explicitly listed set families A ⊆ G and B ⊆ Gd, either prove that
these families are complete, (A,B) = (G,Gd), or find a new set in (G\A)∪(Gd\B).

For the special case when A = G and O is a list of all the sets in G, we obtain the
dualization problem as stated in section 1.1. In fact, as observed in [5, 18], for any
polynomial-time superset oracle O, problem GEN(G,Gd) can be reduced in polynomial
time to dualization. This can be done via the following Algorithm J .
Step 1. Check whether each element of B is a minimal transversal to A, i.e., B ⊆ Ad.

(Recall that A and B are given explicitly.) Note that each set X ∈ B is a
transversal to A because A ⊆ G and B ⊆ Gd. If some transversal X ∈ B
is not minimal for A, then we can easily find a proper subset Y of X such
that Y is also a transversal to A. Since Y is a proper subset of X, and X is
a minimal transversal to G, Y must miss some hyperedges of G. Hence Y c,
the complement of Y , contains a hyperedge of G. By querying the superset
oracle O at most |Y c| times we can find such a hyperedge Z ∈ G. Note that
Z ∩ Y = ∅, whereas A ∩ Y �= ∅ for all hyperedges A ∈ A. This means that
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Z is a new hyperedge of G. Thus, if the inclusion B ⊆ Ad is not satisfied, we
can obtain an element in G \ A and halt.

Step 2. Step 2 is similar to Step 1. Check whether A ⊆ Bd. If A contains a nonmin-
imal transversal to B, find a new element in Gd \ B and halt.

Step 3. Suppose that B ⊆ Ad and A ⊆ Bd. Then B = Ad ⇒ (A,B) = (G,Gd). (This
is because any hyperedge X ∈ G\A would be a transversal for B, which would
then imply that X contains some hyperedge of A = Bd, a contradiction. By
symmetry, the duality of A and B also implies the emptiness of Gd \ B.)
Hence (A,B) = (G,Gd) ⇔ B = Ad. The condition B = Ad can be checked
by solving the dualization problem for A and B. If B �= Ad, we obtain a new
minimal transversal X ∈ Ad \B; see section 1.1. By definition, X contains no
hyperedge in B and Xc contains no hyperedge in A. Due to the duality of G
and Gd, either (i) Xc contains a hyperedge of G or (ii) X contains a hyperedge
of Gd but not both. We can call the superset oracle to decide which of the
two cases holds. In case (i) we obtain a new hyperedge in G \ A by querying
the superset oracle at most |Xc| times. Similarly, in case (ii) we get a new
hyperedge in Gd \ B in at most |X| calls to the oracle.

Algorithm J readily implies the following result.
Proposition 2.1 (see [5, 18]). Problem GEN(G,Gd) can be solved in

n (poly(|A|, |B|) +Ts(|O|)) + Tdual time, where Tdual denotes the time required for
solving the dualization problem with A and B.

In particular, for any (quasi-)polynomial-time oracle O, problem GEN(G,Gd) can
be solved in quasi-polynomial time. Thus, for each of the five examples above we
can jointly generate all the hyperedges of (G,Gd) in incremental quasi-polynomial
time. Note, however, that separately generating all the hyperedges of G or all the
hyperedges of Gd may be substantially harder. For instance, as shown in [18], both
problems GEN(G) and GEN(Gd) are NP-hard for examples 3–5 above. In fact, in
example 3 these problems are already NP-hard for ∨,∧-formulae of depth 3; if the
depth is 2, then the formula is either a CNF or a DNF, and we get exactly dualization.

2.3. Dual-bounded hypergraphs. Algorithm J may not be efficient for solv-
ing either of the problems GEN(G) or GEN(Gd) separately for the simple reason that
we do not control which of the families G \A and Gd \B contains each new hyperedge
produced by the algorithm. Suppose we want to generate G and the family Gd is
exponentially larger than G. Then, if we are unlucky, we can get hyperedges of G with
exponential delay while getting large subfamilies of Gd (which are not needed at all)
in between.

Such a problem will not arise and simultaneous generation of (G,Gd) can be used
to produce G efficiently, in some sense, if the size of Gd is polynomially limited in the
size of G and in the input size |O|, or more precisely, when there exists a polynomial
p such that

|Gd| ≤ p(|V |, |O|, |G|).(2.1)

We call such Sperner hypergraphs G dual-bounded.
If G is dual-bounded, we can generate both G and Gd in |Gd| + |G| ≤ poly(|V |,

|O|, |G|) rounds of Algorithm J , and hence obtain all the hyperedges of G in total
quasi-polynomial time.

This approach, however, may still be inefficient incrementally, i.e., for obtaining a
single hyperedge of G as required in problem GEN(G). It is easy to see that the decision
problem “given a family A ⊆ G, determine whether A = G” is polynomially reducible
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to dualization for any dual-bounded hypergraphs represented by a polynomial-time
superset oracle. If A is much smaller than G, however, getting a new hyperedge in
G \ A may require exponentially many (in |A|) rounds of J .

2.4. Uniformly dual-bounded hypergraphs. Let us call a Sperner hyper-
graph G uniformly dual-bounded if

|Hd ∩ Gd| ≤ p(|V |, |O|, |H|) for any hypergraph H ⊆ G.
Note that for H = G the above condition gives (2.1).
Proposition 2.2. Problem GEN(G) is polytime reducible to dualization for any

uniformly dual-bounded hypergraph G defined by a polynomial-time superset oracle.
Proof. Given a proper subfamily A of G, we wish to find a new hyperedge G \ A.

Start with the given A and B = ∅ and run Algorithm J repeatedly until it outputs
a required hyperedge. Suppose this takes t rounds of J ; then J produces t − 1
hyperedges of Gd, each of which is also a hyperedge of Ad; see Step 1 of the algorithm.
Since G is uniformly dual-bounded, we have t−1 ≤ |Ad∩Gd| ≤ p(|V |, |O|, |A|).

Theorems 1.3 and 1.4 state that the hypergraphs FA,b and Adk are both uniformly
dual-bounded. In view of Proposition 2.2, this means that Theorems 1.3 and 1.4 imply
Theorems 1.1 and 1.2, respectively.

3. Minimal solutions of monotone 0-1 inequalities. In this section, we
prove Lemma 1.5 and Theorem 1.3.

3.1. Proof of Lemma 1.5. Suppose that some of the coefficients w1, . . . , wn

are negative, say, w1 < 0, . . . , wr < 0 and wr+1 ≥ 0, . . . , wn ≥ 0. Since wx = w1x1 +
. . .+wnxn ≥ t for any true point of h(x) and h(x) is monotone, each true point of h(x)
satisfies w′x ≥ t′, where w′ = (0, . . . , 0, wr+1, . . . , wn) ≥ 0 and t′ = t−(w1+· · ·+wr).
Since wx < t ⇒ w′x < t′ for any binary x, it suffices to prove the lemma for w′ and
t′. Hence we may assume without loss of generality that all the n components of w
are nonnegative. Now we prove the lemma by induction on n with the trivial base
n = 1.

For i ∈ {1, 2, . . . , n}, let hi = h|xi=0 denote the restriction of h on the hyperplane
{x | xi = 0}. We split the proof into two cases.

Case 1. Suppose that for some variable, say, x1, we have h1(x2, x3, . . . , xn) ≡ 0,
i.e., h = x1q(y), where y = (x2, x3, . . . , xn) and q(y) is some monotone Boolean
function. Then minT (h) = {(1, y) | y ∈ minT (q)}; consequently, |minT (h)| =
|minT (q)| and

∑
x∈minT (h)

ex = |minT (q)|+
∑

y∈minT (q)

ey.(3.1)

Similarly, we have

maxF (h) = {(1, y) | y ∈ maxF (q)} ∪ {(0, e)},
which implies

|maxF (h) ∩ {x | wx < t}| ≤ 1 + |maxF (q) ∩ {y | w′y < t− w1}|,
where w′ = (w2, . . . , wn). Since q �≡ 0, we have

|maxF (q) ∩ {y | w′y < t− w1}| ≤
∑

y∈minT (q)

ey
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by the induction hypothesis. Hence

|maxF (h) ∩ {x | wx < t}| ≤ 1 +
∑

y∈minT (q)

ey.

Therefore,

1 +
∑

y∈minT (q)

ey ≤ |minT (q)|+
∑

y∈minT (q)

ey,

which in view of (3.1) completes the inductive proof for Case 1.
Case 2. Let us now assume that hi �≡ 0 for all i = 1, . . . , n. It is easy to see that

minT (h) ∩ {x | xi = 0} = {(0, y) | y ∈ minT (hi)},(3.2)

maxF (h) ∩ {x | xi = 0} ⊆ {(0, y) | y ∈ maxF (hi)}.(3.3)

Since hi �≡ 0, we can apply the inductive hypothesis to each hi to obtain the inequal-
ities

|{(0, y) | y ∈ maxF (hi)} ∩ {x | wx < t}| ≤
∑

x∈minT (hi)

ex,

from which by (3.3) we get

|maxF (h) ∩ {x | xi = 0, wx < t}| ≤
∑

x∈minT (hi)

ex

for i = 1, . . . , n. By multiplying the above inequalities by the nonnegative weights wi

and summing up the resulting bounds for all i, we obtain

∑
x∈max F (h)
xi=0,wx<t

wi ≤
n∑

i=1

wi

∑
x∈minT (hi)

ex.(3.4)

We can rewrite the left-hand side as∑
x∈max F (h)
xi=0,wx<t

wi =
∑

x∈max F (h)
wx<t

∑
i:xi=0

wi =
∑

x∈maxF (h)∩{x|wx<t}
wx̄,

where x̄ is the complement of x, i.e., x̄i = 1− xi for all i. Similarly, by using (3.2) on
the right-hand side of (3.4) we can get

n∑
i=1

wi

∑
x∈minT (hi)

ex =
∑

x∈minT (h)

ex
∑

i:xi=0

wi =
∑

x∈minT (h)

wx̄ · ex.

Thus, (3.4) can be written equivalently as∑
x∈maxF (h)∩{x|wx<t}

wx̄ ≤
∑

x∈minT (h)

wx̄ · ex.

Let ω = w1 + · · ·+ wn; then wx̄ = ω − wx ≤ ω − t for all x ∈ minT (h). In addition,
we have ω − t < wx̄ for any point in the open half-space {x | wx < t}. Hence

(ω − t)|maxF (h) ∩ {x | wx < t}| ≤ (ω − t)
∑

x∈minT (h)

ex.

If ω − t ≤ 0, then ω = t (since h �= 0) and thus minT (h) contains exactly one
point from which the lemma follows. Otherwise we can cancel out the multiplicative
factor ω − t and complete the proof.
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3.2. Proof of Theorem 1.3. To show (1.2) for a hypergraph H ⊆ FA,b, define
the monotone Boolean function h(x) by the condition

h(x) = 1 ⇔ x ≥ char(H) for some H ∈ H,
where char(H) is the characteristic vector of H. Note that since H ⊆ FA,b and the
characteristic vector of any hyperedge of FA,b satisfies the monotone system (1.1),
each true point of h(x) satisfies (1.1), i.e.,

h(x) = 1 and x ∈ {0, 1}n ⇒ Ax ≥ b.(3.5)

Also note that since H ⊆ FA,b is Sperner, we have

|minT (h)| = |H|.(3.6)

In addition, if X ∈ Hd, then Xc contains no hyperedge of H and hence char(Xc) is
a false point of h. It is easily seen that char(Xc) is a maximal false point of h, for
otherwise X would not be a minimal transversal for H. Thus,

char(Xc) ∈ maxF (h) for any X ∈ Hd.(3.7)

By the definition of Fd
A,b, the inclusion X ∈ Fd

Ab implies that char(Xc) is infeasible
for (1.1). In view of (3.7), this gives

|Hd ∩ Fd
A,b| ≤

m∑
i=1

|maxF (h) ∩ {x | aix < bi}|,

where aix ≥ bi is the ith inequality of (1.1). By (3.5) we can apply Lemma 1.5 to the
monotone Boolean function h to obtain

|maxF (h) ∩ {x | aix < bi}| ≤ n|minT (h)|.
Now (1.2) follows from (3.6).

4. Partial transversals. In this section, we prove Lemma 1.6 and Theorem 1.4.

4.1. Proof of Lemma 1.6. We shall prove the lemma by induction on k. If
k = 0, then T = {∅} by condition (1.4), thus implying that β = 1 and that the sets
of S are pairwise disjoint. Hence α ≤ m = (m− k)β follows.

In a general step, let us define subfamilies Sv = {S \ {v} | S ∈ S, v ∈ S} and
Tv = {T \ {v} | T ∈ T , v ∈ T} for each v ∈ U . Let us further introduce the notations
αv = |Sv|, and βv = |Tv|.

For vertices v ∈ U for which αv ≥ 2 (and thus βv ≥ 1) the families Sv and Tv
satisfy all the assumptions of the lemma with m′ = m− 1 and k′ = k − 1, and hence

αv ≤ (m′ − k′)βv = (m− k)βv(4.1)

follows by the inductive hypothesis. Then let us consider the partition U = U1 ∪ U2,
where U1 = {v ∈ U | αv ≤ 1} and U2 = {v ∈ U | αv ≥ 2}. Summing up the
inequalities (4.1) for all v ∈ U2, we obtain

∑
v∈U2

αv ≤ (m− k)
∑
v∈U2

βv.(4.2)
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On the left-hand side, using the thresholdness conditions (1.4) and the definition
of αv we obtain

α(k + 1)− |U1| ≤
∑
S∈S
|S| − |U1|

≤
∑
S∈S

(|S| − |S ∩ U1|)

=
∑
S∈S
|S ∩ U2|

=
∑
v∈U2

αv,

(4.3)

where the first inequality follows by |S| ≥ k+1 for S ∈ S, the second one is implied by
|U1| ≥

∑
S∈S |S ∩ U1| following from the definition of U1, while the equations follow

from the definitions of αv, U1, and U2.
On the right-hand side of (4.1) we can write

∑
v∈U2

βv =
∑
T∈T
|T ∩ U2|

≤
∑
T∈T
|T |

≤ βk,

(4.4)

where the first equality follows by the definition of βv and Tv and the last inequality
follows by the conditions |T | ≤ k for T ∈ T .

Putting together (4.2), (4.3), and (4.4) we obtain (k + 1)α − |U1| ≤ (m − k)kβ,
or equivalently that

α ≤ |U1|
k + 1

+
k

k + 1
(m− k)β.(4.5)

If |U1| ≤ m− k, then

|U1|
k + 1

+
k

k + 1
(m− k)β ≤ (m− k)β,

and hence α ≤ (m− k)β by (4.5). On the other hand, if |U1| > m− k, then for each
set S ∈ S we have |S ∩U1| ≥ |S| − |U2| ≥ (k+1)− |U2| > 1. Now by the definition of
the set U1 we obtain α ≤ |U1|/(k + 1− |U2|) = (m− |U2|)/(k + 1− |U2|) ≤ m− k ≤
(m− k)β.

4.2. Exponentially large Sperner families with few maximal intersec-
tions. Let s be a positive integer, and let U be a finite set of m = 2 + 3s elements,
consisting of two special vertices a, b and s disjoint sets U1, . . . , Us of size 3 each. Let
us consider the hypergraph S with α = 2s + 3s hyperedges of the following three
types:

(a) U \ ({a} ∪ Ui), i = 1, . . . , s,
(b) U \ ({b} ∪ Ui), i = 1, . . . , s,.
(c) 3s hyperedges obtained by selecting exactly one vertex from each Ui.

It is easy to see that S∩ consists of exactly s + 2
(
s
2

)
= s2 maximal intersections,

namely, the sets U \ ({a} ∪ {b} ∪ Ui), for i = 1, . . . , s, and U \ ({a} ∪ Ui ∪ Uj) and
U \ ({b} ∪ Ui ∪ Vj) for 1 ≤ i < j ≤ s.
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As another example, let m = 5s and let U contain two additional vertices ai, bi
for every 3-element set Ui. Consider the hypergraph S ′ defined by the 3s hyperedges
of the form as in (c) above and by 2s additional edges of the form {ai}∪ (W \Ui) and
{bi}∪ (W \Ui), where W = ∪sj=1Uj and i = 1, . . . , s. Then S ′ has exactly s maximal
intersections, namely, the sets W \ Ui for i = 1, 2, . . . , s.

4.3. Proof of Theorem 1.4. Given a hypergraph A ⊆ 2V of m hyperedges on
an n-element vertex set V , let φ : 2V → 2{1,... ,m} be the monotone mapping which
assigns to a vertex set X ⊆ V the subset φ(X) ⊆ U

.
= {1, 2, . . . ,m} of indices of all

those hyperedges ofA which are contained inX, i.e., φ(X) = {i | Ai ⊆ X, 1 ≤ i ≤ m}.
Note that for any two sets X,Y ⊆ V we have the identity

φ(X) ∩ φ(Y ) ≡ φ(X ∩ Y ).(4.6)

Let H = {H1, . . . , Hβ} ⊆ 2V be an arbitrary nonempty collection of k-transver-
sals for A. To show that H satisfies inequality (1.3), consider the (multi-)hypergraph
T = {φ(Hc

1), . . . , φ(H
c
β)}. Since each Hl ∈ H is a k-transversal to A, the complement

of Hl contains at most k hyperedges of A. Hence |φ(Hc
l )| ≤ k, i.e., the size of each

hyperedge of T is at most k.
Let the hypergraph Hd ∩ Auk+1 consist of α hyperedges, say, Hd ∩ Auk+1 =

{X1, . . . , Xα} ⊆ 2V . Consider the (multi-)hypergraph S = {φ(X1), . . . , φ(Xα)}.
Since X1, . . . , Xα are (k + 1)-unions, each hyperedge of S has size at least k + 1.

Now let us show that for any two distinct indices 1 ≤ i < j ≤ α, the intersection
of the hyperedges φ(Xi) and φ(Xj) is contained in a hyperedge of T . In view of (4.6)
we have to show that φ(Xi ∩Xj) is contained in some hyperedge of T . To this end,
observe that Hd∩Auk+1 is a Sperner hypergraph, and hence Xi∩Xj is a proper subset
of Xi. However, Xi ∈ Hd ∩ Auk+1 is a minimal transversal to H. For this reason,
Xi ∩Xj misses a hyperedge of H, say, Hl. Equivalently, Xi ∩Xj ⊆ Hc

l which implies
φ(Xi ∩Xj) ⊆ φ(Hc

l ) ∈ T . Now inequality (1.3) and Theorem 1.4 readily follow from
Lemma 1.6.

4.4. Generalized intersection inequalities. In this section we list some gen-
eralizations of the intersection inequality (1.6).

A hypergraph S on a base set V of size m = |U | is called l-covering if every l
points of U belong to at least two hyperedges of S or, in other words, to a maximal
intersection in S∩. Let S be an l-covering hypergraph satisfying the following thresh-
oldness conditions: |S| ≥ k+1 for all S ∈ S and |S′ ∩S′′| ≤ k for any pair of distinct
hyperedges S′, S′′ ∈ S. Then the following inequality can be shown to hold for any
l ≤ k:

|S| ≤ |S∩|(m− k)[1− l/(k + 1)].

Since every hypergraph is 0-covering, this is always at least as strong as (1.6).
Next let us assume that |S| ≥ k + 1 for all S ∈ S, while |T | ≤ k′ for all T ∈ S∩

for some integers 0 ≤ k′ ≤ k < m. Then

|S| ≤ |S∩|(m− k′)/(k − k′ + 1).

In the case k = k′ we get the inequality (1.6) back again.
Finally, instead of pairwise intersections, let us consider r-wise intersections. Let

S∩r denote the hypergraph of all maximal intersections of r distinct edges of a (multi-)
hypergraph S. Then for r ≥ 2 we can show that

|S| ≤ |S∩r |(m− k)(r − 1),
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assuming, as before, that each hyperedge of S contains at least k+1 vertices and that
every r-wise intersection has size at most k. Again for r = 2 this gives (1.6).

5. Related set-families. The notion of frequent sets appears in the data mining
literature (see [1, 27]) and can be related naturally to the families considered above.
More precisely, following a definition of [34], given a (0, 1)-matrix and a threshold
k, a subset of the columns is called frequent if there are at least k rows having a 1
entry in each of the corresponding positions. The problems of generating all maximal
frequent sets and their duals, the so-called minimal infrequent sets (for a given binary
matrix), were proposed and the complexity of the corresponding decision problems
were asked in [34]. Results of [25] imply that it is NP-hard to determine whether a
family of maximal frequent sets is incomplete, while our results prove that generating
all minimal infrequent sets polynomially reduces to dualization.

Since the family Adk consists of all the minimal k-transversals to A, that is,
subsets of V which are disjoint from at most k hyperedges of A, the family Acdk

consists of all the minimal subsets of V which are contained in at most k hyperedges
of A. It is easy to recognize that these are the minimal infrequent sets in a matrix,
the rows of which are the characteristic vectors of the hyperedges of A. Furthermore,
the family Adkc consists of all the maximal subsets of V , which are supersets of at
most k hyperedges of A.

Due to our results above, all these families can be generated in incremental quasi-
polynomial time.

In the special case, if A is a quadratic set-family, i.e., if all hyperedges of A are
of size 2, the family A can also be interpreted as the edge set of a graph G on vertex
set V . Then, Adkc is also known as the family of the so-called fairly independent sets
of the graph G consisting of all the vertex subsets which induce at most k edges (see
[34].)

As it was defined above, the family Auk consists of all the minimal k-unions of A,
i.e., all minimal subsets of V which contain at least k hyperedges of A, and hence the
family Acuk consists of all the minimal subsets which contain at least k hyperedges
of Ac. Thus, the family Acukc consists of all the maximal k-intersections, that is,
maximal subsets of V which are subsets of at least k hyperedges of A. These sets
can be recognized as the maximal frequent sets in a matrix, the rows of which are the
characteristic vectors of the hyperedges of A. Finally, the family Aukc consists of all
the maximal subsets of V which are disjoint from at least k hyperedges of A.

As it follows from the mentioned results (see, e.g., [25]), generating all hyperedges
for each of these families is NP-hard unless k (or |A| − k) is bounded by a constant.

Let us add finally that since |Ac| = |A|, |Acuk+1c| = |Auk+1 |, and |Adkc| = |Adk |
hold, Theorem 1.4 implies that for any binary matrix A with m rows and for any
threshold value k (0 ≤ k < m), the number of maximal frequent column sets of A is
at most (m− k) times the number of minimal infrequent column sets of A.

6. General closing remarks. In this paper we considered the problems of
generating all partial and all multiple transversals. Both problems are formally more
general than dualization, but in fact both are polynomially equivalent to it because
the corresponding pairs of hypergraphs are uniformly dual-bounded. We close with
the following negative result: Generating all the minimal partial binary solutions to
a system of inequalities Ax ≥ b is NP-hard even if A is binary and b = (2, 2, . . . , 2).
To show this we can use arguments analogous to those of [24, 25]. Consider the well-
known NP-hard problem of determining whether a given graph G = (V,E) contains
an independent vertex set of size t, where t ≥ 2 is a given threshold; see [15]. Introduce
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|V | + 1 binary variables x0 and xv, v ∈ V , and write t inequalities xu + xv ≥ 2 for
each edge e = (u, v) ∈ E followed by the inequalities x0 + xv ≥ 2, v ∈ V . It is
easily seen that the characteristic vector of any edge e = (u, v) is a minimal binary
solution satisfying at least t inequalities of the resulting system. Deciding whether
there are other minimal binary solutions satisfying at least t inequalities of the system
is equivalent to determining whether G has an independent set of size t.

Acknowledgment. The authors are thankful to József Beck for helpful discus-
sions.
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Abstract. We present the first constant-factor approximation algorithm for a fundamental
problem: the store-and-forward packet routing problem on arbitrary networks. Furthermore, the
queue sizes required at the edges are bounded by an absolute constant. Thus, this algorithm balances
a global criterion (routing time) with a local criterion (maximum queue size) and shows how to get
simultaneous good bounds for both. For this particular problem, approximating the routing time
well, even without considering the queue sizes, was open. We then consider a class of such local
vs. global problems in the context of covering integer programs and show how to improve the local
criterion by a logarithmic factor by losing a constant factor in the global criterion.
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1. Introduction. Recent research on approximation algorithms has focused a
fair amount on bicriteria (or even multicriteria) minimization problems, attempting
to simultaneously keep the values of two or more parameters “low” (see, e.g., [11, 21,
22, 29, 30, 32]). One motivation for this is that real-world problems often require
such balancing. In this work, we consider a family of bicriteria problems that involve
balancing a local capacity constraint (e.g., the maximum queue size at the links of a
packet routing network, the maximum number of facilities per site in facility location)
with a global criterion (resp., routing time, total cost of constructing the facilities).
Since these global criteria are NP-hard to minimize even with no constraint on the
local criterion, we shall seek good approximation algorithms.

1.1. Packet routing. Our main result is a constant-factor approximation al-
gorithm for store-and-forward packet routing, a fundamental routing problem in in-
terconnection networks (see Leighton’s book and survey [14, 15]); furthermore, the
queue sizes will all be bounded by a constant. This packet routing problem has
received considerable attention for more than 15 years and is as follows.

Definition 1.1 (store-and-forward packet routing). We are given an arbitrary
N -node routing network (directed or undirected graph) G and a set {1, 2, . . . ,K} of
packets which are initially resident (respectively) at the (multi-)set of nodes {sk : 1 ≤
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k ≤ K} of G. Each packet k is a message that needs to be routed to some given
destination node tk in G. We have to route each packet k from sk to tk, subject to
the following: (i) each packet k must follow some path in G; (ii) each edge traversal
takes one unit of time; (iii) no two packets can traverse the same edge at the same
unit of time; and (iv) packets are only allowed to queue along the edges of G during
the routing stage. There are no other constraints on the paths taken by the packets:
these can be arbitrary paths in G. The NP-hard objective is to select a path for each
packet and to coordinate the routing so that the elapsed time by which all packets have
reached their destinations is minimized; i.e., we wish to keep this routing time as small
as possible.

Extensive research has been conducted on this problem: see [14, 15] and the
references therein. The most desirable type of algorithm here would, in addition
to keeping the routing time and queue sizes low, also be distributed: given a set
of incoming packets and their (source, destination) values, any switch (node of G)
decides what to do with them next, without any other knowledge of the (multi-)set
{(sk, tk) : 1 ≤ k ≤ K}. This would be ideal for parallel computing. (Distributed
algorithms in this context are also termed on-line algorithms in the literature.) Several
such ingenious results are known for specific networks such as the mesh, butterfly, or
hypercube. For instance, given any routing problem with N packets on an N -node
butterfly, there is a randomized on-line routing algorithm that, with high probability,
routes the packets in O(logN) time using O(1)-sized queues [28]. (We let e denote
the base of the natural logarithm, and, for x > 0, lg x, lnx, and ln+ x, respectively,
denote log2 x, loge x, and max{loge x, 1}. Also, Z+ will denote the set of nonnegative
integers.)

Good on-line algorithms here, however, are not always feasible or required for the
following reasons:

• A large body of research in routing is concerned with fault-tolerance: the
possibility of G being a reasonable routing network when its nodes are subject
to (e.g., random or worst-case) faults. See, e.g., Kaklamanis et al. [12],
Leighton, Maggs, and Sitaraman [18], and Cole, Maggs, and Sitaraman [6].
In this case, we do not expect good on-line algorithms, since the fault-free
subgraph Ĝ of G has an unpredictable structure. Indeed, a fair amount
of research in this area, e.g., [6, 18], focuses on showing that Ĝ is still a
reasonably good routing network under certain fault models, assuming global
information about {(sk, tk)} and the fault structure.

• Ingenious on-line algorithms for specific networks such as the butterfly in
the fault-free case [28] are only existentially (near-)optimal. For instance,
the O(lgN) routing time of [28] is existentially optimal to within a con-
stant factor, since there are families of routing instances that require Θ(lgN)
time. However, the worst-case approximation ratio can be Θ(lgN). It seems
very hard (potentially impossible) to devise on-line algorithms that are near-
optimal on each instance.

• The routing problem can be considered as a variant of unit-demand multi-
commodity flow, where all arc capacities are the same, queuing is allowed, and
where delivery time is also a crucial criterion. (Algorithms for this problem
that require just O(1) queue sizes, such as ours, will also scale with network
size.) For such flow problems, the routing problems often have to be run
repeatedly. It is therefore reasonable to study off-line approximation algo-
rithms, i.e., efficient algorithms that use the knowledge of the network and of
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{(sk, tk)} and have a good approximation ratio.

Furthermore, it seems like a difficult problem to construct on-line routing algo-
rithms for arbitrary networks, even with, say, a polylogarithmic approximation guar-
antee. See Ostrovsky and Rabani [26] for good on-line packet scheduling algorithms,
given the path to be traversed for each packet.

By combining some new ideas with certain powerful results of Leighton, Maggs,
and Rao [16], Leighton, Maggs, and Richa [17], Karp et al. [13], and Lin and Vit-
ter [20], we present the first polynomial-time off-line constant-factor approximation
algorithm for the store-and-forward packet routing problem. Furthermore, the queue
sizes of the edges are bounded by O(1). No approximation algorithms with a sublog-
arithmic approximation guarantee were known for this problem, to the best of our
knowledge. For instance, a result from the seminal work of Leighton and Rao [19]
leads to routing algorithms that are existentially good. Their network embedding of
G ensures that there is some routing instance on G for which their routing time is to
within an O(lgN) factor of optimal, but no good worst-case performance guarantee is
known. We may attempt randomized rounding on some suitable linear programming
(LP) relaxation of the problem; however, apart from difficulties like controlling path
lengths, it seems hard to get a constant-factor approximation using this approach for
families of instances where the LP optimal value grows as o(lg(N+K)). Our approach
uses the rounding theorem of [13] to select the set of paths that will be used in the
routing algorithm of [17]. The analysis involves an interesting trade-off between the
“dilation” criterion (maximum path length) and the “congestion” criterion (maximum
number of paths using any edge).

1.2. Covering integer programs. Let vT denote the transpose of a (column)
vector v. In the second part of the paper, we continue to address the problem of
simultaneously obtaining good bounds on two criteria of a problem. We focus on
the NP-hard family of covering integer programs (CIPs), which includes the well-
known set cover problem. This class of problems exhibits features similar to our
packet routing problem: the latter can be formulated as a covering problem with side
packing constraints. In CIPs, the packing constraints are upper bound constraints on
the variables.

Definition 1.2 (CIPs). Given A ∈ [0, 1]m×n, b ∈ [0,∞)m, and c ∈ [0, 1]n, a
CIP seeks to minimize cT · x subject to Ax ≥ b, x ∈ Zn

+, and 0 ≤ xj ≤ dj for each
j (the dj ∈ Z+ are given integers). If A ∈ {0, 1}m×n, then we assume without loss
of generality (w.l.o.g.) that each bi is a positive integer. Define B = mini bi; w.l.o.g.,
we may assume B ≥ 1. A CIP is uncapacitated if for all j, dj = ∞.

It is well known that the two assumptions above are w.l.o.g. (i) If A ∈ {0, 1}m×n,
then we can clearly replace each bi by 	bi
. (ii) Given a CIP with some Ai,j > bi, we
can normalize it by first setting Ai,j := bi for each such (i, j) and then scaling A and
b uniformly so that for all k, (bk ≥ 1 and max	Ak,	 ≤ 1). This is easily seen to result
in an equivalent CIP.

To motivate the model, we consider a concrete CIP example: a facility location
problem that generalizes the set cover problem. Here, given a digraph G, we want
to place facilities on the nodes suitably so that every node has at least B facilities in
its out-neighborhood. Given a cost-per-facility cj of placing facilities at node j, we
desire to place the facilities in a way that will minimize the total cost. It is easy to see
that this NP-hard problem is a CIP, with the matrix A having only zeroes and ones.
This problem illustrates one main reason for the constraints {xj ≤ dj}: for reasons
of capacity, security, or fault-tolerance (not many facilities will be damaged if, for
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instance, there is an accident/failure at a node), we may wish to upper bound the
number of facilities that can be placed at individual sites. The more general problem
of “file sharing” in a network has been studied by Naor and Roth [24], where again,
the maximum load (number of facilities) per node is balanced with the global criterion
of total construction cost. For similar reasons, CIPs typically include the constraints
{xj ≤ dj : 1 ≤ j ≤ n}. In fact, the case where dj = 1 for all j is quite common.

Dobson [7] and Fisher and Wolsey [8] study a natural greedy algorithm GA for
CIPs. For a given CIP, let OPT denote the value of its optimal integral solution.
We define γ1

.
= mini,j{Ai,j/cj : Ai,j = 0} and γ2

.
= maxj(

∑m
i=1Ai,j/cj). Then, it is

shown in [8] that GA produces a solution of value at most OPT (1 + ln(γ2/γ1)). If
each row of the linear system Ax ≥ b is scaled so that the minimum nonzero entry
in the row is at least 1, it is shown in [7] that GA’s output is at most OPT (1 +
ln(maxj

∑n
i=1Ai,j)).

Another well-known approach to CIPs is to start with their LP relaxation, wherein
each xj is allowed to be a real in the range [0, dj ]. Throughout, we shall let y∗ denote
the LP optimum of a given CIP. Clearly, y∗ is a lower bound on OPT . Bertsimas and
Vohra [5] conduct a detailed study of approximating CIPs and present an approxima-
tion algorithm which finds a feasible solution whose value is O(y∗ lgm) [5]. Previous
work of this paper’s first author [31] presents an algorithm that computes an x ∈ Zn

+

such that Ax ≥ b and

cT · x ≤ a0y∗ ·max{ln+(mB/y∗)/B,
√

ln+(mB/y∗)/B}(1.1)

for some absolute constant a0 > 0.1 The bound “xj ≤ dj” may not hold for all j, but
we will have for all j that

xj ≤ dj ·
(

1 + a1 max

{
ln+(mB/y∗)/B,

√
ln+(mB/y∗)/B

})
(1.2)

for a certain absolute constant a1 > 0. A related result is presented in [24] for file-
sharing.

If B is “large” (greater than a certain threshold), then these results significantly
improve previous results in the “global” criterion of keeping cT · x small while com-
promising somewhat on the “local” capacity constraints {xj ≤ dj}. This is a common
approach in bicriteria approximation: losing a small amount in each criterion to keep
the maximum such loss “low.” In particular, if y∗ grows at least as fast as me−O(B),
then the output value here is O(y∗), while maintaining xj = O(dj) for all j. (Also, if
the CIP is uncapacitated, then the above is a significant improvement if B is large.)

We see from (1.2) that in the case where ln+(mB/y∗) ≤ B, both (cT · x)/y∗ and
the maximum “violation” maxj xj/dj are bounded by constants, which is reasonable.
Thus, we consider the case where ln+(mB/y∗) > B. Here, however, the violation
maxj xj/dj can be as high as 1 + a1 ln+(mB/y∗)/B, which is unsatisfactory. If it
is not feasible (e.g., for capacity/fault-tolerance reasons) to deviate from the local
constraints by this much, then even the gain in the global criterion (caused by the
large value of B) will not help justify such a result. Therefore, a natural question is:
is it possible to lose a small amount in the global criterion, while losing much less
in the local criterion (i.e., in maxj xj/dj), in the case where ln+(mB/y∗) > B? We
answer this in the affirmative.

1Recall that ln+(x) denotes max{ln(x), 1}. To parse the term “ln+(mB/y∗)/B”, note that it is
ln(mB/y∗)/B if y∗ ≤ me−B and is O(1) otherwise.
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(a) For the important special case of unweighted CIPs (for all j, cj = 1), consider
the case ln+(mB/y∗) > B. Then, for any parameter ε, 0 < ε < 1, we present an
algorithm that outputs an x with

(i) xj ≤ 	dj/(1− ε)
 for all j, where
(ii) the objective function value is at most a2y

∗(1/(1−ε)+(1/ε2) ln+(mB/y∗)/B)
for an absolute constant a2 > 0.

Note the significant improvement over (1.1) and (1.2), particularly if ε is a con-
stant: by losing just a constant factor in the output value of the objective function,
we have ensured that each xj/dj is bounded by a constant (at most 1/(1− ε) + 1/dj).
This is an improvement over the bound stated in (1.2). In our view, ensuring little loss
in the local criterion here is quite important as it involves all the variables xj (e.g.,
all the nodes of a graph in facility location) and since maxj xj/dj may be required to
be low due to physical and other constraints.

(b) For the case where the coefficient matrix A has only zeroes and ones and
where a feasible solution (i.e., for all j, xj ≤ dj) to a (possibly weighted) CIP is
really required, we present an approximation algorithm with output value at most
O(y∗ ln+(m/y∗)). This works whether ln+(mB/y∗) > B or not. While incomparable
with the results of [7, 8], this is better if y∗ is bigger than a certain threshold. This
is also seen to be an improvement over the O(y∗ lgm) bound of [5] if y∗ ≥ ma, where
a ∈ (0, 1) is an absolute constant.

Thus, this work presents improved local vs. global balancing for a family of prob-
lems: the basic packet routing problem (the first constant-factor approximation) and
CIPs (gaining more than a constant factor in the local criterion while losing a constant
factor in the global criterion). The structure of the rest of the paper is as follows.
In section 2, we discuss the algorithm for the packet routing problem, which consists
mainly of three steps: (1) constructing and solving an LP relaxation (section 2.1);
(2) obtaining a set of routes via suitable rounding (section 2.2); and (3) scheduling
the packets (section 2.3) using the algorithm of [17]. The nature of our LP relaxation
also provides an interesting re-interpretation of our result, as shown by Theorem 2.4
in section 2.3. We discuss in section 2.4 an extension of our idea to a more general
setting, where the routing problem is replaced by a canonical covering problem. In
section 3, we discuss our results for the general CIPs. We present our improved local
vs. global balancing for unweighted CIPs in section 3.1; the case where xj ≤ dj is
really required for all j is handled in section 3.2 for the case where the coefficient
matrix has only zeroes and ones. (Note, for instance, that the coefficient matrix has
only zeroes and ones for the facility location problem discussed in section 1.2.)

2. Approximating the routing time to within a constant factor. We re-
fer the reader to the introduction for the definition and motivation for packet routing.
Leighton, Maggs, and Rao, in a seminal paper, studied the issue of scheduling the
movement of the packets given the path to be traversed by each packet [16]. They
showed that the packets can be routed in time proportional to the sum of the con-
gestion and dilation of the paths selected for each packet (see the sentence preceding
section 1.2 for the definition of these two parameters). However, they did not address
the issue of path selection; one motivation for their work is that paths can plausi-
bly be selected using, e.g., the well-known “random intermediate destinations” idea
[33, 34]. However, no general results on path selection, and hence on the time needed
for packet routing, were known for arbitrary networks G. We address this issue here
by studying the path selection problem.
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Theorem 2.1. There are constants c′, c′′ > 0 such that the following holds. For
any packet routing problem on any network, there is a set of paths and a corresponding
schedule that can be constructed in polynomial time such that the routing time is at
most c′ times the optimal. Furthermore, the maximum queue size at each edge is
bounded by c′′.

We shall denote any path from sk to tk as an (sk, tk)-path. Given a (directed)
path P , E(P ) will denote its set of (directed) edges.

2.1. A linear programming relaxation. Consider any given packet routing
problem. Let us consider any feasible solution for it, where packet k is routed on path
Pk. Let D denote the dilation of the paths selected, i.e., D is the length of a longest
path among the Pk. Clearly, the time to route all the packets is bounded below by
D. Similarly, let C denote the congestion of the paths selected, i.e., the maximum
number of packets that must traverse any single edge during the entire course of the
routing. Clearly, C is also a lower bound on the time needed to route the packets.

Let N denote the number of nodes in the network and K the number of packets in
the problem. We now present an LP relaxation for the problem; some of the notation
used in this relaxation is explained in the following paragraph.

(ROUTING) min(C +D)/2 subject to
K∑

k=1

xkf ≤ C ∀f ∈ E(G),(2.1)

∑
f∈E(G)

xkf ≤ D ∀k ∈ {1, 2, . . . ,K},(2.2)

N kxk = bk ∀k ∈ {1, 2, . . . ,K},(2.3)

0 ≤ xkf ≤ 1 ∀k ∈ {1, 2, . . . ,K} ∀f ∈ E(G).

The vector x above is basically a “fractional flow” in G, where xkf denotes the
amount of “flow” of packet k on edge f ∈ E(G). The superscript k merely indexes
a packet and does not mean a kth power. The constraints “N kxk = bk” model the
requirement that for packet k, (i) a total of one unit of flow leaves sk and reaches
tk, and (ii) at all other nodes, the net inflow of the flow corresponding to packet k,
equals the net outflow of the flow corresponding to packet k. For conciseness, we have
avoided explicitly writing out this (obvious) set of constraints above. Constraints
(2.1) say that the “fractional congestion” on any edge f is at most C. Constraints
(2.2) say that the “fractional dilation”

∑
f x

k
f is at most D. This is a somewhat novel

way of relaxing path lengths to their fractional counterparts.

It is easy to see that any path-selection scheme for the packets, i.e., any integral
flow (where all the xkf are either 0 or 1) with congestion C and dilation D, satisfies
the above system of inequalities. Thus, since C and D are both lower bounds on the
length of the routing time for such a path-selection strategy, so is (C +D)/2. Hence,
the optimum value of the LP is indeed a lower bound on the routing time for a given
routing problem: it is indeed a relaxation. Note that the LP has polynomial size since
it has “only” O(Km) variables and O(Km) constraints, where m denotes the number
of edges in the network. Thus, it can be solved in polynomial time. Let {x,C,D}
denote an optimal solution to the program. In section 2.2, we will conduct a certain
type of “filtering” on x. Section 2.3 will then construct a path for each packet and
then invoke the algorithm of [17] for packet scheduling.
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2.2. Path filtering. The main ideas now are to decompose x into a set of “flow
paths” via the “flow decomposition” approach and then to adapt the ideas in Lin-
Vitter [20] to “filter” the flow paths by effectively eliminating all flow paths of length
more than 2D.

The reader is referred to section 3.5 of [1] for the well-known flow decomposition
approach. This approach efficiently transforms x into a set of flow paths that satisfy
the following conditions. For each packet k, we get a collection Qk of flows along
(sk, tk)-paths; each Qk has at most m paths. Let Pk,i denote the ith path in Qk.
Pk,i has an associated flow value zk,i ≥ 0 such that for each k,

∑
i zk,i = 1. (In other

words, the unit flow from sk to tk has been decomposed into a convex combination of
(sk, tk)-paths.) The total flow on any edge f will be at most C:

∑
(k,i):f∈E(Pk,i)

zk,i =

K∑
k=1

xkf ≤ C;(2.4)

the inequality in (2.4) follows from (2.1). Also, let |P | denote the length of (i.e., the
number of edges in) a path P . Importantly, the following bound will hold for each k:∑

i

zk,i|Pk,i| =
∑

f∈E(G)

xkf ≤ D(2.5)

with the inequality following from (2.2).
The main idea now is to “filter” the flow paths so that only paths of length at

most 2D remain. For each k, define

gk =
∑

i:|Pk,i|>2D

zk,i.

It is to easy to check via (2.5) that gk ≤ 1/2 for each k. Thus, suppose we define new
flow values {yk,i} as follows for each k: yk,i = 0 if |Pk,i| > 2D, and yk,i = zk,i/(1−gk)
if |Pk,i| ≤ 2D. We still have the property that we have a convex combination of flow
values:

∑
i yk,i = 1. Also, since gk ≤ 1/2 for all k, we have yk,i ≤ 2zk,i for all k, i.

Therefore, (2.4) implies that the total flow on any edge f is at most 2C:∑
(k,i):f∈E(Pk,i)

yk,i ≤ 2C.(2.6)

Most importantly, by setting yk,i = 0 for all the “long” paths Pk,i (those of length
more than 2D), we have ensured that all the flow paths under consideration are of
length at most O(D). We denote the collection of flow paths for packet k by Pk. For
ease of exposition, we will also let yP denote the flow value of any general flow path
P .

Remarks. We now point out two other LP relaxations which can be analyzed
similarly and which yield slightly better constants in the approximation guarantee.

• It is possible to directly bound path-lengths in the LP relaxation so that
filtering need not be applied; one can show that this improves the approx-
imation guarantee somewhat. On the other hand, such an approach leads
to a somewhat more complicated relaxation, and furthermore, binary search
has to be applied to get the “optimal” path-length. This, in turn, entails
potentially O(lgN) calls to an LP solver, which increases the running time.
Thus, there is a trade-off involved between the running time and the quality
of approximation.
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• In our LP formulation, we could have used a variableW to stand for max{C,D}
in place of C and D; the problem would have been to minimize W subject to
the fractional congestion and dilation being at most W . Since W is a lower
bound on the optimal routing time, this is indeed a relaxation; using our ap-
proach with this formulation leads to a slightly better constant in the quality
of our approximation. Nevertheless, we have used our approach to make the
relationship between C and D explicit.

2.3. Path selection and routing. Note that {yP : P ∈ ⋃K
k=1 Pk} is a frac-

tional feasible solution to the following set of inequalities:

∑
k

∑
P∈Pk,(i,j)∈E(P )

yP ≤ 2C ∀f ∈ E(G),

∑
P∈Pk

yP = 1 ∀k.

To select one path from Pk for each packet k, we need to modify the above fractional
solution to an integral 0-1 solution. To ensure that the congestion does not increase
by much, we shall use the following rounding algorithm of [13].

Theorem 2.2 (see [13]). Let A be a real valued r×s matrix and y be a real-valued
s-vector. Let b be a real-valued vector such that Ay = b and t be a positive real number
such that, in every column of A, (i) the sum of all the positive entries is at most t
and (ii) the sum of all the negative entries is at least −t. Then we can compute an
integral vector y such that for every i, either yi = �yi� or yi = 	yi
 and Ay = b where
bi − bi < t for all i. Furthermore, if y contains d nonzero components, the integral
approximation can be obtained in time O(r3 lg(1 + s/r) + r3 + d2r + sr).

To use Theorem 2.2, we first transform our linear system above to an equivalent
system

∑
k

∑
P∈Pk,(i,j)∈E(P )

yP ≤ 2C ∀ (i, j) ∈ E(G),

∑
P∈Pk

(−2D)yP = −2D ∀ k.

The set of variables above is {yP : P ∈ ⋃K
k=1 Pk}. Note that yP ∈ [0, 1] for

all these variables. Furthermore, in this linear system, the positive column sum is
bounded by the maximum length of the paths in P1 ∪P2 ∪ · · · ∪PK . Since each path
in any Pk is of length at most 2D due to our filtering, each positive column sum is
at most 2D. Each negative column sum is clearly −2D. Thus, the parameter t for
this linear system, in the notation of Theorem 2.2, can be taken to be 2D. Hence by
Theorem 2.2, we can obtain in polynomial time an integral solution y satisfying

∑
k

∑
P∈Pk,f∈E(P )

yP ≤ 2C + 2D ∀ f ∈ E(G),(2.7)

∑
P∈Pk

(−2D)yP < 0 ∀ k,(2.8)

yP ∈ {0, 1} ∀ P ∈
K⋃

k=1

Pk.(2.9)
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For each packet k, by conditions (2.8) and (2.9), we have
∑

P∈Pk yP ≥ 1. (Note the
crucial role of the strict inequality in (2.8).) Thus, for each packet k, we have selected
at least one path from sk to tk with length at most 2D; furthermore, the congestion is
bounded by 2C+2D (from (2.7)). If there are two or more such (sk, tk)-paths, we can
arbitrarily choose one among them, which of course cannot increase the congestion.
The next step is to schedule the packets, given the set of paths selected for each
packet. To this end, we use the following result of [17], which provides an algorithm
for the existential result of [16].

Theorem 2.3 (see [17]). For any set of packets with edge-simple paths having
congestion c and dilation d, a routing schedule having length O(c + d) and constant
maximum queue size can be found in random polynomial time.

Applying this theorem to the paths selected from the previous stage, which have
congestion c ≤ 2C + 2D and dilation d ≤ 2D, we can route the packets in time
O(C + D). Recall that (C + D)/2 is a lower bound on the length of the optimal
schedule. Thus, we have presented a constant-factor approximation algorithm for the
off-line packet routing problem; furthermore, the queue sizes are also bounded by an
absolute constant in the routing schedule produced. An interesting related point is
that our LP relaxation is reasonable: its integrality gap (worst-case ratio between the
optima of the integral and fractional versions) is bounded above by O(1).

An alternative view. There is an equivalent interesting interpretation of Theo-
rem 2.1.

Theorem 2.4. Suppose we have an arbitrary routing problem on an arbitrary
graph G = (V,E); let L be any nonnegative parameter (e.g., O(1), O(lg n), O(

√
n)).

Let {(sk, tk) : 1 ≤ k ≤ K} be the set of source-destination pairs for the packets.
Suppose we can construct a probability distribution Dk on the (sk, tk)-paths for each
k such that if we sample, for each packet k, an (sk, tk)-path from Dk independently of
the other packets, then we have (a) for any edge e ∈ E(G), the expected congestion on
e is at most L, and (b) for each k, the expected length of the (sk, tk)-path chosen is at
most L. Then, there is a choice of paths for each packet such that the congestion and
dilation are O(L). Thus, the routing can be accomplished in O(L) time using constant-
sized queues; such a routing can also be constructed off-line in time polynomial in |V |
and K.

We remark that the converse of Theorem 2.4 is trivially true: if an O(L) time
routing can be accomplished, we simply let Dk place all the probability on the (sk, tk)-
path used in such a routing.

Proof of Theorem 2.4. Let πk
P denote the probability measure of any (sk, tk)-path

P under the distribution Dk. Let supp(Dk) denote the support of Dk, i.e., the set
of (sk, tk)-paths on which Dk places nonzero probability. The proof follows from the
fact that for any (i, j) ∈ E(G),

xki,j ≡
∑

P :(i,j)∈E(P ), P∈supp(Dk)

πk
P

is a feasible solution to (ROUTING), with C,D replaced by L. Hence, by our filter-
round approach, we can construct one path for each packet k such that the congestion
and dilation are O(L). As seen above, the path selection and routing strategies can
be found in polynomial time.

We consider the above interesting because many fault-tolerance algorithms use
very involved ideas to construct a suitable (sk, tk)-path for (most) packets [6]. These
paths will need to simultaneously have small lengths and lead to small edge congestion.
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Theorem 2.4 shows that much more relaxed approaches could work: a distribution
that is “good” in expectation on individual elements (edges, paths) is sufficient. Recall
that in many “discrete ham-sandwich theorems” (Beck and Spencer [4], Raghavan
and Thompson [27]), it is easy to ensure good expectation on individual entities (e.g.,
the constraints of an integer program), but it is much more difficult to construct one
solution that is simultaneously good on all these entities. Our result shows one natural
situation where there is just a constant-factor loss in the process.

2.4. Extensions. The result above showing a constant integrality gap for packet
routing can be extended to a general family of combinatorial packing problems as
follows. Let Sk be the family of all the subsets of vertices S such that sk ∈ S and
tk ∈ S. Recall that the (sk, tk)-shortest path problem can be solved as an LP via the
following covering formulation:

min
∑
i,j

ci,jx
k
i,j subject to

∑
(i,j)∈E: i∈S,j /∈S

xki,j ≥ 1 ∀S ∈ Sk,(2.10)

xki,j ≥ 0 ∀ (i, j) ∈ E(G).

Constraint (2.10) expresses the idea that “flow” crossing each s-t cut is at least 1.
The following is an alternative relaxation for the packet routing problem:

(ROUTING-II) min(C +D)/2 subject to
K∑

k=1

xki,j ≤ C ∀ (i, j) ∈ E(G),

∑
i,j

xki,j ≤ D ∀ k,
∑

(i,j)∈E: i∈S,j /∈S
xki,j ≥ 1 ∀S ∈ Sk,(2.11)

xki,j ∈ [0, 1] ∀ k, i, j.
We can use the method outlined in sections 2.1, 2.2, and 2.3 to show that the

optimal solution of (ROUTING-II) is within a constant factor of the optimal routing
time. A natural question that arises is whether the above conclusion holds for more
general combinatorial packing problems. To address this question, we need to present
an alternative (polyhedral) perspective of our (path) selection routine. First we recall
some standard definitions from polyhedral combinatorics. The reader is referred to
[10] for related concepts.

Suppose we are given a finite set N = {1, 2, . . . , n} and a family F of subsets
of N . For any S ⊆ N , let χS ∈ {0, 1}n denote the incidence vector of S. We shall
consider the problem

(OPT ) min{cTχF : F ∈ F},
where c ∈ �n

+ is a weight function on the elements of N .
Definition 2.5 (see [25]). The blocking clutter of F is the family B(F), whose

members are precisely those H ⊆ N that satisfy the following:
P1. Intersection: H ∩ F = ∅ for all F ∈ F .
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P2. Minimality: If H ′ is any proper subset of H, then H ′ violates property P1.
A natural LP relaxation for (OPT ) is

min{cTx : x ∈ Q}, where Q = {xTχH ≥ 1 for all H ∈ B(F), xi ≥ 0 for all i}.

Q is known as the blocking polyhedron of F . The following result is well known and
easy to check:

Q ∩ Zn = {x ∈ Zn : ∃F ∈ F such that ∀i ∈ F, xi ≥ 1}.

For several classes of clutters (set-systems), it is known that the extreme points
of Q are the integral vectors that correspond to incidence vectors of elements in
F . By Minkowski’s theorem [25], every element in Q can be expressed as a convex
combination of the extreme points and extreme rays in Q. For blocking polyhedra,
the set of rays is

{x ∈ �n : ∀i, xi ≥ 0}.

Suppose we have a generic integer programming problem that is similar to (ROUTING-
II), except for the fact that for each k, (2.11) is replaced by the constraint

∑
i∈H

xki ≥ 1 ∀ H ∈ B(Fk);

Fk can be any clutter that is well-characterized by its blocking polyhedron Qk (i.e.,
the extreme points of the blocking polyhedron Qk are incidence vectors of the elements
of the clutter Fk). Thus, we have a generalization of (ROUTING-II):

(BLOCK) min(C +D)/2 subject to
K∑

k=1

xki ≤ C ∀ i ∈ N ,
∑
i

xki ≤ D ∀ k,(2.12)

∑
i∈H

xki ≥ 1 ∀ k and ∀ H ∈ B(Fk),

xki ∈ {0, 1} ∀ k and ∀i ∈ N .(2.13)

Note that the variables x are now indexed by elements of the set N . In the previously
discussed special cases, the elements of N are edges or pairs of nodes.

The LP relaxation of (BLOCK) replaces the constraint (2.13) by

0 ≤ xki ≤ 1 ∀ k = 1, . . . ,K ∀i ∈ N .

Theorem 2.6. The optimal integral solution value of (BLOCK) is at most a
constant factor times the optimal value of the LP relaxation.

Proof. Let (xki : k = 1, . . . ,K; i ∈ N ) denote an optimal solution to the LP
relaxation. By Caratheodory’s theorem [25], for each fixed k, (xki : i ∈ N ) can
be expressed as a convex combination of extreme points and extreme rays of the
blocking polyhedron Qk. However, note that the objective function can improve
only by decreasing the value of (xki ) coordinatewise, as long as the solution remains
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feasible. Furthermore, the extreme rays of the blocking polyhedron correspond to
vectors v with each vi nonnegative. Thus, w.l.o.g., we may assume that the LP
optimum is lexicographically minimal. This ensures that the optimal solution (xki ) can
be expressed as a convex combination of the extreme points of the polyhedron alone.
As seen above, the extreme points in this case are incidence vectors of elements of
the kth clutter (we use polyhedral language to let “kth clutter” denote the set-system
Fk).

Let C andD denote the fractional congestion and fractional dilation of the optimal
solution obtained by the LP relaxation of (BLOCK). Let Ak

1 , A
k
2 , . . . denote incidence

vectors of the elements in the kth clutter, and let Ak
j (i) be the ith coordinate of Ak

j .
Then we have a convex combination for each k:

∀i, xki =
∑
j

αk
j ·Ak

j (i), where

αk
j ≥ 0 ∀j, and

∑
j

αk
j = 1.

Thus, by constraints (2.12),
∑

j:|Ak
j
|≤2D α

k
j ≥ 1/2, since

∑
j α

k
j |Ak

j | ≤ D.

By filtering out those Ak
j with size greater than 2D, we obtain a set of canonical

objects for each k, whose sizes are at most 2D. By scaling the αk
j by a suitable factor,

we also obtain a new set of αk
j such that

∑
j:|Ak

j
|≤2D

αk
j = 1, αk

j ≤ 2αk
j .

Using these canonical objects and {αk
j } as the input to Theorem 2.2, we obtain a

set of objects (one from each clutter) such that the dilation is not more than 2D and
the congestion not more than 2(C +D). Hence the solution obtained is at most O(1)
times the LP optimum.

Remark. As pointed out by one of the referees, it is not clear whether the lexi-
cographically minimal optimal solution can be constructed in polynomial time. The
above result is thus only about the quality of the LP relaxation. It would be nice
to find the most general conditions under which the above can be turned into a
polynomial-time approximation algorithm.

3. Improved local vs. global balancing for covering. Coupled with the
results of [16, 17], our approximation algorithm for the routing time (a global crite-
rion) also simultaneously kept the maximum queue size (a local capacity constraint)
constant; our approach there implicitly uses the special structure of the cut covering
formulation. We now continue the study of such balancing in the context of CIPs.
The reader is referred to section 1.2 for the relevant definitions and history of CIPs. In
section 3.1, we will show how to approximate the global criterion well without losing
much in the “local” constraints {xj ≤ dj}. In section 3.2, we present approximation
algorithms for a subfamily of CIPs where xj ≤ dj is required for all j. One of the key
tools used in sections 3.1 and 3.2 is Theorem 3.3, which builds on an earlier rounding
approach (Theorem 3.2) of [31].
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3.1. Balancing local with global. The main result of section 3.1 is Corol-
lary 3.5. This result is concerned with unweighted CIPs and the case where
ln+(mB/y∗) > B. In this setting, Corollary 3.5 shows how the local capacity con-
straints can be violated much less in comparison with the results of [31], while keeping
the objective function value within a constant factor of that of [31].

Let exp(x) denote ex; given any nonnegative integer k, let [k] denote the set
{1, 2, . . . , k}. We start by reviewing the Chernoff–Hoeffding bounds in Theorem 3.1.
Let G(µ, δ)

.
= (exp(δ)/(1 + δ)(1+δ))µ, H(µ, δ)

.
= exp(−µδ2/2).

Theorem 3.1 (see [23]). Let X1, X2, . . . , X	 be independent random variables,

each taking values in [0, 1], R =
∑	

i=1Xi, and E[R] = µ. Then, for any δ ≥ 0,
Pr(R ≥ µ(1 + δ)) ≤ G(µ, δ). Also, if 0 ≤ δ ≤ 1, Pr(R ≤ µ(1− δ)) ≤ H(µ, δ).

We shall use the following easy fact:

∀µ ≥ 0 ∀δ ∈ [0, 1], G(µ, δ) ≤ exp(−µδ2/3).(3.1)

From now on, we will let {x∗j : j ∈ [n]} be the set of values for the variables in
an arbitrary feasible solution to the LP relaxation of the CIP; thus, 0 ≤ x∗j ≤ dj . (In

particular, x∗ could be an optimal LP solution.) Let y∗ = cT ·x∗. Recall that the case
where ln+(mB/y∗) ≤ B is handled well in [31]; thus we shall assume ln+(mB/y∗) >
B. We now summarize the main result of [31] for CIPs as a theorem. A key ingredient
of Theorem 3.2 is the FKG inequality [9].

Theorem 3.2 (see [31]). For any given CIP, suppose we are given any 1 ≤ β <
α < κ such that

(1−H(Bα, 1− β/α))m > G(y∗α, κ/α− 1)(3.2)

holds. Then we can find in deterministic polynomial time a vector z = (z1, z2, . . . , zn)
of nonnegative integers such that (a) (Az)i ≥ biβ for each i ∈ [m], (b)

∑
j cjzj ≤ y∗κ,

and (c) zj ≤ 	αx∗j
 ≤ 	αdj
 for each j ∈ [n].
The next theorem presents a rounding algorithm by building on Theorem 3.2.
Theorem 3.3. There are positive constants a3 and a4 such that the follow-

ing holds. Given any parameter ε, 0 < ε < 1, let α be any value such that α ≥
(a3/ε

2) max{ln+(mB/y∗)/B, 1}. Then we can find in deterministic polynomial time
a vector z = (z1, z2, . . . , zn) of nonnegative integers such that (a) (Az)i ≥ biα(1 − ε)
for each i ∈ [m], (b) cT · z ≤ a4y∗α, and (c) zj ≤ 	αx∗j
 ≤ 	αdj
 for each j ∈ [n].

Remark. It will be shown in the proof of Theorem 3.3 that we can choose, for
instance, a3 = 3 and a4 = 2. Since there is a trade-off between a3 and a4 that can
be fine-tuned for particular applications, we have avoided using specific values for a3
and a4 in the statement of Theorem 3.3.

The following simple proposition will also be useful.
Proposition 3.4. If 0 < x < 1/e, then 1− x > exp(−1.25x).
Proof of Theorem 3.3. We choose a3 = 3 and a4 = 2. In the notation of Theorem

3.2, we take β = α(1 − ε) and κ = a4α. Our goal is to validate (3.2); by (3.1), it
suffices to show that

exp(−y∗α/3) < (1− exp(−Bαε2/2))m.(3.3)

Note that the left- and right-hand sides of (3.3), respectively, decrease and increase
with increasing α; thus, since α ≥ α0

.
= (3/ε2) max{ln+(mB/y∗)/B, 1} it is enough

to prove (3.3) for α = α0. We consider two cases.
Case I. ln+(mB/y∗) ≤ B.
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Thus, α0 = 3/ε2 here. Since B ≥ 1, we have exp(−Bα0ε
2/2) < 1/e. Therefore,

Proposition 3.4 implies that in order to prove (3.3), it suffices to show that

y∗α0/3 ≥ 1.25m exp(−Bα0ε
2/2),

i.e., that y∗/ε2 ≥ 1.25m exp(−1.5B). This is true from the facts that (i) m/y∗ ≤
exp(B) (which follows from the fact that ln(m/y∗) ≤ ln+(mB/y∗) ≤ B), and (ii)
exp(1.5B) ≥ √e exp(B) ≥ 1.25ε2 exp(B).

Case II. ln+(mB/y∗) > B.
Here, it suffices to show that

exp(−y∗ ln+(mB/y∗)/(Bε2)) < (1− exp(−1.5 · ln+(mB/y∗)))m.(3.4)

Recall that ln+(mB/y∗) > B ≥ 1. Therefore, we have mB/y∗ > e, i.e., y∗/(mB) <
1/e. Thus,

(1− exp(−1.5 · ln+(mB/y∗)))m =

(
1−

(
y∗

mB

)1.5
)m

> exp(−1.25m(y∗/(mB))1.5).

The inequality follows from Proposition 3.4. Therefore, to establish (3.4), we just
need show that

y∗ ln+(mB/y∗)/(Bε2) ≥ 1.25 ·
√
y∗

mB
· y
∗

B
,

i.e., that ln+(mB/y∗)/ε2 ≥ 1.25/
√
e, which in turn follows from the facts that

ln+(mB/y∗) ≥ 1 and 1/ε2 ≥ 1. This completes the proof.
Our required result is as follows.
Corollary 3.5. Given any unweighted CIP with ln+(mB/y∗) > B and any

parameter ε, 0 < ε < 1, we can find in deterministic polynomial time a vector v =
(v1, v2, . . . , vn) of nonnegative integers such that (a) Av ≥ b, (b)

∑
j vj ≤ a2y∗(1/(1−

ε) + (1/ε2) ln+(mB/y∗)/B), where a2 > 0 is an absolute constant, and (c) vj ≤
	dj/(1− ε)
 for all j.

Proof. Let α = 	(a3/ε2) ln+(mB/y∗)/B
 and z be as in the statement of Theo-
rem 3.3. Define vj = 	zj/(α(1 − ε))
 for each j. Conditions (a) and (c) are easy to
check, given Theorem 3.3. Since the zj ’s are all nonnegative integers and since the
CIP is unweighted (cj = 1 for all j), condition (b) of Theorem 3.3 shows that at most
a4y
∗α of them can be nonzero. Thus, condition (b) follows since vj ≤ zj/(α(1−ε))+1

if zj > 0 and since vj = 0 if zj = 0.
As mentioned in section 1, this improves the value of maxj xj/dj from

O(ln+(mB/y∗)/B) [31] to O(1/(1 − ε)), while keeping (cT · x)/y∗ relatively small
at O((1/ε2) · ln+(mB/y∗)/B) (as long as ε is a constant bounded away from 1).

3.2. Handling stringent constraints. We now handle the case where the con-
straints xj ≤ dj have to be satisfied and where the coefficient matrix A has only zeroes
and ones. Recall from section 1 that there is a family of facility location problems
where the coefficient matrix has only zeroes and ones; this is an example of the CIPs
to which the following results apply.

We start with a technical lemma.
Lemma 3.6. For any 0 = u0 < u1 ≤ u2 ≤ · · · ≤ ui and any : > 0, the sum

si =
∑i

j=1(uj − uj−1) ln+(:/uj) is at most ui ln+(:/ui) + ui.
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Proof. If u1 ≥ :/e, then si =
∑i

j=1(uj − uj−1) = ui. Otherwise, let r ≥ 1
be the highest index such that ur < :/e. Thus, si = tr + ui − ur, where tr =∑r

j=1(uj − uj−1) ln(:/uj). Since

∑
j=1...r

(uj − uj−1) ln(l/uj) ≤
∫ ur

0

ln(l/x)dx = (x ln(l/x) + x)|ur

0 ,

it follows that tr ≤ ur ln(:/ur) + ur. Hence,

si = tr + ui − ur ≤ ur ln(:/ur) + ui ≤ ui ln+(:/ui) + ui;

the last inequality follows from the fact that for any x ≤ y such that x < :/e,
x ln(:/x) ≤ y ln+(:/y).

The following simple proposition will also help.
Proposition 3.7. For any : > 0 and :′ ≥ 1, ln+(:) ≥ (ln+(::′))/:′.
Proof. The proposition is immediate if ::′ ≤ e. Next note that for any a ≥ e, the

function ga(x) = ln(ax)/x decreases as x increases from 1 to infinity. Therefore, if
: ≤ e and ::′ > e, then

(ln+(::′))/:′ = (ln(::′))/:′ = g	(:
′) ≤ ge(:′) ≤ ge(1) = 1 = ln+(:).

Finally, if : > e and ::′ > e, then (ln+(::′))/:′ = g	(:
′) ≤ g	(1) = ln+(:).

Theorem 3.8. Suppose we are given a CIP with the matrix A having only zeroes
and ones. In deterministic polynomial time, we can construct a feasible solution z to
the CIP with zj ≤ dj for each j, and such that the objective function value cT · z is
O(y∗ ln+(m/y∗)).

Proof. Let a3 and a4 be as in the proof of Theorem 3.3. Define a5 = max{2, 4a3}
and, for any S ⊆ [n], y∗S =

∑
j∈S cjx

∗
j . Starting with S0 = [n], we construct a sequence

of sets S0 ⊃ S1 ⊃ · · · as follows. Suppose we have constructed S0, S1, . . . , Si so far.
Let hi = y∗Si

. If Si = ∅, we stop; or else, if all j ∈ Si satisfy a5 ln+(m/hi)x
∗
j ≤ dj , we

stop. If not, define the proper subset Si+1 of Si to be {j ∈ Si : a5 ln+(m/hi)x
∗
j >

dj}. For all j ∈ (Si − Si+1), we fix zj to be dj ≥ x∗j : note that for all such j,

zj ≤ a5 ln+(m/hi)x
∗
j .

Let St be the final set we construct. If St = ∅, we do nothing more; since zj ≥ x∗j
for all j, we will have Az ≥ b as required. Also, it is easy to check that zj ≤ dj for
all j. Therefore suppose St = ∅. Let α = a5 ln+(m/ht). Since we stopped at the
nonempty set St, we see that αx∗j ≤ dj for all j ∈ St. Recall that for all j ∈ St, we
have fixed the value of zj to be dj ≥ x∗j . Let w denote the vector of the remaining
variables, i.e., the restriction of x∗ to St. Let A′ be the submatrix of A induced by
the columns corresponding to St. We will now focus on rounding each x∗j (j ∈ St) to
a suitable nonnegative integer zj ≤ dj .

Define, for each i ∈ [m],

b′i = bi −
∑
j 
∈St

Ai,jzj ;

since zj ≥ x∗j for all j ∈ St, we get

(A′w)i =
∑
j∈St

Ai,jx
∗
j ≥ b′i ∀i ∈ [m].
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Since each bi and Ai,j is an integer, so is each b′i. Suppose b′i ≤ 0 for some i.
Then, whatever nonnegative integers zj we round the j ∈ St to, we will satisfy the
constraint (Az)i ≥ bi. Therefore, we can ignore such indices i and assume w.l.o.g.
that B′ .= mini b

′
i ≥ 1. (The constraints corresponding to indices i with b′i ≤ 0 can

be retained as “dummy constraints.”) Define ε = 1/2; recall that α = a5 ln+(m/ht).
Therefore Proposition 3.7 shows that

α ≥ 4a3 max{ln+(mB′/ht)/B
′, 1},

i.e., that α ≥ (a3/ε
2) max{ln+(mB′/ht)/B

′, 1}. Thus, by Theorem 3.3, we can round
each x∗j (j ∈ St) to some nonnegative integer zj ≤ 	αx∗j
 ≤ dj in such a manner that

∑
j∈St

cjzj = O(htα), and ∀i ∈ [m], (A′z)i ≥ biα(1− ε) ≥ bi;(3.5)

the last inequality (i.e., that α(1 − ε) ≥ 1/2) follows from the fact that α ≥ a5 ≥ 2.
Therefore we can check that the final solution is indeed feasible. We need only to
bound the objective function value, which we proceed to do now.

We first bound

∑
j 
∈St

cjzj =

t−1∑
i=0

∑
j∈(Si−Si+1)

cjzj .(3.6)

Fix any i, 0 ≤ i ≤ t − 1. Recall that for each j ∈ (Si − Si+1), we set zj = dj ≤
a5 ln+(m/hi)x

∗
j . Thus,

∑
j∈(Si−Si+1)

cjzj ≤ O(ln+(m/hi)
∑

j∈(Si−Si+1)

cjx
∗
j ) = O(ln+(m/hi) · (hi − hi+1)).(3.7)

Setting ui = ht+1−i and substituting (3.7) into (3.6),

∑
j 
∈St

cjzj = O

(
t+1∑
i=2

(ui − ui−1) ln+(m/ui)

)
,(3.8)

where ut+1 = y∗. Now, if St = ∅, (3.8) gives the final objective function value.
Otherwise, if St = ∅, (3.5) shows that

∑
j∈St

cjzj = O(htα) = O(u1 ln+(m/u1)).

This, in combination with (3.8) and Lemma 3.6, shows that
∑

j cjzj = O(y∗ ln+(m/y∗)).
This completes the proof.

4. Conclusion. In this paper, we analyze various classes of problems in the
context of balancing global vs. local criteria.

Our main result is the first constant-factor approximation algorithm for the off-
line packet routing problem on arbitrary networks: for certain positive constants
c′ and c′′, we show that given any packet routing problem, the routing time can
efficiently be approximated to within a factor of c′, while ensuring that all edge-
queues are of size at most c′′. Our result builds on the work of [16, 17], while exploiting
an interesting trade-off between a (hard) congestion criterion and an (easy) dilation
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criterion. Furthermore, we show that the result can be applied to a more general
setting, by providing a polyhedral perspective of our technique. Our approach of
appropriately using the rounding theorem of [13] has subsequently been applied by
Bar-Noy et al. [3] to develop approximation algorithms for a family of multicasting
problems. It has also been applied for a family of routing problems by Andrews and
Zhang [2].

The second major result in the paper improves upon a class of results in
multicriteria CIPs. We show that the local criterion of unweighted CIPs can be
improved from an approximately logarithmic factor to a constant factor with the
global criterion not deteriorating by more than a constant factor (i.e., we maintain a
logarithmic factor approximation).

The third main result improves upon a well-known bound for CIPs, in the case
where the coefficient matrix A has only zeroes and ones. We show that the approxi-
mation ratio can be improved from O(y∗ lgm) to O(y∗ ln+(m/y∗)).

Some open questions are as follows. It would be interesting to study our packet
routing algorithm empirically and to fine-tune the algorithm based on experimental
observation. It would also be useful to determine the best (constant) approximation
possible in approximating the routing time. An intriguing open question is whether
there is a distributed packet routing algorithm with a constant-factor approximation
guarantee. Finally, in the context of covering integer programs, can we approximate
the objective function to within bounds such as ours, with (essentially) no violation
of the local capacity constraints?

Acknowledgments. We thank Bruce Maggs, the STOC 1997 program commit-
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These have helped improve the quality of this paper a great deal. In particular, one
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Abstract. In this paper we consider a one-dimensional bin packing problem where the bins do
not have identical sizes, or a variable-sized bin packing problem, to minimize the bin consumption,
i.e., the total size of the opened bins. The identical size problem has been extensively studied in
the literature both for static and dynamic settings. The worst-case or average-case performance has
been analyzed. Our problem setting particularly arises in metal cutting industries. Therefore, it
presents a great practical relevance. Four greedy approximation algorithms based on a construction
approach called largest object first with least absolute waste (LFLAW), largest object first with least
relative waste (LFLRW), least absolute waste (LAW), and least relative waste (LRW) are examined.
Their absolute worst-case performances are analyzed. The worst case bounds are 2 for LFLAW and
LFLRW, 3 for LAW, and 2 + ln 2 for LRW. We also show that these worst-case bounds are tight.
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1. Introduction. This paper addresses the worst-case performance of four ap-
proximation algorithms to solve a one-dimensional bin packing problem. The perfor-
mance of an approximation algorithm can be measured by worst-case performance
bounds. Two types of bounds can be distinguished: asymptotic worst-case perfor-
mance bounds and absolute worst-case performance bounds. If, for a given instance
I, CH(I) and C

∗(I) are the criterion value given by approximation algorithm H and
the optimal criterion value, respectively, an asymptotic worst-case analysis consists
of finding a relation of the form

CH(I) ≤ R× C∗(I) +A for any I,

where A and R are nonnegative constants independent of I. An absolute worst-case
analysis establishes a relation of the form

CH(I) ≤ Ω× C∗(I) for any I.

The smallest values of R and Ω satisfying the relations above are called asymptotic
worst-case performance ratio and absolute worst-case performance ratio and denoted
as RH and ΩH, respectively. Sometimes, RH and ΩH are also said to be tight asymp-
totic worst-case bound and tight absolute worst-case bound, respectively. Therefore,
we have

RH = lim
k→+∞

sup
I

{
CH(I)

C∗(I)

∣∣∣∣C∗(I) ≥ k
}
,

ΩH = sup
I

{
CH(I)

C∗(I)

}
= inf

{
ρ

∣∣∣∣CH(I)

C∗(I)
≤ ρ ∀I

}
.
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Note that there may be no instance I such that CH(I)
C∗(I) = ΩH. In this case, ΩH can

only be asymptotically reached; i.e., for any ε > 0, there is an instance I such that

0 ≤ ΩH − CH(I)
C∗(I) ≤ ε. By definition, the following relation is true:

RH ≤ ΩH.

The problem considered in this paper is a one-dimensional bin packing problem.
The classical one-dimensional bin packing problem, called unit-capacity bin packing in
the literature, can be described as follows: Given a list of m objects L = {1, 2, . . . ,m}
with sizes si ≤ 1 (i = 1, 2, . . . ,m), pack all the objects into a minimum number of bins
of size 1. Because of the NP-hardness of the problem and the limitation on computa-
tion time due to specific application environments (telecommunications and computer
systems, for instance), low complexity methods are needed. Many approximation al-
gorithms, sometimes even with linear complexity, have been proposed with evaluated
performance. These methods can be classified into on-line algorithms, such as first fit
(FF) and best fit (BF), and off-line algorithms, such as first fit decreasing (FFD) and
best fit decreasing (BFD). The performance is evaluated either in average-case [7], [5]
or in worst-case [4], [6]. An excellent survey of the research on this problem was given
by Coffman, Garey, and Johnson, [4]. This survey was again updated in 1996 [6].
Johnson [12] examined the asymptotic worst-case performance of four approximation
algorithms: FF, BF, FFD, and BFD. Tighter bounds on the performance of FF and
BF are given in [10] and those of FFD and BFD by Baker [2], respectively. Ivanyi [11]
studied the absolute worst-case performances of these four approximation algorithms.
Simchi–Levi [17] proved that the absolute worst-case performance ratio is 1.5 for FFD
and BFD and it is at least 1.7, but no more than 1.75, for FF and BF. The asymptotic
worst-case ratios for best-k-fit and next-k-fit are given in [14], [15], respectively. That
for HARMONICM is given in [13].

In this paper, we study a slightly different problem, a so-called variable-sized
bin packing problem: Given a set L of m objects {1, 2, . . . ,m} with sizes si (i =
1, 2, . . . ,m) and given M types of bins of sizes Sj (i = 1, 2, . . . ,M), pack all the ob-
jects so that the sum of the sizes of the bins used (called bin consumption hereafter)
is minimum. It is generally assumed that any object of L can be packed into at least
one type of bin and there is an inexhaustible supply of bins of each type. Compared
with the unit-capacity bin packing problem, variable-sized bin packing received less
attention, because it is more general and therefore more difficult, but is receiving
more and more interest from researchers [9], [16], [8], [18] due to its variety of inter-
pretations from computer storage allocation to stock cutting. As for unit-capacity
bin packing, both on-line [8], [18] and off-line [9], [16] settings are studied. However,
only asymptotic worst-case performance ratios are given for proposed algorithms. In
this paper, we propose four greedy approximation algorithms and we analyze their
absolute worst-case performance. This work is motivated by a real life cutting stock
problem for which we developed effective approximation algorithms to fulfill industrial
requirements [1], [3]. The real life problem has a more complex model and the pro-
posed algorithms are more sophisticated than those analyzed in this paper. To some
extent, the results of this paper can be seen as a preliminary step for the worst-case
analysis of algorithms proposed in [1] and [3].

Section 2 describes the four approximation algorithms. In section 3, their absolute
worst-case performance is analyzed.

2. Description of the approximation algorithms. Let M be the number of
bin types. Let Sj be the size of bins of type j (j = 1, 2, . . . ,M). The number of bins
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in each type is assumed to be infinite. Without loss of generality, we assume that the
objects of L are arranged into nonincreasing size order (s1 ≥ s2 ≥ · · · ≥ sm). Before
properly describing the approximation algorithms, we introduce a subproblem.

2.1. A subproblem. For any approximation algorithm considered in this paper,
there is a subproblem to be solved: Pack a subset of objects from a given set E
into a given type j of bin. This subproblem, which is a knapsack problem, can be
approximately solved by the FFD method: At each step, the lowest indexed (i.e., the
longest) remaining object is packed among those fitting the remaining capacity of the
bin. This process is repeated until either there is no more unpacked object or no
object fits the remaining size of the bin.

Another way to describe this procedure is the following. The objects are arranged
in a list in increasing order of their indexes. The first object in the list fitting the
remaining capacity of the bin is packed and then removed from the list. This process
is repeated until either no more object in the list fits the remaining capacity of the
bin or the list becomes empty.

Note that if an object does not fit the remaining capacity of the bin at a step, it
does not fit the remaining capacity of the bin at a subsequent step, since the remaining
capacity decreases along with the procedure. As a consequence, the object packed at
a step is necessarily larger indexed than those packed at previous steps.

Throughout the paper, σ(j, E), δ(j, E), and ω(j, E) denote the set of packed
objects, the total size of these objects, and the resulting waste (unused capacity of
the bin), respectively. By notation, we have

δ(j, E) =
∑

i∈σ(j,E)

si,

ω(j, E) = Sj − δ(j, E).
An important property of the solution is the following.
Property 2.1. For any unpacked object i ∈ E − σ(j, E), we have

si > Sj −
∑

i′∈σ(j,E),i′<i

si′ = ω(j, E) +
∑

i′∈σ(j,E),i′>i

si′ .

Proof. Assume that there is an object i∗ ∈ E − σ(j, E) such that si∗ ≤ Sj −∑
i′∈σ(j,E),i′<i∗ si′ . Let A = {i|i ∈ σ(j, E), i < i∗). After the objects in A are packed,

the remaining capacity is Sj −
∑
i∈A si. By assumption, object i

∗ fits the remaining
capacity of the bin. Therefore, the index of the next object to be packed must be
less than or equal to i∗, which is in contradiction with the fact that the next object
actually packed belongs to σ(j, E)−A = {i|i ∈ σ(j, E), i > i∗).

The consequence of this property is the following corollaries.
Corollary 2.2. For any unpacked object i ∈ E−σ(j, E), if i < inf σ(j, E), and

in particular if si > δ(j, E), then si > Sj.
This corollary holds, since if i < inf σ(j, E), then

∑
i′∈σ(j,E),i′<i si′ = 0.

Corollary 2.3. For any unpacked object i ∈ E−σ(j, E), we have si > ω(j, E).
This corollary holds since

∑
i′∈σ(j,E),i′>i si′ ≥ 0.

Property 2.4. Let E′ be a set of objects such that E ⊆ E′ and inf(E′ − E) >
supσ(j, E). Then σ(j, E) ⊆ σ(j, E′).

Proof. In the list corresponding to E′, the objects are arranged so that objects in
E are at the head of the list and the remaining ones are arranged at the tail. According
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to the procedure, an object in E′ −E can be packed only if no more object in E can
fit the remaining capacity of the bin. Before this stage, the procedure proceeds as if
there were only objects in E; i.e., all objects in σ(j, E) are packed.

2.2. Approximation algorithms. The proposed approximation algorithms are
iterative procedures. At each step, a subset of objects is packed into one chosen bin.
Let Lk be the set of unpacked objects at the beginning of the kth step (L1 = L). At
step k, the set of appropriate bin types Tk is identified and for each appropriate bin
type j ∈ Tk, the subproblem corresponding to the bin type j and the set of unpacked
objects Lk is solved and the corresponding waste ω(j,Lk) is computed.

One bin is actually chosen according to a given indicator specific to each ap-
proximation algorithm. Let tk be the type of the bin chosen at step k. The subset
σ(tk,Lk) of objects which are packed into one bin of type tk is removed from Lk.
This gives the set of unpacked objects at the beginning of the k + 1st step; namely,
Lk+1 = Lk − σ(tk,Lk).

Let largest object first with least absolute waste (LFLAW), largest object first
with least relative waste (LFLRW), least absolute waste (LAW), and least relative
waste (LRW) be the names of the four approximation algorithms, respectively.

In LFLAW and LFLRW, only those bin types at least as large as the longest un-
packed object are considered to be appropriate (i.e., Tk = {j|Sj ≥ si ∀ i ∈ Lk}) while
in LAW and LRW, all bin types are appropriate at each step (i.e., Tk = {1, 2, . . . ,M}
for any k).

In LFLAW and LAW, the bin type tk is the one that generates the lowest absolute
waste ω(j,Lk):

tk = arg min
j∈Tk

ω(j,Lk) = arg min
j∈Tk

{Sj − δ(j,Lk)} .

In LFLRW and LRW, the bin type tk is the one that generates the lowest relative
waste:

tk = arg min
j∈Tk

ω(j,Lk)
Sj

,

or equivalently

tk = argmax
j∈Tk

δ(j,Lk)
Sj

= arg min
j∈Tk

ω(j,Lk)
δ(j,Lk) .

It can be shown that the four approximation algorithms have the same complexity,
which is O(m2M).

3. Worst-case performance analysis. Throughout the paper, we assume,
without loss of generality, that

∑b
i=a xi = 0 whenever b < a. The following nota-

tion is also used in this paper.
Notation 3.1.
N : number of bins used to pack all objects of L according to the considered ap-

proximation algorithm, which is also equal to the number of steps needed for the ap-
proximation algorithm to pack all of the objects;

Pk: set of objects packed at step k: Pk = σ(tk,Lk);
lk: total size of the objects packed at step k: lk = δ(tk,Lk) =

∑
i∈Pk

si;
Lk: size of the bin chosen at step k: Lk = Stk ;
wk: waste generated at step k: wk = Lk − lk = ω(tk,Lk);



VARIABLE-SIZED BIN PACKING 2073

uk: the largest indexed (i.e., the shortest) unpacked object at the beginning of
step k: uk = supLk;

vk: the smallest indexed (i.e., the longest) unpacked object at the beginning of
step k: vk = inf Lk;

Λ: total size of all objects in L;
CH: total size of the bins used to pack the objects of L according to approximation

algorithm H;
C∗: total size of the bins used to pack the objects of L in an optimal solution;
α: the smallest k such that Lk is the longest.
By notation, we have the following properties.
Property 3.2. In the solution given by LFLAW or LFLRW, we have vk ∈ Pk

for any 1 ≤ k ≤ N .
Property 3.3. In a solution given by any one of the approximation algorithms

proposed, we have Lk < Lα for any k such that 1 ≤ k < α and Lk ≤ Lα for any k
such that α ≤ k ≤ N .

Property 3.4. For any k (k = 1, 2, . . . , N − 1) and for any i ∈ Lk+1 we have
wk < si.

Proof. This relation is straightforward after Corollary 2.3 by taking into account
the fact that Lk+1 = Lk − σ(tk,Lk).

The following corollary is one of the consequences of this property.
Corollary 3.5. For any k (k = 1, 2, . . . , N − 1), and for any k′ (k′ = k+1, k+

2, . . . , N), we have wk < lk′ .
Proof. For any object i ∈ Pk′ , we have i ∈ Lk+1. Therefore lk′ ≥ si > wk,

according to Property 3.4.
Property 3.6. For any approximation algorithm considered in this paper, we

have LN = min{Sj |Sj ≥ lN , j = 1, 2, . . . ,M}. In other words, the last bin is the
shortest one among those being capable of containing all objects of LN .

Proof. Assume that there is a bin type j such that Sj ≥ lN and LN > Sj .
This implies that δ(j,LN ) = δ(tN ,LN ) = lN and ω(j,LN ) < ω(tN ,LN ). This is in
contradiction with the fact that ω(tN ,LN ) ≤ ω(j,LN ) for LFLAW and LAW and

with the fact that ω(tN ,LN )
δ(tN ,LN ) ≤ ω(j,LN )

δ(j,LN ) for LFLRW and LRW.

The following corollary is a consequence of this property.
Corollary 3.7. For any bin type j such that Sj < LN , we have Sj < lN .
Lemma 3.8. For any τ ∈ {1, 2, . . . ,M}, if Sτ ≥ svN and Sτ < LN , then Sτ <

2δ(τ,LN ).
Proof. The fact that Sτ ≥ svN implies vN ∈ σ(τ,LN ) and consequently

svN ≤ δ(τ,LN ).(3.1)

Due to Corollary 3.7, the assumptions of Lemma 3.8 imply

Sτ < lN .(3.2)

Let G = LN − σ(τ,LN ). As Sτ is shorter than lN (see 3.2), all objects of LN
cannot be packed into one bin of type τ ; G is then nonempty. Furthermore, from
Corollary 2.3, we obtain

si > Sτ − δ(τ,LN ) ∀i ∈ G,(3.3)

By notation of vN , we also have

si ≤ svN ∀i ∈ G.(3.4)
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From (3.1), (3.3), and (3.4), we derive

Sτ − δ(τ,LN ) < svN ≤ δ(τ,LN ).

Therefore,

Sτ < 2δ(τ,LN ).

3.1. Worst-case analysis of algorithms LFLAW and LFLRW. An inter-
esting property of the solution yielded by LFLAW or LFLRW is that all bins are used
more than half, except perhaps the last one. This is shown in the following lemma.

Lemma 3.9. In the solution given by LFLAW or LFLRW, for any k such that
1 ≤ k < N , we have Lk < 2lk.

Proof. According to LFLAW and LFLRW, for any k such that 1 ≤ k < N , we
have vk ∈ Pk and consequently svk ≤ lk. According to Corollary 3.4, wk < suk+1

for
any k such that 1 ≤ k < N . If there is some k such that 1 ≤ k < N and lk ≤ wk,
we would have svk+1

≤ svk ≤ lk ≤ wk < suk+1
, which is in contradiction with the fact

that uk+1 ≥ vk+1.
Lemma 3.10. In the solution given by LFLAW or LFLRW, if α = N , then the

bin consumption C < 2C∗.
Proof. The bin consumption C can be upper bounded as follows:

C =
N∑
k=1

Lk ≤
N−1∑

k=1,k 	=α
Lk + 2Lα =

N−1∑
k=1,k 	=α

Lk + 2(lα + wα).

Using Lemma 3.9, this relation leads to

C < 2
N−1∑

k=1,k 	=α
lk + 2(lα + wα).

Furthermore, from Corollary 3.5, wα < lN . Therefore,

C < 2
N−1∑

k=1,k 	=α
lk + 2(lα + lN ) = 2Λ ≤ 2C∗.

Lemma 3.11. In the solution given by LFLAW or LFLRW, if α = N , then
C < 2C∗.

Proof. We first prove that

LN < 2lN .(3.5)

By notation, we have svN ≤ svN−1
. Since vN−1 ∈ PN−1 (see Property 3.2), we

should have svN−1
≤ LN−1. Therefore,

svN ≤ LN−1.(3.6)

In other words, vN can be packed into a bin of type tN−1; i.e., vN ∈ σ(tN−1,LN ).
The fact that α = N implies

LN−1 < LN(3.7)
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according to Property 3.3. According to Lemma 3.8, relations (3.6) and (3.7) imply

LN−1 < 2δ(tN−1,LN ).(3.8)

For LFLAW, this relation implies

wN = ω(tN ,LN ) ≤ ω(tN−1,LN )
= LN−1 − δ(tN−1,LN )
< δ(tN−1,LN ) ≤ lN

which is equivalent to (3.5).
For LFLRW, (3.8) implies that

LN/lN ≤ LN−1/δ(tN−1,LN ) < 2

which is equivalent to (3.5).
As a consequence, if α = N , (3.5) holds for both the solutions given by LFLAW

and LFLRW.
Considering Lemma 3.9 and relation (3.5), we obtain

C =
N∑
k=1

Lk < 2

N∑
k=1

lk = 2Λ ≤ 2C∗

The following theorem is straightforward from Lemmas 3.10 and 3.11.
Theorem 3.12. For any instance, we have CLFLAW/C

∗ < 2 and CLFLRW/C
∗ <

2.
Theorem 3.13. The upper bound 2 is tight for CLFLAW/C

∗ and CLFLRW/C
∗;

i.e., ΩLFLAW = ΩLFLRW = 2.
Proof. For LFLAW, consider the following instance composed of two types of bins

with sizes S1 = n+ 1 and S2 = 2− 1/n (n being a positive integer) and n objects of
same sizes l1 = l2 = · · · = ln = 1 have to be packed. In the solution given by LFLAW,
each object is packed into one bin of type 2, whereas the optimal solution consists of
packing all objects into one bin of type 1. Therefore CLFLAW = n(2− 1/n) = 2n− 1
and C∗ = n+ 1. When n tends towards +∞, the ratio CLFLAW/C

∗ tends towards 2.
For LFLRW, consider the following instance composed of three types of bins with

sizes S1 = 2n, S2 = 2, and S3 = 1 (n being a positive integer). The n+ 1 objects to
be packed are of sizes s1 = 1+1/n, s2 = s3 = · · · = sn+1 = 1. According to LFLRW,
all objects are packed into one bin of type 1, whereas the optimal solution consists of
packing object 1 into one bin of type 2 and each object i (i > 1) into one bin of type
3. Therefore CLFLRW = 2n and C∗ = n + 2. When n tends towards +∞, the ratio
CLFLRW/C

∗ tends towards 2.

3.2. Worst-case performance of LAW. This subsection is devoted to the
worst-case performance of LAW. As for LFLAW and LFLRW, we first prove some
lemmas used in the proof of the worst-case bound.

Lemma 3.14. In the solution given by LAW, LN ≤ max(C∗, 2lN ).
Proof. Assume that LN > max(C∗, 2lN ); i.e., LN > C∗ and LN > 2lN , from

which we can derive

lN < LN − lN .(3.9)
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Let τ be the type of the bin into which object vN is packed in an optimal packing.
By notation,

svN ≤ Sτ ≤ C∗.(3.10)

Together with the assumption that LN > C
∗, we obtain

Sτ < LN .(3.11)

From Corollary 3.7, we obtain

Sτ − δ(τ,LN ) < Sτ < lN .

Considering (3.9), we obtain

Sτ − δ(τ,LN ) < lN < LN − lN
which is in contradiction with the principle of LAW.

Theorem 3.15. For any instance, CLAW/C
∗ < 3.

Proof. The bin consumption CLAW is given by

CLAW =

N∑
k=1

Lk =

N−1∑
k=1

(lk + wk) + LN .

According to Corollary 3.5, we have

N−1∑
k=1

wk <

N∑
k=2

lk.

Consequently

CLAW <

N−1∑
k=1

lk +

N∑
k=2

lk + LN

< 2Λ− lN + LN .

According to Lemma 3.14, we obtain

CLAW < 2Λ +max(C∗ − lN , lN ).

Further considering the fact that Λ ≤ C∗, C∗ − lN ≤ C∗, and lN ≤ C∗, the relation
above allows us to prove the lemma.

Theorem 3.16. The upper bound 3 is tight for CLAW/C
∗, i.e., ΩLAW = 3.

Proof. Consider the following instance: Given two types of bins with sizes S1 =
n + 3 and S2 = 2 − 1/n (n being a positive integer), the n + 1 objects to be packed
are with sizes s1 = 2, s2 = s3 = · · · = sn+1 = 1.

The packing provided by LAW is as follows: Each of the objects 2, 3, . . . , n+1 is
packed into one bin of type 2 and object 1 is packed into one bin of type 1. For this
instance, CLAW = n(2− 1/n)+n+3 = 3n+2. In the optimal packing all objects are
packed into one bin of type 1. Therefore, C∗ = n+ 3. The ratio between CLAW and
C∗ tends towards 3 when n tends towards +∞.
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3.3. Worst-case performance bound of LRW. In this subsection, we use
the following notation.

Notation 3.17.
Qk: the total size of objects packed from step k to step N ; i.e., Qk =

∑N
j=k lj;

p: index such that Qp ≤ LN and Qp−1 > LN ; without loss of generality, p is set
to 1 if LN ≥ Q1 = Λ;

q: index such that Qq ≤ LN/2 and Qq−1 > LN/2; without loss of generality, q is
set to 1 if LN ≥ 2Q1 = 2Λ;

r: the smallest k such that Lk ≥ 2lk; if Lk < 2lk ∀ k such that 1 ≤ k ≤ N , then
r is set to N + 1, without loss of generality.

By notation, we have

Λ = Q1 > Q2 > · · · > QN ,
p ≤ q.(3.12)

The last relation can be justified as follows. If p > q, we would have p − 1 ≥ q and
therefore Qp−1 ≤ Qq from which it follows LN < Qp−1 ≤ Qq ≤ LN/2 which implies
LN < 0. This latter relation, however, is impossible.

For any k such that k ≥ p, we have Qk ≤ LN ; i.e., all objects in Lk can be packed
into one bin of type tN . Therefore, δ(tN ,Lk) = Qk. On the other hand, δ(tk,Lk) = lk.
According to LRW, we must have

lk
Lk

=
δ(tk,Lk)
Stk

≥ δ(tN ,Lk)
StN

=
Qk
LN

, k = p, p+ 1, . . . , N.(3.13)

In LRW, if one bin is packed at less than the half of its size, the subsequent bins
(in the packing order) are also packed at less than the half of their size. That is the
purpose of the following lemma.

Lemma 3.18. In the solution given by LRW, if r < N , then for any k such that
r ≤ k < N , we have Lk ≥ 2lk and lk+1 > Lk.

Proof. It is sufficient to prove that for any k such that 1 ≤ k < N , if Lk ≥ 2lk,
then Lk+1 ≥ 2lk+1, lk+1 > Lk.

From the assumption that Lk ≥ 2lk, we can derive wk = Lk − lk ≥ lk. According
to Corollary 2.3, we have

si > wk ≥ lk ∀i ∈ Lk+1(3.14)

which means that supLk+1 < inf Pk = inf(Lk − Lk+1).
From Property 2.4, it follows that Pk+1 = σ(tk+1,Lk+1) ⊆ σ(tk+1,Lk). This

implies that

wk+1 = ω(tk+1,Lk+1) ≥ ω(tk+1,Lk).(3.15)

On the other hand, according to LRW, we have ω(tk+1,Lk)/Lk+1 ≥ wk/Lk ≥ 1/2
which implies

ω(tk+1,Lk) ≥ 1
2
Lk+1.(3.16)

The two last relations (3.15) and (3.16) give wk+1 ≥ 1
2Lk+1; namely, Lk+1 ≥

2lk+1.
Relation (3.14) also implies suk+1

> Lk, according to Corollary 2.2. Considering
the fact that lk+1 ≥ suk+1

, we can conclude that lk+1 > Lk.
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From Lemma 3.18, we can deduce r ≥ q. This relation is obviously true if r =
N + 1. If r ≤ N , we have LN ≥ 2lN > lN +LN−1 = lN + 2lN−1 > · · · > lN + lN−1 +
· · ·+2lr > Qr. Therefore r ≥ p. Considering (3.13), this implies 2 ≤ Lr/lr ≤ LN/Qr;
i.e., Qr ≤ LN/2. As a consequence r ≥ q. Together with the relation p ≤ q, we obtain

1 ≤ p ≤ q ≤ r ≤ N + 1.

The following corollary is a consequence of Lemma (3.18).
Corollary 3.19. If Lα ≥ 2lα, then r ≤ N and α = N (Lk < LN for any k

such that 1 ≤ k < N).
Lemma 3.20. In the solution given by LRW, if Lα < 2lα, then CLRW < 2C∗.
Proof. The bin consumption is given by

CLRW =

α−1∑
k=1

Lk +

N−1∑
k=α

Lk + LN

≤
α−1∑
k=1

Lk +

N−1∑
k=α

lk +

N−1∑
k=α

wk + lα + wα.(3.17)

This relation is true whether or not α = N . According to Lemma 3.18, the fact
that Lα < 2lα implies that

Lk < 2lk, k = 1, 2, . . . , α.(3.18)

From Corollary 3.5, we obtain

N−1∑
k=α

wk <

N∑
k=α+1

lk(3.19)

and

wα < lN .(3.20)

The last relation holds whether or not α = N , since Lα < 2lα, or equivalently wα < lα.
Relations (3.17), (3.18), (3.19) and (3.20) give

CLRW < 2

α−1∑
k=1

lk +

N−1∑
k=α

lk +

N∑
k=α+1

lk + lα + lN

= 2Λ ≤ 2C∗.

Lemma 3.21. In the solution given by LRW, if LN ≥ 2lN , then C∗ ≥ LN .
Proof. Assume that LN > C

∗. We would have

LN > C
∗ ≥ Λ.

Let τ be the type of bin into which object vN is packed in an optimal solution.
This gives Sτ ≥ svN and Sτ ≤ C∗ by definition. Considering the assumption that
C∗ < LN , we have Sτ < LN . According to Lemma 3.8, we have

Sτ < 2δ(τ,LN ).(3.21)
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On the other hand, from the assumption that LN ≥ 2lN and the principle of
LRW, we must have

2 ≤ LN/lN ≤ Sτ/δ(τ,LN )
which is in contradiction with (3.21).

From now on, we derive the upper bounds of subsets of bins.
Lemma 3.22. In the solution given by LRW, if r ≤ N , we have

∑N−1
k=r Lk < Qr.

Proof. The lemma is obviously true if r = N . If r < N , for any k such that
r ≤ k < N , according to Lemma 3.18, we have Lk < lk+1. Therefore,

∑N−1
k=r Lk <∑N

k=r+1 lk = Qr+1 < Qr.

Lemma 3.23. In the solution given by LRW, we have
∑r−1
k=q Lk ≤ 2(Qq −Qr).

Proof. If q = r, we must have
∑r−1
k=q Lk = 0 = 2(Qq − Qr). The lemma thus is

true when q = r.
If q < r, for any k such that q ≤ k < r, we have Lk < 2lk, according to the

definition of r. Therefore
∑r−1
k=q Lk < 2

∑r−1
k=q lk = 2(

∑N
k=q lk−

∑N
k=r lk) = 2(Qq−Qr).

The lemma also is true when q < r.
Lemma 3.24. For any a > 0 and x > 0, we have ln(ax)− x/2 ≤ ln(2a)− 1.
Proof. Consider a function f(x) = ln(ax) − x/2. For this function, we have

f ′(x) = 1/x − 1/2 and f ′′(x) = −1/x2 < 0. Therefore, f(x) is a concave function
over (0,+∞). The maximum is obtained at f ′(x) = 0, i.e., at x = 2. Therefore,
ln(ax)− x/2 ≤ ln(2a)− 1.

Lemma 3.25. For any a ∈ (0, 1] and for any x > 0, we have (1−ax)/x ≤ − ln a.
Proof. Consider a function g(x) = 1 − ax + x ln a defined over [0,+∞). For this

function, we have g′(x) = (1− ax) ln a. Due to the fact that 0 < a ≤ 1 and x ≥ 0, we
have ax ≤ 1 and ln a ≤ 0; namely, g′(x) ≤ 0. Thus, g(x) is a nonincreasing function.
As a consequence, g(x) ≤ g(0) = 0. As a result, 1 − ax + x ln a ≤ 0, or equivalently
(1− ax)/x ≤ − ln a for any x > 0.

Lemma 3.26. In the solution given by LRW, if Lα ≥ 2lα, we have

q−1∑
k=p

Lk ≤ (1 + ln 2)LN − 2Qq.(3.22)

Proof. The lemma is obviously true if q = p, since (1+ln 2)LN−2Qq ≥ LN−2Qq ≥
0 =

∑q−1
k=p Lk. To prove the lemma when q > p, it is sufficient to show that

q−1∑
k=p

Lk ≤
(
ln

Qp
Qq−1

+ 2− LN
2Qq−1

)
LN − 2Qq.(3.23)

In fact, from Lemma 3.24, ln(ax) − x/2 ≤ ln(2a) − 1 for any x > 0 and a > 0.
By substituting a and x with Qp/LN and LN/Qq−1, respectively, all the conditions
are fulfilled and relation (3.23) implies (3.22). What follows shows the correctness of
(3.23).

From the fact that lq−1 = Qq−1 −Qq, we obtain

Lq−1 =
Lq−1(LN/2−Qq)

lq−1
+
Lq−1(Qq−1 − LN/2)

lq−1
.

From (3.13) and notation of q, we obtain

Lq−1/lq−1 ≤ LN/Qq−1 < 2.
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The last two relations give

Lq−1 < 2(LN/2−Qq) + LN/Qq−1(Qq−1 − LN/2)
=

(
2− LN

2Qq−1

)
LN − 2Qq.(3.24)

Therefore, if p = q − 1, then ∑q−1
k=p Lk = Lq−1 < (2 − LN

2Qq−1
)LN − 2Qq =

(ln
Qp

Qq−1
+ 2− LN

2Qq−1
)LN − 2Qq; in other words, (3.23) holds when p = q − 1.

Now consider the case where p < q − 1. From (3.13), we have

lk/Lk ≥ Qk/LN , k = p, p+ 1, . . . , q − 2,
or equivalently

(Qk −Qk+1)/Lk ≥ Qk/LN , k = p, p+ 1, . . . , q − 2,
which implies

Qk+1 ≤ (1− Lk/LN )Qk, k = p, p+ 1, . . . , q − 2.
As a matter of results,

Qq−1 ≤ Qp
q−2∏
k=p

(1− Lk/LN ).(3.25)

Since Lα ≥ 2lα, from Corollary 3.19, we obtain 1 − Lk/LN > 0 for any k =
p, . . . , q − 2. We have, using (3.25) and the property that the geometric mean of
positive numbers is less than or equal to the arithmetic mean of the same numbers,

Qq−1 ≤ Qp

 1

q − 1− p
q−2∑
k=p

(1− Lk/LN )


q−1−p

= Qp


1− 1

(q − 1− p)LN
q−2∑
k=p

Lk



q−1−p

,

or equivalently

q−2∑
k=p

Lk ≤ (q − 1− p)LN
[
1−

(
Qq−1

Qp

) 1
q−1−p

]
.(3.26)

From Lemma 3.25, we have (1 − ax)/x ≤ − ln a for any a ∈ (0, 1] and for any
x > 0. By substituting a and x with

Qq−1

Qp
and 1/(q − 1 − p), respectively, all the

conditions are fulfilled and (3.26) implies

q−2∑
k=p

Lk ≤ LN ln Qp
Qq−1

.(3.27)

Relation (3.23) is straightforward from (3.24) and (3.27).
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Lemma 3.27. In the solution given by LRW, if Lα ≥ 2lα, then
p−1∑
k=1

Lk < 2max(0,Λ− LN ) +Qr.(3.28)

Proof. The lemma is obviously true if p = 1. When p > 1, we first show that

Lp−1 < Qr.(3.29)

In fact, if Lp−1 ≥ Qr, we would have Lp−1 ≥ Qr ≥ QN = lN since Lα ≥ 2lα which
implies r ≤ N (see Corollary 3.19). This relation would lead to Lp−1 ≥ LN , according
to Property 3.6, which would be in contradiction with the fact that Lα ≥ 2lα which
implies Lp−1 < LN (see Corollary 3.19).

Therefore, if p = 2, we would have
∑p−1
k=1 Lk = Lp−1 < Qr ≤ 2max(0,Λ− LN ) +

Qr, As a matter of result, (3.28) holds if p = 2.
If p > 2, due to the fact that p − 1 < r, we have Lk < 2lk for any k such that

1 ≤ k ≤ p− 2. Therefore,
p−2∑
k=1

Lk < 2

p−2∑
k=1

lk = 2


 N∑
k=1

lk −
N∑

k=p−1

lk




= 2 (Λ−Qp−1) < 2(Λ− LN )
≤ 2max(0,Λ− LN ).(3.30)

Relations (3.30) and (3.29) show that (3.28) is also true when p > 2.
Lemma 3.28. In the solution given by LRW, if Lα ≥ 2lα then CLRW < (2 +

ln 2)C∗.
Proof. According to Corollary 3.19, we have α = N , LN ≥ 2lN and r ≤ N .

According to Lemma 3.21, we have

LN ≤ C∗.(3.31)

From Lemmas 3.22–3.27, the bin consumption CLRW can be upper bounded as

CLRW =

p−1∑
k=1

Lk +

q−1∑
k=p

Lk +

r−1∑
k=q

Lk +

N−1∑
k=r

Lk + LN

< 2max(0,Λ− LN ) + (1 + ln 2)LN + LN
= max {(2 + ln 2)LN , 2Λ + LN ln 2} .

By definition, C∗ ≥ Λ. From this relation and (3.31), we can deduce

CLRW < max {(2 + ln 2)LN , 2Λ + LN ln 2}
≤ (2 + ln 2)C∗.

The following theorem is straightforward from Lemmas 3.20 and 3.28.
Theorem 3.29. For any instance, CLRW/C

∗ < 2 + ln 2.
Theorem 3.30. The bound (2+ln 2) is tight for CLRW/C

∗; i.e., ΩLRW = 2+ln 2.
Proof. Consider the following instance composed of two types of bins with sizes

S1 = 2n + 2 and S2 = 2, n being a positive integer strictly greater than 2. Let
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y(n) = ln 2
ln(n2+n+1)−lnn2 and z = �y(n)�. The objects to be packed are as follows:

s1 = 2n+1
n , s2 = (n

2+n+1
n2 )z, s3 = (n

2+n+1
n2 )z−1, . . ., sz+1 =

n2+n+1
n2 , sz+2 = sz+3 =

· · · = sn+z−1 =
n+1
n .

All objects except object 1 are strictly longer than 1 and strictly less than 2.
Object 1 is strictly longer than 2. In the solution resulting from algorithm LRW,
n + z − 2 bins of type 2 are used to pack objects 2 to n + z − 1, each containing
exactly one object. Object 1 is packed into one bin of type 1. This gives rise to a bin
consumption CLRW = 2(n + z − 2) + (2n + 2) = 2z + 4n − 2. The optimal packing
consists of packing all objects into one bin of type 1. Then C∗ = 2n+ 2. Therefore,

CLRW

C∗
=
2n− 1
n+ 1

+
z

n+ 1
.

According to the definition of z,

y(n)− 1 < z ≤ y(n).
Then,

2n− 2
n+ 1

+
y(n)

n+ 1
<
CLRW

C∗
≤ 2n− 1
n+ 1

+
y(n)

n+ 1
.

When n tends towards +∞, both 2n−2
n+1 and 2n−1

n+1 tend towards 2, and y(n)
n+1 tends

towards ln 2. Therefore, the ratio CLRW

C∗ tends towards 2 + ln 2.

3.4. Additional topic. Let LW be the name of the algorithm which consists
of selecting the best one among the solutions found by the four algorithms described
and analyzed previously. By definition, it is obvious that

ΩLW ≤ 2.
On the other hand, there is an instance such that CLW/C

∗ tends towards 1 + ln 2.
Therefore, we can claim that

1 + ln 2 ≤ ΩLW ≤ 2.
This instance is quite similar to the one in the previous section. Two types of bins
are available, respectively, with sizes S1 = 2n and S2 = 2, n being a positive integer

strictly greater than 2. The objects to be packed are as follows: s1 = (n
2+n+1
n2 )z,

s2 = (
n2+n+1
n2 )z−1, . . ., sz =

n2+n+1
n2 , sz+1 = sz+2 = · · · = sn+z−2 =

n+1
n .

Proof. All objects are strictly longer than 1 and strictly less than 2. In the
solution resulting from algorithm LW (all four algorithms yield the same solution),
n + z − 2 bins of type 2 are used to pack objects 1 to n + z − 2, each containing
exactly one object. This gives rise to a bin consumption CLW = 2(n + z − 2). The
optimal packing consists of packing all objects into one bin of type 1. Then C∗ = 2n.
Therefore,

CLW

C∗
=
n− 2
n

+
z

n
.

Then,

n− 3
n

+
y(n)

n
<
CLW

C∗
≤ n− 2

n
+
y(n)

n
.

When n tends towards +∞, both n−3
n and n−2

n tend towards 1, and y(n)
n tends

towards ln 2. Therefore, the ratio CLW

C∗ tends towards 1 + ln 2.
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4. Conclusion. Four greedy approximation algorithms based on a construction
approach have been proposed to pack a given set of objects into bins of different sizes.
The worst-case performance has been determined for each approximation algorithm.
Current investigations aim at finding worst-case performance bounds for LW and for
more sophisticated approximation algorithms developed for a real life cutting stock
problem.

Acknowledgment. The authors are grateful to one of the referees for making
us aware of some references.
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Abstract. We consider first-order specifications together with the restriction to accept only
programmable algebras as models. We provide a criterion which links this approach with the “gen-
eration principle”: all programmable models of any specification SP that meets this criterion are
reachable. We also show an example of a specification which does not satisfy the criterion and admits
a programmable yet nonreachable model. Moreover, a general method of showing the existence of
programmable but nonreachable models for a class of first-order specifications is given.
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1. Introduction. The problem of characterizing intended algebras is important
in various areas of computer science. In the areas of specification, development, and
validation of software systems one needs to describe the intended models—typically
“no junk” algebras—modelling (representing) possible or actual implementations of
software systems being specified.

In this paper we make use of intrinsic conceptual parallelism between software
engineering and metamathematics. Some software modules—classes, libraries, pack-
ets, etc.—can be conveniently viewed as algebraic structures. The goal of specifying
software modules then finds its formal counterpart: specification of algebraic struc-
tures. In the terminology of computer scientists one sometimes also says specification
of data types. A formal specification may (and should) serve as the only source of
information on a data structure A when one constructs and/or analyzes a program P
which uses the data structure A. Suppose that such a data structure A is described
by a specification SP . Is the specification SP sufficiently rich in order to ensure that
any proof of a valid semantical property of the program P (such as correctness, termi-
nation, etc.) can rely only on the axioms listed in SP? Or should one add some extra
constraints—or further information—on data structure A beyond those contained in
the specification SP?

Typically, the answer to the latter question is affirmative: first-order logic is
not strong enough to exclude all nonintended models of a specification, and hence
nonintended implementations of the specified module. Similar problems arise also
with specifications intended to be loose though not “too loose.”

Various authors introduce some special strong additional requirements to cope
with this problem. For instance, the category-theoretic initial (also, terminal) alge-
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bra semantics approach has attracted a lot of attention. In these approaches, one
selects as the semantics of a specification only initial (respectively, terminal) objects
in the category of all algebras that satisfy given specification axioms; see, e.g., [4],
[2], [18]. Another option is to require the algebras to be reachable (generated by the
empty set, or standard—see the “generation principle” of [1]). Reachable algebras
cannot be characterized by any set of first-order axioms, since every reachable alge-
bra has an elementary extension that is not reachable, by direct application of the
Skolem–Löwenheim theorem. None of these extra requirements (initiality, terminal-
ity, reachability) is expressible in first-order logic or its fragments (e.g., equational
logic) often used in algebraic specifications. They can, however, be expressed in some
stronger logics, for instance, in various versions of algorithmic logic (see [12]) or in-
finitary logics with proof systems involving infinitary proof rules (e.g., a version of the
ω-rule) or in the second-order logic with the semantics where second-order variables
range either over all subsets of the universe or only over finite subsets (weak second-
order logic). Nevertheless, the classical first-order logic is of special interest here, at
least because of its familiarity and since most of the contemporary mathematics has
been done in it.

There are two possible ways to proceed: either we can restrict the class of models
considered to some special structures only, characterized by some extralogical means,
or we can work with a stronger logic. In this paper we promote and advocate the first
possibility. However, we propose a “new” natural requirement of programmability
(computability) of the models as the extralogical selection criterion. This seems more
natural and friendly to programmers and to programming environment than other
approaches proposed so far. By the Church thesis all possible implementations of any
specification are programmable. Therefore, selecting programmable algebras as the
only models considered is kind of a “minimal” requirement. It is perhaps surpris-
ing that this natural possibility has not been properly exploited in the theory and
practice of algebraic specifications. The surprise is even more evident in light of a
whole line of interesting results by Bergstra and Tucker [2] on the interplay between
computability and equational specifications and on the expressive power of the initial
algebra specifications.

To reiterate, we propose the classical first-order logic with the programmable
(recursive) algebra semantics to be used for algebraic specifications.

It should be emphasized here with no need of any further details that the pro-
grammability requirement is natural and comprehensible to potential software devel-
opers, specifiers, and validators, as perhaps opposed to the abstract category-theoretic
initiality or terminality criteria. A serious demand for detailed study of this kind of re-
quirements follows, for instance, from a work of Sannella and Tarlecki [14] on a “gap”
between the usual viewpoint of algebraic specification based on arbitrary models and
that of programming frameworks (such as Extended ML [8]) more realistically based
on programmable models. Traditionally in the area, abstract many-sorted algebras
are used to model programs: the representation of data is arbitrary and operations are
modelled as functions. Formal development of software systems from specifications
calls for restriction of these general concepts to the kind of models that underlie se-
mantics of programming languages. For example, the semantics of Standard ML [10]
uses rather concrete models, where data values are represented as closed constructor
terms and operations are represented as “closures.”

We believe that the programmable reachable algebras provide an interesting gen-
eral framework for algebraic specifications. In this note we present some technical
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results to justify this belief and to start a proper investigation of such a framework.

2. Terminology and notation. In this paper we consider specifications as clas-
sical first-order (or elementary) theories. Unlike in the classical model-theory, we work
with many-sorted algebras; a many-sorted algebra consists of a carrier set split into
a family of nonempty carriers named by sorts with (a finite number of) operations
on them. The carriers and operations of an algebra are named in the algebra’s signa-
ture. Zero-ary operations are just the distinguished elements, interpreting constants
of the language according to the algebra’s signature. In general, the operations may
be partial functions on their sorts. Throughout the paper we work with first-order
logic with equality, i.e., formulas include equalities between terms of the same sort (for
each sort) interpreted as the identity of the denotations of the terms. Occasionally we
simplify the exposition by leaving the reader with many details of rigorous “sorting”
of the formal expressions whose content is sketched only informally.

Definition 2.1. An algebra (in general, a relational structure) is called pro-
grammable (or recursive, or computable) whenever all of its carriers are computable
sets and all of its operations (in the general case, relations) are computable functions
defined on computable domains.

We will be talking only about countable algebras. Therefore we can always con-
sider beforehand an isomorphic copy of a given algebra built on the natural num-
bers and then define the algebra to be recursive whenever this copy is recursive.
For example, the natural numbers with the usual arithmetic operations form a pro-
grammable algebra (N ; 0, suc,+,×). Given a nonrecursive function f , the algebra
(N ; 0, suc,+,×, f) is not programmable.

We illustrate the ideas and results of this paper with various data types of stacks
and their first-order specifications. We focus on the stacks because of their relevance
for implementing recursive computations and modelling recursively defined collections
of data, and because they provide a convenient example that we hope should be
familiar to the reader. Stack theory can be formalized in various forms, essentially
different in many ways from the metamathematical viewpoint. All of them share in
their signature two sorts (one for elements and another for stacks) and the usual stack
operations.

Given a finite or infinite set E, by the true stack theory on E we mean the first-
order theory of the model with two-sorted carrier set E,E∗, where E∗ is the set of
all finite sequences of the members of E, and the usual operations top, pop, push,
the distinguished empty sequence, and with all the elements of E as constants in
the signature. In this paper we typically consider at most countably infinite E. The
operations top and pop are undefined on empty. Here are the usual definitions for
each e ∈ E and s = (e0, . . . , en) ∈ E∗:

push(e, s) = (e0, . . . , en, e),
top(s) = en for nonempty s,
pop(s) = (e0, . . . , en−1) for nonempty s.

This yields a family of different true stack theories, one for each E. Modulo the names
of the constants used, we in fact consider here one such theory for each (finite or
infinite) cardinality of E. Each of them is formally a theory over a different signature
(following the usual terminology in mathematical logic, we will say a language of a
theory, rather than its signature).
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In the countably infinite case, one can think of E as of the set of natural numbers.
However, the members of E need not be the natural numbers, since the signature of
the model does not contain any arithmetic operations.

By the axiomatic theory of stacks on E we mean the (classical first-order) conse-
quences of the universal closure of the following axioms in the (first-order) language
corresponding to the above model:

(Ax1) push(x, s) �= empty,
(Ax2) top(push(x, s)) = x,
(Ax3) pop(push(x, s)) = s,
(Ax4) s �= empty → push(top(s), pop(s)) = s.

This theory is a proper subtheory of the true stack theory on E. In particular,
the true stack theory, but not the axiomatic stack theory, admits the following scheme
of structural induction for every first-order formula ϕ:

[ϕ(empty) ∧ ∀x∀s (ϕ(s)→ ϕ(push(x, s)))]→ ∀sϕ(s).

By the true theory of stacks on the natural numbers we mean the first-order theory
of the model (N,N∗; 0, suc,+,×, top, pop, push, empty) with the usual meaning of the
arithmetic operations on the set N of natural numbers. The Peano axioms for the
sort of elements and axioms (Ax1–Ax4) for stacks form yet another formalization,
which we will call the axiomatic stack theory on the natural numbers.

Let us point out that here we mean the Peano axioms with the scheme of elemen-
tary induction

[ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x+ 1))]→ ∀xϕ(x)

for every first-order formula ϕ. By Peano Arithmetic we mean the (classical) first-
order consequences of the usual axioms for 0, suc,+,× with the scheme of elementary
induction.

3. Reachable algebras.
Definition 3.1. An algebra is called reachable if it is generated from it’s under-

lying constants by finitely many successive applications of the algebra’s operations.
An algebra A is generated by a subset X of the carrier of A (a set of generators)

if all the elements of A are the values of Σ-terms under some valuation of variables
into X. Σ is the signature of A. Now A is reachable iff it is generated by the empty
set of generators.

Equivalently, an algebra is reachable if each element of its universe (carrier sets)
is the denotation of a closed (ground) term in the (first-order) signature of the algebra
(cf. the notion of a Herbrand model in model-theory). The reachable algebra of natural
numbers, the only reachable model of Peano Arithmetic, is usually called the standard
model. One says the reachable algebras have “no junk” property: they contain all data
you can talk about in the algebra’s formal language and nothing more. This does not
imply, of course, another useful property of “no confusion” (or “unambiguity,” or “the
unique name”) that different terms denote distinct data items, unless those terms are
forced to be identified by the specification axioms.

Of course, reachable algebras need not be programmable in general. For instance,
the nonprogrammable algebra (N, 0, suc, f) with nonrecursive f mentioned above is
reachable. In this paper we show that for a sufficiently rich theory its reachable
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models can be distinguished in the class of programmable models by a single first-
order axiom. This is based on a deep result of Tennenbaum [17] that every recursive
model of Peano Arithmetic (with the first-order induction scheme) is standard.

Roughly, a first-order theory T is sufficiently rich in this context if Peano Arith-
metic can be recursively interpreted in T and T has the finite sequence coding prop-
erty. Let us recall the necessary notions of mathematical logic.

For the concept of an interpretation we refer, for instance, to Shoenfield [15]. We
say that Peano Arithmetic can be interpreted in T whenever there are formulas IN (·),
I0(·), IS(·, ·), IAdd(·, ·, ·), and IMult(·, ·, ·) in the language of T such that T proves
all the Peano axioms relativized to the interpretation I. An interpretation defines a
model of Peano Arithmetic within every model of T : IN defines its carrier, while the
other formulas define the operations (or their graphs) of arithmetic, respectively. An
interpretation is recursive if it defines a recursive model of Peano Arithmetic within
every recursive model of T .

Given a theory with an interpretation of (enough of) arithmetic, one can think of
sequences indexed by the natural numbers of the interpretation, i.e., by the elements
of the carrier of the interpretation. Then one can talk about possible coding of initial
segments of such sequences by single elements. In the following definition, intuitively,
BETA is a uniform projection (decoding) function: for a sequence a0, a1, . . . , al, there
is a code u such that BETA(u, j) = aj for each j ≤ l. Let us stress once more though
that the “length” of the sequence and the “indexing subscripts” are numbers only in
the sense of the interpretation of arithmetic.

Definition 3.2. We say that a theory T with an interpretation of arithmetic has
the finite sequence coding property if there is a binary function BETA definable in T
such that

for every formula A(x, y, parameters) in the language of T , if Tproves
“for each x of the arithmetic interpretation universe IN , there exists exactly one y

such that A(x, y, parameters),”
then Talso proves the following:

“for each l of IN , there exists a u such that for each j ≤ l,
A(j,BETA(u, j), parameters).”

Models of a theory with the finite sequence coding property should be compared
with the concept of arithmetical universes of Harel [6]. Harel’s arithmetical universes
are equipped with a copy of the standard model of arithmetic, whereas we consider
algebras equipped with a copy of just a model of Peano Arithmetic. The latter turns
out to be standard under the assumptions of the following theorem.

Theorem 3.3. Let T be a first-order theory over a finite language such that
1. Peano Arithmetic can be recursively interpreted in T and
2. T has the finite sequence coding property.
Then there is a single sentence σreach in the language of T such that every recur-

sive model of T satisfying σreach is reachable.
Proof. To prove the above theorem we take the following sentence as σreach:

∀x∃u (u codes a path of reaching x from the generators).

More precisely, though still informally, the formula under the two quantifiers says the
following: u codes a sequence of values in a given model M such that x is the last
element of the sequence and each element in the sequence is either a denotation of a
constant in M or can be obtained from earlier values in the sequence by application
of one of the operations ofM . Then consider a recursive modelM of T . M contains a
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recursive model of Peano Arithmetic. The latter has to be standard by Tennenbaum’s
result [17]. Therefore, if σreach holds in M , then M is reachable.

Since the above sentence σreach holds in the standard model of the theory of
stacks on the natural numbers (which contains Peano Arithmetic and clearly has the
sequence coding property) the above theorem gives us the following corollary.

Corollary 3.4. Every recursive model of the true theory of stacks on natural
numbers is reachable.

It now follows easily that every programmable model of the true stack theory
on natural numbers is isomorphic to (N,N∗; 0, suc,+,×; top, pop, push, empty). Can
anyone supply a better, while so friendly, specification of this data type?

The message can now be put forward as follows. For any sufficiently rich spec-
ification, if one restricts its semantics to programmable models only, then in order
to ensure reachability, which in many cases means uniqueness, one simply needs to
throw implicitly or explicitly the appropriate σreach into the specification. Given a
sufficiently rich specification, in order to verify that all its programmable models are
reachable it is necessary and sufficient to check whether the appropriate σreach is
derivable from this specification. We have just applied this result to the true stack
theory on natural numbers.

4. Nonreachable programmable algebras. Theorem 3.3 indicates that com-
putability of a model of a sufficiently rich specification implies its reachability. In this
section we provide examples of specifications (theories) that are not rich enough and
admit recursive nonreachable models.

As an easy warm-up example consider the usual specification axioms for successor:

succ(x) �= 0,
succ(x) = succ(y)→ x = y.

Any linear order of type ω+(ω∗+ω) provides a model of these axioms in the obvious
way (with no claim of induction). Clearly, this model is recursive but nonreachable.

There are several ways of constructing a recursive nonreachable model of the true
stack theory (as well as of its axiomatic mutations) on a finite set of elements. The
present research has evolved from a definition of such a model written as a program
in [11].

Here we give details of one possible construction of a recursive nonreachable model
of the axiomatic stack theory on a finite E.

Let us first recall the Gödel’s recursive function β such that for any natural
numbers a1, . . . , an, there exists an a ∈ N with β(a, i) = ai, for each i = 1, . . . , n,
and with β(a, 0) = n. Moreover, β(a, i) ≤ a −̇ 1. One can introduce the following
sequence coding function:

SC(a1, . . . , an)
df
= µx (β(x, 0) = n ∧ β(x, 1) = a1 ∧ · · · ∧ β(x, n) = an).

Define also the length function lh(a) = β(a, 0), and the projection functions
(a)i = β(a, i), for i = 1, . . . , lh(a). For n = 0, β(0, i) = 0, and so for the empty
sequence ε we have SC(ε) = 0. We also need

Seq(a)
df≡ a is a code of a sequence of length lh(a).

The reader is referred to [15] for further details.
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Now we define the model. Let {0, 1} be its carrier set of the element sort. The
reader can easily modify this construction to any finite set of elements. Let its stack
carrier be the union S ∪ S0 ∪ S1 of the following three sets of 0–1 sequences (finite or
infinite):

• S is the set of all the finite 0–1 sequences;
• S0 is the set of all the infinite 0–1 sequences stabilizing on 0;
• S1 is the set of all the infinite 0–1 sequences stabilizing on 1.

Their union is recursive since they can be viewed as copies of the following sets
of finite 0–1 sequences preceded by one of the markers 0, 1, or 2 and by their lengths.
We use 0 as a marker for S0, 1 for S1, and 2 for S. Look at S0 as the set of all
finite sequences with 1 at the end, followed by infinitely many 0’s. Allow the empty
sequence there too—although it has no 1 at the end, it is needed to cover the case
of the infinite sequence consisting only of 0’s. Such infinite sequences can be coded
up by pairs 〈0, a〉 with sequence numbers a. The length lh(a) indicates the position
of the last 1. lh(a) = 0 indicates that there is no 1 at all. Similarly, deal with S1 by
indicating the position of the last 0 or indicating there is no 0 at all. Formally:

S ∪ S0 ∪ S1 = {〈δ, a〉 | δ = 0, 1, 2 ∧ Seq(a) ∧ ∀1 ≤ i ≤ lh(a) ((a)i = 0 ∨ (a)i = 1)

∧ (lh(a) > 0→ (a)lh(a) �= δ)}.

Define empty = 〈2, SC(ε)〉, and for each δ = 0, 1, 2 and each sequence code a of
(a1, a2, . . . , alh(a)) define the operations

• top(〈δ, a〉) =




a1 if lh(a) > 0,
0 if lh(a) = 0 and δ = 0,
1 if lh(a) = 0 and δ = 1,
undefined otherwise.

• pop(〈δ, a〉) =


〈δ, SC(a2, . . . , alh(a))〉 if lh(a) > 0,
〈δ, a〉 if lh(a) = 0 and δ �= 2,
undefined otherwise.

• push(e, 〈δ, a〉) =
{ 〈δ, SC(e, a1, . . . , alh(a))〉 if lh(a) > 0 or δ �= e,
〈δ, a〉 if lh(a) = 0 and δ = e.

Lemma 4.1. ({0, 1}, S∪S0∪S1; top, pop, push, empty, 0, 1) is a recursive nonreach-
able model of the axiomatic stack theory.

Proof. The proof has an easy verification.

5. Nonreachable programmable models of decidable theories. In this
section we show that there exists a nonreachable recursive model of the true stack
theory on any given finite set E. We get it as an application of a general method
(Corollary 5.4). The argument below relies heavily on the following theorem (known
in the folklore of the field).

Theorem 5.1 (the computable model existence theorem). Every consistent de-
cidable theory has a recursive model.

Proof. One can “effectivize” Henkin’s proof of the completeness theorem for the
classical first-order logic. Some details are given in [7] and related results in [9]—
for the reader’s convenience we sketch a full proof in the appendix. The key step is
an effective version of the celebrated Lindenbaum–Tarski theorem: every decidable
consistent theory has a decidable complete extension in the same language.
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Definition 5.2. A theory is reachably unambiguous if all its reachable models
are elementarily equivalent.

It is easy to see that many interesting and useful theories are reachably unam-
biguous, e.g., Peano Arithmetic and Presburger Arithmetic. This is also the case for
the stack theory in any of the above formalizations. In all these cases the theory has
just one reachable model up to an isomorphism.

Corollary 5.3. If T is a reachably unambiguous, incomplete, and decidable
theory, then T has a recursive nonreachable model.

Proof. In the algorithm of completion of T following Tarski [16], one can keep
control on which of either σ or its negation ¬σ gets into the completion, for a sen-
tence σ such that neither T � σ nor T � ¬σ. Since T is incomplete and reachably
unambiguous, there is a sentence σ0 such that neither T � σ0 nor T � ¬σ0, although
σ0 holds in every reachable model of T . Thus, a recursive model of the completion of
T with ¬σ0, built as in the proof of Theorem 5.1 above, cannot be reachable.

Corollary 5.4. Suppose T is a first-order theory. Let c0, c1, c2, . . . be all the
closed terms of the language of T , and let c be a new individual constant. If T ∪{ c �=
cn | n natural} is a consistent decidable theory, then T has a recursive nonreachable
model.

Proof. The proof is obvious by Theorem 5.1.

We establish some results concerning decidability of the true stack theory in order
to apply Corollary 5.4.

Theorem 5.5. Given a finite set E, the true stack theory on E is decidable.

Proof. We show an interpretation of the true stack theory on E in Presburger
Arithmetic (the first-order theory of (N, suc,+, 0)) which is well known to be decid-
able; see [13]. In fact, we show a somewhat stronger result by defining in (N, suc,+, 0)
an isomorphic copy of the model (E,E∗; top, pop, push, empty, {e}e∈E).

Let k be the cardinality of E. We define the two-sorted carrier of our interpreta-
tion and its operations as follows with the usual notation for operations and relations
definable in Presburger Arithmetic. (k denotes the kth numeral, i.e., k abbreviates
suc(. . . suc(︸ ︷︷ ︸

k times

0) . . .)).

• U IE(e)
df≡ e = 0 ∨ e = suc(0) ∨ · · · ∨ e = k − 1;

• U IS(s)
df≡ s ≥ k;

• emptyI df
= k;

• pushI(e, s) df
= k × (s− k) + e+ k + 1;

• topI(s) df
= (s− k − 1) mod k, for s > k;

• popI(s) df
= [(s− k − 1) div k] + k, for s > k.

The idea behind this construction is that the stacks are coded up by numbers
in their k-adic expansions, shifted up by adding k + 1 to make disjoint room for the
elements and for the empty stack. The topI operation returns the last digit of the
expansion which is just the remainder of dividing by k. Similarly, popI cuts off the last
digit. This is legal here since division by a given numeral is expressible in Presburger
Arithmetic. Consequently, the decidability procedure for Presburger Arithmetic does
the job for the true stack theory on E.

The above proof gives immediately the following complexity results inherited from
Presburger Arithmetic. The double exponential upper bound is due to Ferrante and
Rackoff [3]. There exists a decision procedure and a constant c such that it takes
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at most 22cn

deterministic single-tape Turing machine space to decide a sentence of

length n. This gives deterministic time upper bound 222dn

; see also Fischer and Rabin
[5]. Precise complexity bounds for the true theory of stacks, which we have established
recently beyond the scope of the present paper, will appear elsewhere.

Lemma 5.6. Let TSTdenote the true stack theory on a given finite set E. Then
the theory TST ∪ {c �= cn | n natural} is decidable, where c0, c1, c2, . . . are all the
closed terms of the stack sort of the language of TST , and c is a new individual
constant of the stack sort.

Proof. We reduce the decidability problem for this theory to the decidability of
Presburger Arithmetic (denoted by PrA below). Let T denote the extended theory
TST ∪ {c �= cn | n natural}. By a reduction we mean an effective mapping f
associating to each sentence σ of the language L(T ) a sentence f(σ) of the language
L(PrA) such that T � σ iffPrA � f(σ). Thus a decision procedure whether σ is a
theorem of T will be reduced to whether f(σ) is a theorem of Presburger Arithmetic.
This will imply the decidability of T since Presburger Arithmetic is decidable.

For each σ of L(T ), we define f(σ) = ∃y∀x[x > y −→ Iσ(x/c)], where Iσ is the
interpretation of σ in Presburger Arithmetic as introduced in the proof of Theorem 5.5,
separately for each E, and Iσ(x/c) is the substitution of x for c in Iσ. We show that
f is a reduction, i.e., T � σ iff PrA � f(σ).

(=⇒) Suppose T � σ. At most finitely many axioms of the form c �= cn may
appear in a proof of σ in T . Let l be the greatest number (subscript) of a constant
cn appearing in this proof. Then TST ∪ {c �= c0, c �= c1, c �= c2, . . . , c �= cl} � σ. Thus

TST � [c �= c0 ∧ c �= c1 ∧ c �= c2 ∧ · · · ∧ c �= cl → σ].

Since c is a new constant, there are no axioms concerning c in TST . Therefore

TST � ∀x [x �= c0 ∧ x �= c1 ∧ x �= c2 ∧ · · · ∧ x �= cl → σ(x/c)],

and so

PrA � ∀x [x �= Ic0 ∧ x �= Ic1 ∧ x �= Ic2 ∧ · · · ∧ x �= Icl → Iσ(x/c)].

In the standard model of Presburger Arithmetic the latter implies ∀x[x > cm −→
Iσ(x/c)], where cm is the greatest of Ic0, Ic1, Ic2,. . . , Icl. Here by Ici we denote the
interpretation of the constant term ci. Hence ∃y∀x [x > y → Iσ(x/c)] holds in the
standard model of Presburger Arithmetic. By completeness of Presburger Arithmetic
we get PrA � ∃y∀x [x > y → Iσ(x/c)].

(⇐=) Suppose PrA � ∃y∀x [x > y → Iσ(x/c)]. Let m be such a number that
∀x [x > m→ Iσ(x/c)] holds in the standard model of PrA. Hence,

PrA � ∀x [x ≥ k ∧ x �= Ic0 ∧ x �= Ic1 ∧ x �= Ic2 ∧ · · · ∧ x �= Icl → Iσ(x/c)],

where k is the cardinality of E and l is large enough for all the numerals from k to m
to occur among Ic0, Ic1, Ic2,. . . , Icl. Therefore

PrA � [c ≥ k ∧ c �= Ic0 ∧ c �= Ic1 ∧ c �= Ic2 ∧ · · · ∧ c �= Icl → Iσ(c)],

where c is a new constant. Hence

TST ∪ {c �= c0 ∧ c �= c1 ∧ c �= c2 ∧ · · · ∧ c �= cl} � σ(c)
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for a new constant c of the stack sort. We get T � σ(c), since T contains

TST ∪ {c �= c0 ∧ c �= c1 ∧ c �= c2 ∧ · · · ∧ c �= cl}.

Corollary 5.7. The true stack theory on a given finite set E has a recursive
nonreachable model.

Proof. The proof follows from Lemma 5.6 and Corollary 5.4.

Corollary 5.8. The axiomatic stack theory on any finite E with the (first-order)
scheme of structural induction has a recursive nonreachable model.

Proof. It follows immediately from the above, since this theory is contained in
the true stack theory on E.

Remark 5.9. Presburger Arithmetic has a recursive nonreachable model.

Proof. It follows from Corollary 5.4 by a similar argument as in the proof of
Lemma 5.6. This has been known to the experts although never published.

6. Conclusion. In general a first-order specification (axiomatization) has too
many models. There have been several approaches in order to restrict the semantics
of specifications to intended models only. The initial algebra approach proposed by [4]
in the mid 1970s has particularly attracted a lot of attention. In this paper we propose
and advocate the programmable algebra approach, i.e., to consider the programmable
algebras as the only models. That is, by a specification we mean a pair (Σ, T ), where
Σ is a signature and T is a list of axioms in the classical first-order logic (with equality)
of signature Σ, and the models of such a specification under the proposed semantics
are all computable Σ-algebras that satisfy the axioms T . Furthermore,

• we give a criterion assuring that any specification which satisfies the criterion
has only reachable models. Often this means just one model up to isomor-
phism. This is the case of the axiomatic theory of stacks on natural numbers.
• We give some examples of specifications that do not satisfy the criterion and
admit programmable models which are not reachable. This is the case of both
axiomatic and true stack theory on any given finite set E.

• We give a rather powerful method of constructing programmable nonreach-
able models.

These results can be easily generalized to provide a criterion that ensures that
computable models of a theory are generated by a set of generators whenever this
set is definable by a first-order formula. For instance, we may always indicate a
subset of sorts and consider the carriers of these sorts as such a definable set of
generators. This slightly more general version would be needed, for instance, to deal
with stack theories on infinite sets of elements, which then can be considered over a
finite signature, without constants for elements.

We also show decidability of the true stack theory on a finite set of elements, a
result of interest on its own. One can use it, for instance, to conclude that Peano
Arithmetic is not interpretable in the theory of stacks on a finite set of elements.

We do not know if the axiomatic stack theory is decidable. It remains as an
intriguing open question. We conjecture that given a set E, the true stack theory
on E is contained in the axiomatic stack theory on E with the scheme of structural
induction. (Since the other inclusion is obvious, this would mean that the true and
axiomatic theories are equivalent in this case.)

7. Appendix. In this appendix we provide a proof of Theorem 5.1: every decid-
able consistent theory has a recursive (computable) model. In view of this paper, it
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seems to be of considerable revitalized interest for use in the area of algebraic specifi-
cation of software systems, their semantics, validation, and systematic development.
It provides a source of supply of programmable algebras to various purposes. The
result has been in the folklore for many years. Some variant of it was stated in [9]
without proof and another one (a bit stronger than our formulation) in [7] with a
sketch of the proof idea.

As throughout this paper, we assume the reader is familiar with the usual formal-
ization of classical first-order logic and its semantics; see, for example, [15]. All the
theories considered will be formalized in classical first-order logic with countably many
symbols. For simplicity we give the result and our proof here for the single-sorted
case.

Recall that a theory T is called decidable if T is a recursive set (of Gödel numbers)
of sentences, i.e., if there is an effective procedure deciding in a finite number of steps
whether a given sentence is a theorem of T or not. Let us recall also that a theory T
is complete if for every sentence σ exactly one of the following holds: either σ ∈ T or
¬σ ∈ T . For two theories T and T ′, we say that T ′ is an extension of T if T ′ contains
T . By L(T ) we denote the language of T .

To prove the theorem we follow Henkin’s proof of the completeness theorem for
classical first-order logic with appropriate modifications. Let T be a consistent decid-
able theory. We extend T to another theory T ′ such that T ′ is decidable, complete,
and Skolemized. The latter means it has a term witness for each existential statement
derivable in this theory. The canonical structure will be constructed on the terms of
the language of T ′. Its interpretations of relation and function symbols will be defined
according to what T ′ knows about them. We then prove the canonical structure is a
model of T ′. Thus it is a model of T too, since T is a subtheory of T ′. The model
turns out recursive because T ′ is a decidable theory. That is, the construction of the
model is described recursively by the story of T ′. To this end we need the follow-
ing two lemmas. The first of them can be thought of as an effectivized Lindenbaum
theorem.

Lemma 7.1. Every decidable consistent theory has a complete decidable and
consistent extension in the same language.

Sketch of proof (Lindenbaum–Tarski). Let T be a decidable consistent the-
ory. Let ϕ0, ϕ1, ϕ2, . . . be a recursive enumeration of all sentences of the language of
T . Let T0 be T itself. Given decidable theory Tn, define kn as the least k such that
¬ϕk is not a theorem of Tn. Then let Tn+1 be the theory that results from adding ϕkn
to Tn as a new axiom. Tn+1 is decidable, since Tn+1 proves σ iff Tn proves ϕkn → σ.
Now let T ′ be the theory which has as its axioms all of the axioms of these theories
Tn, n ≥ 0. One can show that T ′ is consistent, complete, and decidable.

Lemma 7.2 (Skolemization). If T is a consistent decidable theory, then there is
a consistent decidable extension T ′ of T with the language L(T ′) containing L(T ) and
such that if a sentence ∃xϕ(x) is a theorem of T , then there is a term t in L(T ′) with
ϕ(t) belonging to T ′.

Proof. Let T be a consistent decidable theory. We construct by recursion a
sequence of languages L0, L1, L2, . . . and a sequence of theories T0, T1, T2, . . .. At
each step we extend the language with a new constant and adjoin one new axiom to
the theory. First, let us enumerate recursively all the existential sentences of L(T ):
∃xϕn(x), n natural. We take off with L0 = L(T ) and T0 = T . Now suppose we are
given a consistent decidable theory Tn in L(Tn). If ∃xϕn(x) is derivable in Tn, then
we take Ln+1 to be Ln plus a new constant cn, and Tn+1 to result from Tn by adding
ϕn(cn) as an axiom. Otherwise, we take Ln+1 = Ln and Tn+1 = Tn. Clearly, new
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theory Tn+1 is consistent.
To show that in the nontrivial case Tn+1 is decidable we reduce the decidability

problem for this theory to decidability of Tn. As in the proof of Lemma 5.6, here by
a reduction we mean an effective mapping f associating with each sentence σ of the
language L(Tn+1) a sentence f(σ) of the language L(Tn) such that Tn+1 � σ iffTn �
f(σ). Thus a decision procedure whether σ is a theorem of Tn+1 will be reduced to
that of whether f(σ) is a theorem of Tn. This will mean decidability of Tn+1, since

Tn is decidable, by the inductive hypothesis. We take f(σ)
df
= ∃x[ϕn(x)&σ(x/cn)].

Given a sentence σ in L(Tn+1) and a proof d of σ in Tn+1, we notice that the axiom
ϕn(cn) can occur at most finitely many times in d. We can obtain a proof d′ of
∃x[ϕn(x)&σ(x/cn)] in Tn out of d as follows. Replace each occurrence of the axiom
ϕn(cn) in d by ∃xϕn(x). Then introduce the prefix ∃x[ϕn(x)& . . .] to each member
(step) of d containing cn, possibly renaming the other variables. Finally, substitute
each occurrence of cn with x. The other way around is proved similarly. Thus f is a
reduction.

To complete the proof, let T ′ be the union of all the theories Tn, n ≥ 0. Clearly,
T ′ is consistent. It is decidable as a recursive union of recursive sets.

Proof of Theorem 5.1. Let T be a consistent decidable theory. As the first step
we construct a consistent, decidable, complete, and Skolemized extension T ∗ of T .
To this end we construct recursively a sequence L0, L1, L2, . . . of languages and a
sequence T0, T

′
0, T1, T

′
1, T2, T

′
2, . . . of theories as follows. We start off with L0 = L(T )

and T0 = T and set T ′0 to be an extension of T provided by Lemma 7.1. Suppose
we are given a consistent and decidable theory Tn in language Ln = L(Tn). We take
Ln+1 = L(T ′) and Tn+1 = T ′ where T ′ is an extension of Tn provided by Lemma 7.2.
Clearly, Tn+1 is consistent and decidable. Now we take the union of all of them:

L∗ =
⋃
n≥0

Ln

and

T ∗ =
⋃
n≥0

Tn =
⋃
n≥0

T ′n.

T ∗ is decidable, consistent, complete, and Skolemized.
As for the rest of the proof we only use a standard construction of the canonical

model for T ∗ (see, e.g., [15], pp. 44–46). We represent the resulting equivalence
relations on the natural numbers. Equivalence classes can be identified with their
least (number) representatives. The resulting model is computable since T ∗ is decid-
able.
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